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Abstract
Cloud computing has become increasingly popular due to its scalability, cost-effectiveness, and ability to handle large volumes
of data. However, entrusting (sensitive) data to a third party raises concerns about data security and privacy. Homomorphic
encryption is one solution that allows users to store and process data in a public cloud without the cloud provider having access
to it. Currently, homomorphic encryption libraries only support addition andmultiplication; othermathematical functionsmust
be implemented by the user. To this end, we discuss and implement the division, exponential, square root, logarithm,minimum,
and maximum function, using the CKKS cryptosystem of the OpenFHE library. To demonstrate that complex applications
can be realized with this extended function set, we have used it to homomorphically realize the Box–Cox transform, which is
used in many real-world applications, e.g., time-series forecasts. Our results show how the number of iterations required to
achieve a given accuracy varies depending on the function. In addition, the execution time for each function is independent
of the input and is in the range of ten seconds on a reference machine. With this work, we provide users with insights on
how to extend the original restricted function set of the CKKS cryptosystem of the OpenFHE library with basic mathematical
functions.
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1 Introduction

In recent years, the amount of data generated, stored, and con-
sumed worldwide has increased rapidly. It is estimated that it
will grow to 180 zettabytes by 2025.1 Tomanage this volume
of data, cloud computing is useful because it provides a scal-
able and elastic infrastructure; businesses and organizations
can easily increase or decrease their computing resources as
needed to handle changing data volumes. Cloud providers
also offer a variety of storage solutions that can handle large
amounts of data, such as object storage and data lakes. Marc
Hurd (former co-CEO of Oracle Corporation) estimates that
by 2025, 80% of enterprise data centers will be moving to
cloud infrastructures.2 The reasons for migrating to public
clouds aremanifold; for instance, businesses can reduce their
capital expenses and operating costs associated with manag-
ing and storing large amounts of data as well as gain access
to a wide range of tools and services for data analysis and
processing. Further, it has been repeatedly shown that energy
can be saved by using cloud computing [1].

To take advantage of cloud computing, the data must be
entrusted to a third party. However, there are many fraud sce-
narios and/or problems with data jurisdiction. For example,
the cloud provider could be in the same business as the user
and exploit the uploaded data, or the provider could also sell
the data to a competitor. Another scenario is that the cloud
provider could be compromised, and the data would then
be accessible to the intruder. Additionally, issues with data
sovereignty may arise; the data will be stored and subject
to the laws of the country where the cloud provider oper-
ates and may be accessible to government authorities under
certain circumstances. These possibilities are a major con-
cern for medical data, which is subject to the General Data
Protection Regulation (GDPR), or any other sensitive data.
The described issues are a major showstopper for the pro-
liferation of cloud-based services, as shown by a survey in
Germany [2], which found that 48% of German companies
have concerns about the data security of clouds, and 40% of
German companies therefore decide against using an exter-
nal cloud. This limitation of data security also slows down
the development of artificial intelligence (AI) models.

To still benefit from the features of cloud computing with-
out the cloud provider being able to access the data, the user
can implement security best practices and use encryption to
protect sensitive data. One possible solution is the applica-
tion of homomorphic encryption. Homomorphic encryption
allows for computations to be performed on ciphertext,
obtaining an encrypted result that can then be decrypted to get

1 Statista: https://www.statista.com/statistics/871513/worldwide-
data-created/.
2 The Wall Street Journal: https://www.wsj.com/articles/BL-CIOB-
11316.

the result of the computation in plaintext. This is in contrast
to traditional encryption, where the data need to be decrypted
first before any computations can be performed on it. Simply
put, the user can store and process data in a public cloudwhile
the cloud provider has no access to it. Technically, the user
can run databases or microservices in the cloud as well as
train machine learning models, while preserving the privacy
of all data stored in the cloud.

Although the ideaof homomorphic encryptionwas already
introduced back in 1978 [3], and the first implementation
of this method was presented in 2009 [4], homomorphic
encryption has only recently beenmade available to develop-
ers in the form of corresponding libraries. However, existing
homomorphic encryption libraries (e.g., OpenFHEor SEAL)
support only addition and multiplication so far; other rele-
vant basic mathematical functions (such as square root and
logarithm) must be implemented by the user. The realization
of such additional functions needed for the implementation
of the CKKS [5] cryptosystem of the OpenFHE library [6]
is discussed in this article. Namely, we propose implemen-
tations for the following functions: division, exponential,
square root, logarithm, minimum, and maximum function.
Additionally, we compare them in terms of their computa-
tional efficiency.

More precisely, for each basic mathematical function, we
first provide anoverviewof how the respective function is cal-
culated in the literature for the non-homomorphic case. Then,
for each suitable computation approach for the homomorphic
case, we determine the required multiplicative depth, accu-
racy, and limitations (e.g., the approach only converges to
the actual value in a very small interval). Based on this anal-
ysis, we select the best approach for each function and then
implement and analyze it in terms of execution time and the
required number of iterations to attain a certain accuracy.
After examining the basic mathematical functions, we apply
homomorphic encryption in a sophisticated use case, namely
the Box–Cox transformation [7], which is used in many dif-
ferent domains, such as time-series forecasting [8]. Since
time-series forecasts rely heavily on historical data, the inte-
gration of confidential data using homomorphic encryption
to augment the dataset appears highly beneficial, especially
for confidential data (e.g., medical, financial, or administra-
tive).

In summary, the core contributions of this article are:

1. We review and analyze different approaches to approxi-
mate basic mathematical functions.

2. We implement the best-performing candidate for each
basic mathematical function using the CKKS cryptosys-
tem of the OpenFHE library and analyze the necessary
execution time and number of iterations to attain a given
accuracy.
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3. We use the extended OpenFHE library to implement the
Box–Cox transformation in a time-series forecasting sce-
nario and evaluate its performance in a real-world use
case.

The results of our contributions show that the number of iter-
ations required to achieve a given accuracy varies depending
on the function. For example, only the square root, logarithm,
minimum, andmaximum functions managed to achieve 95%
accuracy in less than 10 iterations in almost all cases. For all
methods, the execution time is independent of the input and
increaseswith the number of iterations.While the growth rate
increases with the number of iterations for the exponential
function, it decreases for the division, square root, minimum,
and maximum function. Overall, we were able to homomor-
phically implement all basic mathematical functions as well
as the Box–Cox transformation. The execution times of the
basic mathematical functions and the Box–Cox transforma-
tion are in the range of 10s and 4h, respectively, on our
reference machine. We see potential for further optimiza-
tion, such as performing the computations on GPUs instead
of CPUs, as is common in the machine learning domain, or
developing specialized hardware, as is common in the cryp-
tography domain.

To the best of our knowledge, we are the first to provide (1)
guidelines on how a wide range of basic mathematical func-
tions can be homomorphically realized and (2) a performance
analysis of the homomorphically realized basic mathemati-
cal functions in terms of computation times and accuracy.
The methods we propose for the realization of the respec-
tive basic functions promise applicability to arbitrary ranges
of values with as minimal multiplicative depth as possible.
We see significant potential to use this broad set of func-
tions as a basis for the homomorphic realization of complex
machine learning applications, such as time-series forecast-
ing or neural networks, which consist of a string of the basic
mathematical functions realized by us.

The remainder of this article is structured as follows:
First, we introduce the basics of homomorphic encryption in
Sect. 2 anddiscuss relatedwork inSect. 3. Then,we introduce
the basic mathematical functions we selected in Sect. 4 and
their implementations in Sect. 5. The results are presented in
Sect. 6. Finally, we conclude the article in Sect. 7.

2 Background

In this section, we first define the basic terms of a cryptosys-
tem and then extend them to a homomorphic cryptosystem.
Before we can define the term cryptosystem, we must first
define the two terms plaintext and ciphertext. By plaintext,
we mean all things that can be encrypted, such as texts, let-
ters, numbers, or vectors.We call the encryption of a plaintext

ciphertext. Based on these two terms and in accordance with
[9], we can now define what a cryptosystem is.

Definition 1 A cryptosystem is a tuple (�,G, E,D)with the
following properties:� is a finite, non-empty set, also called
alphabet. The plaintext space P , the key space K, and the
ciphertext space C are subsets of the alphabet. G is a prob-
abilistic algorithm that outputs a key pair (pk, sk) chosen
according to some distribution. The key pk, also called the
public key, is intended for encryption. The key sk, also called
the secret key, is intended for decryption. E takes as input
a key pk and a plaintext message m and encrypts it to a
ciphertext c.D takes as input a key sk and a ciphertext c and
outputs the plaintext m. Additionally, the tuple (�,G, E,D)

must satisfy the following condition, since otherwise it is not
guaranteed that a ciphertext can be brought back to its orig-
inal form. This condition describes that for every possible
key pair of pk and sk, the plaintext m encrypted with pk is
decrypted back into the plaintext m with the associated sk
[9].

