
International Journal of Information Security (2024) 23:1131–1148
https://doi.org/10.1007/s10207-023-00779-8

REGULAR CONTRIBUT ION

Enhancing security in Fiat–Shamir transformation-based
non-interactive zero-knowledge protocols for IoT authentication

Firas Hamila1 ·Mohammad Hamad1 · Daniel Costa Salgado2 · Sebastian Steinhorst1

Published online: 25 November 2023
© The Author(s) 2023

Abstract
With the rapid expansion of IoT devices and their applications, there is an increasing demand for efficient and secure authenti-
cation mechanisms to protect against unauthorized access. Traditional authentication mechanisms face limitations regarding
computational speed, communication costs, and vulnerability to cyber-attacks. Zero-knowledge proof (ZKP) protocols have
emerged as an effective solution for achieving secure and efficient authentication in such environments without revealing
sensitive information. Among ZKP protocols,�-protocols, a class of interactive ZKP protocols, have been employed for their
efficiency and security. However, their interactive nature necessitates multiple rounds of communication, which can reduce
efficiency and increase communication overhead for resource-constrained devices. Many works have aimed to eliminate the
interaction of �-protocols by utilizing a transformation called the Fiat–Shamir transformation (FST). However, there is still a
concern regarding the soundness of the FST as it can sometimes convert a secure �-protocol into an insecure non-interactive
zero-knowledge (NIZK) authentication scheme. In this paper, we propose an approach for transforming �-protocols into a
NIZK protocol based on the FST, yielding significant enhancements in efficiency, communication overhead reduction, and
elimination of interaction. Our proposed protocol enables the completion of the authentication process in a single request
while also strengthening the soundness of�-protocols in comparison with the traditional FST by requiring two authentication
factors instead of one. To demonstrate our approach’s robustness, we conducted comprehensive informal and formal security
analyses (using the Tamarin-Prover). Our protocol demonstrated completeness, soundness, zero-knowledge properties, and
robustness against attacks, including eavesdropping, message modification, replay, and brute force attacks. Additionally, our
performance analysis displayed a remarkable 50% improvement in computational cost compared to traditional �-protocols,
underscoring its efficiency for practical use.

Keywords Authentication · IoT · Non-interactive zero-knowledge proof · �-Protocols · Fiat–Shamir transformation

1 Introduction

The rapid expansion of Internet of Things (IoT) has trans-
formed our interaction with the environment. These devices
have become an integral part of our daily routines, offering

B Mohammad Hamad
mohammad.hamad@tum.de

Firas Hamila
firas.hamila@tum.de

Daniel Costa Salgado
daniel.salgado@exxeta.com

Sebastian Steinhorst
sebastian.steinhorst@tum.de

1 Technical University of Munich, Munich, Germany

2 Exxeta AG, Mannheim, Germany

convenience, efficiency, and enhanced productivity. How-
ever, the exponential adoption of IoT across various domains
has also brought forth significant concerns surrounding the
security and privacy of these ecosystems. To ensure secure
interaction among IoT devices, a crucial element is the
establishment of robust authentication mechanisms. How-
ever, authentication in IoT poses several challenges due to
the resource limitations of IoT devices, such as their lim-
ited computational capabilities, memory, and power sources.
Consequently, traditional authentication mechanisms prove
impractical and susceptible to various attacks.

Many approaches have been developed to address the
need for secure authentication of IoT communication. These
approaches vary in their methodologies and cryptographic
techniques, including pre-shared key (PSK)-based authenti-
cation [39], certificate-based authentication [38], public key

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-023-00779-8&domain=pdf

1132 F. Hamila et al.

infrastructure (PKI)-based authentication [37], token-based
authentication [19], and one-time password authentication
[27]. However, these approaches suffer from limitations. For
example, some require the storage of large amounts of pre-
calculated authentication keys [27], while others involve the
complex management and distribution of tokens and certifi-
cates [19, 38]. Furthermore, there is a security risk associated
with the potential compromise of authentication keys [37,
39]. Finally, many approaches do not preserve privacy, leav-
ing personal information revealed [19, 39].

Different approaches have been proposed to overcome the
limitations of traditional authentication mechanisms regard-
ing privacy. One of these approaches is the ZKP protocol
[15]. These protocols enable one party, known as the prover,
to demonstrate the validity of a statement to another party,
known as the verifier, without disclosing any information
beyond the truth of the statement itself. This characteristic
makes ZKP protocols appealing for authentication scenarios,
as they enable authenticated and private communications.
Many ZKP techniques require a large number of interactive
rounds to authenticate a prover [15], introducing more com-
putational overhead, while others need a reduced interaction
[17].

One class of interactive ZKP, known as �-protocols [17]
(see Sect. 2.1), provides a secure and efficient method for
proving knowledge of a witness, such as a secret key or
any valid credential, without actually revealing that informa-
tion. These protocols aremore efficient than traditional ZKPs
since they utilize built-from-scratch cryptographic functions
[41]. However,�-protocols still require 3-round interactions
between the prover and the verifier to prove knowledge of
a secret. Recently, many research studies have been cen-
tered on the advancement of efficiency and security of ZKPs
[43]. One of these research works was focused on utilizing
a transformation called FST [24] (see Sect. 2.4) to convert
�-protocols into non-interactive ZKP protocols. The result-
ing NIZK protocols have been considered the most efficient
NIZK protocol [6, 30] andmore efficient and straightforward
than the ones based on cryptographic primitives [31]. All of
these factors contribute to the high suitability of FST-based
NIZK protocols for deployment in IoT scenarios.

While significant progress has been made in the adoption
of �-protocols and FST-based authentication techniques for
IoT systems, there is still a concern regarding the soundness
of the FST as it can sometimes turn a secure �-protocol
into an insecure NIZK authentication scheme [26]. Many
research works argued that security properties of FST are
hard to achieve, even though it seems to produce secure
schemes in practice when applied to the correct protocols [9,
22, 26]. To improve the soundness of this heuristic, extensive
research has been conducted, exploring various approaches.
These include investigating specific groups of hash functions
[31], imposing restrictions on permitted �-protocols [36],

and considering encryption as an alternative to the employed
hash function [18]. However, it is important to note that a
comprehensive solution that effectively enhances the sound-
ness of the FST and the employed protocol across all types of
hash functions and �-protocols while maintaining satisfac-
tory performance levels remains unexplored. In light of this
problem, our paper aims to contribute to the field by propos-
ing an approach that tackles these challenges and offers an
improved solution.

1.1 Contribution

In this paper, we propose an efficient and secure transforma-
tion from interactive 3-round�-protocols toNIZKprotocols.
Our approach is based on improving the soundness of the
FST for all classes of secure �-protocols. Specifically, we
propose a non-interactive transformation based on the FST
that requires two verifications with two distinct keys for
approval. Our protocol not only verifies the validity of the
ZKP but also verifies the authenticity of the challenge by
utilizing a secondary key. Our proposed solution strength-
ens the security guarantees of the transformed protocols by
adding an additional layer of protection against potential
attacks. Our proposed protocol mitigates the risks associated
with applying the FST to �-protocols, as mentioned pre-
viously, by requiring two verifications with different keys.
This enhancement significantly improves the efficiency and
the overall robustness and soundness of the authentication
process, ensuring that only legitimate entities gain access,
regardless of the �-protocol employed. Furthermore, we
extend our contribution beyond theoretical advancements
by providing a practical implementation and a performance
analysis of the proposed authentication protocol in the pro-
gramming language Rust. We also leverage the capabilities
of the Tamarin-prover [40], a tool for analyzing security
protocols, to model and evaluate the security properties of
our NIZK protocol. Our contribution lies in demonstrating
how ZKP protocols based on non-primitive cryptographic
systems, such as the Schnorr Identification Scheme (SIS)
(see Sect. 2.3), can be modeled and analyzed using Tamarin-
prover, expanding the applicability of this tool in the domain
of IoT security. It is important to note that there is currently no
existing assessment of the security properties of similar non-
interactive protocols based on non-primitive cryptographic
functions in the literature.

The main contributions of this article are as follows:

• We propose a NIZK protocol that requires two verifica-
tions with two distinct keys, enhancing the security and
soundness of the FST and the utilized�-protocols, while
improving its efficiency (see Sect. 4).

123

Enhancing security in Fiat–Shamir transformation-based… 1133

• We utilize the Tamarin-prover to model and formally
analyze the security properties of the proposed NIZK
protocol (see Sect. 5.2).

• We demonstrate the feasibility and applicability of our
proposed protocol by providing an open source1 imple-
mentation of it using the Rust programming language
and evaluating its performance on embedded resource-
constrained platforms (see Sect. 5.3).

2 Background

In this section, we provide an overview of the basic concepts
that our proposed solution was built upon. First, Sect. 2.1
demonstrates the basics of �-protocols. Then, the elliptic
curve discrete logarithm problem is introduced in Sect. 2.2.
Next, Sect. 2.3 depicts the Schnorr identification scheme.
After that, Sect. 2.4 characterizes the Fiat–Shamir transfor-
mation, focusing on its efficiency and soundness. Finally, in
Sect. 2.5, the elliptic curve Diffie–Hellman ephemeral key
agreement protocol (ECDHE) is introduced.

