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Abstract

Every orthonomic system of partial differential equations is known
to possess a finite number of integrability conditions sufficient to ensure
the validity of all. Herewith we offer an efficient algorithm to construct
a sufficient set of integrability conditions free of redundancies.

1 Introduction

1. Somewhat surprisingly, existing literature on orthonomic systems lacks
an effective construction of a provably irredundant sufficient set of integra-
bility conditions. The aim of this paper is to fill this gap.

A subproblem attracted much attention in polynomial elimination the-
ory. When computing Gröbner bases through the famous Buchberger al-
gorithm [4], S-polynomials arise as analogues of integrability conditions.
The problem of minimizing the number of S-polynomials was already ad-
dressed by Buchberger [5], with many later developments ([35, 8, 6, 1]).
The basic idea, exploiting syzygies, later migrated back to differential al-
gebra (Boulier [3]) and Riquier theory (Reid’s school [25, 27]). Within the
syzygy approach one detects superfluous “critical pairs” (S-polynomials or
integrability conditions) and removes them sequentially. In practical im-
plementations such as Wittkopf’s dissertation [36] detection of superfluous
integrability conditions turns out to be nearly exhaustive (see examples at
the end of the paper). The solution presented in this paper is of rather dif-
ferent nature and amounts to a direct construction of the irredundnat set of
nontrivial integrability conditions, making explicit all remaining freedom of
choice.

1

http://arxiv.org/abs/nlin/0605009v3


2. Present developments of formal integrability theory are, to a great ex-
tent, driven by computer algebra applications, especially solution of large
systems of overdetermined PDE connected with computation of symmetries,
conservation laws, and other invariants of PDE (see surveys [11, 13]). Since
input systems consisting of hundreds of equations are not uncommon, effi-
ciency of the algorithms is an important issue.

Initially (Riquier [24], Janet [14]) the basic question was which coeffi-
cients of Taylor expansion of a solution could be chosen arbitrarily (para-
metric derivatives) and which were then uniquely determined by the system
(principal derivatives). As is well known, hidden dependences between para-
metric derivatives lead to integrability (or compatibility) conditions. A sys-
tem with or without unsatisfied integrability conditions is said to be active
or passive, respectively. The procedure of augmenting an active system with
its integrability conditions is called the completion. The augmented system
is not necessarily passive, since new integrability conditions can emerge.
However, repeated completion is guaranteed to stop after a finite number of
steps under fairly general assumptions (Tresse [31]; see [22] for an overview).

Conventional wisdom says that computing integrability conditions amounts
to taking cross-derivatives. But the notion of cross-derivative applies only
to orthonomic systems (ones resolved with respect to “highest” derivatives).
Moreover, integrability conditions can depend substantially on the way the
system is resolved (as opposed to the Cartan and Spencer geometric theory
of involutivity [20] and the recent theory of Mayer brackets [15, 16]). On
the other hand, if we accept all the unpleasant consequences, as we do in
the present paper, we find ourselves placed in an environment tailored for
easy and efficient implementation of reduction. Reduction is a procedure to
compute a normal form modulo identifications following from the system.

3. As usual, this paper deals with the infinitely prolonged system Σ∞,
which consists of individual equations of the input system Σ differentiated
with respect to every combination of independent variables. Under a suit-
able ranking of derivatives, every equation of Σ∞ comes out resolved with
respect to a principal derivative, which substantially simplifies the procedure
of reduction with respect to Σ∞. The main technical difficulty is that reduc-
tion is not unique unless the system Σ is passive, which is not guaranteed
before the completion algorithm is finished. To circumvent this problem, we
consider a triangular subsystem Σ′ of Σ∞ with the goal to show equivalence
of Σ′ and Σ∞.

Our main result says how to locate nonignorable integrability conditions
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in the monomial ideal(s) generated by the system. Namely, we determine
substantial integrability conditions at a principal derivative ukµ from con-

nected components of certain subset X
k
µ of the monomial ideal ordered by

divisibility. The idea bears certain surprising resemblance to that of “subcon-
nectedness” (see [34, 17, 33] and references therein) having roots in Gröbner
basis theory as well, although a closer look reveals substantial differences.

It is easily seen that ukµ must be a cross-derivative in order to possess
nontrivial integrability conditions. This observation immediately leads to
a canonical and transparent construction of a sufficient set of integrability
conditions (Construction 4.4). Next, this set is shown to be irredundant
in a sense that no integrability condition can be ignored. Considering the
“staircase diagram” associated with the monomial ideal, the main result of
this paper provides identification of the vertices where nontrivial integrabil-
ity conditions reside. This opens the door to asking and answering various
combinatorial questions, which is however out of the scope of the present
paper.

It is often argued that orthonomic essentially means linear from the
practical perspective, since arbitrary nonlinearities can occur at later stages
of completion. Let us stress that results of this paper rather loosely depend
on orthonomicity, since for the integrability conditions to show up it is not
necessary that the system be explicitly resolved. Computation of derivatives
of implicit functions being little problem, difficulties lie with implementing
reduction. In case of polynomially nonlinear systems a help comes from the
theory of triangular systems (see [12] for an overview). That said, we leave
this issue to a further study.

An extended abstract of the previous version of this paper appeared in
Proceedings of the GIFT 2006 conference [18]. Another abridged exposition
will be made through the book [32].

2 Orthonomic systems

In this section we recall standard facts and fix our notation. We denote
by U = {u1, . . . , ul} a set of dependent variables and by X = {x1, . . . , xn}
a set of independent variables. Consider the free commutative monoid X

∗

over X. An arbitrary element µ ∈ X
∗ is of the form µ = xr11 · · ·xrnn , r1 ≥

0, . . . , rn ≥ 0, and will be called a Janet monomial [14]. A derivative
∂r1+···+rnuk/∂xr11 · · · ∂xrnn can be identified with a pair (uk, xr11 · · ·xrnn ) ∈
U×X

∗. It will be convenient to denote derivatives as ukµ, µ ∈ X
∗. Dependent

variables uk can be idetified with derivatives uk1 of order 0.
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Elements of X ∪ (U× X
∗) bijectively correspond to local coordinates on

an appropriate infinite-dimensional jet space J∞ [2, 20, 28]. For the purpose
of understanding the present paper it is sufficient to think of J∞ as an
infinite-dimensional space equipped with coordinates indexed by elements
of X ∪ (U × X∗). Smooth functions are defined as mappings J∞ −→ R that
(locally) depend on only a finite number of coordinates. For each x ∈ X, the
total derivative

Dx =
∂

∂x
+

∑

k,µ

ukµx
∂

∂ukµ
.

can be viewed as a vector field on J∞ (or differentiation of the R-algebra
of smooth functions on J∞). Observe that Dx acts on a derivative ukµ by
multiplying the Janet monomial µ by x. As is well known, total derivatives
commute. For every ν ∈ X

∗ the corresponding composition of total deriva-
tives is denoted by Dν .

Definition 2.1. We denote by ≤ the relation of divisibility of monomials
and by µ/ν the quotient of monomials µ, ν ∈ X

∗ whenever µ ≥ ν. If so, then
the derivative ukν is said to be lower than the derivative ukµ. We say that ν
is strictly lower than µ, writing ν < µ, if ν ≤ µ and ν 6= µ.

