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Abstract

This article is devoted to developing a theory for effective kernel interpolation and
approximation in a general setting. For a wide class of compact, connected C∞ Rieman-
nian manifolds, including the important cases of spheres and SO(3), we establish, using
techniques involving differential geometry and Lie groups, that the kernels obtained as
fundamental solutions of certain partial differential operators generate Lagrange functions
that are uniformly bounded and decay away from their center at an algebraic rate, and
in certain cases, an exponential rate. An immediate corollary is that the corresponding
Lebesgue constants for interpolation as well as for L2 minimization are uniformly bounded
with a constant whose only dependence on the set of data sites is reflected in the mesh
ratio, which measures the uniformity of the data. The kernels considered here include the
restricted surface splines on spheres, as well as surface splines for SO(3), both of which
have elementary closed-form representations that are computationally implementable. In
addition to obtaining bounded Lebesgue constants in this setting, we also establish a “ze-
ros lemma” for domains on compact Riemannian manifolds – one that holds in as much
generality as the corresponding Euclidean zeros lemma (on Lipschitz domains satisfying
interior cone conditions) with constants that clearly demonstrate the influence of the ge-
ometry of the boundary (via cone parameters) as well as that of the Riemannian metric.

1 Introduction

Radial basis functions (RBFs) have proven to be a powerful tool for analyzing scattered data
on Rn. More recently, spherical basis functions (SBFs), which are analogs of RBFs on the
n-sphere, and periodic basis functions (PBFs), which are analogs of RBFs on the n-torus,
have had comparable success for analyzing scattered data on these manifolds. A theoretical
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drawback is that most RBFs are globally defined, thin plates splines are an example, and even
those that are locally defined such as Wendland functions behave globally when approximating
at densely packed data sites. Nevertheless, certain RBF approximants, in their numerical
implementation, exhibit localized behavior, i.e., changing data locally only significantly alters
the interpolant locally. Since the pioneering work of Duchon [9, 8], it has been a mystery why
RBF/SBF approximants display local behavior even though the bases are globally supported.
It was long suspected that there were “local bases” hidden within the space of translates of
RBFs/SBFs.

A major objective of this paper is to establish that, for spheres and SO(3), there are
closed-form kernels whose associated approximation spaces possess highly localized bases, in
the form of Lagrange functions for given scattered data. Our previous work [16] established
the existence of such bases on compact manifolds, but the kernels we constructed did not have
closed form.

We will carry out the construction and proofs that establish the existence and properties of
these closed-form kernels in the context of of more general manifolds, thus achieving another
objective: obtaining results for a broader class of kernels on manifolds than the ones we
treated in [16], where only reproducing kernels for Sobolev spaces were dealt with.

We also address similar issues for conditionally positive kernels on manifolds, where a
given space of functions is to be reproduced. In the case of Rd, this involves little more than
polynomial reproduction. For manifolds – even for spheres and SO(3) – the kernels and spaces
are not so simple, and new techniques are required to deal with the problem.

Goals Given a manifold M, a finite set of points X = {x1, . . . , xN} ⊂ M and a kernel
k : M × M → R, one may attempt to fit a smooth function using functions from VX :=
span{k(·, xj), xj ∈ X}, or more generally, to use functions of the form

s =

N∑

j=1

ajk(·, xj) + p, (1.1)

where the supplementary function p comes from a simple space (like polynomials or spherical
harmonics). The framework described above applies to fitting data by means of interpolation,
least squares or near interpolation with a smoothing term.

This article is devoted to developing a theory for effective kernel approximation in a general
setting. The problem is described as follows: we seek kernels k : M×M → R for which interpo-
lation is well posed and that have a convenient closed form representation allowing for effective
computations. Furthermore, we are interested in aspects of the interpolants/approximants
concerning stability, locality and so on.