2.1 6-Protocols

�-protocols are identification schemes based on a 3-round
interactive ZKP. They generally work as follows: for a proof
system (A, B), where A is the prover and B the verifier,
(x, w) ∈ R where R is a relation such as w is a witness of a
statement x known only by A. To prove that x ∈ R:

1. The prover A sends a message a, called commitment, to
the verifier B.

2. After receiving a, B sends back a t-bit random c, called
the challenge.

3. A sends a response y, called the proof, based on the com-
mitment a, the challenge c, and thewitnessw.B accepts or
rejects the proof of A based on the received information.

To define�-protocols, assuming that the prover A, and the
verifier B, are both probabilistic polynomial time machines,
where only A knows w, a protocol is called �-protocol for
a relation R, where (x, w) ∈ R if the following 4 properties
hold [17]:

• The protocol has a 3-round interaction between A and B,
as described above.

• Completeness: The verifier B always accepts ∀(x, w) ∈
R.

• Special Soundness: the proof can only be accepted by
the verifier B if the statement being proven is actually
correct, meaning (x, w) ∈ R.

1 Link: https://github.com/tum-esi/act-nizkp.

• Honest-verifier zero-knowledge: the proof can only be
accepted if both the prover A and verifier B are follow-
ing the protocol honestly without cheating, for example,
having a true random number generator is considered
honesty.

�-protocols rely on two key properties [17]. Firstly, the rela-
tion R must be a hard relation, making it computationally
difficult to compute w from x , while efficiently generating
(x, w). Secondly, the witness-hiding (WH) property, a subset
of zero-knowledge, ensures that the system provides privacy
and security for the prover by keeping the witness w hid-
den. There are several implementations of �-protocols. One
example is Schnorr’s protocol [17].

2.2 Elliptic curves discrete logarithm problem
(ECDLP)

The discrete logarithm problem (DLP) can be defined over
elliptic curves [33]. Let E be an elliptic curve (EC). P and Q
are points on E , with P being a generator (P, Q ∈ E). The
ECDLP is the task of finding the integer s such that:

Q = sP (1)

Finding s is computationally infeasible. The multiplication,
in this case, denotes themultiplication of a scalar with a point
on the elliptic curve, which is different from the traditional
multiplication as it is computationally infeasible to compute
the scalar s by just knowing the points Q and P .

2.3 Schnorr’s identification scheme (SIS)

SIS is a �-protocol used to prove knowing a secret with-
out revealing its value [17]. SIS is considered more efficient
and less complex in terms of computation and communica-
tion compared to primitive cryptography-based Identification
Schemes, such as the challenge-and-response protocol in the
public key setting. This efficiency is achieved because SIS’s
building blocks do not rely on any additional cryptographic
methods [41].

One way to implement SIS is to build it over EC based
on the ECDLP. For an EC, E , P and Q are points on E , with
P being a generator and Q is defined as in 1. The prover
A’s private key is s, while P and Q form his public key. To
prove his knowledge of the private key s, A interacts with
the verifier B using a 3-round interaction, as follows [28]:

1. A commits to a random integer r and sends the commit-
ment R to B such that:

R = r P (2)

123

https://github.com/tum-esi/act-nizkp

1134 F. Hamila et al.

2. B responds by sending a random challenge number c.
3. A sends the response y to B such that:

y = r + cs (3)

The verifier B accepts the identification only if:

yP = R + cQ (4)

The security of the SIS over EC originates from the
ECDLP and relies on the presumed intractability of calculat-
ing discrete logarithms in the chosen EC group, meaning that
the EC has to be chosen carefully to maintain the security of
the SIS [28].

2.4 The Fiat–Shamir transformation (FST)

FST presents simple and secure non-interactive signature
and identification schemes that are suitable for low-power
devices [24]. The idea behind it was to transform any interac-
tive 3-round protocol that utilizes the challenge and response
method into a non-interactive formby replacing the challenge
with a publicly verifiable hash function, such as SHA-256,
SHA-384, or SHA-512. The challenge is usually sent from
the verifier to the prover to ensure the proof’s randomness
and soundness. The security of this transformation is related
to the assumption of the existence of a secure cryptographic
Hash function that can act as a random oracle model.2 The
FST has been recognized as one of the most efficient non-
interactive protocols [6, 30, 31].

2.4.1 The security of the FST

Several studies have been conducted to prove the security
of this efficient transformation to non-interactive protocols.
Canetti et al. [6] studied two slightly different variants of
the FST to compare their security properties. Their findings
demonstrated that the variant where both the commitment
and the statement need to be hashed provides better security
guarantees under the random oracle assumption compared to
the variant where only the commitment needs to be hashed.
Faust et al. [23] conducted a study to evaluate the security of
the transformation against attacks where the adversary mod-
ifies a valid proof into another proof that would be accepted
by the verifier. In the random oracle model, they proved that
the FST is secure against such types of attacks.

Despite the security claims of the Fiat–Shamir transforma-
tion in the random oracle model, recent studies have shown

2 In cryptography, the RandomOracleModel is a concept that provides
a way to evaluate the security of cryptographic protocols by assuming
that a hash function behaves like a black box and generates uniformly
distributed and unpredictable outputs for any input it receives.

that it might not be as secure as claimed. Goldwasser et
al. [26] examined the security of this transformation and
disproved its security, contrary to what some other papers
argued. They proved that in certain scenarios, the FST fails
to maintain the soundness of the protocol, depending on the
employed �-protocol. They demonstrated that even if the
used hash function is deemed secure and collision-resistant,
there exists a secure �-protocol that loses its security when
the FST is applied. This occurs because certain �-protocols
can lose their security when the verifier’s challenge is
replaced by a hash. Dwork et al. [22] referred to the hash
function required by the FST as a "magic function" due to its
challenging security requirements. They conducted a study
to investigate the existence of such a function that would
ensure the resulting non-interactive protocol remains secure.
Their study demonstrated that if a 3-round proof system is
considered to be an ultra-weak zero-knowledge protocol,3

and it is used to construct a non-interactive signature scheme
using the FST, then there exists a forger who can successfully
forge a signature with a high probability. This result does not
imply that every 3-round interactive ZKP becomes insecure
when the FST is applied. However, it shows that replacing
the verifier’s challenge with a hash function can lead to inse-
cure protocols, especially those that meet the requirements
of an ultra-weak zero-knowledge proof system.

2.5 ECDHE key agreement protocol

ECDHE is a method that allows two different parties to agree
upon a shared secret key over an insecure channel. This is
done by using the computational difficulty of the ECDLP [1].
ECDHEworks as follows: Given an elliptic curve E and P is
a generator, two parties A and B can generate a shared secret
key using the following steps:

• A chooses a random secret integer dA. He computes

QA = dAP (5)

and sends QA to B.
• B also generates a randomsecret integerdB and computes

QB = dB P (6)

and sends QB to A.
• Now A can compute dAQB and B can compute dBQA,
which results in the same shared secret key SKAB , such
that:

SKAB = dAdB P = dBdAP (7)

3 An ultra-weak ZKP is a protocol that has been intentionallyweakened
to reduce its security [22].

123

Enhancing security in Fiat–Shamir transformation-based… 1135

An attacker can intercept the QA and QB values, but they
cannot compute the shared secret key without solving the
ECDLP. However, this implementation is still not secure
against man-in-the-middle attacks [1]. For that reason, an
authenticated key agreement has to be used instead. In this
case,we can do it by combiningSISoverECwith theECDLP.

3 System and threat model

Our proposed authentication system is for device-to-device
communication in a mesh network of nodes {N1, N2, N3,
…} where each node can communicate with any other node.
In our system, P is a public point on the elliptic curve E ,
which is used as a generator. Each node Ni has:

• sNi is a private key of the node Ni .
• QNi is a public key of node Ni , such that QNi = sNi P .

In our system,we assume the existence of a trusted author-
ity (T A) that can use a traditional Public Key Infrastructure
(PKI) or a distributed one to sign and share the public keys.
However, the specific interpretation and implementation of
such a T A are beyond the scope of this paper. Addition-
ally, each node is capable of utilizing the SHA-3 and the
Keccak Message Authentication Code (KMAC) functions.
Secure Hash Algorithm 3 (SHA-3) represents the Keccak
hash function, which was chosen as the new standard by
National Institute of Standards and Technology (NIST) in
2012 [8]. And KMAC defines theMessage Authentication
Code (MAC) algorithm based on the Keccak function [32].
We chose to use the SIS, the SHA-3, and the KMAC in our
authentication protocol; however, our NIZK transformation
applies to any �-protocol and to any secure hash and MAC
functions.

3.1 General security assumptions

In this section, we will illustrate the general security assump-
tions that our protocol is based on. The strength of these
assumptions provides a strong foundation for the security of
our NIZK IoT device-to-device authentication protocol.

1. ECDHE security assumption: The security of the authen-
ticated ECDHE protocol is based on the computational
Diffie–Hellman assumption in elliptic curve groups,
which implies that it is computationally infeasible for an
attacker to compute the shared secret key between two
devices based on the public information exchanged dur-
ing the protocol.

2. SIS security assumption: The security of the SIS over EC
is based on the computational Diffie–Hellman assump-
tion in elliptic curve groups and the intractability of

the discrete logarithm problem, which indicates that it
is computationally infeasible for an attacker to forge a
valid schnorr proof without knowing the private key of
the device. Assuming the difficulty of the elliptic curve
discrete logarithm problem, the SIS has been proven to
satisfy the following properties of a zero-knowledge pro-
tocol (i.e., completeness, soundness, and honest-verifier
zero-knowledge).

