
Computer Science and Artificial Intelligence Laboratory

Fast Rates for Regularized Least-squares Algorithm
Andrea Caponnetto, Ernesto De Vito

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

April 14, 2005MIT-CSAIL-TR-2005-027
AIM-2005-013
CBCL-248



Abstract

We develop a theoretical analysis of generalization performances of regularized least-
squares on reproducing kernel Hilbert spaces for supervised learning. We show that
the concept of effective dimension of an integral operator plays a central role in the
definition of a criterion for the choice of the regularization parameter as a function
of the number of samples. In fact a minimax analysis is performed which shows
asymptotic optimality of the above mentioned criterion.
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1 Introduction

In this work we investigate the choice of the regularization parameter for the regu-
larized least squares algorithm (RLS) on a reproducing kernel Hilbert space (RKHS)
in the regression setting. This problem has already been extensively studied in the
statistical learning literature. Probabilistic upper bounds on the excess risk of the
empirical estimators are known and usually involve suitable priors on the regression
function. In particular we recall that in [11] optimal rates are established assuming
some smoothness condition on the regression function. In [3] a covering number
technique has been used to obtain explicit bounds expressed in terms of suitable
complexity measures of the regression function. In [5],[20], the covering techniques
have been replaced by estimates of integral operators through concentration in-
equalities of vector valued random variables. Although expressed in terms of easily
computable quantities the last bounds lack of nearly any information about the ac-
tual structure of the kernel in use. We show that such information can be exploited
to obtain tighter bounds. The approach we consider is a refinement of the functional
analytical techniques presented in [5]. The central concept in this development is
the effective dimension which, roughly speaking, counts the number of degrees of
freedom associated to the kernel and the marginal probability measure for a given
condition number. The concept of effective dimension was recently used in [26] and
[13] in the analysis of the performances of kernel methods estimators. Indeed in this
work we show that effective dimension plays a role in the definition of an effective
rule for the choice of the regularization parameter. In fact we prove that this rule is
somehow optimal for the minimax problems induced by a certain family of priors.

Since the effective dimension depends on both the kernel and the marginal proba-
bility distribution on the input space, our choice for the regularization parameter is
not completely distribution independent. In fact the spectrum of the integral oper-
ator depends dramatically on the marginal distribution but not on the dimension
of the ambient space. These considerations raise the question whether the effective
dimension could be estimated by unlabelled data.

The work is organized as follows. In sections 2 we recall very briefly the main
concepts of statistical learning theory in the classical setting [4],[9],[16]. In section 3
we fix the notations and define the mathematical objects which will be considered.
Furthermore we prove some preliminary results on the structure of RLS estimators
and concentration of measure for vector valued random variables. In section 4 we
prove the probabilistic upper bound for the excess risk of RLS estimators using the
concept of effective dimension. In section 5 we give an explicit rule for the choice
of the regularization parameter and compute the corresponding uniform rates of
convergence in probability of the actual risk to its minimum. Finally in section 6
using entropy estimates we prove that the rates obtained in the previous section are
indeed the optimal ones for the relevant minimax problem.
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2 Learning from examples

We briefly recall some basic concepts of statistical learning theory in the regression
setting (for details see [23], [9], [17], [2] and references therein).
In the framework of learning from examples there are two sets of variables: the input
space X and the output space Y ⊂ R. The relation between the input x ∈ X and
the output y ∈ Y is described by a probability distribution ρ(x, y) = ν(x)ρ(y|x)
on X × Y , where ν is the marginal distribution on X and ρ(·|x) is the conditional
distribution of y given x ∈ X. The distribution ρ is known only through a sample
z = (x,y) = ((x1, y1), . . . , (x`, y`)), called training set, drawn independently and
identically distributed (i.i.d.) according to ρ. Given the sample z, the aim of learning
theory is to find a function fz : X → R such that fz(x) is a good estimate of the
output y when a new input x is given. The function fz is called estimator and the
map providing fz, for any training set z, is called learning algorithm.

Given a function f : X → R, the ability of f to describe the distribution ρ is
measured by its expected risk defined as

I[f ] =
∫

X×Y
(f(x)− y)2 dρ(x, y),

and the regression function

fρ(x) =
∫

Y
y dρ(y|x),

is the minimizer of the expected risk over the space of all the measurable real
functions on X. In this sense fρ can be seen as the ideal estimator of the distribution
probability ρ. However, the regression function cannot be reconstructed exactly since
only a finite, possibly small, set of examples z is given.

To overcome this problem, in the framework of the regularized least squares algo-
rithm, [24], [15], [2], [27], a Hilbert space H of real functions on X is fixed and the
estimator fz

λ is defined as the solution of the regularized least squares problem,

min
f∈H

{1
`

∑̀

i=1

(f(xi)− yi)2 + λ‖f‖H2}, (1)

where λ is a positive parameter to be chosen in order to ensure that the discrepancy

I[fz
λ]− inf

f∈H
I[f ]

is small with hight probability. Since ρ is unknown, the above difference is studied
by means of a probabilistic bound B(λ, `, η), which is a function depending on the
regularization parameter λ, the number ` of examples and the confidence level 1−η,
such that

P
[
I[fz

λ]− inf
f∈H

I[f ] ≤ B(λ, `, η)
]
≥ 1− η.
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In particular, the learning algorithm is consistent if it is possible to choose the
regularization parameter, as a function of the available data λ = λ(`, z), in such a
way that

lim
`→+∞

P
[
I[fz

λ(`,z)]− inf
f∈H

I[f ] ≥ ε

]
= 0, (2)

for every ε > 0. The above convergence in probability is usually called (weak) con-
sistency of the algorithm (see [7] for a discussion on different types of consistency).

