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ON THE IDEALS OF SECANT VARIETIES OF SEGRE VARIETIES

J.M. LANDSBERG1 AND L. MANIVEL

Abstract. We establish basic techniques for studying the ideals of secant varieties of Segre
varieties. We solve a conjecture of Garcia, Stillman and Sturmfels on the generators of the ideal
of the first secant variety in the case of three factors and solve the conjecture set-theoretically
for an arbitrary number of factors. We determine the low degree components of the ideals of
secant varieties of small dimension in a few cases.

1. Introduction

Let Xn ⊂ PV be a projective variety. Define σr(X), the variety of secant Pr−1’s to X by

σr(X) = ∪x1,...,xr∈XPx1,...,xr

where Px1,...,xr ⊂ PV denotes the linear space spanned by x1, ..., xr (usually a Pr−1).

Given X ⊂ PV and p ∈ PV define the essential X-rank of p (or essential rank of p if X is
understood) to be the smallest r such that p ∈ σr(X). (The essential rank is often called the
border rank in the computational complexity literature.) Similarly define the rank of p to be the
smallest r such that there exist r points on X, x1, ..., xr such that p ∈ Px1,...,xr. The essential
rank can be smaller than the rank, this phenomenon occurs already for X = v3(P

1), the cubic
curve, where the essential rank of any point is at most two, but the rank of points on a tangent
line to X (but not on X) is three.

Given vector spaces A1, ..., Ak , one can form the Segre product X = Seg(PA1 × · · · × PAk) ⊂
P(A1 ⊗ · · · ⊗Ak). When k = 2, the Segre product is just the projectivization of the space of
rank one elements (matrices) in A1 ⊗A2. In this paper we study the ideals of the varieties
σp(X). The case k = 3 is important in the study of computational complexity as explained
below. Many cases are important in the study of Bayesian networks, as explained in [6]. After
presenting some background information in §2, we establish basic techniques for studying the
problem for an arbitrary rational homogeneous variety X in §3. In §4 we specialize to Segre
products and take advantage of Schur duality. We determine I3(σ2(X)) for any Segre product
in Theorem 4.7. We prove that I3(σ2(X)) cuts out σ2(X) set-theoretically in all cases and ideal
theoretically when k = 3, partially resolving Conjecture 21 of [6], see Theorem 5.1.

We present a deterministic algorithm to find generators of the ideals of secant varieties of
Segre varieties in §4. We carry this algorithm out in low degrees in §6. In particular, we show
there are no equations in the ideal of σ6(P

3×P
3×P

3) in degree less than nine. We plan to study
higher degrees in a future paper.

One motivation for this paper is the following question in computational complexity: Let
A = (Cn⊗C

m)∗, B = (Cm⊗C
p)∗, C = C

n⊗C
p. The matrix multiplication operator Mnmp

is an element of A⊗B⊗C. In standard coordinates Mnmp is the sum of nmp monomials.
However, already if one takes m = n = p = 2, it is known that σ7(P

3 × P
3 × P

3) = P
15 so the

essential rank of M222 is at most seven. Strassen showed [13] that in fact the rank is at most
seven by exhibiting an explicit expression of M222 as the sum of seven monomials, and moreover,
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2 J.M. LANDSBERG1 AND L. MANIVEL

he proved that the essential rank is at least six by a specialization argument. The rank of M222

was then shown to be seven in [15].
To determine the essential rank of a point p ∈ PV it is sufficient to find equation cutting out

the varieties σk(X) set theoretically and then to evaluate the polynomials at p. Thus once one
finds equations of σ6(Seg(P

3 × P
3 × P

3)) one can determine the essential rank of M222.

Acknowledgements We thank Peter Bürgisser for bringing the border rank question to our at-
tention and Bernd Sturmfels for comments on the exposition of a preliminary draft.

2. Dimensions of secant varieties, especially homogenous ones

Let X ⊂ PV be a projective variety. An important fact about σr(X) is Terracini’s lemma,
which implies that if (x1, ..., xr) is a general point of X ×X × · · · ×X then

T̂[~x1+...+~xr]σr(X) = T̂x1X + · · ·+ T̂xrX

where ~x ∈ V denotes a point in the line x̂ ⊂ V corresponding to the point x ∈ PV and T̂pY ⊂ V
denotes the affine tangent space to Y at p, the cone over the embedded tangent projective space
T̃pY ⊂ PV .

If Xn is smooth then the dimension of σ2(X) can be determined by taking three derivatives
at a general point x ∈ X, see [7]. In particular, if the third fundamental form of X at x, IIIX,x,
is non-zero, then σ2(X) is of the expected dimension 2n+ 1.

The third fundamental form calculation immediately implies that all homogeneously embed-
ded rational homogeneous varieties have σ2(X) of dimension 2dimX+1 except for the following
varieties (embeddings are the minimal homogeneous ones unless otherwise specified and if vari-
eties occur more than one way we only list them once): G(2, n) = An−1/P2 the Grassmanian of
2-planes through the origin in C

n, Q2n−1 = Dn/P1, Q
2n−2 = Bn/P1, the quadric hypersurfaces,

GQ(2, 2n) = Dn/P2, GQ(2, 2n + 1) = Bn/P2, the Grassmanians of 2-planes throught the origin
isotropic for a quadratic form, v2(P

n) the quadratically embedded Veronese, Gω(2, 2n) = Cn/P2,
the the Grassmanians of 2-planes throught the origin isotropic for a symplectic form, F4/P4,
G2/P1, E6/P1, E6/P2, E7/P1,E7/P7, E8/P8. Seg(Pk × P

l) = Ak/P1 × Al/P1. Here we use the
ordering of the roots as in [2].

In all other cases the third fundamental form is easily seen to be nonzero, see [9]. In particular,
for all triple and higher Segre products, σ2(X) is nondegenerate.

In fact Lickteig and Strassen [11, 12] show many triple Segre products have all secant varieties
nondegenerate, in particular for Seg(Pn × P

n × P
n) the filling secant variety σr is the expected

number r = pn3/(3n − 2)q when n > 3. In particular, for n = m2 we get roughly m4/3 which
is significantly greater than m3, so in higher dimensions matrix multiplication is far from being
a generic tensor. (Lickteig’s proof is very simple and elegant - one first observes that certain
small cases, e.g., σ3(P

1 × P1 × Pn) fills and then one reduces to such cases by writing a larger
vector space as a sum of two dimensional spaces.)

3. Ideals of secant varieties, especially homogeneous ones

For A ⊂ SkV ∗ define A(p) = (A⊗SpV ∗) ∩ Sp+kV ∗, the p-th prolongation of A. Let

Base (A) = {[v] ∈ PV | P (v) = 0 ∀P ∈ A}.

Given a variety Z ⊂ PV we let I(Z) ⊂ S•V ∗ denote its ideal and Id(Z) = I(Z) ∩ SdV ∗. We
recall from [9] that ideals of secant varieties satisfy the prolongation property:

Lemma 3.1 ([9], Lemma 2.2). Let A ⊂ S2V ∗ be a system of quadrics with base locus Base (A) ⊂
PV . Then

Base (A(k−1)) ⊇ σk(Base (A)).
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Moreover, if Base (A) is linearly non-degenerate, then for k ≥ 2, Ik(σk(Base (A)) = 0, and if
A = I2(Base (A)), then Ik+1(σk(Base (A)) = A(k).

Geometrically, A(k−1) ⊇ {∂P
∂v

| P ∈ A(k)} = I(BaseA(k))sing
and σk−1(X) ⊆ (σk(X))sing.

Usually I(σk(X)) is not generated in degree k + 1. For example, consider the simplest in-
tersection of quadrics, four points in P

2. They generate six lines so σ(X) is a hypersurface of
degree six.

Corollary 3.2. Let X ⊂ PV be a variety with I(X) generated in degree d. Then for all k ≥ 0,
Id+k−2(σk(X)) = 0.

Given a variety X ⊂ PV , a polynomial P ∈ SdV ∗, d > k, is in Id(σk(X)) if and only
if for any sequence of non negative integers m1, . . . ,mk, with m1 + · · · + mk = d, we have
P (vm1

1 , vm2
2 , . . . , vmk

k ) = 0 for all vi ∈ X̂ , where vmi

i = vi ◦ · · · ◦ vi (mi times). Here we interpret
P (vm1

1 , vm2
2 , . . . , vmk

k ) as the result of the successive contractions of P by the tensors vmi

i .

Now consider the case where X = G/P ⊂ PVl is a homogeneously embedded rational homo-
geneous variety, i.e., the orbit of a highest weight line.