3. MAC security assumption: The security of theMAC func-
tion used to replace the challenge of the verifier in the
NIZK transformation is based on the unforgeability of the
underlying MAC algorithm, which means that it is com-
putationally infeasible for an attacker to generate a valid
MAC tag without knowing the secret key. Additionally,
the MAC function should output a different random-
looking tag for eachmessage and key. To bemore precise,
we use the KMAC function in our protocol, which signi-
fies that the KMAC function has to be collision resistant,
unforgeable, and provide randomness.

3.2 Threat model

In this section, we will illustrate the threat model considered
in our formal security analysis using Tamarin-prover (more
information about Tamarin-prover and the formal security
analysis is available in Sect. 5.2). Our threat model is based
on the Dolev–Yao adversary model [20], where potential
attacks and vulnerabilities can be exploited by an adversary
attempting to compromise the system’s security. The Dolev–
Yao model assumes an insecure and untrusted network with
an adversary that can intercept, modify, and generate arbi-
trary messages, meaning that he can impersonate users and
eavesdrop on the communication channel to gather sensi-
tive information. Additionally, we also make the following
assumptions:

• We consider cryptographic functions, such as hash and
MAC functions, as perfect, meaning that generating a
valid MAC tag requires knowing the secret key.

• We assume that the nodes are honest, which implies that
they have perfect random number generators. The nodes
will faithfully execute the protocol steps, correctly gen-
erate and transmit messages, and respect the security
guarantees and requirements of the protocol.

• We also consider that the long-term private keys are
stored securely and cannot be compromised through
attacks such as side-channel attacks.

3.3 Attack vectors

In this section, we present various attack vectors that have
been considered in the evaluation of our security protocol.
These attack vectors include:

123

1136 F. Hamila et al.

3.3.1 Man-in-the-middle (MITM) attack

In the MITM attack, the intruder positions himself between
two nodes and intercepts their communication, giving him
the ability to eavesdrop on the conversation ormanipulate the
communication flow. In this paper, we distinguish between
several types of attacks that can be considered part ofMITM:
eavesdropping, message modification, and replay attacks.

• Active attacks: the adversary actively participates in the
communication between the prover and the verifier. Their
objective is to obtain valuable login information or cre-
dentials during the interaction. This acquired information
can then be used by the adversary at a later time to imper-
sonate the prover to the verifier.

• Eavesdropping: The adversary passively listens to the
conversation between the prover and the verifier, attempt-
ing to gather sensitive information, such as secret keys
and other confidential data, that can be used to imperson-
ate the prover to the verifier.

• Message modification attacks: The adversary intercepts
a message during transmission between the prover and
the verifier and makes changes to its content, aiming to
forward a falsified message.

• Replay attacks: the adversary captures and records the
data transmissions between the prover and the verifier
and subsequently replays those same transmissions back
to one or both parties at a later time without initiating a
separate session. This allows the adversary to reuse the
captured values to authenticate themselves successfully.
By reusing the data, the adversary can impersonate one
of the parties.

3.3.2 Brute force attack

The adversary employs different approaches in which they
repeatedly guess the correct authentication keys. This attack
involves systematically checking all possible combinations
until the adversary successfully cracks the correct key. It can
be executed as a dictionary attack, where pre-defined values
are used, or as a blind attack, where the intruder tries ran-
dom values until the correct one is found. While this is a
straightforward attack, it can be highly time-consuming.

3.4 System requirements

Our proposed NIZK protocol should fulfill the essential
properties that define a ZKP: completeness, soundness, and
zero-knowledge.

4 Proposed solution

Our proposed protocol is based on utilizing a NIZK transfor-
mation on a �-protocol by applying the FST to the SIS over
EC. However, our approach enhances prior work by incor-
porating an extra layer of security through the utilization of
a keyed hash function instead of a standard hash function in
the FST. The shared secret key used in the transformation is
dynamically communicated through a one-time interactive
mutual authentication with ECDHE key agreement proto-
col during the Setup Phase, as described in Sect. 4.1. This
shared key will be updated after each authentication process.
To illustrate the two steps of the protocol, we will consider
a scenario involving two nodes: the prover (referred to as A)
and the verifier (referred to as B).

4.1 Setup phase

The goal of this phase is to establish a shared secret key that
will be utilized for the keyed hash function in theNIZK trans-
formation. It is important to note that this phase needs to be
executed once during the initial communication between two
nodes. During this phase, any secure key-sharing protocol
can be employed. In this work, we utilize the authenti-
cated ECDHE protocol to share a secret key A and B. The
authentication is performed using the interactive 3-round SIS
protocol. The steps of this process are illustrated in Fig. 1 and
work as follows:

Fig. 1 Setup phase: utilizingECDHE for secure SKAB sharing between
the prover and the verifier

123

Enhancing security in Fiat–Shamir transformation-based… 1137

1. A commits to B by generating the commitment RA such
that:

RA = rAP (8)

where rA is a random integer generated by A. A sends RA

to B.
2. B also commits to A and generates the commitment RB

such as:

RB = rB P (9)

where rB is a random value generated by B. B generates
also another random integer cB that he will provide as a
challenge to A. He sends cB and RB back.

3. A generates a random integer challenge cA, and the
response yA such that:

yA = rA + cBsA (10)

and sends cA and yA to B.
4. B responds with his response yB , such that:

yB = rB + cAsB (11)

5. Now both A and B, verify the authentication of each other
using the values they received, such that:

yAP = RA + cBQA, yB P = RB + cAQB (12)

If true: A calculates the secret key SKAB , such that:

SKAB = H(rARB) (13)

and B calculate it, such that:

SKAB = H(rB RA) (14)

Upon successful verification, the secret shared key is
SKAB is computed as determined in Eq.15.

SKAB = H(rARB) = H(rB RA) = H(rArB P) (15)

Finally, A and B also initialize a shared counter i AB to 0
since it will be employed later in theNIZK proof. Hashing
the secret values is important to obtain the desired key
length and to ensure the randomness of the key.

4.2 NIZK transformation

4.2.1 Approach and steps

Our proposed solution aims to convert the 3-round SIS proto-
col into a non-interactive protocol by employing a modified
version of the FST. The details of the proposed NIZK proto-
col are provided in Fig. 2 and assume the successful execution
of the setup phase described in Sect. 4.1. When A wants to
authenticate to B, A prepares all the necessary data and trans-
mits them in a non-interactive manner. First, A generates a
random integer rA and calculates the commitment RA from
it as follow:

RA = rAP (16)

Then, A needs to generate B’s challenge, denoted as cB . The
generation of cB can be determined using Eq.17. To perform
this step, A utilizes the counter i AB , which is shared between
A and B. Using the MAC function KMAC with the shared
secret key SKAB , A generates the MAC of the commitment
RA and the next value of the counter i AB (i AB + 1).

cB = MACSKAB (RA || i AB + 1) (17)

After that, A uses cB to generate his response yA, as deter-
mined in Eq.18.

yA = rA + cBsA (18)

Finally, A sends the commitment RA, the challenge cB , and
the response yA all together to B.

Upon receiving this information, B verifies his challenge
cB to ensure its correct generation according to the protocol.
This verification is performed using Eq.17 with the shared

Fig. 2 Non-interactive zero-knowledge proof protocol between the
prover and the verifier

123

1138 F. Hamila et al.

secret key SKAB and the incremented counter i AB . If the ver-
ification succeeds, B then checks the correctness of Schnorr’s
proof using Eq.19.

yAP = RA + cBQA (19)

If Eq.19 holds, B successfully authenticates A.
After successful authentication, both A and B need to

update the secret key SKAB and the shared counter i AB for
future use. First, the counter i AB is incremented and saved,
ensuring that i AB = i AB + 2 (since i AB + 1 was used in the
proof and should not be reused). Then, the new shared secret
key SKAB is calculated as the hash of the old key SKAB , the
counter i AB , and the response yA, as specified in Eq.20.

SKAB = H(SKAB || i AB || yA). (20)

4.3 Protocol design considerations

Note that A can include the value of the counter i AB with
the proof to prevent counter value synchronization errors
between A and B. However, B must always keep track
of the most recently received counter value. Only requests
with a received counter value greater than the last used one
will be accepted. This precaution is crucial for avoiding
replay attacks and ensuring the correct functioning of the
protocol, even in scenarios where acknowledgment of proof
verification is not employed. Also, by including yA in the
computation, a more randomized value for the new key is
achieved since yA is generated using random values, thereby
ensuring its randomness as well.

Practically, the counter i AB can be implemented as a 32bit
unsigned integer that starts at value 0. When nearly all the
possible values of i AB are used, A and B have to initiate
a mutual authentication to agree upon a new shared secret
key. Then, i AB could be reset to 0 and used again securely
without the risk of reply attacks. This procedure is illustrated
in Algorithm 1.

In addition, the messages sent using our NIZK proof
are authenticated, ensuring integrity and authentication. Our
NIZK transformation, when used without mutual authentica-
tion, primarily guarantees message integrity and the authen-
tication of the prover. For our implementation, we opted to

Algorithm 1: Shared Counter Reset
Input: i AB : Shared counter between A and B, SKAB : Shared

secret key between A and B

if i AB > 232 − 4 then
Agree upon a new SKAB ;
i AB = 0;

else
i AB = i AB + 2;

use the KMAC function due to its favorable performance and
security against cyber-attacks. However, alternative MAC
functions can also be employed for the same purpose.