Essential in Riquier’s theory is a suitable ordering of derivatives com-
patible with differentiation.

Definition 2.2. A ranking is a linear ordering � of the set U × X
∗ of

derivatives such that

p ≺ Dxp,

p ≺ p′ ⇒ Dxp ≺ Dxp
′

for all p, p′ ∈ U× X
∗ and every x ∈ X.

Obviously, we have the implication q ≤ p ⇒ q � p, but not the converse.
It is an easy consequence of Dickson’s lemma (see also Thomas [30]) that U×
X
∗ is a well-ordered set, in particular, every decreasing chain is finite. This

enables transfinite induction through the set U×X
∗. A complete classification

of rankings has been obtained by Rust [25, 26].
Now we take into consideration a system Σ of finitely many partial dif-

ferential equations, resolved with respect to diverse derivatives

ukµ = Φk
µ, (1)
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where Φk
µ are smooth functions on J∞. By domΣ we denote the set of all

derivatives, appearing on the left-hand side of at least one of the equations
(1) (even though domΣ is determined by the form (1) rather than by Σ
itself).

The basic object of interest in formal integrability theory is the asso-
ciated infinitely prolonged system Σ∞ consisting of all possible differential
consequences:

ukµν = DνΦ
k
µ, ν ∈ X

∗. (2)

Derivatives ukσ appearing on the left-hand side of some equation from Σ∞,
i.e., belonging to domΣ∞, are said to be principal. The other derivatives are
said to be parametric. Thus, a derivative is principal if it either belongs to
domΣ or is a derivative of some derivative from domΣ.

Now, each equation of the input system Σ is supposed to be resolved with
respect to the highest rank derivative it contains, and the right-hand sides
are supposed to be free of principal derivatives. Summing up, the system (1)
is assumed to be orthonomic in the following sense:

Definition 2.3. A system of equations Σ in the form (1) is said to be
– triangular, if for every derivative q ∈ domΣ there is exactly one equa-

tion with q appearing on its left-hand side;
– normal with respect to a ranking �, or �-normal, if every derivative

q ∈ domΣ is �-maximal in its equation;
– autoreduced, if no principal derivative occurs on the right-hand side of

any equation;
– orthonomic with respect to a ranking �, or �-orthonomic, if it is

triangular, �-normal, and autoreduced.

The following easy observation is crucial to Riquier’s theory: The in-
finitely prolonged system Σ∞ is normal when Σ is normal. However, the
property of being triangular is usually lost in Σ∞ (which is why integra-
bility conditions occur). Having autoreduced right-hand sides of Σ will be
useful in the sequel, while for Σ∞ no such property is needed.

We came to the point where division between multiplicative and non-
multiplicative variables [14] enters the discourse in orthodox exposition of
the Riquier–Janet theory. Formalized by Gerdt and Blinkov [9, 10] (these
works triggered an active thread of research in polynomial elimination the-
ory), so-called involutive divisions became a standard tool to prescribe a
unique right-hand side to every principal derivative from domΣ∞. Selecting
a unique right-hand side is convenient, but not absolutely necessary (Reid’s
school [21, 23] succeeds without it).
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3 Reduction subsystem

Here we take a another path to uniqueness. Namely, we consider an arbitrary
triangular subsystem Σ′ of Σ∞ with domΣ′ = domΣ∞ and call it a reduc-
tion subsystem of Σ∞, since it provides us with a unique reduction. Then
completion (see Introduction) may be regarded as a procedure to establish
equivalence of Σ′ and Σ∞. All algorithms to follow actually refer only to a
finite part of Σ′, hence its infiniteness does not hamper computability.

Construction 3.1. For each ukµ ∈ domΣ∞, choose arbitrary ξ ∈ X
∗ such

that ukµ/ξ ∈ domΣ (so that Φk
µ/ξ exists) and put Ψk

µ = DξΦ
k
µ/ξ. The trian-

gular system of equations

ukµ = Ψk
µ, ukµ ∈ domΣ∞ (3)

is the reduction subsystem sought.

This construction gives us a considerable freedom of choice, measured by
the number of elements in domΣ that are lower than ukµ (see Definition 2.1).

Given an expression F depending on a finite number of derivatives, one
can apply equations of the reduction subsystem (3) as substitutions to obtain
an “equivalent” expression SF without dependence on principal derivatives.
In each step, the highest rank principal derivative p = ukµ the expression F

actually depends on is substituted by the corresponding expression Ψk
µ from

Construction 3.1. Such steps can be repeated while F depends on principal
derivatives. There can be only a finite number of these steps since ≺ has the
descending chain property. Hence the reduction procedure is algorithmic.
Effective implementations are available, see, e.g., Wittkopf [36].

Reduction S is an R-algebra homomorphism C∞J∞ −→ C∞J∞ and
satisfies S ◦ S = S.

Applying reduction S on the right-hand sides Ψk
µ of system (3.1) we ob-

tain an autoreduced reduction system (see Definition 2.3), whose the right-
hand sides Ψk

µ depend only on parametric derivatives, hence we have simply

Sukµ = Ψk
µ. The autoreduced system generates the same reduction as the

unreduced one. Actually, the previous version of this paper (see the extended
abstract [18]) depended on use of an autoreduced reduction subsystem. How-
ever, autoreduction is no longer necessary in practical implementations (see
Remark 6.1).

Our main result below (Theorem 4.8) shows that reduction and total
derivatives Dx on J∞ satisfy

S ◦Dx ◦ S = S ◦Dx.
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The next example demonstrates that we have no such property until we
know that Σ is passive.

Example 3.2. A simple example of an active system Σ with SDxSF 6=
SDxF is

ux = f(u), uy = g(u).

Let the reduction subsystem Σ′ contain the equation

uxy = Dyf

rather than its alternative uxy = Dyg (the ranking ≺ can be arbitrary). For
F = uy we obtain

SDxSuy = SDxg = S

(

∂g

∂u
ux

)

=
∂g

∂u
f,

SDxuy = Suxy = SDyf = S

(

∂f

∂u
uy

)

=
∂f

∂u
g.

Observe that SDxSuy = SDxuy is exactly the integrability condition

∂f

∂u
g =

∂g

∂u
f

for the system Σ.

4 Integrability conditions

Henceforth we fix a reduction subsystem Σ′ of Σ∞ such that domΣ′ =
domΣ∞ as in the preceding section. As above, S denotes the reduction with
respect to Σ′. Integrability conditions, investigated in this section, measure
the nonequivalence of various ways of prolongation.

Definition 4.1. For every principal derivative ukµ (i.e., ukµ ∈ domΣ∞) we

introduce the principal subset Xk
µ as the set of all monomials ξ 6= 1 such

that ukµ/ξ ∈ domΣ∞. Thus, elements of Xk
µ are principal derivatives strictly

lower than ukµ (see Definition 2.1).

Definition 4.2. If in Σ there is an equation of the form ukµ = Φk
µ such that

the principal subset Xk
µ is nonempty and ξ ∈ X

k
µ, then the condition

Φk
µ = SDξSu

k
µ/ξ (4)
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is called an integrability condition of the first kind at the point ukµ.

For every pair ξ, η ∈ X
k
µ, the condition

SDξSu
k
µ/ξ = SDηSu

k
µ/η (5)

is called an integrability condition of the second kind at the point ukµ.