In [16] and [15], we developed a theory for compact Riemannian manifolds using positive
definite “Sobolev kernels.” The theory developed there addresses and answers questions con-
cerning properties of bases for VX , properties related to locality, stability of approximation
and interpolation, and other matters. In this paper, these questions, which are listed below,
are addressed and answered for a broad class of kernels on M that are Green’s functions for
certain elliptic operators, and, when the manifold is a sphere, real projective space or SO(3),
are computationally implementable as well.

2



Locality. Are there local bases for VX? That is, are there bases similar to those for
wavelet systems or B-splines [6, Chapter 5]? At a minimum, we would like a basis {vj} to
satisfy |vj(x)| ≤ r(d(x, xj)), with r a rapidly decaying function.

Lp conditioning. Are there bases that are well conditioned in Lp, after renormal-
ization? That is, can we find bases for which there constants c1, c2 such that c1‖a‖ℓp ≤
‖∑N

j=1 ajvj‖Lp ≤ c2‖a‖ℓp , with c1, c2 independent of N , and, after a suitable normalization,
independent of p?

Marcinkiewicz-Zygmund property. Does the space VX possess a Marcinkiewicz-
Zygmund property relating samples to the size of the function? For s ∈ VX , this means
that the norms ‖j 7→ s(xj)‖ℓp and ‖s‖Lp are equivalent, with constants involved independent
of N .

Stability of interpolation. Is interpolation stable? Is the Lebesgue constant bounded
or, more generally, is the p norm of the interpolant controlled by the ℓp norm of the data?

Stability of approximation in Lp. Is approximation by L2 projection stable in Lp?
Here, 1 ≤ p ≤ ∞. In particular, what we want is that the orthogonal projector with range VX
be continuously extended to each Lp, and that it has bounded operator norm independent of
N .

The Sobolev kernels we dealt with in [16] do not possess simple, closed form representa-
tions, even when the underlying manifold is a sphere; they are defined indirectly, as reproduc-
ing kernels for certain Sobolev spaces. To applied effectively to data fitting problems, such a
kernel should have an implementable characterization, by which interpolation, approximation
or other computational problems can be treated. In the important cases relating to spheres
and SO(3), we exhibit computationally implementable kernels. In particular, these kernels
include restricted surface splines on spheres, and surface splines on SO(3), both of which
have simple closed form representations. Furthermore, for both of these cases, theoretical ap-
proximation results concerning direct theorems, inverse theorems, and Bernstein inequalities
are known to hold [22]. In conjunction with the stability of interpolation and least-squares
approximation in Lp, both yield new, precise error estimates for these implementable schemes.

Kernels The class of kernels considered in this paper are those kernels κ that act as fun-
damental solutions for elliptic differential operators of the form Lm =

∏
j(∆ − rj) and lower

order perturbations of these. The origin of this approach lies in the work of Duchon, [9, 8] on
surface splines, where the underlying kernel is the Green’s functions for iterated Laplacian,
∆m, on R

d. Such kernels have also been used on Riemannian manifolds, [10, 27]. For this
reason, we call them polyharmonic; see Definition 3.2. Throughout this article, we use km to
denote a generic polyharmonic kernel.

This is a classic family of kernels and is sufficiently robust to include many interesting
examples. For instance, such kernels have also been in use for some time on spheres, and have
formed one of the earliest families of SBFs (see [11] and references for a list of early examples).
In this setting, certain careful choices of these kernels result in the complete family of surface
splines restricted to the sphere1, introduced in [24], which we define below in (3.2) and denote
in the “zonal” form as km(x, t) = φs(x · t). Here s is related to m via m = s+ d/2.

1A related problem, which can be considered a generalization of this particular set up has recently been
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It also includes the surface splines on SO(3), introduced in [17] and defined below in (3.4),
and denoted throughout the paper by km.

A second type of kernel, ostensibly different from the polyharmonic kernels, are the Sobolev
(or Matérn) kernels, which have been introduced for compact Riemannian manifolds in [16].
These kernels come about as reproducing kernels for Sobolev spaces. We denote such kernels
by κm(x, y), where m indicates the order of the Sobolev space. A corollary of the results
presented in this paper is that, in many cases, the Sobolev kernels are in fact polyharmonic
kernels. There is an operator Lm for which κm(x, y) is the fundamental solution.

