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Abstract. We present a bounded probability algorithm for the computation of the
Chow forms of the equidimensional components of an algebraic variety. In particular,
this gives an alternative procedure for the effective equidimensional decomposition
of the variety, since each equidimensional component is characterized by its Chow
form.

The expected complexity of the algorithm is polynomial in the size and the geo-
metric degree of the input equation system defining the variety. Hence it improves (or
meets in some special cases) the complexity of all previous algorithms for computing
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Chow forms. In addition to this, we clarify the probability and uniformity aspects,
which constitutes a further contribution of the paper.

The algorithm is based on elimination theory techniques, in line with the geometric
resolution algorithm due to M. Giusti, J. Heintz, L. M. Pardo, and their collaborators.
In fact, ours can be considered as an extension of their algorithm for zero-dimensional
systems to the case of positive-dimensional varieties. The key element for dealing
with positive-dimensional varieties is a new Poisson-type product formula. This
formula allows us to compute the Chow form of an equidimensional variety from a
suitable zero-dimensional fiber.

As an application, we obtain an algorithm to compute a subclass of sparse resul-
tants, whose complexity is polynomial in the dimension and the volume of the input
set of exponents. As another application, we derive an algorithm for the computation
of the (unique) solution of a generic overdetermined polynomial equation system.
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Introduction

The Chow form of an equidimensional quasiprojective variety is one of the basic
objects of algebraic geometry and plays a central role in elimination theory, from
both the theoretical and practical points of view.

Let V C P" be an equidimensional quasiprojective variety of dimension r
and degree D defined over Q. Its Chow form Fy is a polynomial with ratio-
nal coefficients—unique up to a scalar facto—which characterizes the set of
overdetermined linear systems over the projective closure V. More precisely, let
Uy, ..., U, denote r + 1 sets of n + 1 variables each, and set L; := Ujpxo +
--- + U;, x, for the linear form associated to the set U; for 0 < i < r. Then
Fy € Q[Uy, ..., U,]is the unique—up to a scalar factor—squarefree polynomial
such that

Fy(ug, ...,u;) =0 & VN {Ly(ug,x)=0,...,L,(uy,x) =0} #0

for uo, ...,u, € C"!, This is a multihomogeneous polynomial of degree D in
each group of variables U;. Thus we can directly read the dimension and the degree
of V from Fy. In case V is closed in P, its Chow form completely characterizes
it, and it is possible to derive a complete set of equations for V from Fy.

The main result of this work is that the computation of the Chow forms of all
the equidimensional components of a quasiprojective variety defined by means of
a given set of polynomials has a polynomial complexity in terms of the number
of variables, the degree, and also the length and the geometric degree of the input
system. The result is based on a new Poisson-type product formula for computing
Chow forms of equidimensional varieties from zero-dimensional fibers.

The complexity of all known general algorithms in algebraic geometry is (at
least) exponential in the worst case when the considered input parameters are
just the number of variables and the degree of the input system, and there is
strong evidence that this exponential behavior is unavoidable (see [35] and [12]).
However, it has been observed that there are many particular instances which are
much more tractable than the general case. This has motivated the introduction of
parameters associated to the input system that identify these particular cases, and
the design of algorithms whose performance is correlated to these parameters.

In this spirit, the straight-line program (slp for short) encoding of polynomials
was introduced in the polynomial equation solving framework as an alternative
data structure (see, e.g., [24], [29], [28]) and its length is now considered to be
a meaningful parameter measuring the input (see Subsection 1.2 below for the
definition of these notions and [55], [33], [8] for a broader background).

Soon afterward, the notion of geometric degree of the input polynomial system
appeared naturally as another useful parameter classifying tractable problems. For
a system of homogeneous polynomials fi, ..., f;, ¢ € Q[xo, ..., x,], the geo-
metric degree 6(f1, - .., fs; g) is defined as the maximum degree of the quasipro-
jective varieties V(qp, ..., q)\V(g), 1 <i < n + 1, successively defined by
generic linear combinations ¢y, . .., ¢,4+1 of the input polynomials (multiplied by
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suitable monomials in order to match their degrees); we refer to Subsection 3.4
below for the details. This is always bounded by the Bézout number d”, where
d := max; deg f;; however, there are many significant situations in which the ge-
ometric degree is much smaller than this upper bound (see [44, Section 4] for a
particular example or [43, Proposition 2.12] for an analysis of the sparse case).
In [27] and [23], J. Heintz, M. Giusti, L. M. Pardo, and their collaborators
succeeded in classifying the tractability of polynomial equation solving in the
zero-dimensional case in terms of the length, and the geometric degree of the
input system. They presented an algorithm, the geometric resolution algorithm,
whose complexity is polynomial in the number of variables, the degree, the length,
and the geometric degree of the input system. Their algorithm (its structure and the
tools they applied) represents a milestone in symbolic resolution of polynomial
equation systems, and a lot of work has been done afterward to improve it, make
it implementable, and extend it to other situations (see, e.g., [30], [36]). Our main
theorem can be seen as a general extension of their result to arbitrary varieties:

Theorem 1. Let fi1,..., fs, ¢ € Qlxo, ..., x,] be homogeneous polynomials
of degree bounded by d encoded by straight-line programs of length bounded by
L.SetV = V(fi,..., f)\V(g) C P" for the quasiprojective variety {f| =
0,...,f=0,g#0}andlet V =VyU---UYV, be its minimal equidimensional
decomposition. Set § := §(f1,..., fs; g) for the geometric degree of the input
polynomial system.

Then there is a bounded probability algorithm which computes (slp’s for) the
Chow forms Fy,, ..., Fy, within (expected) complexity s(nd 8)OD L. Its worst-
case complexity is s(nd")® VL.

Let us make precise the formal setting for our computations. The basis of our
algorithms is the model of bounded error probability Blum—Shub—Smale (BSS
for short) machine over QQ: our algorithms are probabilistic BSS machines that
manipulate slp’s. A probabilistic BSS machine is the algebraic analogue of the
classical notion of a probabilistic Turing machine, in which the bit operations are
replaced by the arithmetic operations {4, —, -, /} of Q. It enables us to implement
uniform procedures while “programming” using the basic operations of Q. This
model is well suited to control the algebraic complexity—that is, the number of
arithmetic operations—performed by the algorithm.

By bounded error probability we mean that the error probability of the machine
is uniformly bounded from above by i. For us, the natural notion of complexity in
this framework is then the expectation of the complexity seen as a random variable,
and not its worst case. The choice of the constant J—‘ as error probability is not
restrictive: for any given N € N we can easily modify our machine (by running
it O(log N) times) so that the final error probability is bounded by 1/N (see
Proposition 1.5 and Corollary 1.6 below). We refer to Subsection 1.2 for a detailed
description and discussion of the data structure and computational model. We
consider that the error probability analysis developed here is another contribution
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of the paper, since the previous papers on the subject are often imprecise in this
respect.

We note that in our situation, the dense encoding of polynomials does not admit
a polynomial time algorithm: if V is an equidimensional variety of dimension r
defined as the zero set of a family of polynomials of degrees bounded by d, its
Chow form Fy is a polynomial of degree (r +1) deg V in (r + 1) (n + 1) variables.
So the dense encoding of Fy (i.e., the vector of its coefficients) has

<(r+1)(n+1)+(r+1)degv> _ (g vyt
r+ D+ T+ D+ D)

entries, and hence it is not polynomial in deg V (which in the worst case equals
d"™"). In fact, Corollary 2.11 below shows that in the above situation the slp
encoding of Fy has length L(Fy) = (nd deg V)V L.

For the problem of computing Chow forms, our algorithm fundamentally im-
proves the complexity of the algorithms in [41], [9], and [25] (which use dense
encoding of polynomials) and in [51] (which uses the slp representation for the
output). The only previous algorithm for the task whose complexity is in some
cases comparable to ours is the one by G. Jeronimo, S. Puddu, and J. Sabia [37],
which computes (an slp representation of) the Chow form of the component of
maximal dimension of an algebraic variety within complexity (sd”)®". Here,
we not only compute the Chow forms of all of the equidimensional components,
but we also replace the Bézout number d” by d§, where § denotes the geometric
degree.

Our algorithm also provides an effective geometric equidimensional decom-
position, since each equidimensional component is characterized by its Chow
form. Moreover, we can easily derive equations or a geometric resolution of each
equidimensional component from its Chow form (see Corollary 3.3 below). The
complexity of our algorithm meets or improves those of most of the previous
equidimensional decomposition algorithms: [13], [25], and [20] (which use dense
encoding of polynomials) and [38] and [46] (which use slp encoding). Its struc-
ture is similar to the one due to G. Jeronimo and J. Sabia [38]—which computes
equations for each equidimensional component—and to G. Lecerf’s algorithm in
[46]—which computes a geometric resolution of each equidimensional compo-
nent. In fact, ours can be seen as a unification of these algorithms. Besides, we
improve the complexity of [38] by replacing the quantity d” by the geometric
degree § and with respect to [46], we improve the error probability estimate.

It is worth mentioning here the most recent equidimensional decomposition
algorithm by G. Lecerf ([48], see also [47]), which improves the previous ones in
several aspects. For instance, unlike his, our algorithm and the previous ones require
a preprocessing of the input polynomials by taking generic linear combinations.
This preprocessing may spoil the (potential) good behavior of the input and it also
prevents the algorithm from being incremental. However, his algorithm still lacks
an adequate error probability analysis.
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On the other hand, it is by no means obvious how to obtain the Chow form from
a geometric resolution within an admissible complexity. The difficulty lies in the
fact that the involved morphism is not finite but just dominant (see Remark 2.7).
In this paper, we exhibit a deterministic algorithm based on a new Poisson-type
formula, which performs this task within complexity (snd deg V)°VL (Main
Lemma 2.3). This is the key element in our algorithm and, probably, the main
technical contribution of the present work. It might be interesting to remark that
using Main Lemma 2.3 as a post-treatment to the output of the algorithm in [46]
would have led to an algorithm for computing Chow forms with similar complexity
results but a worse error probability estimate.

As a first application of our algorithm, we compute a particular class of sparse
resultants. The sparse resultant Res 4—the basic object of sparse elimination
theory—has been extensively applied as a tool for the resolution of polynomial
equation systems (see, e.g., [57], [52], [21]); we refer to Subsection 4.1.2 for its
precise definition. Several effective procedures were proposed to compute it (see,
e.g., [57], [10], [11]). Recently, C. D’ Andrea has obtained an explicit determi-
nantal formula which extends Macaulay’s formula to the sparse case [17]. From
the algorithmic point of view, the basic point of sparse elimination theory is that
computations should be substantially faster when the input polynomials are sparse
(in the sense that their Newton polytopes are restricted). Basically, the parameters
which control the sparsity are the number of variables n and the normalized volume
Vol(A) of the convex hull of the set .A of exponents. None of the previous algo-
rithms computing sparse resultants is completely satisfactory, as their predicted
complexity is exponential in all or some of these parameters (see [11, Corollary
12.8]).

We show that the computation of Res 4 in case A C (Np)” and A contains
0, ey, ..., e,—the vertices of the standard simplex of R"”—is an instance of our
main algorithm (see Subsection 4.1.2). We thus obtain:

Corollary 2. Let A C (No)" be a finite set which contains {0, ey, ..., e,}.
Then there is a bounded probability algorithm which computes (an slp for) the
A-resultant Res_4 within (expected) complexity (n Vol(A))®WD. Its worst-case
complexity is (nd")°D, where d :== max{|a|; a € A}.

Hence our result represents a significant improvement in the theoretical com-
plexity of computing the A-resultant as we show it is polynomial in n and Vol(A).
We remark that to achieve this result, we had to abandon all matrix formulations.
In fact, this polynomial behavior of the complexity is out of reach of the known
matrix formulations, as in all of them the involved matrices have an exponential
size. It would be desirable to extend this algorithm in order to compute a general
mixed resultant. This point will be the subject of our future research.

As another application, we compute the unique solution of a generic overdeter-
mined system over an equidimensional variety V C P":
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Setr :=dimV.Letu = (up,...,u,) € (C**1y*! and set £; := L;(u;, x) =
Uujoxo + -+ + ujp x, for 0 < i < r. The set of coefficients u such that the linear
forms £y, ..., ¢, have at least a common root in V contains a nonempty open

subset for which there is exactly one common root. It turns out that the coordinates
of the unique solution & () are rational functions of u, and can be easily computed
using the Chow form Fy . We can successfully apply our algorithm to this situation
(see Section 4.2 for the details).

Finally, let us mention a very recent new application of our algorithm: C. Blanco,
G. Jeronimo, and P. Solerné apply it for the computation of a set of generators of
the ideal of a smooth equidimensional affine variety [4].

Now we briefly sketch our algorithm. The main structure follows that of the

geometric resolution algorithm in [27, 23].
In a first step, we prepare the input data: We take n 4 1 random linear combinations
of the input polynomials so that—with high probability—these new polynomials
define the same variety V and behave properly with respect to the dimensions and
radicality of certain ideals they successively define. We also take a random change
of variables to ensure good conditions for the considered projections. After this
preparatory step, we compute recursively the Chow forms of the components of
a non-minimal equidimensional decomposition of V. For 0 < r < n — 1, the
algorithm deals with an equidimensional subvariety W, of the variety defined by
the first n — r polynomials.

The recursive step is as follows: From a geometric resolution of a zero-dimen-
sional fiber of W/, we compute the Chow form of the variety obtained by inter-
secting W/, with the set of zeros of the next polynomial. From this Chow form,
we obtain the Chow form of an equidimensional variety of dimension r which is
a subset of V and contains the equidimensional component of dimension r of V
together with a geometric resolution of the zero-dimensional fiber of W) that is
needed for the next recursive step. The recursion yields the Chow forms of the
components of a nonminimal equidimensional decomposition of V. The required
minimality of the equidimensional decomposition (that is, the condition that no
irreducible component of V, is included in V, for r # r’) imposes a third step in
which we remove the spurious components.

Finally, a word with respect to practical implementations: there is a Magma
package called Kronecker written by G. Lecerf (see [45]) which implements—with
remarkable success—the geometric resolution algorithm. As we already said, our
algorithm is closely related to this one, and so it seems possible that a deforested
version of it (in the spirit of [30] or [36]) might lead to an implementation using
this package as support.

The outline of the paper is the following: In Section 1 we recall the definition
and basic properties of the Chow form, and we make precise the data structure
and the computational model we will use. We also describe some basic subrou-
tines that we need in the sequel, and we estimate their complexities. In Section
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2 we present a deterministic algorithm for the computation of the Chow form
of an equidimensional variety from a particular zero-dimensional fiber, provided
some genericity conditions are fulfilled. In Section 3 we describe the algorithm
underlying Theorem 1, and we estimate its complexity. First we establish the re-
lationship between geometric resolutions and Chow forms, and then we present
subroutines for computing Chow forms of intersections and of components out-
side hypersurfaces. Combined with the algorithm in Section 2, this yields the
desired algorithm. In Section 4 we apply the main algorithm to the computa-
tion of sparse resultants, and to the resolution of generic overdetermined equation
systems.

1. Preliminaries

Throughout this paper Q denotes the field of rational numbers, Z the ring of
rational integers, R the field of real numbers, and C the field of complex numbers.
We denote by N the set of positive rational integers, and we also denote by Ny the
set of nonnegative integers.

We denote by A" and P the n-dimensional affine space and projective space
over C, respectively, equipped with the Zarisky topology definable over C. A
quasiprojective variety V is an open set of a closed projective (not necessarily
irreducible) variety (we refer to [54, Section 1.4] for a complete exposition of this
notion). We denote by V C P" the projective closure of V, that is, the minimal
closed projective variety which contains it. Rational maps between quasiprojective
varieties are indicated by --».

If f1,..., fy; are polynomials in Q[xo, ..., x,], V(fi, ..., fs) will denote the
set of common zeros of fi, ..., f; in P". This notation will also be used in the
affine case. Let V be a quasiprojective variety and let g € Q[xo, ..., x,] be a
homogeneous polynomial. Then we denote by V, the basic open set V\V(g)
of V.

We adopt the usual notion of degree of an irreducible projective variety. The
degree of an arbitrary projective variety is here the sum of the degrees of its
irreducible components. If the variety is quasiprojective, its degree is defined as
the degree of its projective closure.

We only consider polynomials and rational functions with coefficients in Q and
varieties defined by polynomials with coefficients in QQ unless otherwise explicitly
stated. The determinant of a square matrix M is denoted by |M|.

1.1.  The Chow Form of a Quasiprojective Variety

We gather in this subsection some definitions and basic facts about Chow forms.
For a more detailed account we refer to [54, Section 1.6.5], [22, Chapter 3], and
[16].
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First we define the notion of Chow form of an equidimensional quasiprojective
variety:

Let V C P" be an equidimensional quasiprojective variety of dimension r. For
i=0,...,rletU; = (U, U, ..., U;) be a group of n 4 1 variables and set
U := (Uy,...,U,). Then set

Li:=Ujpxo+ - -4+ Upnx, € @[U][X]

for the associated generic linear form, where x denotes the group of variables
(xg, ..., xn). Let

Oy = {(uo,...,u; &) e PY ' xP"; €V,
Lo(ug,€) =0, ..., L.(u,, &) =0} c (P! x P"

be the incidence variety of these linear forms in V, and let 7: Py + x Pt —
(P")"*+! be the projection (u, &) > u.

Lemma 1.1.  Under the previous assumptions and notations, w(®y) = 7w (Py;).

Proof. Let V = |J. C be the irreducible decomposition of V. From the def-
inition above we deduce that &y = (J. ®¢ and so w(Py) = g 7(Pc).
We also have that V. = |J. C is the irreducible decomposition of V. Then
T(Py) = Uc 7(P) and so, without loss of generality, we can assume that
V is irreducible.

The map ®y — V defined by (u, £) +—> & makes @y a fiber bundle over V
with fiber (P"~!)"*!. Then ®y is an irreducible variety of codimension zn + 1, and
the same is true for Oy As Oy is a closed set, @y C ®+7. These are irreducible
projective varieties of the same dimension and, therefore, they are equal. The fact
that 7r is a closed map implies that 7 (®y) = 7 (Dy). O

Then 7 (®y) C (P")*!is a closed hypersurface [54, p. 66]. We define a Chow
form of V as any squarefree defining equation Fy € Q[Uy, ..., U,] of the Zariski
closure (®y) C (P")"*!. Note that the Chow form of an equidimensional vari-
ety is uniquely determined up to a scalar factor. We extend this to dimension —1
defining a Chow form of the empty variety as any nonzero constant in QQ. This
definition extends the usual notion of Chow form of closed projective equidimen-
sional varieties. In fact, Lemma 1.1 states that a Chow form of an equidimensional
quasiprojective variety is a Chow form of its projective closure.

From this definition, we see that any Chow form of V characterizes the sets of
overdetermined linear systems over the variety V which intersect it: for ug, . . . , u,
€ C"*! we have

Fyuo, ..., u,) =0 < VN {Lo(ug,x)=0yN---N{L(uy, x) =0} #@.



50 G. Jeronimo, T. Krick, J. Sabia, and M. Sombra

A Chow form Fy is a multihomogeneous polynomial of degree deg V in each
group of variables U; (0 < i < r). The variety V is uniquely determined by a
Chow form of V [54, p. 66]. Moreover, it is possible to derive equations for the
variety V from a Chow form of V [22, Chapter 3, Corollary 2.6].

In case V is irreducible, Fy is an irreducible polynomial and, in the general
case, a Chow form of V is the product of Chow forms of its irreducible components.

Following [43] we avoid the indeterminacy of Fy by fixing one of its coefficients
under the following assumption on the equidimensional quasiprojective variety V:

Assumption 1.2. [fdimV = 0, we assume V C {xo # 0}.IfdimV =r > 0, we
assume that the projection wy: V --» P defined by x — (x¢ : - - - : x,) verifies
#,0((1:0:---:0)) =deg V.

This assumption implies that V N {x; = 0}N---N{x, = 0} is a zero-dimensional
variety lying in the affine chart {xo # 0}. In particular, V has no components
contained in the hyperplane {xo = 0}. We also note that, in case V is a closed affine
variety, the hypothesis #(V N {x; = 0} N--- N {x, = 0}) = deg V implies that
the map wy : V — A’ defined by x — (x1, ..., x,) is finite; that is, the variables
X1, ..., X, are in Noether normal position with respect to V [43, Lemma 2.14].

Set e; for the (i +1)-vector of the canonical basis of Q"+! and D := deg V. Then,
under Assumption 1.2, Fy (e, - .., e,)—that is, the coefficient of the monomial
UQL, - - - UP—is nonzero. Then we define the (normalized) Chow form Chy of V
by fixing the choice of Fy through the condition

C]’lv(e(), ey e,) = 1.

Note that if V satisfies Assumption 1.2, then each of its irreducible components
also does. Therefore, the normalized Chow form of V equals the product of the
normalized Chow forms of its irreducible components. The normalized Chow form
of the empty variety equals the polynomial 1.

