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Abstract

The long-time behaviour of spectral semi-discretisations of weakly non-

linear wave equations is analysed. It is shown that the harmonic actions

are approximately conserved also for the semi-discretised system. This

permits to prove that the energy of the wave equation along the interpo-

lated semi-discrete solution remains well conserved over long times and

close to the Hamiltonian of the semi-discrete equation. Although the mo-

mentum is no longer an exact invariant of the semi-discretisation, it is

shown to be approximately conserved. All these results are obtained with

the technique of modulated Fourier expansions.

1 Introduction

This paper is concerned with the long-time behaviour of spectral semi-discret-
isations of the one-dimensional nonlinear wave equation

utt − uxx + ρu + g(u) = 0 (1)

for t > 0 and −π ≤ x ≤ π subject to periodic boundary conditions. We assume
ρ > 0 and a nonlinearity g that is a smooth real function with g(0) = g′(0) = 0.
We consider small initial data: in appropriate Sobolev norms, the initial values
u(·, 0) and ut(·, 0) are bounded by a small parameter ε.

The near-conservation of actions and long-time regularity of exact solutions
to the wave equation (1) have been studied by Bambusi [1] and Bourgain [2],
and more recently in our paper [5]. There, we use the technique of modulated
Fourier expansions to prove the almost-conservation properties. This approach
is also chosen in the present paper on spatial semi-discretisations of (1) and in
[4] for full discretisations.

In Section 2, we review the known results on the near-conservation of har-
monic actions along exact solutions of (1). Section 3 describes spectral semi-
discretisation in space and formulates the main result on the near-conservation
of actions (and spatial regularity) along solutions of the semi-discrete equations
over long times t ≤ ε−N for any fixed N ≥ 1. This holds under the same
non-resonance condition as for the corresponding result for the wave equation.
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As a consequence of this result, we further show that the continuous energy of
the trigonometric polynomial determined by the semi-discretisation is well con-
served and remains close to the discrete energy of the semi-discrete equations
over long times. The exact solution conserves momentum, as a consequence of
the shift invariance x → x + ξ. There is no such invariance under a continuous
group action in the semi-discretisation, and indeed momentum is not conserved.
We will show, however, that momentum is approximately conserved. The proofs
are given in Sections 4 to 6. Following [5] we study the modulated Fourier ex-
pansion in time of the semi-discretisation in Section 4 and its almost-invariants
in Section 5. Conservation of energy and momentum are shown in Section 6.

Approximate momentum conservation for spatial semi-discretisations of semi-
linear wave equations has previously been studied by Oliver, West and Wulff
[7], for finite-difference discretisations on regular grids. They show almost-
conservation with high accuracy of a modified momentum over short times.
Their results do not extend to long times, however, because the regularity of so-
lutions to modified equations is not under control. Another approach to almost-
conservation properties of spatial (and full) discretisations of semi-linear wave
equations within the framework of standard backward error analysis and mod-
ified equations has been given by Cano [3], where likewise the extension to
long times rests on unverified regularity assumptions, which are formulated as
conjectures.

2 The nonlinear wave equation with small data

Equation (1) has several conserved quantities. The total energy or Hamiltonian,
defined for 2π-periodic functions u, v as

H(u, v) =
1

2π

∫ π

−π

(
1

2

(
v2 + (∂xu)2 + ρ u2

)
(x) + U

(
u(x)

))
dx, (2)

where the potential U(u) is such that U ′(u) = g(u), and the momentum

K(u, v) =
1

2π

∫ π

−π

∂xu(x) v(x) dx = −

∞∑

j=−∞

i j u−j vj (3)

are exactly conserved along the solution
(
u(·, t), ∂tu(·, t)

)
of (1). Here, uj = Fju

are the Fourier coefficients in the series u(x) =
∑∞

j=−∞ uje
ijx. Since we consider

only real solutions, we note that u−j = uj . In terms of the Fourier coefficients,
equation (1) reads

∂2
t uj + ω2

juj + Fjg(u) = 0, j ∈ Z, (4)

with the frequencies

ωj =
√

ρ + j2.

