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Abstract

B-series are a fundamental tool in practical and theoretical aspects of numerical
integrators for ordinary differential equations. A composition law for B-series per-
mits an elegant derivation of order conditions, and a substitution law gives much
insight into modified differential equations of backward error analysis. These two
laws give rise to algebraic structures (groups and Hopf algebras of trees) that have
recently received much attention also in the non-numerical literature. This article
emphasizes these algebraic structures and presents interesting relationships among
them.
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1 Introduction

Let us consider systems of differential equations

v=f(y) (1)

with smooth vector field f(y). Since the work of Cayley [10] and Merson [36] it is
known that the expressions arising in the derivatives of its solution, § = (f'f)(y),
Y =(f"(f, 1)) + (f'f'f)(y), are in one-to-one correspondence with rooted trees. It
is therefore natural to consider formal series of the form

3

Bla,hfy) = Oy + ha()f(y) + Wa( )7 F)w) + 5V (F(F 1)) )

£ BN F )+ Ha( S D)) + . )

with scalar coefficients a(()), a(«), a([), etc. The exact solution of (1) is of this form
with a(0) = a(s) =1, a(l) =1/2, a(\}) = 1/3, etc. In his fundamental work on order
conditions, Butcher discovered in the 1960s (culminating in the seminal article [5])
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that the numerical solution of a Runge-Kutta method is also a series of the form (2)
with a(7) depending only on the coefficients of the method. Hairer and Wanner [29]
considered series (2) with arbitrary coefficients and called them B-series'. They applied
them to the elaboration of order conditions for general multi-value methods. B-series
and extensions thereof are now exposed in various textbooks and articles, possibly with
different normalizations e.g., [26, 6].

B-series play an important role in the study and construction of numerical integra-
tors. This is a consequence of the following two operations on B-series:

e Composition law ([5, 29]). For b(0) = 1, a B-series considered as a mapping y
B(b,hf,y) is O(h)-close to the identity. It is therefore possible to replace y in (2)
with B(b, hf,y), and to expand all expressions around y. Interestingly, the result
is again a B-series and we have

B(a,hf,B(b,hf,y)) = B(b-a,hf,y). (3)

o Substitution law ([14, 15]). For b(0) = 0, the B-series B(b,hf,y) is a vector field
that is a perturbation of hf(y), multiplied by the scalar b(s). Therefore, we can
substitute the vector field B(b, hf,-) for hf in (2). Also in this case we obtain a
B-series, which we denote

B(a,B(b,hf,-),y) = B(bxa,hf,y). (4)

A straightforward computation yields for the composition law (b - a)() = a(0) and

(b-a)(+) = a(@)b(«)+a(),

(b-a)(J) = a@b(])+a()b(s)+a(]), )
(b-a)(V) = a@b(¥)+a()b(+)”+2a(L)b(+) +a(V),

(b-a)( (@)d(

H o=

Similarly, for the substitution law we obtain (bx a)() = a(0) and

b-a

(bxa)(+)
(bra)(l) = a
b+ a) (V)
(bxa)(})

General formulae for both laws will be given in Sect. 3 below.

The composition law is an important tool for the construction of various integration
methods, such as Runge—Kutta methods, general linear methods, Rosenbrock methods,
multi-derivative methods, etc. It allows the derivation of the order conditions for
arbitrarily high orders in an elegant way avoiding tedious series expansions [27, 30].

Loriginally named Butcher series



Another application is the composition of different numerical integrators yielding higher
accuracy: effective order or pre- and post-processing of composition methods [4, 1].

Applications of the substitution law are more recent and mainly in connection with
structure-preserving algorithms (geometric numerical integration). This law gives much
insight into the modified differential equation of backward error analysis [26], and it is
the main ingredient for the construction of modifying integrators [15].

Group and monoid structures. Let T' = {+, /. Y/, ...} be the set of rooted trees,
and consider the set Typ = T'U {0} including the empty tree. The set of mappings

Go ={a: Ty - R; a(d) =1} (7)

with the product (5) of the composition law is a group. The identity is the element
that corresponds to the B-series B(a, hf,y) = y. Associativity follows from that of the
composition of mappings and the existence of an inverse is obtained from the explicit
formulae for the product. The group G¢ has been introduced in [5] and is called the
Butcher group in [29)].