3 Notations, assumptions and preliminary results

We assume that the input space X is a separable metric space and the output space
Y is a closed subset of R. We let Z be the product space X×Y , which is a separable
metric space.

We denote by ν the marginal distribution on X and by ρ(y|x) the conditional
distribution of y ∈ Y given x ∈ X. Let L2(Z, ρ, Y ) be the Hilbert space of square
integrable functions on Z with respect to ρ and we denote by ‖·‖ρ and 〈·, ·〉ρ the
corresponding norm and scalar product. Similar notation we use for L2(X, ρX , Y ).
Moreover we assume that ν is not degenerate, i.e. all the non-void open subsets of
X have a strictly positive measure.

We assume that the space H is a reproducing kernel Hilbert space, [1], [18], with a
separately continuous kernel K : X ×X → R such that

κ = sup
x∈X

K(x, x) < +∞. (3)

As usual 〈·, ·〉H and ‖·‖H denote the corresponding scalar product and norm. Since
K is a separately continuous bounded kernel and X is separable, H is a real separa-
ble Hilbert space whose elements are real continuous functions defined on X, [18].
Moreover, given x ∈ X the function Kx = K(·, x) belongs to H and the following
reproducing property holds

f(x) = 〈f, Kx〉H ∀f ∈ H (4)

and (3) ensures
‖Kx‖H2 = K(x, x) ≤ κ. (5)

We are ready to state the hypotheses on the probability measure ρ. Firstly we will
assume the condition ∫

Z
y2 dρ(x, y) < +∞. (6)

Moreover we will assume that some fH ∈ H exists which attains the infimum of the
expected risk, that is

I[fH] = inf
f∈H

I[f ], (7)
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and that for some M > 0

|y − fH(x)|2 ≤ M ρ− a.s. (8)

Let us now review some properties of the operator A : H → L2(Z, ρ, Y ) defined as
follows

(Af)(x, y) = 〈f, Kx〉H.

Equation (4) implies that the action of A on an element f is simply

(Af)(x, y) = f(x) ∀x ∈ X, f ∈ H,

that is, A is the canonical inclusion of H into L2(Z, ρ, Y ), where the variable y is
dumb. However, A changes the norm since ‖f‖H is different from ‖f‖ρ. The main
properties of the operator A are summarized in the following proposition.

Proposition 1 The operator A is an injective Hilbert-Schmidt operator from H
into L2(Z, ρ, Y ) and

A∗φ =
∫

Z
φ(x, y)Kx dρ(x, y) (9)

T := A∗A =
∫

X
〈·,Kx〉HKx dν(x), (10)

where φ ∈ L2(Z, ρ, Y ), the first integral converges in norm and the second one in
trace norm. In particular T is a trace class injective operator from H to H.

PROOF. The proof is standard and we report it for completeness.
Since the elements f ∈ H are continuous functions, (5) bounds them by

|f(x)| = |〈f, Kx〉H| ≤ ‖f‖H‖Kx‖H ≤
√

κ‖f‖H.

Since ρ is a probability measure, then f ∈ L2(Z, ρ, Y ) and A is a linear operator
from H to L2(Z, ρ, Y ) with ‖Af‖ρ ≤

√
κ‖f‖H, so that A is bounded.

We now show that A is injective. Let f ∈ H and W = {x ∈ X | f(x) 6= 0}, which is
open since f is continuous. Assume now that Af = 0, i.e., f(x) = 0 for ν-almost
all x ∈ X, then W has null measure. Since ν is not degenerate, W is the empty set,
i.e., f(x) = 0 for all x ∈ X, so that f = 0.
We now prove (9). Since K is separately continuous, the map

X 3 x 7→ Kx ∈ H

is weakly continuous and, since H is separable, is strongly measurable. Hence, given
φ ∈ L2(Z, ρ, Y ), the map (x, y) 7→ φ(x, y)Kx is measurable from Z to H. More-
over, (5) gives

‖φ(x, y)Kx‖H ≤ |φ(x, y)|√κ
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for all x ∈ X. Since ρ is finite, φ is in L1(Z, ρ) and, hence, (x, y) 7→ φ(x, y)Kx is
integrable, as a vector valued map. Finally, for all f ∈ H,

∫

Z
φ(x, y) 〈Kx, f〉H dρ(x, y) = 〈φ,Af〉ρ = 〈A∗φ, f〉H ,

so (9) holds.
Equation (10) is a consequence of (9),the fact that the integral commutes with the
scalar product and the definition of marginal distribution ν.
We now prove that A is a Hilbert-Schmidt operator. Let (en)n∈N be a Hilbert basis
of H, which is separable. Since A∗A is a positive operator and |〈Kx, en〉H|2 is a
positive function, by monotone convergence theorem, we have that

Tr (A∗A) =
∑

n

∫

X
|〈en,Kx〉H|2 dν(x)

=
∫

X

∑
n

|〈en,Kx〉H|2 dν(x)

=
∫

X
〈Kx,Kx〉H dν(x)

=
∫

X
K(x, x) dν(x) ≤ κ

and the thesis follows. The properties of T are an easy consequence of the corre-
sponding properties of A. 2

The following proposition clarifies the role of the operator A in the context of
learning theory. The result is well known in the framework of linear inverse problems,
see for example [8]. With slight abuse of notation we denote by y both the variable
and the function (x, y) 7→ y, which belongs to L2(Z, ρ, Y ) due to (6).