By an unpublished theorem of Kostant, I2(X) = (V2l)
⊥ ⊂ S2V ∗ and I(X) is generated in

degree two. More generally, Ik(X) = (Vkl)
⊥ ⊂ SkV ∗. We adopt the notation that if V = Vl, we

write V k = Vkl.
Note that if W ⊂ SdV ∗ is an irreducible module, either all of W or none of it is in Id(σk(X)).

These remarks imply:

Proposition 3.3. Let X ⊂ PV be a rational homogenous variety. Then a module W ⊂ SdV ∗

is in Id(σk(X)) if and only if for all integers (a1, . . . , ap) such that a1 +2a2 + · · ·+ pap = d and
a1 + · · ·+ ap = k, the contraction map

(1) W ⊗Sa1(V )⊗Sa2(V 2)⊗ · · · ⊗ Sap(V p) −→ C

is zero.

Corollary 3.4. Let X = G/P ⊂ PV be a rational homogeneous variety. Then for all d > 0,

(1) Id(σd(X)) = 0,
(2) Id+1(σd(X)) is the kernel of the contraction map V 2 ⊗Sd+1V ∗ → Sd−1V ∗,
(3) let W be an irreducible component of SdV ∗, and suppose that for all integers (a1, . . . , ap)

such that (a1, . . . , ap) such that a1+2a2+ · · ·+ pap = d and a1+ · · ·+ap = k, W ∗ is not
an irreducible component of Sa1(V )⊗Sa2(V 2)⊗ · · · ⊗ Sap(V p). Then W ⊂ Id(σk(X)).

Proof. (1) follows immediately from 3.2, (2) from the remarks about the ideals of homogeneous
varieties and 3.1. (3) follows from (1) and Schur’s lemma because if an irreducible submodule
W ⊂ SdV ∗ does not belong to Id(σk(X)), one of the contraction maps (1) must be non-zero. �

Question. Is the ideal of the first secant variety σ2(X) of a rational homogeneous variety
X = G/P ⊂ PV , generated by cubics (assuming its nonempty)? More generally, when is the
ideal of σd(X) generated in degree d+ 1?

If X = G/P ⊂ PV is a Scorza variety, that is the set of rank one elements in a simple Jordan
algebra J (see [16]), then Ik(σk−1(X)) is uniformly described as the k × k minors in J and it
generates I(σk−1(X)). More generally, if X = G/P is a sub-minuscule variety, that is, the set
of tangent directions to lines through a point of a compact Hermitian symmetric space (see [9]),
then I(σk−1(X)) is generated in degree k and there is a uniform description of Ik, see [9].
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Let g be a complex simple Lie algebra and consider the rational homogeneous variety Xad ⊂
Pg, the unique closed orbit of the corresponding adjoint Lie group. Then there are universal
modules Y ′

k ⊂ Skg∗, see [10] and Y ′
k ⊆ Ik(σk−1(Xad)).

However, consider X = Seg(P2 × P
4 × P

6) ⊂ P
104. The expected dimension of σ8(X) is

8×12+7 = 103, thus if it is nondegenerate, σ8(X) is an invariant hypersurface. If its degree is d,
Sd(A⊗B⊗C) must contain a one dimensional irreducible factor (detA)α ⊗ (detB)β ⊗ (detC)γ .
In particular d is divisible by 3, 5 and 7. Conclusion: either σ8(X) is degenerate, or it is a
hypersurface of degree a multiple of 35. This suggests that the degrees of the equations of the
σk(X) must be much larger than k.

4. Schur duality and equations of Segre products

Let A1, ..., Ak be vector spaces and let V = A1 ⊗ · · · ⊗Ak. In order to determine the ideals
of secant varieties of Segre varieties Seg(PA1 × · · · × PAk) ⊂ P(A1⊗ · · · ⊗Ak), we need to
understand the decomposition of SdV ∗ into irreducible modules. We begin by reviewing Schur
duality (see, e.g., [5] for an introduction to Schur duality):

The irreducible representations of the symmetric group Sm are parametrized by the partitions
of m. If π is such a partition, we let [π] denote the corresponding Sm-module. For any vector
space V , there is a natural action of Sm on V ⊗m and we define SπV the π-th Schur power of
V by

SπV := HomSm
([π], V ⊗m),

the Sm-equivariant linear maps from [π] to V ⊗m. SπV is zero if π has more parts than the
dimension of V , otherwise SπV is an irreducible GL(V )-module. Schur duality is the assertion
that the tautological map

⊕

|π|=m

[π]⊗SπV −→ V ⊗m

is an isomorphism.
For example, the trivial representation [m] gives rise to SmV = SmV and the sign represen-

tation [1, ..., 1] gives rise to S1...1V = ΛmV .

Proposition 4.1. Let A1, . . . , Ak be vector spaces. Then

Sm(A1⊗ · · · ⊗ Ak) =
⊕

|π1|=···=|πk|=m

([π1]⊗ · · · ⊗ [πk])
SmSπ1A1⊗ · · · ⊗ Sπk

Ak,

where ([π1]⊗ · · · ⊗ [πk])
Sm denotes the space of Sm-invariants (i.e., instances of the trivial rep-

resentation) in the tensor product.

Proof. Apply Schur duality separately to each of A1, . . . , Ak, take the tensor product of the
corresponding isomorphisms, and compare with Schur duality for A1⊗ · · · ⊗ Ak. �

Note that, since the representations of Sm are self-dual, the dimension of ([π1]⊗ · · · ⊗ [πk])
Sm

is equal to the multiplicity of [πk] in the tensor product [π1]⊗ · · · ⊗ [πk−1]. There is no general
rule to compute such multiplicities, but for small m we can compute them using elementary
character theory: if χπ is the character of [π], then

(2) dim ([π1]⊗ · · · ⊗ [πk])
Sm =

1

m!

∑

σ∈Sm

χπ1(σ) · · ·χπk
(σ).
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Proposition 4.2. We have the following decomposition of S3(A1 ⊗ · · · ⊗Ak) into irreducible
GL(A1)× · · · ×GL(Ak)-modules:

S3(A1 ⊗ · · · ⊗Ak) =

⊕

|I|+|J |+|L|=k,
|J |>1

2j−1 − (−1)j−1

3
S3AI ⊗S21AJ ⊗S111AL ⊕

⊕

|I|+|L|=k,
|L| even

S3AI ⊗S111AL,

where I, J, L are multi-indices whose union is 1, ..., k, and we use the notation SπAI = ⊗ i∈ISπAi.
In particular, S3(A⊗B⊗C) = S3S3S3 ⊕S3S21S21 ⊕S3S111S111 ⊕S21S21S21 ⊕S21S21S111 and

thus is multiplicity free. Here SlSµSν is to be read as SlA⊗SµB⊗SνC plus permutations giving
rise to distinct modules.

Proof. The irreducible representations of S3 are the trivial representation [3], the sign represen-
tation [111], and the natural two-dimensional representation [21]. So we just need to compute the
decomposition of [21]⊗ j into irreducible components, which is a simple character computation.

The symmetric group S3 has three conjugacy classes of cardinality 1, 3, 2, and the values of
the irreducible characters on these classes are given by the following table:

class [Id] [(12)] [(123)]
# 1 3 2
χ3 1 1 1
χ21 2 0 −1
χ111 1 −1 1

We calculate

〈χj
21, χ3〉 = 〈χj

21, χ111〉 =
1

6
(2j + 2(−1)j) =

1

3
(2j−1 − (−1)j−1),

where 〈χ, χ′〉 = 1
6

∑

σ∈S3
χ(σ)χ′(σ) is the usual scalar product. The proposition follows. �

The same type of computations lead to the following decomposition of the fourth symmetric
power of a tensor product.

Proposition 4.3. We have the following decomposition of S4(A⊗B⊗C) into irreducible GL(A)×
GL(B)×GL(C)-modules:

S4(A⊗B⊗C) = S4S4S4 ⊕S4S31S31 ⊕S4S22S22 ⊕S4S211S211 ⊕S4S1111S1111

⊕S31S31S31⊕S31S31S22 ⊕S31S31S211⊕S31S22S211 ⊕S31S211S211

⊕S31S211S1111 ⊕S22S22S22 ⊕S22S22S1111 ⊕S22S211S211 ⊕S211S211S211.

Here SlSµSν is to be read as SlA⊗SµB⊗SνC plus permutations giving rise to distinct modules.
In particular, S4(A⊗B⊗C) is multiplicity free.