Here are some examples of Chow forms:

e In case dim V = 0 we have

Fv(Uo) = [ | LoWo, §) € QLU

teV

Furthermore, if V satisfies Assumption 1.2, Chy is equal to the above ex-
pression provided we choose homogeneous coordinates of the type £ := (1 :
&’) € P" for each point in V.

e In case V is a hypersurface of degree d, then V = V(F) C P" where
F € Q[x, ..., x,] is a squarefree homogeneous polynomial of degree d.
We consider the n x (n + 1)-matrix M := (Uij)(l)fii: ,and, for0 < j =<n,
we set M; for the maximal minor obtained by de]&ing its (j + 1) column.
Then

Fy =FMo, =M, ..., (=1)"M,) € QUy, ..., U,].
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In this case, Assumption 1.2 is equivalent to the fact that f := F(1,0, ..., 0,
t) is a squarefree polynomial of degree d in ¢. Therefore, Chy is equal to the
above expression if we choose F such that the coefficient of the monomial

d .
Xy is 1.
e The sparse resultant provides an important family of examples: let A =
{ag, ..., @y} C Z" be afinite set of integer vectors, such that the differences

of elements in A generate Z". Consider the map
pa: (CY" — PV, Er> (§%0 - 18,

This is always well defined as & # 0 (1 < i < n) for all £ € (C*)". The
Zariski closure of the image of this map X 4 := ¢4 ((C*)") C PV is the toric
variety associated to the set .A. This is an irreducible variety of dimension n
and degree Vol(.A) (the normalized volume of the convex hull of A4).

The A-resultant equals the Chow form of this variety [22, Chapter 8,
Proposition 2.1], that is,

Fx, =Resy.

We refer to [22] and to [15, Chapter 7] for a broader background on sparse
resultants and toric varieties.

1.2.  Data and Algorithm Structure

First we specify our data structure:

The objects we deal with are polynomials with rational coefficients. The data
structure we adopt to represent them concretely is the straight-line program (slp
for short) encoding. The input, output, and intermediate objects computed by our
algorithms are polynomials codified through slp’s. We emphasize the fact that in
the present work the crucial feature of slp’s is their role as data structures, rather
than the more traditional functional role as programs without branchings for the
evaluation of polynomials at given points. For the standard terminology of slp’s,
see [8, Definition 4.2]. In this paper all slp’s are defined over Q, without divisions
and expecting the variables x, ..., x, as input.

For completeness we restate the definition in our particular case:

Let n € N. We denote by {4, —, -} the addition, substraction, and multiplication
in the Q-algebra Q[xy, ..., x,]. We consider apart the addition and multiplication
by scalars, that is, for A € Q and f € Q[xy, ..., x,] we set A*(f) = f + A
and A™(f) := A - f. We denote by Q* and Q™ the set of all scalar additions and
multiplications for A € Q, respectively.

We set 2, := Q*UQ™U{+, —, -} and denote by ar(w) the arity of an operation
w € 2, thatis, 1 if it is a scalar operation and 2 if it is a binary one.
A straight-line program y (over QQ and expecting xi, ..., x, as input) is a
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sequence y := (i, ..., yr) of instructions

(wis ki1) if ar(w;) =1,
(wis ki1, ki) if ar(w;) =2,

where each w; € 2, is an operation and for every j, k;; € Z satisfies —n + 1 <
kij <i—1andrepresents a choice of a previous index. The number of instructions
L in y is called the length of y and is denoted by L(y). This is, in the standard
terminology, the complexity induced by the cost function which charges 1 to each
operation in €2, (see [8, Definition 4.7]).

Givenanslp y = (y1, ..., Y1), its result sequence (f_,+1, ..., fr) is classi-
cally defined as

fons1 == Xx1,..., fo:r=xpandforl <i <L,
f4 — {wi(fk,‘l) lf ar(a)i) — 1,
i (L)i(fk,-]a fkfz) if ar(a)i) = 2.

Here we make a slight modification of this terminology. According to the data
structure role played by slp’s we consider only the final result of the slp y, that

is, the final polynomial f; € Q[xy, ..., x,]. We call it the result of y. Here is
the precise definition: Let I'g[x, ..., x,] denote the set of slp’s over Q expecting
X1, ..., X, as input. Then there is a well-defined surjective function

Eval: Tglx1, ..., x,] = Qlxy, ..., x4], y — fi where L := L(y).

In this way each slp defines precisely one polynomial (and not a finite set). We
say that y € Iglxy, ..., x,] encodes f € Q[xy,...,x,]if f is the result of y.
Given a polynomial f € Q[xy, ..., x,] we define its length L(f) as the minimal
length of an slp which encodes f. (We always have deg f < 259 ) For a finite
set P C Q[xy, ..., x,] we define naively its length as L(P) := ZfeP L(f).
From the dense representation ) _, a, x® of apolynomial f € Q[x, ..., x,] we
obtain an slp for f in a straightforward manner. First, it is easy to show inductively
that for any r € N, there is an slp of length bounded by (n _rl_ r) whose result
sequence is the set of all monomials x® of degree |«| < r. This is due to the fact
that once one has a list of all such monic monomials of degree bounded by r — 1,
each one of the (” + ; - 1) homogeneous monic monomials of degree r is simply
obtained from one of the list multiplying by a single variable. Now setd := deg f.

We multiply all monic monomials of degree bounded by d by their coefficients
d
and add them up, that is, we add 2 <n —cll_ ) instructions to the slp, in order to

obtain an slp which encodes f. Hence

L<f>s3<";d> <3@d L),

We call this particular slp the dense sip of f. The previous computation shows
that in all cases, the length L ( f) of a polynomial f of degree d is linearly bounded
by its number of monomials.
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We can operate with the data structure slp, extending directly the operations
in 2,: for instance, for * € {4, —, -}, given two slp’s y, § € I'g[xy, ..., x,] we
obtain the new slp

yx8:=x(y,8) =W, VL) 015 - - -5 8L, (k5 L(y), L(y) + L(8))),

where the choice of previous indexes for § are suitably modified. This slp obviously
encodes the *x of the two polynomials encoded by y and 4, and its length is
L(y)+L(@©)+ 1.

More generally, for y € I'glyi, ..., yuland 8y, ..., 8, € I'glxi, ..., x,], we
can define the composition slp y 08 :=y o (81,...,8,) € Tglxi, ..., x,]. We
have

L(yod)=L@©1)+---+LGn) +Ly).

This operation is compatible with the map Eval, that is, Eval(y o§) = Eval(y) o
Eval(§). Hence for f € Q[y1,..., yn] and g1, ..., gn € Q[x1, ..., x,] we have
that L(f (g1, ..., &m)) < L(g1) + -+ L(gn) + L(f).

Now we specify the computational model that produces and manipulates our data
structure: it is the Blum—Shub—Smale (BSS for short) machine over QQ, which
captures the informal notion of uniform algorithm over R. We refer to [S, Chapters
3 and 4] for the definition, terminology, and basic properties. However, there are
again some slight modifications in our definition (restrictions on the operations—
only over rational numbers—and the branches—only equality of numbers to zero),
and we restate it for purpose of completeness:

We recall that a BSS machine M over Q has five types of nodes: input, computation,
branch, shift, and output. Set

Q* =] |
n>0

for the disjoint union of the n-dimensional spaces Q”, that is, the natural space to
represent problem instances of arbitrarily large dimension. For a € Q¢ — Q“"! C
Q> we call £ the size of a, and we denote it by size(a).
On the other hand, let
Qe =EPQ

mez

be the bi-infinite direct sum space over Q. The elements b € Q4 are of the form
b= ( ey bfz, bfl, b() .bl, bz, .. .),

where b; = 0 for |i| > 0. The dot between by and b, is a distinguished marker
which enables one to visualize the position of the coordinates of b.
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Now we define the computation nodes. There are of two types, operations
between entries of b or scalar operations: Foreachw € {4, —, -, /} andi, j,k € N
there is a map

Qx = Qs b (..,br 2, b1, w(bi, b)), bry1, .. ),

(observe that unlike in the case of our data structure, here we also allow divisions).
A division will be performed only after a branch node, in case the divisor is known
to be nonzero. Also for each & € Q* U Q™ and i, k € N there is in an analogous
way a map

Qo = Qu, b (...bx,by—1, X" (bi), bry1, ...)
orb — ( Cey bk_z, bk—lv )»m(b,'), bk+lv .. )

The only branch node we allow is the one which checks the equality b; = 0.
In other words, its associated map is Qoo — Q, b +— b;. The shift nodes are
of two types: shifting to the left or to the right, associated with the two maps
Qoo = Qus b+ 01(b);i = bit1, 01 0, (b); = bi—y.

The machine M over Q is a finite connected directed graph containing these
five types of nodes (input, computation, branch, shift, and output). The space
Q% is both the input space Zx, and the output space O 4, and Q is the state
space Sy, that is, the “working” space of the machine. The dimension K p, of the
machine M is the maximum dimension of the computation maps, which, under
our assumptions, coincides with the maximum of the natural numbers i, j, and
k involved in the computations. We are interested in the algebraic complexity of
these machines. We assume that the cost of each computation, branch, and shift
node is 1. Hence the complexity C rq(a) of the machine M on an input a is just the
number of computation, branch and shift nodes of the graph, from input to output.

Observe thatany slp y € I'g[xy, ..., x,]1is an example of a (finite-dimensional)
BSS machine M,, without branches or shift nodes for computing f := Eval(y) €
Qlx1, ..., x,]atany input pointa € Q". The dimension of this machineisn+L(y)
and its complexity is L(y).

Given £ € N we consider the complexity Caq(£) of the machine on inputs of
size bounded by £, that is,

Crm () := sup{Crq(a); size(a) < £}.

Since, in particular, M does arithmetic operations in Q at unit cost, this com-
putational model is a natural algebraic analogue of the notion of a Turing machine.
It provides a basis for the implementation of uniform procedures. The only differ-
ence with the Turing model is that one replaces bit operations by arithmetic ones.
Moreover, since all the involved computations are done over the rational field,
the machine M can be effectively transformed into a classical Turing machine.
However, our complexity counting does not provide any reasonable control on the
complexity of the resulting Turing machine.

Shift nodes can be regarded as the management done by the machine M to
execute the arithmetic operations and comparisons. In the sequel, we describe
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our algorithms as informal computer programs, that means that we just count
the arithmetic operations and comparisons but not the shifts. The complexity of a
formal BSS machine is polynomial in the complexity of the corresponding informal
description (see [S, Section 4.4]) and so our results remain valid for the BSS model
as described above.

As we have already anticipated, our algorithms are BSS machines that ma-
nipulate slp’s. A machine M receives as input a finite family of slp’s y €
Tolxi, ..., x,] and gives back a finite family of slp’s M (y) € Tglyi, ..., yu]™'.

A finite family of slp’s y € glx1, . .., x,]¥ can be easily codified as an input
element in Z = Q, in fact, ¥ can be identified with a vector in Q¥+3L(®) in
the following way:

The first coordinate is for the dimension 7, that is, the number of variables. Then
each instruction of the first slp y; is codified as a triple: we enumerate the operations
in €2, with numbers from 2 to 6, 2 and 3 corresponding to the operations in Q* and
Q™, and 4 to 6 to +, —, and -. For operations in Q* U Q™ we write the operation
number in the first coordinate, the corresponding coefficient in the second one,
and the position to which it applies in the third one. The binary operations are
codified in a similar way, by writing first the operation number, and then the
position of the two elements to which it applies. The positions are numbered from
1 — n to L(y) according to the definition of the result sequence. For instance the
vector (2, (3,5, —1), (4,0, 1), (6, 2, 2)) codifies the slp x;, x2, 5x1, xo+5x71, (x2+
5x1)2. The instruction to separate two consecutive slp’s is an empty cell, that
is, a 0. The second slp y» is now codified exactly as the first one. Therefore,
y = W,....ym) € Lolxy, ..., x,]™ is codified as a vector in Q, in fact in
QM+3LY) since we need to add “0” M — 1 times to separate two consecutive
slp’s.

The machine M manipulates this input, the finite family of slp’s y € I'g[x;,
..., X,]M: it operates on these slp’s and gives as the output an element of O
corresponding to a finite family of slp’sin 'g[yy, . . ., ym]M'. As we have just seen,
the input and output size is (essentially) the length of each of these families. Thus,
we speak here of a finite family of slp’s y as the input of M and we simply denote
by M(y) its output in Tg[yy, ..., yu1".

Remark 1.3. Lety € I'g[xy, ..., x,]” be the input slp family of a BSS machine
M and let M(y) € Tglyi, ..., yu]™ be its output. Then

L(M(y)) =3L(y) + Cm(y).

Proof. As we do not know how the machine M operates on y, the only bound
for L(M((y)) is the number of operations labeled from 2 to 6 of the representation
of M(y) in M, which is bounded by the number of nonzero cells of this repre-
sentation minus 1 (since the first cell of the output corresponds to the number of
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variables m of the output). This is bounded by 1 4+ 3L(y) + Caq(y) — 1, that is,
the size of y as an input of M (excepting the M — 1 zero cells separating different
input slp’s) plus the number of computation nodes C o4 (y) minus 1. O

Our main algorithms are in fact probabilistic. For this reason we implement
them in the model of a probabilistic BSS machine over Q [5, Section 17.1]. This
is a BSS machine M with an additional kind of node, called probabilistic. These
are nodes that have two next nodes and no associated map and that “flip coins,”
that is, when a computation reaches a probabilistic node, it randomly chooses the
next node between the two possible ones with probability % for each of them.

In this probabilistic setting, each run—on the same given input y—of the ma-
chine M may lead to a different path computation. In our case, for any given input,
the number of probabilistic nodes traversed is finite, that is, the number of possible
paths is finite. We treat the probalistic nodes as branches and charge cost 1 for
each of them.

As every path P of M corresponds to a BSS machine of complexity Cp(y),
the algebraic complexity Ca¢(y) of the machine M on the input y turns out to be
a random variable, with finite sample set. Moreover, again in our context, every
path is finite: it may happen that a branch ends in an error message but in any case
the complexity of any path is bounded. Thus the random variable C () satisfies

Prob(Cp(y) = C) := ZPrOb(P; ‘P path such that Cp(y) = C).

We are interested in the worst-case complexity C'{* (y ), the maximum complexity
of the paths of M on y, and the expected complexity E p((y ), defined as the (finite)
expectation of this random variable, that is,

Em(y) = E(Cpm(y)) = Y _ C - Prob(Cam(y) = O).
CeN

Observe that C{*(y) > Eaq(y) always holds.
As before, we also consider the function E s : N — N:

Em(€) :=suplEpm(y);n, M €N, y € Tglxy, ..., x,0" and M +3L(y) < ¢€}.

We define now the error probability of the machine on a given input. Again,
there is here a modification with respect to traditional probabilistic BSS machines.
Keeping in mind that for any run of the probabilistic machine M on the input y €
Lglxi, ..., x,]", its output (independently of the path randomly taken) encodes
a finite family of polynomials f := (fi, ..., fu) € Qly1, ..., ym]M', we define:

Definition 1.4 (Bounded Probability Algorithm). Given y € TI'glxy, ..., x4
and given a set of polynomials f := (fi, ..., fu) € Qly1, ..., ym]M/, the error
probability e (y, f) that M computes f from the given input y is the probability
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that the output of M from y does not encode f; that is, the probability that the
computation finishes with an error message, or thatitoutputs § € I'g[y1, ..., yul” '
which does not encode f.

We say that M computes f if epq(y, f) < %. As this happens at most for one
f, when it happens, we set ex(y) := eam (v, f). When ep(y) < % for every
input y, we say that M is a bounded probability machine for polynomial slp’s,
and we speak of a bounded probability algorithm.

Observe that our probabilistic machine is a little unusual since, in fact, as
different slp’s may encode the same polynomial, the polynomial f computed by
the probabilistic machine M corresponds to an equivalence class of outputs rather
than a single one. In this paper, all machines are bounded probability machines for
polynomial slp’s in the sense of this definition.

In our setting, probability is introduced by choosing a random element with
equidistributed probability in a set [0, £)" := {0, ..., £ — 1}" for given natural
numbers ¢ and n. Since probabilistic machines flip coins to decide binary digits,
each of these random choices can be easily simulated with a machine with com-
plexity O(n [log £1), where here and in the sequel, log denotes logarithm in base
2. This machine is denoted by Random(#n, £). In this work, in each case, there
is a nonzero polynomial F € Q[xy, ..., x,]\{0} such that a random choice a is
good—that is, leads to the computation of the desired output—if F(a) # 0. The
error probability of this random choice is then estimated by the Zippel-Schwartz
zero test [61], [53, Lemma 1]:

deg F
Prob(F(a) =0) < T

The choice of % as a bound for the error probability is not restrictive and we
can easily modify it in order to reduce the error probability as much as desired.
The usual procedure is to run the machine M many times and to declare that the
polynomial family f is computed by M if it is the output of more than half the
times. There is a slight difficulty here, appearing from the fact that our machine
computes slp’s instead of polynomials, and two different runs may lead to different
encodings of the same polynomials. That is why we need here to be more careful
in our definition. We define it in the following way:

Given the bounded probability machine M which on input y € I'g[xy, ..., x, M
computes f € Q[yy, ..., ym]¥ ", and given s € N, the machine M is the machine
which performs the following tasks:

1. M, runs s times the machine M on the given input y € I'g[xy, ..., X, M
for1 <i < sitobtains the outputslp family §; € I'g[y1, ..., ym]M' together
with the complexity C; of the path followed to compute §;.

2. Then M chooses randomly a € [0, M’ 25+3 L) +CiH+Cym and computes

Si(a), 1 <i <s.
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3. For j = 1to [s/27:

e it computes §;(a) — di(a), j < k < s, and compares the results to 0;

e if 0 is obtained for strictly more than s/2 values of k, it returns the
polynomial family f € Q[yi, ..., y»]" encoded by d; as the output
and ends; and

e if not, it goes to j + 1.

If for no j < [s/2] the algorithm obtains O enough times, it outputs error
and ends.

Proposition 1.5.  Given a bounded probability machine M whichony € I'glxi,
.o, XM computes f € Qlyy, ..., ym]M’ and given s € N, the worst-case com-
plexity, the expected complexity and the error probability of the machine Mg on
y verify the following bounds:

CRr(y) = 0<<m+ Ds (L(y) + CRF () +m log M + M’ (;>>

IA

Em(y) = 0<(m+ Ds(L(y) + Em(y)) +m logM' + M’ (;))
2(3

e, (¥) )72

Proof. Let us begin by describing the algebraic complexity C of a given run of

the machine C 4, on y in terms of the complexities C; of the paths followed by
the machine M on y on the ith run.

Cost of Item 1: It has complexity C; + - - - + C;.

Cost of Item 2: Producing the random choice a costs O(m(log M'+s+L(y)+
Ci+- - -+Cy)) and, from Remark 1.3, computing §; (@), . . ., §;(a)
costs 3sL(y) + Cy + -+ - + Cs.

Costof Item 3: As §;(a) € Q"' to compute all §;(a) — (a) and compare

them to O costs 2M’ (;)

Hence, the worst-case complexity of the machine M on y is

CRE() =0 ((m +Ds(Ly) + CR () +m log M’ + M’ <;>> ’

while, as the complexity is an affine combination of the s independent random

variables Cy, ..., Cs, its expectation verifies

Em =0 <(’" + D s(LG) + Em(y) +m logM' + M’ (;)) :

The error probability is bounded by the probability that there is no group of
more than s/2 vectors which coincide, plus the probability that §; (a) = Jx(a) but
the two polynomial families encoded by §; and §; do not coincide.
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The first probability of error is bounded by (%)S/ ® as in [5, Section 17.2,
Lemma 1]. To estimate the second probability of error we apply Schwartz’ lemma:
for 1 < i < s the output §; encodes f € Q[yi, ..., yn]¥ where the degree of
each component is bounded by 234()+Ci Thus the probability of error of one test
is bounded by (M’ 23LW+Ciy /(M 25 F3LI+C1H+Coy < (%)S As there are at most

(;) such independent tests, the total error probability verifies

exnn = G2+ (3) (4 =2 ()
fors > 2. O

Corollary 1.6. Given a bounded probability machine M which on y € I'glx;,
o xa M computes [ € Q[y1,..., ym]M/ and given N € N, N > 4, the error
probability of the machine M on y fors := [6 (log N 4+ 1)] is bounded by 1/N
while its worst-case complexity is of order

O((m + 1) log N(L(y) + CR&*(y)) + m logM' + M’ log* N).

Proof. As (%)3 < %,

eM&()/)fz (%)3(10gN+l) < (%)SIOgN < %logN: 1/N 0

Corollary 1.6 will be used to decrease the error probability of intermediate
subroutines of our main algorithm and keep control of the complexity in order that
the error probability of the latter is bounded by i. Observe that the length of the
output slp is of the same order as the length of the slp obtained when running any
of the repetitions of the algorithm.

Given a bounded probability machine M, any time we want to obtain the output
of M for an slp input family y with error probability bounded by 1/N, we run
Subroutine 1 which gives a new probability machine M(y; N) doing so. Any
time we run M for the input family y, we will denote by Complexity (M (y)) the
complexity of doing it this time.