∀m ∈ P : ∀(pk, sk) ∈ K : D(sk, E(pk,m)) = m

Having defined the basics of a cryptosystem, we now
extend it in terms of homomorphism. The goal of homo-
morphic encryption is to perform operations on encrypted
data such as addition, multiplication, and exponentiation.
More precisely, homomorphic encryption aims at encrypting
a plaintext, performing an operation on it, and decrypting it
again, so that the result is the same as if the operation had
been performed on the plaintext. Therefore, in accordance
with [10], we extend Definition 1 to meet these new require-
ments.

Definition 2 A homomorphic cryptosystem is defined as a
tuple (�,G, E,D,F , Evaluate) with the following proper-
ties: (�,G, E,D) is a cryptosystemandF is a set of functions
that can be calculated by this cryptosystem. Evaluate is an
algorithm that, given a key k, a function f ∈ F , and a cipher
text c, calculates a new ciphertext c′ of the same length, or
written more formally |c′| = |c| [10].

The last condition is necessary because otherwise, itwould
be possible to append the desired calculation at the end of
the ciphertext and execute it when it is decrypted. There
are currently four different types of homomorphic encryp-
tion schemes. Partially homomorphic encryption describes
schemes that only support one type of operation (e.g.,
addition). Semi-homomorphic encryption, also known as
“somewhat homomorphic encryption” (SWHE), includes a
cryptosystem that can support multiple operations but only
on a limited set of functions. Leveled fully homomorphic
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encryption includes cryptosystems that can perform arbi-
trary computations but only on a limited depth that needs
to be known in advance; usually, the depth corresponds to
the number of multiplications. A system with a depth of n
supports up to n multiplications per number. Going above
these numbers can lead to arbitrary results or is not supported.
Cryptosystems of this type are the current standard. Finally,
fully homomorphic encryption supports arbitrary operations
and unbounded depth. There are not many cryptosystems
that fulfill this requirement, and they are usually extremely
slow because complex computations are necessary to keep
the noise of the ciphertext low, given that if the noise exceeds
a certain threshold, it would no longer be possible to decrypt
the ciphertext.

Finally, we would like to distinguish the term depth from
iteration, as both terms are quite similar, but we use them
to describe different things. By the term iteration we mean
the number of iterations we have performed for an iterative
procedure, whereas by the term depth we mean the number
of consecutive multiplications performed.

3 Related work

In this section, we review related work and show the nov-
elty and the necessity of our contributions. To do this, we
go through the functions we implemented homomorphically
one by one and compare our implementation to existing
approaches. Namely, these functions are the division, expo-
nential, square root, logarithm, minimum, and maximum
function. In doing so, we do not go into detail about related
work that performs the computation of the functions in an
unencrypted fashion.

One of the first ideas for homomorphic computation of the
division function came from Lauter et al. [11]. It consisted of
computing the numerator and denominator separately and
returning the result as a fraction. The representation of the
result of the division function as a fraction is mathematically
seen from the expressiveness equivalent to the representa-
tion of the result as a decimal number; however, exactly this
computation of the decimal number is the actual task of the
division function. Common implementations of the division
function, such as in GNUC++, return a concrete number and
not a fraction. Thus, in our opinion, the implementation of
the division function in [11] is not complete as it is in our
case. A computational method of division of integers was
proposed by Okada et al. [12]. In summary, this approach
attempts to determine all theoretically possible inverses of
the denominator and then test through all of them to deter-
mine the candidate that is truly the inverse. We differ from
this approach in that we allow division not only of integer
but also of decimal numbers. This is not possible with the
approach from [12], since there would be an infinite number

of candidates for floating point numbers, which could theo-
retically be the inverse, and thus, testing all would take an
infinite amount of time. Also, a computational method for
the division of integers was proposed by Babenko et al. [13].
This is based on a variation of the Euclidean division algo-
rithm. However, the authors assume that single encrypted
bits can be compared with each other. They only make this
assumption and do not explain how this works in detail, nor
do they provide an implementation. Therefore, it remains
open whether this calculation method will ever be realizable.
The authors of [14] consider the Newton–Raphson method
and the Goldschmidt division algorithm for computing the
division function. Both approaches require a starting value
x0, which the authors select once depending on the inter-
val. Therefore, the information for which value from the
interval the Newton–Raphson method or the Goldschmidt
division algorithm should be applied is not used by this fixed
choice of the starting value x0. We differ from this work
in that: (1) We have provided an overview of possible divi-
sion calculation methods in order to make a reasoned choice
based on performance and accuracy. (2) The authors mea-
sured the computation times of the division method only on
the interval [0, 64], whereaswe evaluated amuch larger inter-
val [−100, 100]\{0}, which also contains negative values.
(3) We compare the results of homomorphically and non-
homomorphically calculated results of the division function
to make statements about the accuracy of our calculation
method. (4) We evaluate how many iterations it takes to
achieve a certain accuracy on a given interval. (5) We choose
the starting value x0 depending on the concrete value for
which the division should be calculated and not only on the
basis of the interval, from which the value originates, for
which the division is to be calculated. In addition, we would
like to mention the work of Thijs Veugen [15] and Ugwuoke
et al. [16], which also include a method for computing the
division function. However, since they rely on performing
computations in an unencrypted manner, we do not discuss
them indetail.Wedistinguishourselves from these twoworks
in that we perform the computation of the division function
completely encrypted.

The authors of [14] deal not only with the calculation
of the division function but also with the root function. In
doing so, they propose to compute the root function using
the Newton–Raphson method, just as we do. However, they
do not address how to determine the initial value x0 for the
root function.Beside this,we also differ from [14] in the same
ways that we did for the division function. Shortell et al. also
compute the root function in [17] using theNewton–Raphson
method. However, a fixed initial value x0 is calculated for a
certain interval for this purpose. Thus, the root can be com-
puted only for small numerical ranges. Our approach of the
dynamic calculation of the starting value, however, also sup-
ports the calculation of the root for larger numerical values.

123



De Bello Homomorphico 1153

Furtherworks [18–21] focus on the computation of the square
root. However, the authors do not compute the root directly
but only the inverse of the root. We also use this idea, but
mainly differ from these approaches in that we propose a
novel approach to find a start value that only needs one homo-
morphic multiplication. Furthermore, we provide a detailed
evaluation of the precision and performance of this approach
on different intervals. In addition, we would like to mention
thework in [22], which also dealswith the computation of the
square root function, however, in an unencrypted scenario.

With regard to the exponential function, literature already
exists that deals with its homomorphic calculation. For
example, several works [5, 23–25] compute the exponen-
tial function homomorphically via the Taylor series, as we
do. Our work extends this existing literature by providing
an overview of the methods for computing the exponential
function and a reasoned choice of the Taylor series based on
it. As an additional extension, our work offers an analysis of
how many terms of the Taylor series one must compute for
a certain accuracy, as well as a more detailed analysis of the
computation times of the exponential function.

In the homomorphic encryption context, we found with
[17] the only one paper that discusses the computation of
the natural logarithm. The authors suggest to calculate the
natural logarithm via Taylor series. We had also considered
this approach to calculate the natural logarithm; however, we
discarded this approach because it is only accurate for a small
range around the development point [26]. Instead, we pro-
pose a new approximation method for the natural logarithm,
which provides higher accuracy for wider ranges. In addition
to presenting a new calculation method for the natural log-
arithm, we also evaluate it in terms of calculation times and
accuracy.

With regard to theminimumandmaximum function, there
are several works in the literature [27–36] that cover this
topic. In [36], themost efficientmethod for the homomorphic
implementation of the maximum andminimum function was
presented so far, which is why we have directly adopted this
method. We extend the existing literature by a more detailed
analysis of the required calculation times and by an analysis
of how many iterations are required for a certain accuracy.

We would also like to mention that a number of works
already exist (e.g., [37–39]) that have implemented subsets
of the function set considered by us in order to realize the
computations required for working with different models,
such as neural networks, for example. In these works, there
is usually no analysis of the required multiplicative depth as
well as the performance of the individual functions. Instead,
the latter are mostly based on approximations by means of
polynomials, which are rather untypical for the computation
of more complex functions. For these reasons, we do not
discuss these works in more detail here.