Kernel Notation Location in manuscript

Restricted surface spline (x, y) 7→ φs(x · y) Example 2 in 3.2

Surface spline on SO(3) km Example 3 in 3.2

Polyharmonic kernel km Definition 3.2

Sobolev kernel κm [16, 3.3]

Table 1: Index for kernels used

Outline The layout of this paper is as follows. Following the introduction and background,
Section 2 deals with certain geometric notions relevant to this article. Section 3 treats inter-
polation by conditionally positive definite kernels, the function spaces that they generate, and
the nature of their interpolants. We discuss some important examples on well known mani-
folds, including spheres and the rotation group. Finally we define precisely the polyharmonic
kernels, which are the kernels that we treat in our main results; they include the examples
we provided earlier. We demonstrate that they are conditionally positive definite, identify
the seminorm of the native spaces associated with these kernels, and discuss the variational
problem associated with their interpolants.

The relationship between the polyharmonic kernels and the Sobolev kernels of [16] will be
covered in Section 4. We show that, under certain conditions, the polyharmonic operators
Lm can be expressed as combinations of operators generated by covariant derivatives, and
vice versa (this is done in Lemma 4.3). This allows us to conclude that Sobolev kernels
are examples of polyharmonic kernels. On the other hand, it permits us to demonstrate, in
Section 4.2, that the native space seminorms associated with polyharmonic kernels exhibit
the same behavior (metric equivalence to Euclidean Sobolev seminorms, zeros lemmas, etc.)
as the native space norms associated with Sobolev kernels.

The main results of the paper are given in Section 5. Namely, the Lagrange function
associated with a kernel km is rapidly decaying, and gives rise to a uniformly bounded Lebesgue
constant and a uniformly bounded L2 minimization projector. The properties mentioned

considered by Fuselier and Wright, [12]. There, kernel interpolation is considered on manifolds that are embed-
ded in R

d by using the restriction of various other RBFs to the manifold – this is accomplished by constructing
interpolants in the ambient Euclidean space and then restricting these to the manifold. (In contrast, we work
directly with the manifold, making use of its intrinsic structure.)
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above – concerning locality, stability, conditioning, and so on – then follow immediately. We
then discuss implications of this for surface spline kernels on spheres and SO(3).

Essential to our proofs in Section 5 are theorems giving Lp Sobolev-space estimates for
functions having zeros quasi-uniformly distributed on a domain Ω, with ∂Ω being Lipschitz.
Such theorems may hold both in R

d and on M itself, and in Section A, we treat both cases. For
the case of a manifold M, these theorems involve geometric ideas; in particular, they require
use of a minimal ε-set of points in M (cf. [13]), which replaces a simpler set in R

d. The results
for M turn out to be intrinsic and hold in the same generality as those in the Euclidean case.
The bounds and the condition on the meshnorm reflect geometric properties – particularly,
parameters from the cone condition on ∂Ω, properties of the manifold M, and parameters of
the Sobolev spaces themselves – but are independent of the volume and diameter of Ω.

2 Background

We now discuss some relevant details about analysis on compact, complete, connected C∞

Riemannian manifolds. This is the same setting as [16]. Refer to it for a more detailed
treatment and further references.

Throughout our discussion, we will assume that (M, g) is a d-dimensional, connected,
complete C∞ Riemannian manifold without boundary; the Riemannian metric for M is g,
which defines an inner product gp(·, ·) = 〈·, ·〉g,p on each tangent space TpM ; the corresponding
norm is |·|g,p. As usual, a chart is a pair (U, φ) such that U ⊂ M is open and the map φ : U → R

d

is a one-to-one homeomorphism. An atlas is a collection of charts {(Uα, φα)} indexed by α
such that M = ∪αUα and, when φα(Uα)∩φβ(Uβ) 6= ∅, φβ ◦φ−1

α is C∞. In a fixed chart (U, φ),
the points p ∈ U are parametrized by p = φ−1(x), where x = (x1, . . . , xd) ∈ U = φ(U).