Using a keyed hash function with a counter instead of
an unkeyed hash, as in the FST, ensures that the challenge
is always random, unique, and authenticated by the veri-
fier. Our solution addresses the issue in the FST that affects
the soundness of the protocol. In addition, our construction
enhances securitywith a similar computation cost as the FST,
by requiring two verifications of two different keys, provid-
ing a sort of 2-factor authentication. An attacker would need
to compromise both the private key sA corresponding to the
public key of A and the shared secret key SKAB to break the
protocol.

In our approach, B can verify the honest generation of the
challenge using the shared secret key SKAB and the shared
counter i AB . This limits an adversary’s ability to manipulate
the challenge and the proof. Furthermore, updating the shared
key SKAB after each use ensures that our protocol remains
secure even if the shared secret key is compromised, as the
updated key value can be considered a Common Random
String (CRS). In the case of a compromised secret key sA
or shared key SKAB , our protocol detects the compromise
through a simple verification step during the rejection of an
authentication request. This approach is explained in more
detail in the following section.

4.3.1 Compromised key detection mechanism

The presence of both keys, namely the secret key sA and the
shared key SKAB , in the proof enables the detection of key
compromise, as outlined in Algorithm 2. During the authen-
tication verification of A, the protocol can identify potential
key compromise using the following approach: If the chal-
lenge cB was correctly generated using the KMAC function,
but the SIS-based proof is invalid, it suggests a possible com-
promise of the shared key SKAB or an attacker’s lucky guess
of the challenge. To keep track of such incidents, a counter
fsym is employed. If the counter exceeds a certain threshold
value, denoted as fthreshold and configurable by the verifier,
it indicates that the shared secret key SKAB is compromised.
Similarly, if the challenge cB is invalid but the SIS-based
proof is valid, the counter fasym is utilized. Upon reaching
the threshold fthreshold , the verifier reports the incident to
the trusted authority (T A) using an authenticated request.
The trusted authority (T A) must promptly respond and take
appropriate action based on the reported issue.

First, if the public/private key pair is compromised, the
certificate of the concerned node is revoked, and all the other
nodes are informed immediately. Then, a new public/private
key pair is generated for the node and certified by the trusted
authority (T A) or the corresponding authority. The new keys
have to be added manually to the device. Finally, the new

123

Enhancing security in Fiat–Shamir transformation-based… 1139

Algorithm 2: Compromised key detection
Input : cB : B’s Challenge for A, schnorrA: A’s Schnorr proof,

proofA: A’s NIZK proof, SKAB : Shared secret key,
keypairA A’s Public/Private key pair, fsym : Number of
wrong challenge authentications, fasym : Number of
wrong Schnorr proofs, fthreshold : Maximum allowed
number for fsym or fasym

Output: Incident report to Server

// Verify authentication of node A
if proofA is not valid then

Reject proof;
if cB is valid and schnorrA is not valid then

// Check if SKAB is compromised
fsym = fsym + 1;
if fsym = fthreshold then

// SKAB is compromised
Report incident to T A;

if schnorrA is valid and cB is not valid then
// Check if keypairA is compromised
fasym = fasym + 1;
if fasym = fthreshold then

// keypairA is compromised
Report incident to T A;

else
// SKAB and keypairA are not

compromised
exit;

else
Accept proof;

certificate is shared with the other nodes that used to have it.
If the shared secret key is compromised, the trusted authority
(T A) allows the affected nodes to perform another interactive
mutual authentication to establish a new shared key.

5 Evaluation

In this section, we perform an informal (Sect. 5.1) and a for-
mal security analysis (Sect. 5.2) and evaluate the protocol’s
performance (Sect. 5.3).

5.1 Informal security analysis

Before proving the security of our protocol using the formal
security analysis, wewill discuss the security of our approach
based on an informal analysis for each attack mentioned in
Sect. 3.3.

5.1.1 MITM attack

As mentioned in Sect. 3.3, we distinguish between several
types of MITM attacks, namely, active attacks, eavesdrop-
ping, message modification, and replay attacks.

• Active attacks: According to Dwivedi et al. [21], to pro-
tect against active attacks in authentication scenarios, it is
crucial to establish a challenge-responsemethod between
the prover and the verifier. This method involves the ver-
ifier challenging the prover to ensure that their proof is
randomized using the verifier’s challenge. In our case, we
employ a zero-knowledge proof system with an authen-
ticated random challenge through a MAC tag, which
implies that our protocol is secure against such attacks.

• Eavesdropping: The security of our protocol against
eavesdropping is directly related to the fact that our pro-
tocol is zero-knowledge and to the security of the elliptic
curve discrete logarithm problem, which is considered to
be a hard unbreakable problem as mentioned by multiple
sources.Demonstrating that a protocol is zero-knowledge
ensures its security against passive attacks like eaves-
dropping [21].

• Messagemodification attacks:Our authentication system
is secure against such attacks since each message can be
authenticated by incorporating it into the MAC function
used in the proof, which allows the recipient to detect
any malicious message modification and thus ignore the
request. In addition, the generatedMAC tag is used in the
Schnorr proof, where we provide an additional layer of
security by verifying if the proof is valid after verifying
the MAC tag. However, one may argue that in our proto-
col setup phase, the MAC function is not utilized. In that
case, the purpose of the interaction is to establish a shared
secret key between two parties rather than authenticating
any message. In other words, if the sent commitment,
challenge, or response is altered, the Schnorr proof will
not be accepted and thus does not affect the security of
our system.

• Replay attacks: Our system is also secure against replay
attacks in all their forms. Generating a proof in our
non-interactive zero-knowledgeprotocol involves using a
counter that is incremented each time and a new random-
ized key in each authentication. This way, we ensure that
each authentication is unique and secure against replay
attacks. We increment the counter twice after each use,
once for the challenge and once for the new randomized
key, to guarantee that we always get randomized values
that can eliminate the risk of a replay attack.

5.1.2 Brute force attack

Our protocol is secure against brute force since we use keys
that achieve a 128-bit security level at the lowest. In addi-
tion, security against brute force attacks is guaranteed by the
completeness and soundness property of our zero-knowledge
protocol as mentioned by [21]. Furthermore, we use a com-
bination of a public/private key pair and a shared secret key.
The public/private key pair has a length of 256 bits, which

123

1140 F. Hamila et al.

means that there are 2256 combinations for the secret asym-
metric key, while the 256-bit shared secret key also has 2256

combinations. This implies that for each one of the 2256

possible asymmetric private keys, there exists 2256 possi-
ble shared secret keys. So, attempting all these combinations
is not feasible for the most powerful computers today since
the likelihood of succeeding in such an attack is extremely
negligible. Even during our one-time setup phase, where we
use only the private/public key pair, 2256 combinations are
still infeasible and that protocol is only used in the first com-
munication.

While this informal security analysis provides us with an
overview of the security of our protocol, it is still insufficient.
A formal security analysis is necessary to thoroughly test the
protocol against these threats. For that reason, we provide
such an analysis in the following section.

5.2 Formal security analysis

In this section, the soundness of our protocol will be dis-
cussed and proven based on a formal security analysis using
Tamarin-prover [40].

5.2.1 Tamarin-prover

Tamarin-prover is a well-known tool used for the automated
and unbounded analysis of security protocols against adver-
saries. It represents the possible executions of a protocol
symbolically as a transition system, where each execution
corresponds to a specific sequence of events. The state of
the transition system is characterized by a multiset of facts,
where the initial state is the empty multiset and the following
states arementioned inside the protocol rules. These rules are
structured in the following form:

1 rule rule_name:
2 l --[a]-> r

where r denotes the multiset of produced facts, l denotes the
multiset of consumed facts that describe the facts that must
exist in the multiset before applying the rule, and a denotes
the multiset of action facts behaving as a symbolic label. The
action facts ai are used for specifying an event or performing
a certain logic, such as accepting a proof. Security properties
are defined over them, enabling the analysis of specific secu-
rity requirements. In addition, consumed facts are used to
specify the transition from one rule to another, and they can
also contain variables, thereby allowing for more flexibility
in rule application. Rules can also be used to specify the capa-
bilities of an adversary, such as their ability to compromise
a certain secret key.

Tamarin-prover uses an insecure anduntrusted network, as
in the Dolev–Yao Adversary model [20]. It also assumes that
all the used built-in functions represent perfect cryptogra-

phy, where decrypting a cipher onlymeans that the adversary
knows the required key. In addition to that, custom functions
with/or without their corresponding equations can be defined
and are considered perfect one-way functions. Furthermore,
restrictions can also be used to limit any protocol execution
that does not meet the conditions included in it. Finally, lem-
mas can be defined using the keyword "lemma" to specify
a proposition or a statement that has to be proved or estab-
lished. The lemmas in Tamarin-prover are formulated with
action traces over a specified timeline. The Tamarin-prover
will attempt to prove or disprove the lemma based on the
specified rules and constraints defined in the Tamarin model.
In case of disproving the lemma, a counter-example will be
provided.

5.2.2 Modeling our protocol in tamarin

Modeling our protocol posed a challenge because Tamarin-
prover does not provide built-in functions or examples that
help with modeling the Zero-Knowledge protocol and proto-
cols that are not based on primitive cryptographic functions.
The main challenge we encountered was modeling the proof
generation and verification process, specifically with respect
to the logic of Schnorr’s proof. We found limited exam-
ples or studies that specifically addressed the modeling of
Zero-Knowledge Proofs. While references such as [2–4]
acknowledged this challenge and claimed to provide solu-
tions, we were unable to access their examples written
in Tamarin code due to expired or nonexistent links. Fur-
thermore, Fischlin [25] conducted a study on the works
of [2–4], providing several examples of modeling a gen-
eral non-interactive zero-knowledge proof system using
Tamarin-prover. However, it should be noted that the pro-
vided examples differ from our case as he utilizes the built-in
encryption functions of Tamarin in his proofs. Therefore,
his model would require modifications to adapt to our spe-
cific scenario. One of the initial suggestions proposed in [25]
was to accomplish proof generation and verification through
predefined functions. Initially, we attempted to implement
two functions for our modeling efforts: one for generating a
proof and another for verifying a proof generated using the
former function. However, we encountered significant chal-
lenges when it came to representing the equations required
for generating and verifying the Schnorr elliptic curve proof.