Proposition 2 If a minimizer fH of the expected risk I[f ] exists on H, then it is
unique, satisfies

TfH = A∗y. (11)

and

I[f ]− I[fH] = ‖A(f − fH)‖ρ
2 =

∥∥∥
√

T (f − fH)
∥∥∥
H

2
(12)

for all f ∈ H.
If λ > 0 a unique minimizer fλ of the regularized expected risk

I[f ] + λ‖f‖H2

exists and it is given by

fλ = (T + λ)−1A∗y = (T + λ)−1TfH. (13)
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PROOF. Clearly
I[f ] = ‖Af − y‖ρ

2

for all f ∈ H. Since fH is a minimizer, by differentiation we obtain

〈Af, AfH − y〉ρ = 0 ∀f ∈ H (14)

and (11) follows. The uniqueness is ensured by the injectivity of T .
Given f ∈ H

I[f ]− I[fH] = ‖Af − y‖ρ
2 − ‖AfH − y‖ρ

2

= ‖A(f − fH)‖ρ
2 + 2〈A(f − fH), AfH − y〉ρ

= ‖A(f − fH)‖ρ
2

since the second term is zero due to (14). Let A = U
√

T be the polar decomposition.
Since U is a partial isometry from the closure of the range of

√
T onto the closure

of the range of A

‖A(f − fH)‖ρ =
∥∥∥
√

T (f − fH)
∥∥∥
H

.

Finally, (13) follows taking the derivative be equal to zero. 2

Let now z = (x,y) = ((x1, y1), . . . , (x`, y`)) ∈ Z` be the training set. The above
arguments can be repeated replacing the measure ρ with the empirical measure
ρz = 1

`

∑`
i=1 δ(xi,yi) where δ(x,y) is the Dirac measure at point (x, y) ∈ Z. An

element φ ∈ L2(Z, ρz) is completely specified by the vector w ∈ R` given by

wi = φ(xi, yi)

with the condition that wi = wj whenever (xi, yi) = (xj , yj). In the following we
represent the elements of L2(Z, ρz) as vectors in R` where scalar product is given
by

〈
w,w′〉

L2(Z,ρz)
=

1
`

∑̀

i=1

wiw′
i.

We now get a discretized version of A by defining the sampling operator [19]

Az : H→L2(Z, ρz)

(Azf)i = 〈f, Kxi〉H = f(xi) ∀i = 1, . . . , `.

The main properties of the sampling operator are given by the following proposition.

Proposition 3 The sampling operator Az : H → L2(Z, ρz) is a finite rank operator
and
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Az
∗w =

1
`

∑̀

i=1

wiKxi w ∈ L2(Z, ρz) (15)

Tx := Az
∗Az =

1
`

∑̀

i=1

〈·,Kxi〉HKxi . (16)

If λ > 0 a unique minimizer fz
λ of the regularized empirical error

1
`

∑̀

i=1

(f(xi)− yi)2 + λ‖f‖H2

exists and is given by
fλ
z = (Tx + λ)−1A∗xy. (17)

PROOF. The content of the proposition is a restatement of Proposition 1 and the
fact that the integrals reduce to sums.

Finally we need the following probabilistic inequality due to Pinelis and Sakhanenko
[14], [25].

Proposition 4 Let (Ω,F , P ) be a probability space and ξ be a random variable on
Ω taking value in a real separable Hilbert space H. Assume that there are two positive
constants H and σ such that

‖ξ(ω)‖H≤
H

2
a.s (18)

E[‖ξ‖H2]≤ σ2. (19)

Let ` ∈ N and 0 < η < 1, then

P`

[
(ω1, . . . , ω`) ∈ Ω` |

∥∥∥∥∥
1
`

∑̀

i=1

ξ(ωi)− E[ξ]

∥∥∥∥∥
H
≤ 2

(
H

`
+

σ√
`

)
log

2
η

]
≥ 1− η.

(20)

PROOF. It is just a restatement of Th. 3.3.4 of [25], see also [21]. Consider the
probability space (Ω`,F `, P `) and the set of independent random variables with
zero mean ξi(ω1, . . . , ω`) = ξ(ωi)−E[ξ] defined on Ω`. The fact that ξi are i.i.d and
conditions (18), (19) ensure that

‖ξi‖H≤H a.s

E[‖ξi‖H2]≤ σ2,
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so that, for all m ≥ 2 it holds

∑̀

i=1

E[‖ξi‖m
H] ≤ 1

2
m!B2Hm−2,

with B2 = `σ2. So Th. 3.3.4 of [25] can be applied and it ensures

P

[
1
`

∥∥∥∥∥
∑̀

i=1

(ξ(zi)− E[ξ])

∥∥∥∥∥ ≥
xB

`

]
≤ 2 exp

(
− x2

2(1 + xHB−1)

)
.

for all x ≥ 0. Letting δ = xB
` , we get the equation

1
2
(
`δ

B
)2

1
1 + `δHB−2

=
`δ2σ−2

2(1 + δHσ−2)
= log

2
η
,

since B2 = `σ2. Defining t = δHσ−2

`σ2

2H2

t2

1 + t
= log

2
η
.

The inverse of the function t2

1+t is the function g(t) = 1
2(t +

√
t2 + 4t) so

∥∥∥∥∥
1
`

∑̀

i=1

ξ(zi)− E[ξ]

∥∥∥∥∥
H
≤ σ2

H
g

(
2H2

`σ2
log

2
η

)

with probability greater than 1− η. The thesis follows observing that g(t) ≤ t +
√

t

and 2 log 2
η ≥

√
2 log 2

η ≥ 1. 2

4 Upper bound

The aim of this section is to give a probabilistic upper bound on the expect risk of
the solution given by the regularized least squares algorithm. The bound depends on
the number of examples `, the regularization parameter and some prior information
on the probability distribution ρ.