We would also like to mention works like [40], which
makes it possible to choose during the encryption phase
whether the cryptosystem should have the property homo-
morphism or non-malleability. This is not necessary for us.
Since the homomorphic property is essential for us and we
therefore do not need this choice, we do not go into this work
in more detail.

Finally, our work is the first to cover a broader range of
mathematical functions (including the division function, root
function, exponential function, logarithm function, as well
as the maximum and minimum function), while assessing
different approaches for the calculation of these functions
and analyzing the proposed implementations uniformly with
regard to the required calculation times and the number of
iterations for a desired accuracy.

4 Methods for computing basic
mathematical functions homomorphically

This section describes the set of identified methods for
computing basic mathematical functions homomorphically.
Specifically, we consider the following basic mathemati-
cal functions: division, exponential, square root, logarithm,
minimum, and maximum. We first review the literature for
common implementation methods and then select a method
based on the criteria of multiplicative depth, accuracy, and
constraints. In doing so, we determined the respective multi-
plicative depths ourselves and presented a novel method for
calculating the logarithm.

4.1 Method selection for the division function

To realize the homomorphic computation of the division
function f (a, b) = a

b , where a and b ∈ R, we looked around
for common methods to compute this function. The sim-
plest and most common class of algorithms to compute the
division function is the so-called digit recurrence method.
Division is computed by iteratively applying the subtraction
function [41]. However, this widespread class of division
algorithms is not suitable for our scenario, since its program
logic in the homomorphic case would depend on homomor-
phic encrypted values. Thus, it would not be feasible as the
following example shows: The division a/b is computed by
counting how many times one can subtract b from a so that
the remainder is still greater than or equal to zero. Thus,
after the first subtraction, one would have to test whether
the remainder is greater than or equal to zero, which, as we
will see later, can also be determined in the homomorphic
case. However, the result of this comparison (i.e., whether the
residual value is greater than or equal to zero) is also homo-
morphic encrypted, which means that the algorithm cannot
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access the result in order to decide whether the computation
should be continued.

Commonmethods for the approximation of functions like
Taylor series or the Padé approximation are also out of ques-
tion for the calculation of the division function, because these
methods themselves fall back on the division function. Thus,
from the possible approaches for the computation of the divi-
sion function that we identified in the literature, only the
Goldschmidt [42] and the Newton–Raphson [43] methods
remained. These two approaches compute the division func-
tion by first iteratively computing the value of 1

b and then
multiplying it by a. Thereby, both methods exhibit the same
relative accuracy after a given number of iterations [42]. For
this reason, we make the final choice between these two
schemes based on the required multiplicative depth and the
constraints of the two methods (see Table 1). Both methods
are identical with respect to their constraints, namely that
the initial value must be known before the function is imple-
mented. Therefore, the selectionwasmade on the basis of the
respective required multiplicative depth. Since the Newton–
Raphson method has a smaller depth, we selected it for the
realization of the division function. The Newton–Raphson
method is also the most frequently used approach for cal-
culating the division function in the non-homomorphic case
[44].

4.2 Method selection for the exponential function

To realize the exponential function, we first look at common
implementations frompractice and analyze themwith respect
to their use for homomorphic encryption. For example,
the GNU C++ library implements the exponential func-
tion mostly by means of simple polynomials, which can be
realized homomorphically. However, the GNU C++ imple-
mentations additionally also use operations like rounding or
conditional statements [45]. We already discussed for the
division function that conditional statements could not be
implemented homomorphically. Hence, we, unfortunately,
have to exclude the GNU C++ implementation of the expo-
nential function for our homomorphic use case. For the same
reason, we cannot use approaches that use look-up tables for
the computation of the exponential function (e.g., [46]). Also
commonly cited in the literature are hardware solutions for
the computations of the exponential function (e.g., [47–49]),
which we also exclude directly because we want to solve the
computation of the exponential function hardware indepen-
dent in software.

Thus only the computation via Taylor series, Padé approx-
imation, or the Newton–Raphson approach remained from
the procedures found by us for the computation of the expo-
nential function. To choose between three procedures, we
first consider Table 2, which lists the necessary multiplica-
tive depth and restrictions of the three procedures. From this

table, we can see that the Taylor series is more suitable than
the Padé approximation and the Newton–Raphson approach
for our applicationwith regard to themultiplicative depth and
limitations. This is because (1) for the Taylor series, unlike
the Padé approximation, no additional parameters need to
be computed and (2) the Taylor series requires the lowest
multiplicative depth. According to Table 2, the Padé approx-
imation requires a depth of �log2(max(m, o))� + d, or if
we use the Newton–Raphson method for division where d
becomes 2∗n+1, a depth of �log2(max(m, o))�+2∗n+1.
TheNewton–Raphson approach requires a depth of (d+l)∗n,
or if we again use the Newton–Raphson method for the divi-
sion, a depth of 2 ∗ n2 + n + l ∗ n. In comparison, the Taylor
series has a much shallower depth of �log2(n)	 + 1.

In addition to performance and constraints, we would also
like to consider the accuracy of the methods for choosing a
method to realize the exponential function. In the literature,
one can often read that the Padé approximation has a better
accuracy than the Taylor series (see, e.g., [50–52]). However,
this is mainly the case when functions contain poles [53].
Since the exponential function has no poles, the accuracy of
the Taylor series for computing the exponential function is
very accurate for very large ranges of values, as wewill see in
the course of the paper. Furthermore, since the Taylor series
does not rely on the accuracy of other functions compared to
the Padé approximation, we rate the accuracy of the Taylor
series higher than the accuracy of the Padé approximation.
For the same reason, we also assume that the accuracy of
the Taylor series is better than that of the Newton–Raphson
method. Therefore, our final choice for realizing the expo-
nential function falls on the Taylor series.

4.3 Method selection for the square root function

An overview of the methods that we could find in the lit-
erature for the computation of the root function is listed in
Table 3. We have already excluded all methods that are not
applicable in the homomorphic case. Thus, we excluded, for
example, the computation method of the GNU C++ imple-
mentation of the root function [54], since their logic would
depend on encrypted values. Assuming that for the division
function again theNewton–Raphsonmethod is employed,we
can again replace d by 2 ∗ n+ 1 in Table 3. This allows us to
arrange the root calculation methods in ascending order with
respect to the requiredmultiplicative depth as follows for n ≥
2:Wilkes (depth: 3∗n)<Newton–Raphson (depth: 3∗n+2)
< Halley (depth: 4 ∗ n) < Heron (depth: 2 ∗ n2 + n) < Bak-
shali (depth: 4 ∗ n2 + 6n). Thus, the Wiles method would be
the best choice regarding the multiplicative depth required.
However, it has amajor disadvantage, as it is only suitable for
values between 0 and 1. For this reason, we selected the next
method in the ranking, which has the best accuracy compared
to the other methods after a given number of iterations [55].
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Table 1 Overview of methods
for calculating the division
including their required
multiplicative depths and
constraints

Method Multiplicative depth Limitations

Newton–Raphson [43] 2 ∗ n + 2 Start value required

Goldschmidt [42] 2n + n Start value required

Here n stands for how many iterations are to be calculated for the respective method

Table 2 Overview of methods
for calculating the exponential
function including their required
multiplicative depths and
constraints

Method Multiplicative depth Limitations

Taylor series �log2(n)	 + 1

Padé-Approximation [42] �log2(max(m, o))� + d Additional coefficients required

Newton Raphson (d + l) ∗ n Start value required

Here n stands for how many iterations are to be calculated for the respective procedure, m and o stand for the
degrees of the two polynomials of the Padé-Approximation and l and d stand for the multiplicative depth of
the implementation of the used logarithmic and division function

Table 3 Overview of methods
for calculating the root including
their required multiplicative
depths and constraints

Method Multiplicative depth Limitations

Heron/Raphson [56] (d + 1) ∗ n Start value required

Bakshali [57] (2d + 4) * n Start value required

Wilkes [58] 3 ∗ n Range limited to [0,1)

Halley [59] 4 ∗ n Start value required

Newton–Raphson [18] n ∗ 3 + 2 Start value required

Here, n stands for how many iterations are to be calculated for the respective procedure and d stands for the
multiplicative depth of the implementation of the required division function

4.4 Method selection for the logarithm function

For the implementation of the logarithm function log(x)
with x ∈ R

+\{0}, we again studied the literature for dif-
ferent realization approaches. Here, we consider only the
computation of the natural logarithm, since logarithms with
other bases can be computed using the natural logarithm (i.e.,
loga(b) = loge(b)

loge(a)
, where e is Euler’s number). In the follow-

ing, if nothing else is indicated, logarithm is interpreted to
refer to the natural logarithm.

