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cesses.

2000 Mathematics Subject Classification. 60G35, 41A25, 94A15.

1 Introduction and Results

1.1 Motivation and Notation

In this article, we study the coding problem for real-valued Lévy processes X (original) under
Lp[0, 1]-norm distortion for some fixed p ∈ [1,∞). Here we think of X being a D[0,∞)-valued
process, where D[0,∞) denotes the space of càdlàg functions endowed with the Skorohod topol-
ogy. We shall denote by ‖ · ‖ the standard Lp[0, 1]-norm.

Let 0 < s ≤ ∞. The objective is now to find a càdlàg real-valued process X̂ (reconstruction
or approximation) that minimizes the error criterion

∥
∥‖X − X̂‖

∥
∥
Ls(P)

=

{

E[‖X − X̂‖s]1/s if s <∞
ess sup ‖X − X̂‖ if s = ∞

(1)

under a given complexity constraint on the approximating random variable X̂. We will work with
the following three complexity constraints that have been originally suggested by Kolmogorov
[6]: for r > 0,
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• log | range (X̂)| ≤ r (quantization constraint)

• H(X̂) ≤ r, where H denotes the entropy of X̂ (entropy constraint)

• I(X; X̂) ≤ r, where I denotes the Shannon mutual information of X and X̂ (mutual
information constraint).

We will work with the following standard notation for entropy and mutual information:

H(X̂) =

{

−∑

x px log px if X̂ is discrete with probability weights (px)

∞ otherwise

and

I(X, X̂) =

{∫ dP
X,X̂

dPX⊗P
X̂
dPX,X̂ if PX,X̂ ≪ PX ⊗ PX̂

∞ otherwise.

Here, PZ denotes the distribution function of a random variable Z.
When considering the quantization constraint, we get the following minimal value

D(q)(r, s) := inf
{∥
∥‖X − X̂‖

∥
∥
Ls(P)

: log | range (X̂)| ≤ r
}
,

which we call the (minimal) quantization error for the rate r ≥ 0 and the moment s. Analo-
gously, we denote by D(e)(r, s) and D(r, s) the minimal values under the entropy- and mutual
information constraint, respectively. D(e) and D will be called entropy coding error and distor-
tion rate function, respectively. We have D 6 D(e) 6 D(q), for any random variable.

The quantization constraint naturally appears, when coding the signal X under a strict
bit-length constraint. The entropy constraint corresponds to an average bit-length constraint
and the mutual information constraint gains its importance from Shannon’s celebrated source
coding theorem. In this article we will not consider the run time behaviour of our coding
schemes. However, we think that the approximation schemes (provided later in the article) have
implementations with reasonable runtime behaviour. Strictly speaking, the quantities D(e) and
D depend on the probability space. However, this dependence has no effect on our results.

The objective of the article is

• to provide efficient coding strategies for general Lévy processes that are parameterized by
three parameters and that are robust under a mismatch on the Lévy measure and

• to complement the estimates by appropriate lower bounds that show weak optimality of
our scheme for most cases.

In the article, X = (Xt)t∈[0,∞) denotes a Lévy process in the Skorohod space D[0,∞), that is
a process starting in 0 with independent and stationary increments. Due to the Lévy Khintchine
formula, the characteristic function of each marginal Xt (t ∈ [0, 1]) admits a representation

EeiuXt = e−tψ(u), (2)

where

ψ(u) =
σ2

2
u2 + ibu+

∫

R\{0}
(1− eiux + 1l{|x|≤1}iux) ν(dx)
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for parameters σ2 ∈ [0,∞), b ∈ R, and a positive measure ν on R\{0} with
∫

R\{0}
1 ∧ x2 ν(dx) <∞. (3)

On the other hand, for a given triplet (ν, σ2, b) there exists a Lévy process X such that (2)
is valid, moreover the distribution of a Lévy process X is uniquely characterized by the latter
triplet. We will call the corresponding process an (ν, σ2, b)-Lévy process.

If (2) is true for

ψ(u) =
σ2

2
u2 +

∫

R\{0}
(1− eiux + iux) ν(dx),

then we will call X a (ν, σ2)-Lévy martingale. Note that such a representation implies that
∫
|x| ∧ x2 ν(dx) is finite and that the Lévy process X is a martingale in the usual sense.
After stating our main results in Section 1.2, we shall list some important examples in

Section 1.3. Then Section 2 is devoted to the analysis of a particular coding scheme. The coding
strategy of interest will be a measurable function

Θ = Θε,b,m : D[0, 1) → D[0, 1)

depending on three parameters ε > 0, b ∈ R and m > 0. The parameter ε will be responsible for
the quality of the reconstruction, in the sense that lower ε correspond to lower approximation
errors. The parameters b and m have to be adjusted to ε and certain quantities relying on
the Lévy measure. Namely, the coding scheme presented below works in a weakly optimal way
(in the sense of both quantization constraint and entropy constraint coding error) if m = m(ε)
is the mean number of jumps to be encoded and b = b(ε) is a drift compensation term. If
the generating triplet of the Lévy process is given, these parameters are explicitly available for
computation. If the generating triplet is not known, these values can be estimated from the
data.

In Section 3, we derive lower bounds for the above coding problems. Together, these results
show that the provided coding scheme is weakly optimal in many cases.

Throughout, we use the following notation for strong and weak asymptotics. For two
functions f and g, f(x) ∼ g(x), as x → 0, means that f(x)/g(x) → 1, as x → 0. On
the other hand, we use the notation f(x) . g(x), as x → 0, if limx→0 f(x)/g(x) 6 1. We
also write g(x) & f(x) in this case. Furthermore, we write f(x) ≈ g(x), as x → 0, if
0 < lim infx→0 f(x)/g(x) 6 lim supx→0 f(x)/g(x) <∞.

1.2 Results

The crucial quantities describing the coding complexity of Lévy processes are

F1(ε) := ε−2

(

σ2 +

∫

x2 ∧ ε2 ν(dx)
)

and F2(ε) :=

∫

[−ε,ε]c
log (|x|/ε) ν(dx).

Furthermore, we shall use F (ε) := F1(ε) + F2(ε). The function integrated by the Lévy measure
is visualised in Figure 1. Note that (3) does not ensure the finiteness of F2 and that F2 is either
finite or infinite for all ε > 0.

We are now in a position to state the main results of the article. Let us start with the
entropy coding error.
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ε

1

1 + log(x/ε)

(x/ε)2

dν(x)

Figure 1: Visualization of the function F

Theorem 1.1. There exist constants c1 = c1(p) > 0 and c2 > 0 such that, for arbitrary Lévy
processes with finite F2, any s > 0, and all ε > 0,

D(e)( c1F (ε), s) 6 c2 ε.

Similarly to the entropy coding error, we obtain the upper bound for the quantization error.

Theorem 1.2. Assume that there is a q > s such that

(a) E ‖X‖q <∞,

(b) for some µ > 0,

lim sup
ε→0

∫

|x|>ε(|x|/ε)µ ν(dx)
ν([−ε, ε]c) <∞. (4)

Then there exist a constant c1 = c1(p, ν) > 0 and a universal constant c2 > 0 such that, for all
0 < ε < ε0 = ε0(ν, s, p),

D(q)( c1F (ε), s) 6 c2 ε.

In the proofs of the upper bounds we only need to consider the case where F2. Indeed, in
the second theorem, assumption (a) implies the finiteness of F2.

Remark 1.3. Let us comment on the conditions in Theorem 1.2: Condition (a) is natural,
though one could soften it by the use of Orlicz norms. Moreover, condition (b) is needed to
guarantee that typical realizations of the Lévy process dominate the quantization complexity of
the process (see equation (11)). Essentially, (b) does not hold if the Lévy measure is finite or if
ν([−ε, ε]c) does not grow to infinity fast enough, when ε tends to zero.