In a similar way, the substitution law (6) makes the set

Gs ={a: Ty — R; a(D) = 0} (8)

a monoid. It is a monoid of vector fields and has first been considered in [14]. The
identity element is the mapping that corresponds to the B-series B(a, hf,y) = hf(y).
Invertible elements in Gg are those with a(e) # 0 and yield the group

G4 = {a: Ty = R; a@) = 0, a(s) #0}. 9)

Hopf algebras of trees. Independently of the theory of B-series, Connes and
Moscovici [20] in the context of non-commutative geometry, and Connes and Kreimer
[18, 19] in the theory of renormalization consider a Hopf algebra of rooted trees whose
co-product is for the first trees given by Ack (0) = 0 ® ) and

Ack(e) = +@0+0® .,

Ack(l) = 100+e@«+0 7,

Ack(V) = VOD+ee@e4+2e024+00%, (10)
Ack(l) = }®@+1®.+.®1+@®}_

Brouder [2, 3] (and also implicitly Diir [21]) noticed the close connection between this
co-product and the product (5) of the composition law.

Indeed, it is obtained from (5) by writing the argument of the mapping a to the
right of the ® sign, and those of the mapping b to the left of it. To the last terms in
(5), which do not contain any b(7), one adds the trivial factor b(()) = 1.

It is not surprising that a similar connection holds also for the substitution law.
Inspired by the work [14], Calaque, Ebrahimi-Fard and Manchon [8] introduced a co-



product which, for the first trees, is given by

) = e,

Acem(l) = J®@e+20 7,
) = VYRe+2:207+30Y,
)

= Yo.t2.707+30).
It gives rise to a new Hopf algebra of trees.

Outline of the article. The aim of this paper, which can be seen as a mixture
of survey and research article, is to discuss the composition and substitution laws,
to explain their fundamental role in numerical analysis, and to explore their common
algebraic structure and relationships.

Section 2 rigorously introduces trees and B-series, and in particular also ordered
subtrees and partitions of trees. The composition and substitution laws are discussed
in Section 3, including explicit formulae for arbitrary trees and applications in numerical
analysis. Various relations between the two laws are explored in Section 4 and a specific
map related to the logarithm is considered. Section 5 gives more details of the two
Hopf algebras of trees and their connection with the composition and substitution
laws. Finally, Section 6 mentions an extension to P-series, which are of great use for
partitioned or split systems of ordinary differential equations, and to S-series.

2 'Trees, B-series, ordered subtrees, and partitions

This section introduces trees, B-series, ordered subtrees and partitions of trees, concepts
which are fundamental in this work. We closely follow the notation of [26, Chap. III].
2.1 Trees and B-series

Let T = {+,/,%,...} be the set of rooted trees, and let () be the empty tree. For
Tly...,Tm € T, we denote by 7 = |71, ..., Ty] the tree obtained by grafting the roots of
T1, ..., Tm t0 a new vertex which becomes the root of 7. The order |7| of a tree 7 is its
number of vertices and its symmetry coefficient is defined recursively by

o()=1 o) =o(n) - olrm)mlps! - | (12)

where the integers pu1, po,... count equal trees among 7y, ..., T, The elementary
differentials F(7) are given by

Fr()w) =fly),  Fr(m)@) = ™ @) (Fr(r) @), ..., Frlmm) ().

For real coefficients a()) and a(7),7 € T, a B-series is a formal series of the form

I7|
() Fy(7) ().

g

B(a,hf,y) =a@)y+ )
TeT



The factor Al7l is included for historical reasons and motivated by the fact that originally
the most important B-series were Taylor series expansions of the exact and numerical
solution. One can assume h = 1 because, as the notation B(a,hf,y) suggests, the
factor h is only a rescaling of the vector field. The normalization with the symmetry
coefficient o(7) in the denominator has been proposed in [7] to give the composition
law a more elegant form.

2.2 Ordered subtrees

The general formula for the composition law needs the following notions. An ordered
subtree? of 7 € T is a subset s of the set of all |7| vertices which is (i) connected (by
edges of the tree 7) and (ii) contains the root of 7 (if s is not empty). The set of all
ordered subtrees of 7 is denoted by S(7). It is given in Table 1 for a tree of order 5.
Associated to an ordered subtree s € S(7) are:

e 7\ s is the forest (collection of rooted trees) that remains when the vertices of the
subtree s together with its adjacent edges are removed from the tree 7;

e s, is the rooted tree given by the vertices of s with root and edges induced by that
of the tree 7.

Notice that, due to the fact that we consider all vertices of 7 as different, the second
and third subtrees in Table 1 are different, even if s; and 7\ s are identical for both of
them. This is the reason why we use the notation “ordered” subtree.

Table 1: All ordered subtrees of a tree with associated functions

Nelelelelelelelele]ele[¢ ]
T\s| 0 . . J o [ Lo | e | e | e | oo | see | e 4/

s v Ivlviwlslsl Y vy 2]

2.3 Partitions of trees

The substitution law needs the notation of partitions. A partition p of a tree 7 is
a subset of the edges of the tree. We denote by P(7) the set of all partitions p of
7 (including the empty partition). Associated to such a partition are the following
objects (see Table 2):

e 7\ pis the forest that remains when the edges of p are removed from the tree 7;

e p,, called skeleton [16], is the tree obtained by contracting each tree of 7\ p to a
single vertex « and by re-establishing the edges of p.