Defining simple abstract equations, as commonly done
in most examples, leads to multiple compiler errors and
warnings in Tamarin. This is because Tamarin does not per-
mit the use of built-in functions and public values, such as
elliptic curve multiplication and the public generator point,
within functions, equations, and restrictions. To overcome
this limitation, we attempted to define a custom elliptic curve
multiplication function, as demonstrated in [42]. However,
this approach does not adhere to the properties of elliptic

123

Enhancing security in Fiat–Shamir transformation-based… 1141

curves. Instead, it represents it symbolically and considers it
as a one-way function, which is enough regarding that the
goal of using the elliptic curve multiplication is to make the
secret key not extractable from the output of the elliptic curve
multiplication. For modeling the proof verification, we chose
to utilize restrictions, as described in [25]. This approach
excludes protocol traces with non-valid proof runs.

Despite using restrictions instead of equations, Tamarin-
prover continued to generate warning messages regarding
the validity of the restrictions due to its built-in elliptic curve
multiplication functionality. These warnings indicated that
the analysis results might be incorrect. To address this, we
defined our elliptic curve multiplication function. To ensure
the validity of our model, we imposed a restriction on the
function’s input, treating the constant generator point P as
an internal constant of the procedure. The formalization of
this restriction is as follows:

1 restriction IsValidZkp:
2 "
3 All #i w r cl cr pkey R.
4 ValidSchnorrZKP(schnorrZKProof(w,

r, cl), pkey , R, cr)@i
5 ==> (Ex m n. pkey = multp(m) &

R = multp(n) &
6 m = w & n = r & cl = cr)
7 "

Whenever the action ValidSchnorrZKP is called, this
restriction IsValidZkp ensures that the correct elements
are provided for verifying the proof schnorrZKProof. It
checks if the verifier has entered the same challenge used
in the proof generation (cl = cr), the appropriate public
key pkey corresponding to the EC multiplication (multp)
of the private key w used in generating the proof, pkey =
multp(m) & m=w, and the proper commitment R corre-
sponding to the elliptic curve multiplication of the random
valuer used in the proof generation.We adopted this concept
because we did not find any examples of modeling non-
primitive proof generation and verification functions.

Furthermore, our protocol includes the Schnorr proof and
a MAC tag for generating and verifying the challenge. We
modeled the MAC function using the classical approach as
an equation for verifying the MAC is sufficient. The MAC
tag is verified prior to verifying the Schnorr proof. If the
tag is incorrect, the verification fails; otherwise, the Schnorr
proof is verified to determine the acceptance of the proof.We
created rules for various protocol steps, including generating
the necessary keys and counters, managing key disclosure to
adversaries, initializing participants in the communication,
sending and verifying proofs, and calculating shared keys.

5.2.3 Lemmas construction

The Tamarin model is incomplete without specifying the
lemmas that help Tamarin-prover to investigate the required
security properties. For each Tamarin model of our proto-
cols, we provided a lemma that proves that our model is
executable. Tamarin will only try to find at least a single
protocol trace, where the provided model is executable with
the expected order between two distinct participants and the
secret key of the prover and the shared secret key are not
compromised. We have also provided several lemmas for
proving the properties of ZKP (i.e., completeness, sound-
ness, and zero-knowledge) and the security of our model.We
based our lemmas’ representation on the examples provided
by [25] with several changes to adapt it to our model. We
have also added several other lemmas concerning the prop-
erties of an authentication system. Particularly, we proved
the following lemmas:

Lemma 1 Completeness: The completeness property of our
NIZK transformation is defined as follows:

In this lemma, we prove that every time a verifier receives
valid NIZK proofs, the verifier can verify them as cor-
rect. In other words, we say that for every verifier B with
ID = id, private key (witness) w, random initial num-
ber r, challenge c, public key pkey, and commitment
R, where pkey is the EC multiplication of w (pkey =
multp(m) & m = w), R is the EC multiplication of
r, B received the proof schnorrZKProof of the prover
via the action ReceivedZkp, and the protocol has fin-
ished running, then, B has verified the proof as valid
(VerifiedSchnorrZKP).

1 lemma completeness:
2 "
3 All B id w r c pkey R #i1 #i3.
4 (Ex m n. pkey = multp(m) & R =

multp(n) & m = w & n = r) &
5 ReceivedZkp(B, id , schnorrZKProof

(w, r, c), pkey , R, c)@i1 &
6 Finish(B, id)@i3
7 ==> (Ex #j.
8 VerifiedSchnorrZKP(B, id ,

schnorrZKProof(w, r, c), pkey
, R, c)@j)

9 "

Lemma 2 Soundness: For the soundness property, the fol-
lowing lemma is constructed:

In this lemma,we state that if a proofschnorrZKProof
is verified correctly (VerifiedSchnorrZKP), then it is
generated with the righteousness elements, and the secret
key is not revealed to the verifier, or that the adversary did
not compromise it using any other way (KU(w)). In this case,
we utilized the or constructor "|", meaning that either the

123

1142 F. Hamila et al.

prover A knows the witness w (KnowsWitness (A, w
)) and generates a valid proof where the secret key is not
revealed through RevealSecret(A) or the proof is not
correct, and the witness is still not revealed.

1 lemma soundness:
2 "
3 All B id #i1 w r cl cr pkey R.
4 VerifiedSchnorrZKP(B, id ,

schnorrZKProof(w, r, cl),
pkey , R, cr)@i1

5 ==> (Ex m n.
6 pkey = multp(m) & R = multp(n) &

m = w & n = r & cl = cr) &
7 (
8 (Ex A #i. KnowsWitness(A

, w)@i)
9 | (Ex A #i. RevealSecret

(A)@i)
10 | (Ex #i. KU(w)@i)
11)
12 "

Lemma 3 Zero-Knowledge: For the zero-knowledge prop-
erty, the following lemma is utilized:

In this lemma, we state that for every created proof follow-
ing our protocol, no intruder K or verifier can learn anything
about the witness w (secret key) except when it’s revealed by
the prover A through RevealSecret(A).

1 lemma zero_knowledge:
2 "
3 not(
4 Ex A w #i2 #i3.
5 CreatedSchnorrZKPForWitness(A

, w)@i2
6 & K(w)@i3
7 & not (Ex #j. RevealSecret(A)

@j)
8)
9 "

Lemma 4 Message Integrity: Additionally, to the basic
properties of a ZKP, we also proved resilience to message
modification attacks. To prove this lemma, we added a rule
where the adversary can intercept messages from A to B,
before reaching B, modify their content, and forward the
modified message to B. In this case, we make sure that if B
accepted the proof as valid, then this implies that the adver-
sary did not change the original message.

Lemma 5 Resilience to Replay Attacks: For this lemma, we
demonstrated that any attempt to reuse previously validated
proofs as valid proofs will lead to their rejection. This out-
come aligns with our protocol’s requirement for the use of
incremented counters and new random values in each new
proof.

5.2.4 Analysis findings

During the formal security analysis of our three sub-protocols
using Tamarin-prover, the verification process was success-
fully completed without encountering any issues. All the
lemmas were examined and verified, ensuring the proto-
col’s completeness, soundness, zero-knowledge property,
and resilience against various attacks. The results of the
lemma verification can be examined and inspected in detail
here.4

5.3 Performance analysis

5.3.1 Testbed

To implement and test the protocol, we chose to use the
programming language Rust, which is known for having per-
formance similar to C and C++ but brings more security
compared to them, especially for memory-related attacks.
Rust also provides cross-platform compilation, allowing us
to develop and test our prototype for different Hardware
classes, including ARMv6 and ARMv7 processors. Our pro-
tocol was implemented in the form of a Rust crate (library)
based on several other cryptography crates. We utilized the
crate linux-keyutils5 crate for managing secret keys.
The cratecurve25519-dalek6 was employed for elliptic
curve cryptography since it is designed for secure and high-
speed performance, achieving record-breaking cycle counts
on various processors compared to other common curves [7].
Finally, theSHA-3 andKMACfunctionswere operated using
the tiny-keccak7 crate, which offers a stable and fast
implementation of both functions. The complete implemen-
tation of our protocol, along with examples and the security
analysis, has been made open source.8 We have used two
Raspberry Pi devices to conduct our experiments. The char-
acteristics of these devices are summarized in Table 1, and no
crypto-accelerators were employed. The devices were inter-
connected wirelessly using a router AVM Fritz!Box 6660
Cable. We positioned both devices at a distance of approxi-
mately 10ms from each other.

5.3.2 Experiments

We conducted several experiments to test the performance
of our protocol on the two hardware platforms mentioned in
Table 1. In the first experiment, wemeasure the required time

4 Link: https://github.com/tum-esi/act-nizkp/tree/main/tamarin_secu
rity_analysis.
5 Link: https://lib.rs/crates/linux-keyutils.
6 Link: https://lib.rs/crates/curve25519-dalek.
7 Link: https://lib.rs/crates/tiny-keccak.
8 Link: https://github.com/tum-esi/act-nizkp.