Remark. In S5(A⊗B⊗C) all submodules occuring have multiplicity one except for S311S311S221

which has multiplicity two. For higher degrees there is a rapid growth in multiplicites.

Now we try to determine which modules are in the ideals of the secant varieties of X =
Seg(PA1 × · · · × PAk). We begin with some simple observations:

Proposition 4.4. [Inheritance] Suppose that an invariant I of [l1]⊗ · · · ⊗ [lk] defines a nonzero
embedding of I into Sl1A

∗
1⊗ · · · ⊗ SlkA

∗
k ⊂ Sd(A1⊗ · · · ⊗ Ak)

∗.
Then, for any vector spaces A′

1, . . . , A
′
k such that dim A′

i ≥ dim Ai for all i, the image of the

embedding of (Sl1A
′
1)

∗⊗ · · · ⊗ (SlkA
′
k)

∗ in Sd(A′
1⊗ · · · ⊗ A′

k)
∗ defined by I, is in Id(σr(Seg(PA

′
1×

· · ·×PA′
k))) if and only if the image of the embedding of Sl1A

∗
1⊗ · · · ⊗ SlkA

∗
k in Sd(A1⊗ · · · ⊗ Ak)

∗

defined by I is in Id(σr(Seg(PA1 × · · · × PAk))).
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Proposition 4.5. Let X(1) = Seg(PA2 × · · · × PAk). Then

Id(σd−1(X)) ∩ (SdA∗
1⊗Sd(A∗

2⊗ · · · ⊗ A∗
k)) = SdA∗

1 ⊗ Id(σd−1(X
(1))).

Say Sπ1A1 ⊗ · · · ⊗Sπk
Ak ∈ Sd(A1 ⊗ · · · ⊗Ak). An easy way to verify if it is in Id(σr(X))

is if corollary 3.4 (3) applies. This method is possible in low degrees but in higher degrees
multiplicities appear and the method becomes impossible to use. Thus one either needs to
understand the maps (1) or to write down explicit polynomials and test them on σr(X). One
can either test a special polynomial in a module on a general point or test a general polynomial
in a module at a special point. The routines we used were more adapted to the first method.
We now describe two ways to explicitly write down polynomials. The first has the advantage of
producing the entire module, the second of being quicker in producing a polynomial that is a
highest weight vector.

Fix π1, ..., πk partitions of d. Compute dim ([π1]⊗ · · · ⊗ [πk])
Sd , call this number m.

ALGORITHM 1

• Explicitly realize the representations [πj ] of Sd.
• Take independent elements ej ∈ [πj ] and average e1 ⊗ · · · ⊗ ek over Sd. The result is
either a nontrivial invariant I or zero. Continue finding such elements I until one has m
independent such.

• Choose embeddings Sπj
Aj → A⊗ d

j , the images of the invariants Is, 1 ≤ s ≤ m give the
modules.

Example 1. Let k = 4 and d = 3. The space of invariants ([21]⊗ [21]⊗ [21]⊗ [21])S3 has
dimension 2. The representation [21] of S3 can be realized as the hyperplane x1 + x2 + x3 = 0
in C3, and the action of S3 is to permute the coordinates (x1, x2, x3). A basis of [21] is given by
e = (1,−1, 0) and f = (0, 1,−1). To obtain a basis of the invariants of [21]⊗ [21]⊗ [21]⊗ [21]
we consider the natural basis of [21]⊗ 4 and apply the averaging operator over all translates by
S3. Applying this procedure to eeee = e⊗ e⊗ e⊗ e and eeff = e⊗ e⊗ f ⊗ f , we obtain the
two invariants

I1 = eeee + (e+ f)(e+ f)(e+ f)(e+ f) + ffff,
I2 = 2eeee + eeef + eefe+ efee+ feee+ 3eeff+

+3ffee+ fffe+ ffef + feff + efff + 2ffff.

Now consider the space of S3-equivariant morphisms u from [21] to V ⊗ 3, where V is any vector
space. Let E = u(e). Let s1 denote the transposition (12) and s2 the transposition (23).
Since s1(e) = −e, we get s1(E) = −E. Since f = s2(e) − e, we have u(f) = s2(E) − E.
And since s1(f) = e + f , we must have E − s2(E) + s1s2(E) = 0. The conclusion is that
S21V = HomS3([21], V

⊗ 3) is isomorphic to the space of tensors E ∈ V ⊗ 3 such that s1(E) = −E
and E − s2(E) + s1s2(E) = 0.

Choose an invariant J ∈ ([21]⊗ [21]⊗ [21]⊗ [21])S3 and consider the embedding of

S21A1⊗S21A2⊗S21A3 ⊗S21A4

in S3(A1 ⊗A2⊗A3 ⊗A4) that it defines. If J = αeeee + · · · + βffff and ui ∈ S21Ai, the
corresponding polynomial is defined by the equation

P J
u1,u2,u3,u4

(a1b1c1d1, a2b2c2d2, a3b3c3d3) =
αu1(e)(a1a2a3)u2(e)(b1b2b3)u3(e)(c1c2c3)u4(e)(d1d2d3) + · · ·+

+βu1(f)(a1a2a3)u2(f)(b1b2b3)u3(f)(c1c2c3)u4(f)(d1d2d3).

Now we evaluate P J
u1,u2,u3,u4

on σ2(X), which means that we let a2 = a1, b2 = b1, c2 = c1,
d2 = d1. Since ui(e) is skew-symmetric in its first two arguments, its contribution will always
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be zero and we get

P J
u1,u2,u3,u4

(a1b1c1d1, a2b2c2d2, a3b3c3d3) =
βu1(f)(a1a1a3)u2(f)(b1b1b3)u3(f)(c1c1c3)u4(f)(d1d1d3),

so that the module defined by J is in I3(σ2(PA1 × · · · × PA4)) if and only if β = 0.

An immediate generalization of this argument leads to the following result:

Proposition 4.6. The space of modules in I3(Seg(PA1 × · · · × PAk)) induced from [21]⊗ k is a
codimension one subspace of the modules in S3V ∗ induced from [21]⊗ k.

This proposition allows one to determine the space of cubics vanishing on σ2(X). Indeed,
every component of S3(A1⊗ · · · ⊗ Ak)

∗ involving a wedge power will do. Those involving a
symmetric power are determined inductively by Proposition 4.5. The only remaining term is
S21A1⊗ · · · ⊗ S21Ak, whose multiplicity equals (2j−1 − (−1)j−1)/3. The previous proposition
means that the subspace vanishing on σ2(X) has multiplicity one less.

Theorem 4.7. The space of cubics vanishing on the secant variety σ2(Seg(PA1×· · ·×PAk)) is

I3(σ2(Seg(PA1 × · · · × PAk))) =
⊕

|I|+|J |+|L|=k,
|J |>1, |L|>0

2j−1 − (−1)j−1

3
S3AI ⊗S21AJ ⊗S111AL

⊕
⊕

|I|+|J |=k,
|J |>1

(
2j−1 − (−1)j−1

3
− 1)S3AI ⊗S21AJ ⊕

⊕

|I|+|L|=k,
|L|>0 even

S3AI ⊗S111AL.

Corollary 4.8. Let X = Seg(PA× PB × PC). Then

I3(σ2(X)) = (S3A⊗Λ3B⊗Λ3C)∗⊕ (Λ3A⊗S3B⊗Λ3C)∗⊕ (Λ3A⊗Λ3B⊗S3C)∗

⊕ (S21A⊗S21B⊗Λ3C)∗⊕ (S21A⊗Λ3B⊗S21C)∗ ⊕ (Λ3A⊗S21B⊗S21C)∗,

the space of 3 × 3 minors of the three possible flattenings of A⊗B⊗C. In particular, letting
a = dimA, b = dimB, c = dimC, we have

dim I3(σ2(X)) =
abc

72

(

− 6(ab+ ac+ bc)− 8(a+ b+ c) + 16 + 27abc − 5(a2b2c+ a2bc2 + ab2c2)

− 3(a2bc+ ab2c+ abc2) + 5a2b2c2 + 2(a2b+ a2c+ ab2 + ac2 + b2c+ bc2)

+ 2(a2b2 + 2a2c2 + 2b2c2)
)

.