?Ordered subtrees are called “admissible cuts” in [18].



Table 2: Examples of partitions of trees with associated functions

AR AR A AR AL AR IR AR
\p } } Jooo | oo | Jooo | O } Jooo | Yoo
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Notice that a tree 7 € T has exactly 2l7I=1 partitions p € P(7), and that different
partitions may lead to the same skeleton p; or the same forest 7 \ p.

3 Composition and substitution laws

Using the notation introduced in Sect.2 we present the general formulae for the com-
position and substitution laws. We also discuss their significance in the numerical
treatment of differential equations.

3.1 The composition law

We extend® maps b: Tp — R satisfying b(()) = 1 to forests by putting b(7y...7,) :=

H?:l b(i).
Theorem 3.1 Let a,b: Ty — R be two mappings, with b(0) = 1. Then, we have

B(a,hf,B(b,hf,y)) = B(b-a,hf,y),

where b-a: Ty — R is defined by (b-a)(0) = a(d) and

(b-a)(r)= > b(r\s)a(ss). (13)

seS(7)

For trees up to order 3 this formula corresponds to those of (5). The proof for a
general tree 7 is by Taylor series expansion and can be read in [26, Sect.II.1.4]. As
mentioned in the introduction, the set Go = {a: Ty — R; a(l) = 1} equipped with
the product (13) is a group. Associativity can be verified by algebraic manipulations,
but it is also a consequence of Theorem 3.1 and the associativity of mappings. The
identity element in G¢ is given by

dp(0) =1 and dp(t)=0for 7 €T, (14)

which corresponds to the B-series B(dy, hf,y) = y. The existence of an inverse follows
recursively from formula (13), because for a € G¢ it has the form (b-a)(7) = b(7) +

3This extension from trees to forests can be interpreted in the context of Hopf algebras: the extended
map on the Hopf algebra Connes & Kreimer is a character, i.e. a unital algebra map (see Sect. 5 below).



a(T) + ..., where dots indicate expressions involving trees with lower order than that
of 7.

It is essential for applications that Theorem 3.1 is valid without any restrictions on
a((). The most important special case of this theorem is the formula

hf(B(b,hf,y)) = BW, hf,y), (15)
where, as a consequence of the product (13), we have ¥'()) =0 and
V(T) =b(r1) ... b(Tm) for T=1[m,...,7Tm]. (16)

Exact solution of (1). The solution y(t+ h) of (1) with initial value y(t) = y is a B-
series y(t+h) = B(e, hf,y). Differentiation with respect to h shows that hg(t+h) is the
B-series with coefficients |7|-e(7). Equating these coefficients with those of the B-series
for hf(y(t+h)) = B(e',hf,y) yields the recurrence relation |7|-e(7) = e(1)-...-e(7m).

Order conditions for Runge—Kutta methods. This is the origin of the consider-
ation of B-series and of the Butcher group. A Runge—Kutta method is given by

9 =yn+hY_ ai;f(g))

j=1

together with a similar formula for the numerical approximation y,1; after one step
with length h. Assuming g; = B(¢;, hf, yn), the Runge-Kutta equation can be written
in terms of the coefficients of the B-series as ¢;(0) = 1 and, for 7 = [11,..., 7],

$i(T) =D ay &5(T) =D i di(11) .- 6(Tm).
=1 =1

These coefficients and those for the numerical approximation y,+1 = B(¢, hf,y,) only
depend on the parameters of the Runge-Kutta method. The order of the method, which
is the largest integer p such that y(h) —y; = O(hP*!) for all differential equations, is
now expressed by the algebraic relations ¢(7) = e(7) for |7] < p, where ¢ and e are the
coefficients of the numerical and exact solution, respectively.

Effective order. An early application of the group structure is the concept of effective
order. The idea [4] is to construct a numerical method y,+1 = ®p(y,) such that for
a suitable mapping x; the composition ¥ = Xgl o @ o xp is a method of higher
order. In a constant step size implementation we have ¥} = X;I o ®p o xy, so that
for the computational cost of the method ®; we obtain a higher accuracy by slightly
modifying the initial value and by correcting the output approximation. Method ®y,
is called to be of effective order p, if ¥y, is of order p. Assuming ®(y) = B(a, hf,y)
and xx(y) = B(c, hf,y), the conditions for effective order p are (c-a-c 1) (1) = e(7)
for |7| < p, where we have employed the product (13). The mapping xj; is called a
processor. Notice that this notion is different form preprocessed (modifying) vector field
integrators described in the next Section 3.2.

