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Abstract We describe a new methodology for studying persistence of topological
features across a family of spaces or point-cloud data sets, called zigzag persistence.
Building on classical results about quiver representations, zigzag persistence gener-
alises the highly successful theory of persistent homology and addresses several situ-
ations which are not covered by that theory. In this paper we develop theoretical and
algorithmic foundations with a view towards applications in topological statistics.
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1 Introduction

1.1 Overview

In this paper, we describe a new methodology for studying persistence of topological
features across a family of spaces or point-cloud data sets. This theory of zigzag per-
sistence generalises the successful and widely used theory of persistence and persis-
tent homology. Moreover, zigzag persistence can handle several important situations
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that are not currently addressed by standard persistence. The technical basis for these
developments comes from quiver theory [8].

The zigzag persistence framework is activated whenever one constructs a zigzag
diagram of topological spaces or vector spaces: a sequence of spaces S1, . . . , Sn

where each adjacent pair is connected by a map Si → Si+1 or Si ← Si+1. The nov-
elty of our approach is that the direction of each linking map is arbitrary, in contrast
to the usual theory of persistence where all maps point in the same direction.

This paper has three principal objectives:

– To describe several scenarios in applied topology where it is natural to consider
zigzag diagrams (Sect. 1).

– To develop a mathematical theory of persistence for zigzag diagrams (Sects. 2
and 3).

– To develop algorithms for computing zigzag persistence (Sect. 4).

There is one subsidiary objective:

– To introduce the Diamond Principle, a calculational tool analogous in power and
effect to the Mayer–Vietoris theorem in classical algebraic topology (Sect. 5).

Our goal is to present the fundamental concepts and constructions of zigzag per-
sistence in an explicit and accessible way, and to provide a sound theoretical platform
for future work. In particular, we draw the reader’s attention to our paper with Moro-
zov [3], where we develop a zigzag theory for topological spaces with a Morse-like
function. This ‘levelset zigzag persistence’ can be related to the extended persistence
of Cohen-Steiner et al. [6], and is proved to be stable under perturbations of the func-
tion.

We offer a few comments on what this paper does not do. On the computational
side, we do not implement any algorithms or conduct a performance analysis. We
make no attempt to provide an algorithm to compute zigzag persistence at the ho-
mological level; this is carried out in [3]. On the mathematical side, we do not claim
new theoretical results in the underlying quiver representation theory. Rather, we use
results implicit in the existing literature to provide a precise algorithmic framework
for future code development projects. Finally, on a technical level, we are deeply in-
debted to the practitioners of quiver theory [8]; what is new here is the emphasis on
algorithmics and on applications to computational topology (particularly Sects. 1, 4
and 5).

1.2 Persistence

One of the principal difficulties when attempting to apply algebraic topology to statis-
tical data is the fact that traditional invariants—such as the Betti numbers or the fun-
damental group—are completely non-robust to discontinuous changes in the space
under consideration. Indeed, they must be, to have discriminatory power. The chal-
lenge in topological statistics is to construct invariants which enjoy the discriminatory
power of the classical invariants, but which have the necessary robustness for statis-
tical use.

Persistent homology [10, 14] is the single most powerful existing tool for address-
ing this problem.
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A typical workflow runs as follows [7]. The input is a point cloud, that is, a finite
subset of some Euclidean space or more generally a finite metric space. After an ini-
tial filtering step (to remove undesirable points or to focus on high-density regions of
the data, say), a set of vertices is selected from the data, and a simplicial complex S is
built on that vertex set, according to some prearranged rule. In practice, the simplicial
complex depends on a coarseness parameter ε, and what we have is a nested family
{Sε}ε∈[0,∞], which typically ranges from a discrete set of vertices at S0 to a complete
simplex at S∞.

Persistent homology takes the entire nested family {Sε} and produces a barcode
or persistence diagram as output. A barcode is a collection of half-open subintervals
[bj , dj ) ⊆ [0,∞), which describes the homology of the family as it varies over ε. An
interval [bj , dj ) represents a homological feature which is born at time bj and dies
at time dj . This construction has several excellent properties:

– There is no need to select a particular value of ε.
– Features can be evaluated by interval length. Long intervals are regarded as indicat-

ing essential features of the data, whereas short intervals are likely to be artefacts
of noise.

– There exists a fast algorithm to compute the barcode [10, 14].
– The barcode is a complete invariant of the homology of the family of com-

plexes [14].
– The barcode is provably stable with respect to changes in the input [4, 5]. In con-

trast, any individual homology group Hk(Sε) is highly unstable.

The major limitation of persistence is that it depends crucially on the family {Sε}
being nested, in the sense that Sε ⊆ Sε′ whenever ε ≤ ε′. This applies to the current
theoretical understanding as well as the algorithms. Zigzag persistence addresses this
limitation.

If we discretise the variable ε to a finite set of values, the family of simplicial
complexes can be thought of as a diagram of spaces

S1 → S2 → ·· · → Sn,

where the arrows represent the inclusion maps. If we apply the k-dimensional homol-
ogy functor Hk(−; k) with coefficients in a field k, this becomes a diagram of vector
spaces

V1 → V2 → ·· · → Vn

and linear maps, where Vi = Hk(Si; k). Such a diagram is called a persistence mod-
ule. What makes persistence work is that there is a simple algebraic classification
of persistence modules up to isomorphism; each possible barcode corresponds to an
isomorphism type.

Our goal is to achieve a similar classification for diagrams in which the arrows
may point in either direction. This is zigzag persistence, in a nutshell.

1.3 Zigzag Diagrams in Applied Topology

We consider some problems which arise quite naturally in the computational topology
of data.
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Example 1.1 Some of the most interesting properties of a point cloud are contained
in the estimates of the probability density from which the data are sampled. Deep
structure is sometimes revealed after thresholding according to a density estimate (see
[2] for an example drawn from visual image analysis). However, the construction of a
density estimation function ρ invariably depends on choosing a smoothing parameter:
for instance ρ(x) might be defined to be the number of data points within distance r

of x; here r is the smoothing parameter.
It happens that different choices of smoothing parameter may well reveal different

structures in the data; a particularly striking example of this occurs in [2]. Statisticians
have invented useful criteria for determining what the ‘appropriate’ value of such a
parameter might be for a particular data set; but another point of view would be to
analyse all values of the parameter simultaneously, and to study how the topology
changes as the parameter varies.

The problem with doing this is that there is no natural relationship between, say,
the 25% densest points as measured using two different parameter values. This means
that one cannot build an increasing family of spaces using the change in parameters,
and so one cannot use persistence to analyse the evolution of the topology. On the
other hand, there are natural zigzag sequences which can be used to study this prob-
lem. Select a sequence of parameter values r1 < r2 < · · · < rn and a percentage p,
and let X

p
r denote the densest p% of the point cloud when measured according to

parameter value r . We can then consider the union sequence

X
p
r1 → X

p
r1 ∪ X

p
r2 ← X

p
r2 → X

p
r2 ∪ X

p
r3 ← X

p
r3 → ·· · ← X

p
rn

or the intersection sequence

X
p
r1 ← X

p
r1 ∩ X

p
r2 → X

p
r2 ← X

p
r2 ∩ X

p
r3 → X

p
r3 ← ·· · → X

p
rn.

As we shall see in Sect. 5.3, there is essentially no difference between the zigzag
persistent homology of the union and intersection sequences of a sequence of spaces.
Here that assertion needs to be filtered through the process of representing the data
subsets X

p
r as simplicial complexes.

Example 1.2 (Topological bootstrapping) Suppose we are given a very large point
cloud X. If it is too large to process directly, we may take a sequence of small samples
X1, . . . ,Xn and estimate their topology individually, perhaps obtaining a persistence
barcode for each one. How does this reflect the topology of the original sample X?
On one hand, if most of the barcodes have similar appearance, then one might sup-
pose that X itself will have the same barcode. On the other hand, one needs to be able
to distinguish between a single feature detected repeatedly, and multiple features de-
tected randomly but one at a time. If we detect n features in Xi on average, are we
detecting n features of X with detection probability 1, or kn features with detection
probability 1/k?

Once again, there is a need to correlate features across different instances of the
construction. The union sequence comes to the rescue:

X1 → X1 ∪ X2 ← X2 → ·· · ← Xn
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In this case, the intersection sequence is not useful at the level of samples, because
two sparse samples are unlikely to intersect very much.

The approach in this example is analogous to bootstrapping in statistics, where
measurements on a large data set are estimated by making repeated measurements on
a set of samples.

Example 1.3 In computational topology, there exist several techniques for modelling
a point-cloud data set X by a simplicial complex S: the Cech complex, the Vietoris–
Rips complex, the alpha complex [9], the witness complex [7], and so on. The witness
complex W(L;X), in particular, depends on the choice of a small subset of ‘land-
mark’ points L ⊂ X which will serve as the vertex set of S. Roughly speaking, a
simplex σ with vertices in L is included in W(L;X) if there is some x ∈ X which
witnesses it, by being close to all the vertices.

How does the witness complex W(L;X) depend on the choice of landmark set?
There is no direct way to compare W(L;X) with W(M;X) for two different choices
of landmark sets L,M . However, it turns out that one can define a witness bicomplex
W(L,M;X) which maps onto each witness complex. The cells are Cartesian prod-
ucts σ × τ , where σ, τ have vertices in L,M respectively. A cell σ × τ is included
provided that there exists x ∈ X which simultaneously witnesses σ for W(L;X) and
τ for W(M;X).

Given a sequence L1, . . . ,Ln of landmark subsets, one can then construct the wit-
ness bicomplex zigzag:

W(L1;X) ← W(L1,L2;X) → W(L2;X) ← ·· · → W(Ln;X).

Long intervals in the zigzag barcode will then indicate features that persist across the
corresponding range of choices of landmark set.

The fundamental requirement is then for a way of assessing, in a zigzag diagram
of vector spaces, the degree to which consistent families of elements exist. The point
of this paper is that there is such methodology. We will interpret the isomorphism
classes of zigzag diagrams as a special case of the classification problem for quiver
representations (see [8] for background on this theory). There turns out to be a the-
orem of Gabriel [11] which classifies arbitrary diagrams based on Dynkin diagrams,
and which shows in particular that the set of isomorphism classes of zigzag diagrams
of a given length is parametrised by barcodes—just as persistence modules are. Long
intervals in the classification define large families of consistent elements, hence in-
dicate the presence of features stable across samples, landmark sets, or parameter
values for a density estimator.