The harmonic actions

Ij(u, v) =
ωj

2
|uj|

2 +
1

2ωj
|vj |

2 (5)

(note I−j = Ij) are conserved for the linear wave equation (g(u) ≡ 0). In (1),
they turn out to remain constant up to small deviations over long times for
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almost all values of ρ > 0, when the initial functions are close to the equilibrium
u = 0. Such a result is proved in Bambusi [1], Bourgain [2], and Cohen, Hairer,
and Lubich [5]. We now give a precise statement of this result.

We consider the Sobolev space, for s ≥ 0,

Hs = {v ∈ L2(T) : ‖v‖s < ∞}, ‖v‖s =
( ∞∑

j=−∞

ω2s
j |vj |

2
)1/2

,

where vj denote the Fourier coefficients of a 2π-periodic function v. We assume
that the initial position and velocity have small norms in Hs+1 and Hs for
suitably large s: (

‖u(·, 0)‖2
s+1 + ‖∂tu(·, 0)‖2

s

)1/2

≤ ε. (6)

This is equivalent to requiring
∑∞

j=−∞ ω2s+1
j Ij

(
u(·, 0), ∂tu(·, 0)

)
≤ 1

2 ε2 .
To prepare for the formulation of a non-resonance condition, we consider

sequences k = (k`)
∞
`=0 with only finitely many integers k` 6= 0. We denote

|k| = (|k`|)
∞
`=0, and we let

‖k‖ =

∞∑

`=0

|k`|, k · ω =

∞∑

`=0

k` ω`, ω
σ|k| =

∞∏

`=0

ω
σ|k`|
` (7)

for real σ, where we use the notation ω = (ω`)
∞
`=0. In particular, for j ∈ Z, we

write 〈j〉 = (0, . . . , 0, 1, 0, . . .) with the only entry at the |j|-th position.
For a fixed integer N and for ε > 0, we consider the set of near-resonant

indices

Rε = {(j,k) : j ∈ Z and k 6= ±〈j〉, ‖k‖ ≤ 2N with
∣∣ωj − |k · ω|

∣∣ < ε1/2} . (8)

We impose the following non-resonance condition: there are σ > 0 and a con-
stant C0 such that

sup
(j,k)∈Rε

ωσ
j

ωσ|k|
ε‖k‖/2 ≤ C0 εN . (9)

As is shown in [5], condition (9) is implied, for sufficiently large σ, by the non-
resonance condition of Bambusi [1], which reads as follows: for every positive
integer r, there exist α = α(r) > 0 and c > 0 such that for all combinations of
signs,

|ωj ± ωk ±ω`1 ± . . .±ω`r
| ≥ c L−α for j ≥ k ≥ L = `1 ≥ . . . ≥ `r ≥ 0, (10)

provided that the sum does not vanish unless the terms cancel pairwise. In [1]
it is shown that for almost all (w.r.t. Lebesgue measure) ρ in a fixed interval of
positive numbers there is a c > 0 such that condition (10) holds with α = 16 r5.

Theorem 2.1 [5, Theorem 1] Under the non-resonance condition (9) and as-
sumption (6) on the initial data with s ≥ σ + 1, the estimate

∞∑

`=0

ω2s+1
`

|I`(t) − I`(0)|

ε2
≤ Cε for 0 ≤ t ≤ ε−N+1

with I`(t) = I`

(
u(·, t), ∂tu(·, t)

)
holds with a constant C which depends on s, N ,

and C0, but not on ε and t.
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3 Spectral semi-discretisation in space

For the numerical solution of (1) we consider the “method of lines” approach.
Pseudo-spectral semi-discretisation in space with equidistant collocation points
xk = kπ/M (for k = −M, . . . , M − 1) yields an approximation by the real
trigonometric polynomial

uM (x, t) =
∑

|j|≤M

′
qj(t)e

ijx, vM (x, t) =
∑

|j|≤M

′
pj(t)e

ijx, (11)

where the prime indicates that the first and last terms in the sum are taken with
the factor 1/2. Here, we have set pj(t) = d

dtqj(t), and we note that q−j = qj

and p−j = pj . The 2M -periodic coefficient sequence q(t) = (qj(t)) is a solution
of the 2M -dimensional system of ordinary differential equations

d2q

dt2
+ Ω2q = f(q) with f(q) = −F2Mg(F−1

2Mq). (12)

