
ar
X

iv
:q

ua
nt

-p
h/

02
06

02
3v

2
 2

8
Ju

n
20

02

Tractability of Approximation

for Weighted Korobov Spaces

on Classical and Quantum Computers

Erich Novak∗

Mathematisches Institut, Universität Jena
Ernst-Abbe-Platz 4, 07740 Jena, Germany

email: novak@mathematik.uni-jena.de

Ian H. Sloan†

School of Mathematics, University of New South Wales

Sydney 2052, Australia
email: i.sloan@unsw.edu.au

Henryk Woźniakowski‡

Department of Computer Science, Columbia University

New York, NY 10027, USA, and
Institute of Applied Mathematics and Mechanics, University of Warsaw

ul. Banacha 2, 02-097 Warszawa, Poland
email: henryk@cs.columbia.edu

May 2002

∗This work was done while the first and the third authors were visiting the second author at the University
of New South Wales.

†The support of the Australian Research Council is greatly acknowledged.
‡The support of NSF and DARPA is greatly acknowledged. Effort sponsored by the Defense Advanced

Research Projects Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Command,

1

http://arxiv.org/abs/quant-ph/0206023v2

Abstract

We study the approximation problem (or problem of optimal recovery in the L2-
norm) for weighted Korobov spaces with smoothness parameter α. The weights γj
of the Korobov spaces moderate the behavior of periodic functions with respect to
successive variables. The non-negative smoothness parameter α measures the decay of
Fourier coefficients. For α = 0, the Korobov space is the L2 space, whereas for positive
α, the Korobov space is a space of periodic functions with some smoothness and the
approximation problem corresponds to a compact operator. The periodic functions
are defined on [0, 1]d and our main interest is when the dimension d varies and may
be large. We consider algorithms using two different classes of information. The first
class Λall consists of arbitrary linear functionals. The second class Λstd consists of only
function values and this class is more realistic in practical computations.

We want to know when the approximation problem is tractable. Tractability means
that there exists an algorithm whose error is at most ε and whose information cost is
bounded by a polynomial in the dimension d and in ε−1. Strong tractability means that
the bound does not depend on d and is polynomial in ε−1. In this paper we consider
the worst case, randomized and quantum settings. In each setting, the concepts of
error and cost are defined differently, and therefore tractability and strong tractability
depend on the setting and on the class of information.

In the worst case setting, we apply known results to prove that strong tractability
and tractability in the class Λall are equivalent. This holds iff α > 0 and the sum-
exponent sγ of weights is finite, where sγ = inf

{
s > 0 :

∑∞
j=1 γ

s
j < ∞

}
.

In the worst case setting for the class Λstd we must assume that α > 1 to guarantee
that functionals from Λstd are continuous. The notions of strong tractability and
tractability are not equivalent. In particular, strong tractability holds iff α > 1 and∑∞

j=1 γj < ∞.
In the randomized setting, it is known that randomization does not help over the

worst case setting in the class Λall. For the class Λstd, we prove that strong tractability
and tractability are equivalent and this holds under the same assumption as for the
class Λall in the worst case setting, that is, iff α > 0 and sγ < ∞.

In the quantum setting, we consider only upper bounds for the class Λstd with
α > 1. We prove that sγ < ∞ implies strong tractability.

Hence for sγ > 1, the randomized and quantum settings both break worst case
intractability of approximation for the class Λstd.

USAF, under agreement number F30602-01-2-0523. The U.S, Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research Laboratory, or the U.S. Government.

2

We indicate cost bounds on algorithms with error at most ε. Let c(d) denote the
cost of computing L(f) for L ∈ Λall or L ∈ Λstd, and let the cost of one arithmetic
operation be taken as unity. The information cost bound in the worst case setting
for the class Λall is of order c(d) · ε−p with p being roughly equal to 2max(sγ , α

−1).
Then for the class Λstd in the randomized setting, we obtain the total cost of order
c(d) ε−p−2 + d ε−2p−2, which for small ε is roughly

d ε−2p−2.

In the quantum setting, we present a quantum algorithm with error at most ε that
uses about only d+ log ε−1 qubits and whose total cost is of order

(c(d) + d) ε−1−3p/2.

The speedup of the quantum setting over the randomized setting is of order

d

c(d) + d

(
1

ε

)1+p/2

.

Hence, we have a polynomial speedup of order ε−(1+p/2). We stress that p can be
arbitrarily large, and in this case the speedup is huge.

1 Introduction

We study the approximation problem (or problem of optimal recovery in the L2-norm) for
periodic functions f : [0, 1]d → C that belong to Korobov spaces. These are the most
studied spaces of periodic functions. Usually, the unweighted case, in which all variables
play the same role, is analyzed. As in [12, 23], in this paper we analyze a more general
case of weighted Korobov spaces, in which the successive variables may have diminishing
importance. We consider the unit ball of weighted Korobov spaces Hd. Hence we assume
that ‖f‖d ≤ 1 where the norm depends on a non-negative smoothness parameter α and a
sequence γ = {γj} of positive weights. For α = 0 we have ‖f‖d = ‖f‖L2([0,1]d), and for α > 0
the norm is given by

‖f‖d =

(∑

h∈Zd

rα(γ, h) |f̂(h)|2
)1/2

where Zd = { . . . ,−1, 0, 1, . . .}d, Fourier coefficients are denoted by f̂(h), and

rα(γ, h) =

d∏

j=1

rα(γj, hj) with rα(γj, hj) =

{
1 if hj = 0,

γ−1
j |hj|α if hj 6= 0,

(1)

3

The smoothness parameter α measures the decay of the Fourier coefficients. It is known
that the weighted Korobov space Hd consists of functions that are kj times differentiable
with respect to the jth variable if kj ≤ α/2. For α ≥ 0, the space Hd is a Hilbert space, and
for α > 1, it is a Hilbert space with a reproducing kernel.

The weights γj of Korobov spaces moderate the behavior of periodic functions with
respect to successive variables. For ‖f‖d ≤ 1 and for small γj, we have large rα(γ, h) with

non-zero hj and therefore the corresponding Fourier coefficient |f̂(h)| must be small. In the

limiting case when γj approaches zero, all Fourier coefficients f̂(h) with non-zero hj must be
zero, that is, the function f does not depend on the jth variable.

We consider algorithms using different classes of information. We study the two classes
Λall and Λstd of information. The first one Λall = H∗

d consists of all continuous linear func-
tionals, whereas the second one Λstd, called the standard information, is more realistic in
practical computations and consists only of function values, i.e., of Lx(f) = f(x) ∀f ∈ Hd

with x ∈ [0, 1]d. Such functionals are continuous only if α > 1.
Our main interest is when the dimension d varies and may be large. In particular, we

want to know when the approximation problem is tractable. Tractability means that there
exists an algorithm whose error is at most ε and whose information cost (i.e., the number of
information evaluations from Λall or Λstd) is bounded by a polynomial in the dimension d and
in ε−1. Strong tractability means that the bound does not depend on d and is polynomial
in ε−1. The exponent of strong tractability is defined roughly as the minimal non-negative
p for which the bound is of order ε−p.

We consider the worst case, randomized and quantum settings. Each setting has its own
definition of error, information and total cost. In the worst case setting we consider only
deterministic algorithms, whose error, information and total costs are defined by their worst
performance. In the randomized setting we allow randomized algorithms, and their error
and costs are defined on the average with respect to randomization for a worst function
from the unit ball of Hd. In the quantum setting we allow quantum algorithms that run on
a (hypothetical) quantum computer, with the corresponding definitions of error and costs.
Clearly, the concepts of tractability and strong tractability depend on the setting and on
the class of information. We are interested in checking how the setting and the class of
information change conditions on tractability.

The approximation problem corresponds to the embedding operator between the weighted
Korobov space Hd and the space L2([0, 1]

d). This operator is compact iff α > 0. That is
why for α = 0 we obtain negative results in all three settings and for the two classes of
information.

In Section 3 we study the worst case setting. It is enough to consider linear algorithms

4

of the form

An,d(f) =
n∑

k=1

akLk(f).

Here, the ak’s are some elements of L2([0, 1]
d), and the Lk’s are some continuous linear

functionals from Λall or Λstd. The functions ak do not depend on f ; they form the fixed output
basis of the algorithm. Necessary and sufficient conditions on tractability of approximation
in the worst case setting easily follow from [12, 27, 28]. With

sγ = inf

{
s > 0 :

∞∑

j=1

γs
j < ∞

}
,

we have:

1. Let α ≥ 0. Strong tractability and tractability of approximation in the class Λall are
equivalent, and this holds iff α > 0 and the sum-exponent sγ is finite. If so, the
exponent of strong tractability is

p∗(Λall) = 2 max
(
sγ, α

−1
)

2. Let α > 1. Strong tractability of approximation in the class Λstd holds iff

∞∑

j=1

γj < ∞.

If so, then p∗(Λall) ≤ 2 and the exponent of strong tractability p∗(Λstd) satisfies

p∗(Λstd) ∈ [p∗(Λall), p∗(Λall) + 2].

3. Let α > 1. Tractability of approximation in the class Λstd holds iff

a := lim sup
d→∞

∑d
j=1 γj

ln d
< ∞.

In particular, we see that for the classical unweighted Korobov space, in which γj = 1 for all
j, the approximation problem is intractable. To break intractability we must take weights
γj converging to zero with a polynomial rate, that is, γj = O(j−k) for some positive k. Then
sγ ≤ 1/k.

5

In Section 4 we study the randomized setting. We consider randomized algorithms of the
form

An,d(f, ω) = ϕω (L1,ω(f), L2,ω(f), . . . , Ln,ω(f)) ,

where ω is a random element that is distributed according to a probability measure ̺,
and Lk,ω ∈ Λ with ϕω being a mapping ¿From Cn into L2([0, 1]

d). The randomized error
of an algorithm An,d is defined by taking the square root of the average value of ‖f −
An,d(f, ω)‖2L2([0,1]2)

with respect to ω according to a probability measure ̺, and then by
taking the worst case with respect to f from the unit ball of Hd.