123

https://github.com/tum-esi/act-nizkp/tree/main/tamarin_security_analysis
https://github.com/tum-esi/act-nizkp/tree/main/tamarin_security_analysis
https://lib.rs/crates/linux-keyutils
https://lib.rs/crates/curve25519-dalek
https://lib.rs/crates/tiny-keccak
https://github.com/tum-esi/act-nizkp

Enhancing security in Fiat–Shamir transformation-based… 1143

Table 1 Hardware platforms used in the measurement and their properties

Devices CPU RAM OS

Raspberry Pi 3 Model B V1.2 Quad-Core 1.2GHz Broadcom BCM2837 64B 1GB Raspberry Pi OS Lite 32B

Raspberry Pi Zero W V1.1 Single-Core 1GHz Broadcom BCM2835 32-bit 512MB Raspberry Pi OS Lite 32B

Fig. 3 Execution time for proof generation (proof Gen.), proof verification (proof Ver.), and NIZK protocol on a Raspberry Pi 3 and b raspberry
Pi Zero W

to perform the NIZK proof generation and the NIZK proof
verification on each hardware platform (both the verifier and
the prover run on the same device). We have repeated the
measurement 1000 times. The result of this measurement is
shown in Fig. 3. In the figure, we observe that the interquar-
tile range (IQR), which represents the range between the 25th
and 75th percentiles of the data, alongwith thewhiskers (rep-
resenting values within 1.5 times the IQR), and the median
values are all closely clustered together. This indicates a con-
sistent performance pattern of ourNIZKprotocol on the same
device. Also, we notice that the proof verification is slower
than the proof generation. This was expected since the proof
generation requires one ECmultiplication (see Eq.16), while
the proof verification requires two EC multiplications (see
Eq.19). Finally, we can observe that the NIZK protocol is
relatively faster on the Raspberry Pi 3 (see Fig. 3a) com-
pared to the case when it runs on Raspberry Pi Zero W (see
Fig. 3b).

In the second experiment, wemeasured the execution time
of our proposed protocol, including the setup phase and the
NIZK transformation, when the verifier and the prover were
running on different devices. We ran the prover on the Rasp-
berry Pi Zero W as a TCP client and the verifier on the
Raspberry Pi 3 as a TCP server. The reason for this selection
is that, in most IoT scenarios, the verifier role is typically
assigned to the more powerful device. We started the differ-
ent protocol phases from the client side as the prover, and
we measured the time from the first request until receiving

Fig. 4 Time consumed by the setup phase and the NIZK protocol

the last response from the verifier. We repeated each mea-
surement for 1000 times. We added a verifier response to the
NIZK protocol to confirm that the verifier has completed the
verification of the proof. This will help the prover determine
when to stop measuring the execution time.

The results are illustrated in Fig. 4, which shows that the
setup phase has slightly larger variability in performance
compared to the NIZK protocol. This behavior is expected
due to the interactive nature of the setup phase. However,
this is not a problem in our case since the setup phase will be
used only once during the initial communication between two
devices to securely share a secret key or to reset the counter.

Finally, we conducted the same setup to compare our
NIZK protocol with the 3-round SIS. We have also added
a verifier response in the SIS protocol to inform the prover

123

1144 F. Hamila et al.

Fig. 5 Execution time comparison between the SIS protocol and the
NIZK protocol

when the verification of the proof is complete. This enables
the prover to accuratelymeasure the execution time by know-
ing when to stop the timing measurement. We performed
the measurement for each protocol a total of 1000 times.
It is important to note that the measurement conducted for
our NIZK protocol did not include the setup phase. Fig-
ure 5 presents the execution time of this experiment for
both protocols. The results indicate that our NIZK transfor-
mation achieves a significant reduction in execution time,
with the protocol requiring approximately 50% less time for
proof generation and verification compared to the original
SIS protocol. Furthermore, our protocol incorporates two-
factor verification, enhancing overall security. In addition,
we notice that the SIS has larger variability in performance
compared to our NIZK protocol because of the more spread-
out distribution it shows. This behavior is expected in the
SIS, given its interactive nature that contains more interac-
tions between the prover and the verifier required to complete
the proof verification.

In conclusion, the experiments conducted to evaluate the
performance of our NIZK protocol on different hardware
platforms and in various scenarios have provided valuable
insights validating the performance and effectiveness of
our proposed solution. The experiments showed that our
NIZK protocol improves upon the performance of traditional
approaches (e.g., SIS and ECDHE) while leveraging more
security through two-factor authentication.

6 Related work

This section provides an overview of existing research and
studies relevant to our proposed protocol. Furthermore, we
compare our proposed solutionwith other existingworks that
aimed to improve the soundness of FST (see Sect. 6.1).

Many works focused on studying the soundness of the
required hash function of FST, aiming to provide a more
secure procedure. For instance, many proposed utilizing cor-

relation intractable hash functions to make the FST sound
as done by Canetti et al. [10–12] and Holmgren et al. [29].
However, these solutions do not apply to all types of utilized
cryptographic primitives. Mittelbach et al. [36] presented a
hash function that guarantees the security of the FST for a
specific group of protocols, called “highly sound” protocols,
that have not been studied before. These highly sound pro-
tocols are ZKP that satisfy three additional properties: the
honest prover computes the commitment independently of
the witness and the instance being proven, the protocol has a
significantly small soundness error, and honest conversations
between the prover andverifier can be simulated knowing just
the input. This hash function is called a q-wise independent
hash function. It is a type of hash function that is defined
to map inputs from a set I to outputs in a set O , where the
corresponding q outputs in O are uniformly distributed and
independent from each other for any distinct q elements in I .
This property ensures a high level of randomness and unpre-
dictability. However, The proposed solution is restricted to
a specific group of �-protocols and hash functions, which
limits its applicability.

Using a traditional hash function was not the only pro-
posed approach since several other solutions were also inves-
tigated and considered. For example, Lindell [34] employed
a Common Reference String (CRS) and a dual-mode com-
mitment scheme with a Non-programmable random ora-
cle(NPRO)9 instead of the classic hash function to perform
the transformation. The soundness of their method relies on
NPRO,which is a better method than the normal random ora-
cle. However, this approach is restricted to a specific group
of �-Protocols. Similarly, Ciampi et al. [16] proposed a new
transformation, also based on NPRO, as efficient and as gen-
eral as the FST improving upon the method of Lindell [34].
The proposed approachwas based onweaker requirements as
in Lindell’s approach and has also improved efficiency over
it. Even though it is based on a dual commitment scheme, it is
still not as secure as our method. Moreover, Bellare et al. [5]
presented a security proof of the FST in certain cases based
on the standard model instead of the random oracle model.
They used it in converting three-move authentication proto-
cols into two-tier signature schemes with the condition that
the starting protocol must have security against concurrent
attacks, meaning that it restricts the allowed �-protocols. A
two-tier scheme involves a prover who possesses a primary
public key and a corresponding primary secret key to prove
his identity through a signature. At every new signature, the
prover generates a new set of secondary public and secret
keys and uses these in combination with the primary keys
and the message to produce the signature. Verification of the

9 The non-programmable random oracle (NPRO) is a type of random
oracle that functions as a black box, but it cannot be manipulated or
programmed by a simulator or the adversary.

123

Enhancing security in Fiat–Shamir transformation-based… 1145

signature necessitates the use of both the primary and the
secondary public keys linked to the message, which makes
their approach requires transmitting 32B of additional data
in each communication. Chen et al. [14] modified the FST to
create a non-interactive deniable authentication protocol that
preserves the deniability property of cryptographic systems.
The main difference between the modified scheme and the
original one is the replacement of the one-way hash func-
tion with elliptic curve cryptography (ECC)-based ElGamal
encryption to produce a random challenge. However, the pro-
posed solution not only restricts the permissible group of the
cryptographic primitive used but also necessitates the trans-
mission of 160B in each request.

Other methods based on homomorphic hash and encryp-
tion functions were also proposed by several authors. Maurer
et al. [35] presented a new general group of certain �-
protocols that describes them as a single general protocol
using one-way homomorphic hash functions, since, accord-
ing to the authors, �-protocols are similar in their construc-
tion and can be proven the same when considered in the
right abstraction level. However, their approach restricts the
allowed hash functions and �-protocols to a specific group.
Similarly, Iovino et al. [30] proposed a transformation func-
tion for transforming 3-round ZKP that uses relations related
to quadratic residuosity and RSA into non-interactive ones,
based on using the group of homomorphic one-way func-
tions as in [35]. They improved upon the work of [35] by
adding more requirements to that group of functions, such
as the existence of a trapdoor, creating a new group called
special one-way homomorphic functions. Yet, their solu-
tion limits the allowed hash functions and �-protocols as in
[35]. Damgard et al. [18] limited the group of cryptographic
primitives and used homomorphic encryption10 instead of
homomorphic hash functions to convert any 3-round ZKP
protocol, �-protocols, into NIZK protocols. Chaidos et al.
[13] provided an instantiation of [18] using homophobic
encryption that does not require a randomoraclemodel,mak-
ing the required assumptions for its security less complicated.
However, their technique is still limited to just the group of
homomorphic encryption.