Here, Ω is the diagonal matrix with entries ωj for |j| ≤ M , and F2M denotes

the discrete Fourier transform:
(
F2Mw

)
j

=
1

2M

∑M−1
k=−M wk e−ijxk . Since the

nonlinearity in (12) has the components

fj(q) = −
∂V (q)

∂q−j
with V (q) =

1

2M

M−1∑

k=−M

U
(
(F−1

2Mq)k

)
,

equation (12) is a finite-dimensional complex Hamiltonian system with the dis-
crete energy

HM (q, p) =
1

2

∑

|j|≤M

′(
|pj |

2 + ω2
j |qj |

2
)

+ V (q), (13)

which is conserved along the solution
(
q(t), p(t)

)
with p(t) = dq(t)/dt, and

differs from the continuous energy H(uM , vM ) evaluated at the trigonometric
polynomials uM , vM of (11).

We consider the actions (for |j| ≤ M) and the momentum

Ij(q, p) =
ωj

2
|qj |

2 +
1

2ωj
|pj |

2, K(q, p) = −
∑

|j|≤M

′′
i j q−jpj , (14)

where the double prime indicates that the first and last terms in the sum are
taken with the factor 1/4. These quantities are defined such that, with the
trigonometric polynomials uM , vM of (11), we have

Ij(q, p) = Ij(u
M , vM ) and K(q, p) = K(uM , vM )

with the definitions of Section 2 used on the right-hand sides. The equality for Ij

holds for |j| < M , whereas I±M (q, p) = 4I±M (uM , vM ). Since we are concerned
with real approximations (11), the Fourier coefficients satisfy q−j = qj and
p−j = pj , so that I−j = Ij .

For a 2M -periodic sequence q = (qj), we introduce the weighted norm

‖q‖s =
( ∑

|j|≤M

′′
ω2s

j |qj |
2
)1/2

, (15)
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which is defined such that it equals the Hs norm of the trigonometric polynomial
with coefficients qj .

We assume that the initial data q(0) and p(0) satisfy a condition correspond-
ing to (6): (

‖q(0)‖2
s+1 + ‖p(0)‖2

s

)1/2

≤ ε. (16)

Theorem 3.1 Under the non-resonance condition (9) with exponent σ and the
assumption (16) of small initial data with s ≥ σ + 1, the estimate

M∑

`=0

ω2s+1
`

|I`(t) − I`(0)|

ε2
≤ Cε for 0 ≤ t ≤ ε−N+1

with I`(t) = I`

(
q(t), p(t)

)
holds with a constant C which depends on s, N , and

C0, but is independent of ε, M , and t.

We note that Theorem 3.1 implies long-time spatial regularity:

(
‖uM(·, t)‖2

s+1 + ‖vM (·, t)‖2
s

)1/2

≤ ε(1 + Cε) for t ≤ ε−N+1. (17)

The momentum is no longer an exactly conserved quantity in the semi-
discretisation, but we have the following approximate-conservation result.

Theorem 3.2 Under the assumptions of Theorem 3.1, the estimate

|K(t) − K(0)|

ε2
≤ C t εM−s−1 for 0 ≤ t ≤ ε−N+1

with K(t) = K
(
q(t), p(t)

)
holds with a constant C which depends on s, N , and

C0, but is independent of ε, M , and t.

We do not know if the above estimate is optimal for large values of εt. In
our numerical experiments we observed that on very long time intervals, the
relative deviation of the momentum behaves like an almost-periodic function of
ε2t, which depends on M and whose maximum decreases with a negative power
of M .

The discrete energy (13) is not the same as the continuous energy (2) along
the semi-discrete solution. However, since Theorem 3.1 controls the spatial
regularity of the semi-discrete solution over long times, we have the following
result.

Theorem 3.3 Under the assumptions of Theorem 3.1, the estimate

|H(t) − H(0)|

ε2
≤ C εM−s−1 for 0 ≤ t ≤ ε−N+1

with H(t) = H
(
uM (·, t), vM (·, t)

)
holds with a constant C which depends on s,

N , and C0, but is independent of ε, M , and t.