It is known, see [15], that randomization does not help over the worst case setting for
the class Λall. That is why, for the class Λall, tractability and strong tractability in the
randomized setting are equivalent to tractability and strong tractability in the worst case
setting. For the class Λstd we prove:

1. Strong tractability and tractability of approximation are equivalent, and this holds iff
α > 0 and sγ < ∞. In this case, the exponent of strong tractability is in the interval
[p∗(Λall), p∗(Λall) + 2], where p∗(Λall) = 2max(sγ, α

−1).

2. For any p > p∗(Λall), we present an algorithm An,d with n of order ε−(p+2) and ran-
domized error at most ε. Let c(d) be the cost of computing one function value, and
let the cost of performing one arithmetic operation be taken as unity. Then the total
cost of the algorithm An,d is of order

c(d)

(
1

ε

)p+2

+ d

(
1

ε

)2p+2

∀ d = 1, 2, . . . , ∀ ε ∈ (0, 1).

Hence, the only dependence on d is through c(d) and d. Clearly, if d is fixed and ε
goes to zero then the second term dominates and the total cost of An,d is of order

d

(
1

ε

)2p+2

.

The essence of these results is that in the randomized setting there is no difference between
tractability conditions when we use functionals from Λall or from Λstd. This is especially
important when sγ > 1, since approximation is then intractable in the worst case setting for
the class Λstd independently of α, and is strongly tractable in the randomized setting for the
class Λstd. Hence for sγ > 1, randomization breaks intractability of approximation in the
worst case setting for the class Λstd.

In Section 5 we study the quantum setting. We consider quantum algorithms that run on
a (hypothetical) quantum computer. Our analysis in this section is based on the framework

6

for quantum algorithms introduced in [8] that is relevant for the approximate solution of
problems of analysis.

We only consider upper bounds for the class Λstd and weighted Korobov spaces with
α > 1 and sγ < ∞. We present a quantum algorithm with error at most ε whose total cost
is of order

(
c(d) + d

)(1

ε

)1+3p/2

∀ d = 1, 2, . . . , ∀ ε ∈ (0, 1)

with p ≈ p∗(Λall) being roughly the exponent of strong tractability in the worst case setting.
The quantum algorithm uses about d + log ε−1 qubits. Hence, for moderate d and even

for large ε−1, the number of qubits is quite modest. This is especially important, since the
number of qubits will be a limiting resource for the foreseeable future.

It is interesting to compare the results in the quantum setting with the results in the ran-
domized setting for the class Λstd. The number of quantum queries is of order ε−1−3p∗(Λall)/2

which is smaller than the corresponding number ε−2−p of function values in the randomized
setting only if p∗(Λall) = 2max(sγ, α

−1) < 2. This holds when sγ < 1, since α > 1 has
been already assumed. However, the number of quantum combinatory operations is always
significantly smaller than the corresponding number of combinatory operations in the ran-
domized settings. If d is fixed and ε goes to zero then the total cost bound in the randomized
setting is of order dε−2p−2 which is significantly larger than the total cost bound of order
(c(d) + d)ε−1−3p/2 in the quantum setting. This means that the exponent of ε−1 in the cost
bound in the quantum setting is 1 + p/2 less than the exponent in the randomized setting.
We do not know whether our upper bounds for the quantum computer can be improved.

The speedup of the quantum setting over the randomized setting, defined as the ratio of
the corresponding randomized and quantum costs, is of order

d

c(d) + d

(
1

ε

)1+p/2

.

Hence, we have a polynomial speedup of order ε−(1+p/2). If p∗(Λall) is close to zero, we may
also take p close to zero and then the speedup is roughly ε−1. But p∗(Λall) can be arbitrarily
large. This holds for large sγ. In this case p is also large and the speedup is huge.

We finish our paper with two appendices. The first is about a general framework for
quantum algorithms and the second contains a proof of the fact that weighted Korobov
spaces are algebras. This fact is crucial for our upper bounds for quantum algorithms and
hence for Theorem 4.

7

2 Approximation for Weighted Korobov Spaces

In this section we define approximation for periodic functions from the weighted Korobov
space Hd. The space Hd is a Hilbert space of complex-valued L2 functions defined on [0, 1]d

that are periodic in each variable with period 1. The inner product and norm of Hd are
defined as follows. We take a sequence γ = {γj} of weights such that

1 ≥ γ1 ≥ γ2 ≥ · · · > 0.

Let α ≥ 0. For h = [h1, h2, . . . , hd] ∈ Zd define

rα(γ, h) =

d∏

j=1

rα(γj, hj) with rα(γj, hj) =

{
1 if hj = 0,

γ−s
j |hj|α if hj 6= 0,

where s = 1 for α > 0, and s = 0 for α = 0. Note that rα(γ, h) ≥ 1 for all h ∈ Zd, and the
smallest rα(γ, h) is achieved for h = 0 and has the value 1.

The inner product in Hd is given by

〈f, g〉d =
∑

h∈Zd

rα(γ, h) f̂(h) ĝ(h),

where h = (h1, . . . , hd), and f̂(h) is the Fourier coefficient

f̂(h) =

∫

[0,1]d
exp (−2πi h · x) f(x) dx,

with h · x = h1x1 + · · ·+ hdxd. The inner product in Hd can be also written as

〈f, g〉d = f̂(0)ĝ(0) +
∑

h∈Zd,h 6=0

rα(γ, h) f̂(h) ĝ(h),

thus the zeroth Fourier coefficient is unweighted. The norm in Hd is

‖f‖d =

(∑

h∈Zd

rα(γ, h) |f̂(h)|2
)1/2

.

Note that for α = 0 we have r0(γ, h) ≡ 1, and

〈f, g〉d =
∑

h∈Zd

f̂(h)ĝ(h) =

∫

[0,1]d
f(x)g(x) dx.

8

Hence, in this case Hd = L2([0, 1]
d) is the space of square integrable functions. Observe that

for any α ≥ 0 we have Hd ⊂ L2([0, 1]
d) and

‖f‖L2([0,1]d) ≤ ‖f‖d ∀ f ∈ Hd.

For α > 1, the space Hd is a reproducing kernel Hilbert space, see [1, 26]. That is,
there exists a function Kd : [0, 1]d × [0, 1]d → C, called the reproducing kernel, such that
Kd(·, y) ∈ Hd for all y ∈ [0, 1]d, and

f(y) = 〈f,Kd(·, y)〉d ∀ f ∈ Hd, ∀ y ∈ [0, 1]d.

The essence of the last formula is that the linear functional Ly(f) = f(y) for f ∈ Hd is
continuous and its norm is

‖Ly‖ = K
1/2
d (y, y) ∀ y ∈ [0, 1]d.

It is known, see e.g. [23], that the reproducing kernel Kd is

Kd(x, y) =
∑

h∈Zd

exp
(
2πih · (x− y)

)

rα(γ, h)
. (2)

This can be rewritten as

Kd(x, y) =

d∏

j=1

∞∑

h=−∞

exp (2πih(xj − yj))

rα(γj, h)
=

d∏

j=1

(
1 + 2γj

∞∑

h=1

cos (2πh(xj − yj))

hα

)
.

Hence, Kd(x, y) depends on x− y and takes only real values. From this we have

Kd(y, y) =

d∏

j=1

(1 + 2γjζ(α)) ,

where ζ is the Riemann zeta function, ζ(α) =
∑∞

h=1 h
−α. Hence, α > 1 guarantees that

Kd(y, y) is well defined and that ‖Ly‖ is finite.

We return to the general case for α ≥ 0. For γj ≡ 1, the space Hd is the L2 version of
the (unweighted) Korobov space of periodic functions. For general weights γj , the space Hd

is called a weighted Korobov space.
We now explain the role of weights γj. Take f ∈ Hd with ‖f‖d ≤ 1. For small values

of γj we must have small Fourier coefficients f̂(h) with hj 6= 0. Indeed, ‖f‖d ≤ 1 implies

9

that rα(γ, h)|f̂(h)|2 ≤ 1, and for hj 6= 0 this implies that |f̂(h)|2 ≤ γj/|hj|α ≤ γj, as claimed.
Thus, small γj’s correspond to smoother functions in the unit ball of Hd in the sense that

the Fourier coefficients f̂(h) with hj 6= 0 must scale like γ
1/2
j in order to keep ‖f‖d ≤ 1.

The spaces Hd are related to each other when we vary d. Indeed, it is easy to check that
for d1 ≤ d2 we have

Hd1 ⊆ Hd2 and ‖f‖d1 = ‖f‖d2 ∀ f ∈ Hd1 .

That is, a function of d1 variables from Hd1 , when treated as a function of d2 variables with
no dependence on the last d2 − d1 variables, also belongs to Hd2 with the same norm as in
Hd1 . This means that we have an increasing sequence of spaces H1 ⊂ H2 ⊂ · · · ⊂ Hd, and
an increasing sequence of the unit balls of Hd, B1 ⊂ B2 ⊂ · · · ⊂ Bd, and Hd1 ∩ Bd2 = Bd1

for d1 ≤ d2.
So far we assumed that all weights γj are positive. We can also take zero weights as the

limiting case of positive weights when we adopt the convention that 0/0 = 0. Indeed, if one
of the weights tends to zero, say γd → 0, then rα(γ, h) goes to infinity for all h with hd 6= 0.
Thus to guarantee that ‖f‖d remains finite we must have f̂(h) = 0 for all h with hd 6= 0.
This means that f does not depend on the xd coordinate. Similarly, if all the weights γj are
zero for j ≥ k then a function f from Hd does not depend on the coordinates xk, xk+1, . . . , xd.

We are ready to define multivariate approximation (simply called approximation) as the
operator APPd : Hd → L2([0, 1]

d) given by

APPdf = f.