While previous research has primarily focused on improv-
ing the security of the Fiat–Shamir transformation (FST),
a significant gap exists in the literature. Most of these
approaches concentrated solely on enhancing the FST’s secu-
rity without considering the original �-protocol’s security.
Some imposed limitations by restricting the choice of crypto-
graphic primitives or�-protocols. Notably, no prior research

10 Homomorphic encryption is a form of encryption that permits calcu-
lations to be conducted on encrypted data, without needing to decrypt
it in the first place. This means that the computations can be carried out
on the encrypted data, preserving its confidentiality. The result of the
computations can be decrypted to obtain the result of the computations.

explored the possibility of creating a NIZK transforma-
tion that not only addresses FST security concerns but also
enhances the original �-protocol’s security without impos-
ing restrictions on cryptographic primitives or �-protocols.
This research aims to bridge these gaps, providing a compre-
hensive, efficient, and robust solution for secure IoT device
authentication.

6.1 Comparative analysis

We compare our work with existing research focusing on the
following aspects: P1: the adopted cryptographic primitives
P2: the solution validity for all types of the adopted crypto-
graphic primitiveP3: the solution validity for all�-protocols
P4: the number of commitmentsP5: The improvement on the
security of the �-protocols P6: the data size that needs to be
saved in prover’s memory P7: the data size to be saved in
verifiers’ memory P8: the data size to be transmitted for the
proof. For all memory-related comparisons, we assume that
ECC is utilized with any keys, commitments, challenges, or
responses being 32 bytes values.

While previous solutions havemainly centered around uti-
lizing specific groups of a particular cryptographic primitive
(e.g., [10–14, 18, 30, 35, 36]) or �-protocols (e.g., [5, 12,
30, 34–36]), as depicted in Table 2, our research takes a dif-
ferent approach. Instead of using a hash or an encryption
function, we chose to employ a MAC and introduced a novel
concept known as the "authenticated-challenge transforma-
tion". Our approach does not only present a non-interactive
proof system derived from any �-protocol but also incorpo-
rates an integrated non-interactive challenge verification. As
a result, the verifier gains the ability to verify the honest gen-
eration of the challenge using any group of MAC functions.
Furthermore, our approach enhances security compared to
other existing solutions by necessitating two secret keys in
the proof, which adds a layer of complication for potential
compromises. Additionally, we ensured the randomness of
the challenge by updating the shared secret key and shared
counter after each use, which makes sure that the challenge
is always random, even if the shared secret key is compro-
mised. Compromising the shared secret key does not impact
the soundness of our proof, as the adversary is still forced to
replace it with an unpredicted random value after each use
which results in a random challenge each time, similar to the
approaches based on CRS (e.g., [12, 16, 34, 36]). This aspect
strengthens the security of our transformation relative to the
traditional FST.

Even thoughCiampi et al. [16] solution does deliver valid-
ity for all types of the employed cryptographic primitive and
�-protocols with improved security throughout the use of
dual commitments, our approach still provides better security
improvements through the use of two-factor authentication
in the proof. Dual commitment-based approaches (e.g., [16,

123

1146 F. Hamila et al.

Table 2 Comparison of our proposed solution with related work

Related work Year P1 P2 P3 P4 P5 P6 P7 P8

Canetti et al. [12] 2019 Hash 1 64B + CRS 32B + CRS 96B

Canetti et al. [10] 2016 Hash 1 64B 32B 96B

Canetti et al. [11] 2018 Symmetric Encryption 1 64B 32B 128B

Holmgren et al. [29] 2018 Hash 1 64B 32B 96B

Mittelbach et al. [36] 2018 Hash 1 64B + CRS 32B + CRS 96B

Lindell et al. [34] 2014 NPRO 2 64B + CRS 32B + CRS 96B

Ciampi et al. [16] 2016 NPRO 2 64B + CRS 32B + CRS 96B

Bellare et al. [5] 2007 Hash 1 64B 32B 128B

Chen et al. [14] 2010 Asymmetric Encryption 1 96B 96B 160B

Maurer [35] 2015 Hash 1 64B 32B 96B

Iovino et al. [30] 2019 Hash 1 64B 32B 96B

Damgård et al. [18] 2006 Asymmetric Encryption 1 96B 96B 96B

Chaidos et al. [13] 2015 Asymmetric Encryption 1 96B 96B 96B

Our approach 2023 MAC 1 100B 68B 96B

P1: Cryptographic Primitives (Hash, asymmetric or asymmetric encryption), P2: Validity for all cryptographic primitives (Yes: , No:)
P3: Validity for all �-protocols (Yes: , No:), P4: Number of Commitments
P5: Improving the security of the �-protocols(Yes: , Partially: harveyBallHalf, No:), P6: Prover Memory Data Size
P7: Versifier Memory Data Size, P8: Size of transmitted Proof

34]) do make it harder to cheat in the FST. However, it does
not affect the security of the original �-protocol. It is worth
noting that our protocol requires slightly more storage com-
pared to certain other methods (e.g., [5, 10, 11, 29, 30, 35]).
However, this increase in storage comes as a trade-off for the
enhanced level of security it offers. Also, We were unable
to calculate the exact required storage for protocols such as
[12, 16, 34, 36] as no information about the size of the was
mentioned. Nevertheless, considering that the CRS should
not be smaller than 32B when using ECC, as mentioned ear-
lier, implies that these protocols may require larger storage
than ours.

7 Conclusion

There is a growing demand for secure authentication mecha-
nisms in IoT systems. In this work, we propose a solution that
overcomes the limitations of traditional authenticationmech-
anisms by introducing a NIZK protocol that enables secure
and private communications with two-factor authentication.
Specifically, the work focuses on transforming interactive 3-
round �-protocols into NIZK protocols based on the FST.
The proposed solution enhances the soundness of the FST
and the original �-protocol by creating a non-interactive
proof scheme that requires two verifications with two dis-
tinct keys, improving the overall robustness and soundness
of the authentication process. The security of the proposed
solution was formally proved using Tamarin-Prover. In addi-
tion, we provided a practical implementation of the proposed

protocol in the Rust programming language and conducted a
performance analysis. The results clearly demonstrated that
ourNIZKprotocol outperforms the SIS protocol by requiring
nearly 50% less time for execution.

Our approach focuses on enhancing the security of the
Fiat–Shamir transformation (FST) for IoT authentication
scenarios while also improving upon the security of the
original �-protocol. The primary improvement lies in the
introduction of a mechanism to verify that the prover has
generated the verifier’s challengewithout resorting to dishon-
est methods. This effectively mitigates the risk of fraudulent
challenge creation and manipulation of the proof. This
enhancement is achieved by incorporating aMAC tag, which
includes an incremented counter and a randomized shared
secret key, replacing the use of a hash function. This change
also transforms the solution into a two-factor authentication
system, relying on two distinct keys for added security. As
demonstrated in our performance analysis, our transforma-
tion does not compromise the protocol’s efficiency; in fact, it
enhances the original �-protocol’s efficiency while intro-
ducing an additional layer of security through two-factor
verification. Furthermore, in our comparative analysis, we
have shown that no other proposed solutionmatches the level
of security we offer. We have also illustrated that despite
this heightened security, our protocol still transmits approxi-
mately the same amount or even less data compared to other
proposed approaches. Another significant improvement in
our approach is its flexibility. Unlikemany other solutions (as
discussed in Sect. 6.1), we do not restrict the use of specific
groups of cryptographic primitives or�-protocols.Our trans-

123

Enhancing security in Fiat–Shamir transformation-based… 1147

formation can be applied to any 3-round ZKP (�-protocol)
utilizing any secure MAC function, as our chosen crypto-
graphic primitive is a MAC function.

Although the proposedNIZK authentication protocol pro-
videswide applicability in the domain of IoT, further research
can focus on optimizing its scalability to handle multi-party
authentication and session key generation since our approach
is still limited to authentication between two devices.

Author contributions FH did protocol proposition, writing original
draft, formal security analysis, and software development. MH did val-
idation, visualization, writing-review and editing, and supervision. DS
provided resources, did review, and supervision. SS did review, editing,
and supervision.

Funding Open Access funding enabled and organized by Projekt
DEAL. The authors did not receive support from any organization for
the submitted work.

Data availability The datasets utilized during the experiments and the
code developed to implement the proposed solution are publicly avail-
able on the institute’s GitHub page. You can find the relevant data here:
https://github.com/tum-esi/act-nizkp/.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Ethical standards This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abi-Char, P.E.,Mhamed, A., Bachar, E.-H.: A fast and secure ellip-
tic curve based authenticated key agreement protocol for lowpower
mobile communications, In: The 2007 International Conference on
Next Generation Mobile Applications, Services and Technologies
(NGMAST 2007), pp. 235–240. IEEE (2007)

2. Backes, M., Unruh, D.: Computational soundness of symbolic
zero-knowledge proofs against active attackers. In: 2008 21st IEEE
Computer Security Foundations Symposium, pp. 255–269. IEEE
(2008)

3. Backes, M., Bendun, F., Unruh, D.: Computational soundness of
symbolic zero-knowledge proofs: weaker assumptions and mech-
anized verification. POST 13, 206–225 (2013)

4. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied
pi-calculus and automated verification of the direct anonymous
attestation protocol. In: 2008 IEEE Symposium on Security and
Privacy (SP 2008), pp. 202–215. IEEE (2008)

5. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable
signatures, and fiat-shamir without random oracles. In: Public Key
Cryptography–PKC 2007: 10th International Conference on Prac-
tice and Theory in Public-Key Cryptography Beijing, China, April
16–20, 2007. Proceedings 10, pp. 201–216. Springer (2007)