In the following, we assume that the space H and the probability distribution ρ
satisfy the assumptions (3), (6), (7) and (8). Set the parameter λ > 0 we define

(1) the residual

A(λ) =
∥∥∥fλ − fH

∥∥∥
ρ

2
=

∥∥∥
√

T (fλ − fH)
∥∥∥
H

2
,

where T is given by (10), fλ by (13) and fH by (7);

(2) the reconstruction error

B(λ) =
∥∥∥fλ − fH

∥∥∥
H

2
;
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(3) the effective dimension

N (λ) = Tr[(T + λ)−1T ],

where the trace is finite due to Proposition 1.

In the framework of learning A(λ) is called approximation error, whereas in the
framework of approximation theory

√
B(λ) is the approximation error. To avoid

confusion we follow the notation of inverse problems.

We are now ready to state our main result of the section.

Theorem 5 Let z ∈ Z` be a training set drawn i.i.d according to ρ and fz
λ ∈ H the

corresponding estimator given by (17). With probability greater than 1−η, 0 < η < 1,

I[fz
λ]− I[fH] ≤ Cη

(
A(λ) +

κ2B(λ)
`2λ

+
κA(λ)

`λ
+

κM

`2λ
+

MN (λ)
`

)
(21)

provided that

` ≥ Cηκ

2λ
max(N (λ),

√
2/Cη) (22)

where Cη = 128 log2(8/η).

PROOF. We split the proof in several steps. Here ‖·‖ denotes the uniform norm
of an operator from H to H Let λ, η and ` as in the statement of the theorem.
Step 1: Given a training set z = (x,y) ∈ Z`, (12) gives

I[fz
λ]− I[fH] =

∥∥∥
√

T (fz
λ − fH)

∥∥∥
H

2
.

As usual,
fz

λ − fH = (fz
λ − fλ) + (fλ − fH)

and (13), (17) give

fz
λ − fλ =

(
(Tx + λ)−1Az

∗y
)− (

(T + λ)−1A∗y
)

= (Tx + λ)−1
{
(Az

∗y −A∗y) + (T − Tx)(T + λ)−1A∗y
}

( Eq. (11) ) = (Tx + λ)−1
{

(Az
∗y − TxfH + TxfH − TfH) + (T − Tx)fλ

}

= (Tx + λ)−1 (Az
∗y − TxfH) + (Tx + λ)−1(T − Tx)(fλ − fH).

The inequality ‖f1 + f2 + f3‖H2 ≤ 3(‖f1‖H2 + ‖f2‖H2 + ‖f3‖H2) implies

I[fz
λ]− I[fH] ≤ 3 (A(λ) + S1(λ, z) + S2(λ, z)) (23)

where
S1(λ, z) =

∥∥∥
√

T (Tx + λ)−1 (Az
∗y − TxfH)

∥∥∥
H

2
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S2(λ, z) =
∥∥∥
√

T (Tx + λ)−1(T − Tx)(fλ − fH)
∥∥∥
H

2
.

Step 2: probabilistic bound on S2(λ, z). Clearly

S2(λ, z) ≤
∥∥∥
√

T (Tx + λ)−1
∥∥∥

2

L(H)

∥∥∥(T − Tx)(fλ − fH)
∥∥∥
H

2
. (24)

Step 2.1: probabilistic bound on
∥∥∥
√

T (Tx + λ)−1
∥∥∥. Assume that

Θ(λ, z) =
∥∥(T + λ)−1(T − Tx)

∥∥ ≤ 1
2
, (25)

then the Neumann series gives

√
T (Tx + λ)−1 =

√
T (T + λ)−1(I − (T + λ)−1(T − Tx))−1

=
√

T (T + λ)−1
+∞∑

n=0

(
(T + λ)−1(T − Tx)

)n

so that

∥∥∥
√

T (Tx + λ)−1
∥∥∥≤

∥∥∥
√

T (T + λ)−1
∥∥∥

+∞∑

n=0

∥∥(T + λ)−1(T − Tx)
∥∥n

L(H)

≤ 1
2
√

λ

1
1−Θ(λ, z)

,

where, by spectral theorem,
∥∥∥
√

T (T + λ)−1
∥∥∥ ≤ 1

2
√

λ
. Inequality (25) now gives

∥∥∥
√

T (Tx + λ)−1
∥∥∥ ≤ 1√

λ
. (26)

We claim that (22) implies (25) with probability greater than 1−η. Indeed, let L2(H)
be the Hilbert space of Hilbert-Schmidt operators on H (recall that 〈A,B〉L2(H) =
Tr[A∗B]). Let us identify L2(H) with H⊗H, and let ξ1 : X → L2(H) be the random
variable

ξ1(x) = 〈·,Kx〉H(T + λ)−1Kx = Kx ⊗ (T + λ)−1Kx.

Bound (5) and
∥∥(T + λ)−1

∥∥ ≤ 1
λ imply

‖ξ‖H⊗H = ‖Kx‖H
∥∥(T + λ)−1Kx

∥∥
H ≤

κ

λ
=

H1

2
,

and

E[‖ξ1‖2
H⊗H] =

∫

X
‖Kx‖H2

∥∥(T + λ)−1Kx

∥∥
H

2
dν(x)

≤ κ

∫

X

〈
(T + λ)−2Kx,Kx

〉
Hdν(x)

= κTr[(T + λ)−2T ]
≤ κ

∥∥(T + λ)−1
∥∥ Tr[(T + λ)−1T ]

≤ κ

λ
N (λ) = σ2

1,
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Observing that

E[ξ1] = T (T + λ)−1 1
`

∑̀

i=1

ξ1(xi) = (T + λ)−1Tx,

Proposition 4 applied to ξ1 gives

∥∥(T + λ)−1Tx − T (T + λ)−1
∥∥
L2(H)

≤ 2 log(6/η)

(
2κ

λ`
+

√
κN (λ)

λ`

)

with probability greater than 1− η/3. Then for all ` ∈ N satisfying (22)

log(6/η)

(
2κ

λ`
+

√
κN (λ)

λ`

)
≤ 1

8
+

1
8
≤ 1

4

so that
Θ(λ, z) ≤ ∥∥(T + λ)−1Tx − T (T + λ)−1

∥∥
L2(H)

≤ 1
2

(27)

with probability greater than 1− η/3.
Step 2.2: probabilistic bound on

∥∥(T − Tx)(fλ − fH)
∥∥. Let ξ2 : X → H be the

random variable
ξ2(x) =

〈
fλ − fH,Kx

〉
H

Kx.