1.3.  Complexity of Basic Computations

‘We summarize the complexity of the basic operations on polynomials and matrices
that our algorithms rely on. As our interest is mostly theoretical, it will be sufficient
for us to apply the more naive procedures for these operations. For the more
advanced complexity results, we refer to [8] for a complete account, see also [30]
for a brief survey of the existing literature.

Let R denote a commutative QQ-algebra and let d € N. The multiplication of
d x d-matrices with coefficients in R can be done with O(d?) operations of R
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Subroutine 1. Decreasing error probability of M.

procedure M(y; N)

# y is an slp input family for M,
#N eN,N > 4.
# The procedure returns the output of M with error probability bounded by 1/N.

1. s :=[6(ogN + 1)];

2. for i from 1 to s do

3. (8, Ci) == (M(y), Complexity (M(y)));
4. od;

5. a := Random(m, M’ 2 3L +Cit+Csy.

6. (AL, ..., Ay) :=(81(a),...,8));

7. j:=1;

8. while j < [s/2] do

9. k:=j4+1;

10. t:=0;

11. while k£ < s do
12. if Aj —Ar=0 then
13. t:=t+1;
14. fi;

15. k:=k+1;
16. od;

17. if 1 > 5/2 then
18. return(s; );
19. else

20. j=j+1L
21. fi;

22. od;

23. return(‘‘error”);

end.

and no branches. The computation of the coefficients of the characteristic poly-
nomial of a d x d-matrix—and in particular the computation of the adjoint and
the determinant of this matrix—can be done with O(d*) arithmetic operations
and no branches, the same bounds hold for the inversion of an invertible matrix
(21, [1].

Addition of univariate polynomials with coefficients in R and degree bounded
by d can be done in d + 1 arithmetic operations, while the straightforward poly-
nomial multiplication algorithm takes O(d?) arithmetic operations and has no
branches. Division with remainder—provided the divisor is a monic polynomial—
has also in a straightforward manner complexity ((d*) and no branches. The
greatest common divisor (gcd) can be computed through subresultants with O(d)
branches (computing the degree of the greatest common divisor corresponds to
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checking the vanishing of the determinant of submatrices of the Sylvester matrix)
and complexity O (d”) (solving a linear system) [14], [7].

Now we are going to consider some procedures involving polynomials encoded
by slp’s. First, given an slp y which computes f € Q[xy, ..., x,] and given
a € Q", we can compute f(a) € Q within complexity L(y) and so we can also
check f(a) = 0 within the same complexity. The derivative of the polynomial f
with respect to one of its variables will be computed by means of the Baur—Strassen
algorithm (see [3]) within complexity O(L(y)).

For a group of variables y := (yi, ..., yn) and a € Q™, we will denote by
Expand(f, y, a, d) the subroutine which, given an slp y which encodes a multi-
variate polynomial f, computes as intermediate results slp’s for the homogeneous
components centered at a and of degree bounded by d of the polynomial f with
respect to the given group of variables y: In [42, Lemma 13], [8, Lemma 21.25]
are given slp’s of length O(d? L(y)) in which all the homogeneous components of
f of degree bounded by d appear as intermediate computations. These procedures
can be easily modified within the same complexity to compute the homogeneous
components centered at a and up to degree d of a polynomial with respect to the
given group of variables. In particular, if y consists of a single variable and a = 0,
this procedure computes the coefficients of the given polynomial with respect
to y.

Quite frequently we use a mixed representation of f: instead of encoding it by
means of a single slp, we consider f as a polynomial in a distinguished variable,
and if d is a bound for the degree of f in this variable, we give a (d + 1)-uple of
slp’s, which encode the coefficients fy, ..., f; of f with respect to the variable.
The length of this mixed encoding does not essentially differ from the length of
f; denote by L’(f) the length of the mixed encoding and by L(f) the length of
f, we have

L()=0d+L'(f) and  L'(f)=0@L(f).

Sometimes we need to compute the exact degree of a polynomial with respect
to a particular variable. We will call Deg( f, d) the procedure which computes the
degree of the univariate polynomial f given by its dense representation, where d is a
bound for its degree. This computation is done by simply comparing the coefficients
of f with 0. This procedure can be adapted to obtain a probabilistic algorithm
Deg( fi, ..., fs, x, d; N) which computes, with error probability bounded by 1 /N,
the total degrees of the polynomials fi, ..., f; in the group of variables x, from
slp’s encoding fi, ..., f; and an upper bound d for their degrees in the variables
x. To do so, first we apply subroutine Expand(f;, x,0,d) for 1 < i < s, to
obtain the homogeneous components of f;. Then by choosing a random point in
[0,1,...,sdN)" we decide probabilistically which is the component of greatest
degree different from zero of each polynomial fi, ..., f;.If the given polynomials
are encoded by slp’s of length bounded by L, the worst-case complexity of this
procedure is of order O(sd*>L + nlog(sdN)).
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1.4. Effective Division Procedures

Here, we gather the division subroutines we will need. Basically, they compute the
division of multivariate polynomials and power series, and the greatest common
divisor of multivariate polynomials. In all cases, the objects will be multivariate
polynomials encoded by slp’s and power series, whose known graded parts will
also be encoded by slp’s. The proposed procedure for multivariate power series
division is new and plays an important role in Subroutine 7, which in turn is the
key step of our main algorithm.

The following subroutine is the well-known Strassen Vermeidung von Divisio-
nen (division avoiding) algorithm [S56]. We reprove it briefly in order to estimate
its complexity.

Lemma 1.7. Let f, g € Q[xy, ..., x,] be polynomials encoded by slp’s of length
bounded by L such that f divides g. Let d € N be such that deg(g/f) < d, and
a € Q" such that f(a) # 0.

Then PolynomialDivision (Subroutine 2) computes g/f within complexity
O(d*(d + L)).

Proof. The quotient polynomial & := g/f € Q[xy, ..., x,] can also be seen as
a power series in Q[[x — a]]. For @ := f(a), we have

h:

o0

— -1 i
=ga‘l<1—“ f) _e Y @ lf)e@[[x—a]]

o i—0

Subroutine 2. Polynomial division.

procedure PolynomialDivision(f, g, d, a)

# f, g € Qxy, ..., x,] such that f divides g,

#d € N an upper bound for the degree of the quotient g/f,
#a € Q" such that f(a) # 0.

# The procedure returns / := g/f.

L a:= f(a);

2. v —(l/ot)Z _o(t/@)’;

3. H=g v(a — f);

4. (Hy, ..., H;) := Expand(H, x, a, d);
5. b= 30 o Ho

6. return(h);

end.
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For
d . .
H:=gY (@—f)/a" eQlx, ..., x]
i=0

wehaveh = H mod (x — a)?t!. Thus, if (Hyun)m<a are the homogeneous compo-
nents of H centered at @ and of degree bounded by d, we conclude & = Zi:o H,.

The stated complexity is obtained as follows: We compute the univariate poly-
nomial v with O(d + L) operations. Hence we compute H within complexity
O(d + L). We compute its homogeneous components in x — a up to degree
d within complexity O(d*(L(H))) = O(d?*(d + L)). Finally, we obtain 4 as
Zi:o H,, within the same complexity bound. O

Observe that the same procedure can be used to compute the graded parts
centered at a and of a certain bounded degree of the rational function g/f, even in
case f does not divide g. We denote this subroutine by GradedParts( f, g, D, a),
where the argument D corresponds to the bound for the degree of the graded parts
to be computed. Its complexity is of order O(D?(D + L)).

Subroutine 2 converts slp’s with divisions computing polynomials in Q[xy, . ..,
X,] into ordinary slp’s: Slp’s with divisions are defined as ordinary slp’s, but with
the set of basic operations enlarged to include the division, which we denote by
the bar /. A further requirement is that all divisions should be well defined, that
is, no intermediate denominator can be zero. In general, the result of an slp with
divisions is a rational function in Q(x, ..., x,).

Observe that, given an slp with divisions y which encodes a rational function
h, we can easily compute separately a numerator g and a denominator f by means
of two slp’s ¢, n without divisions: for instance, for each addition h; := h; + hy
in the result sequence of y, if h; := hj1/hj> and hy: = hgi/ hgo, we set g ==
hjihka+hjohiy and hy == hjrhy; for the corresponding result sequence in ¢ and 7,
respectively. We proceed analogously for the other operations in Q) := €, U {/}.

We have

Eval(¢)
Eval(n)

Furthermore, the slp’s ¢ and 1 can be computed within complexity L(¢) < 3L(y)
and L(n) < L(y). In particular, given a € Q*, we can check if y is well defined
at a and, if that is the case, if h(a) = 0 within complexity O(L(y)). In case
h is a polynomial of degree bounded by d, the previous considerations together
with Lemma 1.7 show that we can compute an slp without divisions for h with
complexity O(d*(d + L(y))).

Now follows a bounded probability algorithm (in the sense of Definition 1.4) to
compute the greatest common divisor of two multivariate polynomials encoded by
slp’s (for another algorithm solving this task, see [40]). Herein, GCD1(F, G, d, e)
is the subresultant algorithm which computes a greatest common divisor of two
univariate polynomials F and G of degrees d and e, respectively, with coefficients

h :=Eval(y) =
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Subroutine 3. Greatest common divisor.
procedure GCD(f, g, x, d)

# f,g € Qxy, ..., x,] of degrees bounded by d,
#x = (X1, ..., X0).
# The procedure returns 4 := gcd(f, g).

1. a := Random(n, 8d(d + 1));
2. if f(a) = 0 then
return(“error”);

w

. else

4
5. (fos -, fa) := Expand(f, x, a, d);
6. (g0, ---,8aq) := Expand(g, x, a, d);
7
8

e:=0;

. while g,(a) =0and e <d do
9. e:=e+1;
10. od;
11. if e = d + 1 then
12. return(f);
13. else
14. F:= ZZ:O fit™and G := Y gt
15. (g, Q) := GCDI(F, G,d, e);
16. h := PolynomialDivision(g (x), Q(x, 1), d, g(a));
17. return(/);
18. fi;
19. fi;

end.

inaring A. The output of GCD1 is (¢, Q), where g € A\{0} and Q is the multiple
by ¢ of the monic greatest common divisor of F and G over the fraction field of
A.

Lemma 1.8. Let f, g € Q[xy, ..., x,] be polynomials of degree bounded by d
encoded by slp’s of length bounded by L.

Then GCD (Subroutine 3) is a bounded probability algorithm which computes
(an slp for) the greatest common divisor between f and g. Its worst-case complexity
is of order O(n logd + d*(d* + L)).

Proof. Fora € Q" such that f(a) # 0 and ¢ an additional variable, we set

Flx.1) = rU(% +a>, Gx, 1) = tlg (2 +a) € QLx][t].

Since f(a) # 0, F is monic—up to the scalar factor f(a)—of degree d in ¢. Set
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H for the greatest common divisor of F and G in Q(x)[z]. Since F is monic in
t, H belongs to Q[x, t], and it is easy to check that gcd(f, g) = H(x, 1) (uptoa
scalar factor).

The procedure runs as follows: First we observe thatif f = )" fo(x —a)®,

then
F= ). (Z falx —a)“) 17,

0<k<d \la|=k

(and the same holds with g and G). So the homogeneous components of f and g
centered at a turn out to be the coefficients of the monomial expansion of F and
G with respect to . Then, we apply the subresultant algorithm GCD1 to compute
the multiple Q € Ql[x, 7] and the superfluous factor g in Q[x] of their gecd H in
Q(x)[z]. Finally, we apply Subroutine 2 to avoid divisions in the computation of
ged(f, g) = H(x, 1) = Q(x, 1) /q(x).

Let us calculate the size of the sets of points we have to take to ensure that the
algorithm has an error probability bounded by i:

We are going to choose randomly a point a € Q". This same point a will be
used, in each step we need a random point. The first condition the point a must
satisfy, so that the algorithm computes a greatest common divisor of f and g, is
that f(a) # 0. Then we use the point a to compute the degree of G in 7. Finally, it
is used in the subresultant algorithm to compute the degree of the greatest common
divisor (by deciding whether certain determinants are zero or not). Checking the
degree of G involves testing an n-variate polynomial of degree bounded by d
(the coefficients of G as a polynomial in Q[x][¢]) while checking the degree of the
greatest common divisor involves testing n-variate polynomials of degree bounded
by 2d°.

Thus, applying the Schwartz bound for the set [0, £)", the conditional probability
p of success verifies

d d 2d* d+d +2d? 2d (d+1
p>(1-=)(1-=)(1-= Zl—+—+=1—g-
14 14 14 14 14

Therefore, taking ¢ := 8d(d + 1) ensures that the error probability is bounded
by i.
Now let us compute the worst-case complexity of the machine:

The cost of simulating the random choices here is O(n logd). Computing the
homogeneous components of f and g centered at a and checking the exact degree
of G (that is, finding the first nonzero coefficient of G with respect to ) can be
done within complexity O(d?(d + L)). In Algorithm GCD1, to compute the degree
of the greatest common divisor involves computing at most d + 1 determinants
of Sylvester-type matrices of size at most 2d x 2d, that is, at most (d + DHOE*
operations. Once we know this degree, computing the greatest common divisor by
means of an adjoint adds O(d*) steps. That is, the complexity of computing Q (x, t)
(and g (x) which is the nonvanishing determinant) is of order O(d?(d> + L)) while
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L(Q(x,1),q(x)) = O(d*(d* + L)) since the computation of the degree does not
intervene in the length. Applying Subroutine 2 at g(a) which is different from
0 (if not, subroutine GCDI1 in line 3 would have returned error) we obtain a
final complexity of order O(n logd +d*(d + L(Q(x,1), ¢(x)))) = O(n logd +
d*(d* + L)). O

The following procedure (Subroutine 4) computes the quotient—provided it
is a polynomial of bounded degree—of two multivariate power series from their
graded components up to a certain bound.

Letg =), aqx* € Q[[x1, ..., x,]] be a power series. For i € Ny we denote
by ¢; = Z\a\:i agx® € Q[xy, ..., x,] the i-graded component of ¢. Also we
denote by ord ¢ the order of ¢, that is, the least i such that ¢; # 0.

Proposition 1.9. Let ¢, v € Q[[xy, ..., x,]] be power series such that h =
¥/ € Qlxy, ..., x,]. Assume we are given m := ord ¢, d > degh, and that the
i-graded parts of ¢ and  fori = m, ..., m + d are encoded by slp’s of lengths
bounded by L.

Then PowerSeries (Subroutine 4) computes q = ‘anﬂ h within complexity
O@d’L).

Proof.  Set

Dx.1) = gtx) =Y @01,
i=0

Subroutine 4. Power series division.

procedure PowerSeries(n, m, d, @u, ..., Omids Yms---» Yintd)

# n € N is the number of variables,

#m € Ny is the order of the denominator ¢ € Q[[x]],

#d € N is the degree of the quotient & := /¢ € Q[x],

# the ¢;’s and ;s are the graded parts of the power series ¢ and v, respectively.
# The procedure returns g := ¢%'h € Q[x].

1. v: Z;jzo yi=izi e Qly, zl;

d ; d .
2' P .= (Zi:() 1/’erit ) v ((Pm, - Zj:l (pm+j tj)a
3. (P, ..., P;) := Expand(P, t, 0, d);
4
5

d
- 4= Zi:O Pi;
. return(q);

end.
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Wi 1) = Yx) = Yy g € Qxll]] < Qu)IIr]].
i=0
Also set H := h(tx) € Q(x)[t]. We first observe that ord ® = m, and thus
ordW > mas W/® = H € Q(x)[t] is a polynomial. Hence the following
identity holds in Q(x)[[#]]:

m\ —! o _ myi

H=o=m s
Pm Pm i—0 Pm

t m

Thus, for

d d d i
P = (Zwm+,-zf) > gl (—Z%,-ﬂ) € Qlx]ir]
i=0 j=1

i=0

we have that ¢t H = P(modt?*!). Let P = Y. P; ' be the monomial expan-
sion of P. Then ¢?*' H = Y P 1, as the degree of H with respect to ¢ is
bounded by d. Hence ¢+! h = Z?:o P

The stated complexity is obtained as follows: We compute an slp encoding of
vi=Y"¢ ¥z within complexity O(d). We compute P as Y ¥, 1; ¢’ times
v ((pm, — Z;.i: | O j ) within complexity O(d L). We compute the expansion of

P with respect to ¢ up to degree d within complexity O(d>L). Finally, we compute
q as Z;z:() P;. The total complexity is of order O@’L). O

Remark 1.10. Incase that, in addition, we are given b € Q" such that ¢,, (b) # 0,
we can directly apply Subroutine 2 to compute the quotient polynomial 4 within
total complexity O(d°L).

2. The Representation of the Chow Form

This section presents an algorithm for the computation of the Chow form of an
equidimensional variety from a zero-dimensional fiber and a set of local equations
at a neighborhood of this fiber. This is the key step in our general algorithm (see
Section 3), although it has independent interest; it shows that the Chow form and
the geometric resolution are—up to a polynomial time computation—equivalent
representations of a variety (see Subsection 3.1). As a further application, we give
a nontrivial upper bound for the length of an slp representation of the Chow form
(Corollary 2.11).
In order to state the result, we need the following definitions:

Definition 2.1. Let V C P" be an equidimensional variety of dimension r.
We say that f41,..., f, € I(V) is a system of local equations at & € V if
the polynomials f,y1, ..., f, generate I (V) at some neighborhood of &, that is,
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I(V)e = (fr+1, ..., fn)e (Where the subscript £ denotes localization at the ideal
of the point &).
If Z is a subset of V, we say that f,11,..., fu € I1(V) is a system of local

equations (of V) at Z if it is a system of local equations at every & € Z.

The existence of a system of local equations at a point & € V implies that
(C[x]/1(V))¢ is Cohen—Macaulay and thus, by [19, Theorem 18.15], for f, 1, ...,
fn € 1(V) to be a system of local equations at £ is equivalent to the fact that the
Jacobian matrix of this system has maximal rank n — r at £.

Definition 2.2. Let Z C A" be a zero-dimensional variety of cardinality D. A
geometric resolution of Z consists of an affine linear form £ = ¢y +cjx; +--- +
cnXxy € Qlxq, ..., x,] and of polynomials p € Q[t] and v = (vy, ..., v,) € Q[z]"
such that:

e The affine linear form £ is a primitive element of Z, that is, £(§) # £(¢) for
allé # & in Z.

e The polynomial p is monic of degree D and p(£(£)) = O for all £ € Z; that
is, p is the minimal polynomial of £ over Z.

e degy, < D—1,1<i<n,and Z = {v(n); n € C, p(n) = 0}; that is, v
parametrizes Z by the zeros of p.

Observe that the minimal polynomial p and the parametrization v are uniquely
determined by the variety Z and the affine linear form £. We say that (p, v) is the
geometric resolution of Z associated to £.

Incase Z C P"isazero-dimensional projective variety which satisfies that none
of its points lie in the hyperplane {xo = 0}, Z can be identified to a zero-dimensional
affine variety Z*, the image of Z under the rational map P" --s A" defined
by (xo : -+- : x,) > (x1/X0,...,X,/X0). By a geometric resolution of Z we
then understand a geometric resolution—as defined before—of the affine variety
Z¥ < A". In homogeneous coordinates, the definition of geometric resolution
states that the homogenized linear form £" satisfies (£"/x0)(€) # (£"/x0) (&)
for all & # &’ in Z. The polynomial p is then the minimal monic polynomial
of £/xq over 7 On the other hand, v defines a parametrization V(p) — Z,
n= (Lovi() - o).

Now, we are able to state the lemma:

Main Lemma 2.3. Let V C P" be an equidimensional variety of dimension r
and degree D which satisfies Assumption 1.2. Set Z :== VNV (xy,...,x,), and
let p € Q[t] and v € Q[t]" be a given geometric resolution of Z associated to a
given affine linear form £ € Q[xy, ..., x,]). Let fri1, ..., fu € I(V) be a system
of local equations at Z. Assume that fr11, ..., f, have degrees bounded by d and
are encoded by slp’s of length bounded by L.

Then there is a deterministic algorithm (Procedure ChowForm (Subroutine 7T)
below) which computes Chy within complexity O(r® log,(r D)n’d* D''L).
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In Subsection 2.3 we present the complete proof of the correctness of the al-
gorithm and its complexity estimate. The algorithm is essentially based on a new
Poisson-type product formula for the Chow form (see Proposition 2.5 below),
which describes the Chow form as a quotient of products of norms of certain poly-
nomials. We interpret this expression as a quotient of two power series, which can
be approximated with the aid of a symbolic version of Newton’s algorithm. Finally,
we apply Procedure PowerSeries (Subroutine 4 above) to compute the Chow form
from the approximate quotient.

2.1.  Newton’s Algorithm

In this subsection we present a symbolic version of Newton’s algorithm for the
approximation of roots of equations. Newton’s algorithm is nowadays a widely
used tool for polynomial equation solving, starting from [27] and [23] as we already
mentioned. The situation in the present work is not much different from that in,
e.g., [34], [30]. Hence we just describe this procedure in order to adapt it to our
setting and to estimate its complexity; its correctness follows directly from [34,
Section 2] and the arguments therein.
First, we state the situation in which Newton’s algorithm is applied:

Let W C A" x A" be an equidimensional variety of dimension r such that the
projection map 7: W — A’ is dominant, that is, the image 7w (W) is a Zariski
dense set. Set A := Q[#q, ..., t,] = Q[A"] and let K be its fraction field. Also let
B :=Q[W]andset L := K ®4 B. Then L is a finite K -algebra, and its dimension
D :=[L : K]—that is, the degree of m—equals the maximum cardinality of the
finite fibers of 7 [32, Proposition 1].