1.4 Organisation of the Paper

In Sect. 2 we describe the theory of decompositions of zigzag modules. These decom-
positions produce zigzag persistence barcodes analogous to the barcodes of persistent
homology. The foundational theorem of Gabriel is stated without proof. In Sect. 3 we
develop the machinery of right-filtrations, which turn out to be the right tool for ac-
cessing the decomposition structure of a zigzag module. This is an important section
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for the reader who wishes to make serious use of zigzag persistence. In Sect. 4, we
present a general-purpose algorithmic framework for calculating zigzag persistence,
and we show how this operates in a practical class of examples. The algorithm is
based on a proof of Gabriel’s theorem for zigzag modules, included for complete-
ness. Section 5 is devoted to a localisation principle which gives another approach to
zigzag barcode calculations. We apply this to prove the Diamond Principle. We use
this in turn to compare the zigzag barcodes for two natural zigzag diagrams obtained
from a sequence of simplicial complexes.

2 Zigzag Diagrams of Vector Spaces

We work over a field k which remains fixed throughout this paper. There is no signif-
icance to the choice of k. All vector spaces are finite-dimensional.

2.1 Zigzag Modules

Let V denote a sequence of vector spaces and linear maps, of length n:

V1
p1←→ V2

p2←→ ·· · pn−1←→ Vn.

Each
pi←→ represents either a forward map

fi−→ or a backward map
gi←−. The object

V is called a zigzag diagram of vector spaces, or simply a zigzag module, over k.
The sequence of symbols f or g is the type of V. For instance, a diagram of type

τ = fgg looks like this:

V1
f1−→ V2

g2←− V3
g3←− V4.

The length of a type τ is the length of any diagram of type τ . For example, we say that
fgg has length 4. We will usually be considering zigzag modules of a fixed type τ of
length n. Such diagrams are called τ -modules, and the class of τ -modules is denoted
τMod.

Persistence modules (see [10, 14]) are zigzag modules where all the maps have
the forward orientation; in other words, where τ = ff . . . f . As explained in [14],
persistence modules can be viewed as graded modules over the polynomial ring k[t].
This observation simplifies the analysis of persistence modules quite considerably.

More generally, one can consider graph representations of arbitrary oriented
graphs. Zigzag modules constitute the special case where the graph is An (a path
with n vertices and n − 1 edges) and the orientation is specified by the type τ . In
1972, Gabriel showed that the Dynkin–Coxeter graphs An, Dn, E6, E7, E8 (arbitrar-
ily oriented) have an especially well-behaved representation theory [11]. The theory
of quivers was launched from this starting block; see [8] for a beautiful and transpar-
ent introduction. Zigzag persistence is enabled by the good behaviour of An graph
representations.

Remark τMod has the structure of an abelian category. Given two τ -modules V,W,
a morphism α : V → W is defined to be a collection of linear maps αi : Vi → Wi
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which satisfy the commutation relations αi+1fi = hiαi or αigi = kiαi+1 for each i.
(Here the forward and backward maps for W are written h, k respectively.) Mor-
phisms can be composed in the obvious way, and have kernels, images, and coker-
nels: for instance K = Ker(α) is the τ -module with spaces Ki = Ker(Vi → Wi) and
maps fi |Ki

and gi |Ki+1 defined by restriction. The set of morphisms Hom(V,W) is
naturally a vector space over k, and the endomorphism ring End(V) = Hom(V,V) is
a non-commutative k-algebra. We can view End(V) as the subalgebra of End(V1) ×
· · · × End(Vn) defined by the commutation relations.

2.2 Decompositions of Zigzag Modules

We wish to understand zigzag modules by decomposing them into simpler parts.
Accordingly, a submodule W of a τ -module V is defined by subspaces Wi ≤ Vi such
that fi(Wi) ≤ Wi+1 or gi(Wi+1) ≤ Wi for all i. These conditions guarantee that W

is itself a τ -module, with maps given by the restrictions fi |Wi
or gi |Wi+1 . We write

W ≤ V.
A submodule W is called a summand of V if there exists a submodule X ≤ V

which is complementary to W, in the sense that Vi = Wi ⊕ Xi for all i. In that case,
we say that V is the direct sum of W,X and write V = W ⊕ X.

Example 2.1 As a rule, most submodules are not summands. V = (k
1−→ k) has the

submodule W = (0 −→ k). However, W is not a summand because the only possible
complement is (k −→ 0), and that is not a submodule of V.

Remark The direct sum can also be defined as an ‘external’ operation: given
τ -modules V,W their direct sum V ⊕ W is defined to be the τ -module with spaces
Vi ⊕ Wi and maps fi ⊕ hi or gi ⊕ ki . (Here the forward and backward maps for W

are written h, k respectively.)

A τ -module V is decomposable if it can be written as a direct sum of nonzero
submodules, and indecomposable otherwise. Any τ -module V has a Remak decom-
position; in other words we can write V = W1 ⊕ · · · ⊕ WN , where the summands
Wj are indecomposable. The existence of such a decomposition is proved by induc-
tion on the total dimension

∑
i dim(Vi): if V is decomposable, say V = W ⊕ X, then

we may assume inductively that W,X have Remak decompositions, and therefore so
does V. (Base case: if V is indecomposable, then it has a Remak decomposition with
one term.)

Remak decompositions themselves are not unique. However, the Krull–Schmidt
principle tells us that the summands in a Remak decomposition are unique up to
reordering:

Proposition 2.2 (Krull–Remak–Schmidt) Suppose a τ -module V has Remak decom-
positions

V = W1 ⊕ · · · ⊕ WM and V = X1 ⊕ · · · ⊕ XN.

Then M = N and there is some permutation σ of {1, . . . ,N} such that Wj
∼= Xσ(j)

for all j .
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Proof The proof of Theorem 7.5 of Lang [13], which is stated for modules in the
ordinary sense, can be applied verbatim to our present context; all the required alge-
braic operations can be carried out within End(V). Since our τ -modules have finite
total dimension, the ascending and descending chain conditions (ACC and DCC) are
automatic. �

For further context, we refer the reader to an elegant article by Atiyah [1]; the
Krull–Schmidt principle applies in any exact abelian category to objects which satisfy
ACC and DCC, or a weaker ‘bi-chain condition’ defined by Atiyah. Our category,
τMod, is included by this formulation.

Thus we can use the multiset {Wj } as an isomorphism invariant of V. For this to be
useful, we need to identify the set of indecomposable τ -modules. We now describe
a natural collection of indecomposables. For each subinterval [b, d] of the integer
sequence {1, . . . , n} there is an associated τ -module.

Definition 2.3 Let τ be a type of length n and consider integers 1 ≤ b ≤ d ≤ n. The
interval τ -module with birth time b and death time d is written Iτ (b, d) and defined
with spaces

Ii =
{

k if b ≤ i ≤ d ,

0 otherwise;

and with identity maps between adjacent copies of k, and zero maps otherwise. When
τ is implicit, we will usually suppress it and simply write I(b, d).

Example If τ = fgg then I(2,3) is the zigzag module

0
0−→ k

1←− k
0←− 0.

Proposition 2.4 Interval τ -modules are indecomposable.

Proof Suppose I(b, d) = V ⊕ W and consider two adjacent terms k connected by
an identity map. Since V,W are submodules, the dimensions of V and W cannot
decrease in the direction of the map; nor, since they are complements, can they in-
crease. Thus dim(Vi) and dim(Wi) are constant over b ≤ i ≤ d , and in particular one
of V,W must be zero. �

Here is the foundation stone for the theory of zigzag persistence.

Theorem 2.5 (Gabriel) The indecomposable τ -modules are precisely the intervals
I(b, d), where 1 ≤ b ≤ d ≤ n = length(τ ). Equivalently, every τ -module can be writ-
ten as a direct sum of intervals.

Proof This is the simplest special case of Gabriel’s theorem, for the graphs An. The
original reference (in German) is [11]. See [8] for an accessible overview. �
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Thus, any τ -module can be described completely up to isomorphism as an un-
ordered list of intervals [b, d], which correspond to its indecomposable summands.
This is in exact accordance with the special case of ordinary persistence, where the re-
sult is comparatively easy to prove: it is simply the classification of finitely-generated
graded modules over the polynomial ring k[t] (see [14]).

The philosophical point is that the decomposition theory of graph representations
is somewhat independent of the orientation of the graph edges (see Kac [12]). Even
in our case this is surprising, because there is no obvious congruence between per-
sistence modules and zigzag modules of an arbitrary type τ . However, if we accept
this principle, then the generalisation from ordinary persistence to zigzag persistence
is not surprising: interval decomposition for persistence modules implies interval de-
composition for zigzag modules.

We will devote much of this paper to constructing a stand-alone proof of The-
orem 2.5. This provides technical support towards our two main goals: to provide
algorithms for computing the interval summands of a given τ -module; and to make
rigorous statements about the output of those algorithms.

2.3 Zigzag Persistence

We now define zigzag persistence and develop some of its elementary properties.

Definition 2.6 Let V be a zigzag module (of arbitrary type). The zigzag persistence
of V is defined to be the multiset

Pers(V) = {[bj , dj ] ⊆ {1, . . . , n} | j = 1, . . . ,N
}

of integer intervals derived from a decomposition V ∼= I(b1, d1) ⊕ · · · ⊕ I(bN , dN).
The Krull–Schmidt principle asserts that this definition is independent of the decom-
position.

Graphically, Pers(V) can be represented as a set of lines measured against a single
axis with labels {1, . . . , n} (the barcode), or as a multiset of points in R

2 lying on or
above the diagonal in the positive quadrant (the persistence diagram). See Fig. 1 for
an example presented in each style.

Remark In the special case of persistence modules, this agrees with the standard
treatment (see [10, 14]) except in the following particular: the closed integer inter-
vals [bj , dj ] ⊆ {1, . . . , n} are replaced by half-open real intervals [bj , dj + 1) ⊂ R

Fig. 1 Barcode (left) and
persistence diagram (right)
representations of the
persistence
{[1,2], [1,3], [3,3], [3,4], [3,4]}
of a zigzag module of length 4
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in the standard treatment. This is particularly natural when the indexing parameter
is continuous: an interval [b, d) indicates a feature born at time b that survives right
up to, but vanishes at, time d . Our convention is motivated by the desire to maintain
symmetry between the forward and backward directions. We advise the reader to take
particular care in handling the different conventions.

The transition from a zigzag module to its interval decomposition presents cer-
tain hazards which are not present in the case of persistence modules. We now draw
attention to these hazards.

Definition 2.7 Let V be a zigzag module and let V[p,q] denote the restriction of V

to the index set p ≤ i ≤ q . A feature of V over the time interval [p,q] is a summand
of V[p,q] isomorphic to I(p, q).

With persistence modules, there are several equivalent ways to recognise the exis-
tence of a feature. Here is a sample result.