With given Lévy measure, it is usually easy to verify conditions (a) and (b), cf. Remarks 2.1
and 2.2 below.

Remark 1.4. Another approach for the quantization of Lévy processes is taken in [7]. There,
linear quantizers are constructed, and a relation of quantization to the path regularity of pro-
cesses is outlined. However, as observed by Creutzig [2], linear approximations are not optimal
whenever s > p. In this article we work with non-linear quantizers, which lead to better -mostly
weakly optimal- results.
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The corresponding lower bound reads as follows.

Theorem 1.5 (Lower bound). There exist universal constants c1, c2, c3 > 0 such that the fol-
lowing holds. For every Lévy process X with finite F2, any ε > 0 with F1(ε) > c3 one has

D(c1F (ε), 1) > c2 ε.

Moreover, if ν(R) = ∞ or σ 6= 0, one has for any s > 0,

D(c1F1(ε), s) & c2 ε

as ε ↓ 0. In the case where F2 ≡ ∞, one has D(r, 1) = ∞ for any r ≥ 0.

Remark 1.6. So far one cannot replace F1 by F in the second statement of Theorem 1.5. Since
mostly F1 and F are weakly equivalent when ε tends to zero, the second estimate typically leads
to sharp results. Nevertheless, it would be interesting to find out, whether one can close this
remaining gap.

Note that we have not specified the basis of the logarithm. However, all results stated above
are valid for any basis. The choice of the basis has only an influence on the constants in the
theorems. We will work with the basis 2 when proving the upper bounds, since this seems more
appropriate in the context of binary representations. When proving the lower bounds we switch
to the natural logarithm.

1.3 Examples

In this subsection, we apply the above results to some common Lévy processes.

Example 1.7 (Stable Lévy process). Let us consider the case of an α-stable Lévy process. Here
we have ν(dx) = (C1 1l{x<0}+C2 1l{x>0})|x|−α−1 dx, and one can easily verify that F1(ε) = C1

αε
−α

and F2(ε) = C2
αε

−α. All assumptions of the main theorems are satisfied and we conclude that
for all moments s1 > 0, s2 ∈ (0, α) and all p > 1,

D(r, s1) ≈ D(e)(r, s1) ≈ D(q)(r, s2) ≈ r−1/α.

This improves results from [2] and [7].

Note that the coding complexity α-stable Lévy process is smaller than the one of a 2-stable
Lévy process, i.e. Brownian motion. In fact, this is true for all Lévy process.

Example 1.8 (Lévy process with non-vanishing Gaussian component). It is easy to calculate
that Fi(ε) 6 cε−2 for i = 1, 2. Therefore, if σ 6= 0 then F (ε) ≈ F1(ε) ≈ ε−2.

This has two implications. Firstly, in presence of a Gaussian component, the coding com-
plexity of the Lévy process is the same as for Brownian motion, as long as our results apply. In
case σ = 0, the coding complexity is weakly bounded from above by that of Brownian motion.

More precisely,
D(e)(r, s) 6 Cr−1/2, for any Lévy process,

and
D(e)(r, s) ≈ r−1/2, if σ 6= 0.
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On the other hand, under the assumptions (a) and (b),

D(q)(r, s) 6 Cr−1/2, for any Lévy process,

and,
D(q)(r, s) ≈ r−1/2, if σ 6= 0.

In fact, by a modification of (11) one can show that (b) is not necessary if σ 6= 0.

Example 1.9 (Gamma process). Let us consider a standard Gamma process. In this case,
ν(dx) = 1l{x>0}x

−1e−xdx and one gets F1(ε) ≈ log 1/ε and F2(ε) ≈ (log 1/ε)2. Consequently,
for fixed p, s ∈ [1,∞), there exist constants c1, c2, c

′
1, c

′
2 ∈ R+ such that for all ε > 0

D(e)(c1(log 1/ε)
2, s) 6 c2ε

and
D(c′1(log 1/ε)

2, s) > c′2ε.

Therefore,

D(r, s) = exp
(
−eO(1)√r

)
and D(e)(r, s) = exp

(
−eO(1)√r

)
.

Note that Theorem 1.2 does not apply since condition (4) fails to hold.

Example 1.10 (Compound Poisson process). Let (N(t))t > 0 be a standard Poisson process. Let
furthermore Y, Y1, Y2, . . . be i.i.d. random variables that are not a.s. equal to 0 and independent
of the Poisson process. Then

X(t) :=

N(t)
∑

i=1

Yi

is a compound Poisson process, i.e. a Lévy process with Lévy measure ν = PY and drift b =
E[Y 1l{|Y | 6 1}].

It is immediately clear that F1(ε) 6 1 and F2(ε) ≈ E

[

log
(
|Y |
ε

)

1l{|Y | > ε}

]

so that F2 domi-

nates F when ε is small. Thus the main complexity is induced by the “large jumps”. For fixed
p, s ∈ [1,∞), the main theorems imply the existence of constants c1, c2, c

′
1, c

′
2 ∈ R+ such that

D(e)

(

c1E

[

log

( |Y |
ε

)

1l{|Y | > ε}

]

, s

)

6 c2ε

and

D

(

c′1E

[

log

( |Y |
ε

)

1l{|Y | > ε}

]

, s

)

> c′2ε

Hence,
D(r, s) = exp

(
−eO(1) r

)
and D(e)(r, s) = exp

(
−eO(1) r

)
.

A more precise result for a subclass of compound Poisson processes was already obtained in the
dissertation of Vormoor [9]. In particular, in those cases, the rates of quantization and entropy
coding error differ.

Note that in the case of a compound Poisson processes we cannot use Theorem 1.2 on the
quantization error, since condition (b) is not satisfied.
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2 Upper Bounds

2.1 An Explicit Coding Strategy

In this subsection, we describe an explicit coding strategy that can be used to encode a Lévy
process. We derive that the strategy has a mean error of order ε and that the bit complexity is
given by the quantity in (10). In the following subsections we use this strategy in order to prove
upper bounds for the entropy coding error and the quantization error.

The reconstruction X̂ = Θε,b,m(X) will be a step function with the step heights being integer
multiples of ε, i.e. we use an εZ grid to approximate X. For this purpose, let us define g to be a
nearest neighbour projection of R onto εZ. As a first step, we subtract the drift of the process
by setting X ′(t) := X(t) − b(ε)t, where b(ε) is a drift compensation term given by

b(ε) := b−
∫

[−1,1]\[−ε,ε]
x ν(dx) +

∫

[−ε,ε]\[−1,1]
x ν(dx).

Notation. Set S0 := 0 and let

Si := inf
{

t > Si−1 : |X ′
t − g(X ′

Si−1
)| > 2ε

}

; i ∈ N,

be the first exit time of the process
(

X ′
s − g(X ′

Si−1
)
)

s > Si−1

from the interval [−2ε, 2ε].

Let M := max{i : Si < 1}. Some of the stopping times Si are induced by jumps larger than
ε. These shall be called large jumps.