Hence, APPd is the embedding from the Korobov space Hd to the space L2([0, 1]
d). It is

easy to see that ‖APPd‖ = 1; moreover APPd is a compact embedding iff α > 0. Indeed,
consider the operator Wd := APP∗

d APPd : Hd → Hd, where APP∗
d : L2([0, 1]

d) → Hd is the
adjoint operator to APPd. Then for all f, g ∈ Hd we have

〈Wdf, g〉d = 〈APPd f,APPd g〉L2([0,1]d)
= 〈f, g〉L2([0,1]d)

.

From this we conclude that

Wdfh = r−1
α (γ, h) fh ∀h ∈ Z

d,

where fh(x) = exp (2πih · x) /r1/2α (γ, h). We have ‖fh‖d = 1 and span(fh : h ∈ Zd) is dense
in L2([0, 1]

d). This yields that Wd has the form

(Wdf)(x) =
∑

h∈Zd

r−1
α (γ, h) f̂(h) exp (2πih · x) ∀ f ∈ Hd, (3)

10

where for α ∈ [0, 1] the convergence of the last series is understood in the L2 sense.
Thus, Hd has an orthonormal basis consisting of eigenvectors of Wd, and r−1

α (γ, h) is the
eigenvalue of Wd corresponding to fh for h ∈ Zd. Clearly,

‖APPdf‖L2([0,1]d) = 〈Wdf, f〉1/2d ∀ f ∈ Hd,

and therefore, since Wd is self adjoint,

‖APPd‖ = ‖Wd‖1/2 =

(
max
h∈Zd

r−1
α (γ, h)

)1/2

= 1.

For α = 0 we have APPd = Wd and both are the identity operator on L2([0, 1]
d), and

therefore they are not compact. In contrast, for α > 0, the eigenvalues of Wd go to zero as
|h| = |h1| + |h2| + · · ·+ |hd| goes to infinity, and therefore the operator Wd is compact and
APPd is a compact embedding.

3 Worst Case Setting

In this section we deal with tractability of approximation in the worst case setting. To recall
the notion of tractability we proceed as follows. We approximate APPd by algorithms1 of
the form

An,d(f) =
n∑

k=1

akLk(f).

Here, the ak’s are some elements of L2([0, 1]
d), and the Lk’s are some continuous linear

functionals defined on Hd. Observe that the functions ak do not depend on f , they form the
fixed output basis of the algorithm, see [18]. For all the algorithms in this paper we use the
optimal basis consisting of the eigenvectors of Wd. We assume that Lk ∈ Λ, and consider
two classes of information Λ. The first class is Λ = Λall = H∗

d which consists of all continuous
linear functionals. That is, L ∈ Λall iff there exists g ∈ Hd such that L(f) = 〈f, g〉d for all
f ∈ Hd. The class Λall is well defined for all α ≥ 0. The second class Λ = Λstd is called
standard information and is defined only for α > 1,

Λ = Λstd =
{
Lx : x ∈ [0, 1]d with Lx(f) = f(x) ∀ f ∈ Hd

}
.

Hence, the class Λstd consists of function evaluations. They are continuous linear functionals
since Hd is a reproducing kernel Hilbert space whenever α > 1.

1It is known that nonlinear algorithms as well as adaptive choice of Lk do not help in decreasing the
worst case error, see e.g., [24].

11

The worst case error of the algorithm An,d is defined as

ewor(An,d) = sup
{
‖f − An,d(f)‖L2([0,1]d) : f ∈ Hd, ‖f‖d ≤ 1

}
=

∥∥∥∥APPd −
n∑

k=1

akLk(·)
∥∥∥∥.

Let compwor(ε,Hd,Λ) be the minimal n for which we can find an algorithm An,d, i.e., find
elements ak ∈ L2([0, 1]

d) and functionals Lk ∈ Λ, with worst case error at most ε‖APPd‖,
that is,

compwor(ε,Hd,Λ) = min
{
n : ∃ An,d such that ewor(An,d) ≤ ε ‖APPd‖

}
.

Observe that in our case ‖APPd‖ = 1 and this represents the initial error that we can achieve
by the zero algorithm An,d = 0 without sampling the function. Therefore ε‖APPd‖ = ε can
be interpreted as reducing the initial error by a factor ε. Obviously, it is only of interest to
consider ε < 1.

This minimal number compwor(ε,Hd,Λ) of functional evaluations is closely related to the
worst case complexity of the approximation problem, see e.g., [24]. This explains our choice
of notation.

We are ready to define tractability, see [29]. We say that approximation is tractable in
the class Λ iff there exist nonnegative numbers C, p and q such that

compwor(ε,Hd,Λ) ≤ C ε−p d q ∀ ε ∈ (0, 1), ∀ d ∈ N. (4)

The essence of tractability is that the minimal number of functional evaluations is bounded
by a polynomial in ε−1 and d.

We say that approximation is strongly tractable in the class Λ iff q = 0 in (4). Hence,
strong tractability means that the minimal number of functional evaluations has a bound
independent of d and polynomially dependent on ε−1. The infimum of p in (4) is called the
exponent of strong tractability and denoted by p∗ = p∗(Λ). That is, for any positive δ there
exists a positive Cδ such that

compwor(ε,Hd,Λ) ≤ Cδ ε
−(p∗+δ) ∀ ε ∈ (0, 1), ∀ d ∈ N

and p∗ is the smallest number with this property.
Necessary and sufficient conditions on tractability of approximation in the worst case

setting easily follow from [12, 27, 28]. In order to present them we need to recall the notion
of the sum-exponent sγ of the sequence γ, see [27], which is defined as

sγ = inf

{
s > 0 :

∞∑

j=1

γs
j < ∞

}
, (5)

12

with the convention that the infimum of the empty set is taken as infinity. Hence, for the
unweighted case, γj ≡ 1, we have sγ = ∞. For γj = Θ(j−κ) with κ > 0, we have sγ = 1/κ.
On the other hand, if sγ is finite then for any positive δ there exists a positive Mδ such that

k γ
sγ+δ
k ≤ ∑∞

j=1 γ
sγ+δ
j ≤ Mδ. Hence, γk = O(k−1/(sγ+δ)). This shows that sγ is finite iff γj

goes to zero polynomially fast in j−1, and the reciprocal of sγ roughly measures the rate of
this convergence.

We begin with the class Λall. Complexity and optimal algorithms are well known in this
case, see e.g., [24]. Let us define

R(ε, d) =
{
h ∈ Zd : r−1

α (γ, h) > ε2
}
. (6)

as the set of indices h for which the eigenvalues of Wd, see (3), are greater than ε2. Then
the complexity compwor(ε,Hd,Λ

all) is equal to the cardinality of the set R(ε, d),

compwor(ε,Hd,Λ
all) =

∣∣R(ε, d)
∣∣, (7)

and the algorithm

An,d(f)(x) =
∑

h∈R(ε,d)

f̂(h) exp (2πih · x) (8)

with n =
∣∣R(ε, d)

∣∣ is optimal and has worst case error at most ε. This simply means that
the truncation of the Fourier series to terms corresponding to the largest eigenvalues of Wd

is the best approximation of the function f .
For α = 0 all eigenvalues of Wd have the value 1. Thus for ε < 1 we have infinitely many

eigenvalues greater than ε2 even for d = 1. Therefore the cardinality of the set R(ε, 1) and
the complexity are infinite, which means that approximation is not even solvable, much less
tractable. For α > 0 and d = 1, we obtain

compwor(ε,H1,Λ
all) ≈ 2 γ

1/α
1 ε−2/α.

It is proven in [27] that strong tractability and tractability are equivalent, and this holds
iff sγ is finite. Furthermore, the exponent of strong tractability is p∗(Λall) = 2max (sγ, α

−1).
We stress that the exponent of strong tractability is determined by the weight sequence
γ if sγ > α−1. On the other hand, if sγ ≤ α−1 then p∗(Λall) = 2α−1, and this exponent
appears in the complexity even when d = 1. For such weights, i.e., sγ ≤ α−1, multivariate
approximation in any number of variables d requires roughly the same number of functional
evaluations as for d = 1.

We now turn to the class Λstd and assume that α > 1. Formally, tractability of approx-
imation in the class Λstd has not been studied; however, it is easy to analyze this problem

13

based on the existing results. First, observe that approximation is not easier than multivari-
ate integration (or simply integration) defined as

INTd(f) =

∫

[0,1]d
f(x) dx = f̂(0) ∀ f ∈ Hd.

Indeed, ‖INTd‖ = 1, and for any algorithm An,d(f) =
∑n

k=1 akf(xk) for some ak ∈ L2([0, 1]
d)

and some xk ∈ [0, 1]d, we have

‖APPdf − An,d(f)‖2L2([0,1]d)
=
∑

h∈Zd

∣∣f̂(h)− Ân,d(f)(h)
∣∣2 ≥

∣∣∣∣f̂(0)−
n∑

k=1

bkf(xk)

∣∣∣∣
2

,

with bk =
∫
[0,1]d

ak(x) dx. Hence, it is not easier to approximate APPd than INTd, and neces-

sary conditions on tractability of integration are also necessary conditions on tractability for
approximation. It is known, see [12], that integration is strongly tractable iff

∑∞
j=1 γj < ∞,

and is tractable iff a := lim supd→∞
∑d

j=1 γj/ ln d < ∞. Hence, the same conditions are also
necessary for tractability of approximation. Due to [28], it turns out that these conditions
are also sufficient for tractability of approximation. More precisely, if

∑∞
j=1 γj < ∞, then

approximation is strongly tractable and its exponent p∗(Λstd) ∈ [p∗(Λall), p∗(Λall) + 2], see
Corollary 2 (i) of [28]. Clearly, in this case p∗(Λall) ≤ 2.

Assume that a ∈ (0,∞). Then there exists a positive M such that

d γd/ ln d ≤
d∑

j=1

γj/ ln d < M

for all d. Hence, γj = O(j−1 ln j), and clearly sγ = 1. Once more, by Corollary 2 (i) of [28],
we know that for any positive δ there exists a positive number Cδ such that the worst case
complexity of approximation is bounded by Cδ ε

−(2+δ)d4ζ(α) a+δ. This proves tractability of
approximation. We summarize this analysis in the following theorem.