According to [60, 61], the logarithm can be determined
using the arithmetic–geometric mean, a power series, or
a pre-calculated logarithm table. Of these possibilities, we
could directly exclude the calculation with the help of look-
up tables (e.g., as realized in the GNU C++ implementation
[62]), since here again the logic would depend on homo-
morphic encoded values. Of the two remaining methods, the
first computes the logarithm via the following approxima-
tion: ln(x) ≈ π

2GM(1,22−m/x)
− m ∗ ln(2). Here GM(. . . )

represents the computation of the geometric mean over its
input values, p specifies the desired precision in bits, and the
parameter m must be chosen so that the following inequality
is satisfied: x ∗ 2m > 2p/2.

The calculation by power series can be realized using
a Taylor series. The “normal” Taylor series has a problem
with the logarithm computation, because it is exact only
for a very small value range around the development point

[26]. However, this problem can be circumvented using the
following relation presented in the NIST Handbook [63]:
ln( 1+x

1−x ) = 2 ∗ ∑∞
m=0

x2m+1

2m+1 for x ∈ [−1, 1]. While this
equation also has the issue that its accuracy is limited to a
fairly small interval, we can get around this problemby clever
rewriting. Thus, when calculating ln(z)with z ∈ R

+\{0}, we
substitute the variable z with the equivalent fraction

1+ z−1
z+1

1− z−1
z+1

.

Substituting z−1
z+1 by the variable x afterward, we obtain

ln(z) = ln( 1+x
1−x ). Since it is true that for z ∈ R

+\{0}, it
holds that −1 < x = z−1

z+1 < 1 3 we can extend the rela-

tion as follows: ln(z) = ln( 1+x
1−x ) = 2 ∗ ∑∞

m=0
x2m+1

2m+1 with

x = z−1
z+1 . In the following, we refer to this kind of logarithm

calculation as the modified Taylor series.
Tomake a selection from these presentedmethods,wefirst

consider the information in Table 4, which shows the cor-
responding required multiplicative depths and constraints.
Here, we have additionally included the Padé approximation,
since it could in principle also be applied for the computation

3 Since z ∈ R
+\{0} it holds z > 0. Multiplied by −2 it follows that

−2z < 0. If one subtracts −1 from both sides, −2z − 1 < −1 follows.
This inequality can obviously be extended as follows:−2z−1 < −1 <

1. If we only add z everywhere, we get: −z − 1 < z − 1 < z + 1. Since
z > 0 and therefore also z + 1 > 0, we can safely divide each by z + 1
and get −z−1

z+1 < z−1
z+1 < z+1

z+1 . Truncated, this gives the inequality we

are looking for: −1 < z−1
z+1 < 1.
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of the logarithm function. If one assumes that for the expo-
nential and root function, the methods determined before are
used, then based on the values in the table, it can be con-
cluded that the necessarymultiplicative depth of themodified
Taylor series (depth: �log2(2 ∗ n + 1)� + 3 + d) is smaller
than the depth of the arithmetic–geometric mean approach
(depth: 3 ∗ n + 2+ 2 ∗ d) and the Newton–Raphson method
(depth: n∗�log2(n)�+d ∗n). In addition, the accuracy of the
arithmetic–geometric mean approach or Newton–Raphson
method depends on the accuracy of either the root and divi-
sion function or the exponential and division function. In
contrast, the accuracy of the modified Taylor series depends
only on the division function. Only the Padé approxima-
tion can have a lower multiplicative depth than the modified
Taylor series if max(m, o) < 2 ∗ n + 1. However, since
the parameters m and o stand for the used polynomials of
the Padé approximation, on whose size the accuracy of the
approximation depends, the Padé approximation can under-
cut the modified Taylor series here only if corresponding
accuracy is sacrificed. Since also additional coefficients have
to be calculated for the Padé approximation, the modified
Taylor series is the best choice with respect to depth and
accuracy.

4.5 Method selection for themaximum and
minimum function

For the maximum and minimum function, we refer to [36],
where an approach for the homomorphic computation is
proposed. The authors compute the maximum function as

follows: max(a, b) = a+b
2 +

√
(a−b)2

2 , where a and b
∈ R. Accordingly, the minimum function is computed as
min(a, b) = a + b − max(a, b), where a and b ∈ R. The
authors also compare their approach against other methods
used in the literature [27–35]. Based on this comparison, the
following conclusions are drawn: (1) the authors’ compu-
tational method for the maximum and minimum function is
more efficient than other commonpolynomial approximation
methods such as Taylor, least square, and minimax approx-
imations and (2) it achieves (quasi-)optimal asymptotic
computational complexity. For these reasons, we directly
adopt the method from [36] for the maximum and minimum
function.

5 Homomorphic implementation of basic
mathematical functions

Now that we selected suitable methods for computing the
division, exponential, square root, logarithm, maximum, and
minimum functions in a homomorphic manner, we describe
how we implemented the individual functions. We focus on

the implementation of the division, square root, exponential,
and logarithm functions, since the remaining minimum and
maximum functions can be computed based on these func-
tions.

5.1 Implementation of the division function

To realize the division function f (a, b) = a
b , with a and b ∈

R, we selected the Newton–Raphson method in the previous
section because it performed best in terms of multiplicative
depth and accuracy. We first calculate the inverse of b using
theNewton–Raphsonmethod and thenmultiply itwitha, that
is, f (a, b) = 1

b ∗a. The Newton–Raphson method allows us
to determine the zeros of a function g(x). Thus, we can use
the Newton–Raphson method to compute the inverse of b if
we find a corresponding function g(x) that is zero at x = 1

b .
Probably the simplest function that satisfies this condition is
the function g(x) = 1

x −b. In order to determine the zero for
g(x), the Newton–Raphson method provides an estimate x0
and then iteratively applies the rule fromEq.1.As the number
of iterations increases, the value of xn approaches the zero
point of g(x) under the assumption that the estimated starting
value x0 was appropriately good. Thus, the rule from Eq.1
applied to our function g(x) leads to Eq.2. It is important
to mention that in Eq.2, only multiplication and addition
occur as operations, which are already supported by current
homomorphic encryption libraries.

xn+1 = xn − g(xn)

g′(xn)
(1)

xn+1 = xn − g(xn)

g′(xn)
= xn −

1
xn

− b
−1
x2n

= xn + xn − x2n ∗ b

= xn ∗ (2 − xn ∗ b) (2)

Thus, for the use of the Newton–Raphson method, we
only have to select a suitable initial value x0. Here, suit-
able means that x0 should be as close as possible to the
value 1/b. To obtain this estimate in the homomorphic case
is very problematic because: (1) the value of b is homo-
morphically encrypted and therefore not known and (2) the
estimation procedure may only use the operations addition
and multiplication. In the literature, there are two ways in
which the initial value x0 is determined. The first approach
is to assume that b originates from a certain interval, for
which one tries to choose a fixed initial value x0 so that
the Newton–Raphson method works as well as possible on
this interval [64]. The second approach is to also assume
that b originates from a fixed interval and that an auxiliary
function h(b) = x0 can be set up, with the help of which
good initial values can be obtained for the interval [65]. The
two approaches thus differ in whether only a fixed starting
value x0 is specified for an interval or whether the starting
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Table 4 Overview of methods
for calculating the natural
logarithm function including
their required multiplicative
depths and constraints

Method Multiplicative depth Limitations

Modified Taylor series �log2(2 ∗ n + 1)� + 3 + d

Padé Approximation [42] �log2(max(m, o))� + d Additional coefficients required

Newton–Raphson (d + e) ∗ n Start value required

Arithmetic–geometric Mean s + 2d Start value required

Here, n stands for how many iterations are to be calculated for the respective procedure,m and o stand for the
degrees of the two polynomials of the Padé approximation, and d, e and s stand for the multiplicative depth
of the implementation of the used division, exponential, and square root function

5 10 15 20 25 30

5 · 10−2

0.1

0.15

0.2

x

y

1/x

linear approximation of 1/x

Fig. 1 Illustration of the linear approximation of the division function
on the interval [5, 30]

value is determined dynamically for an interval by means
of an auxiliary function h(b) = x0. We experimented with
both approaches and finally decided to use the second one
because we could achieve better accuracy with it. As an aux-
iliary function, we used a simple linear approximation of
1/b, since this was already sufficient to calculate the divi-
sion function very accurately. The linear approximation of
1/b is illustrated for b ∈ [5, 30] in Fig. 1. In this figure, the
function l(x) = 0.15 − 0.0039 ∗ x was used as an exam-
ple for a linear approximation. The initial value x0 for the
calculation of 1/b with b ∈ [5, 30] would be calculated in
this case as follows: l(b) = 0.15− 0.0039 ∗ b. To determine
the linear auxiliary function for the inverse function we used
a brute-force approach. For the known interval, we gener-
ate a balanced set of sample values (independent of the real
ones) and try out gradient and axis parameters for the linear
function in a certain range. After trying out all of them, we
select the ones that produced themost precise result. Through
this process, we get precise parameters without gaining any
knowledge of the data set except the interval range.