Coding procedure. Note that it is possible to detect the jump points (Si)i=1,...,M by a single
swipe through the interval [0, 1]. For each jump we encode its height and its time separately
by using prefix-free representations: we use a prefix-free representation for the integers Υ1 :
Z\{0} → {0, 1}∗ (as outlined in Lemma 2.4) to code the number Hi/ε ∈ Z, where Hi :=
g(X ′

Si
)− g(X ′

Si−1
) denotes the discretised height. Moreover, the time approximation Ŝi to Si is

chosen in such a way that

Si 6 Ŝi < Si+1 and Ŝi − Si 6 εp/(|Hi|pM). (5)

For a visualization, cf. Figure 2. Concretely, we choose Ŝi as follows. By Lemma 2.5, there is
a coding scheme Υ2 : R × R>0 → {0, 1}∗, where, for r ∈ [0, 1], δ > 0, Υ2(r, δ) is the binary
representation of a number Υ2(r, δ) ∈

⋃

n≥0 2
−n

Z ∩ [0, 1] such that Υ2(r, δ) ∈ [r, r + δ].
We transmit the information in the following way: we divide the interval [0, 1) into ⌈F1(ε)⌉

‘boxes’ (i.e. intervals) Ij = [jF1(ε), (j + 1)F1(ε) ∧ 1), j = 0, . . . , ⌈F1(ε)⌉ − 1. Each jump Si
(i = 1, . . . ,M) is translated into the code

πi := ‘0’ ∗Υ1(Hi/ε) ∗Υ2 (F1(ε)Si − ⌊F1(ε)Si⌋, F1(ε) (Si+1 − Si) ∧ F1(ε)ε
p/(|Hi|pM)) ,

where ∗ denotes the concatenation of strings. Note that F1(ε)Si − ⌊F1(ε)Si⌋ is exactly the
difference between the actual jump point and the left corner of the box, scaled on the unit
interval. Then each block j is described by the string

Πj :=
∏

{i:Si∈Ij}

πi,

7



Sj Ŝj

Ŝj+1 Ŝj+2

ε

2ε

Sj+1
Sj+2

Figure 2: The coding procedure

and finally the complete information is encoded as

⌈F1(ε)⌉−1
∏

j=0

(
Πj ∗ ‘1’

)
.

It is easy to check that this provides indeed a prefix-free representation of
(
(Ŝi,Hi)i=1,...,M ,M

)
,

and the corresponding approximation defines a deterministic map Θε,b(ε),F1(ε) by

X̂t := Θε,b(ε),F1(ε)(X)(t) := b(ε)t+

M∑

i=1

Hi 1l{Ŝi 6 t},

where

Ŝi := abox,i +Υ2 (F1(ε)Si − ⌊F1(ε)Si⌋, F1(ε) (Si+1 − Si) ∧ F1(ε)ε
p/(|Hi|pM))

and abox,i is the left corner of the box that contains Si. Note that, in order to decode this value,
it is sufficient to transmit a code for F1(ε)Si−⌊F1(ε)Si⌋. The chosen precision ensures (5). Note
that the parameters ε, b(ε) and F1(ε) describe the approximation scheme uniquely.

For convenience we will also consider the drift adjusted reconstruction X̂ ′ defined by

X̂ ′
t :=

M∑

i=1

Hi 1l{Ŝi 6 t}.

Waiting time for the jumps. Let us estimate the waiting time for subsequent jumps. For
this purpose, let X(1) be the process consisting of the (finitely many) jumps ofX ′ that are greater
than ε and set X(2) := X ′ −X(1). Note that X(2) is a (ν|[−ε,ε] , σ2)-Lévy martingale. Denote by

Γ1 the stopping time induced by the first jump of X(1). Note that |X ′
Si−1

− g(X ′
Si−1

)| ≤ ε/2 a.s.

8



so that due to the strong Markov property one has for all t > 0,

P
(
Si − Si−1 6 t | FSi−1

)
6 P

(

sup
0<s 6 t

|X(2)
s | > 3

2
ε

)

+ P (Γ1 6 t)

6 (3ε/2)−2
E sup

0<s 6 t
|X(2)

s |2 + ν([−ε, ε]c)t

6 ε−2
E|X(2)

t |2 + ν([−ε, ε]c)t,

where the last step is justified by Doob’s martingale inequality. By the compensation formula
([1], p. 7) the last term equals F1(ε)t.

Let U1, U2, . . . be a sequence of i.i.d. random variables. Then we have shown that for all
jumps Si,

P
(
Si − Si−1 6 t | FSi−1

)
6 max(tF1(ε), 1) = P (Ui 6 F1(ε)t) ,

for all t > 0 and i ∈ N. Consequently, we can couple the random times (Si − Si−1)i > 1 with the
sequence (Ui)i > 1 such that

F1(ε)(Si − Si−1) > Ui. (6)

Coding error. First, let us analyse the error of the approximation. With X̃ ′ = (g(X ′
t))t∈[0,1]

one gets

‖X − X̂‖ = ‖X ′ − X̂ ′‖ ≤ ‖X ′ − X̃ ′‖
︸ ︷︷ ︸

≤2ε

+‖X̃ ′ − X̂ ′‖. (7)

Moreover, due to property (5)

‖X̃ ′ − X̂ ′‖p =
M∑

i=1

|Hi|p(Ŝi − Si) ≤ εp, (8)

so that ‖X − X̂‖ ≤ 3ε.

Coding complexity. Let us count the number of bits needed in the approximation:

• Each change in a block is indicated by a ’1’ which gives in total ⌈F1(ε)⌉ bits.

• Each pair (Hi, Ŝi) is initialized by a ’0’ which gives in total M bits.

• Coding the numbers H1/ε, . . . ,HM/ε by using an appropriate representation Υ1 needs less
than

M∑

i=1

2
(

2 + log
|Hi|
ε

)

bits by Lemma 2.4.

• Coding the numbers Ŝ1, . . . , ŜM needs less than

M∑

i=1

2

(

2 + log+
F1(ε)

−1

εp/(M |Hi|p) ∧ (Si+1 − Si)

)

bits (see Lemma 2.5).
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Therefore, the total bit-length is bounded from above by

2
M∑

i=1

[

log
|Hi|
ε

+ log+
F1(ε)

−1

εp/(M |Hi|p) ∧ (Si+1 − Si)

]

+ 8M + ⌈F1(ε)⌉.

This equals

2

M∑

i=1

[

log
|Hi|
ε

+ log+

(
M |Hi|p
F1(ε)εp

∨ 1

F1(ε)(Si+1 − Si)

)]

+ 8M + ⌈F1(ε)⌉.

By (6) and the inequality log+(x ∨ y) 6 log+ x+ log+ y, the latter is less than

2

M∑

i=1

[

(1 + p) log+
|Hi|
ε

+ log+
1

Ui

]

+ 2M log+
M

F1(ε)
+ 8M + ⌈F1(ε)⌉. (9)

Next, recall from (6) that F1(ε)(Si − Si−1) > Ui so that

F1(ε)M >

M∑

i=1

F1(ε)(Si − Si−1) >
M∑

i=1

Ui;

and using the convexity of log+(1/·) one gets with Jensen’s Inequality

M∑

i=1

log
1

Ui
=M

M∑

i=1

1

M
log

1

Ui
>M log+

1
∑M

i=1
Ui

M

>M log+
M

F1(ε)
.

We conclude with (9) that

2

M∑

i=1

[

(1 + p) log+
|Hi|
ε

+ 2 log
1

Ui

]

+ 8M + ⌈F1(ε)⌉

is an upper bound for the bit-length.
We conclude with (9) that

2

M∑

i=1

[

(1 + p) log+
|Hi|
ε

+ 2 log
1

Ui

]

+ 8M + ⌈F1(ε)⌉

is an upper bound for the bit-length. Denoting for any time t > 0 the jump at time t by
∆Xt = Xt −Xt− allows us to estimate |Hi| 6 |∆XSi

|+ 5
2ε so that basic analysis gives

log+
|Hi|
ε

6 5 + log+
|∆XSi

|
ε

.