Theorem 1 Consider approximation APPd : Hd → L2([0, 1]
d) in the worst case setting.

1. Let α ≥ 0. Strong tractability and tractability of approximation in the class Λall are
equivalent, and this holds iff sγ < ∞ and α > 0. In this case, the exponent of strong
tractability is

p∗(Λall) = 2 max
(
sγ , α

−1
)
.

14

2. Let α > 1. Strong tractability of approximation in the class Λstd holds iff

∞∑

j=1

γj < ∞.

When this holds, then p∗(Λall) ≤ 2 and the exponent of strong tractability

p∗(Λstd) ∈ [p∗(Λall), p∗(Λall) + 2].

3. Let α > 1. Tractability of approximation in the class Λstd holds iff

a := lim sup
d→∞

∑d
j=1 γj

ln d
< ∞.

When this holds, for any positive δ there exists a positive Cδ such that

compwor(ε,Hd,Λ
std) ≤ Cδ ε

−(2+δ) d 4ζ(α)a+δ ∀ d = 1, 2, . . . , ∀ ε ∈ (0, 1),

where ζ is the Riemann zeta function.

4 Randomized Setting

In this section we deal with tractability of approximation in the randomized setting for the
two classes Λall and Λstd. The randomized setting is precisely defined in [24]. Here we only
mention that we consider randomized algorithms

An,d(f, ω) = ϕω

(
L1,ω(f), L2,ω(f), . . . , Ln,ω(f)

)
,

where ω is a random element that is distributed according to a probability measure ̺, and
Lk,ω ∈ Λ with ϕω being a mapping ¿From Cn into L2([0, 1]

d). The essence of randomized
algorithms is that the evaluations, as well the way they are combined, may depend on a
random element. The primary example of a randomized algorithm is the standard Monte
Carlo for approximating multivariate integration which is of the form

An,d(f, ω) =
1

n

n∑

k=1

f(ωk),

where ω = [ω1, ω2, . . . , ωn] with independent and uniformly distributed ωk over [0, 1]d which
requires nd random numbers from [0, 1]. In this case, Lk,ω(f) = f(ωk) are function values at

15

random sample points, and ϕω(y1, y2, . . . , yn) = n−1
∑n

k=1 yk does not depend on ω and is a
deterministic mapping.

The randomized error of the algorithm An,d is defined as

eran(An,d) = sup
{
E
1/2
(
‖f − An,d(f, ω)‖2L2([0,1]d)

)
: f ∈ Hd, ‖f‖d ≤ 1

}
.

Hence, we first take the square root of the average value of the error ‖f −An,d(f, ω)‖2L2([0,1]2)

with respect to ω according to the probability measure ̺, and then take the worst case with
respect to f from the unit ball of Hd.

Let compran(ε,Hd,Λ) be the minimal n for which we can find an algorithm An,d, i.e., a
measure ̺, functionals Lk,ω and a mapping ϕω, with randomized error at most ε. That is,

compran(ε,Hd,Λ) = min
{
n : ∃ An,d such that eran(An,d) ≤ ε

}
.

Then tractability in the randomized setting is defined as in the paragraph containing (4),
with the replacement of compwor(ε,Hd,Λ) by compran(ε,Hd,Λ).

We are ready to discuss tractability in the randomized setting for the class Λall. It is
proven in [15] that randomization does not really help for approximating linear operators
over Hilbert space for the class Λall since

compwor(21/2ε,Hd,Λ
all) ≤ compran(ε,Hd,Λ

all) ≤ compwor(ε,Hd,Λ
all),

and these estimates hold for all ε ∈ (0, 1) and for all d ∈ N.
This means that tractability in the randomized setting is equivalent to tractability in the

worst case setting, and we can use the first part of Theorem 1 to characterize tractability
also in the randomized setting.

We now turn to the class Λstd. It is well known that randomization may significantly help
for some problems. The most known example is the standard Monte Carlo for multivariate
integration of d variables, which requires at most ε−2 random function values if the L2 norm
of a function is at most one, independently of how large d is.

We now show that randomization also helps for approximation over Korobov spaces, and
may even break intractability of approximation in the worst case setting. As we shall see,
this will be achieved by a randomized algorithm using the standard Monte Carlo for approx-
imating the Fourier coefficients corresponding to the largest eigenvalues of the operator Wd

defined by (3). To define such an algorithm we proceed as follows.
We assume that α > 1 so that the class Λstd is well defined. Without loss of generality we

also assume that approximation is tractable in the class Λall, which is equivalent to assuming
that sγ < ∞.

16

We know from Section 2 that R(ε/21/2, d) is the set of indices h for which the eigenvalues
of Wd are greater than ε2/2, see (6). We also know that the cardinality of the set R(ε/21/2, d)
is exactly equal to compwor(ε/21/2, Hd,Λ

all) and that for any positive δ there exists a positive
Cδ such that
∣∣R(ε/21/2, d)

∣∣ = compwor(ε/21/2, Hd,Λ
all) ≤ Cδ ε

−(p∗(Λall)+δ) ∀ d = 1, 2, . . . , ∀ ε ∈ (0, 1),

with p∗(Λall) = 2max(sγ, α
−1).

We want to approximate

f(x) =
∑

h∈Zd

f̂(h) exp (2πih · x)

for f ∈ Hd. The main idea of our algorithm is to approximate the Fourier coefficients f̂(h)
for h ∈ R(ε/21/2, d) by the standard Monte Carlo, whereas the Fourier coefficients f̂(h) for
h /∈ R(ε/21/2, d) are approximated simply by zero. That is, the algorithm An.d takes the
form

An,d(f, ω)(x) =
∑

h∈R(ε/21/2,d)

(
1

n

n∑

k=1

f(ωk) exp (−2πih · ωk)

)
exp (2πih · x) , (9)

where, as for the standard Monte Carlo, ω = (ω1, ω2, . . . , ωn) with independent and uniformly
distributed ωk over [0, 1]d.

The last formula can be rewritten as

An,d(f, ω)(x) =
1

n

n∑

k=1

f(ωk)

 ∑

h∈R(ε/21/2,d)

exp

(
− 2πih · (x− ωk)

)
 . (10)

From (10) it is clear that the randomized algorithm An,d uses n random function values.
We are ready to analyze the randomized error of the algorithm An,d. First of all observe

that
∫

[0,1]d

∣∣f(x)−An,d(f, ω)
∣∣2dx =

∑

h∈R(ε/21/2,d)

∣∣∣∣f̂(h)−
1

n

n∑

k=1

f(ωk)e
−2πih·ωk

∣∣∣∣
2

+
∑

h/∈R(ε/21/2,d)

|f̂(h)|2.

We now compute the average value of the last formula with respect to ω. Using the well
known formula for the Monte Carlo randomized error we obtain

∑

h∈R(ε/21/2,d)

INTd(|f |2)− |f̂(h)|2
n

+
∑

h/∈R(ε/21/2,d)

|f̂(h)|2.

17

Since INTd(|f |2) =
∑

h∈Zd |f̂(h)|2 ≤ ‖f‖2d, and
∑

h/∈R(ε/21/2,d)

|f̂(h)|2 =
∑

h/∈R(ε/21/2,d)

rα(γ, h)|f̂(h)|2/rα(γ, h)

≤ 1
2
ε2

∑

h/∈R(ε/21/2,d)

rα(γ, h)|f̂(h)|2 ≤ 1
2
ε2 ‖f‖2d,

the error of An,d satisfies

eran(An,d)
2 ≤ |R(ε/21/2, d)|

n
+

ε2

2
.

Taking

n =
2 |R(ε/21/2, d)|

ε2
= O

(
ε−(2+p∗(Λall)+δ)

)
(11)

we conclude that the error of An,d is at most ε. This is achieved for n given by (11), which
does not depend on d, and which depends polynomially on ε−1 with an exponent that exceeds
the exponent of strong tractability in the class Λall, roughly speaking, by at most two. This
means that approximation is strongly tractable in the class Λstd under exactly the same
conditions as in the class Λall.

We now discuss the total cost of the algorithm An,d. This algorithm requires n function
evaluations f(ωk). Since ωk is a vector with d components, it seems reasonable to assume
that the cost of one such function evaluation depends on d and is, say, c(d). Obviously, c(d)
should not be exponential in d since for large d we could not even compute one function
value. On the other hand, c(d) should be at least linear in d since our functions may depend
on all d variables. Let us also assume that we can perform combinatory operations such as
arithmetic operations over complex numbers, comparisons of real numbers, and evaluations
of exponential functions. For simplicity assume that the cost of one combinatory operation
is taken as unity. Hence, for given h and ωk, we can compute the inner product h · ωk and
then exp(−2πih · ωk) in cost of order d.

The implementation of the algorithm An,d can be done as follows. We compute and
output

yh =
1

n

n∑

k=1

f(ωk) exp (−2πih · ωk)

for all h ∈ R(ε/21/2, d). This is done in cost of order

n c(d) + n d |R(ε/21/2, d)|.

18

Knowing the coefficients yh we can compute the algorithm An,d at any vector x ∈ [0, 1]d as

An,d(f, ω)(x) =
∑

h∈R(ε/21/2,d)

yh exp (2πih · x)

with cost of order d |R(ε/21/2, d)|. Using the estimates on |R(ε/21/2, d)| and n given by (11),
we conclude that the total cost of the algorithm An,d is of order

(
1

ε

)p+2

c(d) +

(
1

ε

)2p+2

d

with p = p∗(Λall) + δ. Hence, the only dependence on d is through c(d) and d. We stress the
difference in the exponents of the number of function values and the number of combinatory
operations used by the algorithm An,d. For a fixed ε and varying d, the first term of the cost
will dominate the second term when c(d) grows more than linearly in d. In this case the
first exponent p+ 2 determines the total cost of the algorithm An,d. On the other hand, for
a fixed d and ε tending to zero, the opposite is true, and the second term dominates the first
term of the cost, and the second exponent 2p+2 determines the cost of An,d. We summarize
this analysis in the following theorem.