Conjugate methods. The idea of effective order has a wide applicability in the
context of geometric numerical integration. The relation ¥y = X;I o &5 o x, means



that ®; and ¥j, are conjugate maps. If &, ¥y, x, are B-series with coefficients a, b, c,
respectively, then the conjugacy condition is best written in the form (¢ - a)(r) =
(b-¢)(1), so that the composition law (13) can be directly applied. When, by some
reason, a method y,+1 = P®p(y,) cannot satisfy a desirable geometric property (like
symplecticity) one can still ask whether it is conjugate to a method having this property.
Extensive use of (13) has been made recently in proving conjugate-symplecticity up to
order 2s + 2 for a class of energy-preserving B-series integrators of order 2s, see [25].

3.2 The substitution law

The general formula for the substitution law is as follows:

Theorem 3.2 Let a,b: Ty — R be two mappings, with b(Q) = 0. Then we have
B(a7B(b7hf7')7y) = B(b*G/’hf’y)?

where bxa: Ty — R is defined by (bxa)(D) = a(B) and

(bxa)(r)= Y b(r\p)alp-). (17)

pEP(T)

For trees up to order 3 we recover the formulae (6). A detailed proof of the general
case is given in [15], see also [14]. For the tree of Table 3, formula (17) yields

bra)(Y) = a(eb(¥)+a(2)(+)(\) +2a(1)b(+)o(})
T a(\)b(+)26(2) + 2a(})b(+120(2) + a( ¥ )b(+)".

Table 3: All 8 partitions of a tree with skeletons and tree forests

perD YV IY Y YT Y

P AR I DI

T\p Y AV, } } eol | 0ol | ool | eoee

The set Gg = {a: To — R; a(d) = 0}, considered in the introduction, together
with the product (17) forms a monoid. Invertible elements are those with a(s) # 0 and
form the group G%. The identity element is §, defined by

d. (0) =0, de(e)=1 and de(1) =0 for |7| > 2. (18)

The monoid and group properties are discussed further in Sect.4. As we shall see in
the following applications, it is important to note that Theorem 3.2 is valid without
any restrictions on a(7), e.g., also for a € Gg.



Backward error analysis. This is a fundamental tool for the study of the longtime
behavior of geometric integrators (e.g., symplectic or reversible methods) [26, 32]. The
idea is to interpret the numerical solution of a method y,+1 = ®5(yy,) applied to (1)
as the exact solution of a modified differential equation y = f;(y). For structured
problems, such as Hamiltonian systems, the study of the flow of the modified differential
equation gives much insight into the numerical solution.

For the case that the numerical integrator is represented by a B-series, ®p(y) =
B(a, hf,y), it turns out that also the modified differential equation is a B-series vector
field hfy(y) = B(b,hf,y) [24]. It is defined by

B(e, B(b,hf,"),y) = B(a,hf,y),

where the coefficients e(7) are those of the exact solution, given in Sect.3.1. The
coefficients of the B-series for the modified differential equation are recursively given
by (bxe)(T) = a(r), because (b*e)(r) = b(7)+ lower order terms.

Modifying integrators. Modifying (or preprocessed) integrators [15] permit to in-
crease the order of accuracy of a basic integrator yn,+1 = ®p(y,) without destroying
its geometric properties. The idea is to find a modified vector field f3(y) (different
from that of backward error analysis) such that the basic method applied to ¥ = f1,(y)
reproduces the exact solution of (1). Suitable truncation of the modified differential
equation yields high order integrators. This idea has successfully been applied to the
equations of motion for the rigid body [35, 28, 15].

In complete analogy to backward error analysis we have that for a B-series method
@, (y) = B(a, hf,y) the modified differential equation is a B-series hf,(y) = B(b, hf,y).
It is defined by

B(a”B(ba hf, )7y) = B(G,hf,y),

which leads to the condition (bxa)(7) = e(7) for the coefficients of the arising B-series.
Again, b(7) can be computed recursively from this relation.

Notice that the coefficients b € G for backward error analysis and modifying
integrators are inverse elements with respect to the substitution law.

4 Interactions between the groups

We study in this section the properties and connections between the composition law
and the substitution law. The proofs provided here use the interpretation in terms of
B-series, and have first been given in the unpublished report [14].

4.1 A monoid action by morphisms

We show that the substitution law can be seen as a monoid action of the monoid of
vector fields on the Butcher group.

Theorem 4.1 The monoid of vector fields (Gg,*) acts by morphisms on the Butcher
group (G, ) via the substitution law:

GsxGe — G¢
(bya) +— bxa’



In particular, we have the compatibility relations

(b1 xbe)*xa = by *(ba*a) (19)
bx(a;-az) = (bxay)-(bxag) (20)
(bxa)™' = bx(ah) (21)

for all b,by,by € Gg, a,a1,a2 € Go. Here, a=' denotes the inverse in G¢.