In particular, we recover the data collected in [6] and computed by Macaulay for the triple
Segre products.
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Corollary 4.9. Let A, B C, D have dimensions a, b, c, d respectively, we get the following
number of cubic equations:

dim (I3(σ2(PA× PB × PC × PD)) =

abcd

1296

(

368− 72(a + b+ c+ d+ ab+ ac+ ad+ bc+ bd+ cd)− 8(a2 + b2 + c2 + d2)

− 54(abc + abd+ acd+ bcd) + 8(a2b2 + a2c2 + b2c2 + a2d2 + b2d2 + c2d2) + 567abcd

+ 18(a2bc+ ab2c+ abc2 + a2bd+ ab2d+ a2cd+ b2cd+ ac2d+ bc2d+ abd2 + acd2 + bcd2)

− 27abcd(a + b+ c+ d) + 18(a2b2c+ a2bc2 + ab2c2 + b2c2d+ a2b2d+ a2c2d+ b2cd2+

+ a2bd2 + ab2d2 + a2cd2 + ac2d2 + bc2d2) + 10(a2b2c2 + b2c2d2 + a2b2d2 + a2c2d2)

− 45abcd(cd + bd+ ad+ bc+ ac+ ab)− 63abcd(abc + abd+ adc+ bcd) + 143a2b2c2d2
)

.

This recovers all the computations of cubic equations in [6].

Before describing our second algorithm we do some preparation:
Fix a partition π = (p1, ..., pf ) of size d = p1 · · ·+ pf . For α1, ..., αf ∈ A∗, let

FA = (α1)
⊗ (p1−p2)⊗ (α1∧α2)

⊗ (p2−p3)⊗ · · · (α1∧· · ·∧αf−1)
⊗ pf−1−pf ⊗ (α1∧· · ·∧αf )

⊗ pf ∈ (A∗)⊗ d.

When the α1, . . . , αf vary, the subspace of (A∗)⊗ d generated by the FA’s is a copy of SπA
∗. In

other words, we have defined an element of HomGL(A)(SπA
∗, (A∗)⊗ d), which is isomorphic to

[π] by Schur duality.

ALGORITHM 2

• For each Aj , choose a basis αj
1, ..., α

j
dimAj

, and it is better to choose a weight basis with

αj
1 a highest weight vector. Continue the notation m = dim ([π1]⊗ · · · ⊗ [πk])

Sd .
• Fix elements τ1, ..., τk ∈ Sd. Let

F (a11 ⊗ a21⊗ · · · ⊗ ak1, ..., a
1
d ⊗a2d ⊗ · · · ⊗akd) = FA1(a

1
τ1(1)

, ..., a1τ1(d)) · · ·FAk
(akτk(1), ..., a

k
τk(d)

).

By construction F ∈ (Sπ1A1⊗ · · · ⊗Sπk
Ak)

∗.
• Now let

P =
∑

σ∈Sd

FA1(a
1
στ1(1)

, ..., akστ1(d)) · · ·FAk
(akστk(1), ..., a

k
στk(d)

).

By construction P ∈ Sd(A1 ⊗ · · · ⊗Ak)
∗, and P ∈ (Sπ1A1 ⊗ · · · ⊗Sπk

Ak)
∗ as it is a

sum of terms in (Sπ1A1⊗ · · · ⊗Sπk
Ak)

∗. Either P is zero or it gives a nontrivial element
of (Sπ1A1⊗ · · · ⊗Sπk

Ak)
∗ ⊂ Sd(A1 ⊗ · · · ⊗Ak)

∗.

Note that since we are choosing highest weight vectors, linear combinations will also be highest
weight vectors, thus we have a systematic way to look for polynomials even when multiplicities
occur.

In practice we implemented the algorithm in two parts as follows:

Input:

• k, the number of vector spaces;
• d1, ..., dk; their dimensions;
• d, the degree of the polynomial to be constructed;
• π1, ..., πk, partitions of d

Part one: Finding the polynomials.

(1) Calculate m = dim([π1]⊗ · · · ⊗ [πk])
Sd via a character calculation as in (2).
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(2) Choose a collection of permutations T1 = (τ1, ..., τk) with τj ∈ Sd (without loss of
generality, take τ1 = Id). Write out F T1 as in (3) above and then average over Sd to
obtain a polynomial P T1 as above.

(3) Test if P T1 is identically zero either by a symbolic calculation or by evaluating it at a
randomly chosen point. If it is zero return to step 2.

(4) Repeat steps 2 and 3 for collections of permutations T2, ..., Tm, only when repeating step
3, not only test if the polynomial is nonzero, but also test that it is linearly independent
from the polynomials already constructed.

Output: a basis of highest weight vectors for the isotypic submodule of copies of (Sπ1A1 ⊗ · · · ⊗Sπk
Ak)

∗

inside Sd(A1 ⊗ · · · ⊗Ak)
∗.

Part two: Testing if any modules are in the ideal.

Input:

• The polynomials P T1 , ..., P Tm constructed in part one.
• p: where we will test for generators of Id(σp(PA1 × · · · × PAk)).

(1) Write d = up+ r, with u, r nonegative integers and r < p. Let P = c1P
T1 + · · ·+ cmP Tm

where the cj ’s are variables. Pick p vectors in each Ai at random, ai1, ..., a
i
p. Considering

P as a multi-linear form, let aj = a1j ⊗ · · · ⊗ akj evaluate

P (a1, ..., ap, a1, ..., ap, ..., a1, ..., ap, ..., a1, ..., ar).

(2) Now pick m− 1 more such sets of vectors and solve for the cj ’s.
(3) For simplicity, say there is a unique solution, test on one more set of vectors using P with

the cj ’s replaced by their solution values. If one gets zero, one has a good candidate.
Warning: this is just one of many tests to perform to see if a candidate is in the ideal

- we begin with this one only because in practice it has been quite useful. Hence the
next step:

(4) Now test P on all possible ways of choosing the last r vectors from the set of first p
vectors (e.g., one needs to test the possibility of the first vector occuring r times instead
of r different vectors etc...). Ideally do this symbolically, but one gets an answer with
very high probability by testing at random points.

Output: Either ruling out the modules (Sπ1A1 ⊗ · · · ⊗Sπk
Ak)

∗ ⊂ Sd(A1 ⊗ · · · ⊗Ak)
∗ from be-

ing in Id(σp(X) or determination of an explicit copy of (Sπ1A1 ⊗ · · · ⊗Sπk
Ak)

∗ ⊂ Sd(A1 ⊗ · · · ⊗Ak)
∗

that is in Id(σp(X)) described by its highest weight vector.

Here are some examples:

Example 2. Consider S211A⊗S211B⊗S211C ⊂ S4(A⊗B⊗C). Without loss of generality
assume dimA = dimB = dimC = 3. Take

F (a1b1c1, ..., a4b4c4) = α1(a1)det(a2, a3, a4)β
1(b2)det(b1, b3, b4)γ

1(c3)det(c1, c2, c4)

and let P be the corresponding polynomial. A simple evaulation at a random point shows P
is not identically zero. (Compare with taking all permutations τ to be the identity, then the
average over S4 is indeed zero.)

Example 3. Consider S333A⊗S333B⊗S333C. Without loss of generality take dimA = dimB =
dimC = 3. We take

F =det(a1, a2, a3)det(a4, a5, a6)det(a7, a8, a9)det(b2, b3, b4)det(b5, b6, b7)

det(b1, b8, b9)det(c3, c4, c5)det(c6, c7, c8)det(c1, c2, c9)
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Here it is more delicate to see the corresponding polynomial P is not identically zero because
there will be terms that appear several times. One needs to check that they do not have signs
cancelling. (For example, had we had any pair of indices occuring three times in a determinant,
the corresponding polynomial would be zero because the transposition of the indices would pro-
duce the same terms with opposite signs.) One can also verify with Maple that the corresponding
polynomial is nonzero.

Example 4. Consider S321A⊗S321B⊗S3111C ⊂ S6(A⊗B⊗C) which occurs with multiplicity
four. Let

Fτ,µ =α1 ∧ α2 ∧ α3(a1, a2, a3) ∗ α1 ∧ α2(a5, a6) ∗ α1(a4)

β1 ∧ β2 ∧ β3(bτ(1), bτ(2), bτ(3)) ∗ β1 ∧ β2(bτ(4), bτ(5)) ∗ β1(bτ(6))

γ1 ∧ γ2 ∧ γ3 ∧ γ4(cµ(1), cµ(2), cµ(3), cµ(4)) ∗ γ1(cµ(5)) ∗ γ1(cµ(6))

Now we take the following permutations:

τ1 =

(

1 2 3 4 5 6
3 4 5 1 2 6

)

µ1 =

(

1 2 3 4 5 6
1 4 5 6 2 3

)

τ2 =

(

1 2 3 4 5 6
3 4 5 1 2 6

)

µ2 =

(

1 2 3 4 5 6
2 3 5 6 1 4

)

τ3 =

(

1 2 3 4 5 6
3 4 5 1 2 6

)

µ3 =

(

1 2 3 4 5 6
2 3 4 5 1 6

)

τ4 =

(

1 2 3 4 5 6
3 4 6 1 2 5

)

µ4 =

(

1 2 3 4 5 6
2 3 4 5 1 6

)

The resulting four polynomials, call them P1, ..., P4 are linearly independent. We verified this
by evaluating them first at four random points to determine a unique possible linear combination
that is zero, and then evaluated this linear combination at a fifth random point - one does not
obtain zero.