6. Bernhard, D., Pereira,O.,Warinschi, B.: How not to prove yourself:
Pitfalls of the fiat-shamir heuristic and applications to helios. In:
Advances in Cryptology–ASIACRYPT 2012: 18th International
Conferenceon theTheory andApplicationofCryptology and Infor-
mation Security, Beijing, China, December 2–6, 2012. Proceedings
18, pp. 626–643. Springer (2012)

7. Bernstein, D.J.: Curve25519: new Diffie–Hellman speed records.
In: Public Key Cryptography-PKC 2006: 9th International Con-
ference on Theory and Practice in Public-Key Cryptography, New
York,NY,USA,April 24–26, Proceedings 9, pp. 207–228. Springer
(2006)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak.
In: Advances in Cryptology–EUROCRYPT 2013: 32nd Annual
International Conference on the Theory and Applications of
CryptographicTechniques,Athens,Greece,May26–30, 2013. Pro-
ceedings 32, pp. 313–314. Springer (2013)

9. Bitansky, N., Dachman-Soled, D., Garg, S., Jain, A., Kalai, Y.T.,
López-Alt, A., Wichs, D.: Why" Fiat–Shamir for Proofs" Lacks a
Proof. In: TCC, vol. 7785, pp. 182–201. Springer (2013)

10. Canetti, R., Chen,Y., Reyzin, L.: On the correlation intractability of
obfuscated pseudorandom functions. In: Theory of Cryptography:
13th International Conference, TCC 2016-A, Tel Aviv, Israel, Jan-
uary 10–13, 2016, Proceedings, Part I 13, pp. 389–415. Springer
(2016)

11. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat–Shamir
and correlation intractability from strong KDM-secure encryption.
In: Advances in Cryptology–EUROCRYPT 2018: 37th Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29–May 3, 2018
Proceedings, Part I 37, pp. 91–122. Springer (2018)

12. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum,G.N.,
Rothblum, R.D., Wichs, D.: Fiat–Shamir: from practice to theory.
In: Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pp. 1082–1090 (2019)

13. Chaidos, P., Groth, J.: Making sigma-protocols non-interactive
without random oracles. In: Public-Key Cryptography–PKC 2015:
18th IACR International Conference on Practice and Theory in
Public-Key Cryptography, Gaithersburg, MD, USA, March 30–
April 1, 2015, Proceedings, pp. 650–670. Springer (2015)

14. Chen, Y., Chou, J.-S., Lin, C.-F.: A novel non-interactive deniable
authentication protocol with designated verifier on elliptic curve
cryptosystem. Cryptology ePrint Archive (2010)

15. Chen,Z., Jiang,Y., Song,X.,Chen,L.:A surveyon zero-knowledge
authentication for internet of things. Electronics 12(5), 1145 (2023)

16. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A trans-
form for NIZK almost as efficient and general as the Fiat-Shamir
transform without programmable random oracles. In: Theory of
Cryptography: 13th International Conference, TCC 2016-A, Tel
Aviv, Israel, January 10–13, 2016, Proceedings, Part II 13, pp. 83–
111. Springer (2016)

17. Damgård, I.: On σ -protocols. Lecture Notes, University of Aarhus,
Department for Computer Science, 84 (2002)

18. Damgård, I., Fazio, N., Nicolosi, A.: Non-interactive zero-
knowledge from homomorphic encryption. In: Theory of Cryp-
tography: 3rd Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4–7, 2006. Proceedings 3, pp. 41–59.
Springer (2006)

123

https://github.com/tum-esi/act-nizkp/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1148 F. Hamila et al.

19. Dammak, M., Boudia, O.R.M., Messous, M.A., Senouci, S.M.,
Gransart, C.: Token-based lightweight authentication to secure IoT
networks. In: 2019 16th IEEE Annual Consumer Communications
& Networking Conference (CCNC), pp. 1–4. IEEE (2019)

20. Dolev, D., Yao, A.: On the security of public key protocols. IEEE
Trans. Inf. Theory 29(2), 198–208 (1983)

21. Dwivedi, A.D., Singh, R., Ghosh, U., Mukkamala, R.R., Tolba, A.,
Said, O.: Privacy preserving authentication system based on non-
interactive zero knowledge proof suitable for internet of things. J.
Ambient Intell. Human. Comput. 1–11 (2021)

22. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic func-
tions: in memoriam: Bernard m. dwork 1923–1998. JACM 50(6),
852–921 (2003)

23. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-
malleability of the Fiat–Shamir transform. In: INDOCRYPT, vol.
7668, pp. 60–79. Springer (2012)

24. Fiat, A., Shamir, A.: How to prove yourself: practical solutions
to identification and signature problems. In: Crypto, vol. 86, pp.
186–194. Springer (1986)

25. Fischlin, S.: Formalising zero-knowledge proofs in the symbolic
model. Master’s thesis, ETH Zurich (2021)

26. Goldwasser, S., Kalai, Y.T.: On the (In)security of the Fiat–Shamir
paradigm. In: 44th Annual IEEE Symposium on Foundations
of Computer Science. Proceedings., 2003, pp. 102–113 (2003).
https://doi.org/10.1109/SFCS.2003.1238185

27. Haller, N.: The S/KEYone-time password system. Technical report
(1995)

28. Hao, F.: Schnorr non-interactive zero-knowledge proof. Technical
report (2017)

29. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong
one-way functions (or: One-way product functions and their appli-
cations). In: 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 850–858. IEEE (2018)

30. Iovino, V., Visconti, I.: Non-interactive zero knowledge proofs in
the random oracle model. In: Codes, Cryptology and Informa-
tion Security: 3rd International Conference, C2SI 2019, Rabat,
Morocco, April 22–24, 2019, Proceedings-In Honor of Said El
Hajji, pp. 118–141. Springer (2019)

31. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to
the security of Fiat–Shamir for proofs. In:Advances inCryptology–
CRYPTO2017: 37thAnnual InternationalCryptologyConference,
Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part
II 37, pp. 224–251. Springer (2017)

32. Kelsey, J., Chang, S.-J., Perlner, R.: Sha-3 derived functions:
cshake, kmac, tuplehash, and parallelhash. NIST Spec. Publ. 800,
185 (2016)

33. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177),
203–209 (1987)

34. Lindell, Y.: An efficient transform from sigma protocols to NIZK
with a CRS and non-programmable random oracle. Cryptology
ePrint Archive (2014)

35. Maurer, U.: Zero-knowledge proofs of knowledge for group homo-
morphisms. Des. Codes Crypt. 77, 663–676 (2015)

36. Mittelbach,A., Venturi, D.: Fiat–Shamir for highly sound protocols
is instantiable. Theoret. Comput. Sci. 740, 28–62 (2018)

37. Mumtaz,M.,Akram, J., Ping, L.:AnRSAbased authentication sys-
tem for smart IoT environment. In: 2019 IEEE 21st International
Conference on High Performance Computing and Communica-
tions; IEEE 17th International Conference on Smart City; IEEE
5th International Conference on Data Science and Systems (HPC-
C/SmartCity/DSS), pp. 758–765 (2019)

38. Nyangaresi, V.O., Ogundoyin, S.O.: Certificate based authentica-
tion scheme for smart homes. In: 2021 3rd Global Power, Energy
and Communication Conference (GPECOM), pp. 202–207. IEEE
(2021)

39. Santoso, F.K., Vun, N.C.: Securing IoT for smart home system. In:
2015 International Symposium on Consumer Electronics (ISCE),
pp. 1–2. IEEE (2015)

40. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis
of Diffie–Hellman protocols and advanced security properties. In:
2012 IEEE 25th Computer Security Foundations Symposium, pp.
78–94. IEEE (2012)

41. Stinson, D.R., Paterson,M.B.: Cryptography: Theory and Practice.
Chapman and Hall/CRC, Boca Raton (2018)

42. Whitefield, J.D.: Formal analysis and applications of direct anony-
mous attestation. PhD thesis, University of Surrey (2020)

43. Wu, H.,Wang, F., et al.: A survey of noninteractive zero knowledge
proof system and its applications. Sci. World J. 2014 (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/SFCS.2003.1238185

	Enhancing security in Fiat–Shamir transformation-based non-interactive zero-knowledge protocols for IoT authentication
	Abstract
	1 Introduction
	1.1 Contribution

	2 Background
	2.1 Σ-Protocols
	2.2 Elliptic curves discrete logarithm problem (ECDLP)
	2.3 Schnorr's identification scheme (SIS)
	2.4 The Fiat–Shamir transformation (FST)
	2.4.1 The security of the FST

	2.5 ECDHE key agreement protocol

	3 System and threat model
	3.1 General security assumptions
	3.2 Threat model
	3.3 Attack vectors
	3.3.1 Man-in-the-middle (MITM) attack
	3.3.2 Brute force attack

	3.4 System requirements

	4 Proposed solution
	4.1 Setup phase
	4.2 NIZK transformation
	4.2.1 Approach and steps

	4.3 Protocol design considerations
	4.3.1 Compromised key detection mechanism

	5 Evaluation
	5.1 Informal security analysis
	5.1.1 MITM attack
	5.1.2 Brute force attack

	5.2 Formal security analysis
	5.2.1 Tamarin-prover
	5.2.2 Modeling our protocol in tamarin
	5.2.3 Lemmas construction
	5.2.4 Analysis findings

	5.3 Performance analysis
	5.3.1 Testbed
	5.3.2 Experiments

	6 Related work
	6.1 Comparative analysis

	7 Conclusion
	References