Proof. The connection of the products with B-series (Theorem 3.1 and Theorem 3.2)
permits us to give simple proofs:

e (19) is a consequence of the associativity of the composition of functions, here of the
form hf — B(c, hf,y) for different mappings c.

e (20) means that considering the composition of the flows of two B-series B(ai, hf,y)
and B(ag, hf,y), it is equivalent to substitute the vector field hf by another
B-series B(b, hf,-) before or after the composition of the flows.

e (21) is an immediate consequence of (20), putting a; = a and as = a~!.

A purely algebraic proof of these properties has recently been given in [8]. O

can be computed straight-

As already explained in Sect. 3.1, the coefficients a L(7)
= dy, and for the first trees we

forwardly by induction on |7| from the relation a - a~
obtain =

(f
(V

<}

4.2 The exponential and logarithmic maps

)
) (22)
)
)

For a B-series method ®(y) = B(a, hf,y), the coefficients b for backward error analysis
are given by bx e = a (see Sect. 3.2). This relation means that the B-series B(a, hf,y)
is the exact flow of the differential equation with vector field B(b, hf,y). Motivated by
the standard notation of flows we use exponential and logarithm in place of bxe = a
(see [40]),

a = exp(b) and b =log(a).

The exponential and logarithmic maps
exp: Gg — G¢ log: Go — Gg

allow us to interpret important results in geometric numerical integration in terms
of one-to-one correspondences between subgroups of the Butcher group G¢ and sub-
monoids of the monoid of vector fields Gg:

10



e the subgroup of methods of order at least p {a € G¢; a(r) = e(7) for 1 < |7| < p}
corresponds to the submonoid {b € Gg; b(s) =1, b(r) =0 for 2 < |7| < p};

e the subgroup of symmetric B-series methods {a € G¢; B(a™', hf,y) = B(a, —hf,y)}
is in correspondence with the submonoid {b € Gg; b(r) = 0 for |7| even};

e the subgroup of symplectic B-series methods characterized by [9]
{a € G¢; a(uov) +a(vou) = a(u)a(v) for u,v € T}
corresponds to the submonoid of Hamiltonian vector fields characterized by [24]
{be Gg; buov)+bvou) =0 for u,veT},

where wov 1= [uy, ... up,v] for u = [uy,...uy],v € T denotes the Butcher product,
see [26, Def. I11.3.7];

e the subgroup of energy preserving B-series methods in G¢ is in correspondence with
the submonoid of vector fields in Gg having the energy as first integral.

e the subgroup of volume preserving methods in G¢ is in correspondence with the
submonoid of divergence-free vector fields in Gg. Theses classes of B-series inte-
grators and vector fields were studied recently in [17, 31].

Proofs of these statements are given in Theorems IX.1.2, IX.2.2, IX.3.1, and Corol-
laries 1X.5.4, IX.9.13 of [26]. It is interesting to note that geometric properties are
non-linear conditions in G¢ and become linear in Gg.

4.3 The special role of the explicit Euler method

Consider the explicit Euler method

Yn+1 = Yn + hf(yn) (23)

which is the simplest B-series integrator, with coefficients dy + ., see definitions (14)
and (18). We denote by
w :=log(dp + da) (24)

the coefficients of its modified vector field for backward error analysis.
Theorem 4.2 The inverse of a in the Butcher group G¢ is given explicitly by

a™t = (a—d)* (6 +0.)7" (25)
and coefficients for backward error analysis are obtained explicitly in terms of w by

log(a) = (a — dy) * w. (26)

11



Proof. Any B-series integrator y,4+1 = B(a,hf,y,) can be interpreted as the explicit
Euler method (23), where the vector field hf is replaced by the B-series vector field
with coefficients a — dp, which yields a = (a — dy) * (6g + 0+ ). Then, application of
property (21) yields relation (25).

Coefficients w are defined by wxe = dp+9.. Subtracting dy on both sides we obtain
wx (e — &) = 8., which means that w = (e — dy)*~! is the inverse for the substitution
law of the exact solution. Now, log(a) is defined by log(a) x e = a. Subtracting dy on
both sides, and multiplying by w from the right side yields the statement (26). O

Explicit formula for the inverse in the Butcher group Since for a = d3+d. only
two terms are non-zero in (13), we get by induction on |7| that (5y43. )~ (7) = (—1)I"I.
Using the general formula (17) for the substitution law, formula (25) allows to recover
the following formula for the inverse of an element a in G¢, a result first discovered in
[18] in the context of Hopf algebras of trees:

al(r)= > (=)Pla(r\p). (27)
p€P(7)

For trees up to order 3 this formula yields again (22).

Explicit formula for the logarithmic map Once the coefficients w(7) are tab-
ulated (see Table 4 for trees up to order 5), (26) together with (17) give an explicit
formula for the logarithm log(a) of backward error analysis. In the context of combina-
torial Hopf algebras the coefficients w can be traced back to [11] under the name log*
and are studied also in [40, 22, 8, 12].