Proposition 2.8 Let V be a persistence module of length n, and let 1 ≤ p ≤ q ≤ n.
The following are equivalent:

(1) The composite map Vp → Vq is nonzero.
(2) There exist nonzero elements xi ∈ Vi for p ≤ i ≤ q , such that xi+1 = fi(xi) for

p ≤ i < q .
(3) There exists a submodule of V[p,q] isomorphic to I(p, q).
(4) There exists a summand of V[p,q] isomorphic to I(p, q), i.e. a feature over

[p,q].

Proof It is easy to verify that (1), (2), (3) are equivalent. For (1) ⇒ (2), begin by
choosing xp ∈ Vp that maps to a nonzero element in Vq , and let xi be the image of xp

in Vi . For (2) ⇒ (3), define I by Ii = Span(xi). For (3) ⇒ (1), note that the restriction
Ip → Iq is nonzero.

Clearly (4) ⇒ (3). We now show that (1) ⇒ (4). Consider an interval de-
composition V[p,q] = I(b1, d1) ⊕ · · · ⊕ I(bN , dN). On each summand, the map
Ip(bj , dj ) → Iq(bj , dj ) is zero unless bj = p and dj = q . Thus at least one of the
summands is isomorphic to I(p, q). �

The intuitions supported by Proposition 2.8 break down in the general case.

Caution 2.9 Let V be a zigzag module of arbitrary type. Statement (1) has no clear
interpretation at this stage (something can be said in terms of the right-filtration func-
tor of Sect. 3). Consider the following statements:

(2) There exist nonzero elements xi ∈ Vi for p ≤ i ≤ q , such that xi+1 = fi(xi) or
xi = gi(xi+1) (whichever is applicable) for p ≤ i < q .

(3) There exists a submodule of V[p,q] isomorphic to I(p, q).
(4) There exists a summand of V[p,q] isomorphic to I(p, q), i.e. a feature over

[p,q].
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It is easy to verify that (2) ⇔ (3) and that (4) implies (2), (3). However, the next two
examples demonstrate that (2), (3) do not in general imply (4).

Example 2.10 Let τ = gf and consider the τ -module V defined as follows:

k k2 k
x (x, y) y

g1 f2

The interval decomposition is V = I(1,2) ⊕ I(2,3), where the summands are

k k ⊕ 0 0
x (x,0)

and

0 0 ⊕ k k
(0, y) y

respectively. If this example appeared in a statistical topology setting, the feature
corresponding to the generator of the k at V1 would be regarded as unrelated to the
feature corresponding to the generator of the k at V3.

On the other hand, V does have a submodule (in fact, many submodules) isomor-
phic to I(1,3). Indeed, let Δ = {(x, x) | x ∈ k} denote the diagonal subspace of k2.
Then

k Δ k
x (x, x) x

is a submodule W ≤ V isomorphic to I(1,3). The quotient τ -module V/W is iso-
morphic to I(2,2) but W has no complementary τ -module in V. Indeed, that would
contradict the Krull–Schmidt theorem. More concretely, any complement of W must
be isomorphic to (0 ←− k −→ 0), but that would require a 1-dimensional subspace
of Ker(g1) ∩ Ker(f2) = 0.

Example 2.11 We can extend the previous example to arbitrary length. Consider the
type τ = gf . . . gf = (gf )n, of length 2n + 1. Let V be the τ -module

k
π1←− k2 π2−→ k

π1←− · · · π2−→ k
π1←− k2 π2−→ k,

where π1(x, y) = x, and π2(x, y) = y. Then V is isomorphic to a sum of short inter-
vals

I(1,2) ⊕ {I(2,4) ⊕ · · · ⊕ I(2n − 2,2n)} ⊕ I(2n,2n + 1)

but it has a submodule

k ←− Δ −→ k ←− · · · −→ k ←− Δ −→ k

isomorphic to the long interval I(1,2n + 1).
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Moral In zigzag persistence it is necessary to respect the distinction between sub-
modules and summands. Features are defined in terms of summands; never submod-
ules.

We have defined features in terms of a chosen subinterval [p,q]. Features behave
as expected when zooming to a larger or smaller window of observation. The follow-
ing proposition illustrates what we mean.

Proposition 2.12 Let V be a zigzag module of length n and let 1 ≤ p ≤ q ≤ n. The
following statements are equivalent:

(1) There exists a summand of V[p,q] isomorphic to I(p, q), i.e. a feature over
[p,q].

(2) There exists a summand of V isomorphic to I(p′, q ′), for some [p′, q ′] ⊇ [p,q].
Indeed, there is a bijection between intervals [p,q] in Pers(V[p,q]) and intervals
[p′, q ′] ⊇ [p,q] in Pers(V).

Proof Consider an interval decomposition V = I(b1, d1) ⊕ · · · ⊕ I(bN , dN). By re-
striction, this induces an interval decomposition of V[p,q] into intervals
I(bj , dj )[p,q]. This induces the claimed bijection, because [bj , dj ] restricts to [p,q]
if and only if [bj , dj ] ⊇ [p,q]. �

Operating invisibly in this proof is the Krull–Schmidt principle, which allows us
to select the interval decompositions most convenient to us when calculating Pers(V)

and Pers(V[p,q]).

Remark 2.13 Sometimes it is useful to reduce the resolution of Pers(V). Let K ⊂
{1, . . . , n} be any subset. We define the restriction of Pers(V) to K to be the multiset

Pers(V)|K = {
I ∩ K | I ∈ Pers(V), I ∩ K �= ∅}

.

For instance, Proposition 2.12 amounts to the observation that Pers(V[p,q]) =
Pers(V)|[p,q].

3 From Zigzag Modules to Filtrations

3.1 The Right-Filtration Operator

Our strategy is to understand (and construct) decompositions of a τ -module V by an
iterative process, moving from left to right and retaining the necessary information
at each stage. The bulk of this information is encoded as a filtration on the rightmost
vector space Vn.

Definition 3.1 The right-filtration R(V) of a τ -module V of length n takes the form

R(V) = (R0,R1, . . . ,Rn),
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where the Ri are subspaces of Vn satisfying the inclusion relations

0 = R0 ≤ R1 ≤ · · · ≤ Rn = Vn.

R(V) is defined recursively as follows.
Base case:

– If V has length 1, then R(V) = (0,V1).

Recursive step. Suppose we have already defined R(V) = (R0,R1, . . . ,Rn):

– If V
+ is V

fn−→ Vn+1, then R(V+) = (fn(R0), fn(R1), . . . , fn(Rn),Vn+1).

– If V
+ is V

gn←− Vn+1, then R(V+) = (0, g−1
n (R0), g

−1
n (R1), . . . , g

−1
n (Rn)).

To verify that R(V+) is a filtration of the specified form, note that Ri ≤ Ri+1 implies
that fn(Ri) ≤ fn(Ri+1) in the first case, and g−1

n (Ri) ≤ g−1
n (Ri+1) in the second

case. Moreover fn(R0) = fn(0) = 0, and g−1
n (Rn) = g−1

n (Vn) = Vn+1.

Example 3.2 Here are the right-filtrations for the two length-2 types:

R
(
V1

f1−→ V2
) = (

0, f1(V1),V2
)
,

R
(
V1

g1←− V2
) = (

0, g−1
1 (0),V2

)
.

Example 3.3 Here are the right-filtrations for the four length-3 types:

R
(
V1

f1−→ V2
f2−→ V3

) = (
0, f2f1(V1), f2(V2),V3

)
,

R
(
V1

f1−→ V2
g2←− V3

) = (
0, g−1

2 (0), g−1
2 f1(V1),V3

)
,

R
(
V1

g1←− V2
f2−→ V3

) = (
0, f2g

−1
1 (0), f2(V2),V3

)
,

R
(
V1

g1←− V2
g2←− V3

) = (
0, g−1

2 (0), g−1
2 g−1

1 (0),V3
)
.

See Fig. 2 for a schematic representation.

Remark In the examples above, it is not difficult to see that R(V) comprises all the
subspaces of Vn that are naturally definable in terms of the maps pi .

Each of the n subquotients Ri/Ri−1 carries information dating back to some ear-
liest Vj in the sequence of vector spaces.

Example 3.4 The module V1
f1−→ V2 has right-filtration (0, f1(V1),V2). The first

subquotient f1(V1)/0 = f1(V1) corresponds to vectors born at time 1 which survive
to time 2. The second subquotient V2/f1(V1) corresponds to vectors which appear
only at time 2.
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Fig. 2 Forward propagation of the right-filtration, illustrated for the four types ff , fg, gf , gg of length 3

Example 3.5 The module V1
g1←− V2 has right-filtration (0, g−1

1 (0),V2). The first
subquotient g−1

1 (0) corresponds to vectors at time 2 which are destroyed when map-
ping back to time 1. The second subquotient V2/g

−1
1 (0) is isomorphic to g1(V2) and

records those vectors which survive from time 2 back to time 1.

Definition 3.6 The birth-time index b(τ ) = (b1, b2, . . . , bn) is a vector of integers
bi which indicate the birth times associated with the subquotients Ri/Ri−1 of the
right-filtration of a τ -module. This is defined recursively as follows.

Base case:

– If τ is empty (i.e. V has length 1) then b(τ ) = (1).

Recursive step. Suppose we have already defined b(τ ) = (b1, b2, . . . , bn):

– If τ+ is τf then b(τ+) = (b1, . . . , bn, n + 1).
– If τ+ is τg then b(τ+) = (n + 1, b1, . . . , bn).

Example 3.7 At length 2 we have b(f ) = (1,2) whereas b(g) = (2,1). This is con-
sonant with the discussion in Examples 3.4 and 3.5.

Example 3.8 Here are the birth-time indices for the types of length 3.

b(ff ) = (1,2,3), b(fg) = (3,1,2),

b(gf ) = (2,1,3), b(gg) = (3,2,1).

In summary, the information in a τ -module V which survives to time n is encoded
as a filtration R(V) on Vn. The ‘age’ of the information at each level of the filtration
(i.e. at each subquotient) is recorded in the birth-time index b(τ ).

For a simplified but precise version of this last claim, we now calculate the right-
filtrations of interval τ -modules. In the filtration specified in the following lemma,
Ji/Ji−1 = k is the only non-zero subquotient, corresponding to the birth time bi .
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Lemma 3.9 Let τ be a type of length n, with b(τ ) = (b1, b2, . . . , bn). For each i =
1,2, . . . , n, we have an isomorphism

R
(
Iτ (bi, n)

) = J (i, n),

where J (i, n) = (J0, J1, . . . , Jn) is the filtration on k defined by

J0 = · · · = Ji−1 = 0; Ji = · · · = Jn = k.

Remark We refer to the J (b,n) also as intervals (but now in the category of filtered
vector spaces).