Bound (5) and the definition of B(λ) give

‖ξ2(x)‖H ≤ ‖Kx‖H2
∥∥∥fλ − fH

∥∥∥
H
≤ κ

√
B(λ) =

H2

2
,

and

E[‖ξ2‖H2] =
∫

X
‖Kx‖H2

〈
fλ − fH, Kx

〉2

H
dν(x)

≤ κ
〈
T (fλ − fH), fλ − fH

〉
H

= κ
∥∥∥
√

T (fλ − fH)
∥∥∥
H

2

= κA(λ) = σ2
2.

Observing that

E[ξ2] = T (fλ − fH)
1
`

∑̀

i=1

ξ2(xi) = Tx(fλ − fH),

Proposition 4 applied to ξ2 gives

∥∥∥(T − Tx)(fλ − fH)
∥∥∥
H
≤ 2 log(6/η)

(
2κ

√
B(λ)
`

+

√
κA(λ)

`

)
. (28)

12



with probability greater than 1 − η/3. Replacing (26), (28) in (24), for all ` ∈ N
satisfying (22) it holds

S2(λ, z) ≤ 8 log2(6/η)
(

4κ2B(λ)
`2λ

+
κA(λ)

`λ

)
(29)

with probability greater than 1− 2η/3.
Step 3: probabilistic bound on S1(λ, z). Clearly

S1(λ, z) ≤
∥∥∥
√

T (Tx + λ)−1(T + λ)
1
2

∥∥∥
2

L(H)

∥∥∥(T + λ)−
1
2 (Az

∗y − TxfH)
∥∥∥
H

2
. (30)

Step 3.1: bound on
∥∥∥
√

T (Tx + λ)−1(T + λ)
1
2

∥∥∥. Clearly,

√
T (Tx + λ)−1(T + λ)

1
2 =

√
T (T + λ)−

1
2

{
I − (T + λ)−

1
2 (T − Tx)(T + λ)−

1
2

}−1
.

Spectral theorem ensures that
∥∥∥
√

T (T + λ)−
1
2

∥∥∥ ≤ 1 so, reasoning as in Step 2.1,

∥∥∥
√

T (Tx + λ)−1(T + λ)
1
2

∥∥∥ ≤ 2 (31)

provided that ∥∥∥(T + λ)−
1
2 (T − Tx)(T + λ)−

1
2

∥∥∥ ≤ 1
2
. (32)

If B = (T + λ)−
1
2 (T − Tx)(T + λ)−

1
2 , then

‖B‖2
L2(H) = Tr

(
(T + λ)−1(T − Tx)(T + λ)−1(T − Tx)

)

=
〈
(T + λ)−1(T − Tx),

(
(T + λ)−1(T − Tx)

)∗〉
L2(H)

≤ ∥∥(T + λ)−1(T − Tx)
∥∥
L2(H)

∥∥∥
(
(T + λ)−1(T − Tx)

)∗∥∥∥
L2(H)

=
∥∥(T + λ)−1(T − Tx)

∥∥2

L2(H)
,

and, for all ` ∈ N satisfying (22), (27) ensures that (32) holds with probability
1− 2η/3.
Step 3.2: bound on

∥∥∥(T + λ)−
1
2 (Az

∗y − TxfH)
∥∥∥
H

. Let ξ3 : X × Y → H be the
random variable

ξ3(x, y) = (T + λ)−
1
2 Kx (y − fH(x)) .

The definition of M gives

‖ξ3(x, y)‖H ≤
∥∥∥(T + λ)−

1
2

∥∥∥
H
‖Kx‖H

√
M ≤

√
κM

λ
=

H3

2

almost surely, and

13



E[‖ξ3‖H2] =
∫

X×Y
(y − fH(x))2

∥∥∥(T + λ)−
1
2 Kx

∥∥∥
H

2
dν(x)

≤M

∫

X

〈
(T + λ)−1Kx,Kx

〉
Hdν(x)

= M Tr[(T + λ)−1T ] = MN (λ) = σ2
3.

Equation (11) gives

E[ξ3] = (T + λ)−
1
2 (A∗y − TfH) = 0,

so Proposition 4 applied to ξ3 ensures

∥∥∥(T + λ)−
1
2 (Az

∗y − TxfH)
∥∥∥
H
≤ 2 log(6/η)

(
2
`

√
κM

λ
+

√
MN (λ)

`

)
(33)

with probability greater than 1− η/3. Replacing (31), (33) in (30)

S1(λ, z) ≤ 32 log2(6/η)
(

4κM

`2λ
+

MN (λ)
`

)
. (34)

with probability greater than 1− η.
Replacing bounds (29), (34) in (23),

I[fz
λ]− I[fH] ≤ 3A(λ) + 8 log2(6/η)

(
4κ2B(λ)

`2λ
+

κA(λ)
`λ

+
16κM

`2λ
+

4MN (λ)
`

)

and (21) follows by bounding the numerical constants with 128.