The norm N, (h) € K of a polynomial h € A[xy, ..., x,] is defined as the
determinant of the K-linear map L — L defined by f + hf. Let I (W)® denote
the extension of the ideal /(W) to the polynomial ring K[x, ..., x,], and set
We = V(I(W)®) C A"(K), which is a zero-dimensional variety of degree D.
Then

N.(h) = [] r(».
yewe

We also denote this norm by Ny . (#) when the projection map is clear from the
context. In various settings, we will be given a polynomial /# and an equidimen-
sional variety W and our aim will be to compute an approximation of Ny (%).
The input of the procedure will be the polynomial %, a geometric resolution of a
zero-dimensional fiber of 7 and local equations at this fiber.

Let Fi,...,F, e I[(W) C A[xy,...,x,]and set F := (F, ..., F,). Let

aE nxn
jF::< ) € Alxy, ..., x,]
8xj 1<i,j<n

be the Jacobian matrix of F with respect to the variables xy, ..., x,,andlet Ap :=
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|Jr| € Alxi,...,x,] be its Jacobian determinant. Let Z C A” be such that
771(0) = {0} x Z. We assume that Z is a zero-dimensional variety of cardinality
D and that Jr is nonsingular at 7w ~'(0), that is, Az(0,&) # 0 for all £ € Z.
Observe that this means that F (0, x) is a system of local equations at Z.

Under our assumptions, the implicit function theorem implies that the elements
in W¢ can also be considered as power series vectors: For & € Z, since Ap(0, &) #

0, there exists a unique y: € C[[#, ..., ]]" such that
ve@ =% and  F(t,....t,y)=0.
(See, e.g., [6, Chapter 3, Section 4.5, Corollary 2].) It follows that f(t1, ..., t, V&)

= 0 forall f € I(W) as F is a system of local equations at &, and so this also
holds for all f € I(W¢) = I(W)°. Hence y: € W° and, as #Z = #W° = D, we
conclude that the correspondence

zZ — W°, &y,

is one-to-one. In particular, since Ny.(h) is the determinant of a matrix in
Q(ty, ..., ), Nwe(h) e C[[t1, ..., , 11N Q(t1, ..., 1) C Q[lz1, ..., ]

The given data—the description of the fiber and its local equations—suffices to
determine W* uniquely and, in particular, allows us to compute a rational function
g which approximates the norm Ny (k) to any given precision « (we understand
by this that both Taylor expansions coincide up to degree «, that is, Ny.(h) =
gmod (¢, ..., t,)**"). The rational function ¢ can be obtained by a procedure
based on an iterative application of the Newton operator. This operator, defined as

pi=x = Jr0) T F()' e K(x)™,

enables us to approximate the points in W¢ from the points in the fiber Z. If we
set NV }m) € K (x)"" for the m-times iteration of N, then, for every £ € Z,

NPE) =y mod(, ..., 1)

(see [34, Section 2]).
Procedure NumDenNewton (Subroutine 5) computes polynomials gim), el
gm, O(m) in Q[f4, ..., t.] such that

NEP =@ 11" e ™)

Herein, Homog( f, d) is a procedure which computes the homogeneization of the
polynomial f up to degree d > deg(f), JacobianMatrix(F, x) is a procedure
which constructs the Jacobian matrix with respect to the variables x associated
to the system of polynomials F and Adjoint(M) is a procedure which computes
the adjoint of the matrix M. For the correctness and complexity of the whole
procedure, see [23, Lemma 30]. We summarize the procedure that approximates
the norm of a given polynomial /2 in Procedure Norm (Subroutine 6). Herein,
CompanionMatrix is the procedure which constructs the companion matrix of a
given univariate polynomial.
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Subroutine 5. Computation of numerators and denominators for the Newton
operator.

procedure NumDenNewton(F, n, x, d, m)

#F,...,F, € Alxy, ..., x,] such that Jr(x) # 0,

# n is the number of dependent variables x,

# d is an upper bound for the degrees of the polynomials Fi, ..., F,,
# m is the number of iterations to be computed.

# The procedure returns g™, ..., g™, f"™ such that

NF(x)(m) (g(m)/f(m)’ o gy(lm)/ f()(m))~

1. Jr := JacobianMatrix(F, x);
2. Ap = [(TIR)s

3. A := Adjoint(Jr);

4. v:=nd+1;

5. for i from 1 to n do

6. &= Arx = Y Ayl
7. G; :=Homog(g", v);

8. od;

9. 0<1) = AF;
10. Fy := Homog(Apr, v);

11. for k£ from 2 to m do 12;
12. for i from 1 to n do
13. (k) —G (f(k b] (k b} g(kfl)).
14. od
15, f0 = Ryl gl L gl
16. od;
17. return(g™, ..., g™, f");
end.
Lemma 2.4. Let notations be as before. Assume that h, Fy, ..., F, € Alxy, ...,

X, ] are polynomials encoded by slp’s of length bounded by L such that degh < §
anddeg(F;) <d,1 <i <n.

Then Norm (Subroutine 6) computes f, g € A with f(0) #% O such that g/f
approximates Ny (h) with precision ik, within complexity O((log, k)n’8*d*> D*L).

Proof. For the correctness of the algorithm we refer to [34, Section 2] and the
arguments given there. Now, we estimate its complexity:

First, the complexity of Subroutine 5 applied to our situation is of order O((log, «)
n’d?L) (see [23, Lemma 30] and its proof). Then, the algorithm computes the
matrices v;(M,) (1 < j < n) with complexity of order OmD?) (note that,
as the companion matrix is very sparse, the multiplication by M, can be done
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Subroutine 6. Approximation of the norm.

procedure Norm(h, §,n, x, p,v, F,d, k)

#h e Alxy, ..., x,] is the polynomial whose norm we want to approximate,
# § is an upper bound for the degree of 4,

#n € N is the number of dependent variables x,

#p e Qr], v e Q[r]" is a given geometric resolution of Z,

#F = (Fy, ..., F,) is a vector of polynomials in / (W) such that A (0, &) # O for all
#&eZ,
# d is an upper bound for the degrees of the polynomials F1, ..., F,,

#k € N is the desired level of precision.
# The procedure returns f, g € A with f(0) # O such that g/f
# approximates the norm Ny (h) with precision k.

1. m:=[log,(k + 1)7;
2. (g1,---»8&n» fo) := NumDenNewton(F, n, x, d, m);
3. M, := CompanionMatrix(p);
4. for i from 1 to n do
5. M; = gi(U(Mp));
6. od;

7. My := fo(v(M)));

8. H := Homog(h, §);
9. M :=H(My, M, ..., M,);
10. f = |Mo|’;

11. g :=|M]|;

12. return(f, g);

end.

with complexity O(D?)). Now, the matrices M; := g(w(Mp,)) (1 <i <n)and
My := fo(v(M,)) are obtained within complexity O((log, k)n’d*D?L). As h is
encoded by an slp of length L, its homogeneous components up to degree § are
encoded by slp’s of length O(82L). Therefore, the complexity of the computation
of M is of order O(82L D* + (log, k)n’d*> D*L). Finally, f and g can be computed
within complexity O(D* + (log, 8) D? + (log, k)n’d* D3L) and O(D* + 8> D> +
(log, k)n’d?> D*L), respectively. O

2.2. A Product Formula

In what follows, we establish a product formula for the Chow form of an affine
variety. This formula is an analogue of the classical Poisson formula for the resul-
tant [15, Chapter 3, Theorem 3.4]. It describes, under certain conditions, the Chow
form in a recursive manner.
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Let V C A" be an equidimensional affine variety of dimension r and degree D
which satisfies Assumption 1.2. Let Uy, ..., U, be r 4+ 1 groups of n 4 1 variables
eachandlet L; := Ujo + U1 x;1 + -+ + Ui x,,, 0 < i < r, be the affine linear
forms associated to these groups of variables. Set K := Q(Uy, ..., U,_;) and let
1 (V)¢ denote the extension of the ideal of V' to the polynomial ring K [x1, .. ., x,]
(or to any other ring extension of Q[x, ..., x,] which will be clear from the
context). We also set VO := V(I (V) )NV (Lo, ..., L) C A"(K), whichisa
zero-dimensional variety of degree D.

For 0 <i <r,wesetV; :=VNV(xiy1,...,x) C A" whichisanequidimen-
sional variety of dimension i and degree D as V satisfies Assumption 1.2. Observe
that these varieties satisfy Assumption 1.2 as well. Let K; := Q(Uy, ..., Ui_1) —
K and set

V2= VI (V) NV (L, ..., Li—) C A*(K)).

Observe that Vi0 is also a zero-dimensional variety of degree D. Under these
notations we have that V(? =V, K, = K, and VrO =V,

Proposition 2.5 (Product Formula). Let V C A" be an equidimensional variety
of dimension r which satisfies Assumption 1.2. Let notations be as in the previous
paragraph. Then

l_[ Chv/,“(Ui)
i=0

Chy(Uo, ... U) ==
]_[ Chyo(e;)
i=1 !

S Q(UO» e Ur—l)[Ur]-

The proof of this fact is based on the following lemma:

Lemma 2.6. Let V C A" be an equidimensional variety of dimension r. Let
Fy € QUy, ..., Ul and Fyo € K[U,] be Chow forms of V and V°, respectively.
Then there exists .. € K* such that

fV:)»fvo.

Proof. As before, we denote by I(V)¢ the extension of the ideal (V) to a
ring extension of Q[xy, ..., x,] which will be clear from the context. Let U l.h“,
0 <i < r, denote the group of n variables U;\{U;o}. We consider the map

QlUo, ..., Udlx1,s - xul/L(V)E + (Lo, ..., L))
— QU™ ..., U™ [xy, ..., x,0/I(V)®

defined by U,'() ad —(U,-1x1 + .. +U,',,)C,1), U,'j (g U,'j and Xj > Xj for
O0<i<r,1<j<n.
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As it is aring isomorphism, 1 (V)¢ + (L, ..., L,) is aradical ideal. Following
notations in Subsection 1.1, it follows that this ideal coincides with the defining
ideal of the incidence variety ®y and, therefore,

(Fv)=U (V) + (Lg, ..., L)) N Q[Uy,...,U,]l.

Similarly,
(Fvo) = (V) + (L)) N K[U,].

We have that 7 (V)® + (Lo, ..., L,) C I(V%®+ (L,) and so (Fy) C (Fyo), that
is, there exists A € K[U,]\{0} such that 7y = A Fyo. As deg,, Fy = degV =
deg Fyo, A is an element in K*. O

Proof of Proposition 2.5. Let1 <i < r.From Lemma 2.6, there exists ; € K}
such that
Chy,(Uo, . .., U;) = A; Chyo(U;). (1)

Hence Chy,(Uo, ..., Ui_1,e;) = A; Chyo(e;). Now, it is easy to see that Chy,_,
Uy, ..., U;_y) divides Chy,(Uy, ..., U,-I_l, e¢;). From Assumption 1.2, it follows
that deg V;_; = degV; = D and, therefore, both polynomials have the same
degree. Moreover, the normalization imposed on both Chow forms implies that
they coincide. So

Ch\/i,l(UO, ey Ui—l) Z)‘-i ChV,.U(ei)' (2)
From identities (1) and (2) we deduce that

ChV,.(U(),...,U,‘) . Chvl“(Uz)

= . 3)
Chv,il(U(), ey Uifl) Chvl_o(ei)
Multiplying these identities fori = 1, ..., r we obtain
Chy (. ....U) 1—[ Chy,(Up, ..., U) {4 Chvo(U)
CI’ZVO(U()) =1 ChV,-,] (U(), ceey Ui_1) i=1 ChViO(ei)
which gives the formula stated in Proposition 2.5. a
Observe that ChV’_o(U,-) = Hyev,." Li(y) = N‘/io(Li) and Chv’_o(ei) =
]_[V cvo Xi(¥) = Nyo(x;). Thus, Proposition 2.5 can be restated as
[T Ny (Ls)
i=0
Chy (U, ..., Uy) = € QWo, ..., U,-DIU;]. 4)

]_[ Nv,_o(xi)
i=1
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Also, observe that Lemma 2.6 implies the following:
Remark 2.7. The Chow form Chy is the numerator of Nyo(L,).

Unfortunately this norm is a rational function, due to the fact that the map
is not finite but just dominant. The product formula is the tool which enables us to
overcome this difficulty, as it gives an expression for Chy without any extraneous
denominator. Identity (4) enables us to compute Chy as a quotient of power series.
To do so, we state a technical lemma first, that we prove here for lack of reference.

Lemma 2.8. Let V C A" be an equidimensional variety of dimension r which
satisfies Assumption 1.2. Assume that V is Cohen—Macaulay at every point of
Z:=VNV(i,...,x.). Then, the ideal (V) + (x1,...,x,) C C[xy,...,x,]is
radical.

Proof. Let V denote the projective closure of V C A" — P LetZ:=Vn
V(xy,...,x.). The fact that #Z = deg V implies that Z =V NV (xy, ..., x;).
Take &€ € Z and let Q¢ be the primary component of the ideal I(V) +

(xl_, ..., X)) C C[xy,...,x,] which corresponds to £&. We consider the length
L(V,V(x1,...,x);&) which under our assumptions can be defined as
eV, V(xi,...,x); §) = dimg Clxy, ..., x,1/ Qs. ()

By a suitable version of Bézout’s theorem (see [60, Proposition 3.30])

DAV V@ x) ) < deg V.
EeZ

On the other hand, as £(V, V (x1, ..., x,); &) is a positive integer for each & € Z,
and as #Z = deg V, it follows that

DUV V)i ) = deg V.

EeZ
Then £(V, V(xy,...,x.); £) = 1 for all £ € Z, and so (5) implies that Q: =
(x1 — &1, ...,x, —&,) which is a prime ideal.

As I :=1(V)+ (xi,...,x,)is zero-dimensional, it has no embedded compo-

nents. Hence I = N; Q¢ is a radical ideal. O

The following corollary shows that the coordinates of all the points in V;’ belong

to the subring C[[Uy — ey, ..., Ui—1 — &1l N K;, and that there is a one-to-one
correspondence between the points of Z := V N V(xy, ..., x,) and the points
of VY.

Corollary 2.9. Let notations and assumptions be as in Lemma 2.8 and before. Let
0 <i <rand& € Z.Thenthere exists aunique Vé(l) e CllUy—ey, ..., Ui_1—e 11"

such that yg(i) e V%and V;i)(é‘l, s €) =6,
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Proof. Suppose I (V) is generated by the polynomials &, . . ., h,. Since we are in
the conditions of the previous lemma, the Jacobian criterion [19, Theorem 18.15]
implies that the Jacobian matrix associated to the generators iy, ..., h;, X1, ..., X,
of the ideal 7 (V) + (xi, ..., x,) has maximal rank n at £. In other words, there
are n polynomials g, ..., g, among hy, ..., h;, x1, ..., x, such that the associ-
ated Jacobian determinant is nonzero. Now, as the rank of the Jacobian matrix of
hy, ..., h; at £ is bounded by the codimension n — r of V at &, we can assume
without loss of generality that g; := x;, ..., g = x,.

Let
< '(i>
8 J r+l1<i,j<n

be the Jacobian determinantof g, 1, ..., g, withrespect to the variables x, 11, . ..,
x,. Then A(£) # 0 since A coincides with the Jacobian determinant of the system
81y -5 8n-

On the other hand, let A; € K;[x, ..., x,] denote the Jacobian determinant of
the system Lg, ..., Li—1, Xi+1, ..., Xr, &+1, - - - » &n- An easy verification shows
that A; (e, ...,ei—1)(§) = A(§) # 0. The statement follows from the implicit
function theorem (see Subsection 2.1). O

A=

Now, set

W= [ [Nyo(Li) € K[U,]. @ = [[Nyo(x) € K*,

i=0 i=1

so that, by identity (4), Chy := W/®. From Corollary 2.9, ¥ € Q[[Uj — ey,
LR Ur—l - er]][Ur] and ¢ € Q[[UO — €1y, Ur—l - er]]~

The following lemma gives the order of the denominator ® at £ := (ey, ..., e,)

€ A7 "D together with its graded component of lowest degree:

Lemma 2.10. Let notations be as in the previous paragraph andlet D := deg V.
Then ordg (®) = r D and its graded component of degree r D is

®,p =+ [ [Chy,(Ui-0).

i=l1

Proof. Clearly, ordg(®) = Y _;_, ordg (Nyo(x;)).
Let 1 <i < r.Recall that Nyo(x;) = Chyo(e;). From identity (3) in the proof
of Proposition 2.5 we have

Chv’_o(é’,‘)ChVi (Uo, ey U,‘) = ChV‘U(U,) Ch\/i,l(UO, ey Ui—l)-

As Chv‘u(e()) = l, then ChV‘O(Ei) ChV, (U(), ey Ui—l7 6()) = Chvl.i](U(), oo
U;_1). We also have that

Chy,(ei, ... e, eq) = £Chy, (e, €1, ...,e) = £1.
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This shows that Chy. (U, ..., Ui_1, ep) isinvertible in Q[[Up —ey, . .., Ui—; —e;]]
and, therefore, if m := ordg (Chyo(e;)),

Chyo(e;)) = +Chy, (U, ..., Ui_1) mod Uy —ey,..., Uiy —e)" .
By Lemma 2.6, there exists A;_; € Q(Uy, ..., U;i_»)\{0} such that
Chy,_,(Uo, ..., Ui1) = Ai—1 Chyo (Ui-1).

AsChyo 1 (U;—1) isahomogeneous polynomial of degree D in the group of variables
U;_; and does not depend on U;_,;, it is also homogeneous as a polynomial ex-
panded in U;_; —e;. Then, the order of Chy, | ate; with respect to the group of vari-

ables U;_; equals D. On the other hand, we have that Chy, (e;, ..., e, Ui_1) =
=+ Chy,(U;—1) # 0.Thisimplies that the series Chy, , inQ[[Up—ey, ..., Ui—1—e;]]
has a term of degree D depending only on the group of variables U;_; — e¢;. We

conclude that m = D and
(Nyo(xi))p = (Chyo(ei))p = £(Chy,_, (Vo, ..., Ui—1))p = £ Chy, (Ui-1).

Therefore, ordg(®) = >";_, ordg(Nyo(x;)) = rD and the graded part of lowest
degree of @ is ®,p = [ /-, (Nyo(x))p = % [}, Chy,(Ui—1). O

2.3. The Algorithm

Here, we are going to put the previous results together in order to obtain the
algorithm underlying Main Lemma 2.3 and to estimate its complexity.

Let notations be as in Main Lemma 2.3. As we have already noted, the imposed
conditions imply that both V and Z have no component in the hyperplane {x, = 0}.
Hence V equals the projective closure of its affine part V,, := V\{xo = 0} and so
both their Chow forms coincide. Hence we concentrate without loss of generality
on the affine case. We use affine coordinates and keep the notation of the previous
subsection. From identity (4), we have that

[T Nyo (L)
Chy = =

Now, we approximate the norms appearing in this formula.
Set

V. i=VUIVHHYNV(Lo,...,Li—)) c Al+D o A",

The map ;: V; — A/*+D defined by (U, x) + U is dominant of degree D :=
degV.WesetZ:=Vy=VNV(xy,...,x,) CA"andlet E; := (ey,...,¢€;) €
AIFD Then

Z =n; () ={E} x Z,
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and so this fiber is a zero-dimensional variety of cardinality D. Furthermore, it is
easy to check that

Lo,....Li—t, Xix1, s Xy frgts oo fu € QLU ..., Uimtlx1, - .+, X4l

is a system of local equations of V; at Z;.

Since, by definition, Ny, (x;) and Ny, (L;) coincide with Nyo(x;) € Q[[Uy —
er,...,Ui_1 —e¢]land Nyo(L;) € Q[[Uy — ey, ..., U; — ei+1]j, respectively, we
can compute any approximétion of the latter applying Procedure Norm (Subroutine
6) modulo a change of variables (Uy, . .., U;) — (Up+ey, ..., Ui+e;+1) (in order
to center the series at 0). We multiply the computed approximations for0 <i <r
to obtain rational functions ¥ and ¢ which approximate the power series

Vo= [[Np(L) € QIlUy —er, ..., Uy — e MU,
i=0

o = l_[N‘,iu(xi) €QIUy—ei,..., U1 — /1%,
i=1

respectively.

From these approximations, we compute the graded parts of ® and ¥ of
degrees between rD and (2r + 1)D centered at (E,0) € AU+DO+D (where
E := (e1,...,e) € A""*D) by applying Procedure GradedParts (see Subsec-
tion 1.4).

By Lemma 2.10, we have that ord(g o) (®) = ordg(P) = rD. We also have
degChy = (r + 1) D. We use this information together with the obtained graded
parts in order to apply Procedure PowerSeries (Subroutine 4). This yields a poly-
nomial Q € Q[Uy, ..., U,] such that

Q — (DYL;LI)DH Chv.