Proof This is a straightforward calculation by induction on τ . For the base case, τ is
empty and b(τ ) = (1). Then R(I(1,1)) = (0, k) = J (1,1) as claimed. Now suppose
the result is known for τ , with b(τ ) = (b1, . . . , bn). Suppose τ+ = τf or τg. In both
cases, write b(τ+) = (b+

1 , . . . , b+
n+1).

Case f : Suppose that 1 ≤ i ≤ n; then b+
i = bi and therefore

Iτ+
(
b+
i , n + 1

) = (
Iτ (bi, n)

1−→ k
)
.

Writing R(Iτ (bi, n)) = J (i, n) = (J0, J1, . . . , Jn), it follows that

R
(
Iτ+

(
b+
i , n + 1

)) = (J0, J1, . . . , Jn, k) = J (i, n + 1).

For i = n + 1, we have b+
n+1 = n + 1, and indeed

R
(
Iτ+(n + 1, n + 1)

) = R
(
(0 ←→ ·· · ←→ 0) −→ k

)

= (0, . . . ,0, k)

= J (n + 1, n + 1).

Case g: Suppose that 2 ≤ i ≤ n + 1; then b+
i = bi−1 and therefore

Iτ+
(
b+
i , n + 1

) = (
Iτ (bi−1, n)

1←− k
)
.

Writing R(Iτ (bi−1, n)) = J (i − 1, n) = (J0, J1, . . . , Jn), it follows that

R
(
Iτ+

(
b+
i , n + 1

)) = (0, J0, J1, . . . , Jn) = J (i, n + 1).

For i = 1, we have b+
1 = n + 1 and then

R
(
Iτ+(n + 1, n + 1)

) = R
(
(0 ←→ ·· · ←→ 0) ←− k

)

= (0, k, . . . , k)

= J (1, n + 1)

as required. �
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Thus the right-filtration (with the help of the birth-time index) distinguishes the
different intervals I(b,n). It gives no information about intervals I(b, d) when d < n,
since in those cases In = 0.

Example 3.10 Consider τ = fgf , so b(τ ) = (b1, b2, b3, b4) = (3,1,2,4) and in gen-
eral

R
(
V1

f1−→ V2
g2←− V3

f3−→ V4
) = (

0, f3g
−1
2 (0), f3g

−1
2 f1(V1), f3(V3), V4

)
.

In particular,

R
(
Iτ (b2,4)

) = R
(

k
1−→ k

1←− k
1−→ k

) = (0, 0, k, k, k) = J (2,4),

R
(
Iτ (b3,4)

) = R
(

0 −→ k
1←− k

1−→ k
) = (0, 0, 0, k, k) = J (3,4),

R
(
Iτ (b1,4)

) = R
(

0 −→ 0 ←− k
1−→ k

) = (0, k, k, k, k) = J (1,4),

R
(
Iτ (b4,4)

) = R(0 −→ 0 ←− 0 −→ k ) = (0, 0, 0, 0, k) = J (4,4)

which is in accordance with Lemma 3.9.

3.2 Decompositions of Filtered Vector Spaces

We now consider filtered vector spaces in their own right, independently of the con-
nection to zigzag modules, and develop the theory of their Remak decompositions.
We will see later that this is the right tool for understanding Remak decompositions
of zigzag modules.

A filtered vector space of depth n is a sequence R = (R0,R1, . . . ,Rn) of vec-
tor spaces, where 0 = R0 ≤ R1 ≤ · · · ≤ Rn. The class of such objects is denoted
Filtn. The right-filtration R(V) of any zigzag module V of length n belongs to this
class, as do the intervals J (i, n) defined in Lemma 3.9. Indeed, if R ∈ Filtn satisfies
dim(Rn) = 1, then R is isomorphic to some J (i, n).

Remark Filtn can be given the structure of a category in a natural way, but it is not
quite an abelian category since morphisms do not generally have cokernels.

A filtered vector space S = (S0, S1, . . . , Sn) is a subspace of R if Si ≤ Ri for all i.
It is appropriate to consider a stronger notion of subspace when dealing with direct-
sum decompositions: S is an induced subspace of R if there exists a vector subspace
K ≤ Rn such that Si = Ri ∩K for all i. In that event, we write S = R ∩K . Note that
K = Rn ∩ K = Sn.

We say that R is the direct sum of two subspaces, and write R = S ⊕ T , if Ri =
Si ⊕Ti for all i. We claim that S, T must be induced subspaces. Note that Sn∩Tn = 0.
For each i, then, Ri ∩ Sn is a subspace of Ri which contains Si and meets Ti ≤ Tn

only at 0. It follows that Ri ∩ Sn = Si for all i. Thus S = R ∩ Sn, and symmetrically
T = R ∩ Tn.

The general form of a direct-sum decomposition is therefore R = (R ∩ K) ⊕
(R ∩ L). What are the requirements on K,L to make this a valid decomposition?
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The direct-sum condition implies that Rn = K ⊕ L as a vector space. Moreover,
given a vector space decomposition Rn = K ⊕ L, the further condition

Ri = Span(Ri ∩ K,Ri ∩ L) for all i

is necessary and sufficient to guarantee R = (R ∩ K) ⊕ (R ∩ L).
If R = S ⊕ T , the two subspaces S, T are said to be complementary summands.

The following fact radically simplifies the decomposition theory of filtered vector
spaces.

Proposition 3.11 Every induced subspace of a filtered vector space has a comple-
mentary summand.

Proof We are given S = R ∩ K , and seek to construct T = (T0, T1, . . . , Tn) such
that R = S ⊕ T . We proceed inductively. Since R0 = S0 = 0 we take T0 = 0. Now
suppose we have chosen Tk so that Rk = Sk ⊕ Tk . In particular, Tk ∩ Sk = 0. Then

Tk ∩ Sk+1 ≤ Tk ∩ Sn = (Tk ∩ Rk) ∩ Sn = Tk ∩ (Rk ∩ Sn) = Tk ∩ Sk = 0.

Thus Tk and Sk+1 are independent subspaces of Rk+1, and so Tk can be extended to
a complement Tk+1 of Sk+1 in Rk+1. This completes the induction. �

Corollary 3.12 The indecomposables in Filtn are precisely the intervals J (i, n).
Thus, every filtered vector space can be decomposed as a finite direct sum of intervals.

Proof By Proposition 3.11, R has nontrivial summands if and only if Rn has non-
trivial vector subspaces; this happens exactly when dim(Rn) > 1. �

The dimension of R ∈ Filtn is defined to be the vector of integers

dim(R) = (c1, c2, . . . , cn),

where ci = dim(Ri/Ri−1) are the dimensions of the successive subquotients of the
filtration.

Proposition 3.13 Let R be a filtered vector space of depth n, with dim(R) =
(c1, c2, . . . , cn). For any decomposition of R into intervals, the multiplicity of J (i, n)

is ci . Thus:

R ∼=
⊕

1≤i≤n

ci J (i, n).

Proof Let mi be the multiplicity of J (i, n). Then, for all k,

dim(Rk) = m1 + m2 + · · · + mk

by considering the contribution of each summand, whereas

dim(Rk) = c1 + c2 + · · · + ck
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by considering the contribution of each subquotient Ri/Ri−1. This is possible only if
mi = ci for all i. �

This concludes our tour of the decomposition theory for filtered vector spaces.
Now we must leverage this to achieve a decomposition theory for τ -modules. In one
direction, the relationship is straightforward:

Proposition 3.14 The right-filtration operation respects direct sums, in the sense that

R(V1 ⊕ · · · ⊕ VN) = R(V1) ⊕ · · · ⊕ R(VN)

for τ -modules V1, . . . ,VN .

Proof This is proved by induction on τ , following the recursive structure of Defini-
tion 3.1 and using the standard facts

(f1 ⊕ · · · ⊕ fN)(R1 ⊕ · · · ⊕ RN) = f1(R1) ⊕ · · · ⊕ fN(RN)

and

(g1 ⊕ · · · ⊕ gN)−1(R1 ⊕ · · · ⊕ RN) = g−1
1 (R1) ⊕ · · · ⊕ g−1

N (RN)

from linear algebra. (For simplicity we are suppressing various indices here.) �

However, what we need is a converse to Proposition 3.14: if the filtered vector
space R = R(V) can be split as a direct sum R = R1 ⊕ · · · ⊕ RN , we would like to
infer a corresponding splitting V = V1 ⊕ · · · ⊕ VN of τ -modules. In the following
two sections we establish such a principle for a particular class: the ‘streamlined’
τ -modules.

3.3 Streamlined Modules

We introduce streamlined modules: a special class of τ -module for which the right-
filtration functor preserves all structural information. A streamlined module can be
decomposed into intervals by decomposing its right-filtration (Lemma 3.18). As we
will see, the general decomposition theorem (Theorem 4.1) reduces to this special
case: an arbitrary zigzag module can be written as a direct sum of streamlined mod-
ules of different lengths (Lemma 4.3).

Definition 3.15 A τ -module V is (right-)streamlined if each
fi−→ is injective and

each
gi←− is surjective.

Similarly, we may say that a τ -module V is left-streamlined if each
fi−→ is surjec-

tive and each
gi←− is injective. We will not need to consider left-streamlined modules

until Sect. 5. By default, ‘streamlined’ will be taken to mean ‘right-streamlined’.
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Example 3.16 Intervals I(b,n) are streamlined (but not I(b, d) for d < n). Con-
versely, a streamlined τ -module V with dim(Vn) = 1 is necessarily isomorphic to
some I(b,n). Indeed, dim(Vi) is a non-decreasing sequence and therefore comprises
some b − 1 zeros (where 1 ≤ b ≤ n) followed by n − b + 1 ones. The maps between
the 1-dimensional terms are injective or surjective, and therefore isomorphisms.

Proposition 3.17 A direct sum V = V1 ⊕ · · · ⊕ VN of τ -modules is streamlined if
and only if each summand is streamlined.

Proof Each
f−→ in V decomposes as f = f1 ⊕· · ·⊕fN and is injective if and only if

each fj is injective. Each
g←− in V decomposes as g = g1 ⊕· · ·⊕gN and is surjective

if and only if each gj is surjective. �

The proof of the following lemma appears at the end of this section.

Lemma 3.18 (Decomposition Lemma) Let V be a streamlined τ -module and let R =
R(V). For any decomposition R = S1 ⊕· · ·⊕ SN , there exists a unique decomposition
V = W1 ⊕ · · · ⊕ WN such that Si = R(Wj ) for all j .

Theorem 3.19 (Interval decomposition for streamlined modules) Let V be a stream-
lined τ -module of length n, and write dim(R(V)) = (c1, c2, . . . , cn) and b(τ ) =
(b1, b2, . . . , bn). Then there is an isomorphism of τ -modules

V ∼=
⊕

1≤i≤n

ci I(bi, n).