5 A priori regularization parameter choice

In this section we discuss the choice of the parameter λ = λ` as a function of the
number of examples ` in such a way to obtain a maximal rate of convergence.

The following lemma studies the dependence of A(λ), B(λ) and N (λ) on λ. We let
N be the dimension of H (possibly N = +∞) and

T =
N∑

n=1

tn 〈·, en〉 en

be the spectral decomposition of T with 0 < tn+1 ≤ tn and (en)N
n=1 be a basis of H.

Lemma 6 With the above notations,

lim
λ→0

N (λ) = N, (35)

in particular if N = +∞ and tn = O(n−b) for some b > 1

N (λ) = O(λ−
1
b ). (36)

14



Moreover, if fH ∈ Im T a with 0 ≤ a ≤ 1/2, then

A(λ) ≤ λ2a+1
∥∥T−afH

∥∥
H

2 (37)

and
B(λ) ≤ λ2a

∥∥T−afH
∥∥
H

2
. (38)

PROOF. Firstly we study N (λ). Since

N (λ) =
N∑

n=1

tn
tn + λ

(39)

clearly, limλ→0N (λ) = N . Assume now that N = +∞ and tn = O(n−b) with b > 1,
in fact since, by eq 39, N (λ) is an increasing function of tn for every n, without loss
of generality we can consider the case tn = n−b. The sequence (tn)n∈N is strictly
positive and decreasing then, by integral test, N (λ) has the same behavior of

M(λ) =
∫ ∞

1

1
1 + tbλ

dt

(τ b = tbλ) = λ−
1
b

∫ +∞

λ
1
b

1
1 + τ b

dτ

≤ λ−
1
b

∫ +∞

0

1
1 + τ b

, dτ

so that N (λ) = O(λ−
1
b ).

The results about A(λ) and B(λ) are standard [10,8]. We give the proof for com-
pleteness. Equations (13) gives

B(λ) =
∥∥(T + λ)−1TfH − fH

∥∥
H

2

=
∥∥λ(T + λ)−1fH

∥∥
H

2

=
N∑

n=1

(
λ

tn + λ
)2|〈fH, en〉H|2. (40)

Assume now that fH ∈ Im T a with 0 ≤ a ≤ 1/2. Since the function xa is concave
on ]0, +∞[

(
tn
λ

)a ≤ 1 + a
tn
λ
≤ 1 +

tn
λ

,

so that
λ

tn + λ
=

1
1 + tn

λ

≤ λa

tan
,

then, replacing the above inequality in (40)

B(λ) ≤ λ2a
∥∥T−afH

∥∥
H

2
.
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Reasoning as above we obtain

A(λ) =
∥∥∥
√

T
(
(T + λ)−1TfH − fH

)∥∥∥
H

2

=
N∑

n=1

tn(
λ

tn + λ
)2|〈fH, en〉H|2

≤
N∑

n=1

tn(
λa+ 1

2

t
a+ 1

2
n

)2|〈fH, en〉H|2

= λ2a+1
N∑

n=1

1
t2a
n

|〈fH, en〉H|2 = λ2a+1
∥∥T−afH

∥∥
H

2

where the inequality follows since the function xa+ 1
2 is concave.

The following theorem analyzes the a priori choice for the regularization parameter
and the corresponding rate of convergence to the regression function in a suitable
prior class. We use the stochastic order symbol OP defined, [22],by the equivalence

Xn = OP (kn) ⇔ lim
T→∞

lim sup
n→∞

P [|Xn| > Tkn] = 0,

where (Xn)n∈N is a sequence of random variables and (kn)n∈N a sequence of positive
numbers.

Theorem 7 Assume fH ∈ Im T a with 0 < a ≤ 1/2 and for ` ∈ N let λ` the unique
solution of the equation

`λc
` = N (λ`), (41)

where c = 2a + 1. Then, with the assumptions of Theorem 5

if





N < +∞
N = +∞, tn = O(n−b)

then I[fz
λ` ]− I[fH] =





OP

(
`−1

)

OP

(
`−

bc
cb+1

)

where b > 1.

PROOF.

First of all, from representation (39), we note that N (λ) is a positive, non-increasing
continuous function of λ. Then it is clear that equation (41) has a unique non-
negative solution λ`, and lim`→∞ λ` = 0.

Now let us fix η ∈ (0, 1), and note that since by assumption c > 1, there exists
`(η) ∈ N such that ` > `(η) implies

`λ` = λ1−c
` N (λ`) ≥ Cηκ

2
max(N (λ`),

√
2/Cη) (42)
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where we followed the notation in Theorem 5. Since the inequality above is equiva-
lent to the constraint (22), Theorem 5 can be applied, giving

P
[
|X`| > Cη

(
A(λ`) +

κ2B(λ`)
`2λ`

+
κA(λ`)

`λ`
+

κM

`2λ`
+

MN (λ`)
`

)]
≤ η, ∀` > `(η)

where we introduced the sequence of random variables X` = I[fz
λ` ]− I[fH].