The proof of Theorem 3.3 also shows that, for 0 ≤ t ≤ ε−N+1,
∣∣H

(
uM (·, t), vM (·, t)

)
− HM

(
q(t), p(t)

)∣∣
ε2

≤ CM−s−1.
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The rest of the paper is concerned with the proof of these results. The proof
of Theorem 3.1 is a modification of the proof of the corresponding result for
the continuous problem and is outlined in Sections 4 and 5. In parallel we give
a proof of a variant of Theorem 3.2, which provides additional insight into the
structure of the problem and has the advantage of being transferable to the fully
discrete case (see [4]). A different proof, which yields the precise estimate of
Theorem 3.2, is given in Section 6.1, where also Theorem 3.3 is proved.

4 Modulated Fourier expansion

The principal tool for the long-time analysis of the semi-discretised nonlinear
wave equation is a modulated Fourier expansion as in [6, Chapter XIII]. The
presentation follows closely the analysis of nonlinear wave equations in [5].

4.1 Estimates of modulation functions and remainder

In the following we use the abbreviations (7) concerning sequences k = (k`)`≥0

with k` = 0 for ` > M (because only the frequencies ω0, . . . , ωM are present in
the semi-discretisation), and we set

[[k]] =





1

2
(‖k‖ + 1), k 6= 0

3

2
, k = 0.

Theorem 4.1 Under the assumptions of Theorem 3.1 there exist truncated
asymptotic expansions (with N from (9))

q̃(t) =
∑

‖k‖≤2N

zk(εt) ei(k·ω)t, p̃(t) =
d

dt
q̃(t), (18)

such that the solution
(
q(t), p(t)

)
of (12) satisfies

‖q(t) − q̃(t)‖s+1 + ‖p(t) − p̃(t)‖s ≤ CεN for 0 ≤ t ≤ ε−1. (19)

The truncated modulated Fourier expansion is bounded by

‖q̃(t)‖s+1 + ‖p̃(t)‖s ≤ Cε for 0 ≤ t ≤ ε−1. (20)

On this time interval, we further have, for |j| ≤ M ,

q̃j(t) = z
〈j〉
j (εt) eiωjt + z

−〈j〉
j (εt) e−iωjt + rj , with ‖r‖s+1 ≤ Cε2, (21)

and the modulation functions zk are bounded by

∑

‖k‖≤2N

(
ω

|k|

ε[[k]]
‖zk(εt)‖s

)2

≤ C . (22)

Bounds of the same type hold for any fixed number of derivatives of zk with
respect to the slow time τ = εt. Moreover, the modulation functions satisfy

z−k

−j = zk

j . The constants C are independent of ε, M , and of t ≤ ε−1.

The proof of this result follows closely that of Theorem 2 in [5]. We only
outline the minor modifications that are necessary to treat the semi-discrete
case.
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4.2 Modifications in the proof for the analytic case

For an analysis it is convenient to rewrite equation (12) in the following nota-
tion: for a 2π-periodic function w(x) we denote by (Qw)(x) the trigonometric
interpolation polynomial to w(x) in the points xk. For a 2M -periodic coefficient
sequence q = (qj) we denote by (Pq)(x) the trigonometric polynomial with co-
efficients qj , (Pq)(x) =

∑′
|j|≤M qje

ijx. For the approximation given by (11) we

then have uM = Pq with the solution q(t) of (12), which is rewritten as

∂2
t uM − ∂2

xuM + ρuM + Qg(uM ) = 0. (23)

Taylor expansion of the nonlinearity expresses it as

Qg(uM ) =
∑

m≥2

g(m)(0)

m!
Q

(
Pq

)m
. (24)

For w(x) =
∑∞

j=−∞ wje
ijx, the interpolation polynomial is given by the aliasing

formula

Qw(x) =
∑

|j|≤M

′( ∞∑

l=−∞

wj+2Ml

)
eijx. (25)

We use this formula, insert the trigonometric polynomial P q̃ with q̃(t) from
(18) into equation (23) with (24), and consider the jth Fourier coefficient. This
yields the formal modulation equations as in Section 3.2 of [5], from which the
modulation functions are obtained by a reverse Picard iteration:

(
ω2

j − (k · ω)2
)
zk

j + 2iε(k · ω)żk

j + ε2z̈k

j (26)

+
∑

m

g(m)(0)

m!

∑

k1+···+km=k

∑

j1+···+jm≡j mod 2M

′
zk

1

j1 . . . zk
m

jm
= 0 .