5.2 Implementation of the square root function

For the implementation of the root function f (a) = √
a with

a ∈ R, we decided to also resort to the Newton–Raphson
method. Thus, we must again first find a function g(x) that

5 10 15 20 25 30

3

4

5

x
y

√
x

linear approximation of
√

x

Fig. 2 Illustration of the linear approximation of the root function on
the interval [5, 30]

has its zero at x = √
a. The simplest and most intuitive

function for which this is the case is probably the function
g1(x) = x2 − a. However, this would lead to a division
in every step of the iteration, which should be avoided to
keep the approximation error small. Therefore, we calculated
1/

√
a which is the zero of the function g2(x) = 1

x2
−a. Hav-

ing this result we only have to multiply it with a to obtain√
a. In order to calculate

√
a with the help of the Newton–

Raphson method and the function g2(x), we need an initial
value x0, to which we have to iteratively apply the rule from
Eq.1. With our function g2(x), this rule takes the form from
Eq.3. The iteration rule from Eq.3 only requires multiplica-
tion and additions and contains twofixed constants.However,
this is no problem since we are capable of doing ciphertext–
plaintext multiplication and addition.

xn+1 = xn − g(xn)

g′(xn)
= xn ∗

(
1.5 − a

2
x2n

)
(3)

Thus, for the calculation of the root function by means
of the Newton–Raphson method, we only have to select a
suitable initial value in each case. Analogous to the division
function, we have the following two possibilities: (1) deter-
mine a fixed initial value x0 for an interval, or (2) calculate
the initial value x0 dynamically bymeans of a auxiliary func-
tion h(x). In order to choose between the two approaches,
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we experimented with both approaches and decided to use
the second approach because we could achieve better results
with it. As an auxiliary function, we again chose a linear
approximation, since this was already sufficient to calculate
the root function very accurately. A linear approximation
for the interval a ∈ [5, 30] is shown in Fig. 2. Here, the
root function is approximated by the linear auxiliary func-
tion l(x) = 0.12 ∗ x + 1.9 as an example. In this case, the
starting value for the computation of the root of a ∈ [5, 30]
would be calculated as follows: l(a) = 0.12 ∗ a + 1.9. To
determine the linear auxiliary function for the square root
function, we again used the brute-force approach explained
in Sec. 5.1.

5.3 Implementation of the exponential and
logarithmic function

For the implementation of the exponential function, we use
the Taylor series, which is also how the exponential function
is defined. In contrast to theNewton–Raphsonmethod, we do
not need an estimated starting value x0 but only the value x
for which the function ex is to be evaluated and the number of
terms of the Taylor series that are to be considered. For sim-
plicity, we refer to the terms of the Taylor series as iterations
in the rest of the paper. The evaluation of the Taylor series
itself involves only divisions, multiplications, and additions.
Since we already implemented all these operations, we only
had to string them together for the implementation of the
exponential function. To be able to calculate larger values
for ex more easily, we used an additional mathematical rela-
tion: ea+b = ea ∗ eb. This allows us to reduce higher powers
of ex to smaller powers, (e.g., instead of ex compute e0.5∗x
and thenmultiply the result by itself). More formally, we cal-
culate ex as follows: ex = �r

i=1e
(x/r) with r ∈ N. Here, the

value r must be specified beforehand for the implementation,
depending on which range of values is considered. This tech-
nique for reducing the exponent is in principle applicable to
all realizations of the exponential function. The r multipli-
cations of ex/r increase the multiplicative depth by the term
�log(r)�. For this, n, the number of iterations needed for
the particular realization method of the exponential function,
decreases. Therefore, r should be chosen in such a way that
the multiplicative depth saved by the smaller iteration depth
is larger than the multiplicative depth required for the r mul-
tiplications. After various trials, we found that for r = 32,
we achieved good results for our measurements.

The situation is similar for the implementation of the
logarithm. Our chosen method for the logarithm is based
only on the operations addition, multiplication, and divi-
sion. To compute log(x) based on the logarithmwith smaller
input values, we exploit the followingmathematical relation-
ship: log(a ∗ b) = log(a) + log(b). If we now rewrite x
as x ∗ n

n with n ∈ N, we can rewrite log(x) as follows:

log(x) = log(x ∗ n
n ) = log(( xn ) ∗ n) = log( xn ) + log(n).

Thus, the computation of log(x) can be traced back to the
computation of log( xn ),whichmust then be added to the value
of log(n). Since the value for n must be fixed for the imple-
mentation before the program is executed, the value log(n)

can be pre-computed in the non-homomorphic case and then
stored homomorphically encrypted. For our measurements
later, we chose n = 10 because we achieved good results
with it.

6 Evaluation

Now that we explained in detail the homomorphic realization
of the division function, root function, exponential function,
logarithm function, and minimum and maximum functions,
we analyze these functions regarding their computation times
and the number of required iterations for a given accuracy.
We first look at each function individually and then examine
combinations of them for composed functions. Finally, we
evaluate a homomorphic implementation of the Box–Cox
transformation [7], which is often used in the context of time-
series analysis as implemented in tools such as Telescope [8].

As a measurement setup, we use a HPE ProLiant DL360
Gen9 server. This server has 8 CPU cores with 2.6 GHz each
(Intel (R) Xeon (R) CPU E5-2640 v3 @ 2.60 GHz) and 32
GB DIMM DDR4 RAM. We used Ubuntu 20.04 LTS as the
operating system. For the implementation of the underlying
homomorphic cryptosystem,we used the open-source library
OpenFHE v1.0.3 [6] and its implementation of the CKKS
cryptosystem.

6.1 Evaluation of the division function

We begin the analysis of the division function with the num-
ber of iterations required for a given accuracy. By iteration,
we mean how many steps of the respective iterative compu-
tation procedure were executed. In the case of division, for
example, the number of iterations would correspond to the
value n in Eq.2. Since we trace the computation of the divi-
sion a

b back to the computation of the inverse of b, which is
then multiplied by a, we focus our analysis on determining
the inverse of b. To do this, wemust first specify the area from
which b originates. At a first glance, this may seem unusual,
since one does not have to make this specification in conven-
tional programming languages.However, this is only because
this is done automatically in conventional programming lan-
guages and one does not have to take care of it oneself in
most cases. For the analysis of the required iterations, we
consider all intervals from the following set:
{[a, b]|(a, b∈[−100, 100])\{0}∧(a < b)∧(a%0.1=0)∧

(b%0.1 = 0)}.
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In simpler terms, we tested the inverse determination on
all possible intervals between −100 and 100 in 0.1 steps
excluding 0. We chose the interval −100 to 100 because:
(1) we wanted to test the inverse determination for both pos-
itive and negative values and (2) we preferred to analyze a
smaller interval in detail rather than a larger one in a coarse-
grained manner. In the future, we plan to further expand the
range fromwhich intervals can be taken.We therefore see our
evaluation primarily as a proof of concept. The same applies
to the following evaluations of the other basic mathematical
functions.

For a specific interval, we then looked at all values in 0.1
steps; for example, for the interval [1,1.5], we tested the com-
putation of the inverse of the values 1.1, 1.2, 1.3, 1.4 and 1.5.
Furthermore, for our evaluation, we aimed at achieving an
accuracy of 0.1 for the respective interval. For us, an accuracy
of 0.1 means that for 95% of the values of the interval, the
homomorphically computed inverse deviates from the true
value of the inverse by a maximum of 0.1. Here, we have
chosen the 95% hurdle following a 95% confidence interval.