Again, from Lemma 2.10, the denominator CIDf’DJrI)D+1 does not vanish at E® :=

(eg, ..., e0) € AT0TD We apply Procedure PolynomialDivision (Subroutine 2)
to the polynomials Q and CDYJI)DH and the point E°.

We summarize this procedure in Procedure ChowForm (Subroutine 7) which
computes the Chow form of an affine equidimensional variety V satisfying
Assumption 1.2.

Proof of Main Lemma 2.3.  As we have already observed, we may suppose with-
out loss of generality that V is an affine variety and that the polynomials f, 1, ...,
fn are in Q[xy, ..., x,]. We apply Procedure ChowForm (Subroutine 7) to V in
order to compute its normalized Chow form. The correctness of this procedure
follows from our previous analysis. The announced complexity is a consequence
of the complexity of the subroutines we call during this procedure:

e By Lemma 2.4, the complexity of lines 1 to 6 is of order O(r log, (r D)n’d?
D*L). The products in lines 7 and 8 do not change this estimate.
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Subroutine 7. Chow form from a fiber and local equations.

procedure ChowForm(n, x,r, D, p, v, f,d)

# n is the number of variables x := (xq, ..., x,),

# r, D are the dimension and the degree of V, respectively,

#p e Q[r], veQ[t]" is a given geometric resolution of the fiber Z,
#f=fra1r---5 fu) €Qlxy, ..., x,]"" is a system of local equations of V at Z of
# degrees bounded by d.

# The procedure returns the normalized Chow form Chy .

1. for i from 1 to r do

2. ((p(1>, gol.(z)) = Norm(x;, 1,m, X, p, v, Loy ooy Lic1y Xig1s o oo s Xy fralseovs furd,s
Q2r+1)D);

3. od;

4. for i from O to r do

5. (1//,(1>, wi(z)) = Norm(L;, 1,n,x, p,v, Lo, ..., Li— 1y Xig1y oo os Xy frats-nvs fus
d, 2r +1)D);

6. od;

700 =TT 0" e =TT 0

8. 1//(1) :1_[:=()¢i(1)’ w(Z) 1—[ 1//(2)'

9. (g, ..., Parriyp) == GradedParts(ga(” 0?, (ey,...,e), 2r +1)D);

10. (Wo, ..., Ya,4np) ;= GradedParts(y D, ¥ @, (ey, ..., e, 0), (2r + 1)D);

11. Q = PowerSeries((r + D)(n + 1),rD,(r + 1)D,®,p,..., Pory1p,

Y.p,.... Yortnp);
12. Chy := PolynomialDivision(Q, CD(H")DH (r+ 1D, (e, ...,en));
13. return(Chy);

end.

e The computation of the graded parts in lines 9 and 10 has complexity O (3
log,(rD)n’d*DPL).

e Finally, the subroutines PowerSeries and PolynomialDivision in lines 11 and
12 add complexity O(r® log,(r D)n’d* D' L).

We conclude that the overall complexity is O(r® log,(r D)n’d*D''L). O

We directly derive the following estimate for the length of an slp representation
of the Chow form of an equidimensional variety:

Corollary 2.11. Let V C P" be an equidimensional variety of dimension r and
degree D. Let fr11, ..., f, € (V) be a system of local equations at a dense open
subset of V, encoded by slp’s of length bounded by L. Then, if d := max{deg(f;) :
r+1<i <n},wehave

L(Fy) < O log,(rD)n’d*D"'L).
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Proof. Let £y,...,4, € Q[xo,...,x,] be linear forms such that Z := V N
V£, ..., %) isazero-dimensional variety of cardinality D. We can choose these
linear forms so that Z lies in the dense open subset where f, .1, ..., f, isasystemof
local equations. Furthermore, let £y, £,41, ..., £, be linear forms which complete
the previous ones to a change of variables such that Z N {¢, = 0} = . Then V
satisfies Assumption 1.2 with respect to these variables, and the statement follows
directly from Main Lemma 2.3. O

3. The Computation of the Chow Form

We devote this section to the description and complexity analysis of the algorithm
underlying Theorem 1. The first subsections gather some results which lead to the
proof of the theorem.

3.1. Geometric Resolutions

Geometric resolutions where first introduced in the works of Kronecker and Konig
in the last years of the nineteenth century. Nowadays they are widely used in com-
puter algebra, especially in the zero-dimensional case, but there are also important
applications in the general case. We refer to [26] for a complete historical account.

In what follows we recall how to compute any—sufficiently generic—geometric
resolution of an equidimensional variety from a Chow form in polynomial time.
This computation and the procedure described in Section 2 imply that, from the
point of view of complexity, Chow forms and geometric resolutions are equivalent
representations of an equidimensional variety.

Let V C A” be an equidimensional affine variety of dimension r and degree
D.For0 <i <r,let L; denote, as usual, the generic affine forms. Let ¢; € Q.
We set

li:=Li(c;)) =cio+citxi + - +cinxn € Qlxy, ..., x,l.

We assume that the projection map

Tty V —> A, x> (l(x), ..., £ (x))
is finite, that is, the affine linear forms ¢, ..., £, are in Noether position with
respectto V. Let yj, ..., y, be new variables. Set

K :=QU1, ..., ), L=QW,....¢) Qqu,.. QV]
and consider the morphism

K — L, yi = £
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Then K — Lisafiniteextensionofdegree[L : K] < D.Weassume, furthermore,
that ¢, is a primitive element of this extension, that is, L = K[£g].
Then the geometric resolution of V associated to £ := ({y, ..., £,) is the pair

p = pve € K[t], w = wy, € K[t]",

where p is the monic minimal polynomial of £, with respect to the extension K —
L,and w = (wy, ..., w,) verifiesdegw; < [L : K]and p’'(€o) x; = w;({y) € L
for 1 <i < n, where p’ := dp/dt. These polynomials are uniquely determined
and, because of the Noether position assumption, we have that p, w; lie, in fact,
in Q[yy, ..., y.1[t], see, e.g., [30, Section 3.2].

A geometric resolution gives a parametrization of a dense open set of V in
terms of the points of a hypersurface in A’*!: there is a map

V(pt, yi, .., y\V(P' (31, - 90) = VAV(P (Lo(x), €1(x), ..., £:(x))),

w
(tayla-"vyr) = _/(t7y1?'-'5y)‘)'
p

Note that, in case the considered variety is zero-dimensional, this definition
of geometric resolution essentially coincides with the one given in Section 2: the
passage from one to the other can be made by considering the resultant with respect
to the variable ¢ between p and p’.

The following construction shows that the geometric resolution associated to
the generic affine linear forms Ly, ..., L, can be expressed in terms of the char-
acteristic polynomial of the variety and, hence, in terms of the Chow form:

Let Uy, ..., U, ber+ 1 sets of n 4 1 variables which correspond to the coordinate
functions of ACtD@+D and let T := (Ty, ..., T,) be a set of r + 1 variables which
correspond to the coordinate functions of A"*!. We recall that a characteristic
polynomial Py € Q[Uy, ..., U]Ty,...,T,] of V is defined as any defining
equation of the Zariski closure of the image of the map

oy A(r+1)(n+l) XV — A(r+l)(n+1) X Ar-}—l’
(M(),...,Mr; S) g (MO, -~-v“r; Lo(u0’$)7~"9 Lr(“raf))a

which is a hypersurface. This is a multihomogeneous polynomial of degree D
in each set of variables U; U {T;}. Its degree in the group of variables T is also
bounded by D.

A characteristic polynomial of V can be derived from a Chow form Fy. For
1<i<rweset¢ = Uyo—T;,U,...,U;). Then

Py = (=D Fy (o, ..., &) (6)

is a characteristic polynomial of V.
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Set Py :=ap TOD + - -+ + ag for the expansion of Py with respect to Tp. Then
ap lies in Q[Uy, ..., U,]\{0} and, in fact, it coincides with the coefficient of U(f())
in Fy, that is,

aD(Ulv'-'5Ur)=fV(605 Ul"'~7Ur)'

In case V satisfies Assumption 1.2, we define the characteristic polynomial of V
as

(=DPChy (o, ..., &)

where Chy is the normalized Chow form of V. We refer to [43, Section 2.3.1] for
further details as well as for the proof of the stated facts.

Lemma 3.1. Let V C A" be an equidimensional variety of dimension r and
degree D. Let Uy, ..., U, ber +1 sets of n + 1 variables and let Ly, . . ., L, be the
generic affine forms associatedto Uy, . .., U,.Set E == Q(Uy, ..., U,) and let V*
denote the Zariski closure of V in A" (E). Let Ty, . .., T, be new indeterminates.
Then the geometric resolution of V¢ associated to Ly, . .., L, is given by

P o= D BT, TUT.

ap
1 Py 0Py
Wi =—-—— y...,—— | € E[Th, ..., T]1To]",
ap <3U01 3U0n) i I(To]

where Py is a characteristic polynomial of V and ap is the leading coefficient of
Py with respect to Ty.

Proof. Using the fact that the extended ideal 1 (V)¢ C El[x, ..., x,] is radical,
it is easy to check that 7 (V®) = I (V). Consider then the morphism

A:=E[T\,...,T,] — B:=E[x,...,x,]/1(V)¢, T; — L;(U;, x).
Our first aim is to prove that this is an integral inclusion or, in other words, that

the projection map 7z, ..1,y: V¢ — A"(E) is finite.
By definition

PUo, ..., U)(Lo(Up, x), ..., L,(Ur,x)) =0 mod (V) ®qp QUU)[x].
(7
Specializing Uy by the (i 4 1)th element of the canonical basis e; in this identity,
we deduce that P(e;, Uy, ..., U)(To, T, ..., T,) € A[To] is a monic equation
for x; fori =1, ..., n. Therefore A < B is an integral extension.

Set £ := E(T},...,T;) and L := K ® 4 B. It is immediate that P := Py /ap
is a monic polynomial equation for L with respect to the extension K < L. As
A < B is an integral extension, from the definition of Py we deduce that P is
the minimal monic polynomial of L. This implies that [£ : K] = D and that L,
is a primitive element of this extension.
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Write
Q. %) :=PyWo, ... U)(LoWo, %), .., LUy, x)) = Y _ by UJ
B

with bg € Q[Ui, ..., Ullx1,...,x,). As bg € (V) C Q[Uy,..., U]
[x1, ..., x,] for all 8,

00U,

W) 1 vy c Q... Unllxre o oxs]  for i=1.....n.
Therefore, dQ (U, x)/dUy = 0in L for 1 < i < n. Then the chain rule implies
that the identity

v v L, oy x = -2 W, Lw. )
) s X Xi = — ) , X
Ty dUg;
holds in £ and the lemma follows. O

Now we show how a particular geometric resolution can be obtained by direct
specialization of the generic one. Using the same notation as at the beginning
of this subsection, we will assume that V. NV (£, ..., £,) is a zero-dimensional
variety of cardinality D. This condition is satisfied provided that ¢, ..., ¢, are
generic enough [43, Proposition 4.5]. After a linear change of variables, we may
assume without loss of generality that ¢; = x; fori = 1, ..., r, so that the stated
condition is Assumption 1.2.

Thus, for the rest of this section we fix the following notations:

Z:=VNV(xy,...,x), K :=Qxy,...,x), L = KQqy,,.. 1 QIV].

We also assume that £y = Lo(co, x) € Q[xy, ..., x,] separates the points of Z.
This is also a generic condition: if we set p := discry, Pz € Q[Up]\{0}, this
condition is satisfied provided that p(cp) # 0.

These two conditions ensure the existence of the associated geometric resolution
of V:

Lemma 3.2. Let V C A" be an equidimensional variety of dimension r and
degree D which satisfies Assumption 1.2. Let £y := Ly(co, x) € Q[xy, ..., x,] be
an affine linear form which separates the points of Z.

Then the projection map w: V. — A", w(x) = (x1,...,x,) is finite and £y
is a primitive element of the extension K — L. The geometric resolution of V
associated to £ := (£g, X1, ..., X,) is given by

p = Py(co,er,...,e)t,x1,...,%) € Qxy,...,x]t],

(8PV 0Py
w = — | — —_—

8U01’ M) aUOI.L)(CO’EI’ ""er)(t5-xla "'7-xr) € Q[-xla "-7-xr][t]nv

where Py is the normalized characteristic polynomial of V.
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Proof. The fact that 7 is finite follows from [43, Lemma 2.14]. On the other
hand, the normalization imposed on Py implies that

po(t) := p(t,0,...,0) =Py(co, e1,...,€)(,0,...,0) € Q[t]

is a monic—and thus nonzero—polynomial of degree D which vanishes on £y(§)
for all £ € Z. The hypothesis that £, separates the points of Z implies that py is
the minimal polynomial of £y over Z; in particular, it is a squarefree polynomial
of degree D and so, as p is monic,

0 # (discr po) = ((discr; p))(O,...,0).

In particular, discr; p # 0, and thus p is also a squarefree polynomial which
annihilates £y over V. Now, as the map r is finite, the minimal polynomial m,, €
K[t] of £y lies in Q[xy, ..., x,][¢]. Hence m,, (0, ..., 0, ¢) vanishes on £ (&) for
all £ € Z. This implies that deg, my, = D. As p is a monic polynomial of degree
D int, then p = my,. So £ is a primitive element of the extension K < L, and
p is its minimal polynomial.

Using the same notation of Lemma 3.1 we have

d PV 0l PV

— (U, L(U, ;== U, LU, eL.

T, (U, L(U, x))x T (U, L(U, x))
As this identity involves only polynomials in Q[Uy, ..., U,][xy, ..., x,], it can be
directly evaluated to obtain the parametrization w. O

In particular, this shows that the tofal degree of the polynomials in the geometric
resolution is bounded by deg p < D and degw; < D (see also [30, Proposition
3]). Lemma 3.2 can be applied directly to compute a geometric resolution of an
equidimensional variety V which satisfies Assumption 1.2 from a given Chow
form of V:

Corollary 3.3. Let notations and assumptions be as in Lemma 3.2. Suppose
that there is given a Chow form Fy of V, encoded by an slp of length L. Then,
there is an algorithm which computes a geometric resolution of V associated to
£ within complexity O(nL). All polynomials arising in this geometric resolution
are encoded by slp’s of length O(L). 0

Lemma 3.2 also yields, from Chy, a geometric resolution of the fiber Z as-
sociated to an affine linear form £y, as Chz(Uy) = Chy(Uy, ey, ..., e,). This is
summarized in Procedure GeomRes (Subroutine 8).

In Procedure GeomRes (Subroutine 8), as we do in all zero-dimensional situ-
ations, we use the definition of geometric resolution stated in Section 2 to avoid
divisions by p’. In line 8 of this subroutine, Res(f, g, d, d,) is a procedure that,
using basic linear algebra, computes (p, g1, g2) where p is the resultant between
the univariate polynomials f and g of degrees d; and d,, respectively, and ¢, and
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Subroutine 8. Computing a geometric resolution of a fiber.

procedure GeomRes(n, r, D, Chy, &, ¢)

# n is the number of variables,

# r, D are the dimension and an upper bound for the degree of V, respectively,

# Chy is the normalized Chow form of V,

#&:=(&,...,&) € A suchthat#Z; = deg V,where Z; := VNV (x; =&, ..., x,—&),
#co e QU s.t. £y := Lo(cy, x) is the considered affine linear form.

# The procedure returns (Dy, p, v), where Dy is the degree of V and (p, v) € Q[¢]"* is
# the geometric resolution of Z; associated to £ in case £, separates the points in Z.

# Otherwise, it returns error.

1. P(Uo, t) :=Chy((Ug —t, Uo1, ..., Uo), e1 — &req, ..., e, — & e9);

2. (po, .-, pp) := Expand(P(co, 1), t,0, D);

3. Dy:=D;

4. while pp, = 0and Dy > 0do

5. D() = DO — 1,

6. od;

7. pi= (=D P(co, 1);

8. (0, q1,q2) :=Res(p, p’, Dy, Dy — 1);

9. if p =0 then

10. return (“error”);

11. else

12. Wy, ..., wp) = ((=DPFIP/dUy (o, 1), ..., (=DPFIP /3Ty, (co, 1));

13. (v1,...,v,) == Mod((1/p) qawy, p,2Dg — 1,Dy),. .., Mod((1/p) g2 w,, p,
2Dy — 1, Dy));

14. return(Dy, p, vy, ..., V,);

end.

q» are polynomials of degrees bounded by d, — 1 and d; — 1, respectively, satis-
fying p = g1 f + g2g. In line 13, Mod(f, g, di, d>) is a procedure that computes
the remainder of the division of the polynomial f of degree bounded by d; by the
polynomial g of degree bounded by d5.

Proposition 3.4. Let V C A" be an equidimensional variety of dimension r and
degree bounded by D. Let (&, ...,&) € A" be such that Z¢ := V N V(x; —
&, ..., x, — &) is a zero-dimensional variety of cardinality deg V. Assume we
are given both an slp of length L encoding Chy and the coefficients of an affine
linear form £y € Q[x, ..., x,] which separates the points in Z¢. Then, Procedure
GeomRes (Subroutine 8) computes a geometric resolution of Zg (in the sense of
Section 2) within complexity O(nD>L + D%). [l

On the other hand, our next result shows the converse of Corollary 3.3: To
derive a Chow form from a given geometric resolution is quite standard in the zero-
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dimensional case, but it was by no means clear up to now how to generalize that for
varieties of arbitrary dimension. Here we show how to do that within polynomial
complexity. This is done by deriving, from the given geometric resolution of V,
a geometric resolution of the fiber Z and a system of local equations for V at Z,
which enables us to apply Procedure ChowForm (Subroutine 7).

Proposition 3.5. Let V C A" be an equidimensional variety of dimension r and
degree D which satisfies Assumption 1.2. Let £y € Q[x1, ..., x,] be a linear form
which separates the points of Z.

Suppose that there is given a geometric resolution (p, w) of V associated to
L := (Lo, x1, ..., X,), encoded by slp’s of length L.

Then there is a bounded probability algorithm which computes (an slp for) Chy
within complexity O(n'°D" (D + L)).

Proof. First we derive a geometric resolution of Z associated to £:
We know that Chz(Uy) = Chy (Uy, €1, . .., e,). Thus,

Pz(Up)(t) =Py Uy, e1, ...,e)(t,0,...,0) € QLUs][z].

The geometric resolution (p, w) of V associated to ¢ is given by Lemma 3.2.
Applying the same lemmato Z, we deduce that the geometric resolution (pg, wg) of
Z associatedto £y is po(t) := p(¢,0,...,0) € Q[t]and wy(¢) := w(t,0,...,0) €
QIz]".

Now, let us derive a system of local equations of V at Z:

Let ¢; € Q"' r + 1 < i < n, be such that the affine linear forms ¢; :=
cio+ciixy + -+ cinxy € Qxy, ..., x,] are linearly independent and such that
each of them separates the points of Z.

Forr +1 <i < n define

H; == |p' (M)t — (p' ti(w/p"))(M))],

where M, € Qlxy, ..., x,]°*P denotes the companion matrix of p. Since p’¢;
(w/p’) belongs to Q[x1, ..., x,][t], we see that H; € Q[x1, ..., x,1[¢].
Observe that x; = (w;/p’)(£o(x)) in L implies that in L,

P o)l = ciop'(Lo) + citwi(bo) + - - + cinwn (€o) = (p" Li(w/p"))({).

Thus, as M), is the matrix of multiplication by £, with respect to K < L, we

conclude that H; = | p’(M),) | m,, where my, is the minimal polynomial of ¢;
over K.

Now, each my, belongs to Q[x, ..., x,][t] because ¢; separates the points of
Z and the projection 7: V — A", x — (xy,...,x,) is finite. Therefore, for

r+ 1 <i <n,we can define

1
i = Ki :71‘[,' seees Xp Ki.
fi i=my, (&) )] (x1 xr)(€;)
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These are squarefree polynomials in separated variables which vanish over V, and
so it is easy to verify from the Jacobian criterion that f,., ..., f, is a system of
reduced local equations of V at Z.

Now we show that |p'(M,)|(0, ..., 0) # 0 and, hence, we can use the point
(0, ..., 0) to perform Procedure PolynomialDivision (Subroutine 2) in order to
obtain division free slp’s for f,.i, ..., f,: There exist a,b € Q[xy, ..., x.][¢]
such that discr(p) = a(t) p(t) + b(t) p’'(¢), thus discr(p) Id = b(M,) p'(M,,).
On the other hand, the fact that deg Z = degV implies discr(p)(0,...,0) =
discr(pg) # 0. Therefore, |b(M,) p'(M,)|(0,...,0) = (discr(pg))P # 0.

Finally, we apply procedure ChowForm (Subroutine 7)to Z and { f,+1, - . . , fu}-

Let us decide now the random choices in order to ensure that the algorithm has
an error probability bounded by %:

We need ¢,41,...,c, € Q"' satisfying the stated conditions of independence
and separability. These conditions are satisfied provided that

#0,

p(Cry1) -+ p(cn) ‘(Cij) e

where p := discr; Pz € Q[Up]\{0}. As Pz is an homogeneous polynomial of
degree D anddeg, Pz = D,deg p < D(2D—1). Thus the degree of the polynomial
giving bad choices is bounded by (n—r) D(2D —1)+(n—r). We choose £ := 8n D?
in order to apply the Schwartz lemma.