We can simplify the form of the upper bound above recalling that by Lemma 6,
B(λ`) = O(1), which implies B(λ`)`−2λ−1

` = O(`−2λ−1
` ) such that the fourth

term in the sum above is not asymptotically smaller than the second one. Rea-
soning in a similar way, from inequality (42) we see that `−1λ−1

` = O(1) such that
A(λ`)`−1λ−1

` = O(A(λ`)) and `−2λ−1
` = O(N (λ`)`−1), which means that the first

and fifth terms are not asymptotically smaller than the third and fourth ones re-
spectively. These arguments on asymptotic orders of the terms in the probabilistic
bound above lead to the conclusion that a positive constant C ′ and natural number
`′(η) exist such that

P
[
|X`| > CηC

′
(
A(λ`) +

N (λ`)
`

)]
≤ η, ∀` > `′(η). (43)

The bound above can be restated in terms of stochastic order symbols in fact, since
η was arbitrarily chosen in the interval (0, 1), from the definition of the constants
Cη it follows that

P
[
|X`| > T

(
A(λ`) +

N (λ`)
`

)]
≤ 8e−

√
T/128C′ , ∀T > 128C ′ log2 8 ∀` > `′′(T ),

(44)
and from the definition of stochastic order symbol this implies

I[fz
λ` ]− I[fH] = OP

(
A(λ`) +

N (λ`)
`

)
. (45)

In order to complete the proof we now have to estimate the asymptotic order of
the sequence of positive numbers appearing on the r.h.s. of the equality above.
This can be accomplished bounding by O(λc

`) both the approximation term A(λ`)
and the sampling term N (λ`)/`. The first estimate is obtained by inequality (37)
in Lemma 6, the second one by the very definition of λ`, equation (41). Then
we can furthermore simplify the previous expression for the stochastic order of
I[fz

λ` ]− I[fH], in fact we have

I[fz
λ` ]− I[fH] = OP (λc

`) . (46)

Finally let us consider separately the two cases in text of the theorem. If N < +∞,
by equation (35) in Lemma 6 and equation (41), it is clear that λc

` = O(`−1), which
proves the first statement of the theorem. If instead N = +∞ and tn = O(n−b) for
some b > 1 this time from equality (36) in Lemma 6 and equation (41) it follows

λc
`` = O(λ

− 1
b

` ),

which implies λc
` = O(`−

bc
bc+1 ), proving the second part of the theorem.

17



6 Asymptotic Optimality

In this section we prove that the asymptotic power rates obtained are indeed op-
timal. The cited power rates were derived assuming that the eigenvalues of the
operator T fulfill the power upper bound tn = O(n−b).

On the other hand the main result of this section relies on a power lower bound for
the same eigenvalues, tn = Ω(n−b). It is shown that under this assumption a lower
bound of the same form as the previous result can be established for the asymptotic
rate of convergence for the risk.

These two results allow to conclude that in the case tn = Θ(n−b), that is if the
eigenvalues of T have a power asymptotic growth, then the asymptotic rate of
convergence for the risk of RLS estimators obtained by the described choice for the
regularization parameter, is optimal conditionally to the marginal distribution ρX

and the prior fρ ∈ F .

We now state and prove the just introduced theorem. Let us first name M(F , ρX)
the set of probability distribution ρ on X×Y which realize the marginal probability
distribution ρX and compatible with the prior condition fρ ∈ F . The theorem is
based on a recent result, [6], expressed in terms of the tight packing numbers of the
prior class F ⊆ L2(X, ρX)

N̄ (F , ρX , δ, c0, c1) := sup{k| ∃ (gi)k
i=1 ∈ Fk, s.t. ∀i 6= j c0δ ≤ ‖gi − gj‖ν ≤ c1δ}

where 0 < c0 ≤ c1 < ∞ are two fixed real numbers. The main lower bound in ([6]
Theorem 3.1) can be restated in the following form

Theorem 8 Define N̄ (ε) := N̄ (F , ρX , 2
√

ε/c0, c0, c1). Suppose that for ε > 0 the
net of functions (gi)

N̄ (ε)
i=1 (occurring in the definition of tight packing numbers) sat-

isfies ‖gi‖C(X) ≤ 1/4 for i = 1, · · · , N̄ (ε). Let η̄ := e−3/ e, then for all ` ∈ N

inf
f·

sup
ρ∈M(F ,ρX)

P
z∼ρ`

[I[fz] ≥ I[fρ] + ε] ≥ min(
1
2
, η̄

√
N̄ (ε) exp(−8`εc2

1/c2
0))

where the infimum is over the set of all the learning maps z → fz.

We now specialize this general result to our framework, that is we consider the two
parameters family of prior classes

F(a,R) := {f ∈ H| T−af ∈ H with
∥∥T−af

∥∥
H ≤ R} (47)

for 0 ≤ a ≤ 1/2 and R > 0.

The lower bound on the asymptotic rate of risk for general learning maps under
these priors and fixed marginal distribution ρX , can be stated as follows
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Theorem 9 Let us assume that dimH = +∞. Moreover let the eigenvalues (tn)+∞n=1

of the operator T fulfill the condition tn = Ω(n−b) for some b > 0. Then for every
0 ≤ a ≤ 1/2 and R > 0 there exist ¯̀ and C > 0 such that for every ` > ¯̀

inf
f·

sup
ρ∈M(F ,ρX)

P
z∼ρ`

[
I[fz] ≥ I[fρ] + C`−

cb
cb+1

]
≥ η̄,

where F := AF(a,R), c := 2a + 1 and η̄ := e−3/ e.

The proof of Theorem (9) relies on the following Lemma regarding packing numbers
over sets of binary strings endowed with the Hamming distance

dH(σ, σ′) := |{1 ≤ i ≤ K s.t. σi 6= σ′i}|,

where we adopted the notation σ := (σi)K
i=1 ∈ {−1, +1}K . The proof relies on a

standard concentration of measure result, Hoeffding’s inequality [12] .

Lemma 10 For every K > 17 there exists a subset L of the cube {−1, +1}K such
that

dH(σ, σ′) >
K

2
∀ σ, σ′ ∈ L, σ 6= σ′

and |L| ≥ BK where B := exp(1/24).