The only difference to the corresponding equation in [5] is the range |ji| ≤ M
and that the sum over the ji is taken modulo 2M . As in (11), the prime on the

sum over j1, . . . , jm indicates that with every appearance of zk
i

ji
with ji = ±M

a factor 1
2 is included.

The nonlinearity in equation (26) now becomes the jth Fourier coefficient of
the trigonometric polynomial

∑

m

g(m)(0)

m!

∑

k1+···+km=k

Q
(
Pzk

1

· . . . · Pzk
m)

.

With the following simple (and known) lemma and noting that the norm (15)
of q equals the Hs norm of Pq, ‖q‖s = ‖Pq‖s, we obtain the estimate

∥∥Q
(
Pzk

1

· . . . · Pzk
m)∥∥

s
≤ C‖zk

1

‖s · . . . · ‖z
k

m

‖s.

The proof of Theorem 4.1 is then identical to that of Theorem 2 in [5]. The
bounds (20)-(22) follow from the estimates in Section 3.7 of [5].

Lemma 4.2 There are constants C depending only on s > 1
2 , such that for all

functions v, w ∈ Hs the trigonometric interpolation operator satisfies

‖Qv‖s ≤ C‖v‖s (27)

‖Qv − v‖0 ≤ CM−s‖v‖s. (28)
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Moreover, Hs is a normed algebra:

‖vw‖s ≤ C‖v‖s‖w‖s. (29)

Proof. With the aliasing formula (25) and the Cauchy-Schwarz inequality, we
obtain

‖Qv‖2
s =

∑

|j|≤M

′′
ω2s

j

∣∣∣
∞∑

l=−∞

vj+2Ml

∣∣∣
2

≤
∑

|j|≤M

′′
( ∞∑

l=−∞

ω2s
j

ω2s
j+2Ml

) ∞∑

l=−∞

ω2s
j+2Ml|vj+2Ml |

2 ≤ C1‖v‖
2
s.

The bound (28) follows with the Cauchy-Schwarz inequality as

‖Qv − v‖2
0 ≤

∑

|j|≥M

|vj |
2 +

∑

|j|≤M

∣∣∣
∑

l 6=0

ω−s
j+2Ml · ω

s
j+2Mlvj+2Ml

∣∣∣
2

≤
∑

|j|≥M

ω−2s
j · ω2s

j |vj |
2 +

∑

|j|≤M

(∑

l 6=0

ω−2s
j+2Ml

)(∑

l 6=0

ω2s
j+2Ml|vj+2Ml|

2
)

≤ C M−2s ‖v‖2
s .

Similarly, the inequality (29) follows with
∑

i+j=k ω−2s
i ω−2s

j ≤ Cω−2s
k and the

Cauchy-Schwarz inequality. �

4.3 Estimates of the defect

The modulation equations (26) are solved approximately by an iterative proce-
dure [5, Section 3.3]. After 4N iterations this leaves a defect d = (dk

j ),

dk

j =
(
ω2

j − (k · ω)2
)
zk

j + 2iε(k · ω)żk

j + ε2z̈k

j (30)

+

N∑

m=2

g(m)(0)

m!

∑

k1+···+km=k

∑

j1+···+jm≡j mod2M

′
zk

1

j1 . . . zk
m

jm
.

This is to be considered for ‖k‖ ≤ NK, where we set zk

j = 0 for ‖k‖ > K = 2N .
In Sections 3.8–3.11 of [5], the following bound is shown:

( ∑

‖k‖≤NK

‖ω|k|dk(τ)‖2
s

)1/2

≤ CεN+1 for τ ≤ 1. (31)

5 Conservation of actions and momentum

We now show that the system of equations determining the modulation functions
has almost-invariants close to the actions and the momentum.
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5.1 The extended potential

Corresponding to the modulation functions zk

j (εt) we introduce, for ‖k‖ ≤ 2N
and 2M -periodic in j,

y = (yk

j ) with yk

j (t) = zk

j (εt) ei(k·ω)t. (32)

By construction, the functions yk

j satisfy

∂2
t yk

j + ω2
j yk

j +

N∑

m=2

g(m)(0)

m!