Theorem 2 Consider approximation APPd : Hd → L2([0, 1]
d) in the randomized setting.

1. Let α ≥ 0. Strong tractability and tractability of approximation in the class Λall are
equivalent, and this holds iff sγ < ∞ and α > 0. When this holds, the exponent of
strong tractability is

p∗(Λall) = 2 max
(
sγ , α

−1
)
.

2. Let α > 1. Strong tractability and tractability of approximation in the class Λstd are
equivalent, and this holds under the same conditions as in the class Λall, that is, iff sγ <
∞. When this holds, the exponent of strong tractability p∗(Λstd) ∈ [p∗(Λall), p∗(Λall)+2].

3. The algorithm An,d defined by (9) with n given by (11) of order roughly ε−(p∗(Λall)+2)

approximates APPd with randomized error at most ε. For any positive δ there exists a
positive number Kδ such that the total cost of the algorithm An,d is bounded by

Kδ

((
1

ε

)p+2

c(d) +

(
1

ε

)2p+2

d

)
∀ d = 1, 2, . . . , ∀ ε ∈ (0, 1),

with p = p∗(Λall) + δ.

19

We now comment on the assumption α > 1 that is present for the class Λstd. As we
know from Section 3, this assumption is necessary to guarantee that function values are
continuous linear functionals and it was essential when we dealt with the worst case setting.
In the randomized setting, the situation is different since we are using random function
values, and the randomized error depends only on function values in the average sense. This
means that f(x) does not have to be well defined everywhere, and continuity of the linear
functional Lx(f) = f(x) is irrelevant. Since for any α ≥ 0, the Korobov space Hα is a subset
of L2([0, 1]

d), we can treat f as a L2 function. This means that in the randomized setting
we can consider the class Λstd for all α ≥ 0.

Remark 1 This is true only if we allow the use of random numbers ¿From [0, 1]. If we only
allow the use of random bits (coin tossing as a source of randomness) then again we need
function values to be continuous linear functionals, which is guaranteed by the condition
α > 1, see [16] for a formal definition of such “restricted” Monte Carlo algorithms. We add
that it is easy to obtain random bits from a quantum computer while it is not possible to
obtain random numbers from [0, 1].

Observe that the algorithm An,d is well defined for any α ≥ 0 since the standard Monte
Carlo algorithm is well defined for functions from L2([0, 1]

d). Furthermore, the randomized
error analysis did not use the fact that α > 1, and is valid for all α > 0. For α = 0
the analysis breaks down since n given by (11) would then be infinite. Even if we treat
functions in the L2 sense tractability requires that sγ be finite. Indeed, for sγ = ∞ we
must approximate exponentially2 many Fourier coefficients which, obviously, contradicts
tractability. We summarize this comment in the following corollary.

Corollary 1 Consider approximation APPd : Hd → L2([0, 1]
d) in the randomized setting

with α ∈ [0, 1] in the class Λstd.

1. Strong tractability and tractability of approximation are equivalent, and this holds iff
α > 0 and sγ < ∞. When this holds, the exponent of strong tractability is in the
interval [p, p+ 2], where p = p∗(Λall) = 2max(sγ, α

−1).

2. The algorithm An,d defined by (9) with n given by (11) of order roughly ε−(p∗(Λall)+2)

approximates APPd with randomized error at most ε.

The essence of these results is that in the randomized setting there is no difference between
tractability conditions when we use functionals from Λall and when we use random function

2We follow a convention of complexity theory that if the function grows faster than polynomial then we
say it is exponential.

20

values. This is especially important when sγ > 1, since approximation is then intractable
in the worst case setting for the class Λstd independently of α. Thus we have the following
corollary.

Corollary 2 Let sγ > 1. For the class Λstd, randomization breaks intractability of approxi-
mation in the worst case setting.

5 Quantum Setting

Our analysis in this section is based on the framework introduced in [8] of quantum algorithms
for the approximate solution of problems of analysis. We refer the reader to the surveys [4],
[21], and to the monographs [7], [14], and [20] for general reading on quantum computation.

This approach is an extension of the framework of information-based complexity theory
(see [24] and, more formally, [16]) to quantum computation. It also extends the binary
black box model of quantum computation (see [2]) to situations where mappings on spaces
of functions have to be computed. Some of the main notions of quantum algorithms can be
found in Appendix 1. For more details and background discussion we refer to [8].

5.1 Quantum Summation of a Single Sequence

We need results about the summation of finite sequences on a quantum computer. The
summation problem is defined as follows. For N ∈ N and 1 ≤ p ≤ ∞, let LN

p denote the
space of all functions g : {0, 1, . . . , N − 1} → R, equipped with the norm

‖g‖LN
p
=

(
1

N

N−1∑

j=0

|g(j)|p
)1/p

if p < ∞, and ‖g‖LN
∞

= max
0≤j≤N−1

|g(j)|.

Define SN : LN
p → R by

SN(g) =
1

N

N−1∑

j=0

g(j)

and let
F = BN

p := {g ∈ LN
p | ‖g‖LN

p
≤ 1}.

Observe that SN(BN
p) = [−1, 1] for all p and N . We wish to compute A(g, ε) which approxi-

mates SN(g) with error ε and with probability at least 3
4
. That is, A(g, ε) is a random variable

which is computed by a quantum algorithm such that the inequality |SN(g) − A(g, ε)| ≤ ε

21

holds with probability at least 3
4
. The performance of a quantum algorithm can be summa-

rized by the number of quantum queries, quantum operations and qubits. These notions are
defined in Appendix 1. Here we only mention that the quantum algorithm obtains informa-
tion on the function values g(j) by using only quantum queries. The number of quantum
operations is defined as the total number of bit operations performed by the quantum al-
gorithm. The number of qubits is defined as m if all quantum operations are performed in
the Hilbert space of dimension 2m. It is important to seek algorithms that require as small
a number of qubits as possible.

We denote by eqn(SN , F) the minimal error (in the above sense, of probability ≥ 3
4
) that

can be achieved by a quantum algorithm using only n queries. The query complexity is
defined for ε > 0 by

compqq(ε, SN , F) = min{n | eqn(SN , F) ≤ ε}.

The total (quantum) complexity compqua(ε, SN , F) is defined as the minimal total cost of
a quantum algorithm that solves the summation problem to within ε. The total cost of a
quantum algorithm is defined by counting the total number of quantum queries plus quantum
operations used by the quantum algorithm. Let c be the cost of one evaluation of g(j). It is
reasonable to assume that the cost of one quantum query is taken as c+m since g(j)’s are
computed and m qubits are processed by a quantum query, see Appendix 1 for more details.

The quantum summation is solved by the Grover search and amplitude estimation algo-
rithm which can be found in [6] and [3]. This algorithm enjoys almost minimal error and
will be repetitively used for approximation as we shall see in Sections 5.2 and 5.3.

Let us summarize the known results about the order of eqn(SN ,BN
p) for p = ∞ and p = 2.

The case p = ∞ is due to [6], [3] (upper bounds) and [13] (lower bounds). The results in the
case p = 2 are due to [8]. Further results for arbitrary 1 ≤ p ≤ ∞ can be also found in [8]
and [11]. In what follows, by “log” we mean the logarithm to the base 2.

Theorem 3 There are constants cj > 0 for j ∈ {1, . . . , 9} such that for all n,N ∈ N with
2 < n ≤ c1N we have

eqn(SN ,BN
∞) ≍ n−1

and
c2n

−1 ≤ eqn(SN ,BN
2) ≤ c3n

−1 log3/2 n · log log n.
For ε ≤ ε0 <

1
2
, we have

compqq(ε, SN ,BN
∞) ≍ min(N, ε−1)

and
c4min(N, ε−1) ≤ compqq(ε, SN ,BN

2) ≤ c5min(N, ε−1 log3/2 ε−1 · log log ε−1).

22

For N ≥ ε−1, the algorithm for the upper bound uses about logN qubits and the total com-
plexity is bounded by

c6 c ε
−1 ≤ compqua(ε, SN ,BN

∞) ≤ c7 c ε
−1 · logN

and
c8 c ε

−1 ≤ compqua(ε, SN ,BN
2) ≤ c9 c ε

−1 log3/2 ε−1 · log log ε−1 · logN.

So far we required that the error is no larger than ε with probability at least 3
4
. To

decrease the probability of failure ¿From 1
4
to, say, e−ℓ/8 one can repeat the algorithm ℓ

times and take the median as the final result. See Lemma 3 of [8] for details.
We also assumed so far that ‖g‖LN

p
≤ 1. If this bound is changed to, say, ‖g‖LN

p
≤ M

then it is enough to rescale the problem and replace g(j) by g(j)/M . Then we multiply the
computed result by M and obtain the results as in the last theorem with ε replaced by Mε.

5.2 The Idea of the Algorithm for Approximation

The starting point of our quantum algorithm for approximation is a deterministic algorithm
on a classical computer that is similar to the randomized algorithm given by (9), namely

AN,d(f)(x) =
∑

h∈R(ε/3,d)

(
1

N

N∑

j=1

f(xj) exp (−2πih · xj)

)
exp (2πih · x) , (12)

where the x1, . . . , xN come from a suitable deterministic rule, and R(·, d) is defined by (6).
The error analysis of AN,d will be based on three types of errors. The first error arises from
replacing the infinite Fourier series by a finite series over the set R(ε/3, d); this error is ε/3.
The second error is made since we replace the Fourier coefficients which are integrals by a
quadrature formulas We will choose N and the deterministic rule for computing xj in such
a way that the combination of these two errors yields

‖AN,d(f)− f‖L2([0,1]d) ≤ 2
3
ε ∀ f ∈ Hd, ‖f‖d ≤ 1. (13)

This will be possible (see (22) below) if N is, in general, exponentially large in d. This may
look like a serious drawback, but the point is that we do not need to exactly compute the
sums in (12). Instead, the sums

(
1

N

N∑

j=1

f(xj) exp (−2πih · xj)

)

h∈R(ε/3,d)

(14)

23

will be approximately computed by a quantum algorithm whose cost depends only logarith-
mically on N . We have to guarantee that this third (quantum) error is bounded by ε/3, with
probability at least 3

4
. As we shall see, logN will be at most linear in d and polynomial in

log ε−1, which will allow us to have good bounds on the total cost of the quantum algorithm.