The required number of iterations for an accuracy of 0.1
for intervals between −100 and 100 is illustrated in Fig. 3.
We use −1 iterations as an encoding for invalid intervals.
In Fig. 3, it is immediately noticeable that −1 iterations are
required for all values from the triangle with the vertices
(−100,−100), (100,100) and (100,−100). This is because
there are invalid intervals in this area, to which we have
directly assigned the value −1. An interval is invalid for us
if its upper interval limit is smaller than its lower interval
limit. For the valid intervals, the figure shows that the number
of required iterations increases as the value of the respec-
tive interval approaches 0. Thus, the intervals whose upper
interval boundary is at most −13, or whose lower interval
boundary is at least 13, need only one iteration for an accu-
racy of 0.1. For intervals containing values between −13
and 13, the number of required iterations increases the closer
their values are to zero. This is because the value of 1

b tends
to infinity as the value of b approaches 0. This leads to the
required iterations diverging toward infinity in this case. To
illustrate this behavior graphically, we show the number of
iterations up to 10 as a heatmap marking the area around 0,
which requires more than ten iterations, with the color pink
and the note “number of iterations > 10”.

Now that we evaluated the number of iterations required
for the inverse determination of b with an accuracy of 0.1
for intervals from the range [−100,100], we next consider
the computation times. To this end, we measured the inter-
val [−100,100] in 0.1 steps for the inverse determination
of b and varied the number of iterations between 1 and
10 in one step for each value of b. We thus measured the
times of inverse determination of b = −100 for 1, 2, . . . , 10
iterations and then measured the times of inverse determi-
nation of b = −99.9 for 1, 2, . . . , 10 iterations, and so on.

Fig. 3 Visualization of the required iterations to compute the inverse
for values from different intervals with an accuracy of 0.1

Fig. 4 Required time to determine the inverse of b, where b ∈
[−100, 100]\{0}. The iteration depth of the iterative computation pro-
cedure was varied between 1 and 10

The computation times determined in this way are shown in
Fig. 4, where we used the standard deviation as a measure
of accuracy. Based on this figure, the following conclusions
can be drawn: (1) The computation times of the inverse
determination increase as the number of iterations increases.
(2) Although the computation times increase with the num-
ber of iterations, this increase is not linear, but it continues
to decrease with each iteration. This is because the homo-
morphic computations of addition andmultiplication become
faster as more of the provided multiplicative depth is already
used up. (3) The computation time depends mainly on the
number of iterations and not on the value whose inverse is to
be determined. (4) The homomorphic inverse determination
is in the range of seconds and is thus significantly slower than
the non-homomorphic inverse determination, which typi-
cally requires significantly less than 1s.
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6.2 Evaluation of the exponential function

For the analysis of the exponential function, we proceed anal-
ogously to the division function. We again first consider the
number of required iterations to achieve an accuracy of 0.1
for an interval and then evaluate the required computation
times. For an accuracy of 0.1, we again assume that for 95%
of the values of the considered interval, the homomorphic
computation of the exponential function deviates from the
true value by a maximum of 0.1. For computing ex , we again
specify a range from which the value x can be taken. We
chose the interval [−30,30] because: (1) we want to consider
both positive and negative values for x ; (2) we prefer to ana-
lyze a small range in detail rather than a large range coarsely,
and (3)with e30, we are already in the two-digit trillion range.
For the analysis of the required iterations, we tested the expo-
nential function on all possible intervals between −30 and
30 in 0.1 steps, that is, we considered all intervals from the
following set:

{[a, b]|(a, b ∈ [−30, 30])} ∧ (a < b) ∧ (a%0.1 = 0) ∧
(b%0.1 = 0)}

The number of required iterations to achieve an accuracy
of 0.1 for intervals from the range [−30,30] is shown inFig. 5.
Here, the invalid intervals, that is, in the triangle with the ver-
tices (−30,−30), (30,30), and (30,−30), are again assigned
the value −1. The intervals in this triangle are invalid, as
their upper limit is smaller than their lower limit in each
case. Based on the figure, the following conclusions can be
drawn: (1) As long as the upper interval boundary is neg-
ative, only one iteration is required for an accuracy of 0.1.
This is because the function ex converges to 0 very fast for
x → −∞. (2) In the positive range, as the x value increases,
the number of iterations required for an accuracy of 0.1
increases. (3) At least from an upper interval boundary of
20, more than 10 iterations are needed for an accuracy of
0.1, which we have marked in the figure with the color pink
and the note “number of iterations > 10”.

Now that we analyzed the required number of iterations
to achieve an accuracy of 0.1 for intervals from the range
[−30,30], we evaluate the computation times as shown in
Fig. 6. For this purpose, we measured for the range [−30,30]
in 0.1 steps in each case how long the computation of the
exponential function requires for up to 10 iterations. Thus, for
x = −30,wemeasured how long1, 2, . . . , 10 iterations take,
then how long 1, 2, . . . , 10 iterations take for x = −29.9,
and so on. Here, again, we used the standard deviation as the
accuracy measure. Figure6 allows us to draw the following
conclusions: (1) Computing one iteration and computing two
iterations take the same amount of time. (2) From 3 iterations
on, the higher the number of iterations, the higher the required
computation time. (3) In contrast to the determination of the
inverse, the distance between the computation times of two

Fig. 5 Visualization of the required iterations to compute the exponen-
tial function for values from different intervals with an accuracy of 0.1

Fig. 6 Required times to determine ex , where x ∈ [−30, 30]. The iter-
ation depth of the iterative computation procedure was varied between
1 and 10

successive iterations increases from 3 iterations on. This is
because, although the homomorphic operations addition and
multiplication become faster with increasing iteration depth,
the computation time per additional iteration also increases.
Therefore, we explain the increasing distance between the
computation times of two successive iterations by the fact that
the computation effort per additional iteration increasesmore
significantly than the basic homomorphic operations become
faster. This was not the case with the inverse determination,
since the computation expenditure per iterationwas constant.
(4) The computation times are independent of the concrete
x value. (5) The homomorphic computation of 10 iterations
for the exponential function is still in the (two-digit) second
range, and it is clearly slower than the non-homomorphic
computation, which typically requires less than 1s.
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6.3 Evaluation of the square root function

For the evaluation of the square root function, we also pro-
ceed analogously to the division function; we first consider
the required number of iterations to achieve an accuracy of
0.1 for an interval and then evaluate the required computation
times. Before conducting the measurements for the compu-
tation of

√
x , we again had to specify a range from which the

value x can be taken. We chose the range [0,200] because:
(1) we preferred to analyze a smaller range in detail rather
than a larger range coarsely; (2) for the computation of the
root generally only positive values come into question; and
(3) the computation times for this range were already very
complex, as we will see later. For the analysis of the required
iterations, we considered all intervals from the set

{[a, b]|(a, b ∈ [0, 200])} ∧ (a < b) ∧ (a%0.1 = 0) ∧
(b%0.1 = 0)}.

That is, we tested the square root function on all possi-
ble intervals between 0 and 200 in 0.1 steps. The number of
iterations required to achieve an accuracy of 0.1 for inter-
vals from the range [0,200] is shown in Fig. 7. Here, we
again assigned the invalid intervals in the triangle with the
vertices (0, 0), (200, 200), (200, 0) the value of −1. Based
on the graph, we can draw the following conclusions: (1)
The number of iterations required for an accuracy of 0.1
increases when the upper interval boundary increases and/or
the lower interval boundary decreases. (2) We can compute
the root with an accuracy of 0.1 with a maximum of 10 itera-
tions almost on the entire range considered. Only if the lower
boundary is too close to 0,more than 10 iterations are needed.
We havemarked this area accordinglywith the color pink and
the note “number of iterations > 10”.

The computation times for the root function
√
x for inter-

vals from the range [0,200] are illustrated in Fig. 8. We again
used the standard deviation as ameasure of accuracy. For this
purpose, we measured the range [0,200] in 0.1 steps, varying
the iterations between 1 and 10. Thus, for x = 0, we mea-
sured how long the root computation takes with 1, 2, . . . , 10
iterations each. Then, we measured how long 1, 2, . . . , 10
iterations take for x = 0.1, and so on. The depicted required
computation times in Fig. 8 lead us to the following conclu-
sions: (1) The computation times increase with the number
of iterations and are independent of the concrete x value. (2)
The distance between the computation times of two succes-
sive iterations decreases as the number of iterations increases.
This is due to the fact that the computation costs per itera-
tion are constant for the root function and the homomorphic
operations addition and multiplication become faster with
increasing depth. (3) The computation times required for the
homomorphic root function are in the range of (sometimes

Fig. 7 Visualization of the required iterations to compute the square
root function for values from different intervals with an accuracy of 0.1

Fig. 8 Required times to determine
√
x , where x ∈ [0, 200]. The iter-

ation depth of the iterative computation procedure was varied between
1 and 10

double-digit) seconds and are thus significantly longer than
in the non-homomorphic case, where typically less than 1s
is required.