Proof Let R = R(V). By Proposition 3.13, there is a decomposition R = J1 ⊕ · · · ⊕
JN , where the Jj are a collection of N = c1 + · · · + cn intervals with J (i, n) occur-
ring with multiplicity ci . Lemma 3.18 produces a decomposition V = I1 ⊕ · · · ⊕ IN ,
with R(Ij ) = Jj for all j . Each Ij is streamlined (Proposition 3.17) with maxi-
mum dimension dim((Ij )n) = 1, and is therefore isomorphic to some I(b,n) (Ex-
ample 3.16). By Lemma 3.9, we must have Ij = I(bi, n) whenever Jj = J (i, n).
It follows that the Ij are a collection of N = c1 + · · · + cn intervals with I(bi, n)

occurring with multiplicity ci . �

We complete this section with a proof of the Decomposition Lemma.

Proof of Lemma 3.18 We may assume that N = 2, since the general case follows by
iteration. Accordingly, suppose that R = R(V) can be written in the form R = S ⊕ T ;
we must show that there is a corresponding decomposition V = W⊕X. We will argue
by induction on n = length(τ ).

The first step is to determine the splitting Vn = Wn ⊕ Xn. In fact, the stipulation
that S = R(W) and T = R(X) forces Wn = Sn and Xn = Tn. If n = 1, then we are
done. Otherwise, let V̂ denote the truncation of V to the indices {1, . . . , n− 1} and let
R̂ = R(V̂). We will shortly establish that R = S ⊕ T induces a unique compatible
decomposition R̂ = Ŝ ⊕ T̂ . The inductive hypothesis will then provide V̂ = Ŵ ⊕ X̂,
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which combines with Vn = Wn ⊕ Xn to produce the desired decomposition V =
W ⊕ X. That will complete the proof.

Write R = (R0,R1, . . . ,Rn). There are two cases.

Case
fn−1−→, injective. We can identify Vn−1 with the subspace fn−1(Vn−1) = Rn−1

of Vn. Thereupon we have

R̂ = (R0,R1, . . . ,Rn−1).

The unique splitting of Vn−1 compatible with Vn = Wn ⊕ Xn is

Vn−1 = (Rn−1 ∩ Wn) ⊕ (Rn−1 ∩ Xn) = Sn−1 ⊕ Tn−1.

We must now verify that the induced subspaces Ŝ = R̂ ∩ Sn−1 and T̂ = R̂ ∩ Tn−1
give a valid decomposition R̂ = Ŝ ⊕ T̂ of filtered vector spaces. This follows because
Ŝi = Ri ∩Sn−1 = Ri ∩Sn = Si and similarly T̂i = Ti , for all i < n; so Ri = Si ⊕Ti =
Ŝi ⊕ T̂i as required.

Case
gn−1←−, surjective. Here we identify Vn−1 as the quotient Vn/ker(gn−1) =

Rn/R1. Under this identification,

R̂ = (R1/R1,R2/R1, . . . ,Rn/R1).

In splitting Vn−1 = Wn−1 ⊕ Xn−1 we are compelled to take

Wn−1 = gn−1(Wn) = Sn/S1, Xn−1 = gn−1(Xn) = Tn/T1,

which induce

Ŝi = gn−1(Si+1) = Si+1/S1, T̂i = gn−1(Ti+1) = Ti+1/T1,

for the purported splitting R̂ = Ŝ ⊕ T̂ . To confirm that this is a genuine decomposi-
tion, we note from linear algebra that the twin facts

Ri+1 = Si+1 ⊕ Ti+1, R1 = S1 ⊕ T1 = (Si+1 ∩ R1) ⊕ (Ti+1 ∩ R1)

imply that

Ri+1/R1 = (Si+1/S1) ⊕ (Ti+1/T1)

as required. �

Remark There is a high-level proof of Lemma 3.18 which in some sense is the nat-
ural explanation for the result. We outline this proof now. The first observation is
that the transformation V → R(V) is a functor from τMod to Filtn: a morphism
α : V → W induces a morphism R(α) : R(V) → R(W). Indeed, R(α) is defined to be
αn : Vn → Wn; one must check that this respects the filtrations on Vn and Wn. Being
a functor, R defines a ring homomorphism End(V) → End(R(V)). The second key
fact is that this homomorphism is an isomorphism if V is streamlined (in general it
is surjective). It is well known that direct-sum decompositions of a module can be
extracted from the structure of its endomorphism ring: direct summands correspond
to idempotent elements of the ring. It follows that V and R(V) have the same decom-
position structure.
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4 The Interval Decomposition Algorithm

Here we describe the algorithm for determining the indecomposable factors of a τ -
module. We give three versions of the ‘algorithm’.

The first version, in Sect. 4.1, is not an algorithm but a proof that every τ -module
decomposes as a sum of interval modules (Theorem 2.5). Moreover, the structure of
the proof makes it clear how to compute the interval decomposition (Theorem 4.1).
The algorithms in the subsequent sections build on this.

In Sect. 4.2 we describe an abstract form of the decomposition algorithm, using
the language of vector spaces and linear maps. No consideration is given to how the
spaces and maps are described and manipulated in practice.

In Sect. 4.3 we suppose that the maps fi, gi are presented concretely as matrices
Mi,Ni with respect to a choice of bases for the vector spaces Vi . We describe an
algorithm which takes these matrices as input and returns the interval decomposition.

4.1 The Interval Decomposition Theorem

Our present goal is to give a somewhat constructive proof of Theorem 2.5, which
asserts that any τ -module V is isomorphic to a direct sum of intervals I(b, d). We
prove a stronger, more precise result, which explicitly determines the multiplicity of
each interval within V.

Some notation will help with the theorem statement. If

V = (
V1

p1←→ ·· · pn−1←→ Vn

)

then let

V[k] = (
V1

p1←→ ·· · pk−1←→ Vk

)

denote the truncation of V to length k, and let τ [k] denote its type (which is a trun-
cation of τ ).

Theorem 4.1 (Interval decomposition) Let V be a τ -module. For 1 ≤ k ≤ n, define
(
bk

1, b
k
2, . . . , b

k
k

) = b
(
τ [k]).

Writing Rk = R(V[k]), define

(
ck

1, c
k
2, . . . , c

k
k

) =
{

dim(Rk ∩ Ker(fk)),

dim(Rk) − dim(Rk ∩ Im(gk))

(whichever is applicable) when k �= n, and
(
cn

1 , cn
2 , . . . , cn

n

) = dim(Rn).

Then

V ∼=
⊕

1≤i≤k≤n

ck
i I

(
bk
i , k

)
.
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Addendum 4.2 In the situation of Theorem 4.1, write

(
rk

1 , . . . , rk
k

) = dim(Rk)

for k = 1, . . . , n, and conventionally define rn+1
i = 0 for all i. Then

ck
i =

⎧
⎨

⎩

rk
i − rk+1

i case
fk−→

rk
i − rk+1

i+1 case
gk←−

for 1 ≤ i ≤ k ≤ n.

The decomposition strategy begins with the following lemma. The idea is to pro-
ceed from left to right along the complex, removing streamlined summands at each
step. Having done this, the Remak decompositions of those summands can be deter-
mined by counting dimensions, as prescribed in Theorem 3.19.

Lemma 4.3 Let V = V1
p1←→ ·· · pn−1←→ Vn be an irreducible τ -module of length n.

Then there exists a direct-sum decomposition

V = V
1 ⊕ V

2 ⊕ · · · ⊕ V
n,

where each V
k is supported over the indices {1,2, . . . , k} and is right-streamlined

over that range.

The following picture illustrates the decomposition.

V =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V
1 = V 1

1⊕
V

2 = V 2
1

p1←→ V 2
2⊕

V
3 = V 3

1
p1←→ V 3

2
p2←→ V 3

3⊕
...

⊕
V

n = V n
1

p1←→ V n
2

p2←→ V n
3

p3←→ ·· · pn−1←→ V n
n

Each row (i.e. summand) is right-streamlined, and therefore amenable to analysis via
the right-filtration functor.

Proof We proceed by induction on the length of V. The inductive statement is that

V[k] = V
1 ⊕ · · · ⊕ V

k−1 ⊕ W
k,

where the V
i are as in the theorem statement, and W

k is itself right-streamlined.
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For the base case k = 1, there is nothing to prove: take W
1 = V[1]. Now suppose

the inductive statement is established for k, and consider V[k+1]. This can be written

V [k + 1] = (
V

1 ⊕ · · · ⊕ V
k−1 ⊕ W

k
) pk←→ Vk+1

= V
1 ⊕ · · · ⊕ V

k−1 ⊕ (
W

k pk←→ Vk+1
)
,

where the rebracketing is permissible because all of the V
i terms terminate before

time k, and therefore do not interact with
pk←→. The goal now is to rewrite (Wk pk←→

Vk+1) as V
k ⊕ W

k+1, where V
k terminates at time k and both V

k and W
k+1 are

right-streamlined. The rightmost term of W
k is Vk , so R(Wk) is a filtration on Vk .

Case f : W
k fk−→ Vk+1. In other words fk : Vk → Vk+1. Let S = R(Wk)∩Ker(fk).

Proposition 3.11 implies that S has a complement in R(Wk); say R(Wk) = S ⊕ T .
This corresponds (Lemma 3.18) to a direct-sum decomposition W

k = V
k ⊕ Ŵ

k ,
where both summands are streamlined (Proposition 3.17). This defines V

k , and we

set W
k+1 = (Ŵk fk−→ Vk+1). To check that this works, note that fk is zero on

(Vk)k = Ker(fk) and is injective on the complementary subspace (Ŵk)k . Thus V
k

is a summand of V[k + 1] terminating at time k, and W
k+1 is streamlined.

Case g: W
k gk←− Vk+1. In other words gk : Vk+1 → Vk . Let S = R(Wk) ∩ Im(gk).

Proposition 3.11 implies that S has a complement in R(Wk); say R(Wk) = S ⊕ T .
This corresponds (Lemma 3.18) to a direct-sum decomposition W

k = Ŵ
k ⊕ V

k ,
where both summands are streamlined (Proposition 3.17). This defines V

k , and we

set W
k+1 = (Ŵk gk←− Vk+1). To check that this works, note that gk is surjective onto

(Ŵk)k = Im(gk) and misses the complementary subspace (Vk)k . Thus V
k is a sum-

mand of V[k + 1] terminating at time k, and W
k+1 is streamlined.

This establishes the inductive step, so eventually

V = V[n] = V
1 ⊕ · · · ⊕ V

n−1 ⊕ W
n

and we set V
n = W

n to finish the proof. �

Proof of Theorem 4.1 Write V = V
1 ⊕ · · · ⊕ V

n according to Lemma 4.3. We now
calculate the decomposition of each V

k into intervals I(b, k). Note that

V[k] = V
k ⊕ V

k+1[k] ⊕ · · · ⊕ V
n[k].