Let us remind the reader that Σ is not necessarily a subset of Σ′. This
explains why integrability conditions of the first kind are needed.

According to Definition 4.2, integrability conditions at the point ukµ are

satisfied if any two possible ways of obtaining the value Sukµ lead to one and
the same result. It is well known that all such integrability conditions follow
from a finite subset. The main goal of this paper is to reestablish this result
in an irredundant way.

For every principal derivative ukµ, consider the principal subset X
k
µ or-

dered by the divisibility relation ≤. The following definition is quite standard
and reflects properties of the graph of the ordered principal subset. Let ≈
denote the reflexive, symmetric, and transitive closure of the ordering ≤. In
other words, p ≈ q if and only if there exists a finite sequence of monomi-
als zr, . . . , z2s+1 ∈ X

k
µ such that p = z1, q = z2s+1 and z2j−1 ≤ z2j whereas

z2j ≥ z2j+1 for every j = 1, . . . , s. Since ≈ is an equivalence relation, we have
got a partition X

k
µ/≈ of the set Xk

µ into equivalence classes [x]≈, x ∈ X
k
µ.

Definition 4.3. A pair of elements p, q of the principal subset X
k
µ is said

to be connected if p ≈ q. Equivalence classes with respect to ≈ are called
connected components of Xk

µ. The principal subset X
k
µ is said to be connected,

if it consists of a single connected component, otherwise it is said to be
disconnected.

Construction 4.4. For every ukµ ∈ domΣ with nonempty principal subset

X
k
µ choose one integrability condition of the first kind (4),

Φk
µ = SDξSu

k
µ/ξ,

where ξ ∈ X
k
µ is arbitrary. For every ukµ ∈ domΣ∞ such that the principal

subset X
k
µ consists of s connected components [ξ1]≈, . . . , [ξs]≈ with s > 1,

choose arbitrary representatives ξ1, . . . , ξs of these components and consider
integrability conditions of the second kind (5) in the form of a chain of
equations

SDξ1Su
k
µ/ξ1

= SDξ2Su
k
µ/ξ2

=· · ·= SDξsSu
k
µ/ξs

. (6)

The set of integrability conditions obtained in this way will be called a
sufficient set of integrability conditions.
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Clearly, each ξ of Construction 4.4 can be chosen so that ukµ/ξ is mini-

mal in X
k
µ, hence belongs to domΣ so that we can replace SDξSu

k
µ/ξ with

SDξΦ
k
µ/ξ to obtain conventional integrability conditions in the sense of the

following definition.

Definition 4.5. Assuming ukµ/ξ , u
k
µ/ξi

∈ domΣ, integrability conditions of
the form

Φk
µ = SDξΦ

k
µ/ξ or SDξ1Φ

k
µ/ξ1

=· · ·= SDξsΦ
k
µ/ξs

are said to be conventional.

Remark 4.6. Obviously, every integrability condition can become conven-
tional at the cost of enlarging the system Σ by appropriate reduced equations
from Σ∞.

Our immediate goal now is to show that every sufficient set resulting
from Construction 4.4 implies all the other integrability conditions of Def-
inition 4.2. The following lemma is the key. Let varF denote the finite set
of all variables (independent variables and derivatives) a smooth function F
depends on.

Lemma 4.7. Let x be an independent variable, σ ∈ X
∗ a monomial, and F a

function of independent variables and parametric derivatives. Let SDτSDxp =
SDxτp for every derivative p ∈ varF and every monomial τ ≤ σ. Then
SDσSDxF = SDxσF .

Proof. We have

Dσ(FG) =
∑

ρτ=σ

cρτσ DρF ·DτG,

for suitable constants cρτσ . Applying SDσ to

DxF =
∑

q∈varF

∂F

∂q
Dxq, SDxF =

∑

q∈varF

∂F

∂q
SDxq,

we get

SDσDxF =
∑

q∈varF

∑

ρτ=σ

cρτσ SDρ

(

∂F

∂q

)

· SDτxq,
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whereas

SDσSDxF =
∑

q∈varF

∑

ρτ=σ

cρτσ SDρ

(

∂F

∂q

)

· SDτSDxq.

These two expressions coincide since SDτSDxq = SDτxq holds by assump-
tion for all q and τ ≤ σ.

Theorem 4.8. Suppose that the reduction subsystem Σ′ (see Sect. 3) sat-
isfies some sufficient set of integrability conditions as in Construction 4.4.
Then

(i) for all ukµ ∈ domΣ∞ and all ξ < µ we have

Sukµ = SDξSu
k
µ/ξ ; (7)

(ii) all integrability conditions in the sense of Definition 4.2 hold true
(meaning that Σ is passive);
(iii) for every monomial ξ and every smooth function f on J∞ we have

SDξf = SDξSf ;

(iv) manifolds EΣ∞ and EΣ′ coincide.

Proof. To prove (i) we proceed by induction with respect to p = ukµ. If u
k
µ/ξ

exists and is parametric, then (7) is satisfied trivially since Sukµ/ξ = ukµ/ξ . It

remains to deal with the case when ukµ/ξ exists and is principal, i.e., the case

of ξ ∈ X
k
µ. To start with, we consider p = ukµ minimal with respect to the

ordering ≺. Then (7) holds true in a trivial way, since X
k
µ = ∅ in that case.

To perform the induction step, let us consider an arbitrary derivative
p = ukµ assuming validity of (7) for all q ≺ p. We shall prove

SDσSu
k
µ/σ = SDρSu

k
µ/ρ (8)

for all σ, ρ ∈ X
k
µ. We start with the case of σ, ρ belonging to one connected

component, i.e., σ ≈ ρ. Obviously, this case can be reduced to ρ ≤ σ by the
definition of ≈. But then it can be further reduced to ρ ⊳ σ meaning that
ρ ≤ σ and σ/ρ is a variable, since ≤ is the reflexive transitive closure of ⊳
in X

k
µ. Therefore, let x be an independent variable x such that ρ = xσ. To

prove that σ ≡ ρ, we establish equalities

SDσSu
k
µ/σ = SDσSDxSu

k
µ/xσ = SDxσSu

k
µ/xσ = SDρSu

k
µ/ρ.
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The first equality follows from Sukµ/σ = SDxSu
k
µ/xσ , which is (7) for µ/σ ≺ µ

and ξ = x, therefore holds by induction assumption.
To prove the second equality we apply Lemma 4.7 to F = Sukµ/xσ . Let

us verify the assumptions. Consider an arbitrary monomial τ ≤ σ and q ∈
varF . Then q ≺ ukµ/xσ , whence Dxτq ≺ Dxτu

k
µ/xσ = ukµτ/σ � ukµσ/σ =

ukµ. By induction assumption, (7) holds with ukµ replaced with Dxτq and
ξ with x, meaning that SDxτ q = SDxSDτ q. Having verified assumptions
of Lemma 4.7, we have the second equality. The third equality is obvious.
Thus, (8) holds for arbitrary ρ, σ belonging to one connected component of
X
k
µ.
We are left with the case when σ, ρ belong to different components. But

if the set I of integrability conditions is sufficient in the sense of Construc-
tion 4.4, as it is supposed to be, then I contains an integrability condition
SDσSu

k
µ/σ′ = SDρSu

k
µ/ρ′ with some other ρ′ ≈ ρ and σ′ ≈ σ from the same

components, and then (8) holds for σ′, ρ′ by assumption and then for σ, ρ
by transitivity.