In these local coordinates, TMp and T ∗Mp, the tangent and cotangent spaces at p, have
bases comprising the vectors ej =

(
∂

∂xj

)
p
, j = 1 . . . d and ek = (dxk)p, k = 1 . . . d, respectively.

These vary smoothly over U = φ(U) and form dual bases in the sense that ek(ej) =
∂xk

∂xj = δkj .
In the usual way, the inner product 〈·, ·〉g,p provides an isomorphism between the cotangent
and tangent spaces. Thus, regarding ek’s as vectors, we have that 〈ek, ej〉g,p = δkj . A vector

v can be represented either as v =
∑

j v
jej or as v =

∑
k vke

k; the vj ’s and vk’s are the
contravariant and covariant components of v, respectively. Relative to these bases, the inner
product 〈·, ·〉g,p has the form

〈u,v〉g,p =
d∑

i,j=1

giju
ivj =

d∑

i,j=1

gijuivj , where gij = 〈ei, ej〉g,p and gij = 〈ei, ej〉g,p (2.1)

The matrices (gij) and (gij) are inverse to each other, and are of course symmetric and positive
definite. The inner product 〈v,w〉g,p is itself independent of coordinates. In addition, if v
and w are C∞ vectors fields in p, then 〈v,w〉g,p is also C∞.

The metric g also induces an invariant volume measure dµ on M. The local form of the
measure is dµ(x) =

√
det(g)dx1 · · · dxd, where det(g) = det(gij).

Geodesics are curves γ : R → M that locally minimize the arc length functional,
∫ b
a |γ̇|g,pdt.

If we use the arc length s as the parameter (i.e., t→ s), then, in local coordinates, a geodesic
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satisfies the Euler-Lagrange equations:

d2xk

ds2
+

d∑

i,j=1

Γk
ij

dxi

ds

dxj

ds
= 0, where Γk

ij :=
1

2

∑

m∈{1...d}
gkm

(
∂gjm
∂xi

+
∂gim
∂xj

− ∂gij
∂xm

)
. (2.2)

The Γk
ij are the Christoffel symbols.

A geodesic solving (2.2) is specified by giving an initial point p ∈ M, whose coordinates we
may take to be

(
x1(0), . . . , xd(0)

)
= 0, together with a tangent vector tp having components

dxi

ds (0). A Riemannian manifold is said to be complete if the geodesics are defined for all values
of the parameter s. All compact Riemannian manifolds without boundary are complete, and
so are many non-compact ones, including R

d.
We define the exponential map Expp : TpM → M by letting Expp(0) = p and Expp(stp) =

γp(s), where γp(s) is the unique geodesic that passes through p for s = 0 and has a tangent
vector γ̇p(0) = tp of length 1; i.e., 〈tp, tp〉gp. = 1.

Although geodesics having different initial, non-parallel unit tangent vectors tp = γ̇p(0)
may eventually intersect, there will always be a neighborhood Up of p where they do not. In Up,
the initial direction tp, together with the arc length s, uniquely specify a point q via q = γp(s),
and the exponential map Expp is a diffeomorphism between the corresponding neighborhoods
of 0 in TpM and p in M . In particular, there will be a largest ball B(0, rp) ∈ TpM about the
origin in TpM such that Expp : B(0, rp) → b(p, rp) ⊂ M is injective and thus a diffeomorphism;
rp is called the injectivity radius for p. By choosing cartesian coordinates on B(0, rp), with
origin 0, and using the exponential map, we can parametrize M in a neighborhood of p via
q = Expp(x), x ∈ TpM .

The injectivity radius of M is rM := infp∈M rp. If 0 < rM ≤ ∞, the manifold is said
to have positive injectivity radius. For any r < rM and any p ∈ M, the exponential map
Expp : B(0, r) → b(p, r) is a diffeomorphism.