Remark 2 Observe that the |R(ε/3, d)| sums given by (14) depend only on N function
values of f , whereas h takes as many values as the cardinality of the set R(ε/3, d). Since
each function value costs c(d), and since c(d) is usually much larger than the cost of one
combinatory operation, it seems like a good idea to compute all sums in (14) simultaneously.
We do not know how to do this efficiently on a quantum computer and therefore compute
these sums sequentially.

5.3 Quantum Summation Applied to our Sequences

As outlined in the previous subsection, for the approximation problem we need to compute
SN(gh) for several sequences g1, g2, . . . , gR each of length N with R = |R(ε/3, d)|. We assume
that gh ∈ LN

p for p = 2 or p = ∞, and ‖gh‖p ≤ M . We now want to compute A(gh, ε) on a
quantum computer such that (with ε/3 now replaced by ε)

R∑

h=1

|SN(gh)− A(gh, ε)|2 ≤ ε2 (15)

with probability at least 3
4
. In our case the sequences gh are the terms of (14) and we assume

that we can compute gh(j) = f(xj) exp (−2πih · xj). The cost c of computing one function
value gh(j) is now equal to c(d) + 2d+ 2, since we can compute gh(j) using one evaluation
of f and 2d+2 combinatory operations needed to compute the inner product y = h · xj and
f(xj) exp(−2πiy). The cost of one call of the oracle is roughly

logN + c(d) + 2d+ 2, (16)

since we need about logN qubits and the cost of computing gh is c(d) + 2d+ 2.
This summation problem can be solved by the Grover search or amplitude amplification

algorithm mentioned in Section 5.1. To guarantee that the bound (15) holds it is enough to
compute an approximation for each component with error δ = εR−1/2. We will assume that

M δ−1 =
M R1/2

ε
≤ N. (17)

We can satisfy (17) by computing each SN(gh) independently for each h.

24

We begin with the case p = ∞. To compute one sum with error δ with probability
at least 1 − η we need roughly log η−1 repetitions of the algorithm and this requires about
(M/δ) log η−1 queries. We put ηR = 1

4
to obtain an algorithm that computes each sum in

such a way that (15) holds. Hence we need roughly M
√
R

ε
logR queries for each gh. Together

we need roughly

R · M
√
R

ε
· logR queries. (18)

The case p = 2 is similar and we need roughly

R · M
√
R

ε
· log3/2 M

√
R

ε
· log log M

√
R

ε
· logR queries. (19)

The total cost is of order

(logN + c(d) + 2d+ 2)R
M

√
R

ε
logR for p = ∞, (20)

(logN + c(d) + 2d+ 2)R
M

√
R

ε
log3/2

M
√
R

ε
· log log M

√
R

ε
· logR for p = 2. (21)

5.4 Results on Tractability

We only consider upper bounds for the class Λstd and weighted Korobov spaces for α > 1
and sγ < ∞. We combine the idea ¿From Subsection 5.2 together with the upper bounds
from Subsection 5.3. We need estimates for the numbers N , M , and R.

We know from Section 2 that R(ε/3, d) is the set of indices h for which the eigenvalues
of Wd are greater than ε2/9, see (6). We also know from (7) that the cardinality of the set
R(ε/3, d) is exactly equal to compwor(ε/3, Hd,Λ

all) and that for any positive η there exists a
positive Cη such that

R =
∣∣R(ε/3, d)

∣∣ = compwor(ε/3, Hd,Λ
all) ≤ Cη ε

−(p∗(Λall)+η) ∀ d = 1, 2, . . . , ∀ ε ∈ (0, 1).

For f ∈ Hd with ‖f‖d ≤ 1 we know that

|f(y)| = | 〈f,Kd(·, y)〉 | ≤ Kd(y, y)
1/2 =

d∏

j=1

(
1 + 2γjζ(α)

)1/2

,

where ζ is the Riemann zeta function, and hence

|f(y)| ≤ exp

(
ζ(α)

d∑

j=1

γj

)
.

25

This means that when
∑∞

j=1 γj < ∞ we can apply the results from Section 5.3 with p = ∞
and M independent of d and of order one.

If
∑∞

j=1 γj = ∞, which happens when sγ > 1 and could happen if sγ = 1, we use the
quantum results for p = 2 and need estimates not only for N in (14) but also for M that
bounds the LN

2 -norms of the terms in (14).
We know from Lemma 2 (ii) in [23] that there are lattice rules QN,d(f) = N−1

∑N
j=1 f(xj)

with prime N and xj = {j z/N} for some non-zero integer z ∈ [−N/2, N/2]d and with {·}
denoting the fractional part, for which

∣∣ INTd(f)−QN,d(f)
∣∣ ≤

∏d
j=1(1 + 2γj)

1/2

√
N

· ‖f‖d. (22)

As in Section 5.2, we have to guarantee an error δ = εR−1/2 = O(ε1+(p∗(Λall)+2)/2) for all
integrands x 7→ fh(x) = f(x) exp(−2πih · x) with h ∈ R(ε/3, d). For these integrands fh we
have

‖fh‖2d =
∑

j∈Zd

|f̂(h+ j)|2rα(γ, j) =
∑

j∈Zd

|f̂(h+ j)|2rα(γ, h+ j)
rα(γ, j)

rα(γ, h+ j)

≤
(∑

j∈Zd

|f̂(h+ j)|2rα(γ, h+ j)

)
max
j∈Zd

rα(γ, j)

rα(γ, h+ j)

= ‖f‖2d max
j∈Zd

rα(γ, j)

rα(γ, h+ j)
.

We now show that

rα(γ, j)

rα(γ, h+ j)
≤ rα(γ, h)

d∏

m=1

max(1, γm2
α) ∀ j, h ∈ Z

d. (23)

Indeed, since rα is a product, it is enough to check (23) for all components of rα. For the
mth component it is easy to check that

rα(γm, jm)

rα(γm, hm + jm)
≤ max(1, γm2

α)rα(γm, hm),

¿From which (23) follows.
In our case sγ < ∞ which implies that γm tends to zero and therefore

∏∞
m=1 max(1, γm2

α)
is finite. Furthermore, for h ∈ R(ε/3, d) we have rα(γ, h) ≤ 9/ε2. Hence, ‖fh‖d = O(1/ε)
for all h ∈ R(ε/3, d). We replace γj by 1 in (22) and have

∣∣ INTd(fh)−QN,d(fh)
∣∣ = O

(
3d/2

ε
√
N

)
= O(ε1+(p∗(Λall)+η)/2)

26

if we take N at least of order

N ≍ 3d
(
1

ε

)4+p∗(Λall)+η

or
logN ≍ d + log ε−1.

To bound M we need to consider the LN
2 -norms of the terms fh(xj) = gh(j) in (14). Since

the Korobov space Hd is an algebra, see Appendix 2, we know that |fh|2 ∈ Hd and

‖ |fh|2 ‖d ≤ C(d) · ‖fh‖2d = O
(
C(d) ε−2

)
,

where C(d) is given in Appendix 2. Applying the bound (22) to the function |fh|2, we obtain
a bound, in the LN

2 -norm, of the sequence zh = (gh(j))j=1,...,N = (fh(xj))j=1,...,N . This is the
number M that we need in our estimates. We obtain

‖zh‖2LN
2

≤ M2 = INTd(|fh|2) +O
(
3d/2 C(d) ε−2N−1/2

)
.

Obviously,

INTd(|fh|2) = |̂fh|2(0) =
∑

j∈Zd

|f̂(h+ j)|2 ≤ ‖f‖2d ≤ 1 ∀h ∈ Z
d.

To guarantee that M does not depend on d and is of order 1, we take N such that

logN ≍ d+ logC(d) + log ε−1 ≍ d+ log ε−1,

since logC(d) is of order d due to Appendix 2.
Putting these estimates together, we obtain estimates for the quantum algorithm. We

use about d+ log ε−1 qubits. The total cost of the algorithm is of order

(c(d) + d)

(
1

ε

)1+3(p∗(Λall)+η)/2

.

Hence, the only dependence on d is through c(d) and d. We summarize this analysis in the
following theorem.

Theorem 4 Consider approximation APPd : Hd → L2([0, 1]
d) in the quantum setting with

α > 1 in the class Λstd. Assume that sγ < ∞. Then we have strong tractability. The
quantum algorithm solves the problem to within ε with probability at least 3

4
and uses about

27

d + log ε−1 qubits. For any positive δ there exists a positive number Kδ such that the total
cost of the algorithm is bounded by

Kδ

(
(c(d) + d)

(
1

ε

)1+3(p∗(Λall)+δ)/2
)

∀ d = 1, 2, . . . , ∀ ε ∈ (0, 1).

It is interesting to compare the results in the quantum setting with the results in the
worst case and randomized settings for the class Λstd. We ignore the small parameter δ in
Theorems 1, 2, 4 and 6. Then if sγ > 1, the quantum setting (as well as the randomized
setting) breaks intractability of approximation in the worst case setting (again for the class
Λstd). The number of quantum queries and quantum combinatory operations is of order
ε−1−3p∗(Λall)/2, which is smaller than the corresponding number of function values in the
randomized setting only if p∗(Λall) < 2. However, the number of quantum combinatory
operations is always significantly smaller than the corresponding number of combinatory
operations in the randomized settings.