6.4 Evaluation of the logarithm function

The evaluation of the logarithm function log(x) is also anal-
ogous to the division function.We again set a target accuracy
of 0.1 and first specify the range from which the value x can
be taken. For the same reasons as for the root function, we
have chosen the range ]0, 200]. In contrast to the root func-
tion, we exclude 0, given that log(0) is not defined. From
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Fig. 9 Visualization of the required iterations to compute the logarithm
function for values from different intervals with an accuracy of 0.1

the range ]0, 200], we considered the following sets for our
measurements:

{[a, b]|(a, b ∈]0, 200]) ∧ (a < b) ∧ (a%0.1 = 0) ∧
(b%0.1 = 0)}.

To illustrate, we again measured all possible intervals
between 0 and 200 in 0.1 steps. The number of iterations
needed to compute log(x) with an accuracy of 0.1 and
x ∈]0, 200] are illustrated in Fig. 9. Here, all invalid intervals
in the triangle (0,0), (200,200), (200,0) were again assigned
the value of −1. This figure allows us to draw the follow-
ing conclusions: (1) The number of iterations needed for an
accuracy of 0.1 increases the larger the upper interval limit
is, that is, the closer the value of x comes to the value 200.
(2) We can always achieve an accuracy of 0.1 for the range
under consideration with a maximum of 8 iterations.

The computation times for the logarithm function logx
for intervals from the range ]0, 200] are illustrated in Fig. 10,
where we again use the standard deviation as a measure of
accuracy. We measured the range ]0, 200] in 0.1 steps, vary-
ing the iterations between 1 and 10. Thus, for x = 0.1, we
measured how long the computation of log(0.1) takes with
1, 2, . . . , 10 iterations each. Next, we measured how long
the computation of log(0.2) needs for 1, 2, . . . , 10 iterations,
and so on. Based on Fig. 10, we can draw the following con-
clusions: (1) The computation times are independent of the
concrete x value and increase with the number of iterations.
(2) The homomorphic computation time for the logarithm
function is significantly higher than in the non-homomorphic
case, that is, the time needed for the homomorphic compu-
tation is in the range of (sometimes double-digit) seconds
compared to typically less than 1s for the non-homomorphic
case.

Fig. 10 Required times to determine logex , where x ∈]0, 200]. The
iteration depth of the iterative computation procedure was varied
between 1 and 10

6.5 Evaluation of themaximum andminimum
functions

For the evaluation of the maximum function max(a, b), we
first specify the range from which a and b can originate;
more specifically, we take the range [−10, 10]. One reason
for the choice of this interval is to consider positive values
as well as negative values. On the other hand, in contrast
to the previous functions, the number of test cases increases
quadratically for the maximum function. For example, if we
consider the interval [0, 5] to be measured in 0.1 steps, there
are 5−0

0.1 ∗ 5−0
0.1 = 2500 test cases, whereas for the same inter-

val for the root function there were only 5−0
0.1 = 50 test cases.

Since our measurements for the single analysis of the func-
tion and its interaction altogether took several months, we
had to concentrate on a smaller interval that we could mea-
sure in a fine-grainedmanner. Specifically, we considered the
following sets:

{[a, b]|(a, b ∈] − 10, 10]) ∧ (a < b) ∧ (a%0.1 = 0) ∧
(b%0.1 = 0)}.

The required number of iterations for an accuracy of
0.1 when computing the maximum function max(a, b) with
a, b ∈ [−10, 10] is shown in Fig. 11. Here, we again
assigned the value of −1 to the invalid intervals in the trian-
gle (−10,−10), (10,−10), and (10, 10), that is, the intervals
where the upper bound is smaller than the lower bound. From
Fig. 11, it can be seen that for the range [−10, 10], we never
needed more than 8 iterations for the computation of the
maximum function.

The homomorphic computation times for the maximum
function max(a, b) with a, b ∈ [−10, 10] are shown in
Fig. 12. For overview reasons, we have chosen a 2D rep-
resentation of the measured values, which consist of tuples
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Fig. 11 Visualization of the required iterations to compute the maxi-
mum function for values from different intervals with an accuracy of
0.1

Fig. 12 Computation times to determine max(a, b), where a, b ∈
[−10, 10] and a ≤ b. The iteration depth of the iterative computa-
tion procedure was varied between 1 and 10. The x-axis represents the
difference between a and b

of 3 values (a, b, time required) each of which must be deter-
mined for different number of iterations. For this purpose,
we plot on the x-axis the distance between a and b and on
the y-axis the required time for 1,2,..., 10 iterations. Thus,
each x value stands for a set of different cases, which have
in common that the distance between a and b is equal; for
example, an x-value of 10 stands for the following cases:
{max(a, b)|a, b,∈ [−10, 10] and |a − b| = 10}. That these
cases need the same computation times is due to the fact that
the computation of the maximum function is traced back
to the computation of the root function, which receives the
squared value of the difference between a and b as input
parameter. Thus, the same root computation is performed
for all tuples (a, b) if they are equal with respect to the
distance between a and b. The computation times of themax-

imum function max(a, b) shown in Fig. 12 allow us to draw
the following conclusions: (1) the computation times are
independent of the choice of a, b ∈ [−10, 10]. (2) The com-
putation times increase as the number of iterations increases.
(3) The computation of the maximum function in the range
[-10,10] takes between 5s and 22s. Thus, the homomorphic
computation of themaximum function is significantly slower
than its non-homomorphic computation, but it is still feasible
in the range of seconds.

The evaluation of the minimum function was carried out
in the same way as the evaluation of the maximum function.
Since we trace the minimum function back to the maximum
function and only need an additional addition and subtrac-
tion, the results of the analysis for the minimum function
correspond to those for the maximum function. For this rea-
son, we do not analyze the minimum function in detail here,
but we show in the appendix the correspondingmeasurement
results (cf. Figs. 17, 18).

6.6 Evaluation of combinations of the functions

To evaluate how our approach performs when combining
multiple functions, we realized a complex use case homo-
morphically, namely the Box–Cox transformation. This
transformation has applications in many fields, such as time-
series forecasting [8]. In the following, we first present the
concept of the Box–Cox transformation and then evaluate
our homomorphic Box–Cox transformation in terms of per-
formance and accuracy.

6.6.1 Concept of the Box–Cox transformation

The idea behind the Box–Cox transformation [7] is to trans-
formanon-normal distribution into a normal-like distribution
by means of Eq.4 with a carefully chosen parameter λ.

Y =
{

yλ−1
λ

, if λ �= 0
log(y), else

(4)

An example of such a transformation can be seen in
Fig. 13. The left part of the figure shows a non-normal distri-
bution. If we apply the Box–Cox transformation to it, we get
a distribution that resembles a normal distribution, as shown
in the right part of the figure.

The biggest challenge in computing the Box–Cox trans-
formation is to determine a suitable λ. We use Guerrero’s
method [66] for this task, which is also used, for example,
in R Studio for the computation of lambda for the Box–
Cox transformation [67]. The idea of the Guerrero method
is to test different values for λ and choose the value that
has the lowest coefficient of variation c for the sub-series of
the time series ts [68]. By a time series, we mean a vector
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Fig. 13 An exemplary illustration of the transformation of a non-normal distribution (left) into a distribution that resembles a normal distribution
(right) using the Box–Cox transformation (the example was created according to [70])

ts =
{(

v1
t1

)

, . . . ,

(
vn
tn

)}

(with t1 < t2, t2 < t3 and so

on) that recorded the measured values v1, . . . , vn at certain
times t1, . . . , tn , respectively. To divide ts into sub-series,
the measurements that belong to a period are combined to
a set. As a concrete example of a time series to which we
apply the Box–Cox transformation, we use the birth figures
in New York [69]. A timestamp ti would thus be a month
of a year and the measured values vi would be the number
of children born in New York in this month. In our case, the
period would be one year and thus have a length of 12. In
the following, we refer to the sub-series for year i as period
xi . For the sub-series or periods x1, . . . , xn generated in this
way, the parameter c must now be determined for different
values of λ in order to subsequently select the value for λ

that has the lowest value for c. The workflow for comput-
ing the parameter c for a specific λ is illustrated in Fig. 14.
First, for each period xi , we compute the ratio yi of the stan-
dard deviation to its mean. Then, the value zi is computed
from each of the values yi by exponentiating yi with (1−λ).
For the zi values computed in this way, we then determine
their standard deviation and mean value, since the param-
eter c is computed from the ratio of these two values. In
order to be able to perform these consecutive computations
in a homomorphic setting, we had to bootstrap some inter-
mediate results. Otherwise, the noise, which is part of the
CKKS cryptosystem, would have become so large that the
OpenFHE library would have aborted further computations,
since their results could no longer be decrypted. The interme-

diate results that we bootstrapped and/or for which we had
to apply bootstrapping during their calculation are marked in
the figure with a red arrow 14.