∑

k1+···+km=k

∑

j1+···+jm

≡j mod 2M

′
yk

1

j1 . . . yk
m

jm
= ek

j , (33)

where ‖ki‖ ≤ 2N and |ji| ≤ M , and where the defects ek

j (t) = dk

j (εt) ei(k·ω)t

are small. In (1), the nonlinearity g(u) is the gradient of the potential U(u) =∫ u

0
g(v) dv. The sum in (33) is recognised as the partial derivative with respect

to y−k

−j of the extended potential U(y) defined by

U(y) =

N∑

l=−N

Ul(y) (34)

Ul(y) =
N∑

m=2

U (m+1)(0)

(m + 1)!

∑

k1+···+km+1=0

∑

j1+···+jm+1=2Ml

′
yk

1

j1 . . . yk
m+1

jm+1
,

where again ‖ki‖ ≤ 2N and |ji| ≤ M .
The modulation system (33) can now be rewritten as

∂2
t yk

j + ω2
j yk

j + ∇−k

−j U(y) = ek

j , (35)

where ∇−k

−j U is the partial derivative of U with respect to y−k

−j .

5.2 Invariance under group actions

For an arbitrary real sequence µ = (µ`)`≥0 and for θ ∈ R, let

(
Sµ(θ)y

)k

j
= ei(k·µ)θyk

j ,
(
T (θ)y

)k

j
= eijθyk

j . (36)

Since the sum in the definition of U is over k1 + · · ·+ km+1 = 0 and that of U0

over j1 + · · · + jm+1 = 0, we have

U(Sµ(θ)y) = U(y), U0(T (θ)y) = U0(y) for θ ∈ R.

Differentiating these relations with respect to θ yields

0 =
d

dθ

∣∣∣
θ=0

U(Sµ(θ)y) =
∑

‖k‖≤K

i(k · µ)
∑

|j|≤M

′
yk

j ∇
k

j U(y) (37)

0 =
d

dθ

∣∣∣
θ=0

U0(T (θ)y) =
∑

‖k‖≤K

∑

|j|≤M

′
ij yk

j ∇
k

j U0(y). (38)
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5.3 Almost-invariants of the modulation system

We multiply (35) with i(k ·µ)y−k

−j for µ = 〈`〉 = (0, . . . , 0, 1, 0, . . .) with the only

entry at the `th position and sum over k and j. Expressing the yk
j of (32) in

terms of zk

j , the invariance property (37) then implies that

J`(z, ż) := −
∑

‖k‖≤K

ik`

∑

|j|≤M

′
z−k

−j

(
i(k · ω)zk

j + εżk

j

)
(39)

satisfies

ε
d

dτ
J`(z, ż) = −

∑

‖k‖≤K

i k`

∑

|j|≤M

′
z−k

−j dk

j . (40)

As in Theorem 3 of [5] we obtain the following result.

Theorem 5.1 Under the conditions of Theorem 4.1,

M∑

`=0

ω2s+1
`

∣∣∣
d

dτ
J`(z(τ), ż(τ))

∣∣∣ ≤ C εN+1 for τ ≤ 1.

We now proceed similarly, multiplying (35) with ijy−k

−j , summing over k and
j, and using (38):

∑

‖k‖≤K

∑

|j|≤M

′
ij y−k

−j ∂2
t yk

j =
∑

‖k‖≤K

∑

|j|≤M

′
ij y−k

−j

(
ek

j −
∑

l 6=0

∇−k

−j Ul(y)
)
.

The negative left-hand side is recognised as the time derivative of

−
∑

‖k‖≤K

∑

|j|≤M

′
ij y−k

−j ∂ty
k

j

which, in terms of the variables z of (32), equals

K(z, ż) = −
∑

‖k‖≤K

∑

|j|≤M

′
ij z−k

−j

(
i(k · ω)zk

j + εżk

j

)
. (41)

We thus obtain

ε
d

dτ
K

(
z(τ), ż(τ)

)
= −

∑

‖k‖≤K

∑

|j|≤M

′
ij z−k

−j

(
dk

j −
∑

l 6=0

∇−k

−j Ul(z)
)
. (42)

Theorem 5.2 Under the conditions of Theorem 4.1,

∣∣∣
d

dτ
K(z(τ), ż(τ))

∣∣∣ ≤ C
(
εN+1 + ε2M−s+1

)
for τ ≤ 1.