Remark. When the Ai’s have the same dimension k, Sk(A1⊗ · · · ⊗ Ak)
∗ contains a copy of

sl(A1)⊗ · · · ⊗ sl(Ak), with an embedding given by the formula

PX1,...Xk
(a11⊗ · · · ⊗ a1k, . . . , a

k
1⊗ · · · ⊗ akk) = (X1a

1
1 ∧ a21 ∧ · · · ∧ ak1) · · · (Xka

1
k ∧ a2k ∧ · · · ∧ akk)

+symmetric terms.

All such polynomials vanish on σk−3(X), but not on σk−2(X).

5. Flattenings and the GSS conjecture

Let X = Seg(PA1 × · · · × PAk) ⊂ P(A1⊗ · · · ⊗ Ak). A family of degree d + 1 equations for
σd(X) is given by the flattenings, discussed in [6].

Definition 5. Given V = A1⊗ · · · ⊗Ak, a flattening of V is a decomposition

V = (Ai1 ⊗ · · · ⊗Aiq )⊗ (Aj1 ⊗ · · · ⊗Ajk−q
) = AI ⊗AJ

where I + J = {1, ..., k} is a partition of {1, ..., k} into two subsets.

Since X ⊂ Seg(PAI × PAJ), σk(X) ⊆ σk(Seg(PAI × PAJ)) and thus the (d + 1) × (d + 1)
minors of flattenings always vanish on σd(X), i.e.

∧d+1(Ai1 ⊗ · · · ⊗Aiq )
∗ ⊗ ∧d+1 (Aj1 ⊗ · · · ⊗Ajk−q

)∗ ⊂ Id+1(σd(X)).

In [6] it was conjectured that I(σ2(X)) is generated by the 3 × 3 minors of flattenings, i.e.,
that σ2(X) is intersection as a scheme of the varieties σ2(PAI × PAJ). We will prove this for
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k = 3 below. For k > 3 we have the following partial result which implies that that σ2(X) is
intersection as a set of the varieties σ2(PAI × PAJ).

Theorem 5.1. Let X = Seg(PA1×· · ·×PAk) ⊂ P(A1⊗ · · · ⊗ Ak) be a Segre product of projective
spaces.

• The first secant variety σ2(X) is defined set theoretically by the 3×3 minors of flattenings.
• I3(σ2(X)) is spanned by the 3× 3 minors of flattenings.

The corresponding modules were described explicitly in Theorem 4.7.

Proof. Let T ∈ A1⊗ · · · ⊗ Ak be a tensor on which the 3 × 3 minors of flattenings all vanish.
This means that T has rank two at most, when considered has a tensor of AI ⊗AJ , where
AI = Ai1 ⊗ · · · ⊗Aiq and AJ = Aj1 ⊗ · · · ⊗Ajk−q

, with V = AI ⊗AJ any flattening. Applying
this to the case where #I = 1, we see that we can find two dimensional subsets A′

i ⊂ Ai such
that T ∈ A′

1⊗ · · · ⊗ A′
k. In other words, we may and will suppose that dim Ai = 2 for all i.

Now take I = {1, 2}. We can decompose our tensor as T = M ⊗S+M ′⊗S′, where M,M ′ ∈
A1 ⊗A2. We can identify A1 with the dual of A2 and consider M and M ′ as endomorphisms of
A2. Suppose that one of them has rank two. We can adapt our basis so that M , for example,
is the identity and M ′ is in Jordan canonical form. Generically, M ′ will be diagonalizable and
we can rewrite our tensor as

T = a1 ⊗a2 ⊗C + a′1⊗ a′2 ⊗C ′.

If a1 and a′1, or a2 and a′2, are proportional, T can be factored as a1⊗U and we are reduced
to the case of k − 1 factors. So we can suppose that (a1, a

′
1) is a basis of A1, and (a2, a

′
2) a

basis of A2. Then we consider C and C ′ as map from (A4⊗ · · · ⊗ Ak)
∗ to A3 and apply our

hypothesis to the set of indices I = {1, 3}. The conclusion is that a1 ⊗C(t) and a′1⊗C ′(t)
belong to a fixed two-dimensional subset of A1 ⊗A3, as t varies in (A4⊗ · · · ⊗ Ak)

∗. Since a1
and a′1 are independant, this implies that C and C ′ have rank one. But the same conclusion
holds if we replace I = {1, 3} by any I = {1, j}, j ≥ 3, and this means that we can decompose
C = a3⊗ · · · ⊗ ak and C ′ = a′3⊗ · · · ⊗ a′k. Thus T belongs to the secant variety σ2(X).

Suppose now that M ′ is not diagonalizable. Then we can find bases (a1, a
′
1) of A1, and (a2, a

′
2)

of A2, such that we can decompose T as

T = (a′1 ⊗ a2 + a1 ⊗ a′2)⊗C + a1 ⊗ a2 ⊗C ′.

We shall prove by induction on j ≥ 2 that we can decompose T further as

T = (a′1 ⊗ a2⊗ · · · ⊗ aj + · · · + a1⊗ · · · ⊗ aj−1⊗ a′j)⊗Cj + a1⊗ · · · ⊗ aj ⊗C ′
j ,

for some Cj , C
′
j ∈ Aj+1⊗ · · · ⊗ Ak. As in the previous case, we consider Cj and C ′

j as mor-

phisms from (Aj+2⊗ · · · ⊗ Ak)
∗ to Aj+1. Then a2⊗ · · · ⊗ aj ⊗Cj(t) and (a′2⊗ · · · ⊗ aj + · · · +

a2⊗ · · · ⊗ a′j)⊗Cj(t) + a2⊗ · · · ⊗ aj ⊗C ′
j(t) belong to a fixed two dimensional space Vj as t

varies. This implies that Cj has rank one, we write it as Cj = aj+1⊗Cj+1. Then Vj contains
the tensors a2⊗ · · · ⊗ aj+1, (a

′
2⊗ · · · ⊗ aj + · · ·+ a2⊗ · · · ⊗ a′j)⊗ aj+1 + a2⊗ · · · ⊗ aj ⊗C ′

j(t0) for

Cj+1(t0) = 1, and a2⊗ · · · ⊗ aj ⊗C ′
j(t) for t in the kernel of C. But the first two vectors are

already independant, so that those of the third type must be proportional to the first one,
which means that C ′

j maps the kernel of Cj its image. But this means that we can decom-

pose C ′
j = aj+1⊗C ′

j+1 + a′j+1⊗Cj+1 for some a′j+1 ∈ Aj+1 and Cj+1 ∈ Aj+2⊗ · · · ⊗ Ak. This
concludes the induction.

When j = k − 1, we finally get a decomposition of T as

T = a′1 ⊗a2⊗ · · · ⊗ ak + · · ·+ a1⊗ · · · ⊗ ak−1⊗ a′k + a1⊗ · · · ⊗ ak.
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We conclude that T belongs to the (affine) tangent space of X at the point a1⊗ · · · ⊗ ak. In
particular, T belongs to the tangential variety of X, which is contained in the secant variety
σ2(X). �

Theorem 5.2. Let X = Seg(PA × PB × PC) ⊂ P(A⊗B⊗C) be a triple Segre product. Then
the ideal of the secant variety σ2(X) is generated by cubics.

Proof. Let σ̂ ⊂ A⊗B⊗C denote the cone over σ2(PA × PB × PC). Let G2(A) denote the
Grassmanian of two-planes in A. Consider the quasiprojective variety Y = G2(A) × G2(B) ×
G2(C) × A⊗B⊗C, and denote by p and π its projections to G2(A) × G2(B) × G2(C) and
A⊗B⊗C. Let TA denote the tautological rank two vector bundle on G2(A), and let E denote
the vector bundle A⊗B⊗C/TA⊗TB ⊗TC on G2(A)×G2(B)×G2(C). The pull-back p∗E has
a canonical section s, defined by

s(UA, UB , UC , t) = t mod UA⊗UB ⊗UC .