At this point, we would like to point out that during the
determination of the most suitable value for λ all values,
except for the value for λ, are encrypted. The reason why we
do not encrypt the respective value for λ is that (1) the final
selected value of λ does not allow one to draw conclusions
about the time series ts nor about the transformed time series,
and (2) since the implementation of Box–Cox is supposed
to be time-series-independent, appropriately common values
have to be chosen for the implementation, which have to
be tested in sequence. If the selected value for λ is to be
kept secret, the concrete test values including the sequence
would have to be kept secret. Given that the value of λ does
not allow an attacker to draw any conclusions, we do not
think it is necessary to keep the selected value for λ secret.
Nevertheless, one could also perform the computation of zi
with an encrypted value for λ. To do this, one would have to
rewrite zi as follows: zi = yi

eλ∗ln(yi )
.

6.6.2 Evaluation of the homomorphic implementation of
the Box–Cox transformation

To evaluate our homomorphic realization of the Box–Cox
transformation in terms of performance and accuracy,wefirst
present the workflow of our implementation. This is illus-
trated in Fig. 15 and consists of the sequential calculation of
the parameters, c1 . . . c4, the subsequent selection of the λ
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..
.
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.

..
.

..
.

..
.

..
.

Calculations with Bootstrapping
Calculations without Bootstrapping

Fig. 14 Illustration of the calculation of the parameter c for the Guerrero method to determine the parameter λ for the box–cox transformation

Fig. 15 Workflow of the
calculation steps of your
homomorphic Box–Cox
transformation

c1 calculation c2 calculation c3 calculation c4 calculation

Select λ with smallest ci valueCalculate transformation

with the lowest ci value and the final calculation of the trans-
formation of the original values using the selected λ. For each
of these steps, we evaluate the required calculation time and
the accuracy. The required times of the individual steps are
listed inTable 5. It is striking in this table, that themost expen-
sive calculation is the determination of the λ with the lowest
ci value, which, in the non-homomorphic case, is probably
one of the cheapest calculations, since only the minimum of
four numbers must be calculated, which can be realized by
three comparisons. In total, we needed 4.09±0.01 hours for
the homomorphic calculation of the Box–Cox transforma-
tion. In the non-homomorphic case, on the other hand, the

Box–Cox transformation only requires 3.4 ± 0.01 millisec-
onds. Thus, the calculation time of the Box–Cox transforma-
tion using our homomorphic realization increases by 432 ×
106 percent compared to the non-homomorphic calculation.
However, our implementation still offers some optimization
possibilities, such as the parallel calculation of the ci values,
which are independent of each other. This would roughly
shorten the calculation times in the homomorphic case to
roughly 2.5 hours. The homomorphic realization of the Box–
Cox transformation is thus, as expected, significantly slower
than its non-homomorphic realization, but our measure-
ments prove that the computations are still feasible within
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Table 5 Calculation times of the different steps of our homomorphic
realization of the Box–Cox transformation

Step Required time in seconds

c1 calculation 1806.48 ± 14.07

c2 Calculation 1863.51 ± 17.97

c3 Calculation 1570.91 ± 14.56

c4 Calculation 1818.01 ± 24.97

λ Selection 6832.48 ± 9.23

Transformation Calculation 828.64 ± 2.41

Table 6 Accuracy of the homomorphically calculated intermediate
results

λ Non-homomorphically Homomorphically
computed c value computed c value

−1 0.16610 0.16379

0 0.14184 0.14068

1 0.15569 0.15566

2 0.19852 0.19841

a few hours, and homomorphic encryption thus represents a
promising realistic option for implementing data protection
for cloud applications, where data security is top priority.

In addition to the time required for the homomorphic
calculation of the Box–Cox transformation, the accuracy
achieved in the homomorphic variant is of course also impor-
tant. To do this, we first look at the accuracy of the calculated
intermediate results, which are listed in Table 6. From this
table we can see that the homomorphic calculation of the ci
values is accurate to at least 2 decimal places. In our opinion,
this is already an impressive accuracy, considering that the
calculation of a ci value is non-trivial, as shown in Fig. 14.
The achieved accuracy could also be increased by using a
higher iteration depth for the respective procedures, which
would, however, increase the calculation times accordingly.

We achieved slightly worse accuracy when homomorphi-
cally selecting the λ value with the lowest ci value. In the
non-homomorphic case, this would have been λ = 0, but in
the homomorphic case we calculated λ = 0.1382. How-
ever, we could have increased the accuracy at this point
again by increasing the iteration depths of the respective
underlying methods. However, we decided against such an
increase, since on the one hand this would have increased
the computation time accordingly and on the other hand,
with this homomorphically calculated λ value, we can, in
our opinion, achieve a fairly accurate overall approximation
of the Box–Cox transformation. To show this, we consider
Fig. 16, which illustrates the homomorphically calculated
Box–Cox transformation with λ = 0.1382 and the non-
homomorphically calculated Box–Cox transformation. In
this figure, the mean deviation of the homomorphic variant
from the non-homomorphic variant is (2.22 ± 1.74)%.

Fig. 16 Comparison of the non-homomorphically and homomorphi-
cally calculated Box–Cox transformation

7 Conclusion

Although cloud computing has proven helpful for managing
large amounts of data, privacy and data security concerns
remain an issue, especially with sensitive data such as medi-
cal records. To benefit from the features of cloud computing
without the provider having access to the data, homomorphic
encryption is an approach that allows the user to store and
process data securely in the cloud. However, homomorphic
encryption libraries only support addition and multiplica-
tion; other mathematical functions must be implemented
by the user. To this end, we implemented and investigated
basic mathematical functions, such as division, exponen-
tial, square root, logarithm, minimum, and maximum, using
the CKKS cryptosystem implementation of the OpenFHE
library. We then evaluated their performance in terms of
accuracy and the computation time required to achieve it.
Our results show how the number of iterations required to
achieve a given accuracy varies depending on the function.
To demonstrate that our implementations can also be used
for more complex computations, we used them to implement
the Box–Cox transformation in a homomorphic setting. This
transformation is used in many real-world applications, such
as time-series forecasting.

While homomorphic encryption is still relatively slow, it is
a promising solution for preserving data privacy and security.
Especially since we see potential to accelerate these compu-
tations, for example, by performing them onGPUs instead of
CPUs, as is common in machine learning, or by developing
special hardware for this purpose, as is common in cryptogra-
phy. To this end, our future work will focus on implementing
additional workflow tasks from the time-series domain and
exploring homomorphic neural networks. Our ultimate goal
is to create a user-friendly open-source tool that incorpo-
rates various mathematical functions and requires minimal
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knowledge of homomorphic encryption. Users should be
able to easily apply homomorphic computing, such as com-
puting a root homomorphically by creating the correspond-
ing object rootObject = root(lower interval
limit, upper interval limit, precision)
and calling rootObject.calculateRoot(x). The
bounds for the computation should only be set initially, and
for each following computation, the bounds should be set
automatically. Moreover, we plan to provide guidelines to
assist users in selecting appropriate initial bounds. In addi-
tion, we plan to implement the activation functions of neural
networks for the CKKS cryptosystem using the basic math-
ematical functions realized in this paper. As soon as we are
able to homomorphically calculate activation functions with
high accuracy, we plan to string them together into neural
networks as a next step.
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Appendix

See Figs. 17 and 18.

Fig. 17 Visualization of the required iterations to calculate the mini-
mum function for values from different intervals with an accuracy of
0.1

Fig. 18 Required times to determine min(a, b), where a, b ∈
[−10, 10] and a ≤ b. The iteration depth of the iterative calculation pro-
cedure was varied between 1 and 10. The x-axis represents the amount
of the difference of a and b
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