Proof. With the Cauchy–Schwarz inequality and the bound |j| ≤ ωj , we obtain

∣∣∣
∑

‖k‖≤K

∑

|j|≤M

′
ij z−k

−j dk

j

∣∣∣ ≤
( ∑

‖k‖≤K

∑

|j|≤M

′
ω2

j |z
k

j |
2
)1/2( ∑

‖k‖≤K

∑

|j|≤M

′
|dk

j |
2
)1/2

.

The first factor on the right-hand side is bounded by O(ε) in view of (22), and
the second factor is O(εN+1) by (31).
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The remaining expression of (42) contains terms of the form

∑

‖k‖≤K

∑

|j|≤M

′
ij z−k

−j ∇
−k

−j Ul(z)

=

N∑

m=2

U (m+1)(0)

m!

∑

k1+···+km+1=0

∑

j1+···+jm+1=2Ml

′
zk

1

j1 . . . zk
m

jm
· ijm+1z

k
m+1

jm+1
,

which is the 2Ml-th Fourier coefficient of the function

w(x) :=

N∑

m=2

U (m+1)(0)

m!

∑

k1+···+km+1=0

Pzk
1

(x) . . .Pzk
m

(x) ·
d

dx
Pzk

m+1

(x).

Since Hs−1 is a normed algebra for s > 3/2, the Hs−1 norm of w is bounded by

N∑

m=2

|U (m+1)(0)|

m!

( ∑

‖k‖≤K

‖zk‖s−1

)m( ∑

‖k‖≤K

‖zk‖s

)
.

The terms in this sum are estimated using the Cauchy-Schwarz inequality,

∑

‖k‖≤K

‖zk‖s ≤
( ∑

‖k‖≤K

ω
−2|k|

)1/2( ∑

‖k‖≤K

‖ω|k|zk‖2
s

)1/2

.

The first factor on the right-hand side is a finite constant by Lemma 2 of [5],
and the second factor is O(ε) by (22). Hence we have

‖w‖s−1 ≤ Cε3,

and therefore the 2Ml-th Fourier coefficient of w is bounded by Cε3ω−s+1
2Ml ≤

Cε3(2Ml)−s+1. In this way the result follows from (42). �

5.4 Relationship with actions and momentum

The almost-invariants J` of the modulated Fourier expansion turn out to be
close to the corresponding harmonic actions (5) of the solution of the nonlinear
wave equation,

J` = I` + I−` = 2I` for 0 < ` < M, J0 = I0, JM = IM ,

and K is shown to be close to the momentum K.
With the same argument as in [5, Theorem 4] we obtain the following result.

Theorem 5.3 Under the conditions of Theorem 4.1, along the semi-discrete
solution

(
q(t), p(t)

)
of (12) and the associated modulation sequence z(εt), it

holds that
J`

(
z(εt), ż(εt)

)
= J`

(
q(t), p(t)

)
+ γ`(t) ε3

with
∑M

`=0 ω2s+1
` γ`(t) ≤ C for t ≤ ε−1. All appearing constants are independent

of ε, M , and t.
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For the momentum we have the following.

Theorem 5.4 Under the conditions of Theorem 4.1, along the semi-discrete
solution

(
q(t), p(t)

)
of (12) and the associated modulation sequence z(εt), it

holds that

K
(
z(εt), ż(εt)

)
= K

(
q(t), p(t)

)
+ O(ε3) + O(ε2M−s).

Proof. Separating in (41) the terms with k = ±〈j〉 and applying the bound (21)
to the remaining terms, we find

K(z, ż) =
∑

|j|≤M

′
j ωj

(
|z

〈j〉
j |2 − |z

−〈j〉
j |2

)
+ O(ε3).

In terms of the Fourier coefficients of the modulated Fourier expansion q̃j(t) =∑
‖k‖≤K zk

j (εt) ei(k·ω)t and p̃j(t) = d
dt q̃j(t), we have

K[z] =
∑

|j|≤M

′
j

ωj

4

(∣∣q̃j + (iωj)
−1p̃j

∣∣2 −
∣∣q̃j − (iωj)

−1p̃j

∣∣2
)

+ O(ε3)

= K(q̃, p̃) + O(ε3) + O(ε2M−s)

= K(q, p) + O(ε3) + O(ε2M−s),

where we have used the bound (21). The O(ε2M−s) comes from the boundary
terms in the sum. The last equality is a consequence of the remainder bound of
Theorem 4.1. �

With an identical argument to that of [5, Section 4.5], Theorems 5.1–5.4 yield
the statement of Theorem 3.1 by patching together many intervals of length ε−1.
For the momentum, the same argument gives the bound

|K(t) − K(0)|

ε2
≤ C(ε + M−s + εtM−s+1) for 0 ≤ t ≤ ε−N+1

instead of that of Theorem 3.2.