Consequently, the bit-length is bounded by

4
M∑

i=1

log
1

Ui
+ 2(1 + p)

∑

t∈(0,1]

log+
|∆Xt|
ε

+ (18 + 10p)M + ⌈F1(ε)⌉

6 K1(p)
M∑

i=1

[1 + log
1

Ui
] +K2(p)

∑

t∈(0,1]

log+
|∆Xt|
ε

+ F1(ε) + 1, (10)

where K1(p) and K2(p) are constants only depending on p.
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2.2 Proof of Theorem 1.1

Proof. By (7) and (8) the error (and thus the mean error, for all moments s > 0) is less than
3ε.

On the other hand, the coding complexity of the algorithm constructed above is given by
(10). Let us look at what the different terms amount to on average. Note that

E

∑

t∈(0,1]

log+
|∆Xt|
ε

= F2(ε),

by the compensation formula ([8], p. 29). Finally, by Lemma 2.3, we have

E

M∑

i=1

(1 + logU−1
i ) 6 cF1(ε).

This shows that the expected bit length of the whole message is less than c1F (ε), with some
constant c1 depending only on p, as required. �

2.3 Proof of Theorem 1.2

Proof. We use the coding scheme explained above. However, we encode by the zero function in
case that the number of small jumps, M , exceeds C1F (ε), where C1 is a constant to be chosen
presently. The same is done if the complexity to encode the jump heights of the large jumps,
namely

∑

t∈(0,1] log+ |∆Xt|/ε, or the complexity to encode the positions of the jumps, namely
∑M

i=1(1+ logU−1
i ), is larger than C2F (ε), where C2 is a constant to be chosen presently. Let us

define T to be the event that none of the above cases occurs, i.e. the ‘typical case’.
Note that, by the exponential compensation formula ([1], p. 8),

P




∑

t∈(0,1]

log+
|∆Xt|
ε

> C2F (ε)



 6 e−C2µF (ε)
Eeµ

P

t∈(0,1] log+
|∆XSi

|

ε

6 e−C2µF (ε)e
−

R

|x| > ε
1−(|x|/ε)µ ν(dx)

6 e−C2µF (ε)eEF (ε) 6 e−C2/2µF (ε), (11)

where E is some constant depending on the finite constant in (4) only. The last step holds for
C2 large enough. On the other hand, by the Chebyshev Inequality,

P





C1F (ε)
∑

i=1

(1 + logU−1
i ) > C2F (ε)



 6 e−C2/2F (ε),

for C2 large enough. Finally, one proves, e.g. using the same discretization as in (13), that for
C1 large enough,

P (M > C1F (ε)) 6 e−C1/2F (ε).

Therefore, for some positive constant C depending on µ and E, we have P (T c) 6 exp(−CF (ε)).
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Let r > 0 be chosen by 1/q + 1/r = 1/s. Let κ > 0 be chosen small enough such that
Cν([−κ, κ]c) > r. This is possible, since ν([−κ, κ]c) tends to infinity when κ → 0, by condi-
tion (b). Then, for ε < κ,

F (ε) > F2(ε) =

∫

[−ε,ε]c
log

|x|
ε
ν(dx) > ν([−κ, κ]c) log 1

ε
> − 1

C
log εr.

Thus,
P (T c) 6 e−C F (ε) 6 εr. (12)

Note that the bit complexity of our algorithm is constant if T c occurs and, by (10), less than
CF (ε) if T occurs, where C depends on µ and E. Then we have for the mean error, using the
Hölder Inequality and s > 1,

(

E

∥
∥
∥X − X̂

∥
∥
∥

s)1/s
6

(

E1lT

∥
∥
∥X − X̂

∥
∥
∥

s)1/s
+

(

E1lT c

∥
∥
∥X − X̂

∥
∥
∥

s)1/s

6 c2ε+ (E1lrT c)
1/r (E ‖X‖q)1/q

6 c2ε
[

1 + ε−1c−1
2 P (T c)1/r (E ‖X‖q)1/q

]

,

where the term in brackets is bounded, by assumption (a) and (12). Note that the argument
works analogously for 0 < s < 1. �

Remark 2.1. It is easy to see that condition (a) is equivalent to the condition

∫

|x|>1
|x|q ν(dx) <∞.

Remark 2.2. Let us assume that (a) holds. A sufficient condition for (b) to hold is that
ν([−2ε, 2ε]c) 6 c · ν([−ε, ε]c) for some 0 < c < 1 and all 0 < ε 6 ε0. This can be seen as follows:

∫

ε<|x| 6 ε0

( |x|
ε

)µ

ν(dx) 6

log(ε0/ε)∑

k=0

∫

2kε<|x| 6 2k+1ε

( |x|
ε

)µ

ν(dx)

6

log(ε0/ε)∑

k=0

ν([−2kε, 2kε]c)2(k+1)µ 6

∞∑

k=0

ck2(k+1)µν([−ε, ε]c).

Choosing 0 < µ < (− log c) ∧ q yields

∫

|x|>ε

( |x|
ε

)µ

ν(dx) 6 K(µ, c) ν([−ε, ε]c) + ε−µ
∫

ε0<|x| 6 1
|x|µ ν(dx) + ε−µ

∫

|x|>1
|x|q ν(dx),

which implies (4).
Note that, in particular, this is the case if ε 7→ ν([−ε, ε]c) is regularly varying at zero with

negative exponent.
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2.4 Technical tools

In this section, we prove some technical tools that are needed in the proofs of the main results.

Lemma 2.3. Let λ > 0 and let (Ui)i > 1 be an i.i.d. sequence of random variables uniformly
distributed in [0, 1]. For N := min{n ∈ N :

∑n
i=1 Ui > λ} one has

E

N∑

i=1

(1 + logU−1
i ) 6 6⌈2λ⌉.

Proof. Let 0 6 s 6 1. Define N(s) := min{n ∈ N0 :
∑n

i=1 Ui > s} and consider the function

Ψ(s) := E

N(s)
∑

i=1

(1 + logU−1
i ).

We are interested in Ψ(λ). Clearly, Ψ(s) = 0 for s 6 0 and Ψ is increasing. Moreover, one has
for s > 0,

Ψ(s) =

∫


1 + log x−1 + E

N(s−x)
∑

i=1

(1 + logU−1
i )



 dPU1(x)

= 1 +

∫ 1

0
− log x dx+

∫

E

N(s−x)
∑

i=1

(1 + logU−1
i ) dPU1(x)

= 1 + log e+

∫

Ψ(s− x) dPU1(x) 6 3 +

∫

Ψ(s− x) dPU1(x).

Let us define

U ′
1 :=

{

0 U1 6 1/2

1/2 U1 > 1/2.
(13)

Then U ′
1 6 U1; and since Ψ is increasing, we have

Ψ(s) 6 3 +

∫

Ψ(s− x)PU ′
1
(x) = 3 +

1

2
Ψ(s) +

1

2
Ψ

(

s− 1

2

)

.

Therefore, Ψ(s) 6 6 + Ψ
(
s− 1

2

)
and we get that

Ψ(λ) 6 6 + Ψ

(

λ− 1

2

)

6 6 + 6 + Ψ (λ− 1) 6 . . . 6 6 · ⌈2λ⌉.

�

Let us finally gather two facts concerning the coding of integers and real numbers from a
given interval, respectively.

Lemma 2.4. There is a universal coding scheme that returns a prefix free code Υ1(x) ∈ {0, 1}∗
for a given integer x ∈ Z that has a length of at most 2(2 + log x) bits.
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Proof. The sign is encoded by a first bit. Thus, assume x > 0, because x = 0 can be encoded
by ‘00’. Let n := min{l ∈ N | x < 2l}. Then 2n−1 6 x < 2n. Consider the representation of x
in the binary system. Because of the definition of n, this representation must have n bits, the
first one of which is a ‘1’.