The coefficients w(7) may be computed by induction from the relation wxe = dy+d 4
using formula (17). The coefficients w(7) for the bushy trees f,4,V,... are the
Bernoulli numbers B;. They correspond to quadrature problems ¢ = f(t), see [26,
Example IX.7.1],

w(l)=B1=-1/2, w({)=B2=1/6, w(\YW')=B3=0, w(Y)=By,...

Coeflicients for tall trees o, f, }, ... correspond to linear problems y = Ay, and are
simply those of the series of log(1 + z):
wle)=1, w(fl)=-1/2, w(}) =1/3, w(ﬁ) =-1/4, w(])=1/5,...

Proposition 4.3 The coefficients w satisfy the following relation for all u,v € T,
wuowv)+w(wou)+w(u xv)=0. (28)
This generalizes to three trees (and more),

w(uo (vw)) + w(vo (wu)) + w(wo (uv)) + w((u X v) ow) +w((v X w) ou)
+w((w x u) ov) +w(u x v x w) =0. (29)

Moreover, w is the unique mapping of Gg satisfying both w(e) =1 and (28)—(29).
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Table 4: Coefficients w(7) for trees of order < 5.

Here, o and x denote respectively the Butcher product and the merging product,
wo (vw...)=[ul,...up,v,w...], UXVX oo =[ULy . Up, V1. Uy ],

for all trees u = [uq, ... up], v = [v1,...0n], w,... A direct proof of (28)—(29) is obtained
using the substitution law formula in [14, Prop.4.4]. An algebraic proof using quasi-
shuffle products is given in [8, Sect.9]. The uniqueness of w is a consequence of results
in [13], where it is shown that among B-series methods, only the (time-scaled) exact
flow conserves both quadratic and cubic invariants, i.e. satisfies

e(uov)+e(vou) = e(u)e(v)
e(uo (vw)) +e(vo(wu))+e(wo (uv)) = e(u)e(v)e(w).

5 Two Hopf algebras of trees

There is a close connection between the results of the previous sections and Hopf alge-
bras of trees. The composition law is related to a Hopf algebra introduced by Connes,
Kreimer and Moscovici [20, 18, 19] (see the review [34]), whereas the substitution law
is related to a Hopf algebra introduced by Calaque, Ebrahimi-Fard & Manchon [8].
We consider the set ‘H of linear combinations of forests of rooted trees. As for stan-
dard polynomials we consider scalar multiplication, addition and multiplication which
makes this set a commutative algebra. For example, the product of two polynomials is

I L2V 150) = P 452N L 20V 10V ),

and the identity element for the multiplication is the empty tree e = (). Such an algebra
equipped with a coproduct A: ‘H — H ® H, which is coassociative,

(Id® A)o A = (A®Id)oA, (30)

and compatible with the algebra laws is called a bialgebra. It is a Hopf algebra if in
addition it is equipped with an antipode S: H — H which is an algebra map* satisfying

po(S®@Id)oA=po(Id®S)oA =ed (31)

“In general, the antipode is an algebra antimorphism: S(u)S(v) = S(vu). If the Hopf algebra is
commutative, it reduces to an algebra map. This is the case here, but not in [38, 33] in the context of
Lie group integrators.
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where p: H ® H — H is the multiplication of elements in H.

5.1 The Hopf algebra of Connes & Kreimer

Let us consider the commutative R-algebra of polynomials on trees Ty (including the

empty tree). We recall that elements a in the Butcher group G¢ satisty a(f)) = 1 and

can be extended to unital algebra maps by a(m ...7,) = a(71) - - - (7,) and by linearity.
According to [20, 18, 19] we define the coproduct Acgx: H — H ® H on trees,

Ack(r)= 3 (F\s)®s,,

seS(T)

and we extend Agg to an unital algebra map. There is a striking similarity [2, 3] with
formula (13) for the composition law of the Butcher group. Indeed, if we apply b on
the left side of the tensor product and a on the right side, we obtain (b - a)(7). This
connection can be expressed by the formula

(b-a)(T) = (no(b®a)oAck)(T), (32)

where p: R ® R — R denotes the multiplication. In the context of combinatorial
Hopf algebra, this is called a convolution product. We say that the Butcher group
corresponds to the group of characters of the Hopf tree algebra of Connes & Kreimer.