We make special note of the fact that, for a compact Riemannian manifold, the family of
exponential maps are uniformly isomorphic; i.e., there are constants 0 < Γ1 ≤ 1 ≤ Γ2 <∞ so
that for every p0 ∈ M and every x, y ∈ B(0, r), where r ≤ rM/3,

Γ1|x− y| ≤ dist(Expp0(x),Expp0(y)) ≤ Γ2|x− y|. (2.3)

When we use Γ1 and Γ2 in this paper, we always assume that there is some fixed radius
smaller that rM on which they are computed. This avoids a tiresome repetition of this fact
throughout the paper.

An order k covariant tensor T is a real-valued, multilinear function of the k-fold tensor
product of TpM . We denote by T k

pM the covariant tensors of of order k at p. In terms of
the local coordinates, there is a smoothly varying basis ei1 ⊗ · · · ⊗ eik for the k-fold tensor
product of tangent spaces. Thus, the covariant tensor field T of order k on U can be written
as

T =
∑

ı̂∈{1...d}k
Tı̂ e

i1 ⊗ · · · ⊗ eik ,

6



where we adopt the convention ı̂ = (i1, . . . , ik). The Tı̂ are the covariant components of T.
The metric gij is itself an order 2 covariant tensor field. One can also define contravariant
tensors and tensors of mixed type.

Because T k
pM = TpM ⊗ · · · ⊗ TpM (k times), the metric g induces a natural, useful,

invariant inner product on T k
pM ; in terms of covariant components, it is given by

〈S,T〉g,p =
∑

ı̂,̂∈{1...d}k
gi1j1 · · · gikjkSı̂ T̂ . (2.4)

The covariant derivative, or connection, ∇ associated with (M, g) is defined as follows. If
T is an order k (covariant) tensor, then the covariant derivative of T is

∇T =
∑

j∈{1...d}

∑

ı̂∈{1...d}k

(
∂Tı̂
∂xj

−
k∑

r=1

∑

s∈{1...d}
Γs
j,irTi1,...,ir−1,s,ir+1,...,ik

︸ ︷︷ ︸
(∇T)ı̂,j

)
ei1 ⊗ · · · ⊗ eik ⊗ ej,

which is an order k+1 covariant tensor with components (∇T)ı̂,j . The Γ
k
ij are the Christoffel

symbols defined earlier.
A smooth function f : M → R is a 0 order tensor and so ∇f , which is the gradient of f is

an order 1 tensor, ∇2f is an order 2 tensor. Continuing in this way, we may form ∇kf , which
is an invariant version of the ordinary kth gradient of a function on R

d. (The superscript k
here is an operator power, not a contravariant index.) The components of the kth covariant
derivative of f have the form

(∇kf(x))ı̂ = (∂kf(x))ı̂ +
k−1∑

m=1

∑

̂∈{1...d}m
Â

ı̂(x)(∂
mf(x))̂ (2.5)

where

(∂mf)̂ :=
∂m

∂xj1 · · · ∂xjm f ◦ φ−1,

and where the coefficients x 7→ Â
ı̂(x) depend on the Christoffel symbols and their derivatives

to order k − 1, and, hence, are smooth in x. This can also be written in standard multi-
index notation. Let α1, α2, . . . , αd be the number of repetitions of 1, 2, . . . , d in ̂, and let
α = (α1, . . . , αd). Then,

(∂mf)̂ :=
∂m

∂(x1)α1 · · · ∂(xd)αd
f ◦ φ−1 =: D|α|

α f ◦ φ−1, |α| =
d∑

k=1

αk = m. (2.6)

Another important quantity that we need to deal with is the adjoint of the covariant
derivative ∇∗. This operator is defined by

∫
M
〈∇∗T,S〉g,pdµ =

∫
M
〈T,∇S〉g,pdµ, where the

inner product is given by (2.4), and it takes an order k + 1 tensor to an order k tensor. The
coordinate form of ∇∗T is obtained via integration by parts:

(∇∗T)ı̂ = −
∑

i,j

gjk(∇T)ı̂,j,k (2.7)
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We can combine covariant derivatives and their adjoints to get scalar operators. In par-
ticular, if f : M → R is C∞, then ∇kf is an order k tensor. By applying ∇∗ to it, we get
(∇∗)k∇kf , which is a scalar. (Note that (∇∗)k = (∇k)∗.) The Laplace–Beltrami operator
∆ := −∇∗∇. In coordinates, again letting det(g) = det(gij), we have that

∆f = det(g)−1/2
∑

i,j

∂

∂xi

(
det(g)1/2gij

∂f

∂xj

)
.