A prefix free code for x is given by n times ‘1’, followed by a ‘0’ and the n − 1 bit long
representation of x in the binary system having taken away the redundant leading ‘1’.

The length of the code is 2n+ 1, which is less than 2(1 + log+ x). �

Let us remark that Lemma 2.4 can be improved up to the order log x+ C log log x+D, as
shown in [4].

Lemma 2.5. There exists a universal coding strategy Υ2 : R × R>0 → {0, 1}∗ such that, for
any δ > 0 and r ∈ [0, 1], Υ2 returns the prefix free binary representation Υ2(r, δ) of a number
Υ2(r, δ) ∈ [r, r + 1] with r 6 Υ2(r, δ) 6 r + δ that needs at most 2(2− log δ) bits.

Proof. Let N := min{n : δ > 2−n−1}. We choose Υ2(1, r, δ) ∈ [r, r + 1] ∩ SN nearest
possible, but larger than r, where

SN :=
N⋃

n=0

2−nZ.

This ensures that 0 6 Υ2(1, r, δ) − r 6 2−(N+1) 6 δ, as required.
Any number r̂ ∈ [0, 1]∩SN has a unique representation r̂ = k2−n, with k uneven, 1 6 k 6 2n−

1, 1 6 n 6 N . As a prefix free code Υ2(1, r, δ) for Υ2(1, r, δ) we chose the prefix free code for
the integer 2n−1 + (k + 1)/2. Since Υ2(γ, δ) ∈ SN , we have to encode integers from 2 up to at
most 2N , which, by Lemma 2.4, requires at most 2(1 +N) bits, which is less than 2(1 − log δ)
bits, by the definition of N . �

3 Lower bound

The aim of this section is to provide lower bounds for the distortion rate function of the Lévy
process. The analysis is divided into three subsections. First we introduce some concepts of
information theory and we prove some preliminary results. Next, we provide a lower bound
based on F2. In the last subsection we give a lower bound in terms of F1. Both lower bounds
then immediately imply Theorem 1.5.

So far p is a fixed value in [1,∞). Since the distortion rate function is increasing in the
parameter p, we can and will fix p = 1 in the following discussion.

As mentioned before, we can freely choose the basis of the logarithm in the proof of the main
theorems. For the rest of this article, we fix as basis e.

3.1 Preliminaries

First we will introduce some concepts of information theory. We will need the concept of
conditional mutual information. Let A,B and C denote random vectors attaining values in
some Borel spaces. Then one defines the mutual information between A and B given C as

I(A;B|C) =

∫

I(A;B|C = c) dPC(c),

14



where

I(A;B|C = c) =

{∫
log

dPA,B|C=c

dPA|C=c⊗PB|C=c
dPA,B|C=c if PA,B|C=c ≪ PA|C=c ⊗ PB|C=c

∞ otherwise.

A summary of computation rules for the mutual information can be found in [5].

Lemma 3.1. For n ∈ N, let Y0, . . . , Yn−1 and Ŷ0, . . . , Ŷn−1 and H denote random variables
in possibly different Borel spaces. We write shortly Y = (Y0, . . . , Yn−1), Y

i = (Y0, . . . , Yi) for
0 6 i 6 n− 1 and Ŷ = (Ŷ0, . . . , Ŷn−1). Then one has

I(Y,H; Ŷ ) > I(Y0; Ŷ0|H) + I(Y1; Ŷ1|H,Y 0) + · · ·+ I(Yn−1; Ŷn−1|H,Y n−2).

Moreover, we will need to evaluate the distortion rate function for other originals than the
Lévy process X and for other distortions than Lp[0, 1]-norm. For a measure µ on a Borel space E
and a measurable function ρ : E × E → [0,∞] (distortion measure) we write

D(r|µ, ρ) = inf
{
E[ρ(X, X̂)] : X̂ E-valued r.v. with I(X; X̂) 6 r

}
.

Moreover, we associate to a map ρ : E → [0,∞] the difference distortion measure ρ : E × E →
[0,∞] (denoted by the same identifier) given as ρ(x, x̂) = ρ(x − x̂). Sometimes we will also
consider a general moment s > 0 and write

D(r|µ, ρ, s) = inf
{
E[ρ(X, X̂)s]1/s : X̂ E-valued r.v. with I(X; X̂) 6 r

}
.

Moreover, we will omit ρ if it is the norm based distortion induced by the L1[0, 1]-norm.
The following proposition allows us to separately consider the influence of the large jumps

and the diffusive part with small jumps onto the coding complexity of the Lévy process:

Proposition 3.2. Let E be a Borel-space and assume that (E,+) is an Abelian group such that
the sum is Borel-measurable. Denote by A and B independent E-valued random elements and
suppose that there exists a measurable map ϕ : E → E2 with

ϕ(A+B) = (A,B) a.s. (14)

Then, under any difference distortion measure ρ on E, one has for every r > 0:

D(r|PA+B, ρ) > D(r|PA, ρ).

Proof. Fix r > 0. Next, we use that the distortion rate function D(·|PA, ρ) is convex. We
denote by f a tangent of D(·|PA, ρ) at the point r. Then, for any random element Z on E,

E[ρ(A+B,Z)] =

∫

E[ρ(A,Z − b)|B = b] dPB(b)

>

∫

f(I(A;Z|B = b)) dPB(b) = f
(∫

I(A;Z|B = b) dPB(b)
)

= f(I(A;Z|B)).

Therefore,
inf

{Z:I(A;Z|B) 6 r}
E[ρ(A+B,Z)] > f(r) = D(r|PA, ρ).
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On the other hand, by assumption (14), I(A+B;Z) = I((A,B);Z) for any random element Z
on E. Hence,

I(A+B;Z) = I((A,B);Z) = I(B;Z) + I(A;Z|B) > I(A;Z|B).

Therefore,

D(r|PA+B, ρ) = inf
{Z:I(A+B;Z) 6 r}

E[ρ(A+B,Z)]

> inf
{Z r.v. on E:
I(A;Z|B) 6 r}

E[ρ(A+B,Z)] > D(r|PA, ρ).

�

3.2 Lower bound based on F2

Theorem 3.3. There exists some universal constant c such that for all ε > 0,

D
(κ(ε)

e
F2(ε)

∣
∣
∣X,L1[0, 1], 1

)

> c κ(ε) ε,

where κ(ε) = κ(ε, ν) = ⌊ν([−ε, ε]c)⌋/ν([−ε, ε]c).

The proof of the theorem is based on the following idea: in order to find an approximation
of accuracy ε, one needs to allocate about log+ |Xt −Xt−|/ε bits (nats) for each big jump.

The problem is related to a minimization problem that we want to introduce now. Let Π
be a finite non-negative measure on a measurable space (E, E) and let h : E → [0,∞) denote a
Borel-measurable function with

∫

log+ h(x) dΠ(x) <∞.

The aim is now to minimize for given r > 0 the target function
∫

h(x) exp(−ξ(x))Π(dx)

over all measurable functions ξ : E → [0,∞) satisfying the constraint
∫

ξ(x) dΠ(x) 6 r. (15)

Lemma 3.4. Assuming that {h > 0} has not Π-measure zero, the minimization problem pos-
sesses a Π-a.e. unique solution of the form

ξ(x) = log+
h(x)

λ
, (16)

where λ = λ(r) > 0 is an appropriate parameter depending on r > 0. When the optimal
function ξ is as in (16), then the minimal value of the target function is

∫

λ ∧ h(x)Π(dx).

16



Proof. The proof is based on a Lagrangian analysis. Let ζ(y) = exp(−y) (y ∈ [0,∞)) and
consider its convex conjugate

ζ̄(z) = inf
y > 0

[ζ(y) + yz] (z > 0).