The validity of (30) can be understood as follows: by definition of the coproduct,
we have

(Id® Ack)oAck) ()= D> > (T\s)@(s;\5) @]

s€S(1) s'€S(sr)
and for the composition law we have
(@G- =3 3 a(r\s) bs:\s) cls).
s€S(1) s'€S(sr)

Similar formulae for the right side of (30) together with the associativity a-(b-c) = (a-b)-c
in the Butcher group proves the coassociativity property (30) for Acyk.
The antipode Scxi: H — H is given by

Sox(r)= > (=)l \p),

p € P(7)
which yields for the first trees,
Sck(®) = 0,
Sck(e) = —-,
Sex(l) = —1++%
Sex(V) = —\V 4207
Scex(l) = —)+2.1 — o

14



Again, there is a strong similarity with the Butcher group, compare with formulae (22)
and (27): the inverse in the Butcher group is related to the antipode Scx by

a (1) = (a0 Sck)(T).

This can be seen from (31) and (32) which yield a - (a o Scx) = (a0 Sck) - a = dy.

5.2 A bialgebra based on the substitution law

In the recent article [8] a Hopf algebra of trees has been constructed, with a new
coproduct that is closely related to the substitution law (17). For the same algebra as
in Sect. 5.1, we consider here the coproduct (see (11))

Acem(t)= Y (r\p)®pr. (33)

peP(T)

which is slightly different from that of [8], cf. Sect.5.3.

In analogy to the relation between the coproduct of Connes & Kreimer and the com-
position law, the convolution product for the coproduct (33) is exactly the substitution
law of (17). For a,b € Gg, we have

(bxa)(t) = (o (b®a)oAcgm)(T).

The coassociativity of Acgys follows as in Sect.5.1. We thus get a bialgebra®. Since
(g is a monoid but not a group, it is not surprising that no antipode associated to this
coproduct exists.

5.3 The Hopf algebra of Calaque, Ebrahimi-Fard & Manchon

In the article [8] it is shown how the algebra H has to be modified so that the coproduct
Ac g of (33) gives rise to a Hopf algebra structure.

We let Hopar be the commutative R-algebra of polynomials on trees T' (excluding
the empty tree), with e = o as the identity element (in contrast to the algebra of
Sects. 5.1 and 5.2). We equip this algebra with the coproduct Acgas of (33). Since o is
the identity element, it can be removed when multiplied with other trees. For example,
we have

ACEM(>)=}®-+2I®I+-®>

which should be compared to (11). In the context of B-series, the choice e = o for the
identity element corresponds to the subgroup of Gg

Gi={a:T = R;a(s) =1},

5In a private communication, Dominique Manchon pointed out that H equipped with the coproduct
Ac g is a bialgebra which is graded but not connected. In fact, a graded bialgebra which is connected
is automatically a Hopf algebra, i.e. an antipode exists.
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which corresponds to B-series vector fields of the form hf(y)+ higher order terms. The
inverse a* (1) of a € GY (with respect to the substitution law) can be computed
recursively from (17). For trees up to order 3 we obtain

(1*1

= a(s)=1, Scem(e) :

= —a(}), Seem(l) = =1,

V) = —aV) +2a(0)? Scem(V) = -V +2/7
<} = )+ 2] Scen(}) = ~}+20%

This readily permits us to define an antipode by the formulas to the right of (34), which
makes the bialgebra a Hopf algebra. A general formula for this antipode is given in [8].
Since it requires additional notations, we do not reproduce it here. Similarly to the
relation between G¢ and Hog (Sect.5.1), the group G}q corresponds to the group of
characters of the Hopf algebra Hoga.

(
(/

a*— 1

)
! (34)
)
)

6 Extensions

There exist many different extensions of B-series in the numerical analysis literature,
e.g., P-series [23] for partitioned differential equations, DAE-series for differential-
algebraic equations, Lie-Butcher series [37], S-series [39] and LS-series [38] for dif-
ferential operators. We briefly present the ideas of P-series and S-series.

6.1 P-series

Partitioned systems of differential equations

p= Y9, i=rfAp.q).

arise in many situation. Second order differential equations when written in first or-
der form and Hamiltonian systems are interesting special cases. There are important
numerical integrators that treat the variables p and ¢ in a different manner, e.g., sym-
plectic methods based on the Stormer—Verlet integrator [26]. P-series are an extension
of B-series adapted to partitioned systems [27, Sect.II.15].

Let TPy = {0p,0q, 0,0, .8 d- ..} denote the set of bi-coloured trees, and 0y, 0,
denote empty trees. For a mapping a : TPy — R a P-series is of the form

_ (a(@,)p a(s) I a( D) M) +al £ (fy 12
Peri = (g )+ oy ) 0oy + apyiyen ) o

with functions evaluated at y = (p,q). The upper component contains terms corre-
sponding to trees with black root, and the lower component to trees with white root.