We can write W
k = V

k+1 ⊕ · · · ⊕ V
n, so then

Rk = R
(
V

k ⊕ W
k[k]) = R

(
V

k
) ⊕ R

(
W

k[k])

(using Proposition 3.14). This is a filtration on V k
k ⊕ Wk

k .
Suppose k < n. We note that W

k is streamlined up to time k + 1, whereas V
k is

zero at time k + 1. The next map in the sequence is

V k
k ⊕ Wk

k

fk−→ Wk
k+1 or V k

k ⊕ Wk
k

gk←− Wk
k+1.
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In the first case, it follows that V k
k = Ker(fk) and therefore R(Vk) = Rk ∩ Ker(fk).

In the second case, V k
k is a complement to Im(gk) in Vk , so Rk = R(Vk) ⊕ (Rk ∩

Im(gk)). Thus

dim
(
R

(
V

k
)) =

{
dim(Rk ∩ Ker(fk))

dim(Rk) − dim(Rk ∩ Im(gk))

}

= (
ck

1, . . . , c
k
k

)

(whichever middle term is applicable). When k = n, moreover, we have

dim
(
R

(
V

n
)) = dim(Rn) = (

cn
1 , . . . , cn

n

)
.

Thus, at last,

V =
⊕

1≤k≤n

V
k ∼=

⊕

1≤k≤n

{ ⊕

1≤i≤k

ck
i I

(
bk
i , k

)
}

using Theorem 3.19 to decompose the V
k . �

Proof of Addendum 4.2 Write (wk
1, . . . ,wk

k) = dim(R(Wk[k])). Since Rk = R(Vk)⊕
R(Wk[k]) we can take dimensions and obtain the formula

(
rk

1 , . . . , rk
k

) = (
ck

1, . . . , c
k
k

) + (
wk

1, . . . ,w
k
k

)
.

Note also that Rk+1 = R(V[k + 1]) = R(Wk[k + 1]). Moreover, W
k is streamlined

up to time k + 1. It follows that

(
rk+1

1 , . . . , rk+1
k+1

) = dim
(
R

(
W

k[k + 1])) =
{

(wk
1, . . . ,wk

k , ?) case f

(?,wk
1, . . . ,wk

k) case g

and therefore

ck
i = rk

i − wk
i =

{
rk
i − rk+1

i case f

rk
i − rk+1

i+1 case g

which is the desired formula. �

4.2 Abstract Vector Spaces

We now transcribe Theorem 4.1 as an abstract algorithm for determining the interval
structure of a τ -module V of length n. This algorithm will serve as a skeleton for the
more concrete algorithms developed later.

Algorithm 4.4 We proceed through k = 1,2, . . . , n, computing the filtration Rk =
R(V[k]), the birth-time index b(τ [k]), and the dimensions ck

i iteratively.
BEGIN

Initialisation (k = 1):

(1) R1 = (0,V1).
(2) b(τ [1]) = (1).
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Iterative step (k = 1,2, . . . , n − 1):

(3) Calculate Rk+1 from Rk = (Rk
0,Rk

1, . . . ,Rk
k ) using Definition 3.1:

(Rk+1
0 ,Rk+1

1 , . . . ,Rk+1
k+1) =

{
(fk(R

k
0), fk(R

k
1), . . . , fk(R

k
k ),Vk+1) case f

(0, g−1
k (Rk

0), g−1
k (Rk

1), . . . , g−1
k (Rk

k )) case g

(4) Calculate b(τ [k + 1])) from b(τ [k]) = (bk
1, b

k
2, . . . , b

k
k) using Definition 3.6:

(bk+1
1 , . . . , bk+1

k+1) =
{

(bk
1, . . . , b

k
k, k + 1) case f

(k + 1, bk
1, . . . , b

k
k) case g

(5) Calculate (ck
1, . . . , c

k
k) using the formula in Theorem 4.1:

(ck
1, c

k
2, . . . , c

k
k) =

{
dim(Rk ∩ Ker(fk)) case f

dim(Rk) − dim(Rk ∩ Im(gk)) case g

Alternatively, use the formula in Addendum 4.2:

ck
i =

{
rk
i − rk+1

i case f

rk
i − rk+1

i+1 case g

Here (rk
1 , . . . , rk

k ) = dim(Rk).

Terminal step (k = n):

(6) Calculate (cn
1 , . . . , cn

n) = dim(R(V)).

Print results:

(7) For 1 ≤ i ≤ k ≤ n, the interval I(bk
i , k) occurs with multiplicity ck

i .

END

Note that steps (3–5) have an ‘f ’ version and a ‘g’ version, depending on the
direction of the map pk .

This abstract algorithm does not specify how the filtered vector spaces R(V[k+1])
are stored, nor how the maps fk or gk (which are used in steps (3) and (5)) are
represented. In any concrete setting, it is necessary to specify data structures. A good
choice will facilitate the calculations in steps (3) and (5). In the next section, we work
out the details in a simple scenario.

4.3 Concrete Vector Spaces

In this section we describe an algorithm to solve the following concrete problem. Let
τ be a type of length n. We specify a τ -module V as follows. Set Vi = kai for integers
ai ≥ 0. For each i, the map fi is defined by an ai+1-by-ai matrix Mi or else the map
gi is defined by an ai -by-ai+1 matrix Ni . We are to determine Pers(V), given τ and
the matrices Mi or Ni .
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We follow Algorithm 4.4. The substantial task is to calculate the sequence of right-
filtrations Rk = R(V[k]), for step (3). Everything else is book-keeping: the birth-time
indices bk

i are calculated according to step (4); and the filtration dimensions rk
i (and

hence the ck
i ) will be easy to read off from the stored description of the filtrations.

Basis Transformations The algorithm operates on two levels. On the conceptual
level, we proceed by modifying the bases of the spaces Vi by elementary basis trans-
formations. Initially each basis Bi is the standard basis of kai . We perform modifica-
tions on B2, B3, . . . , Bn−1 in sequence. On the pragmatic level, what we actually do
is apply elementary row and column operations to the matrices Mi or Ni . We make
no attempt to track the bases themselves; instead we implement the effect of those
changes on the matrices.

Suppose we apply elementary basis transformations to Bk+1 on the conceptual
level. On the pragmatic level, we must perform

row operations on Mk or column operations on Nk

and simultaneously perform

column operations on Mk+1 or row operations on Nk+1

to enact those transformations. Thus, at every stage we must make parallel changes to
two matrices simultaneously. Usually we are working to put Mk or Nk in a particular
form, and while doing so the changes have to be mirrored in Mk+1 or Nk+1 (paying
no attention yet to the structure of that matrix).

We now make this precise. The elementary transformation Ei(p,q,λ) is defined
as follows. On the conceptual level, this is a modification of Bi = (β1, . . . , βai

) in-
volving basis vectors βp and βq :

βp ← βp,

βq ← βq + λβp.

On the pragmatic level, if L is a matrix representing a linear map Vi → W for
some W (this will be Ni−1 or Mi in our situation), then we modify the columns
of L accordingly:

Columnp ← Columnp,

Columnq ← Columnq +λColumnp .

Else, if L represents a linear map of the form W → Vi (this will be Mi−1 or Ni in
our situation) then we must apply the dual transformation to the rows of L:

Rowp ← Rowp −λRowq,

Rowq ← Rowq .

In spirit, we right-multiply by the matrix
[ 1 λ

0 1

]
to modify columns, or else left-

multiply by the inverse matrix
[ 1 −λ

0 1

]
to modify rows.
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Besides the elementary transformations Ei(p,q,λ), it is sometimes appropriate to
permute the basis elements. The operation Pi(p, q) of interchanging βp with βq is re-
alised pragmatically by interchanging Columnp with Columnq , or Rowp with Rowq ,
as appropriate.

Filtrations The filtration Rk = R(V[k]) on Vk is to be represented as follows. We
require the basis Bk = (β1, . . . , βai

) to be compatible with the filtration, in a sense
that will become clear. Assuming such a basis, the filtration Rk = (R0,R1, . . . ,Rk)

is represented as a non-decreasing function

φk : {1,2, . . . , ai} → {1, . . . , k}

so that

Ri = Span
{
βp | φk(p) ≤ i

}

for i = 1, . . . , k. In other words: the first few basis elements (those βp with
φk(p) = 1) form a basis for R1; the next few basis elements extend this to a basis
for R2, and so on. The dimension rk

i = dim(Ri/Ri−1) can be read off as the cardinal-
ity of φ−1

k (i).

Gaussian Elimination Step (3) boils down to the following task. Suppose that Bk

and φk together represent the filtration Rk ; then modify Bk+1 and determine φk+1 to
represent Rk+1. We now explain how to do this.

Case M : the matrix Mk represents a linear map Vk → Vk+1. We assume that Bk

is compatible with the filtration Rk , and that φk identifies the filtration. This gives a
block structure

Mk = [
K1 K2 · · · Kk

]
,

where Ki gathers together the columns q with φk(q) = i. Using row operations only,
put Mk into (unreduced) row echelon form. This means:

– Each of the top r rows contains a 1 (the pivot) as its leftmost nonzero entry.
– Each pivot lies strictly to the left of the pivots of the rows below it.
– The lowest ak+1 − r rows are entirely zero.

These row operations correspond to elementary operations Ek+1(p, q,λ), and the
effect of these operations is felt on the next matrix Mk+1 or Nk+1, which must be
modified accordingly. We now define φk+1 as follows:

φk+1(p) =
{

φk(q) if row p has a pivot in column q,

k + 1 if row p has no pivot.

See Fig. 3. It is evident in the figure that Rk
i maps onto Rk+1

i for all i.
Case N : the matrix Nk represents a linear map Vk+1 → Vk . We assume that Bk is

compatible with the filtration Rk , and that φi identifies the filtration. This time we
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Fig. 3 Using row echelon form
to compute Rk+1 from Rk

Fig. 4 Using column echelon
form to compute Rk+1
from Rk

have a vertical block structure

Nk =

⎡

⎢
⎢
⎢
⎣

L1
L2
...

Lk

⎤

⎥
⎥
⎥
⎦

,

where Li gathers together the rows q with φk(q) = i. Using column operations only,
put Nk into the column echelon form defined as follows (this echelon form begins on
the bottom left):

– Each of the leftmost r columns contains a 1 (the pivot) as its lowest nonzero entry.
– Each pivot lies strictly lower than the pivots of the columns to the right of it.
– The rightmost ak+1 − r rows are entirely zero.