PROOF. If σ := (σi)K
i=1 is a random point on the cube, then the components σi are

independent random variables distributed according to the measure 1/2(δ−1 + δ+1).
Let σ and σ′ be independent random points on the cube, then note that

dH(σ, σ′) =
K∑

i=1

|σi − σ′i| =
K∑

i=1

θi

where θi are independent random variables distributed according to the measure
1/2(δ0 + δ2). It follows that Hoeffding’s inequality can be applied to the random
variable dH(σ, σ′), yielding for every δ > 0

P
[|dH(σ, σ′)−K| ≥ δ

] ≤ 2 exp(− δ2

2K
).

Setting δ = K/2 in the inequality above, we obtain

P
[
dH(σ, σ′) ≤ K

2

]
≤ 2 exp(−K

8
). (48)

Now draw m := pBKq (where pxq is the lowest integer greater than x) independent
random points σ(j) (j = 1, · · · ,m) on the cube. From inequality (48), by union
bound it holds
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P
[
∃ 1 ≤ j, k ≤ m, j 6= k, with dH(σ(j), σ(k)) ≤ K

2

]

≤ (m2 −m) exp(−K

8
) ≤ (B2K + BK + 1)B−3K < 1,

where we used the inequality x ≤ pxq ≤ x+1 and the assumption K > 17. The last
inequality implies that at least one subset of the cube with the required properties
exists.

We are now ready to prove the main result of this section.

PROOF. [Theorem (9)] The proof consists in showing a large subset ALε of the
the prior class F := AF(a,R) defined in (47) whose tight packing numbers can be
easily estimated. Then Theorem (8) will be applied directly to ALε yielding the
claimed lower bound.

Firstly define R′ := min{R, κ−c/4}, obviously

F(a, R′) ⊆ F(a,R).

Moreover for every f in F(a, R′) it holds

‖f‖C(X) ≤ κ‖f‖H ≤ κ ‖T a‖∥∥T−af
∥∥
H ≤ κcR′ ≤ 1

4
(49)

where we used the fact that ‖T‖ ≤ κ2. This bound will be useful when applying
Theorem (8) to the subset ALε of AF(a,R′).

Let us recall that

T =
+∞∑

n=1

tn 〈·, en〉 en

is the spectral decomposition of T with 0 < tn+1 ≤ tn and (en)+∞n=1 is a basis of H.
Then by definition (47) it is clear that

F(a, R′) = {
+∞∑

n=1

cnen|
+∞∑

n=1

c2
nt−2a

n ≤ R′2}. (50)

Since by assumption tn = Ω(n−b), it holds

∃ N ′, C ′ > 0 s.t. ∀n ≥ N ′ tn ≥ C ′n−b. (51)

Now let us set the constants f := R′ 2
bc C ′− 1

b , ε̄ := (f/(2N ′ + 34))bc and define the
family of sets
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Dε := {n ∈ N| N ′ ≤ n ≤ fε−
1
bc }, 0 < ε < ε̄. (52)

From this definition and property (51) it follows that

tcn ≥ εR′−2, ∀ n ∈ Dε. (53)

Furthermore, due to the constraint for the allowed values of ε in (52), the cardinal-
ities of the sets Dε fulfill the inequality

|Dε| > max{f

2
ε−

1
bc , 17}. (54)

From the family of inequalities (53) and equation (50) it follows

F(a,R′) ⊇ Cε := {
∑

n∈Dε

√
ε

|Dε|tn σnen| (σn)n∈Dε ∈ {−1, +1}|Dε|}.

Since by inequality (54), |Dε| > 17, we can apply Lemma (10) to the binary cube
{−1, +1}|Dε|. This ensures us that a subset Lε of the cube exists with cardinality
|Lε| > B|Dε| for some constant B, and such that for all distinct σ and σ′ in Lε it
holds

dH(σ, σ′) >
|Dε|
2

. (55)

We are finally ready to define the set of functions ALε to which Theorem (8) will
be applied. In fact we have the following straightforward chain of inclusions

F(a,R′) ⊇ Cε ⊇ Lε := {
∑

n∈Dε

√
ε

|Dε|tn σnen| (σn)n∈Dε ∈ Lε}.

Let us first notice that since ‖Af‖ν =
∥∥T 1/2f

∥∥
H, by inequalities (55) it follows that

for all distinct g and g′ in ALε it holds

ε

2
≤ ∥∥g − g′

∥∥
ν

2 ≤ 2ε.

Then letting c2
1 = 2 and c2

0 = 1/2 in the definition of tight packing numbers for the
class ALε, it is clear that ALε itself is a maximal

√
ε-net of functions. Moreover from

(49) ‖g‖C(X) ≤ 1/4 for every g ∈ ALε, then we can apply Theorem (8) obtaining
for all ` ∈ N

inf
f·

sup
ρ∈M(F ,ρX)

P
z∼ρ`

[
I[fz] ≥ I[fρ] +

ε

8

]
≥ inf

f·
sup

ρ∈M(L,ρX)
P

z∼ρ`

[
I[fz] ≥ I[fρ] +

ε

8

]

≥ min(
1
2
, η̄

√
N̄ (

ε

8
) exp(−32`ε)),
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where F := AF(a,R), L := ALε and by inequality (54) it holds

N̄ (
ε

8
) := N̄ (ALε, ρX ,

√
ε,

√
1/2,

√
2) = |Lε| ≥ B|Dε| > B

f
2
ε
− 1

bc .

The result claimed by the Theorem follows substituting in the inequalities above ε
with the expression

ε(`) = 8C e−
bc

bc+1 ,

where

C :=
1
8

(
f

128
log B

) bc
bc+1

,

and

` ≥ ¯̀ :=
( ε̄

8C

)− bc+1
bc

,

in order to enforce the constraint ε < ε̄ and the condition
√
N̄

(
ε(`)
8

)
exp(−32`ε(`)) ≥ 1.
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