Let λ > 0 and denote by Π̃ the σ-finite measure with dΠ̃
dΠ(x) = h(x). Now observe that for a

non-negative function ξ satisfying the constraint (15) one has

∫

h(x) exp(−ξ(x))dΠ(x) >
∫ [

ζ(ξ(x)) + λ
ξ(x)

h(x)

]

dΠ̃(x)− λr (17)

>

∫

ζ̄

(
λ

h(x)

)

dΠ̃(x)− λr. (18)

The last expression in this estimate does not depend on the choice of ξ. If we can establish
equality in the above estimates for certain ξ and λ, then this ξ minimizes the problem.

Next, we note that one has equality in (17) iff

{∫
ξ(x) dΠ(x) = r and

ξ(x) = 0 for Π-a.e. x with h(x) = 0.
(19)

We need to look for a non-negative function ξ and a parameter λ > 0 such that (19) is valid and
such that

ζ̄

(
λ

h(x)

)

= ζ(ξ(x)) +
λ

h(x)
ξ(x) for Π̃-a.e. x. (20)

It is straightforward to verify that for positive z the function

[0,∞) ∋ y 7→ ζ(y) + zy ∈ (0,∞)

attains its unique minimum in y = log+
1
z . Therefore, condition (20) is equivalent to

ξ(x) = ξλ(x) := log+
h(x)

λ
for Π̃-a.e. x.

Together with (19) a sufficient criterion for ξ being a minimum is the existence of a λ > 0 such
that {∫

ξ(x) dΠ(x) = r and

ξ(x) = ξλ(x) for Π-a.e. x.

Such a λ exists since the function

g : (0,∞) ∋ λ 7→
∫

ξλ(x) dx ∈ [0,∞)

is continuous (due to the dominated convergence theorem) and satisfies

lim
λ↓0

g(λ) = ∞ and lim
λ→∞

g(λ) = 0.

Note that if ξ does not coincide with ξλ Π-a.e. (where λ is such that g(λ) = r), then one of the
inequalities (17) or (18) is a strict inequality so that ξ does not minimize the target function. �
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Proof of Theorem 3.3. Fix ε > 0. Due to Proposition 3.2 we can assume without loss of
generality that X is a pure jump process with jumps bigger than ε. Next, let l = 1/ν([−ε, ε]c),
n = ⌊1/l⌋ and

r =
nl

e

∫

[−ε,ε]c
log

|x|
ε
ν(dx) =

κ(ε)

e
F2(ε).

We will prove that for an arbitrarily fixed reconstruction X̂ with I(X; X̂) 6 r one has

E[‖X − X̂‖L1[0,1]] > cnl ε,

where c > 0 is a universal constant.
We let

π : L1[0, 1] → ℓn1 , (xt) 7→
(∣
∣
∣

∫ (i+1)l

il
(21l{t > (2i+1)l/2} − 1)xt

dt

l

∣
∣
∣

)

i=0,...,n−1

and consider
Y = (Yi)i=0,...,n−1 = π(X) and Ŷ = π(X̂).

The map π is l−1-Lipschitz continuous so that

E[‖Y − Ŷ ‖ℓn1 ] 6 l−1
E[‖X − X̂‖]. (21)

Moreover, π is invariant under uniform shifts on each time interval [i/n, (i + 1)/n) so that in
particular,

π(X) = π
(

X −
n−1∑

i=0

X 2i+1
2
l1l[il,(i+1)l)

)

.

Due to the strong Markov property of the Lévy process, the random variables Y0, . . . , Yn−1 are
i.i.d. We shall derive a lower bound for E[‖Y − Ŷ ‖ℓn1 ].

For i = 0, . . . , n− 1 consider the events

Ai = {X contains in [il, (i + 1)l) exactly one jump}.

and the random vector H = (Hi)i=0,...,n−1 given by

Hi =

{

size of the jump in [il, (i + 1)l) if Ai occurs,

0 otherwise.

Next, denote Y i = (Y0, . . . , Yi) for i = 0, . . . , n−1 and Y −1 = 0. Our objective is to find a lower
bound for

E[‖Y − Ŷ ‖ℓn1 ] > E

[n−1∑

i=0

E
[
|1lAi

Yi − 1lAi
Ŷi|

∣
∣H,Y i−1

]]

. (22)

For each i ∈ {0, . . . , n − 1} we analyze the inner expectation. Let fi(h, y
i−1) = I(Yi, Ŷi|H =

h, Y i−1 = yi−1) and consider the random variable

Ri = fi(H,Y
i−1).
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GivenH and Y i−1, the r.v. Yi is uniformly distributed on [1l{Hi<0}Hi/2, 1l{Hi>0}Hi/2]. Therefore,

E
[
|1lAi

Yi − 1lAi
Ŷi |

∣
∣H,Y i−1

]
> D(Ri|U [0, |Hi|/2], | · |), (23)

where U [0, u] denotes the uniform distribution on [0, u]. Now there exists a universal constant
c > 0 such that for any r̄ > 0 and any u > 0

D(r̄|U [0, u/2], | · |) > c u e−r̄.

Together with (22) and (23) we arrive at

E[‖Y − Ŷ ‖ℓn1 ] > cE
n−1∑

i=0

|Hi| e−Ri .

With Π defined as the product measure P⊗∑n−1
j=0 δj we get

E[‖Y − Ŷ ‖ℓn1 ] > c

∫

|Hi| e−Ri dΠ(ω, i). (24)

On the other hand, one has E[Ri] = I(Yi, Ŷi|H,Y i−1) by definition so that by Lemma 3.1

∫

Ri dΠ(ω, i) =

n−1∑

i=0

E[Ri] 6 I(Y,H; Ŷ ) 6 I(X; X̂) 6 r.

Now consider the minimization problem for the target function

∫

|Hi| e−Ri dΠ(ω, i),

where the minimum is taken over all random variables Ri (i = 0, . . . , n − 1) satisfying
∫
Ri dΠ(ω, i) 6 r. The law of Hi is (1− e−1)δ0 +

1
e ν([−ε,ε]c)ν|[−ε,ε]c so that

∫

log+
|Hi|
ε

dΠ(ω, i) =
n

e

∫

[−ε,ε]c
log

|x|
ε

ν(dx)

ν([−ε, ε]c) = r.

Hence, Lemma 3.4 implies that the optimal value in the minimization problem is

∫

ε 1l{hj 6=0} dΠ(ω, j) =
1

e
n ε.

Together with (21) and (24) we get that

E[‖X − X̂‖] > c

e
lnε

which yields the assertion.
�
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3.3 Lower bound related to the F1-term

Theorem 3.5. There exist positive universal constants c1 and c2 such that the following state-
ments are true. For any ε > 0 with F1(ε) > 18, one has

D
(
c1 F1(ε), 1

)
> c2 ε.

If ν(R) = ∞ or σ 6= 0, then for any s > 0, one has

D
(
c1 F1(ε), s

)
& c2 ε

as ε ↓ 0.

Let us give some heuristics on the proof of the theorem. As we have mentioned before the
drift adjusted process X ′ needs approximately the time 1/F1(ε) to leave an interval of length 2ε.
Assuming that the process is symmetric the process leaves the stripe to either of the sides with
equal probability (here one also needs to assume that one starts in the center of the interval).
Thus in order to have a coding of accuracy ε one needs to describe at least in which direction
the process left the stripe for most of the exits. This requires about F1(ε) bits.

As the following remark explains, it suffices to prove the theorem for symmetric Lévy pro-
cesses.

Remark 3.6. Let X∗ denote an independent copy of X and observe that for s ∈ (0, 1]

D(2r | PX−X∗ , s) 6 21/sD(r | PX , s).