Results for B-series of previous sections can be extended straight-forwardly to P-
series. We again have a composition law

P(a,hf,P(b,hf,y)) = P(b-a, f,y)
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and a substitution law

P(&,P(b,hf,'),y) :P(b*a>f7y)‘

The formulas of Theorem 3.1 and Theorem 3.2 are still valid, where trees, subtrees,
and skeletons are now in T'Fy. The only ambiguity that could arise is in the definition
of the skeleton p,: the color of a vertex of p, is that of the root of the tree which is
replaced by the vertex. ’

For instance, for the partition p = ; we have p, = }’ An example for the
substitution law is

(bxa)(W) = a(+)b(VP) +a(2)b(+)b(P) + a(P)b(e)b([) + a(\P)b(+)?b(o).

6.2 S-series

S-series have been introduced by Murua [39] for the purpose of analyzing the preser-
vation of invariants, either in the context of differential-algebraic equations or in the
context of Hamiltonian dynamics. If g is a first integral of (1), i.e., ¢'(y)f(y) = 0,
it is natural to investigate whether the numerical approximation y,+1 = B(a, hf, yn)
provided by a B-series method satisfies g(yn+1) = ¢(yn). This leads to the study of
g(B (a,hf, y)) and motivates the following definitions.

Let g(y) be a scalar or vector-valued smooth function and f(y) the vector field of
the system (1). We let

For()y) =9y),  For(m) ) = g™ @) (Fr(r)®),- ... Fr(mm)(®)),  (35)

where 7 = [11,..., 7] and Fy(7)(y) are the elementary differentials of Sect.2.1. For
real coefficients a(7), 7 € T, an S-series is a formal series of the form

hiTl
a()

For g = f we recover B-series vector fields. For g = Id, we obtain

S(a,hg,hf,y) =

TeT

a(t) Fy.f(T)(y)- (36)

S(a,hId,hf,y) =hB(@,hf,y)

with a(7) = a([7]) for 7 € Tp, and we see that all B-series can be interpreted as S-series.

Such a series (36) can be seen as a formal linear differential operator acting on g
(notice that g — F, ¢(y) is a linear differential operator). In the original® literature [39,
40] on S-series and also in the context of Lie theory [38, 33] (where S-series correspond
to “pullback series”), this interpretation as differential operator is very important.
Indeed, for a given flow ¢;(y) of a vector field f(y) on a differentiable manifold M, the
“Vertauschungssatz” [26, p. 88| in the theory of Lie-series allows to interpret g(p:(y))
as a differential operator,

g oo = exp (tF)[g] (37)

51n this article, we have changed the notation because it is more convenient in our context to consider
g and f on the same level.
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where F(y) = 37, fi(y ) (here for the special case M = R") is the differential

operator (Lie derivative) assomated to the vector field f(y).

There are now three possibilities of defining composition or substitution laws. One
can substitute in (36) a B-series with b(f)) = 1 for y, a B-series with b(()) = 0 for hf,
and finally an arbitrary S-series for hg. All of these operations lead to S-series which
we denote as follows:

S(-a,hg,hf,y) = S(a,hg,hf,B(b, hf,y)), (38)
S(bxa,hg,hf,y) = S(a,hg,B(b,hf,"),y), (39)
S(bxa,hg,hf,y) = S(a,S(b,hg,hf,-),hf,y). (40)

The proof of Theorem 3.1 shows that the product (b-a)(7) in (38) is given by

(b-a)(m)= Y b(r\s)als), (41)

where Sy(7) is the set of non empty, ordered subtrees of 7. Notice that the empty tree
is not involved in the S-series (36).

The product (b a)(7) in (39) is closely related to the substitution law of Theo-
rem 3.2. The difference is that in the S-series only the function f is substituted with
a B-series and the function g (corresponding to the root) is not touched. We therefore
obtain the formula

(bxa)r) = 3 b({r\ pho) alpr),

pEPo(T)

where the sum is only over those partitions of 7 which contain all edges leaving the
root of 7 (the set of such partitions is denoted by Py(7)), and where {7\ p}o is the
forest obtained by removing the edges of p and also the root of 7.

The product (b*a)(7) in (40) is given by

(bx*a)( Z b(sr) \ s]), (42)

where [7\ s] is the tree obtained from 7 by contracting the subtree s, to a single vertex,
which becomes the root of [7\ s]. All proofs are very similar to those for B-series.
Putting a = 0+ in (38), we get in analogy to (15) that

hg(B(b, hf,y)) = SV, hg, hf,y) (43)

with o/(7) given by (16). This relation is at the origin of considering S-series as
mentioned in the beginning of this section. It is related to (37) and expresses in
terms of S-series the exponential of the Lie-derivative corresponding to the vector field
B(logb, hf,y). Furthermore, replacing hg in (43) by an S-series with general coefficients
a(T) we obtain the relation

b-a=axb

which links the products (41) and (42).
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Similarly to the case of B-series, the substitution law for S-series (42) can be turned
into a coproduct on the algebra of Sect. 5.3 (excluding the empty tree)

Ar)= > 5@[r\s

s€So(T)

which yields again a Hopf algebra of trees.
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