These column operations correspond to elementary operations Ek+1(p, q,λ), and
the effect of these operations is felt on the next matrix Mk+1 or Nk+1, which must be
modified accordingly. We now define φk+1 as follows:

φk+1(p) =
{

φk(q) + 1 if column p has a pivot in row q,

1 if column p has no pivot.

See Fig. 4. It is evident in the figure that Rk+1
i+1 is the largest subspace which maps

into Rk
i , for all i.

This concludes our treatment of the concrete form of the zigzag algorithm.



Found Comput Math (2010) 10: 367–405 395

5 Further Algebraic Techniques

5.1 Localisation at a Single Index

Let V be a zigzag module of length n and let 1 ≤ k ≤ n. We consider the problem
of determining the set of intervals in Pers(V) which contain k, without necessarily
computing Pers(V) itself. We shall see that all the necessary information is contained
in a pair of filtrations on the vector space Vk .

Let V be a zigzag module of length n. The left-filtration of V is a filtration on V1
of depth n, defined as

L(V) = R(V̄),

where V̄ is the reversal of V, with type τ̄ ; so V̄i = Vn+1−i , with maps f̄i = gn−i or
ḡi = fn−i .

For any k we therefore have two natural filtrations on Vk :

Rk = (R0,R1, . . . ,Rk) = R(V[1, k]),
Lk = (L0,L1, . . . ,Ln+1−k) = L(V[k,n]);

the right-filtration over the index set {1, . . . , k} and the left-filtration over the index
set {k, . . . , n}. We also have birth-time and death-time indices

bk = (b1, . . . , bk) = b(τ [1, k]),
dk = (d1, . . . , dn+1−k) = n + 1 − b(τ̄ [k,n])

which indicate the birth and death times associated with the respective subquotients
of Rk and Lk . These depend on the type τ of V.

Example 5.1 Consider the zigzag module

V = (
V1

f1−→ V2
f2−→ V3

g3←− V4
)
.

At k = 2, for instance, we have

R2 = (
0, f1(V1),V2

)
,

L2 = (
0, f −1

2 (0), f −1
2 g3(V4),V2

)

and

b2 = (1,2),

d2 = (2,4,3).

We can now state the main theorem of this section.

Theorem 5.2 (Localisation at index k) Let V be a zigzag module of length n and let
1 ≤ k ≤ n. Let Rk, Lk denote the right- and left-filtrations at k, and let bk,dk denote
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the birth-time and death-time indices at k. Then, for all i, j in the range 1 ≤ i ≤ k,
1 ≤ j ≤ n + 1 − k, the multiplicity of [bi, dj ] in Pers(V) is equal to1

cij = dim(Ri ∩ Lj ) − dim(Ri−1 ∩ Lj)

− dim(Ri ∩ Lj−1) + dim(Ri−1 ∩ Lj−1).

Remark Equivalently, cij = dim((Ri ∩ Lj )/((Ri−1 ∩ Lj) + (Ri ∩ Lj−1))), the di-
mension of the (i, j)-th bifiltration subquotient.

This theorem answers the original question, because every interval containing k

can be written as [bi, dj ] for some choice of i, j . We now work towards a proof of
Theorem 5.2.

Proposition 5.3 It is sufficient to prove Theorem 5.2 in the special case where V is
right-streamlined over {1, . . . , k} and left-streamlined over {k, . . . , n}.

Proof It is clear from Lemma 4.3 that we can write V = U⊕W where U is supported
in {1, . . . , k − 1} and W is right-streamlined over {1, . . . , k}. Indeed, take U = V

1 ⊕
· · · ⊕ V

k−1 and W = V
k ⊕ · · · ⊕ V

n. Moreover, it is sufficient to prove Theorem 5.2
for W, because the filtrations Rk, Lk remain unchanged from V, and the discarded
term U decomposes into intervals which do not contain k. Thus, we may assume that
V is right-streamlined over {1, . . . , k}.

Repeating this argument from the other side, we may further assume that V is
left-streamlined over {k, . . . , n}. �

Proof of Theorem 5.2 Assume that V satisfies the condition in Proposition 5.3. It fol-
lows that every interval in Pers(V) contains k: any other interval in the decomposition
would cause a failure of the streamline condition. We can therefore write the interval
decomposition of V as

V =
⊕

a∈A

Ia
∼=

⊕

a∈A

I(bp(a), dq(a)),

where A indexes the summands, and p : A → {1, . . . , k} and q : A → {1, . . . , n −
k + 1} identify the interval type of each summand in terms of the birth-time and
death-time indices. It is apparent from this formulation that

cij = #
{
a ∈ A | p(a) = i, q(a) = j

}

and it remains to compute this in terms of the dimensions dim(Ri ∩ Lj ).

1The reader may notice a similarity between the formula for cij and the definition of multiplicity in the
persistence diagram given by Cohen-Steiner et al. in [4, 5]. These are localisation formulas: what part of
a two-parameter quantity, such as dim(Ri ∩ Lj ) or rank(Vi → Vj ), is contributed by a given rectangle in
parameter space?
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The interval decomposition restricts at index k to a direct-sum decomposition of
Vk into 1-dimensional subspaces Ua , generated by elements xa , say. Then

Rk =
⊕

a∈A

R
(
Ia[1, k]) =

⊕

a∈A

Rk ∩ Ua
∼=

⊕

a∈A

J
(
p(a), k

)
,

where the final isomorphism comes from Lemma 3.9. Now, the filtration subspace Ri

is spanned by the terms isomorphic to J (p, k) with p ≤ i. In other words, for i =
1, . . . , k we have

Ri = Span
{
xa | p(a) ≤ i

}
.

A similar argument proceeding from the other direction gives the analogous formula

Lj = Span
{
xa | q(a) ≤ j

}
,

for j = 1, . . . , n + 1 − k. Since the xa are independent, these formulas give bases for
Ri,Lj .

We now claim that

Ri ∩ Lj = Span
{
xa | p(a) ≤ i, q(a) ≤ j

}

for all i, j . The inclusion Span ≤ Ri ∩ Lj is obvious, because each of the spanning
vectors xa belongs to both Ri and Lj . In the other direction, if x ∈ Ri ∩ Lj then
write x = ∑

a∈A λaxa . Since x ∈ Ri , all the coefficients λa with p(a) > i must be
zero. Since x ∈ Lj , all the coefficients λa with q(a) > j must be zero. Thus x ∈
Span{xa | p(a) ≤ i, q(a) ≤ j}. This establishes the reverse inclusion Ri ∩Lj ≤ Span,
and hence the equality.

Then

dim(Ri ∩ Lj ) = #
{
xa | p(a) ≤ i, q(a) ≤ j

} =
i∑

p=1

j∑

q=1

cpq

for all i, j . The formula in the theorem follows easily from this. �

Remark The salient fact behind this result is that it is possible to find a direct-sum
decomposition of Vk which simultaneously decomposes the filtered spaces Rk, Lk

into intervals within their respective categories Filtk , Filtn+1−k . Here we achieved
this by appealing to the interval decomposition of V, but this can also be proved
directly for an arbitrary pair of filtrations on a single vector space. The analogous
statement for a triple of filtrations is false. For example

(
0, k ⊕ 0, k2),

(
0,0 ⊕ k, k2),

(
0,Δ, k2),

(where Δ = {(x, x) | x ∈ k}) cannot be simultaneously decomposed into intervals.
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5.2 The Diamond Principle

Consider the following diagram:

Wk

V1 · · · Vk−1 Vk+1 · · · Vn

Uk

p1 pk−2

fk−1 gk

pk+1 pn−1

gk−1 fk

Let V
+ and V

− denote the two zigzag modules contained in the diagram:

V
+ = (

V1 ←→ ·· · ←→ Vk−1
fk−1−→ Wk

gk←− Vk+1 ←→ ·· · ←→ Vn

)
,

V
− = (

V1 ←→ ·· · ←→ Vk−1
gk−1←− Uk

fk−→ Vk+1 ←→ ·· · ←→ Vn

)
.

We wish to compare Pers(V+) with Pers(V−), particularly with respect to intervals
that meet {k − 1, k, k + 1}. This requires a favourable condition on the four maps in
the middle diamond.

Definition 5.4 We say that the diagram

Vk+1 Wk

Uk Vk−1

gk

fk

gk−1

fk−1

is exact if Im(D1) = Ker(D2) in the following sequence

Uk Vk−1 ⊕ Vk+1 Wk,
D1 D2

where D1(u) = gk−1(u) ⊕ fk(u) and D2(v ⊕ v′) = fk−1(v) − gk(v
′).

Theorem 5.5 (The Diamond Principle) Given V
+ and V

− as above, suppose that the
middle diamond is exact. Then there is a partial bijection of the multisets Pers(V+)

and Pers(V−), with intervals matched according to the following rules:

– Intervals of type [k, k] are unmatched.
– Type [b, k] is matched with type [b, k − 1] and vice versa, for b ≤ k − 1.
– Type [k, d] is matched with type [k + 1, d] and vice versa, for d ≥ k + 1.
– Type [b, d] is matched with type [b, d], in all other cases.

It follows that the restrictions Pers(V+)|K , Pers(V−)|K to the set K = {1, . . . , n}\{k}
are equal.
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Fig. 5 Interval matching between Pers(V+) and Pers(V−): (top row) the five cases where matching oc-
curs; (bottom row) unmatched intervals [k, k]

Fig. 6 From Pers(V+) to
Pers(V−), for n = 6, k = 4:
points in the persistence plane
move according to the arrows;
the multiplicity of the point
marked � changes
unpredictably

Figures 5 and 6 illustrate Theorem 5.5 in terms of barcodes and persistence dia-
grams, respectively.

Remark The I(k, k) summands in Pers(V+) span the cokernel of D2, whereas the
I(k, k) summands in Pers(V−) span the kernel of D1. The hypothesis of Theorem 5.5
does not bring about any relation between these spaces (which is why the [k, k] in-
tervals are unmatched). In Sect. 5.3, however, we consider a situation in which the
[k, k] intervals can be tracked.

We use the localisation technique of Sect. 5.1 to prove Theorem 5.5. We begin
with birth- and death-time indices.

Proposition 5.6 Let τ+, τ− denote the zigzag types of V
+,V

− respectively. If we
write

(b1, . . . , bk−1) = b
(
τ+[1, k − 1]) = b

(
τ−[1, k − 1])
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for the birth-time index up to time k − 1, then

b
(
τ+[1, k + 1]) = (k + 1, b1, . . . , bk−1, k),

b
(
τ−[1, k + 1]) = (k, b1, . . . , bk−1, k + 1).

Similarly, if we write

(d1, . . . , dn−k) = d
(
τ+[k + 1, n]) = d

(
τ−[k + 1, n])

for the death-time index from time k + 1, then

d
(
τ+[k − 1, n]) = (k − 1, d1, . . . , dn−k, k),

d
(
τ−[k − 1, n]) = (k, d1, . . . , dn−k, k − 1).