The process X − X∗ is a symmetric Lévy process and the functions describing its complexity
are

F̃1(ε) = 2F1(ε) and F̃2(ε) = 2F2(ε).

We assume from now on that the Lévy process X has no drift and a symmetric Lévy mea-
sure ν.

Lemma 3.7. Let ε > 0 and denote

T = inf{t > 0 : |Xt| > ε}.

Then

P(T > t) 6
9

4F1(2ε) t
.

Proof. We consider a Lévy process X∗ with Lévy measure ν∗ = ν ◦ π−1 with π : R →
[−2ε, 2ε] being the projection onto the interval [−2ε, 2ε]. Then the exit times T and

T ∗ = inf{t > 0 : |X∗
t | > ε}

are equal in law. Moreover, the process X∗
T ∗∧· is a by 3ε uniformly bounded martingale and the

quadratic variation process [X∗] of X∗ is a subordinator with Doob-Meyer Decomposition

[X∗]t =
(
[X∗]t − 4ε2F1(2ε) t

)
+ 4ε2F1(2ε) t.
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Therefore,

9ε2 > E(X2
T ∗) = lim

t→∞
E(X2

t∧T ∗)

= lim
t→∞

E[X]t∧T ∗ = 4ε2F1(2ε) lim
t→∞

E(t ∧ T ∗) = 4ε2F1(2ε)E(T
∗).

Consequently,

ET ∗ 6
9

4F1(2ε)

and the assertion follows immediately. �

Lemma 3.8. Let Y be a Bernoulli r.v. Then for d ∈ [0, 1/2]

D(d log 2d+ (1− d) log 2(1− d) | Y, ρHam) > d,

where ρHam denotes the Hamming distance.

Proof. Interpret Y as a random variable attaining values in the group Z2 consisting of two
elements. Then ρ can be interpreted as a difference distortion measure on Z2, that means for
x, x̂ ∈ Z2

ρ(x, x̂) = ρ(x− x̂) := 1l{x−x̂=0}.

Next, note that for d ∈ [0, 1/2]:

φ(d) := sup{H(Z) : Z Z2-valued,E[ρ(Z)] 6 d} = −d log d− (1− d) log(1 − d).

We use the concept of the Shannon lower bound to finish the proof: Let Ŷ denote a Z2-valued
reconstruction with E[ρ(Y, Ŷ )] = d 6 1/2; then

I(Y ; Ŷ ) = H(Y )−H(Ŷ |Y ) = H(Y )−H(Ŷ − Y |Y ) > H(Y )−H(Ŷ − Y )

> log 2− φ(d) = d log 2d+ (1− d) log 2(1 − d).

�

In the proof we will use that for the Bernoulli distribution µBer and Hamming distortion
ρHam one has for any d ∈ [0, 1/2] that

D(d log 2d+ (1− d) log 2(1 − d) | µBer, ρHam) = d.

The proof of the lower bound is based on a comparison with a simpler distortion rate function.
For q ∈ [0, 1/2] let µq denote the measure that assigns probabilities q to ±1 and 1 − 2q to 0.
Moreover denote by µ⊗nq its product measure, consider the distortion measure

ρ(x, x̂) = 1l{x·x̂=−1} (x ∈ {±1, 0}, x̂ ∈ {±1})

and denote

ρn(x, x̂) =
n−1∑

i=0

ρ(xi, x̂i).

As reconstruction we allow any {±1}n-valued random vector.
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Proposition 3.9. For any r > 0, n ∈ N and any Lévy process with symmetric Lévy measure,
one has

D(r|PX , s) >
ε

4n1/p
D(r|µ⊗nq , ρn, s).

where

q =
1

8

(

1− 9

F1(2ε) l

)

∨ 0.

Proof. First fix n ∈ N, r > 0 and a reconstruction X̂ with I(X; X̂) 6 r. We denote l = 1/n
and consider again

π : L1[0, 1] → ℓn1 , (xt) 7→
(∣
∣
∣

∫ (i+1)l

il
(21l{t > (2i+1)l/2} − 1)xt

dt

l

∣
∣
∣

)

i=0,...,n−1
.

The map π is l−1-Lipschitz continuous and the random vector

Y := (Yi)i=0,...,n−1 = π(X)

consists of i.i.d. entries. Additionally, we set Ŷ = (Ŷi)i=0,...,n−1 = π(X̂). Next, consider random
vectors Z = (Zi)i=0,...,n−1 and Ẑ = (Ẑi)i=0,...,n−1 defined as

Zi =

{

sgn(Yi) if |Yi| > ε/4

0 otherwise
and Ẑi =

{

1 if Ŷi > 0

−1 otherwise.

Recalling the Lipschitz continuity of π we get that

‖X − X̂‖ > l‖Y − Ŷ ‖ℓn1 > l
ε

4

n−1∑

i=0

ρ(Zi, Ẑi).

Therefore,

E[‖X − X̂‖s]1/s > ε

4n
E[ρn(Z, Ẑ)

s]1/s.

Certainly, Z is distributed according to µ⊗nq , where q = P(Y1 > ε/4). Since I(X; X̂) > I(Z; Ẑ)
we obtain that in general

D(r|PX , s) >
ε

4n1/p
D(r|µ⊗nq , ρn, s).

Next, we show that D(r|µ⊗nq , ρn, s) is increasing in q. Indeed, let 0 6 q < q′ 6 1/2, let Z

denote an µ⊗nq′ distributed r.v., and let Ẑ denote a reconstruction for Z with I(Z; Ẑ) 6 r. More-
over, let A = (A0, . . . , An−1) be a random vector consisting of i.i.d. Bernoulli random variables
with success probability q/q′ that are independent of Z and Ẑ (for finding such a sequence one
might need to enlarge the probability space), and set Z̃ := (Z̃i)i=0,...,n−1 := (AiZi)i=0,...,n−1.
Then Z̃ is µ⊗nq -distributed and one has

E[ρn(Z̃, Ẑ)] 6 E[ρn(Z, Ẑ)] and I(Z̃; Ẑ) 6 I(A,Z; Ẑ) = I(Z; Ẑ).

It remains to prove that P(Yi > ε/4) > 1
8

(
1− 9

F1(2ε) l

)
. We fix i ∈ {0, . . . , n − 1} and let

(X̃t)t∈[−l/2,l/2) = (Xt+ 2i+1
2
l −X 2i+1

2
l)t∈[−l/2,l/2).
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The processes (X̃t)t∈[0,l/2) and (−X̃−t)t∈[0,l/2] are independent Lévy martingales with Lévy mea-

sure ν. Denote T+ = inf{t > 0 : X̃t > ε or t > l/2} and observe that

P
(
Yi >

ε

4

)
> P

(

−
∫ l/2

0
X̃−t dt > 0, T 6 l/4,

∫ l/2

T
[X̃t − X̃T ] dt > 0

)

= P

(∫ l/2

0
X̃−t dt 6 0

)

P(T 6 l/4)P
(∫ l/2

T
[X̃t − X̃T ] dt > 0|T 6 l/4

)

=
1

4
P(T+ 6 l/4).

Set T = inf{t > 0 : |X̃t| > ε or t > l/2}. Then the symmetry of ν together with Lemma 3.7
implies that

P(T+ 6 l/4) >
1

2
P(T 6 l/4) >

1

2

(

1− 9

F1(2ε) l

)

so that

P
(
Yi >

ε

4

)
>

1

8

(

1− 9

F1(2ε) l

)

.

�

Lemma 3.10. Let µBer and ρHam denote the Bernoulli distribution and the Hamming distance,
respectively. Then

D(r|µq, ρ) > 2q D
( r

2q

∣
∣
∣µBer, ρHam

)

.