6 Appendix 1: Quantum Algorithms

We present a framework for quantum algorithms, see [8] for more details. Let D, K be
nonempty sets, and let F(D,K) denote the set of all functions from D to K. Let K, the
scalar field, be either the field of real numbers R or the field of complex numbers C, and let
G be a normed space with scalar field K. Let S : F → G be a mapping, where F ⊂ F(D,K).
We approximate S(f) for f ∈ F by means of quantum computations. Let H1 be the two-
dimensional complex Hilbert space C2, with its unit vector basis {e0, e1}, and let

Hm = H1 ⊗ · · · ⊗H1

be the m-fold tensor product of H1, endowed with the tensor Hilbert space structure. It is
convenient to let

Z[0, N) := {0, . . . , N − 1}
for N ∈ N (as usual, N = {1, 2, . . . } and N0 = N ∪ {0}). Let Cm = {|i〉 : i ∈ Z[0, 2m)} be
the canonical basis of Hm, where |i〉 stands for ej0 ⊗ · · · ⊗ ejm−1

, and i =
∑m−1

k=0 jk2
m−1−k is

the binary expansion of i. Denote the set of unitary operators on Hm by U(Hm).
A quantum query on F is given by a tuple

Q = (m,m′, m′′, Z, τ, β), (24)

28

where m,m′, m′′ ∈ N, m′ +m′′ ≤ m,Z ⊆ Z[0, 2m
′

) is a nonempty subset, and

τ : Z → D

β : K → Z[0, 2m
′′

)

are arbitrary mappings. Denote m(Q) := m, the number of qubits of Q.
Given such a query Q, we define for each f ∈ F the unitary operator Qf by setting for

|i〉 |x〉 |y〉 ∈ Cm = Cm′ ⊗ Cm′′ ⊗ Cm−m′−m′′:

Qf |i〉 |x〉 |y〉 =
{

|i〉 |x⊕ β(f(τ(i)))〉 |y〉 if i ∈ Z,
|i〉 |x〉 |y〉 otherwise,

(25)

where ⊕ means addition modulo 2m
′′

. Hence the query uses m′ bits to represent the index
i which is used to define the argument τ(i) at which the function is evaluated. We assume
that the cost of one evaluation of f is c. The value of f(τ(i)) is then coded by the mapping β
using m′′ bits. Usually, the mapping β is chosen in a such a way that the m′′ most significant
bits of β(f(τ(i))) are stored. The number of bits that are processed is m′ +m′′ ≤ m, and
usually m′ +m′′ is insignificantly less than m. That is why we define the cost of one query
as m+ c.

A quantum algorithm on F with no measurement is a tuple A = (Q, (Uj)
n
j=0), where Q

is a quantum query on F , n ∈ N0 and Uj ∈ U(Hm) (j = 0, . . . , n), with m = m(Q). Given
f ∈ F , we let Af ∈ U(Hm) be defined as

Af = UnQfUn−1 . . . U1QfU0. (26)

We denote by nq(A) := n the number of queries and by m(A) = m = m(Q) the number of
qubits of A. Let (Af (x, y))x,y∈Cm be the matrix of the transformation Af in the canonical
basis Cm, Af (x, y) = 〈x|Af |y〉.

A quantum algorithm on F with output in G (or shortly, from F to G) with k measure-
ments is a tuple

A = ((Aℓ)
k−1
ℓ=0 , (bℓ)

k−1
ℓ=0 , ϕ),

where k ∈ N, and Aℓ (ℓ = 0, . . . , k−1) are quantum algorithms on F with no measurements,

b0 ∈ Z[0, 2m0),

for 1 ≤ ℓ ≤ k − 1, bℓ is a function

bℓ :

ℓ−1∏

i=0

Z[0, 2mi) → Z[0, 2mℓ),

29

where we denoted mℓ := m(Aℓ), and ϕ is a function

ϕ :
k−1∏

ℓ=0

Z[0, 2mℓ) → G

with values in G. The output of A at input f ∈ F will be a probability measure A(f) on G,
defined as follows: First put

pA,f(x0, . . . , xk−1) = |A0,f(x0, b0)|2|A1,f(x1, b1(x0))|2 . . .
. . . |Ak−1,f(xk−1, bk−1(x0, . . . , xk−2))|2. (27)

Then define A(f) by setting

A(f)(C) =
∑

ϕ(x0,...,xk−1)∈C

pA,f(x0, . . . , xk−1) ∀C ⊆ G. (28)

We let nq(A) :=
∑k−1

ℓ=0 nq(Aℓ) denote the number of queries used by A. For brevity we say
A is a quantum algorithm if A is a quantum algorithm with k measurements for k ≥ 0.

Informally, such an algorithm A starts with a fixed basis state b0 and function f , and
applies in an alternating way unitary transformations Uj (not depending on f) and the
operator Qf of a certain query. After a fixed number of steps the resulting state is measured,
which gives a (random) basis state, say ξ0. This state is memorized and then transformed
(e.g., by a classical computation, which is symbolized by b1) into a new basis state b1(ξ0).
This is the starting state to which the next sequence of quantum operations is applied
(with possibly another query and number of qubits). The resulting state is again measured,
which gives the (random) basis state ξ1. This state is memorized, b2(ξ0, ξ1) is computed
(classically), and so on. After k such cycles, we obtain ξ0, . . . , ξk−1. Then finally an element
ϕ(ξ0, . . . , ξk−1) of G is computed (e.g., again on a classical computer) from the results of all
measurements. The probability measure A(f) is its distribution.

The error of A is defined as follows: Let 0 ≤ θ < 1, f ∈ F , and let ζ be any random
variable with distribution A(f). Then put e(S,A, f, θ) = inf {ε | P{‖S(f)− ζ‖ > ε} ≤ θ} .
Associated with this we introduce

e(S,A, F, θ) = sup
f∈F

e(S,A, f, θ),

e(S,A, f) = e(S,A, f, 1
4
),

and
e(S,A, F) = e(S,A, F, 1

4
) = sup

f∈F
e(S,A, f).

30

Of course one could easily replace here 1
4
by another positive number a < 1

2
. The nth minimal

query error is defined for n ∈ N0 as

eqn(S, F) = inf{e(S,A, F) | A is any quantum algorithm with nq(A) ≤ n}.

This is the minimal error which can be reached using at most n queries. The quantum query
complexity is defined for ε > 0 by

compqq(ε, S, F) = min{nq(A) | A is any quantum algorithm with e(S,A, F) ≤ ε}.

The quantities eqn(S, F) and compqq(ε, S, F) are inverse to each other in the following sense:
For all n ∈ N0 and ε > 0, eqn(S, F) ≤ ε if and only if compqq(ε1, S, F) ≤ n for all ε1 > ε.
Thus, determining the query complexity is equivalent to determining the nth minimal query
error. The total (quantum) complexity compqua(ε, S, F) is defined similarly. Here we count
the number of quantum gates that are used by the algorithm; if function values are needed
then we put c as the cost of one function evaluation. ¿From a practical point of view, the
number of available qubits in the near future will be severely limited. Hence it is a good
idea to present algorithms that only use a small number of qubits.

7 Appendix 2: Korobov Spaces are Algebras

We show that the Korobov space Hd is an algebra for α > 1. More precisely, we prove that
if f, g ∈ Hd then fg ∈ Hd and

‖f g‖d ≤ C(d) ‖f‖d ‖g‖d, (29)

with

C(d) = 2 d max(1,α/2)
d∏

j=1

(
1 + 2γjζ(α)

)1/2

.

For f(x) =
∑

j f̂(j) exp(2πij · x) and g(x) =
∑

k ĝ(k) exp(2πik · x), with j and k varying

through Zd, we have

f(x)g(x) =
∑

j

∑

k

f̂(j)ĝ(k) exp(2πi(j + k) · x) =
∑

h

(∑

j

f̂(j)ĝ(h− j)

)
exp(2πih · x).

Hence, we need to estimate

‖fg‖2d =
∑

h

∣∣∣∣
∑

j

f̂(j)ĝ(h− j) r1/2α (γ, h)

∣∣∣∣
2

.

31

Observe that

r1/2α (γm, hm) ≤ c
(
r1/2α (γm, km) + r1/2α (γm, hm − km)

)
∀ km ∈ Z,

with c = 2max(0,(α−2)/2). This holds for hm = 0 since c ≥ 1 and rα(γm, km) ≥ 1, and is also
true for hm 6= 0 and km = 0. For other values of hm and km, the inequality is equivalent to
|hm|α/2 ≤ c(|km|α/2+ |hm−km|α/2) which holds with c = 1 for α/2 ≤ 1, and with c = 2(α−2)/2

for α/2 > 1 by the use of the standard argument. Applying this inequality d times we get

r1/2α (γ, h) ≤ cd
d∏

m=1

(
r1/2α (γm, km) + r1/2α (γm, hm − km)

)
∀ k ∈ Z

d.

Let D = {1, 2, . . . , d} and let u ⊂ D. By u = D− u we denote the complement of u. Define

rα(γ, hu) =
∏

m∈u
rα(γm, hm), rα(γ, hu) =

∏

m∈u
rα(γm, hm).

Then we can rewrite the last inequality as

r1/2α (γ, h) ≤ cd
∑

u⊂D

r1/2α (γ, ku) r
1/2
α (γ, hu − ku) ∀ k ∈ Z

d.

For u ⊂ D, we define

Fu(x) =
∑

j

|f̂(j)| r1/2α (γ, ju) exp(2πij · x),

Gu(x) =
∑

j

|ĝ(j)| r1/2α (γ, ju) exp(2πij · x).

Observe that Fu and Gu are well defined functions in L2([0, 1]
d) since rα(γ, ju) ≤ rα(γ, j) for

all u and since f and g are from Hd. In terms of these functions we see that

∣∣∣∣
∑

j

f̂(j)ĝ(h− j) r1/2α (γ, h)

∣∣∣∣ ≤
∑

j

|f̂(j)| |ĝ(h− j)| r1/2α (γ, h)

≤ cd
∑

u⊂D

∑

j

|f̂(j)| r1/2α (γ, ju)|ĝ(h− j)| r1/2α (γ, hu − ju)

= cd
∑

u⊂D

∑

j

F̂u(j) Ĝu(h− j).