This means that we have one and the same value SDσSu
k
µ/σ = SDρSu

k
µ/ρ

for all σ, ρ ∈ X
k
µ. To establish (7), it remains to show that this common value

is also equal to Sukµ. If u
k
µ 6∈ domΣ, then Sukµ = SDξSu

k
µ/ξ for some ξ ∈ X

k
µ

by construction of the reduction system Σ′ (Construction 3.1). If ukµ ∈ domΣ

and X
k
µ = ∅, then (7) is void. If ukµ ∈ domΣ and X

k
µ 6= ∅ and Sukµ = Φk

µ,
then the sufficient system involves an integrability condition of the first kind
Φk
µ = SDξSu

k
µ/ξ for some ξ ∈ X

k
µ. Finally, if u

k
µ ∈ domΣ and X

k
µ 6= ∅ and

Sukµ 6= Φk
µ, then (7) follows from the same Construction 3.1 again. Thus,

statement (i) is proved.
Statement (ii) follows immediately from (i) or (8). Statement (iii) holds

for all functions f if it holds for all derivatives ukν , and then it follows from (i).
Finally, by (ii) every equation from system Σ∞ becomes an identity when
reduced with respect to S. This means that systems Σ∞ and Σ′ are equiva-
lent (follow one from another). Hence statement (iv).

Remark 4.9. Operators SDxS on the full jet space J∞ are R-linear and
satisfy the Leibniz rule, hence they are vector fields. Moreover, they com-
mute, since [SDxS, SDyS]f = SDxSDySf − SDySDxSf = SDxDySf −
SDyDxSf = 0 by Theorem 4.8(iii). Hence the full jet space J∞ equipped
with vector fields SDxS, x ∈ X, is a diffiety in the sense of [2]. Now, by
Theorem 4.8(iv) we have C∞

EΣ∞ = C∞
EΣ′

∼= C∞J∞/KerS ∼= SC∞J∞.
Hence SDxS induce well defined operators on manifold EΣ∞ as well, turning
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it into a diffiety.

In an attempt to convey the sense of the method we conclude this sec-
tion with a simple example in dimension two. For less trivial examples see
Section 8.

Example 4.10. Consider the following system Σ:

uxyyyy = e, uxxyyy = f, uxxxyy = g, uxxxxy = h,

where e, f, g, h are arbitrary functions of parametric derivatives. Figure 1
shows the ordered set domΣ∞ of principal derivatives placed within a coordi-
nate system. Symbols e, f, g, h denote the four generating derivatives uxyyyy,
uxxyyy, uxxxyy, uxxxxy ∈ domΣ, respectively. The bold dot at uxxxxyyyy de-
notes a typical principal derivative. Thick lines show the principal subset
Xxxxxyyyy, which is obviously connected. Actually, one easily sees that all
principal subsets are connected except

Xxxxxyy = {uxxxxy, uxxxyy},

Xxxxyyy = {uxxxyy, uxxyyy},

Xxxyyyy = {uxxyyy, uxyyyy},

which consist of two isolated points each. Correspondingly, each of the
derivatives uxxxxyy, uxxxyyy, uxxyyyy harbours one nontrivial integrability
condition. They are, respectively,

SDxe = SDyf, SDxf = SDyg, and SDxg = SDyh.

5 Cross-derivatives

In this section we find an alternative description of the sufficient set suitable
for effective implementation.

Construction 4.4 leaves us with the problem to find all principal deriva-
tives with disconnected principal subset. Indeed, a nontrivial integrability
condition of the second kind at a point ukµ exists if and only if there are at

least two distinct connected components in X
k
µ. To extend this line of argu-

ment further, let us consider different possible descriptions of the quotient
sets Xk

µ/≈.

Let B be a subset of Xk
µ such that every element of Xk

µ is connected to an
element of B in the sense of Definition 4.3. Then, obviously, every connected

12



Figure 1: A typical principal subset (Example 4.10)
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component intersects with B. In particular, the quotient set X
k
µ/≈ is the

same as the quotient set B/≈B, where ≈B is the equivalence relation on B
inherited from the relation ≈ on X

k
µ. There are two natural choices for B,

which lead to two alternative descriptions of Xk
µ/≈:

(a) minXk
µ = the subset of minimal elements in X

k
µ;

(b) maxXk
µ = the subset of maximal elements in X

k
µ.

Let N (k) denote the set of all monomials µ such that ukµ ∈ domΣ. Assum-

ing N (k) ordered by divisibility, let M (k) = minN (k) denote the set of all
minimal elements in N (k). Obviously, the subset minXk

µ coincides with the

intersection X
k
µ ∩minN (k) = X

k
µ ∩ M (k). Define a reflexive and symmetric

relation ↑ on minXk
µ by p ↑ q if lcm(p, q) ∈ X

k
µ, i.e., if lcm(p, q) is a proper

divisor of ukµ.

Elements of maxXk
µ are quotients µ/x with x ∈ X an independent vari-

able such that the derivative ukµ/x is principal. To simplify reasoning, we

identify maxXk
µ with a subset of X. Define a reflexive and symmetric re-

lation ↓ on maxXk
µ ⊆ X by x ↓ y if there exists σ ∈ N (k) (equivalently,

σ ∈ M (k)) and σ ≤ µ/x, µ/y. The same relation ↓ can be defined by x ↓ y if
x = y or the derivative ukµ/xy is principal as well.

We have the following obvious lemma.
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Lemma 5.1. The inherited equivalence relation ≈minX
k
µ
coincides with the

transitive closure ↑∗ of ↑. The inherited equivalence relation ≈maxXk
µ
coin-

cides with the transitive closure ↓∗ of ↓.

Corollary 5.2. We have bijections

X
k
µ/≈ ↔ minXk

µ/↑
∗ ↔ maxXk

µ/↓
∗.

Proposition 5.3. Let ukµ be a principal derivative such that the principal

subset X
k
µ contains nonequivalent elements σ 6≈ τ . Then µ = lcm(σ, τ).

Elements σ, τ can be chosen lying in minXk
µ.

Proof. Since σ, τ ∈ X
k
µ, we have lcm(σ, τ) ≤ µ. If lcm(σ, τ) < µ, then obvi-

ously σ ≈ τ , contradicting the assumptions. The last statement follows from
the fact that every connected component intersects with minXk

µ.

Now we introduce cross-derivatives as the “least common derivatives.”

Definition 5.4. A cross-derivative is a derivative uklcm(σ,τ), where ukσ, u
k
τ ∈

domΣ and σ, τ do not divide one another.

By Proposition 5.3, nontrivial integrability conditions of the second kind
can be found only at cross derivatives. Hence the well-known result that the
number of such integrability conditions is always finite and less or equal to
1
2p(p− 1), where p is the number of equations in the system Σ.

Of course, a cross-derivative gives rise to integrability conditions (6) if
and only if it satisfies the following nontriviality condition:

Definition 5.5. A cross-derivative ukµ is said to be trivial if the principal

subset Xk
µ is connected. Otherwise it is called nontrivial.