Let σ̃ denote the zero-locus of this section.

Lemma 5.3. The zero-locus σ̃ is a vector bundle over G2(A)×G2(B)×G2(C), in particular it
is a smooth variety. Its image under π is σ̂, and the restriction map π|σ̃ : σ̃ → σ̂ is a resolution
of singularities.

Proof. The first assertion is clear. The second one is an immediate consequence of the fact that
the secant variety of P1 × P

1 × P
1 ⊂ P

7 is non degenerate, i.e., equal to P
7. �

Consider the Koszul complex of the section s: this is a minimal free resolution of the structure
sheaf of σ̃. We want to push it down to A⊗B⊗C to get some information on the minimal
resolution of σ̂. For this we use the spectral sequence

Ep,q
1 = Rqπ∗p

∗(∧−pE∗) =⇒ Rp+qπ∗Oσ̃.

Lemma 5.4. We have Rqπ∗Oσ̃ = 0 for q > 0 and π∗Oσ̃ = Oσ̂. In particular, σ̂ has rational
singularities.

Proof. The fibers of π are isomorphic to G2(A)×G2(B)×G2(C), and the vector bundle p∗E is
a pull-back from that product. This reduces the problem to the computation of the cohomology
of E∗ and its exterior powers. Let V denote the trivial bundle whose fiber is isomorphic to
A⊗B⊗C and let T = TA⊗TB ⊗TC . For each integer r, we have an exact sequence

0 → ∧r E∗ → ∧r V ∗ → ∧r−1 V ∗⊗T ∗ → ∧r−2 V ∗ ⊗S2T ∗ → · · · → SrT ∗ → 0.

By Bott’s theorem, the vector bundles SkT ∗ are acyclic. Since the previous resolution of ∧rE∗

is of length r + 1, this implies that

Hq(G2(A)×G2(B)×G2(C),∧rE∗) = 0 for q > r,

Hr(G2(A)×G2(B)×G2(C),∧rE∗) = coker
(

V ∗ ⊗H0(Sr−1T ∗) −→ H0(SrT ∗)
)

.

The first claim implies that in the spectral sequence (r = −p !), Ep,q
1 = 0 for p + q > 0, hence

Rkπ∗Oσ̃ = 0 for k > 0.
To prove that π∗Oσ̃ = Oσ̂ , we need to check that Hr(G2(A)×G2(B)×G2(C),∧rE∗) = 0 for

r > 0. But note that if

SrV ∗ = ⊕l,µ,νcl,µ,νSlA
∗⊗SµB

∗⊗SνC
∗,

then SrT ∗ = ⊕l(l),l(µ),l(ν)≤2cl,µ,νSlT
∗
A⊗SµT

∗
B ⊗SνT

∗
C ,

thus H0(SrT ∗) = ⊕l(l),l(µ),l(ν)≤2cl,µ,νSlA
∗ ⊗SµB

∗⊗SνC
∗.
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Therefore, if r > 0, the surjectivity of the map V ∗ ⊗H0(Sr−1T ∗) −→ H0(SrT ∗) is an immediate
consequence of the surjectivity of V ∗⊗Sr−1V ∗ −→ SrV ∗. �

We are now in position to apply Theorem (5.1.3) of [14], following which the vector bundles
Rqπ∗p

∗(∧−pE∗) can be organized into a resolution of Oσ̂ . In particular, the cohomology groups
Hr−1(∧rE∗) appear as degree r equations of σ̂. Thus, if we can prove that these groups vanish
for r 6= 3, we’ll get that the ideal of σ̂ is generated by cubics.

Using the previous resolution of ∧rE∗, we see that Hr−1(∧rE∗) is the homology group of the
complex on the first line of the diagram

∧2V ∗ ⊗H0(Sr−2T ∗) −→ V ∗ ⊗H0(Sr−1T ∗) −→ H0(SrT ∗)
↑ ↑ ↑

∧2V ∗ ⊗Sr−2V ∗ −→ V ∗ ⊗Sr−1V ∗ −→ SrV ∗

The complex on the lowest line is a Koszul complex. It is exact, and surjects onto the complex we
are interested in. For r = 1 or r = 2 we get the same complexes, hence H0(E∗) = H1(∧2E∗) = 0.
For r = 3 only the rightmost terms are different, and H0(S3T ∗) is the sum of components in
S3V ∗ without terms of length three. The other components give H2(∧3E∗).

Next we must prove that Hr−1(∧rE∗) = 0 for r ≥ 4. First observe that the components of
V ∗ ⊗H0(Sr−1T ∗) have length three at most. Those of length at most two on each factor map
to H0(SrT ∗) as they do in the Koszul complex, which is exact: this takes care of that kind of
terms. Now consider an isotypical component D inside V ∗⊗H0(Sr−1T ∗) with length three, say,
on A. This component maps to zero in H0(SrT ∗), and we must check that it belongs to the
image of ∧2V ∗ ⊗H0(Sr−2T ∗). But we know that the secant variety Seg(PA× P(B⊗C)) is cut
out by cubics, and this implies that the corresponding complex

∧2V ∗ ⊗H0(Sr−2U∗) −→ V ∗ ⊗H0(Sr−1U∗) −→ H0(SrU∗)

is exact. Here U is the tautological vector bundle TA⊗TB⊗C on G2(A)×G2(B⊗C), so that

H0(SrU∗) = ⊕l(l)≤2,µ,νcl,µ,νSlA
∗ ⊗SµB

∗⊗SνC
∗.

Therefore, we see our component D inside V ∗ ⊗H0(Sr−1U∗), and for the same reason as before,
it maps to zero in H0(SrU∗). So it must belong to the image of ∧2V ∗ ⊗H0(Sr−2U∗). We must
check that in fact, it only comes from components of H0(Sr−2U∗) with length at most two on
each factor. But this is clear, because the contraction map factors as

∧2V ∗ ⊗H0(Sr−2U∗) −→ V ∗⊗ (V ∗⊗H0(Sr−2U∗)) −→ V ∗ ⊗H0(Sr−1U∗).

This implies that a component of H0(Sr−2U∗) with length greater than two on some factor will
give components of V ∗ ⊗H0(Sr−2U∗) with the same property, and these cannot contribute to
D. �

6. Equations of σk(Seg(PA× PB × PC))

In this section we analyze the equations of the secant varieties of Seg(PA∗ × PB∗ × PC∗) for
low dimensional vector spaces A, B, C.

For the dimensions of the secant varieties and filling k that we use in this subsection, we refer
the reader to [3, 11].

6.1. Case of X = Seg(Pm × P
n).

Recall that here dimσk(X) = k(m+ n+ 2− k)− 1 until it fills and I(σk(X)) is generated in
degree k + 1 by Λk+1

C
m+1 ⊗Λk+1

C
n+1.

6.2. Case of X = Seg(P1 × P
1 × P

1).
Here σ2(X) = PV and thus its ideal is zero.
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6.3. Case of X = Seg(P1 × P
1 × P

c), c = 2, 3.
Here I(σ2(X)) is generated in degree three by flattenings and σ3(X) = PV .

6.4. Case of X = Seg(P1 × P
2 × P

2).
Again I(σ2(X)) is generated in degree three by flattenings and σ3(X) = PV .

6.5. Case of X = Seg(P2 × P
2 × P

2).
Again I(σ2(X)) is generated in degree three by flattenings.

Proposition 6.1. Let X = Seg(P2 × P
2 × P

2) = Seg(PA∗ × PB∗ × PC∗).

• The space of quartic equations of σ3(X) is

I4(σ3(X)) = S211A⊗S211B⊗S211C,

and has dimension 27.
• The hypersurface σ4(X) is of degree nine and corresponds to the one-dimensional module
S333A⊗S333B⊗S333C.

A determinantal representation of these equations was given by Strassen, see [6]. We don’t
know if I(σ3(X)) is generated in degree four.

This case is discussed in [6] (without proofs). To study I4(σ3(X)) we need only look at
terms Sl1A⊗Sl2B⊗Sl3C with each lj of length 3 by case 6.4 since otherwise, by inheritance
(proposition 4.4), we would have a nonzero element in I4(σ3(P

1 × P
2 × P

2)). Examining the
decomposition of S4(A⊗B⊗C) the only possible term is W = S211A⊗S211B⊗S211C, which
occurs with multiplicity one.

To illustrate our methods, we give three proofs that I4(σ3(Seg(P
2 × P

2 × P
2))) = W .