32

Therefore

‖f g‖2d ≤ c2d
∑

h

(∑

u⊂D

∑

j

F̂u(j) Ĝu(h− j)

)2

.

Since the sum with respect to u has 2d terms, we estimate the square of the sum of these 2d

terms by the sum of the squared terms multiplied by 2d, and obtain

‖f g‖2d ≤ 2dc2d
∑

u⊂D

au,

where

au =
∑

h

(∑

j

F̂u(j) Ĝu(h− j)

)2

.

We now estimate au. Each h and j may be written as h = (hu, hu) and j = (ju, ju), and
therefore

au =
∑

hu

∑

hu

(∑

ju

∑

ju

F̂u(ju, ju) Ĝu(hu − ju, hu − ju)

)2

=
∑

hu

∑

hu

(∑

ju

∑

ju

F̂u(hu − ju, ju) Ĝu(ju, hu − ju)

)2

=
∑

hu

∑

hu

∑

ju

∑

ju

∑

ku

∑

ku

F̂u(hu − ju, ju)F̂u(hu − ku, ku)Ĝu(ju, hu − ju)Ĝu(ku, hu − ku).

Note that ∑

hu

Ĝu(ju, hu − ju)Ĝu(ku, hu − ku) ≤ G(ju)G(ku),

where

G(ju) =

(∑

hu

Ĝu(ju, hu)
2

)1/2

.

Similarly, ∑

hu

F̂u(hu − ju, ju) F̂u(hu − ku, ku) ≤ F (ju)F (ku),

where

F (ju) =

(∑

hu

F̂u(hu, ju)
2

)1/2

.

33

We obtain

au ≤
∑

ju

∑

ju

∑

ku

∑

ku

F (ju)F (ku)G(ju)G(ku) =

(∑

ju

F (ju)

)2(∑

ku

G(ku)

)2

.

Observe that
(∑

ju

F (ju)

)2

=

∑

ju

(∑

ju

F̂u(ju, ju)
2

)1/2

r1/2α (γ, ju)r
−1/2
α (γ, ju)

2

≤
∑

ju

(∑

ju

F̂u(ju, ju)
2rα(γ, ju)

)(∑

ju

r−1
α (γ, ju)

)

=

(∑

ju

∑

ju

|f̂(ju, ju)|2rα(γ, ju)rα(γ, ju)
)(∑

ju

r−1
α (γ, ju)

)

=

(∑

j

|f̂(j)|2rα(γ, j)
)(∑

ju

r−1
α (γ, ju)

)

= ‖f‖2d
∑

ju

r−1
α (γ, ju).

For the last sum we have

∑

ju

r−1
α (γ, ju) =

∏

m∈u

(
1 + γm

∑

j 6=0

|j|−α

)
=
∏

m∈u
(1 + 2γmζ(α)) .

Similarly,
(∑

ku

G(ku)

)2

≤ ‖g‖2d
∑

ku

r−1
α (γ, ku) = ‖g‖2d

∏

m∈u
(1 + 2γmζ(α)) .

Putting all these estimates together we conclude that

‖f g‖2d ≤ 2dc2d
∑

u⊂D

‖f‖2d ‖g‖2d
∏

m∈u
(1 + 2γmζ(α))

∏

m∈u
(1 + 2γmζ(α))

= 2dc2d
∑

u⊂D

‖f‖2d ‖g‖2d
d∏

m=1

(
1 + 2γmζ(α)

)

= 4dc2d
d∏

m=1

(
1 + 2γmζ(α)

)
‖f‖2d ‖g‖2d,

34

¿From which (29) easily follows.

For the quantum setting, we need to consider the function w(x) = f(x)f(x) = |f(x)|2
for f ∈ Hd. Note that f also belongs to Hd and ‖f‖d = ‖f‖d, since f̂(h) = f̂(−h) and
rα(γ, h) = rα(γ,−h) for all h ∈ Zd. Then (29) guarantees that w ∈ Hd and

∥∥ |f |2
∥∥
d
≤ C(d) ‖f‖2d ∀ f ∈ Hd. (30)

Acknowledgments. We are grateful to Stefan Heinrich, Anargyros Papageorgiou,
Joseph F. Traub, Greg Wasilkowski, and Arthur Werschulz for valuable remarks.

References

[1] N. Aronszajn (1950): Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–
404.

[2] R. Beals, H. Buhrman, R. Cleve, and M. Mosca (1998): Quantum lower
bounds by polynomials. Proceedings of 39th IEEE FOCS, 352–361, see also
http://arXiv.org/abs/quant-ph/9802049.

[3] G. Brassard, P. Høyer, M. Mosca, and A. Tapp (2000): Quantum amplitude amplifica-
tion and estimation. Technical report, http://arXiv.org/abs/quant-ph/0005055.

[4] A. Ekert, P. Hayden, and H. Inamori (2000): Basic concepts in quantum computation.
See http://arXiv.org/abs/quant-ph/0011013.

[5] L. Grover (1996): A fast quantum mechanical algorithm for database search. Proc. 28
Annual ACM Symp. on the Theory of Computing, 212–219, ACM Press New York. See
also http://arXiv.org/abs/quant-ph/9605043.

[6] L. Grover (1998): A framework for fast quantum mechanical algorithms. Proc. 30 An-
nual ACM Symp. on the Theory of Computing, 53–62, ACM Press New York. See also
http://arXiv.org/abs/quant-ph/9711043.

[7] J. Gruska (1999): Quantum Computing. McGraw-Hill, London.

[8] Heinrich, S. (2002): Quantum summation with an application to integration. J. Com-
plexity 18. See also http://arXiv.org/abs/quant-ph/0105116.

35

http://arXiv.org/abs/quant-ph/9802049
http://arXiv.org/abs/quant-ph/0005055
http://arXiv.org/abs/quant-ph/0011013
http://arXiv.org/abs/quant-ph/9605043
http://arXiv.org/abs/quant-ph/9711043
http://arXiv.org/abs/quant-ph/0105116

[9] S. Heinrich (2001): Quantum integration in Sobolev classes. Preprint. See also
http://arXiv.org/abs/quant-ph/0112153.

[10] S. Heinrich and E. Novak (2002): Optimal summation and integration by deterministic,
randomized, and quantum algorithms. In: Monte Carlo and Quasi-Monte Carlo Methods
2000. K.-T. Fang, F. J. Hickernell, H. Niederreiter (eds.), pp. 50–62, Springer. See also
http://arXiv.org/abs/quant-ph/0105114.

[11] S. Heinrich and E. Novak (2001): On a problem in quantum summation. Submitted to
J. Complexity. See also http://arXiv.org/abs/quant-ph/0109038.

[12] F. J. Hickernell and H. Woźniakowski (2001): Tractability of multivariate integration
for periodic functions. J. Complexity 17, 660–682.

[13] A. Nayak and F. Wu (1999): The quantum query complexity of approximat-
ing the median and related statistics. STOC, May 1999, 384–393. See also
http://arXiv.org/abs/quant-ph/9804066.

[14] M. A. Nielsen and I. L. Chuang (2000): Quantum Computation and Quantum Infor-
mation, Cambridge University Press.

[15] E. Novak (1992): Optimal linear randomized methods for linear operators in Hilbert
spaces. J. Complexity 8, 22–36.

[16] E. Novak (1995): The real number model in numerical analysis. J. Complexity 11,
57–73.

[17] E. Novak (2001): Quantum complexity of integration. J. Complexity 17, 2–16. See also
http://arXiv.org/abs/quant-ph/0008124.

[18] E. Novak and H. Woźniakowski (2000): Complexity of linear problems with a fixed
output basis. J. Complexity 16, 333–362.

[19] E. Novak and H. Woźniakowski (2001): Intractability results for integration and dis-
crepancy, J. Complexity 17, 388–441.

[20] A. O. Pittenger (1999): Introduction to Quantum Computing Algorithms. Birkhäuser,
Boston.

[21] P. W. Shor (2000): Introduction to Quantum Algorithms. See
http://arXiv.org/abs/quant-ph/quant-ph/0005003.

36

http://arXiv.org/abs/quant-ph/0112153
http://arXiv.org/abs/quant-ph/0105114
http://arXiv.org/abs/quant-ph/0109038
http://arXiv.org/abs/quant-ph/9804066
http://arXiv.org/abs/quant-ph/0008124
http://arXiv.org/abs/quant-ph/quant-ph/0005003

[22] I. H. Sloan and H. Woźniakowski (1998): When are quasi-Monte Carlo algorithms
efficient for high dimensional integrals? J. Complexity 14, 1–33.

[23] I. H. Sloan and H. Woźniakowski (2001): Tractability of multivariate integration for
weighted Korobov classes. J. Complexity 17, 697–721.

[24] J. F. Traub, G. W. Wasilkowski and H. Woźniakowski (1988): Information-Based Com-
plexity, Academic Press, New York.

[25] J. F. Traub and H. Woźniakowski (2001): Path integration on a quantum computer,
submitted for publication. See also http://arXiv.org/abs/quant-ph/0109113.

[26] G. Wahba (1990): Spline Models for Observational Data, SIAM-NSF Regional Confer-
ence Series in Appl. Math., SIAM, 59, Philadelphia.

[27] G. W. Wasilkowski and H. Woźniakowski (1999): Weighted tensor product algorithms
for linear multivariate problems. J. Complexity 15, 402–447.

[28] G. W. Wasilkowski and H. Woźniakowski (2001): On the power of standard information
for weighted approximation. Found. Comput. Math. 1, 417-434, 2001.

[29] H. Woźniakowski (1994): Tractability and strong tractability of linear multivariate prob-
lems. J. Complexity 10, 96–128.

[30] H. Woźniakowski (1999): Efficiency of quasi-Monte Carlo algorithms for high dimen-
sional integrals. In Monte Carlo and Quasi-Monte Carlo Methods 1998, eds. H. Nieder-
reiter and J. Spanier, Springer Verlag, Berlin, 114–136.

37

http://arXiv.org/abs/quant-ph/0109113