Example 5.6. Generalizing Example 4.10, consider an arbitrary system of
r equations in two dimensions such that domΣ consists of incomparable
derivatives (with respect to ≤ of definition 2.1). It is an easy exercise to
show that of the r(r − 1)/2 cross-derivatives only r − 1 are nontrivial.

Let us finish this section with some remarks concerning visualization of
the relation ↓. The monoid X

∗ can be visualized as the n-dimensional grid
N
n ⊂ R

n, where N = {0, 1, 2, . . . }, via the correspondence xr11 · · ·xrnn ↔
(r1, . . . , rn). Given a monomial µ ∈ X

∗ the cone generated by µ is defined to
be C(µ) = {µν | ν ∈ X

∗}. A union of cones in X
∗ is called a monomial ideal

(see, e.g., [19]). For each k, we have

{σ ∈ X
∗ | ukσ ∈ domΣ∞} =

⋃

uk
µ∈domΣ

C(µ).
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Hence, to every infinitely prolonged system Σ∞ there corresponds a collec-
tion of monomial ideals, one for each k, consisting of principal derivatives
ukµ with one and the same k.

Monomial ideals are usually visualized by staircase diagrams in R
n. In

R
n, every point (z1, . . . , zn) ∈ N

n generates the corner

C(z1, . . . , zn) = {(x1, . . . , xn) ∈ R
n | zi ≤ xi for all i}.

A union of corners, which is an unbounded orthogonal (usually non-convex)
polytope with vertices in integer points N

n ⊂ R
n, is called a staircase dia-

gram. An oriented edge between two integer points p = (z1, . . . , zi, . . . , zn)
and q = (z1, . . . , zi + 1, . . . , zn) is called a direction from p to q. A square
bounded by four adjacent edges is called a tile. An xy-tile is a tile parallel
to the xy-plane. Two of the bounding directions end in a common point,
which will be called the vertex of the tile. Now, on the staircase diagram ukµ
lies in, maxXk

µ can be seen as the set of all directions that lead to µ. Two
distinct directions x, y ∈ maxX then satisfy x ↓ y if and only if the staircase
diagram contains the xy-tile with the vertex µ.

6 The algorithm

Before proceeding to more substantial examples, let us finally present the
procedure to find a sufficient set of integrability conditions. Below the sym-
bol # denotes the number of elements in a finite set and var(ρ) = {x ∈ X |
x divides ρ} for ρ ∈ X

∗ is the set of all variables to occur in a monomial. For
clarity, we present two separate algorithms, one for integrability conditions
of each kind. Both algorithms share partitioning of the system Σ into sub-
systems Σ(k) such that domΣ(k) contains derivatives ukµ of uk. Sets domΣ(k)

being denoted by N (k), their minimal elements are then collected in subsets
M (k) ⊆ N (k). Of course, the algorithms can share the k loop.

Algorithm 1 to compute integrability conditions of the first kind is very
simple. To each non-minimal element ukσ ∈ N (k) \ M (k) there corresponds
exactly one integrability condition of the first kind.

Before explaining Algorithm 2 to compute integrability conditions of the
second kind, let us consider various descriptions offered by Corollary 5.2.
There is no upper bound for the size #minXk

µ since the number of equations

in the system Σ can be arbitrary, whereas #maxXk
µ is bounded by the

number of independent variables #X. During completion, #minXk
µ grows as

new equations are added to the system, while #maxXk
µ remains essentially

15



Algorithm 1 Integrability conditions of the first kind

Input : Σ.

Output : the set IC
(1)
Σ of integrability conditions of the first kind.

1 IC
(1)
Σ := ∅

2 for all k do

3 N (k) := {ν ∈ X
∗ | ukν ∈ domΣ}

4 M (k) := the set of minimal elements in N (k) with respect to ≤

5 for µ ∈ N(k) \M(k) do

6 select arbitrary ν ∈ M (k) such that ν < µ

7 adjoin expression Φk
µ −Dµ/νΦ

k
ν to IC

(1)
Σ

8 end for

9 end for

10 return IC
(1)
Σ

stable. This is why Algorithm 2 uses the relation ↓ on maxXk
µ rather than

the relation ↑ on minXk
µ.

Now, Algorithm 2 works as follows. On line 4 cross-derivatives are com-
puted, using only minimal derivatives collected in M (k). This is justified by

Proposition 5.3 as trivial cross-derivatives do not contribute to IC
(2)
Σ .

To explain lines 6 and 7, observe that the reflexive and symmetric re-
lation ↓ is conveniently represented as the union of relations ↓σ, where σ
runs through M (k) and ↓σ is defined by x ↓σ y if x = y or σ ≤ µ/x, µ/y.
Obviously, each ↓σ is an equivalence relation. Moreover, the associated par-
tition of X ⊆ maxXk

µ has only one nontrivial class, apart from one-element
sets, and this class can be identified with var(µ/σ). Hence, the partition N

corresponding to the transitive hull ↓∗ is the least partition such that every
var(µ/σ) is a subset of some class of N. Computing such a least partition
amounts to joining all incident subsets. Alternatively, N can be described as
the set of connected components of the hypergraph (maxXk

µ,M), where the

set of hyperedges is M = {var(µ/σ) | σ in M (k)} and the set of vertices is
maxXk

µ =
⋃

M. Known algorithms are capable of labeling connected com-
ponents of a (hyper)graph in expected time linear in the number of vertices,
see [29]. The time complexity of Algorithm 2 is estimated in Remark 8.3
below. An obvious modification is to interlace lines 7 and 8 and break as
soon as N has only one connected component. This will further reduce the
average running time.

Of course, time spent on redundancy elimination is secondary in com-
parison with large variance resulting from different completion strategies.
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Algorithm 2 Integrability conditions of the second kind

Input : Σ. Output : the set IC
(2)
Σ of integrability conditions of the second kind

1 IC
(2)
Σ := ∅

2 for all k do

3 let N (k),M (k) be those of Algorithm 1
4 L(k) := {lcm(ν1, ν2) | {ν1, ν2} ⊆ M (k) a two-element subset}

5 for µ ∈ L(k) do

6 M = {var(µ/σ) | σ ∈ M (k) and σ < µ}
7 N := the set of connected components of the hypergraph (

⋃

M,M)
8 if #N > 1 then

9 select arbitrary σ1, . . . , σs ∈ N (k) such that var(µ/σi) is a subset
of the ith connected component,

10 adjoin Dµ/σ2
Φk
σ2

−Dµ/σ1
Φk
σ1
, . . . , Dµ/σs

Φk
σs

−Dµ/σ1
Φk
σ1

to IC
(2)
Σ

11 end if

12 end for

13 end for

14 return IC
(2)
Σ

Vital for selecting the proper completion strategy is knowing the available
freedom of choice. It is, however, clear that the arbitrary selections made
on line 6 of Algorithm 1 and lines 10, 11 of Algorithm 2 exhaust the entire
freedom of choice of conventional integrability conditions (Definition 4.5)
relative to Remark 4.6.