6 Consequences of long-time spatial regularity

In this section we provide proofs of Theorems 3.2 and 3.3, which are based on
the regularity estimate (17).

6.1 Conservation of momentum

Inserting the exact solution ũ(x, t) of (1) with starting values ũ(x, 0) = uM (x, 0)
and ∂tũ(x, 0) = vM (x, 0) into equation (23) yields

∂2
t ũ − ∂2

xũ + ρũ + Qg(ũ) = d

with a defect d = Qg(ũ)− g(ũ). Under condition (16) it is known from [5] that
‖ũ(·, t)‖s+1 ≤ Cε on intervals of length ε−1. With the variation of constants
formula, it then follows as in [5, Section 3.13] that, with ṽ = ∂tũ,

‖uM (·, t) − ũ(·, t)‖1 + ‖vM (·, t) − ṽ(·, t)‖0 ≤ C t max
0≤σ≤t

‖d(·, σ)‖0

12



for t ≤ ε−1 and, together with Lemma 4.2,

‖d(·, t)‖0 ≤ CM−s−1‖g(ũ(·, t))‖s+1.

For g analytic in a neighbourhood of 0, the bound (17) implies, via g(0) =
g′(0) = 0 and (29), that ‖g(ũ(·, t))‖s+1 ≤ C‖ũ(·, t)‖2

s+1 ≤ Cε2. Hence,

‖d(·, t)‖0 ≤ C ε2M−s−1 for t ≤ ε−1.

This implies that on the short interval 0 ≤ t ≤ ε−1,
∣∣K

(
uM (·, t), vM (·, t)

)
− K

(
ũ(·, t), ṽ(·, t)

)∣∣ ≤ Ctε3M−s−1.

To get the momentum conservation over a longer time interval we introduce the
grid tn = nε−1, and we consider the local solution (ũn, ṽn) of (1) correspond-
ing to initial values

(
uM (·, tn), vM (·, tn)

)
. Since K is exactly conserved along

(ũn, ṽn), we have for tn+1 ≤ ε−N+1,
∣∣K

(
uM (·, tn+1), v

M (·, tn+1)
)
− K

(
uM (·, tn), vM (·, tn)

)∣∣

=
∣∣K

(
uM (·, tn+1), v

M (·, tn+1)
)
− K

(
ũn(·, tn+1), ṽn(·, tn+1)

)∣∣

≤ C (tn+1 − tn) ε3M−s−1.

The last estimate holds uniformly in n because of the regularity estimate (17).
Summing up the telescoping sum yields the estimate of Theorem 3.2.

6.2 Conservation of energy

We finally prove Theorem 3.3. We note that by (2), (5), (11), and (13),

H
(
uM (·, t), vM (·, t)

)
= HM

(
q(t), p(t)

)
− ωMIM

(
uM (·, t), vM (·, t)

)

+
1

2π

∫ π

−π

(
U

(
uM (x, t)

)
−QU

(
uM (x, t)

))
dx.

By the Cauchy–Schwarz inequality and Lemma 4.2, the last term is bounded by
CM−s−1

∥∥U
(
uM (·, t)

)∥∥
s+1

. For U analytic in a neighbourhood of 0, the bound

(17) implies, via U(0) = U ′(0) = U ′′(0) = 0 and (29),
∥∥U

(
uM (·, t)

)∥∥
s+1

≤ C‖uM (·, t)‖3
s+1 ≤ Cε3 for t ≤ ε−N+1.

By Theorem 3.1,
∣∣ωMIM

(
uM (·, t), vM (·, t)

)
− ωMIM

(
uM (·, 0), vM (·, 0)

)∣∣ ≤ Cε3ω−2s
M .

Since HM is conserved exactly along the solution of (12), these estimates yield
the statement of Theorem 3.3.
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