First proof: We apply Proposition 3.4, that is, we check thatW is not contained in V 2 ⊗S2(V ).
This is easy: each term in S2V must have at least one symmetric power, say S2A. If we tensor
by the other S2A coming from V 2, we do not get the S211A term of W .

Second proof: We make explicit the embedding of W ∗ in S4(A⊗B⊗C), using the first
algorithm explained in §4. The representation [211] of S4 is the tensor product of the natural
three dimensional representation [31], given by the natural action of S4 on the hyperplane
x1 + x2 + x3 + x4 = 0 in C

4, with the sign representation. We choose the basis e = (1,−1, 0, 0),
f = (0, 1,−1, 0), g = (0, 0, 1,−1). We keep this basis for [211] but recall that the action of the
symmetric group must be twisted by the sign. Averaging e⊗ e⊗ f over the symmetric group,
we obtain a non zero invariant I in [211]⊗ [211]⊗ [211],

I = e⊗ e⊗ (−e+ f + g)− f ⊗ f ⊗ (e− f + g) + g⊗ g⊗ (e+ f − g)
+(f − e)⊗ (f − e)⊗ (−e− f + g) + (g − e)⊗ (g − e)⊗ (e− f + g)
+(g − f)⊗ (g − f)⊗ (e− f − g).

Now we need to evaluate the corresponding space of polynomials on σ3(X), which means that we
may suppose, for example, that the third and fourth arguments are equal decomposed tensors.
Let s3 denote the simple transposition (34). Since s3(e) = −e, the contribution of all terms
involving e will vanish. Moreover, g = −s3(f), and since the contributions of f and s3(f) in our
evaluation are obviously the same, f and −g have the same contribution. But if we let e = 0
and g =f in the expression of the invariant I, we get zero, which means that our evaluation on
σ3(X) does vanish.

Third proof: We use the second algorithm of section §4. Taking the polynomial P of example
2 we see that if any two vectors are equal, each term of P vanishes.

We now study σ4(X). Since it is a hypersurface by [3, 11], we need to look for instances
of the trivial representation in Sd(A⊗B⊗C). The first candidate appears when d = 6, since
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S6(A⊗B⊗C) contains S222A⊗S222B⊗S222C. The second candidate appears when d = 9,
since S9(A⊗B⊗C) contains S333A⊗S333B⊗S333C, again with multiplicity one. It is claimed
in [6] that the degree nine equation is the equation of σ4(X). We verify this by applying
Proposition 3.4. We need to see if the one dimensional representation S333A⊗S333B⊗S333C
occurs in either S2V 3 ⊗V 2⊗V or V 3 ⊗S3V 2. In the first factor of the first module, at least
one of A,B,C, say A, must occur as S2(S3A) = S6A⊗S42A. Since the partitions (6) and
(42) are not contained in (333), we cannot get S333A after tensoring by V 2 ⊗V . For the second
module, we note that S333A⊗S333B⊗S333C could only come from a factor S33A⊗S33B⊗S33C
of S3V 2. But S3(P ⊗Q⊗R) does not contain S111P ⊗S111Q⊗S111R, so that up to symmetry,
either S3(S2A) or S21(S

2A) must occur in each factor, and none of these contains S33A.

Now that we have a nonzero polynomial of degree nine that vanishes on the invariant hyper-
surface σ4(X), we conclude that it must be the equation of this hypersurface. Indeed, suppose
not. Then our polynomial would be the product of two polynomials, which automatically would
be both invariant. In particular, their degrees would be multiples of three, so one of them would
have degree three. But there is no invariant cubic polynomial.

The polynomial is described explicitly in example 3 and one can verify that it does indeed
vanish on σ4(X), but some care must be taken in keeping track of the signs. Similarly, one can
explicitly write out the polynomial in S222A⊗S222B⊗S222C and see that it does not vanish on
σ4(X) (for example, this is easy to verify with Maple).

6.6. Case of X = Seg(P1 × P
2 × P

3).

Proposition 6.2. Let X = Seg(P1 × P
2 × P

3) = Seg(PA∗ × PB∗ × PC∗). Then

I4(σ3(X)) = S31A⊗S211B⊗S1111C ⊕S22A⊗S22B⊗S1111C

is of dimension 6 and generates I(σ3(X)).
Also, σ4(X) = PV .

Proof. By [3, 11], dimσ3(X) = 20. On the other hand, X ⊆ Seg(P5 × P
3) and dimσ3(Seg(P

5 ×
P
3)) = 20 (see case 6.1 above). Since both are irreducible varieties, they are equal and

I4(σ3(X)) = Λ4(A⊗B)⊗Λ4C. �

6.7. Case of X = Seg(P2 × P
2 × P

3).

Proposition 6.3. Let X = Seg(P2 × P
2 × P

3) = Seg(PA∗ × PB∗ × PC∗) . Then

• The space of quartics on X is

I4(σ3(X)) = S211A⊗S211B⊗S211C ⊕S31A⊗S211B⊗S1111C

⊕S211A⊗S31B⊗S1111C ⊕S22A⊗S22B⊗S1111C

and is of dimension 135 + 2× 45 + 36 = 261.
• I5(σ4(X)) = 0.
• I6(σ4(X)) = S222A⊗S222B⊗S3111C⊕S321A⊗S321B⊗S3111C
The second term occurs with multiplicity one in I6 while occuring with multiplicity four
in S6V . Note that dim I6(σ4(X)) = 260 and it does not generate I(σ4(X)) because the
inherited S333A⊗S333B⊗S333C term in I9(σ4(X)) cannot come from these terms.

• σ5(X) = PV

We do not know if I(σ3(X)) is generated in degree four.

To determine I4(σ3(X)), in addition to Λ4(A⊗B)⊗Λ4C, we inherit S211A⊗S211B⊗S211C
from case 6.5. No other terms are possible by the same argument as in case 6.5.
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To see I5(σ4(X)) is empty we explicitly wrote down highest weight vectors in all the possible
modules and tested them at random points of σ4(X) with Maple. We used the same method to
find the modules in and not in I6(σ5(X)), but when we found a polynomial that vanished, we
checked the result symbolically.

In example 4 we gave an explicit basis of the highest weight vectors for S321A⊗S321B⊗S3111C.
The linear combination that vanishes on σ4(X) is the polynomial obtained by symmetrizing
6F1 − F2 − 4F3 + 5F4.

The last assertion is not in [3, 11] so we present a proof:

Proof. We use Terracini’s lemma. Let e1, ..., e3, f1, ..., f3, g1, ..., g4 respectively denote bases of
C
3,C3,C4. For our five points on X, take e1 ⊗ f1⊗ g1, e2 ⊗ f2⊗ g2, e3⊗ f3⊗ g3, (e1 + e2 +

e3)⊗ (f1 + f2 + f3)⊗ g4, (e1 + e2 + e3)⊗ (f1 + αf2 + βf3)⊗ (g1 + g2 + g3 + g4) where α, β are
relatively prime and |α − β| 6= 1. An easy calculation shows that if we use the monomial basis
except for using e1 ⊗ f2⊗ g3+ e2 ⊗ f1⊗ g3, e2 ⊗ f3⊗ g1+ e3 ⊗ f2⊗ g1, e1⊗ f3⊗ g2+ e3 ⊗ f1⊗ g2,
e1 ⊗ f3⊗ g4 + e3 ⊗ f1⊗ g4, e1 ⊗ f2⊗ g3 − e2 ⊗ f1⊗ g3, e2 ⊗ f3⊗ g1 − e3 ⊗ f2⊗ g1, e1 ⊗ f3⊗ g2 −
e3 ⊗ f1⊗ g2, e1 ⊗ f3⊗ g4 − e3 ⊗ f1⊗ g4, instead of the monomials that appear in them, then the
span of the tangent spaces to the first four points is all but the last four terms, and adding tangent
space to the fifth point enables us to dispense with those. (Recall that T̂[e⊗ f ⊗ g]Seg(PE×PF ×
PG) = E⊗ f ⊗ g + e⊗F ⊗ g + e⊗ f ⊗G.) �

6.8. Case of X = Seg(P2 × P
3 × P

3).