Let us discuss the whole completion algorithm now. If all the integrabil-
ity conditions of Theorem 4.8 are satisfied (i.e., if they reduce to identities
as explained in Sect. 3), then the system is passive and no further steps are

needed. Otherwise let
–
ΣΣ denote the extended system obtained by resolving

the non-identical integrability conditions with respect to maximal deriva-
tives (under the same ranking) and adjoining them to Σ. The system

–
ΣΣ is

afterwords subject to the same procedure of selecting a reduction subsystem
–
ΣΣ ′ of the infinite prolongation

–
ΣΣ∞, identifying the integrability conditions,

etc. Obviously, we then have EΣ′ ⊆ EΣ̄Σ′ and S̄S ◦ S = S̄S = S ◦ S̄S .
Of course, the new integrability conditions resulting from extending Σ

to
–
ΣΣ can be of both first and second kind. At the same time yet unresolved

integrability conditions of the second kind can trivialize, which is very easy
to detect with Algorithm 2. This explains why proceeding incrementally
(resolving one integrability condition at a time) lowers the overall cost of
completion. Moreover, the ratio of trivialized and added integrability con-
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ditions can be computed quickly and reliably if knowing the new leading
derivative alone.

Of course, being a part of a completion algorithm, the implementation
should keep track of the integrability conditions already satisfied in previ-
ous steps. But do the once satisfied integrability conditions of Σ continue
to hold under the new reduction S̄S? Recall the inductive proof of (7) (the

core statement of Theorem 4.8 the others follow from) for the system
–
ΣΣ. As-

sume (7Σ), i.e., Su
k
µ = SDξSu

k
µ/ξ, at u

k
µ, while for all ulν ≺ ukµ assume (7Σ̄Σ),

i.e., S̄Sulν = S̄SDξS̄Su
l
ν/ξ. By (7Σ̄Σ) we have S̄SDξS̄SF = S̄SDξF for arbitrary func-

tion F of derivatives that precede ukµ, in particular, for F = Sukµ/ξ. But then

S̄SDξS̄Su
k
µ/ξ = S̄SDξS̄SSu

k
µ/ξ = S̄SDξSu

k
µ/ξ = S̄SSDξSu

k
µ/ξ = S̄SSukµ = S̄Sukµ.

Thus, we have (7Σ̄Σ) at u
k
µ as well.

An important question is whether the completion algorithm eventually
stops. An affirmative answer easily follows from the Dickson lemma, since
new integrability conditions can reside only at points ukµ outside the mono-

mial ideals generated by domΣ(k).
We finish this section with a remark on autoreduction.

Remark 6.1. Certain grounds exist for maintaining the reduction sub-
system non-autoreduced. For example, let the input system Σ contain two
equations uµ = Fu, uν = Gu, where F,G are linear differential operators
with constant coefficients. Let, moreover, µ, ν be relatively prime. Then the
corresponding integrability condition of the second kind at uµν is nontriv-
ial, yet automatically satisfied: DνFu = FGu = GFu = DµGu on E

∞

Σ .
(In polynomial elimination theory this case is covered by the so-called first
Buchberger criterion [5].) Now, the crucial identity FGu = GFu (which
only appears in expanded form) is much easier to check before applying any
reductions for uσ ∈ varFGu = varGFu. To a lesser extent this is so even if
F,G have non-constant coefficients etc.

7 Irredundancy

In this section we prove that Construction 4.4 produces no redundant inte-
grability condition. By a redundant condition one usually means one that
can be safely omitted from the checklist, since it is satisfied automatically
whenever all the others are. To put it more formally, observe that essentials
of Construction 4.4 depend only on the set P = domΣ of derivatives ukµ on

the left-hand side of the input system (1), while functions Φk
ξ on the right-

hand side play the role of parameters. Let us therefore consider the whole
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class SP of orthonomic systems Σ with fixed set P = domΣ, parametrized
by arbitrary functions Φk

ξ subject only to requirements of orthonomicity. Ob-
viously, Construction 4.4 provides a set of integrability conditions applicable
to every member of the class SP .

Definition 7.1. Consider the class SP of orthonomic systems Σ with a
fixed set P = domΣ. Let I be a set of integrability conditions of SP . An
integrability condition I ∈ I is said to be redundant if it is satisfied for every
choice of right-hand sides Φk

ξ for which all the other integrability conditions
I \ {I} are satisfied. The set I is said to be irredundant if it contains no
redundant integrability condition.

A chain (6) is to be considered as a sequence of s− 1 integrability con-
ditions, so that each equality sign determines a separate integrability con-
dition.

Remark 7.2. Definition 7.1 implicitly refers to some functional space S to
choose the right-hand sides Φk

ξ from. Proof of Proposition 7.3 below only
requires that S contains all polynomials in the independent variables.

Proposition 7.3. The set I of integrability conditions resulting from Con-
struction 4.4 is irredundant.

Proof. To start with, we assume that all integrability conditions from I

are conventional (see Definition 4.5). Let Φk
µ = SDµ/ξSΦ

k
ξ ∈ I be such an

integrability condition of the first kind. By assigning Φk
µ = 1 and Φl

σ = 0 for

all ulσ ∈ domΣ \ {ukµ} we obtain an orthonomic system obviously satisfying

all integrability conditions except Φk
µ = 1 6= 0 = SDµ/ξSΦ

k
ξ .

Similarly, consider an arbitrary conventional integrability condition of
the second kind from I, say

SDµ/ξ1Φ
k
ξ1 = SDµ/ξ2Φ

k
ξ2 =· · ·= SDµ/ξsΦ

k
ξs (9)

at ukµ ∈ domΣ∞. Let [ξ1], . . . , [ξs] denote the corresponding equivalence

classes in minXk
µ. Let 1 ≤ r < s be an arbitrary integer and I denote the

rth integrability condition in the chain, i.e., SDµ/ξrΦ
k
ξr

= SDµ/ξr+1
Φk
ξr+1

.
By Construction 4.4, I contains no more than one integrability condition of
the first kind of the form Φk

µ = SDµ/σΦ
k
σ. If such a σ exists, let Ξ denote

[ξ1]∪ · · · ∪ [ξr] or [ξr+1]∪ · · · ∪ [ξs] whichever contains σ. If no such σ exists,
then let Ξ be one (arbitrarily chosen) of these two sets.
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For every monomial σ = xa11 · · ·xann ∈ X
∗ we introduce the function of

independent variables

Fσ(x1, . . . , xn) =
xa11 · · ·xann
a1! · · · an!

,

which obviously satisfies

DτFσ =
{

Fσ/τ if τ ≤ σ,
0 otherwise.

(10)

Turning back to our proof, for every ulσ ∈ domΣ we assign Φl
σ according to

the following simple rule:

Φl
σ =

{

Fµ/σ if l = k and σ ∈ {µ} ∪ Ξ,
0 otherwise.

(11)

Consider an arbitrary integrability condition Φk
ν = SDν/σΦ

k
σ, σ < ν, of

the first kind from I. The only possibility how the left-hand side can be
nonzero is when

(A) σ ∈ {µ} ∪ Ξ, ν ≤ µ,

and then it equals Dν/σΦ
k
σ = Dν/σFµ/σ = Fµ/ν . The only possibility how

the right-hand side can be nonzero is when

(B) ν ∈ {µ} ∪ Ξ,

and then it equals the same Fµ/ν . It remains to be checked that conditions
(A) and (B) are equivalent. Before that we observe that the inequality σ < ν
implies

(C) if σ, ν < µ, then σ, ν both or neither lie in Ξ.

Indeed, under these conditions we have σ ≈ ν in X
k
µ.