Proof. Let X denote a µq distributed r.v. and let X̂ denote a {±1}-valued reconstruction
with I(X; X̂) 6 r. Denote f(x̄) = I(X; X̂

∣
∣|X| = x̄) for x̄ ∈ {0, 1} and let

r̄ = f(1) and R = f(|X|).

Then one has ER = I(X; X̂ ||X|) 6 I(X; X̂) 6 r so that due to the non-negativity of R

r̄ 6
r

P(|X| = 1)
=

r

2q
.

Next, we write

Eρ(X, X̂) = E

[

1l{X 6=0}E[1l{X 6=X̂}

∣
∣|X|]

]

and note that conditional on |X| = 1, X is a Rademacher random variable so that

Eρ(X, X̂) > P(|X| = 1)D(r̄|µBer, ρHam).

Together with the above estimate for r̄ this completes the proof. �

Proof of Theorem 3.5, 1st statement. Let ε > 0 with F1(2ε) > 18 and choose n ∈ N

maximal with n 6 F1(2ε)/18. Then

q :=
1

8

(

1− 9n

F1(2ε)

)

∨ 0 >
1

16
.
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Additionally, there exists a universal constant C3 > 0 such that n > C3F1(2ε). Next, we shall
apply Proposition 3.9. We fix r0 < log 2 arbitrarily and set r = 1

8nr0. Then r > C1 F1(2ε) for
some constant C1 only depending on the choice of r0. Thus with Proposition 3.9 one gets

D(C1F1(2ε), s) > D(r, s) >
ε

4n
D
(1

8
nr0

∣
∣
∣µ⊗nq , ρn, s

)

. (25)

Recall that statement 1 of the theorem considers the case where s = 1. But D
(
1
8nr0|µ⊗nq , ρn

)

is a distortion rate function for a single letter distortion measure and an i.i.d. original, and,
therefore,

D
(1

8
nr0

∣
∣
∣µ⊗nq , ρn

)

= nD
(1

8
r0

∣
∣
∣µq, ρ

)

The latter distortion rate function has been related to that of a Bernoulli variable in Lemma 3.10:

D
(1

8
nr0

∣
∣
∣µ⊗nq , ρn

)

> n 2q D
( 1

16q
r0

∣
∣
∣µBer, ρHam

)

.

Since q > 1/16 the rate in the last distortion rate function is bounded by r0 < log 2 so that the
distorion rate function yields a value C4 > 0 strictly bigger 0. Altogether,

D(C1F1(2ε), 1) >
ε

2
qC4 > C2 2ε,

where C2 =
1
8 (C4/8)

1/p. Switching from 2ε to ε finishes the proof of the first assertion. �

The proof of the second statement relies on the following concentration property:

Lemma 3.11. Let ρ : R × R → [0,∞] be a measurable function, let (Ui)i∈N be a sequence
of independent bounded random variables, and denote by U (n) the random vector (Ui)i=1,...,n.
Supposing that there exists u∗ ∈ R such that

E[ρ(U1, u
∗)2] <∞, (26)

one has for any s > 0 and r > 0:

lim inf
n→∞

1

n
D(nr|U (n), ρn, s) ≥ d,

where d = D(r|U1, ρ, 1) and ρn is the single letter distortion measure belonging to ρ.

As one can see in the proof the moment condition (26) can be easily relaxed. Similar ideas
are used in [3] to prove concentration of the approximation error.

Proof. Without loss of generality we assume that D(r|U1, ρ) > 0. Our moment condition
implies that D(·|U1, ρ) is finite, convex and continuous on [0,∞). Following the standard proof
of Shannon’s source coding theorem, there is a family of codebooks (C(n))n∈N such that

• {(u∗, . . . , u∗)} ⊂ C(n) ⊂ R
n,

• log |C(n)| . nr,

• limn→∞ P(T (n)) = 1 for T (n) = {minû(n)∈C(n) ρn(U
(n), û(n)) < (1+ ε(n))d} and an appro-

priate zero-sequence (ε(n))n∈N.
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For any n ∈ N, let Û (n,1) denote an arbitrary reconstruction for U (n) such that we have
I(U (n), Û (n,1)) 6 nr, and let Û (n,2) = argminû(n)∈C(n) ρn(U

(n), û(n)). We fix η ∈ (0, 1) arbitrarily
and choose

J =







1 if log
dP

U(n),Û(n,1)

dP
U(n)⊗P

Û(n,1)
6 nr and ρn(U

(n), Û (n,1)) 6 (1− η)d,

2 else,

and Û (n) = Û (n,J).
Next, we will use that

I(U (n); Û (n)) 6 I(U (n); Û (n), J) = inf
Q
H(PU (n),Û (n),J‖PU (n) ⊗Q),

where the infimum is taken over all probability measures Q on R × {1, 2} and H denotes the
relative entropy. We choose

Q =
1

2

[
PÛ (n,1) ⊗ δ1 +Q∗ ⊗ δ2

]
with Q∗ =

1

|C(n)|
∑

û(n)∈C(n)

δû(n)

in order to get an appropriate bound for I(U (n); Û (n)):

I(U (n), Û (n)) 6 H(PU (n),Û (n),J‖PU (n) ⊗Q)

=

∫

log
dPU (n),Û (n),J

dPU (n) ⊗Q
dPU (n),Û (n),J

6

∫

{J=1}
log

dPU (n),Û (n),J

dPU (n) ⊗ PÛ (n,1) ⊗ δ1
dPU (n),Û (n),J

+

∫

{J=2}
log

dPU (n),Û (n),J

dPU (n) ⊗Q∗ ⊗ δ2
dPU (n),Û (n),J + log 2

Note that the measures PU (n),Û (n),J and PU (n),Û (n,1),J agree on the set {J = 1} so that by

the construction of J one has log
dP

U(n),Û(n),J

dP
U(n)⊗P

Û(n,1)⊗δ1
6 nr on {J = 1}. Moreover, one has

log
dP

U(n),Û(n),J

dP
U(n)⊗Q∗⊗δ2

6 log |C(n)| on {J = 2}. Consequently, we can continue with

I(U (n), Û (n)) 6 P (J = 1)nr + P (J = 2) log |C(n)|+ log 2 . nr.

On the other hand, basic transformations and the Cauchy-Schwarz Inequality yield

E[ρn(U
(n), Û (n))]

= E[1l{J=1}ρn(U
(n), Û (n,1))] + E[1l{J=2}ρn(U

(n), Û (n,2))]

6 (1− η)dP(J = 1) + P(J = 2)(1 + ε(n))d + P(T c)1/2E[ρn(U
(n), (u∗, . . . , u∗))2]1/2

∼ [(1− η)P(J = 1) + P(J = 2)]d.

Therefore, limn→∞ P(J = 1) = 0. Consequently, we arrive at

E[ρn(U
(n), Û (n,1))s]1/s > P(J 6= 1)1/s(1− η)d→ (1− η)d
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and recalling that η ∈ (0, 1) was arbitrary finishes the proof. �

Proof of Theorem 3.5, 2nd statement. We define r0, q and n as in the proof of the
first statement. By assumption ν(R) = ∞ or σ 6= 0. Consequently, one has limε↓0 F1(ε) = ∞
and n converges to ∞ as ε tends to 0.

We recall estimate (25):

D(C1F1(2ε), s) > D(r, s) >
ε

4n
D
(1

8
nr0

∣
∣
∣µ⊗nq , ρn, s

)

.

Now we conclude with Lemma 3.11 that

D
(1

8
nr0

∣
∣
∣µ⊗nq , ρn, s

)

& nD
(1

8
r0

∣
∣
∣µq, ρ

)

.

The assertion follows along the lines of the proof of the first statement. �
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