Now we compute the complexity of the algorithm:

The dense representation of the geometric resolution of Z associated to £y is
computed within complexity O(nD>L) (using Procedure Expand).

The construction of the random choice for the affine linear forms ¢, 1, ..., €,
is not relevant here. The computation of each polynomial H; requires O(D*)
operations for the computation of the determinant plus the computation of each
coefficient of the matrix, that is, O(D?L) more operations, Hence, computing H;
requires O(D*(D + L)) operations.

By Lemma 1.7, taking into account that the total degree of each f; is bounded
by D (since it is the minimal polynomial of the affine linear form ¢;), and that the
lengths of H; and | p’(M),)| are of order O(D*(D + L)), the complexity of the final
division for computing each f; is O(D?(D + D*(D + L))) = O(D>(D + L)).
Finally, Lemma 2.3 gives the final complexity O(r® log,(r D)n’ D* D3(D+L)) =
Om'*D(D + L)). O

3.2.  Intersection of a Variety with a Hypersurface

Let V € A" be an equidimensional variety defined over Q, and let f € Q[xy, ...,
X,] be a nonzero divisor modulo 7 (V). In this subsection we compute, from the
Chow form of V and the equation f, a Chow form of the set-theoretic intersection
VNV(f) Cc A" In order to do this, we use generalized Chow forms, which we
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define now. We refer to [50] and [43, Section 2.1.1] for a more extensive treatement
of these generalized Chow forms.

We assume that dim V = r and that deg f < d. As before, fori =0,...,r,
we introduce a set U; = (U;g, ..., U;,) of n + 1 variables; we introduce also a set

U(d), of (d ;Il_ n) variables. We set

L, =Ujqo+Ujxi +---+ Uppx,, F,. = Z U(d)ra-xav

lee|=d

for the generic affine linear forms in n variables associated to U; and the generic
polynomial of degree d in n variables associated to U (d), .

d
Set N:=r(n+1)+ < + n) and let W C AN x V be the incidence variety
n
of Ly, ..., L,_y, F, with respect to V, that is,

W= {(uo, ..., up_1, u(d),; &) € AV x A";
S S V, LO(MO, %') = 0, ey Lr—l(”r—l,s) — 0’ Fr(u(d)r,g) _ 0}

Let: AV x A" — A" denote the canonical projection onto the first coordinates.
Then 7 (W) is a hypersurface in AY. A generalized Chow form or d-Chow form of
V is any squarefree polynomial 7, v € Q[Uy, ..., U,_1, U(d),]definingm (W) C
AN. A d-Chow form F,y happens to be a multihomogeneous polynomial of
degree d deg V in each group of variables U;, and of degree deg V in the group
U(d),. If the variety V satisfies Assumption 1.2, we define the normalized d-
Chow form of V as the unique d-Chow form Ch, y € Q[Uy, ..., U,_1, U(d),] of
V satisfying Chy v (eo, - - ., er—1, e(d)) = 1, where e(d) is the vector of coefficients
of the polynomial x¢.

Let V and V(f) denote the closure in P* of V and V(f), respectively. Set
vVnv(f) = Uc C for the irreducible decomposition of VNV(f) C P and, for

each irreducible component C, let F¢ € Q[Uy, ..., U,_;] denote a Chow form of
C. Then [50, Proposition 2.4] states that
Chay W, ..., Ury, f)=x [ [ F¢° ®)
c

for some L € Q* and some positive integers m¢c € N. (Here we wrote Chy vy
Wy, ..., U,_1, f) for the specialization of the group U (d), into the coefficients of
the polynomial f.) Onthe other hand, as VNV (f) = . ¢(xo=0y € the polynomial

Fe
C ¢ {xo=0}

is a Chow form of V. N V(f).

Hence, in order to compute Fyny ), the goal is to compute first Chy v (f) =
Chy v Uy, ..., U,_1, f),thencompute its squarefree part and, finally, eliminate the
factors coming from the Chow forms of components contained in the hyperplane
{xo = 0}.
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The following result enables us to compute a d-Chow form from the standard
one. We recall some of the notation of Subsection 2.2: for an equidimensional
variety V. C A" of dimension r and degree D satisfying Assumption 1.2, we
set K := Q(Uy,...,U,_1) and I(V)® for the extension of the ideal of V to
K[xy,...,x,]. Also recall that

VvO.=vamWm®HnNV(Ly,...,L_1) CA"(K),
is a zero-dimensional variety of degree D, and that Nyo refers to the Norm as

defined in Subsection 2.1.

Lemma 3.6. Under Assumption 1.2, we have

Chay = Chy (U, ..., U,_1, e0)* Nyo(F,).

Proof. LetChy yo € K[U,]bethe d-Chow form of VY. First, one shows—exactly
as in Lemma 2.2—that there exists A, € K* such that Chyy = Ay Chy yo. Set
e(d)o for the vector of coefficients of the polynomial xg. Evaluating this identity
at U(d)og — e(d)y we obtain

Chav(Uo, ..., U1, e(d)o) = LqgChyyo(e(d)o) = Aq.

Consider the morphism g,4: Q[Uy, ..., U,_;,U),] — Q[Uy,...,U,_1,U,]
defined by 04(L;) = L; for0 <i <r — 1and g,(F,) = Lf. Then 0,(Chy.y) =
Ch“i, (see [43, Lemma 2.1]), which implies that
Chgy Uy, ..., U,_1,e(d)o) = 04(Chay)(Uy, ..., U, _1,e)
= Chy(Uy, ..., Uy1, e0)".

Therefore, Ay = Chy (U, ..., U,_i, ey)?. The statement follows immediately
from this identity and the observation that Ch, yo = Nyo(F,). O

To clean the components of V NV (f) lying in the hyperplane {xy, = 0} we use
the following criterion:

Lemma 3.7. Let W C P" be an irreducible variety of dimension r — 1. Then
W C {xo = 0} if and only if Fw does not depend on the variable Uyy.

Proof. In case Fy does not depend on Uy, we have that
fW(eO, U], ey Ur—l) = O’

which is equivalent to the fact that W is contained in the hyperplane {xy, = 0}.
On the other hand, assume that W C {xo = 0} = P"~!. Then Fy coincides
with the Chow form of W considered as a subvariety of this linear space, see, e.g.,
the proof of [43, Lemma 2.6]. Hence Fy does not depend on Uy and, as a matter
of fact, it does not depend on any of the variables U;o for 0 <i <r — 1. O
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Let again fc € Q[Uy, ..., U,_{] denote a Chow form of an irreducible com-
ponent C of V N V(f) C P". Recalling Identity (8), set

1—[ Fe and 1_[ FEe.

CC{xo=0} C¢ {xo=0}

Then Chy v (f) = L F1F, for A € QF, and the squarefree part (F,)eqg of F is a
Chow form of V N V(f). By the previous lemma, JF; does not depend on Uy,
while all the factors of F, do.

Therefore
dChav(f) N 0F>
e  'oUp
and so
Chav(f)
Fvavp) = 2v(f &)

ged(Chy,y (f), 3Chqa,v (f)/3Uwo)
is a Chow form of V. N V().

Lemma 3.8. Let V C A" be an equidimensional variety of degree D which

satisfies Assumption 1.2 and let f € Q[xy, ..., x,] of degree bounded by d be
a nonzero divisor modulo 1(V). Assume that Chy and f are encoded by slp’s of
length bounded by L.

Then there is a bounded probability algorithm (Procedure Intersection (Subrou-
tine 9) below) which computes the Chow form Fyny ) of the intersection variety
V NV (f) within (worst-case) complexity O((ndD)'’L) .

Proof. Our first goal is to compute Chy v (f) € Q[Uy, ..., U,_1] by means of
Lemma 3.6. To obtain Nyo( f) we derive first a geometric resolution of VO from its
characteristic polynomial and Lemma 3.1. It is easy to check that the polynomial

P(t) = (_I)DChV(U()v e Ur—l’ (UrO — 1, Urla B Urn))
is a characteristic polynomial of VO with leading coefficient a := Chy (U, .. .,

U,-1, eo).
Then, the geometric resolution of V° associated to L, is given by

ép(t) € K[U,][r]  and %w(t) € K[U,][t]"

ap ap
where w := — e .
U oU,,

For y € VY, if we denote by f” the homogeneization up to degree d of f with
respect to a new variable x( and p’ the derivative of p with respect to ¢, we have

PN f) = "D L), wi(Lry (), « .oy wa(Lr (1))
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Thus, if M denotes the companion matrix of (1/a)p(¢), we get

1P’ DI Nyo(f) = | (p' (M), wi (M), ..., wy(M)].

In order to avoid divisions (since M € K[U,]”*P), we replace M by M, :=
h

aM and p’, wy, ..., w, by their homogeneizations (p')", w!, ..., w” up to de-
gree D such that My := aPp' (M) = (p))(a 1d, M,) and for 1 < i < n,
M; := aPw;(M) = w!(a 1d, M,). Therefore, multiplying both sides by a*”’ =
|a® 1d |, we obtain

|Mol” Nyo(f) = | f" (Mo, My, ..., My)].
Finally, from Lemma 3.6, we conclude that

ad | f'" (Mo, My, ..., M,)|
| Mo|?

€ QUo, ..., Ur-1l.
(10)
We compute this quotient applying Procedure PolynomialDivision (Subroutine 2).
Next we apply Identity (9) to compute a Chow form F := Fyny(s) from
Chg v (f): we first compute the polynomial

Chav(f) = a’ Nyo(f) =

G = ged(Cha,v (f), 9Cha,v (f)/3Uo0) an

applying Procedure GCD (Subroutine 3) and then perform the division F =
Chg v(f)/G applying again Procedure PolynomialDivision.

Now let us calculate the number of points necessary to ensure that the algorithm
has an error probability bounded by %:

First, in order to compute Chy. v (f) weneed u € QU D"+ guch that | Mo|(u) # 0.
But let us observe that in fact |[My|(ey, ..., e, U,) # 0 € Q[U,] (so it is enough
to randomly choose u, € Q"*! such that |My|(ey, ..., e, u,) # 0). This is
due to the fact that a(ey,...,e,) = Chy(ey,...,e,,e9) = £1. Thus Assump-
tion 1.2 implies that Chy(ey, ..., e, U,) = £Chz(U,). Hence, pz(U,,t) =
pley, ..., e)(U,,t)is a characteristic polynomial of Z, whose discriminant does
not vanish, and then the polynomial |My|(ey, ..., e, U,) # 0 € Q[U,]. Now, as
deg |My|(ey, ..., e, U) < D?, taking u, := Random(n + 1, 12 D?), we infer
that, with probability at least 1 — %, the point (eq, ..., e,, u,) is a good base point
to apply Procedure PolynomialDivision and obtain Chy y (f). Next we compute
G applying Procedure GCD [6(1 + log 12)] = 26 times (see Remark 1.6) so that
its error probability is at most 1—12 Finally, as G is a polynomial of degree bounded
by rd D in r(n + 1) variables, choosing u := Random(r(n + 1), 12rd D) we also
guarantee that the probability that u is a good base point to perform the last di-
vision is at least 1 — % Thus, the error probability of the whole algorithm is at

1
most -
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Now let us compute the (worst-case) complexity of this algorithm:

The whole complexity of computing the numerator and denominator in identity
(10)is of order O(n(d> D> L+ D*)) = O(nd*>D*L). By Lemma 1.7 the complexity
of computing Chy. v (f) is of order O((nd D)*(nd D +nd*D*)L) = O(n*d*D°L).
Then, we apply Lemma 1.8 and Proposition 1.5 to compute an slp of length
On’d®D'°L) for G of identity (11) within complexity O(n°d®D'°L).

Finally, when we perform the last division, the overall complexity of computing
Fvavs is of order O((nd D)'’L). O

We summarize the algorithm in Procedure Intersection (Subroutine 9).

3.3. Separation of Varieties

Let V C A" be an equidimensional variety of dimension r. Let g € Q[x1, ..., x,]
\{0}, and let Y be the union of the irreducible components of V contained in V (g)
and let W be the union of the other components. Hence Y and W are equidimen-
sional varieties of dimension r suchthat V. = YU W, Y C V(g), and g is not a
zero divisor modulo 7 (W). The following procedure (Subroutine 10) computes the
Chow forms of Y and W from a Chow form of V' and the polynomial g. For the sake
of simplicity we assume that V—and therefore ¥ and W—satisfy Assumption 1.2.

Lemma 3.9. Let V C A" be an equidimensional variety of degree bounded by
D which satisfies Assumption 1.2. Let g € Q[x1, ..., x,]\{0} of degree bounded
byd and Y and W defined as above. Assume that Chy and g are encoded by slp’s
of length bounded by L.

Then there is a bounded probability algorithm (Procedure Sep (Subroutine 10)
below) which computes the Chow forms Chy and Chy within (worst-case) com-
plexity O((ndD)3L).

Proof. Let Py € Q[Uy,...,U.][To,...,T,] be the normalized characteristic
polynomial of V, as defined in Subsection 3.1 and set P’ := dPy /3 Ty. We consider
the following map, already introduced in Subsection 3.1,

gy AUTVOED sy v (Py),
(u01 M) I’tr; s) = (MQ, M ul‘; LO(“O! 5)9 M) Lr(”l‘v f;-')).

By Lemma 3.1 ¢y is a birational map which in fact is an isomorphism when
restricted to

U := (A"T0HED S VI\V(P' (L, ..., L)) = U := V(Py)\V(P),

with inverse

1 0Py 1 873\/)

v (o, ... up; tg, ... )= | ug, ... U, —— S, ——
v " ' " P Uy, P’ 3Uy,
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Subroutine 9. Intersection with a hypersurface.

procedure Intersection(n, r, D, f,d, Chy)

# n is the number of variables,

# r, D are the dimension and the degree of V, respectively,

# f € Qlxy, ..., x,] is a nonzero divisor modulo 7 (V) of degree bounded by d,

# Chy is the normalized Chow form of V.

# The procedure returns a normalized Chow form F := Fyny s of the intersection variety
#VNOV().

. pi= (—I)DCI’Z\/(U(),...,U,,l,(Uro—l‘, Urlv-“,Urn));
a:=Chy(Uy, ..., U1, ep);

ap ap
W= — yeees B
aL/rl aUrn

1
2
3
4. M, := a CompanionMatrix(p/a);
5. for i from 1 to n do
6
7
8

wf' := Homog(w;, D);

. M; = wf’(a, M,);
. od;

9. (p")" := Homog(dp/at, D);

10. My := (p")'(a, M,);

11. f" := Homog(f,d);

12. My := f"(Mo, My, ..., M,);
13. Hy == |M;|;
14. H, := |M()|;

15. u, := Random(n + 1, 12 D?);

16. if Hy(ey, ..., e, u,) = 0 then

17.  return(“error”);

18. else

19. Chy v (f) := PolynomialDivision(a“ H;, Hz", rdD, (e, ...,e.,u,));
20. G .= GCD(Chdv(f), BChd,v(f)/BUoo, (U(), ey Ur—l)7 rdD; 12),
21. u := Random(r(n + 1), 12rd D);

22. if G(u) = 0 then

23. return(“error”);
24, else
25. F := PolynomialDivision(G, Ch, v (f), r Dd, u);
26. return(F);
end.
Define
Py Py
G:=(P)Yyie)=¢"P. - s — ,
(P Yy (g) =28 0o, 0o,
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Subroutine 10. Separation of varieties.

procedure Sep(n, r, D, g, d, Chy)

# n is the number of variables,

#r, D are the dimension and an upper bound for the degree of V, respectively,
#g€Qlxi, ..., x,]\{0},

# d is a bound for the degree of g,

# Chy is the normalized Chow form of V.

# The procedure returns the normalized Chow forms Chy and Chyy.

. Py :=Chy((Upo — To, Uot, ..., Uo), ..., Upo = T, Upry ..., Upy))s
g" := Homog(g, d);
P P
G=g"(P. -5, ... -7
AUy Uy,

. Py :=GCD(G, Py, (Uy,...,U., Ty,...,T,), (r + )dD);

Pw = Polynom1alD1v1s1on(77y, Py, (r + 1) D, (ey,...,e;0,...,0));
Chy := Py(U)(0)/Py(eq, - .., e; 0,..., 0);

Chy = Pw(U)(©0)/Pw(eg,...,e;0,...,0);

. return(Chy, Chy);

PN LA WD~

end.

where g" := Homog(g, d). Thus ¢y induces an isomorphism between V (g) N U
and V(G)NU. Hence V (Py) equals the union of the components in V (Py) which
are contained in the hypersurface V(G) C AUC+D @+D+C+D "and vV (Py) is the
union of the other components. As Py is a squarefree polynomial we conclude
that

Py
gcd(G, Py)’
and therefore, from Identity (6) of Subsection 3.1, we obtain that

Py := ged(G, Py), Pw =

Fy =PyU)(0) and Fw = PwU)(0)

are Chow forms of Y and W, respectively.
Note that as Py | Py, Py(eo,...,e,0,...,0) # 0, thus e := (e, ..., e, 0,
., 0) is a good base point to apply Procedure PolynomialDivision. Thus the
only probability step of this algorithm is the computation of the Greatest Common
Divisor between Py and G.

Now we estimate the (worst-case) complexity of the algorithm:

The characteristic polynomial Py can be computed from Chy with complexity
O(L) using identity (6) in Subsection 3.1. Its partial derivatives with respect to
Ty and Uyy, . . ., Uy, can be computed within complexity O(n L). The polynomial
G is obtained within complexity O(d*(d + nL)). As deg Py = (r + 1)D and
deg G < d ((r+1)D—1),bothbounded by (»+1)d D, the greatest common divisor
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computation of Py requires (nd D)°(d + L) additional arithmetic operations. From
Lemma 1.7, the polynomial division for Py is then performed within complexity
O((ndD)3L). The final specialization T +— 0 does not change this estimate.
Therefore, the (worst-case) complexity of the algorithm is of order O((nd D)3L).

O

We summarize the algorithm in Procedure Sep (Subroutine 10).

Remark 3.10. In case the variety V does not satisfy Assumption 1.2, this proce-
dure can be modified within the same bounds of complexity so that, from a Chow
form of V, we obtain Chow forms of W and Y. The only problem that may appear
in the previous lemma is that Py (e) may be zero and we will not be able to ac-
complish the polynomial division. To solve this, we can modify Subroutine 10 in
the following way: we choose a random point so that we can apply the polynomial
division subroutine with error probability bounded by % and we change the error
probability of the greatest common divisor computation also by % (by repeating
it several times) in order that the error probability of the whole procedure is still
bounded by 1.

3.4. Equations in General Position

The algorithm we construct in Subsection 3.5 works under some genericity hy-
potheses on the input polynomial system. This is one of the main reasons—but
not the only one—for the introduction of nondeterminism in our algorithm: there
are no known efficient deterministic procedures to obtain these hypotheses from
a given system. In order to achieve them we replace the system and the vari-
ables by random linear combinations. Effective versions of Bertini’s and Noether
normalization theorems enable us to estimate the probability of success of this
preprocessing.

The complexity of our algorithm is controlled by the geometric degree of the
input system, that is, the maximum degree of the varieties successively cut out
by the equations obtained by this preprocessing. To define this parameter, which
is a suitable generalization of the geometric degree of a zero-dimensional system
introduced in [27], we first give the following definition:

Definition 3.11. Let g € Q[xo, ..., x,] be a homogeneous polynomial, let I, C
QIlxo, ..., xs]; be a homogeneous ideal, and let V C P" be a projective vari-
ety. We say that I, is radical of dimension r outside V, := V\V(g) if every
primary component Q of I, such that V(Q), := V(Q)\V(g) ¢ V, is prime of
dimension .

An analogous definition holds for an ideal in Q[xy, ..., x,], and an affine
variety V, C A%.
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Let f1,..., fs, & € Qlxo, ..., x,] be homogeneous polynomials of degree
bounded by d, and set V, = V(f1,..., f5), C IPZ. We assume that V, # P7, that
is, fj # 0 for some j. We also assume without loss of generality deg f; = d for
every j: if this is not the case, we replace the input system by

d—deg f; . .
X; " fis 0<i<n, 1<j<s.

Foray, ..., a,+1 € Q° we set

Qi(a;) :==a;1 i +---+ais [

for the associated linear combination of fi, ..., f;, which—by the assumption
that deg f; = d—is also a system of homogeneous polynomials of degree d.
Let A be the set of all (n+1) x s-matrices A = (ay, ..., a,4)' € QD> such

that the ideals 7;(A) := (Qi(ay), ..., Qi(a)) C Qlxg, ..., x,], 1 <i <n+1,
satisfy:

o V(I11(A))g =V, in ;.
e Forl <i <n,if V(I;(A)), # V,,then I;(A), is aradical ideal of dimension
n — i outside V.

(These are the first genericity hypotheses the polynomials should verify in order
that our algorithm work.)
For every A € A we set §(A) := max{deg V([;(A))g; 1 <i <n-+1}.