Let (A) be true. The case ν = µ being trivial, consider ν < µ. Then also
σ < µ and therefore σ ∈ Ξ. But then ν ∈ Ξ by (C), giving (B). Conversely,
let (B) be true. If ν = µ, then σ ∈ Ξ since Ξ was chosen that way. Otherwise
ν ∈ Ξ, but then σ ∈ Ξ by (C) again. Therefore, (A) is true. Thus, we have
proved the equivalence (A) ⇔ (B) and hence validity of all integrability
conditions of the first kind.

Now consider an integrability condition of the second kind from I, at
some ulν . In case of ulν = ukµ the integrability condition is (9). However,
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SDµ/ξΦ
k
ξ equals 1 if ξ ∈ Ξ and 0 otherwise, hence all equalities (9) hold ex-

cept I. Thus we are left with the case of an integrability condition SDν/σ1
Φk
σ1

=

· · · = SDν/σt
Φk
σt

from I, at some ulν 6= ukµ. By (11) and (10), the values

SDν/σi
Φk
σi

to be compared at ulν are all zero except when

(Ai) l = k, σi < ν ≤ µ, σi ∈ Ξ,

and then they are Dν/σi
Φk
σi

= Dν/σi
Fµ/σi

= Fµ/ν independently of i. Let us
show that conditions (Ai) are mutually equivalent. However, if one of (Ai)
holds, then l = k and ν ≤ µ, hence ν < µ (otherwise ulν = ukµ). We have

σj < ν for all j by Construction 4.4, hence σ1 ≈ · · · ≈ σt in X
k
µ (although

not in X
k
ν). Therefore all σj belong to Ξ. Equivalence of conditions (Ai) is

thereby established.
Thus we have proved the proposition in case of conventional integrability

conditions. But since all Φl
σ assigned during the proof were functions of in-

dependent variables only, we have simply SDνΦ
l
σ = DνΦ

l
σ for the reduction

S of any principal derivative. This means that every integrability condi-
tion can be identified with a conventional integrability condition. Hence the
proposition holds for general integrability conditions as well.

It remains to compare our definition of redundancy with that used by
other authors, notably Rust [25, 27]. Consider the free abelian algebra A

k
µ

over the set of abstract generators of the form Dµ/ξΦ
k
ξ . The total derivatives

Dx act upon the generators, hence upon the whole algebra, in a natural way.
An integrability condition can be viewed as a difference Dµ/ξΦ

k
ξ −Dµ/ηΦ

k
η ∈

A
k
µ of two generators. Given a finite set I ⊂ A

k
µ of integrability conditions,

another integrability condition I = Dµ/ξΦ
k
ξ − Dµ/ηΦ

k
η is said to be syzygy

redundant if monomials µi ≤ µ, integrability conditions Ii = Dµi/ξiΦ
k
ξi
−

Dµi/ηiΦ
k
ηi ∈ I, and integers ci ∈ Z exist such that

I =
∑

i

ciDµ/µi
Ii =

∑

i

ci(Dµ/ξiΦ
k
ξi −Dµ/ηiΦ

k
ηi
) (12)

holds in A
k
µ.

It is clear that if I is syzygy redundant, then it is also redundant in the
sense of Definition 7.1 for all choices of S (see Remark 7.2). Hence the suffi-
cient set of integrability conditions resulting from Construction 4.4, proved
to be irredundant when S contains all polynomials in independent variables,
is also syzygy irredundant.
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8 Examples

The first two examples compare our algorithms to Algorithm 9 from Wit-
tkopf’s dissertation [36]. Wittkopf’s algorithm removes syzygy redundancy
nearly completely. Experiments with randomly generated monomial ideals
showed that Wittkopf’s algorithm can miss r redundant integrability condi-
tions in case of ideals with 4r generators, but such instances are rather rare.
A surprise was that Wittkopf’s algorithm could be substantially slower.

Example 8.1. Consider a system Σ of the form

uxyz = f1, uxxz = f2, uyyz = f3, uxxyy = f4.

We summarize the work of Algorithm 2 in a table:

µ var(µ/σ), σ = maxXµ/≈ IC(2)

xyz x2z y2z x2y2

x2yz x y {x}, {y} Dxf1 = Dyf2
xy2z y x {x}, {y} Dyf1 = Dxf3
x2y2z xy y x z {x, y}, {z} Dxyf1 = Dzf4

The first column lists all possible cross-derivatives µ. Columns 2–5 corre-
spond to the four derivatives uσ from domΣ. These four columns list vari-
ables the monomial µ/σ depends on whenever σ divides µ, and contain an
empty space when µ/σ is not a monomial. The sixth column contains the
least partition of maxXµ generated by the sets occurring in columns 2–5
(maxXµ is the union of these sets). By results of Section 5 this partition
corresponds to the equivalence relation ≈ on maxXµ inherited from Xµ. Al-
gorithm 2 also says how to choose the integrability conditions (we omit the
reduction symbol). In the first and second row the only possibility is that
given in the last column (when µ = x2yz or µ = xy2z, each connected com-
ponent of Xµ contains a single σ). Contrary to that, one of the connected
components of Xxxyyz contains three monomials σ, namely xyz, x2z, y2z.
Hence, apart from Dxyf1 = Dzf4 shown in the table, there are two other
equivalent ways to write the third integrability condition: Dyyf2 = Dzf4
and Dxxf3 = Dzf4.

The example can be visualized (see end of Sect. 5) as follows:
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The reader may wish to locate the tile that induces the equivalence relation
x ≈ y at µ = x2y2z.

Example 8.1 is one of the simplest where Algorithm 9 from Wittkopf’s
dissertation [36] misses one redundant integrability condition. However, Wit-
tkopf’s algorithm depends on a choice of what is called compatible rank-
ing [36, Def. 10] of syzygies, which itself depends on a choice of a ranking
for Σ (which we fix to be x ≺ y ≺ z) and a permutation of the set Σ. In
Example 8.1, Wittkopf’s algorithm has a very favorable ratio 11

12 of correct
answers in the set of all 4! = 24 permutations of Σ. This ratio can be less
favorable in other examples.

Example 8.2. Consider a system Σ of the form

uxxy = f1, uxxz = f2, uxyy = f3,

uxzz = f4, uyyz = f5, uyzz = f6.

We summarize the work of Algorithm 2 in a table:

µ var(µ/σ), σ = maxXµ/≈

x2y x2z xy2 y2z xz2 yz2 IC(2)

x2yz z y {y}, {z} Dzf1 = Dyf2
xy2z z x {x}, {z} Dzf3 = Dxf4
xyz2 y x {x}, {y} Dyf5 = Dxf6
x2y2 y x {x}, {y} Dyf1 = Dxf3
x2z2 z x {x}, {z} Dzf2 = Dxf5
y2z2 z y {y}, {z} Dzf4 = Dyf6
x2y2z yz y xz x {x, y, z}

x2yz2 z yz xy x {x, y, z}

xy2z2 z xz y xy {x, y, z}

23



For explanation of the table see Example 8.1. The last column shows the
unique integrability condition in each of the first six rows and none in the
remaining three. The corresponding diagram is

•

•

•

•

• •
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Wittkopf’s Algorithm 9 gives an incorrect number of integrability condi-
tions (seven) in 540 of the full number 6! = 720 of permutations of Σ. Thus,
the ratio of correct answers is only 1/4 now.