Proposition 6.4. Let X = Seg(P2 × P
3 × P

3) = Seg(PA∗ × PB∗ × PC∗) . Then

• The space of quartics on σ3(X) is

I4(σ3(X)) = S211A⊗S31B⊗S1111C ⊕S211A⊗S1111B⊗S31C

⊕S22A⊗S22B⊗S1111C⊕S22A⊗S1111B⊗S22C

⊕S31A⊗S1111B⊗S211C ⊕S31A⊗S211B⊗S1111C

⊕S4A⊗S1111B⊗S1111C ⊕S211A⊗S211B⊗S211C

and has dimension 2× 135 + 2× 120 + 2× 225 + 15 + 675 = 1650.
• The space of quintic equations of σ4(X) is

I5(σ4(X)) = S311A⊗S2111B⊗S2111C,

and has dimension 96. I(σ4(X)) is not generated in degree five.
• I6(σ5(X)) = 0.
• I7(σ5(X)) = 0.

Note that σ6(X) fills, see [3, 11].
We do not know if the ideal of σ3(X) is generated in degree four.

Proof. I4(σ3(X)) follows from flattenings and inheritance.
Continuing to σ4(X), since I5(σ4(Seg(P

2×P
2×P

3)) = 0, the only possible term in I5(σ4(X))
is W = S311A⊗S2111B⊗S2111C, which occurs in S5(A⊗B⊗C) with multiplicity one, because
this is the unique component with a partition of length three in the A factor and length four in
the B,C factors. But this factor does not occur inside S3V ⊗V 2. Thus Proposition 3.4 applies.

Turning to σ5(X), since σ5 fills for both P
2×P

2×P
3 and P

1×P
3×P

3 we only need look at ele-
ments of S6(A⊗B⊗C) that are of length three in the first factor and four in the second and third
factors. Examining the decomposition, the candidate modules (up to permutation in the last
two factors) are: S411A⊗S3111B⊗S3111C, S411A⊗S2211B⊗S2211C, S222A⊗S3111B⊗S3111C,
S222A⊗S2211B⊗S2211C with multiplicity one and S411A⊗S3111B⊗S2211C, S321A⊗S3111B⊗
S3111C, S321A⊗S3111B⊗S2211C, S321A⊗S2211B⊗S2211C with multiplicity two.
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On the other hand, consider S4V ⊗V 2. In order to have two modules with partition of length
four, we need the partitions in S4V to have length at least three. All are accounted for, so
Proposition 3.4 is not useful here. Thus we do direct calculations with Maple, which is what we
use for I7(σ5(X)) as well, the latter being quite involved as modules appear with multiplicity
up to nine. �

6.9. Case of X = Seg(P3 × P
3 × P

3).

Proposition 6.5. Let X = Seg(P3 × P
3 × P

3) = Seg(PA∗ × PB∗ × PC∗) . Then

• I4(σ3(X)) = Λ4(A⊗B)⊗Λ4C plus permutations and S211A⊗S211B⊗S211C.
• The space of quintic equations of σ4(X) is

I5(σ4(X)) = S311A⊗S2111B⊗S2111C⊕S2111A⊗S311B⊗S2111C⊕S2111A⊗S2111B⊗S311C

and has dimension 3× 36× 4× 4 = 1728.
We also know that S333A⊗S333B⊗S333C is in I9(σ4(X)) by inheritance. Since it only

involves partitions of length three, it cannot be generated by I5(σ4(X)), whose components
all involve partitions of length four. Thus I(σ4(X)) is not generated in degree 5.

• I6(σ5(X)) = 0
• I7(σ5(X)) = 0
• I8(σ5(X)) ⊇ S5111A⊗S2222B⊗S2222C ⊕S3311A⊗S2222B⊗S2222C, again, up to permu-
tations. Both modules occur with multiplicity one in S8(A⊗B⊗C).

• Id(σ6(X)) = 0 for d ≤ 8.

The factors S311A⊗S2111B⊗S2111C plus permutations in I5(σ4(X)) are inherited from case
6.8. Since S2111A⊗S2111B⊗S2111C is not in S5V , all of I5(σ4(X)) must be inherited from case
6.8.

The remaining modules were eliminated by extensive Maple calculations. These calculations
also showed us the candidate members of I8 but only with extremely high probability, so we
now present direct proofs that they are in the ideal.

The following monomial gives a highest weight vector for S5111A⊗S2222B⊗S2222C when
summed over the symmetric group:

F = α1α2α5α6(α3∧α4∧α7∧α8)(β1∧β2∧β3∧β8)(β4∧β5∧β6∧β7)(γ1∧γ2∧γ3∧γ4)(γ5∧γ6∧γ7∧γ8).

A general element of σ5(P
3 × P

3 × P
3) is of the form a1b1c1 + · · · + a5b5c5, and when we

compute a homogeneous polynomial P on such a sum, we get, after expansion, terms with
different homogeneities on a1b1c1, . . . , a5b5c5. These homogeneous components must all vanish
identically if we want P to vanish on σ5(P

3 × P
3 × P

3). Note that the type of homogeneity, up
to permutation of 1...5, is given by a partition π with 5 parts, the sum of the parts being equal
to the degree of the polynomial P .

We associate a graph γ(F ) to our tensor F . The vertices are identified with the integers 1...8,
and two vertices i and j are joined by an edge iff they are not wedged together in the expression
of F . We get:

γ(F ) = ◦ ◦

◦

◦

◦ ◦

◦ ◦

�
�
�
�

☞
☞
☞
☞
☞
☞
☞

✦✦✦✦✦✦✦

�
�
�
�
��

☞
☞
☞
☞
☞
☞
☞

✦✦✦✦✦✦✦

�
�
�
�
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Observe that γ(F ) contains no triangle, so that each time we choose a triple of indices among
1...8, two of them are wedged together somewhere in the expression of F .

Thus when we evaluate P on the monomials in the expansion of (a1b1c1 + · · · + a5b5c5)
5, all

terms with a power of three or greater evaluate to zero.
There remains to consider the case where the degrees are (2, 2, 2, 1, 1) (the case of (2, 2, 2, 2)

will follow). Denote the indices occuring with a power 2 by s, t, u and those to the first power
by i, j. Note that s, t, u must appear twice in the contributions of A, B, C, but of course not in
a same wedge product. So we’ll only get terms of type

αsαtαγαi(αs∧αt∧αu∧αj)(βs∧βt∧βu∧βi)(βs∧βt∧βu∧βj)(γs∧γt∧γu∧γi)(γs∧γt∧γu∧γj).

But this is skew-symmetric, e.g., in s and t, so the total contribution of these kinds of terms is
zero.

For S3311A⊗S2222B⊗S2222C = S22A⊗ detA⊗ (detB)2⊗ (detC)2 the analysis is similar to
the previous case. Here we may take

F = (α1∧α3)(α5∧α7)(α2∧α4∧α6∧α8)(β1∧β2∧β5∧β6)(β3∧β4∧β7∧β8)(γ1∧γ2∧γ3∧γ4)(γ5∧γ6∧γ7∧γ8).

The associated graph is as follows. Again, it contains no triangle:

γ(F ) = ◦ ◦

◦

◦

◦ ◦

◦ ◦

�
�
�
�✟✟✟

✦✦✦✦✦✦✦

✦✦✦✦✦✦✦

�
�
�
�

✟✟✟

Finally, consider the terms we get with exponents (2, 2, 2, 1, 1). They must be of type

(αs∧αt)(αu∧αi)(αα∧αt∧αu∧αj)(βs∧βt∧βu∧βi)(βs∧βt∧βu∧βj)(γs∧γt∧γu∧γi)(γs∧γt∧γu∧γj).

This is no longer skew-symmetric in s, t. But if we symmetrize with respect to s, t, u, we get
(twice) the product of a fixed product of determinants, with (αs∧αt)(αu∧αi)+(αt∧αu)(αs∧αi)+
(αu∧αs)(αt∧αi). Since the vanishing of such an expression is precisely the condition that defines
S22A inside S2(∧2A), our proof is complete.

In degree nine we verified that all cases of low multiplicity do not arise in I(σ6(X)) and we
are currently working on the cases of higher multiplicity. However, inspired by the P

2 ×P
2 ×P

2

case, there are two natural candidates that we checked using C ++ code written by P. Barbe:

Proposition 6.6. The module

S3333A⊗S3333B⊗S3333C ⊂ S12(A⊗B⊗C),

which occurs with multiplicity one, is not in I(σ6(P
3 × P

3 × P
3)).

The polynomial in degree 12 may be obtained by symmetrizing

F (a1b1c1, ..., a12b12c12) =det(a1, a2, a3, a4)det(a5, a6, a7, a8)det(a9, a10, a11, a12)

det(b1, b2, b5, b6)det(b3, b7, b9, b10)det(b4, b8, b11, b12)

det(c1, c7, c9, c12)det(c3, c5, c8, c10)det(c2, c4, c6, c11).
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