Definition 3.12. Keeping these notations, the geometric degree of the system
fi=0,...., =0,  g#0,
is defined as
§:=68(f1,..., fs; & =max{d(A); A € A}.
Note that the Bézout inequality implies § < d".

Remark 3.13. For a system of polynomials Fi, ..., F;, G € Q[xy, ..., x,] (not
necessarily homogeneous) of degree bounded by d, the affine analogue §, of the
geometric degree is defined in exactly the same manner, but without preparing the
polynomials to make their degrees coincide.

In fact, if for 1 < i < s, d; := degF;, d := max;d;, and F', G" ¢
QIxo, ..., x,] are the homogenizations of F; and G, respectively, then

Sar(F1, ... Fyi G)=8(xg " FIL....x * F x0G".

Let
Ve=WVWoU-- UV,
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be the equidimensional decomposition of V, in P, where V. is either empty or of
dimension r, and let A = (ay, ..., a,+1) € A.Fori=1,...,n+1,as [;(A) C
(fi,..., fs), Vo € V(Ui (A)), always holds. Moreover, if V(I;(A)), = V, for
some i, then V(I;(A)); = V, for all j > i. Also, observe that the ideal I;(A)
is generated by i polynomials, so every irreducible component of V (/;(A)) has
dimension at least n — i. Thus, we infer that forr :=n—i, 0 <r <n-—1, we
have

Vi—r(A))g = VUV, U UV,

where V/ is an equidimensional variety of dimension r. (We set V| = ¢ for every
r such that V (1, (A)), = V, since in these cases V, = V, U---UV,,.) From now
on, Q;(a;) will be denoted simply by Q;. The condition that A € A implies that,
incase V. # ¥, Qn_r+1 is not a zero divisor modulo 7 (V,),. In this case, we have

Vr/_l Uv,uv,u...udv, = V(Qi,..., Qn—r+1)g
= (Vr/UVrU"'UVn—l)mV(Qn—r-‘rl)
= (Vr/mV(anrle))UVrU"'Uanla

as for all i, V; C V(Q,—,+1). Hence, since dim(V/ N V(Q,_,4+1)) =r — 1, we
deduce that

VOV (Queyst) = V) UV, UV, (12)
where
V.., = U {C; C componentof VNV (Q,—r11)

NV, U---UV,_) of dimension r — 1}

if, an equidimensional subvariety of V,, U --- U V,_; of dimension » — 1. We set
Vici:=Pand V| :=0.

Now for by, ..., b, € Q" we consider the linear change of variables
yk(bk) = bk0x0+"'+bknxna OSkfn
We say that (b, ..., by,) is admissible if, under this linear change of variables, for

O<r<n-1

e the varieties V/ U V, U \7, satisfy Assumption 1.2; and

e the polynomials Qy, ..., Q,—, € I(V/), are a system of local equations of
ViatZ, ==V N Vi, ..., yr).
We construct the polynomials Qy, ..., Q,+1 and the variables yy, ..., y, by

choosing the coefficient vectors a;, 1 <i <n + 1, and by, 0 < k < n, at random
in a given set. In what follows we estimate the error probability of this procedure:
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Lemma 3.14. Let notation be as in the previous paragraphs. Let N be a positive
integer and let

a; € [0,8Nd+ 1>, 1<i<n+]1,

by € [0,2Nn%d*)" ™!, 0<k <n,

be chosen at random. Then the error probability of A := (ay, ..., a,+1)" being in
A and (by, ..., b,) being admissible is bounded by 1/N.

Proof. The set of matrices A contains in fact a nonempty open set of Q*+Dxs;
by the effective Bertini theorem in [46, Lemmas 1 and 2] or a local version of [43,
Proposition 4.3 and Corollary 4.4] there is a nonzero polynomial F' with deg F' <

4(d 4+ 1)*" such that F(ay, ..., a,41) # 0implies that A = (ay, ..., a,41)" € A.
Assume now that A € A. By the effective Noether theorem version of [43,
Proposition 4.5] there is a nonzero polynomial G € k[Uy, ..., U,] with

n—1
degG <2 ) " rdeg(V/ UV, UV,)
r=0

such that G(by, ..., b,) # 0 implies that undgr the linear change of variables
given by (by. ..., b,), the varieties V., U V/ U V, satisfy Assumption 1.2. Since,
from Identity (12),

deg(V/ UV, UV,) <d degVyyy <d",

deg G < n(n — 1)d*".

Now we will define a polynomial H € k[Uy, ..., U,_{] such that H (by, ...
b,_1) # 0 implies that the second condition for admissibility holds.

Fix r,0 < r < n— 1. We know that (Qi,..., Q@,—,)¢ is a radical ideal
of dimension r outside V, whose associated variety coincides with V, outside
V,. Thus, localizing at any § € V/, & ¢ V,, we get ((Q1,..., Qu—r)g)s =
I(V))g, thatis, Qy, ..., Q,—, is a system of local equations of V at €. There-
fore, it suffices to take new variables yo, ..., y, such that V. NV, N V(y, ...,
¥r) = (. From the definition of V{j, itis clear that VyNV, =@.For1 <r <n—1,
as V, is definable by polynomials of degrees bounded by & and no irreducible
component of V' is contained in V,, there exists a polynomial g, € k[xi, ..., x,]
with deg(g,) < d such that V, C V(g,) and V/ N V(g,) is equidimensional of
dimension r — 1. Let F, € k[Uj, ..., U,] be a Chow form of V/ NV (g,).

bl

Set H = ]_[f;ll F. € klUy,...,U,_1]. The condition H (b, ...,b,—1) # 0
implies that, forevery 1 <r <n — 1, F.(by, ..., b,) # 0 and so,

VNV, N V(yi(b), ..., 1b) CV.NV(Eg)NVyib), ...,y (b)) =0.
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Observe that H is a nonzero polynomial with

n—1

n—1 n—1
degH = Zdeg]—', = Zdeg V:NV(g) < deeg V!
r=1 r=1 r=1

n—1

Zdnfr#»l < (n _ 1)dn

r=1

IA

Therefore, there exists a nonzero polynomial condition of degree bounded by

nn — 1)d* + (n — 1)d" < n%d*"* which ensures that the matrix (by, ..., b,) is
admissible.
The conclusion follows as usual from the Zippel-Schwartz test. O

3.5. Proof of Theorem 1

Let fi1,..., fs, g € Qlxo, .. ., x,] be homogeneous polynomials of degree bound-
edbyd,andset Vy :=V(fi,..., i) C IP’Z. Set § for the geometric degree of the
system f; =0, ..., fy =0, g # 0. The algorithm is iterative and consists of two

main steps, besides the preparation of the input (equations and variables).

The preparation of the input enables us to work with an affine variety W instead
of the input quasiprojective variety V, and local systems of equations of certain
auxiliary varieties appearing in the process.

The first main step computes recursively the Chow forms of a nonminimal
equidimensional decomposition of W. Here the crucial point which controls the
explosion of the complexity is that the size of the input of an iteration does not
depend on the size of the output of the previous step: the input of each recursive
step has the same controlled size.

The second main step clears out extra components and computes the Chow
forms of the equidimensional components of the minimal decomposition of W
from which the Chow forms of the equidimensional components of V, are obtained
straightforwardly.

This is a bounded error probability algorithm whose expected complexity is of
order s(nd 8§)°V L. Its worst-case complexity is s (nd")®V L. For the rest of this
proof, we set N := a0,

Input Preparation

Set V, = Vo U ... UV, for the minimal equidimensional decompositon of V,,
where each V, is either empty or of pure dimension r. First, applying Procedure
Deg described at the end of Subsection 1.3 to fi, ..., f;, we compute with error
probability bounded by 1/(6/N) the exact degree of the polynomials fi, ..., f;
within complexity O(sd*>L + nlog(sdN)). This also states whether these poly-
nomials are the zero polynomial and, therefore, whether V, = ]P’g. In that case,
Fv, = |(Uop,...,Uy,)| and for i < n, Fy, = 1. Thus, with error probability
bounded by (1/6/N) we can assume we know the exact degree of the polynomials
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fi, ..., fs,and that V, = ¥ and dim V, < n — 1. We consider the polynomials

g, d—deg f; . . .
fij =X i O<i=<n, 1=<j<s

hence we have now ¢ < (n 4+ 1)s polynomials fij of degree d, that we rename

Jiseoos fr
We apply Lemma 3.14 to randomly choose a matrix A = (ay, ..., a,41)" €
QU*+Dxt and a matrix B = (by, ..., b,) € QUTD*#+D guch that the error proba-

bility that A € A and B is admissible is bounded by 1/(6N). We can assume thus
that the linear combinations (Qy, ..., Qu+1) = A(f1, ..., fr) satisfy

Vg = V(Qla"-v Qn+l)g

and, forO<r <n-—1:

e (Q1,..., Qn_r), is either empty outside V, or a radical ideal of dimension
r outside V.
e V(Qi,...,0u—)g = VUV, U---UV,_y, where V/ is either empty or

an equidimensional variety of dimension r with no irreducible component
includedin V, U---UV,_;. ~ ~

o V.NV(Qu_rt1)g = V/_ UV,_1 UV,_;, where V,_; is either empty or an
equidimensional variety of dimension » — 1 includedin V, U---UV,_;. We
set V! := IP% to extend this property to r = n.

We can assume moreover that the change of coordinates y = Bx verifies:

e BV/UBV, U B‘7, satisfies Assumption 1.2; and
e 01(B7'Y),..., 0, (B~ ly)is asystem of local equations of BV at BV/ N

V(}’l, "-7yr)'

The complexity of constructing the random matrices A and B and the inverse of
the matrix B is of order O(sn*(log N + logd)).

Now, Assumption 1.2 implies that the varieties have no irreducible compo-
nent at infinity. Hence we restrict to the affine space: we set yo = 1 and denote

by qi, ..., qus1, h the set of polynomials in the new variables obtained from
Ql’ ey Qn-i,—l, 8, that iS,
@1 ) = AFB™ Ly y). h=gB™ (Lyr..... ),

where F = (fl, f;). We define

W .= V(ql,...,qn_;,_])h:BVﬂAZCA”.

Let W = Wy U - --U W,_ be the minimal equidimensional decomposition of W,
where for 0 < r < n — 1, W, is either empty or of dimension r, and let W, and
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VT/, be defined by the same construction as V, and V, before, that is:

° V(ql,...,qn_r)h = W,’UW,U---UNW,,_I;and
o W;, N V(qn—r+l)h = erfl UW,_1UW,_,.

As the identity
W, =BV.NAj

holds, from a Chow form of W, we obtain a Chow form of the corresponding V,
by means of the change of variables

Fv.(Uo, ..., U) =Chy, (UB™",...,U.B™").

We observe that W) = B V/N A}, and then ¢y, ..., g,—r is a system of local
equations of W at W NV (yi, ..., y).

The error probability of this preparation step is bounded by 1/(3N). Once
the matrices A and B are fixed, we have that the complexity of computing the
polynomials ¢y, ..., gu+1, h is of order O(sn2dL), as well as their length.

First Main Step

From r = n — 1 to 0, the algorithm computes the Chow form of W, U VT/, and a
geometric resolution of the fiber Z, := W/ NV (y, ..., y-) (which also gives the
degree D, of W/). The former will be the input of the second main step while the
latter is the input of the next step in this recursion. Each step of this recursion is
a bounded probability algorithm whose error probability is bounded by 1/(3nN)
provided that the input of the iteration step was correct. We begin with the fiber
Z, = VOi,...,yn) = (0,...,0) and its geometric resolution (¢, (z,...,1))
associated to £ = x;. We also set D,, := 1.

Now, we are going to describe a step of the recursion. From a geometric reso-
lution of Z,,; we compute a Chow form for W, U W, and a geometric resolution
of Z,, which is the input of the next recursive step. Set D, for the given estimate

of degW/ ;.
e Computation of Cth+] :
From the geometric resolution (p,+1, (vy, ..., v,)) associated to the affine
linear form ¢, of Z,;, and the system of local equations g1, ..., gu—r—1

of W/, at Z,;, we compute a Chow form of W/, applying Procedure
ChowForm (Subroutine 7). This step of the algorithm is deterministic and
computes ChWI(H provided that the polynomials and variables satisfy the
genericity conditions and that the geometric resolution of Z, | is accurate.
Observe that, by Main Lemma 2.3 applied to the local system of equations
g1, ..., qu_r—1 of degree d and length O(sn?dL), the complexity and the
length of the output are both of order

L(Chy',) = O((r + D¥log, ((r + 1)Dyy1)n’d* D)L, (sn*d L))

= O(sn®(ndD,41)'"’L).
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e Computation of -7:W’+10V(q,l,,):

Now we apply sufficiently many times Procedure Intersection (Subroutine 9)
to compute a Chow form of W, ; N V(g,_,) with error probability bounded
by 1/(18nN): by Lemma 3.8, the length of the output Chow form and the
complexity of one iteration are both of order

L(Fw', v, = O(d D, 1) *L(Chy ) = O(sn®(nd D, 11)**L),

while, from Corollary 1.6 for the choice s = [6(log(18nN) + 1)7, the com-
plexity of this step is of order

OW(r + D(n+ 1) + 1) log(182N)(L(Chw:, ) + L(Fw'_ av(g,))
+log?(18nN)) = O(logXN)sn’ (nd D,11)'>L).

Computation of Chy, iy -

Observe that each irreducible component of W/ | N V(g,_,) is either an
irreducible component of W/ U W, U W, or an irreducible variety included in
V' (h). Therefore, we apply sufficiently many times Procedure Sep (Subrou-
tine 10) to compute the Chow form of W/ U W, U W, with error probability
bounded by 1/(18nN): by Lemma 3.9, the length of the output Chow form

and the complexity of one iteration are both of order

L(Chyw, i) = O((”d(dDrH))8L(-7Wr’+lqun,,)))

O(sn®d®(nd D,;1)**L),

while the complexity of this step is of order
O(0gX(N)sn’d® (nd D,,1)**L).

Computation of Chy; and Chy, 3

Next, since V (g,—,+1) contains W, U Wr but does not contain any component
of W/, we use g,_,+1 to separate Chy, from Chy, i . We apply sufficiently
many times Procedure Sep (Subroutine 10) to compute the Chow forms of
W! and W, U W, with error probability bounded by 1/(18nN): the length of

the output Chow forms and the complexity of one iteration are both of order

L(Chw,.Chy, 7)) = O((nd(dD,11)*LChiy i)

O(sn®d'(nd D,11)*'L),
while the complexity of this step is of order

Olog(N) sn’d"®(nd D, )*L).
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e Computation of a geometric resolution of Z, := W, NV (yi, ..., y):
We apply here Procedure GeomRes (Subroutine 8). It requires a random
choice of the coefficients of a separating linear form ¢,. We do that in order
to ensure that the error probability is 1/(6nN). The condition that a linear
form separates the points of the fiber Z, is given by a polynomial of degree
deg Z, da*rn=n
bounded by ( ) > <
of coefficients of £, in [0, 3n Nd*""~"))"*+! The complexity of constructing
these coefficients is thus of order O((n + 1)(log(nN) + (n — r)logd)) =
O(n*(log N +log d)) and the complexity of computing afterward the geomet-
ric resolution of Z, (thatis, all its constant coefficients) adds, as D, < dD, 1,

as deg Z, < d"7". So we choose the set

Om(dD,4+1)’L(Chy)) +d*D}. ) = O(sn’d"°(nd D,4+1)**L)

operations.

Summarizing, from the geometric resolution of Z,,; and the polynomials
q1s .- qu_r, the algorithm produces, within complexity O(logXN)sn’d'®(nd
D, 1)*L), all the coefficients of the geometric resolution of Z, and an slp of
length O(sn®d'®(nd D,,)* L) for the Chow form of W, U W,. The error proba-
bility that the computed objects are not the correct ones, provided that the input
was right, is bounded by 1/(3nN).

Therefore, provided that the input preparation was correct, this algorithm is
expected to compute Chw,,uvT/," for 0 < r < n — 1, with error probability bounded
by 1/(3N), within complexity of order

n—1
o <log2(N) sn'd"® ( > (nde)42> L) ,

k=r+1

and, by the iterative character of the algorithm, to compute all ChWrU‘;’_, 0<r<

n — 1, within the same complexity as that of computing Chwouv%'

Second Main Step

For 0 < r < n — 1, in order to extract from the Chow form ChW,UVNV, the factor
Chy,, we define a hypersurface V(G,) such that, probabilistically, W, is exactly
the union of all the irreducible components of W, U W, contained in V(G,), and
then we apply Procedure Sep (Subroutine 10) to compute Chyy, .

Fix k, 1 <k < n — 1. We define a polynomial H; € Q[yy, ..., y,] such that,

with error probability bounded by 1/(6(n — 1) N), the following conditions hold:

1. Wy UW, C V(H,); and
2. noirreducible component of W, is contained in V(H;) forr =0, ..., k—1.

Let P be the characteristic polynomial of W U W. For any affine linear form
£y = Ly(co, x), we have that Hy := P(co, e1, ..., ex) (Lo, y1, - - ., Y&) vanishes on
Wi U Wi. We now determine randomly £, such that Condition 2 holds with error
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probability bounded by 1/(6(n — 1)N). This is a standard argument that can be
found, for instance, in [25, Section 2.3.5].

For any irreducible component C of Wy U ... U W,_; there exists &¢ =
(Elc, e Sncl € C — (W U Wy). Now, if a linear form ¢ satisfies that for any
EeW,UW)NV( — élc, ey Yk — Ekc) (which is a zero-dimensional variety
of degree bounded by d §), £9(&) # £o(Ec), then

P(cos €1, -+ e)LoEc), EC, ... EC) #0.

Hence C is not included in V (Hy).
The condition to be satisfied is thus given by

[ Jto® — tot€e)) #0,
C¢

where g runs over the irreducible components of Wy U --- U Wy_; and § €
W, UW)NV(y — Slc, e Yk — Ekc). The polynomial has degree bounded by
ds? < d**! since deg Wy U --- U W;_; < §. Choosing ¢y := (0, co1, - -, Con) €
[0, 6(n — 1)Nd***1)", the probability that H, does not satisfy Condition 2 is
bounded by 1/(6(n — 1) N). Therefore the probability that, for 1 <k <n — 1, at
least one H; does not satisfy Condition 2 is bounded by 1/(6N). ~

Now, forr = 0,...,n — 2 we define G, := Z;}H Hy. Clearly, as W, C
W,y U---UW,_q, G, vanishes on Wr by Condition 1. On the other hand, as, by
Condition 2, no irreducible component of W, is contained in V (Hy) forr + 1 <
k <n—1, G, splits W, and W,.

Forl <k <n-—1,degH; < dDyy and L(H;) = O(L(ChWkUVT,k)) since
we derive P from the corresponding Chow form by identity (6). Hence L(H;) =
O(sn%d"®(nd Dy41)*°L). Thus, for0 < r <n —2,deg G, <d Y ., Dis1 and

L(G)=0 <sn6d16 ( > (nde+1)4O> L) .

k>r+1

The computation of all Hy, 1 < k < n— 1, involves the computation of the random
coefficients of each linear form £g, that is, O(n*(log N + nlogd)) operations
for each one of them, plus the complexity of computing and specializing each
characteristic polynomial. Thus the total complexity of computing all Hy is of
order O(n*log N + sn6d16(zk>2(nde)4O)L). We conclude that the complexity
of computing all G,, 0 <r < n — 2, is also of the same order. This algorithm is
expected to compute the right polynomials Gy, ..., G,_,, provided that the Input
Preparation and the First Main Step were correct, with error probability bounded
by 1/(6N).

Now we apply sufficiently many times Procedure Sep (Subroutine 10) to
Chy, ~ and G, in order to compute Chy, with error probability bounded by

W,UW,
1/(6nN): the length of the output Chow forms and the complexity of one iteration
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are both of order

n—1 8
L(Chy,) = O (n (d > DM) (dDr+1)) L(Chy, .+ Gy

k=r+1
= O(sn’d"®(ndD)*°L),

where D = max{D; : 1 < k < n — 1}, while the total complexity of computing
all Chy, with error probability bounded by 1/(6N), provided that the polynomials
Go, ..., G,_» were correct, is of order

Oog (N)sn''d'®(ndD)*°L + slog*(s)nlog(d)L).

Thus, the total error probability of the second main step is bounded by 1/(3N).
Finally, the Chow form Fy, is obtained by changing variables back. This compu-
tation does not change the order of complexity involved. The total error probability
of the whole algorithm is bounded by 1/N. Moreover, in case each of the random
choices was right, Dy < § for every k, and therefore the Chow forms Fy, of the
equidimensional components V, of V, are encoded by slp’s of length

L(Fy) = O(sn’d"®(nd8)*°L),
and computed within complexity
O(og*(N)sn''d"®(nd8)*L).

Since, in any case, D < d"* < d" ! for every 1 < k < n — 1, the worst-case
complexity of the computation is of order

O0g*(N)snd"®d>"L).