Remark 8.3. In randomly generated examples, Wittkopf’s Algorithm 9 ran
substantially longer than ours on the same data. Both algorithms take ad-
vantage of the partitioning Σ =

⋃

Σ(k). Let us therefore attempt comparison
in case of one dependent variable (so that there is no k loop).

The outer loop of Wittkopf’s algorithm runs over the syzygy system S,
which has O(r2) elements, where r = #Σ. At each run, subset S

′ ⊆ S of
already executed (accepted or rejected) syzygies is incremented. Processing
elements s′ ∈ S

′ in Step 3.1 costs #S
′ time units. Processing pairs of elements

s′, s′′ ∈ S
′ in Step 3.2 costs at least #S

′ time units again (s′ and s′′ are not
independent). This suggests running time at least O(r4).

In our Algorithm 2, N (k) as well as M (k) have O(r) elements. The main
loop 5–12 runs over L(k), which has O(r2) elements. At each run, build-
ing M on line 6 requires time proportional to #M (k). Obtaining connected
components of the hypergraph M on line 7 requires time proportional to
#M (k) + #X, where typically #M (k) ≥ #X. This suggests O(r3) running
time.

Example 8.4. Since the ringR[∂/∂x1, . . . , ∂/∂xn] of linear differential oper-
ators with real coefficients is isomorphic to the polynomial ringR[x1, . . . , xn],
PDE algorithms can be applied to polynomial ideals as well, in which case
they compute Gröbner bases.

Caboara et al. [6] used the syzygy approach to minimize the number
of S-polynomials when computing a Gröbner basis of a polynomial ideal.
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When their Example 26 is translated into the PDE language, the following
Janet monomials correspond to maximal derivatives:

σ1 = x22x
6
3x4x

6
5, σ3 = x81x

2
2x

6
3,

σ2 = x81x2x4x
4
5, σ4 = x81x

6
3x

4
5.

As summarized in the following table, Algorithm 2 reveals rather immedi-
ately that one of the four existing cross-derivatives is trivial:

µ subsets Cµ(σ), σ = Xµ/≈

σ1 σ2 σ3 σ4

x81x
2
2x

6
3x4x

6
5 x1 x2x3x5 x4x5 x2x4x5 {x1}, {x2, x3, x4, x5}

x81x
2
2x

6
3x4x

4
5 x2x3 x4x5 x2x4 {x2, x3, x4, x5}

x81x2x
6
3x4x

4
5 x3 x2x4 {x2, x4}, {x3}

x81x2x
6
3x

4
5 x5 x2 {x2}, {x5}

Thus, we arrive at exactly three nontrivial integrability conditions in full
accordance with the result of [6, Ex. 26].

Finally, we give an example where integrability conditions ordered by
divisibility form a chain.

Example 8.5. Let n > 2 be arbitrary. Consider the following n Janet
monomials in n variables:

x2x3x4· · ·xn,

x21x3x4· · ·xn,

x21x
2
2x4· · ·xn,

· · · ,

x21x
2
2x

2
3· · ·x

2
n−1.

The cross-derivatives

x21x2x3x4· · ·xn,

x21x
2
2x3x4· · ·xn,

x21x
2
2x

2
3x4· · ·xn,

· · · ,

x21x
2
2x

2
3· · ·x

2
n−1xn,

are all nontrivial and form a chain of length n− 1.
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9 The poset of nontrivial cross-derivatives

In this section we explore simplest relations between divisibility properties of
cross-derivatives and triviality of the corresponding integrability conditions
of the second kind. Results concerning different variables uk being totally
independent, it suffices to consider the case of a single variable u and omit
the upper index k.

Given an orthonomic system Σ, let PΣ denote the poset of nontrivial
cross-derivatives in the sense of Definition 5.5 under ordering by divisibility.
The following proposition shows that minimal elements of PΣ coincide with
minimal cross derivatives of Σ.

Proposition 9.1. Let µ be a minimal cross-derivative. Then µ is nontrivial,
meaning that µ ∈ PΣ.

Proof. We remove nonminimal elements of domΣ first to ensure that domΣ
is an antichain without affecting the minimal cross-derivatives. Let µ =
lcm(α, β) with α 6= β in domΣ. Supposing that µ is trivial, we arrive at
a contradiction. By triviality of µ we have α ≈ β in Xµ. Hence there exist
ζ1, . . . , ζ2s+1 ∈ Xµ such that α ≤ ζ1, ζ1 ≥ ζ2, ζ2 ≤ ζ3, . . . , ζ2s−1 ≥ ζ2s,
ζ2s ≤ ζ2s+1, ζ2s+1 ≥ β. Consequently there exist σ1, . . . , σs ∈ domΣ such
that ζ2i−1, ζ2i, ζ2i+1 ∈ C(σi). Then lcm(α, σ1) ≤ ζ1 < µ, which contradicts
minimality of µ unless α, σ1 are comparable. But domΣ is an antichain,
hence α = σ1. By repeating the same argument we get α = σ1 = σ2 =· · ·=
σs = β, contradicting the assumptions on α, β.

Hence minimal elements of PΣ coincide with the minimal integrability
conditions in Reid’s sense [21]. It follows that nonminimal and nontrivial
integrability conditions in our sense can be interpreted as a solution to Reid’s
problem of finding an irredundant set of supplementary conditions.

Turning back to the poset PΣ, we show below that it can be an antichain
(the generic case; all points are minimal) as well as a chain of length less
than the number n of independent variables (a single minimal point).

Lemma 9.2. Let ν < µ be two nontrivial cross-derivatives. Then Xν ⊆ Xµ

lies entirely within an equivalence class of ≈ at uµ.

Proof. Obviously, Xν ⊆ Xµ. Let ξ, η ∈ Xν be arbitrary. Since ξ, ν, µ ∈ Xµ

and ξ < ν, η < ν, we have ξ ≈ η at uµ and the lemma follows.

It easily follows that PΣ does not contain a chain of length n, where n is
the number of independent variables. Yet Example 8.5 shows that PΣ can
be a single chain of length n− 1.
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In case of general position, PΣ is an antichain and all nontrivial cross-
derivatives are minimal:

Proposition 9.3. If the generating points of domΣ ⊆ N
n have no coordi-

nate in common, then PΣ is an antichain.

Proof. Let α = xa11 · · ·xann , β = xb11 · · ·xbnn be such that ai 6= bi for all i =
1, . . . , n. Let µ = lcm(α, β) be nontrivial. However, var(µ/α) and var(µ/β)
are two disjoint sets whose union is the whole X, hence they constitute
the partition X/≈. By Lemma 9.2, there is no room for a nontrivial cross-
derivative above µ.

Interesting combinatorial questions about PΣ had to be left aside. Know-
ing the number of elements of PΣ can be useful, the more so since there seem
to be no similar results under the syzygy approach. For #PΣ we have the
following exact upper bounds in low dimensions: #Σ− 1 when n = 2 (obvi-
ous) and 3#Σ−6 when n = 3 (the same as the number of edges in a planar
graph). However, computer experiments show that “average” numbers are
substantially lower. Combinatorial aspects of PΣ are also a subject of the
recent work [7].
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