Proof This is immediate from the recursive definition of birth-time index. If we write
τ0 = τ+[1, k − 1] = τ−[1, k − 1] then τ+[1, k + 1] = τ0fg and τ−[1, k + 1] = τ0gf .
The death-time index is treated similarly. �

Here is the crux of the matter:

Lemma 5.7 In the situation of Theorem 5.5, the following filtrations are equal:

R
(
V

+[1, k + 1]) = R
(
V

−[1, k + 1]),
L
(
V

+[k − 1, n]) = L
(
V

−[k − 1, n]).

Proof Write (R0,R1, . . . ,Rk−1) = R(V+[1, k − 1]) = R(V−[1, k − 1]). By the re-
cursive formula (Definition 3.1),

R
(
V

+[1, k + 1]) = (
0, g−1

k fk−1(R0), . . . , g
−1
k fk−1(Rk−1),Vk+1

)

and

R
(
V

−[1, k + 1]) = (
0, fkg

−1
k−1(R0), . . . , fkg

−1
k−1(Rk−1),Vk+1

)
.

Thus we can prove the first statement of the lemma by showing that

fkg
−1
k−1(R) = g−1

k fk−1(R)

for any subspace R ≤ Vk−1. We use first-order logic. Let x ∈ Vk+1. We have the
following chain of equivalent statements.

x ∈ fkg
−1
k−1(R)

⇔ (∃z ∈ R) (∃y ∈ Uk)
(
(gk−1(y) = z)& (fk(y) = x)

)

⇔ (∃z ∈ R) (∃y ∈ Uk)
(
D1(y) = z ⊕ x

)

⇔ (∃z ∈ R)
(
z ⊕ x ∈ Im(D1)

)
.
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On the other hand:

x ∈ g−1
k fk−1(R)

⇔ (∃z ∈ R)
(
fk−1(z) = gk(x)

)

⇔ (∃z ∈ R)
(
z ⊕ x ∈ Ker(D2)

)
.

Since Im(D1) = Ker(D2) by hypothesis, it follows that fkg
−1
k−1(R) = g−1

k fk−1(R).
This proves the first equality. The second equality follows symmetrically. �

Proof of Theorem 5.5 We adopt the notation of Sect. 5.1, and consider the right- and
left-filtrations at Vk+1, for both V

+ and V
−. Since V

+[k + 1, n] = V
−[k + 1, n] we

have

L+
k+1 = L−

k+1 and d+
k+1 = d−

k+1,

and by Lemma 5.7 we have

R+
k+1 = R−

k+1.

Finally, b+
k+1 agrees with b−

k+1 except that k, k + 1 are interchanged, according to
Proposition 5.6. Thus, when we use Theorem 5.2 to calculate the multiplicity of [b, d]
for b ≤ k+1 ≤ d , there is perfect agreement between V

+ and V
− except that we must

interchange k, k + 1 when they occur as birth times.
A symmetrical argument can be made, localising at Vk−1. When we compute the

multiplicity of [b, d] for b ≤ k − 1 ≤ d , there is perfect agreement between V
+ and

V
− except that we must interchange k, k − 1 when they occur as death times.
We have covered all cases of the theorem except for intervals which meet neither

k−1 nor k+1. Intervals contained in [1, k−2] are automatically the same for V
+ and

V
− because they can be computed by restricting to V

+[1, k − 1] and V
−[1, k − 1],

which are equal. Similarly, intervals contained in [k + 2, n] are the same for V
+ and

V
−, by restricting to V

+[k + 1, n] = V
−[k + 1, n].

Finally, consider intervals [k, k]. Nothing can be said about those. �

5.3 The Strong Diamond Principle

The Diamond Principle can usefully be applied to the following diagram of topolog-
ical spaces and continuous maps. The four maps in the central diamond are inclusion
maps, and the remaining maps ↔ are arbitrary.

A ∪ B

X1 · · · Xk−2 A B Xk+2 · · · Xn

A ∩ B

Let X
+,X

− denote the upper and lower zigzag diagrams contained in this picture; so
X

+ passes through A ∪ B , and X
− passes through A ∩ B .
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Theorem 5.8 (The Strong Diamond Principle) Given X
+ and X

− as above, there
is a (complete) bijection between the multisets Pers(H∗(X+)) and Pers(H∗(X−)).
Intervals are matched according to the following rules:

– [k, k] ∈ Pers(H�+1(X
+)) is matched with [k, k] ∈ Pers(H�(X

−)).

In the remaining cases, the matching preserves homological dimension:

– Type [b, k] is matched with type [b, k − 1] and vice versa, for b ≤ k − 1.
– Type [k, d] is matched with type [k + 1, d] and vice versa, for d ≥ k + 1.
– Type [b, d] is matched with type [b, d], in all other cases.

Proof For any �, apply the homology functor H� to the diagram. The central diamond

H�(A) H�(A ∪ B)

H�(A ∩ B) H�(B)

is exact by virtue of the Mayer–Vietoris theorem, according to which

· · · −→ H�(A ∩ B)
D1−→ H�(A) ⊕ H�(B)

D2−→ H�(A ∪ B) −→ · · ·

is an exact sequence. The Diamond Principle therefore applies to H�(X
+) and

H�(X
−), and we have a partial bijection which accounts for all intervals except those

of type [k, k].
Now consider the connecting homomorphism in the same Mayer–Vietoris se-

quence:

· · · D2−→ H�+1(A ∪ B)
∂−→ H�(A ∩ B)

D1−→ · · · .

By exactness, ∂ induces an isomorphism between the cokernel of D2 and the ker-
nel of D1. But the [k, k] summands of Pers(H�+1(X

+)) precisely span Coker(D2),
whereas the [k, k] summands of Pers(H�(X

−)) span Ker(D1). This establishes the
claimed bijection between the [k, k] intervals. �

Example 5.9 Let X = (X1, . . . ,Xn) be a sequence of simplicial complexes defined
on a common vertex set. Suppose these have arisen in some context where each tran-
sition Xi to Xi+1 is regarded as being a ‘small’ change. There are two natural zigzag
sequences linking the Xi .

The union zigzag, X∪:

X1 ∪ X2 . . . . . . Xn−1 ∪ Xn

X1 X2 Xn−1 Xn



Found Comput Math (2010) 10: 367–405 403

Fig. 7 From Pers(H∗(X∩)) to
Pers(H∗(X∪)), for n = 5: points
in the persistence plane move
according to the arrows; points
marked ⊕ stay fixed and
increase homological dimension
by 1

The intersection zigzag, X∩:

X1 X2 Xn−1 Xn

X1 ∩ X2 . . . . . . Xn−1 ∩ Xn

We can think of these as being indexed by the half-integers {1,1 1
2 ,2,2 1

2 , . . . , n}.
We can apply the Strong Diamond Principle n − 1 times to derive the following

relationship between the zigzag persistence of the two sequences Pers(H�(X∩)) and
Pers(H�(X∪)). Restricting to the integer indices, there is a coarse equality:

Pers
(
H�(X∪)

)∣
∣{1,...,n} = Pers

(
H�(X∩)

)∣
∣{1,...,n}.

More finely, there is a partial bijection between Pers(H�(X∪)) and Pers(H�(X∩)). In-
tervals [k 1

2 , k 1
2 ] shift homological dimension by +1 (from the intersection sequence

to the union sequence). Otherwise [b, d] ↔ [b′, d ′] where {b, b′} is an unordered pair
of the form {k 1

2 , k+1} and {d, d ′} is an unordered pair of the form {k, k 1
2 }; dimension

is preserved. Figure 7 illustrates the complete correspondence as a transformation of
the persistence diagram, for n = 5.

The Pyramid Theorem of [3] is a powerful extension of these ideas.

6 Concluding Remarks

We have presented the foundations of a theory of zigzag persistence which, we be-
lieve, considerably extends and enriches the well known and highly successful theory
of persistent homology. Zigzag persistence originates in the work of Gabriel and oth-
ers in the theory of quiver representations. One of our goals has been to bridge the
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gap between the quiver literature (which is read largely by algebraists) and the current
language of applied and computational topology. To this end, we have described an
algorithmic form of Gabriel’s structure theorem for An quivers, and have indicated
the first steps towards integrating these ideas into tools for applied topology.

There are several ways in which this work is incomplete. The most significant
omission is an algorithm for computing zigzag persistence in a homological set-
ting (as distinct from the somewhat sanitised vector space algorithm described in
Sect. 4.3). We address this gap in a paper with Dmitriy Morozov [3], where we present
an algorithm for computing the zigzag persistence intervals of a 1-parameter family
of simplicial complexes on a fixed vertex set.

We have made no effort in this paper to flesh out the applications suggested in
Sect. 1. There is often a substantial gap between the concrete world of point-cloud
data sets and the ideal world of simplicial complexes and topological spaces. We
intend to develop some of these applications in future work.

Meanwhile, we have given priority to establishing the theoretical language and
tools. The Diamond Principle is particularly powerful. In the paper with Morozov [3],
we use the Diamond Principle to establish isomorphisms between several different
classes of persistence invariants of a space with a real-valued (e.g. Morse) function.
In particular, we use zigzag persistence to resolve an open conjecture concerning ex-
tended persistence [6]. This supports our contention that zigzag persistence provides
the appropriate level of generality and power for understanding the heuristic concept
of persistence in its many manifestations.

Index of Notation

Symbol Description Section

k coefficient field (fixed throughout) 2

τ zigzag module type (e.g. ffg) 2.1
τMod category of zigzag modules of type τ 2.1
V zigzag module 2.1
Vi vector space of V at index i 2.1

Pers(V) zigzag persistence of V 2.3
[b, d] closed interval {b, . . . , d} ⊆ {1, . . . , n} 2.2
Iτ (b, d) interval zigzag module (type τ may be omitted) 2.2 (Def. 2.3)

R(V) right-filtration of V 3.1 (Def. 3.1)
b(τ ) birth-time index vector for τ 3.1 (Def. 3.6)
L(V) left-filtration of V 5.1
d(τ ) death-time index vector for τ 5.1

Filtn category of filtered vector spaces of depth n 3.2
R filtered vector space 3.2
Ri vector space at level i of R 3.2

R ∩ K induced subspace of R 3.2
dim(R) dimension vector of R 3.2
J (i, n) interval filtered vector space 3.1 (Lem. 3.9)
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Symbol Description Section

V[p,q] restriction of V to index range {p, . . . , q} 2.3 (Def. 2.7)
V[k] truncation of V to index range {1, . . . , k} 4.1
Pers(V)|K restriction of Pers(V) to index set K ⊂ {1, . . . , n} 2.3 (Rem. 2.13)
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