Therefore the expected complexity of the algorithm is
1 1
O <<1 — N) (log(N)sn''d"® (nd8)>°L) + N(logz(N)snmdlf’de’”L)) )

Fixing N := d°*", we conclude that the expected complexity of our bounded
probability algorithm is of order
O(log?(@*")sn''d" (nd8)*° L + 1og*(d**")sn®d'°L) = s(nd8)° V'L,

while the error probability is bounded by 1/N.
We summarize in Procedure Equidim (Subroutine 11) the algorithm underlying
the Proof of Theorem 1.

4. Applications

We present some algorithmical applications of our results, concerning the compu-
tation of resultants and the resolution of generic overdetermined systems.
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Subroutine 11. Equidimensional decomposition.

procedure Equidim(n, d, fi,..., fs, &, X)

# fi, ..., fs, g are homogeneous polynomials in Q[xo, ..., x,] and x := (xo, ..., x,),

# d is an upper bound for the degrees of fi, ..., f;, g.

# The procedure returns the Chow forms Fy,, ..., Fy, of theequidimensional components
#of Vo :=V(fi,..., fi)y CP,.

1. N:=d%;
2. (d,...,ds) =Deg(fi,..., fs,x,d; 6sN);
3.if(dy,...,d;) == (—1,...,—1) then
4 (Fupeo o Fo  Fo) =, .. 1| .... U)D:
else
F = (xgl_d1 11, o xdd fis.. .,ngd‘ e, x0T )
A := RandomMatrix(n + 1, s(n + 1), 48N (d + 1)*");
B := RandomMatrix(n + 1, n + 1, 12Nn?d*");
9. (Y05 -+ s Yu) := B (X0, .., Xn);
10. (g1, - quy) = AFB 'y, )
11. hi=gB 'L,y ..., )
12. Fv, =1;
13. (€™, Dy, pu, V™) i= (e, 1,8, (¢, ..., 1));
14. for i from 1 to n do
15. r:=n-—1i,
16. ChWrr+] := ChowForm(n,r 4+ 1, D41, ¢V, poyr, v+ g1, ..., Guer_1, d);
17. F := Intersection(n,r + 1, D,41, gy, d, Chw:+l§ 18nN);
18. Chw{uw,u% = (Sep(n,r +1,dD,1,h,d, F;18nN))y;
19.  (Chyy.Chy, ) = Sep(n.r.dD,1.d, Ch
20. ¢ := Random(n + 1, 3n Nd*"");
21. (Dy, pr,v") := GeomRes(n, r,dD, 1, Chy, (0, ..., 0),c");
22. od;
23. for k from O to n — 1 do
24, Pei=Chy iy (W — Ty, Ui. ... Un). - (Uio = T, Ut . Uka));
25. u® := Random(n + 1, 6(n — ))Nd>**1);
26. He:=Peu®, e, ..., e)@l +uly 4+ +u®y, v, .o w0
27. od;
28. for r from O to n — 2 do
29. G, = Z;JH Hy;
30.  Chy, = Sep(n,r.d D41, Gy, d(Dysz + - - + D,), Ch
31. ‘7:Vr Z:ChWr(U()B_l,...,UrB_l);
32. od;
33. fi;
34. return(Fy,, ..., Fv,);

W’UW,U’V\\/;’ qn—r+13 ISYZN),
f

6nN);

W,UW,

end.
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4.1. Computation of Resultants

4.1.1. The Classical d-Resultant. The classical resultant Res, ; of a system of
n + 1 generic homogeneous polynomials in n + 1 variables is a polynomial in
the indeterminate coefficients of the polynomials that characterizes for which co-
efficients the system has a nontrivial solution (we refer to [15, Chapter 3] for
its definition and basic properties), and its computation is a classical problem.
In 1902, Macaulay [49] gave an explicit formula for the resultant as a quotient
of two determinants and, more recently, several results in the same line of work
were presented [39], [18]. All these formulas involve determinants of matrices of
exponential size.

Here, we show, as an introductory application of our method, how an slp for
the classical resultant of n + 1 generic homogeneous polynomials of degree d in
n 4+ 1 variables can be computed. Our algorithm follows directly from Lemma 2.3
and, therefore, it is deterministic and does not involve any matrix formulation.

Corollary 4.1. There is a deterministic algorithm which computes (an slp for)
the classical resultant Res, 4 of n + 1 generic homogeneous polynomials of degree
d in n + 1 variables within complexity (nd")°®.

Proof. It is a well-known fact that the resultant Res,, 4 is the Chow form of the
Veronese variety V (n, d) defined as the image of the morphism

. N
Goay PPV £ (6 g

d
where N := (n T 1. Werecall that V,, ; is an irreducible variety of dimension
n

n and degree d". We compute here the resultant by defining a system of local
equations at an appropriate fiber of V (#, d) in order to apply Lemma 2.3.

Let{y, : @ € Ng“, || = d} be a set of homogeneous coordinates of PV and
consider the projection

w: V(n,d) — P, V) 7 YVaep -+ & Vde,)

where e; is as usual the (i +1)-vector of the canonical basis of Q**!. This projection
is finite [54, Chapter 1, Theorem 5.3.7]. Moreover, Z := (@1 1)
verifiesthat Z = ¢, 4(Zo) with Zg :={(1 1 w1 : - -+ : wp); wfl =lforl <i <n}.
Thus #Z = d" = deg V (n, d), and the n-dimensional variety V (n, d) satisfies
Assumption 1.2 for the fiber Z.

Let us define now a system of local equations of Vj, 4 at Z: For every o =
(g, ..., a,) € (No)" ! such that || =d and @ # (d — 1)eg+¢; (0 <i < n) we
consider the polynomial

o d—1-ag 3| o,
Jo = Ve, Yo = Vda—1yegte; ~ Yid—Deoten
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These are N —n nonzero homogeneous polynomials of degree d — oy which vanish
at V(. 4y since

fa((éﬁ)ﬁ) — ég(dflfﬁtn)é-a _ Eéd*l)(d1+~--+a”)§ftl . ‘Ey?“ —0.

From the Jacobian criterion one also checks that, as df,/dy, = yj;()l*“" and

0fo/0yg = Ofor B # o and B # (d — 1)eg + e;, the Jacobian matrix of the
system has maximal rank N — n at any £ € Z. Observe that the equations f, can
be encoded by slp’s of length O(d).

The next step in order to apply Lemma 2.3 is to compute a geometric resolution
of the fiber Z. For that purpose we compute its characteristic polynomial (consid-
ering it as an affine variety in {y4,, # 0}) and apply Lemma 3.2 for a separating
linear form. Let L := ), _; Uy, be a generic linear form in N + 1 variables,
and let P = Z\a|= 4 Uax® be the generic homogeneous polynomial of degree d in
n + 1 variables associated to L. The characteristic polynomial of Z is

PU,T) = [[T-LW, &) = [] (T LW, pa(l,®))

EeZ (l:w)eZy
= [] o-Pw, o= [] T-PW, ),
(l:w)eZy w: (l:w)eZy
where P*(U, w) = P(U, (1, w)). Therefore, if we set A := Q[xy, ..., xn]/(xf —
1,...,x%—1), Pz is then computed as the characteristic polynomial of the linear

map A — A defined by g — P®g within complexity d°®.

Finally, an easy computation shows that the linear form £ = yg., +dy@—1)eg+e, +
-+ 4+ d" y(a—1)ep+e, separates the points in Z. Thus £ yields a geometric resolution
of Z and we apply Lemma 2.3 to compute Res, ; within the stated complexity. [

4.1.2. Sparse Resultants. Let A = {ay, ..., ay} C Z" be a finite set of integer
vectors. We assume that Z" is generated by the differences of elements in A. For
0 <i <nletU; be agroup of N + 1 variables indexed by the elements of A, and
set

Fri=) Ux® € QUK ... 5]
acA

for the generic Laurent polynomial with supportin A. Let W4 C (PV)"+! x (C*)"
be the incidence variety of Fy, ..., F, in (C*)", that is,

Wa={(o,...,v; &) € BV x (C": F(v;,6) =0, 0<i <n},

andletw: (PV)"*! x (C*)" — (PY)"*! be the canonical projection. Then (W 4)
is an irreducible variety of codimension 1. The A-resultant Res 4 is defined as
the unique—up to a sign—irreducible polynomial in Z[Uy, . . . , U, ] which defines
this hypersurface (see [22, Chapter 8, Proposition—Definition 1.1]).

This is a multihomogeneous polynomial of degree Vol(A) in each group of
variables U;, where Vol(A) denotes the (normalized) volume of the convex hull
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Conv(A), which is defined as n! times its volume with respect to the Euclidean
volume form of R”. Consider the map

€)' —>PY, e g,

The Zariski closure of the image of this map is called the affine toric variety
X4 C PV associated to A. This is an irreducible variety of dimension n and
degree Vol(A). Its Chow form coincides—up to a scalar factor—with the sparse
resultant Res4 € Z[Uy, ..., U,] (see [22, Chapter 8, Proposition 2.1] and [185,
Chapter 7, Theorem 3.4]). For a broader background on toric varieties and sparse
resultants we refer to [22] and [15].

We apply the algorithm underlying Theorem 1 to compute the sparse resultant

Res 4 for the particular case that A C (Np)" and the elements 0, eq, ..., ¢,—that
is, the vertices of the standard simplex of R”"—Ilie in .A. To do so, we construct a
set of equations which define X 4 in the open chart (PV )yo> Where (yo : -+ yn)

is a system of homogeneous coordinates of PV, and compute a Chow form of this
variety.

Corollary 4.2. Let A C Nj be a finite set which contains {0, ey, ..., e,}. Then
there is a bounded probability algorithm which computes (an slp for) a scalar
multiple of the A-resultant Res 4 within (expected) complexity (n + Vol(A))PWD.

Proof. Without loss of generality we assume that in A, o9 = 0 and «; = ¢; for
i=1,...,n Setd ;= maxgeqle|. Forn +1 < j < N we set
f= vy =y Iy € Qlyos - yw L

Then, X 4\{yo =0} =V := V(fuy1, ..., fN)y, C (IP’N)yO. Therefore the Chow
form of X 4 coincides with the one of V and can be computed by application of
Procedure Equidim (Subroutine 11) to the polynomial system f,, 1, ..., fx; Yo-

Each polynomial fj,n+41 < j < N, can be encoded by an slp of length O(d).
Moreover, as for each « € Vol(A), || = Vol({0, ey, ..., e,, a}) < Vol(A) since
{0, e1, ..., e, a} C Vol(A), thend < Vol(A). Therefore L(f;) < O(Vol(A)) for
n+ 1< j < N.Now, as the toric variety X 4 is nondegenerated (that is, it is not
contained in any hyperplane in PV), [31, Corollary 18.12] implies that

N+ 1 <dimX 4+ deg X4 = n + Vol(A).

This gives an estimation for the parameter N.

Finally, we have to estimate the geometric degree 6 ( fy,+1, - - -, fn: Yo). As we
want to compute this degree outside {y, = 0} it is enough to deal with linear
combinations of the dehomogeneized polynomials fj obtained by specializing
yo = lintheoriginal fjforn+1<j<N.Forl <i <N,n+1<j <N,and
a;; € Q we set

qi := Qing1 far1 + -+ aiy fn.
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For every i, the support Supp(g;)—that is, the set of exponents of its nonzero
monomials—is contained in (A4 x {0}) US C Z", where S := {e,11,...,en} C
ZN and then, by [43, Proposition 2.12],

degV(qi,...,q) < Vol((A x {0}) US).
As we have that

Vol((A x {0}) US) = N! volgy Conv((A x {0} US)
= n! volg: Conv(A) = Vol(A)

(where volg~ and volgs denote the standard Euclidean volume forms) we infer that

8 :=8(fus1s s fni Yo) < Vol(A).

We conclude that Res 4 can be probabilistically computed by means of subrou-
tine Equidim within complexity (N — n)(Nd8)°VL(foy1, ..., fv) < (n +
Vol(A))°D, O

Remark 4.3. It would be interesting to improve this algorithm in order to com-
pute Res 4 without any extraneous scalar factor. It would suffice to compute this
factor as the coefficient of any extremal monomial of Fy ,, as we know a priori
that the corresponding coefficient in Res 4 equals £1 [22, Chapter 8, Theorem
3.3], see also [58, Corollary 3.1].

Example 4.4. We take the following example from [43, Example 4.13]: Set
A, d) == {0,e1,....en,e1+--+e, 21+ +e), ...,
d(el +"’+en)} CZn

Itis easy to check that Vol(A(n, d)) = nd, and so the previous algorithm computes
an slp for (a scalar multiple of) Res 4(,.4) Within (nd)©") arithmetic operations.

4.2.  Generic Overdetermined Systems

Our second application concerns the computation of the unique solution of a
generic overdetermined system.

Let fo, ..., fu € Q[xo, ..., x,] be homogeneous polynomials of degree d. The
associated equation system is generically inconsistent, where generically means
if and only if the vector of the coefficients of the polynomials does not lie in the
hypersurface V (Res, 4) C (PV)"*! defined by the classical resultant Res,, ; of n+41

d
homogeneous (n + 1)-variate polynomials of degree d, and N := ( + ") —1.
n

Now assume that the system is consistent. In this case the system is said to be
overdetermined, in the sense that its solution set can be defined—at least locally—
with fewer equations.
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Under this condition the system has generically exactly one solution, which is
a rational map of the coefficients of the polynomials fj, ..., f, (see Corollary 4.7
below). This rational parametrization can be easily derived from the resultant, and
therefore can be computed with our algorithm (see also [59] for a related approach).

In fact, we treat the more general case of an overdetermined linear system on
a variety. The following result seems to be classical although we could not find it
in the existing literature. The closest statement we found is given in [22, Chapter
3, Corollary 3.7] and has a mistake as we discuss below.

Lemma 4.5. LetV C P" be an equidimensional variety of dimension r definable
over Q. Let Fy(Uy, ..., U,) be a Chow form of V, and let u := (ug, ..., u,) €
V(Fy) € (P *! be such that 0Fy/oU,j,(u) # 0 for some 0 < ip <r, 0 <
Jo<n.For0 <i <r,let L;y(Uj, x) := Ujpoxo + - - - + Uj,x, denote the generic
linear form associated to U;. Then V NV (Lo(ug, x), ..., L. (u,, x)) consists of
exactly one element & (u), and

[ 9Fy oFy
E(u) = <8U,~00 () :---: T (u))-

Proof. As the formula stated by the lemma is invariant under linear changes of
variables, we can assume without loss of generality that no irreducible component
of V is contained in any hyperplane {x; = 0}, 0 < j < n.For0 <i <r we
set £;(x) := L;(u;, x) = ujoxo + -+ + uinx, € Clxo, ..., x,] for the linear form
associated to u; € C"*!. Then VNV (4, ..., £,) # @ because of the assumption
Fy () = 0. Let & be a point in this variety. Suppose & # 0.

Set V& < A" for the image of V under the rational map y: P" --» A" defined
by (xg : -+ xp) = (X1/X0, ..., Xn/X0). Let T := {Tp, ..., T,} be a group of
r + 1 additional variables, and let P := Pyar € Q[U][T] be the characteristic
polynomial of V", as defined in Subsection 3.1. Then, for 0 < j < n,

_OPWL) G OPUL) R g 0
AU, (u,§)+§0 oT;, . §) = 3U50j(u) % —anOO(M). (13)

0
The first equality was shown in Lemma 3.1, while the second follows directly from
formula (6) in Subsection 3.1, and the fact that L; (u;, §) =0for0 <i <r.

From identity (13) and the assumption d Fy /0 U j, (u) # 0, we infer that §;§o =
((0Fv/0U;,;)/ (0Fy /0Ujy0)) (u). Therefore

_ 0Fy AFy
&= <8U,-00 (u) : : T (u)).

This shows in particular that £, . . ., £, have exactly one common root in V\{x¢ =
0}. Moreover, as the formula for the coordinates of £ does not depend on the chosen
affine chart, we conclude that £ is the only common root of £, ..., ¢, in V. [O
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Corollary 3 of [22, Chapter 3] would imply that the formula of Lemma 4.5
holds in case £(u) is a simple common root of £y, ..., £, in V. Denoting by Oy
the local ring of V at £, this is equivalent to the fact that Oy ¢ /({o, ..., ¢,) = C.

The following counterexample shows that this is not true: let

F(t,x,y) :=x*(x +1) —ty* € Qlt, x, y], C:=V(F)cCP.

C is an elliptic curve with a node at (1 : 0 : 0). The linear forms £y := Lo((0 :
1:0,¢:x:y) =xand¥; := Li((0:0:1),( :x:y) =yhavea
single common root (1 : 0 : 0) in C, which is a simple root of £, £; in C. On the
other hand, as C is a hypersurface, ¢ = F(Mo, —M;, M), where M; denotes
the maximal minor obtained by deleting the (j + 1)th column of the matrix

Uw Uo Up
U Ui Un)
A straightforward computation shows that 0.F¢/0U;;((0:1:0),(0:0:1)) =0
forevery i, j.
The proof given in [22] is based on the biduality theorem and on Cayley’s trick,

and it holds in case V is smooth, and in case u = (uy, . .., u,) does not lie in the
singular locus of the hypersurface V (Fy). This last condition is equivalent to ours.

Let V C P" be an equidimensional variety of dimension r, and set Qy :=
V(Fy) C (P")*! for the set of (coefficients of) overdetermined linear systems
over V. As Fy is squarefree and each of its irreducible factors depends on every
group of variables,

ng(Fv, afv/aU,‘(), ey 8]—'V/8U,~,1) =1

for0 <i < r.Then ®; := Qy\V(©@Fy/dU;y,...,dFy/dU;,) is a dense open
set of Qy and so
oFy aFy .

R fueo,;
T U, (”)> n
is a rational map well definedon @y U --- U ©,..

Now let V. C (P"), be an arbitrary variety of dimension r, and let V =
V, U-.-UV, be its equidimensional decomposition. In what follows, for the sake
of clarity, we keep the same notations as previously for different objects sharing
analogous properties. Set (again) Qy C (P")"*! for the set

Qv = {(uop,...,u,) e )Y :36 eV /Lo(up,&) =0,...,L,(u,, &) =0}

LIjvl QV e Pn, U — f;‘(u) = (

of generic overdetermined linear systems over V', which is a quasiprojective variety
of codimension 1 in (P*)"*!. For every 0 < k < r, let Qy, be the set of the
coefficients of r + 1 linear forms which have a common root in V;. If Fy, is a
Chow form of V;, we have that

Quc () VUi Uy)

0<ip<--<iy<r
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and, therefore, Qy, has codimension at least 2 for 0 < k < r — 1. Let ®; :=
Qy\V(@Fy. /oU;o,...,3Fy, /0U;,) for i = 0,...,r. Then every overdeter-
mined linear system over V with coefficients in the open set (©gU- - -U®,)\ (2y, U
-+-UQy, ) of Qy has a unique solution in V which, in fact, lies in V,. As before,
this solution can be given by the rational map

‘-IJV = \IJV’_ . QV, -—> (]P)n)g,

0 d
u — &) ::(8'17;/(;@):---: a?}’(u)) ifu € ©;.

As an immediate consequence of Theorem 1 and Lemma 4.5 we obtain:

Corollary 4.6. Let fi, ..., f;, g € Qlxo, ..., x,] be homogeneous polynomials
of degree bounded by d encoded by straight-line programs of length bounded
by L. SetV :=V(fi,..., f)\V(g) C P" for the quasiprojective variety { fi =
0,..., f=0,g#0}andlet V =VyU---UYV, be its minimal equidimensional
decomposition. Let § := 8(fi, ..., fs; &) be the geometric degree of the input
polynomial system.

Then there is a bounded probability algorithm which computes (slp’s for) the
coordinates of the rational map Wy defined above within (expected) complexity
s(nd8)PVL.

The previous result can be applied directly to compute the solution of a generic
overdetermined system of n + 1 homogeneous polynomials in n + 1 variables of
degree d by means of Res,, 4:

d
Corollary 4.7. Letu = (ug, ..., u,) € PV where N := ( + n> — 1l and,
n

for0 <i <n,set
fi = Z Ujg X%
|ae|=d
Assume that Res, 4(u) = 0 and that 9 Res, 4/0U;, g(u) # 0 for some 0 < iy <
n,B=(Bo ... B € No)" with |B| =d.

Then V (fo, ..., fu) consists of exactly one element £(u) € P", and
dRes, 4 dRes, 4
W =\77—""W it W)
Ui, (@—1) ¢ +eo Uiy (d—1) ¢ +e,

forany 0 < j < n such that 8; # 0.

Proof. From Lemma 4.5 applied to the Veronese variety V(n,d) C PV (see
Subsection 4.1.1) we have that V(fy, ..., f,) has only one point & («) and that

o _ 8Resn,d
EW)jaj=a = < Ui (M)>|Ot|—d.
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Let B = (Bo, ..., B,) be such that || = d and d Res, 4 /0U; g(u) # 0, and let
0 < j < nbe such that 8; # 0. The previous identity implies that § € {x; # 0}.
Then

Ew) = (&g &g

ano,(dfl)e,-+eo ' anO,(d*I)E,'vLen
As an immediate consequence of this result and Proposition 4.1, we obtain:

Corollary 4.8. Let notation be as in Corollary 4.7. Then the rational map
PYy ! -5 P", u — E(u) can be (deterministically) computed within com-
plexity (nd™)°W.
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