Sobolev spaces on subsets of M Sobolev spaces on subsets of a Riemannian manifold
can be defined in an invariant way, using covariant derivatives [1]. In defining them, we will
need to make use of the spaces Lp, Lq. To avoid problems with notation, we will use the
sans-serif letters p, q, rather than p, q, as subscripts. Here is the definition.

Definition 2.1 ([1, p. 32]). Let Ω ⊂ M be a measurable subset. For all 1 ≤ p ≤ ∞, we define
the Sobolev space Wm

p
(Ω) to be all f : M → R such that, for 0 ≤ k ≤ m, |∇kf |g,p in Lp(Ω).

The associated norms are as follows:

‖f‖Wm
p

(Ω) :=





(∑m
k=0

∫
Ω |∇kf |pg,p dµ(p)

)1/p
, 1 ≤ p <∞;

max 0≤k≤m

∥∥|∇kf |g,p
∥∥
L∞(Ω)

, p = ∞.
(2.8)

When p = 2, the norm comes from the Sobolev inner product

〈f, g〉m,Ω := 〈f, g〉Wm
2 (Ω) :=

m∑

k=0

∫

Ω

〈
∇kf,∇kg

〉
g,p

dµ(p). (2.9)

We also write the p = 2 Sobolev norm as ‖f‖2m,Ω := 〈f, f〉m,Ω. When Ω = M, we may suppress
the domain: 〈f, g〉m = 〈f, g〉m,M and ‖f‖m = ‖f‖m,M.

Metric equivalence The exponential map allows us to compare the Sobolev norms we’ve
just introduced, to standard Euclidean Sobolev norms as follows:

Lemma 2.2 ([16, Lemma 3.2]). For m ∈ N and 0 < r < rM/3, there are constants 0 < c1 < c2
so that for any measurable Ω ⊂ Br, for all j ∈ N, j ≤ m, and for any p0 ∈ M, the equivalence

c1‖u ◦ Expp0 ‖W j
p (Ω)

≤ ‖u‖
W j

p (Expp0 (Ω))
≤ c2‖u ◦ Expp0 ‖W j

p (Ω)

holds for all u : Expp0(Ω) → R. The constants c1 and c2 depend on r, m and p, but they are
independent of Ω and p0.

Besov spaces on M Besov spaces can be defined and characterized in many equivalent ways.
For a discussion, see Triebel’s book [28, 1.11, and Chapter 7] and the references therein. Our
definition follows Triebel’s.

8



Definition 2.3. For 0 < s ≤ m and 1 ≤ p < ∞, we define the Besov space Bs
p,∞
(
M
)
as the

collection of functions in Lp

(
M
)
for which the following expression

‖f‖Bs
p,∞(M) := sup

t>0
t−sK(f, t)

is finite, where the K-functional K(f, ·) : (0,∞) → (0,∞) is defined as

K(f, t) := inf
{
‖f − g‖Lp + t2m‖g‖Wm

p (M) : g ∈Wm
p (M)

}
.

For p = ∞, the definition is the same after substituting Lp

(
M
)
by C

(
M
)
and Wm

p (M) by
Cm(M).

2.1 Notation

In order to distinguish balls on R
d from those in M, we denote the ball centered at p ∈ M

having radius r by b(p, r). (Euclidean balls are denoted B(x, r).) Given a finite set Ξ ⊂ M,
we define its mesh norm (or fill distance) h and the separation distance q to be:

h := sup
p∈M

dist(p,Ξ) and q := inf
ξ,ζ∈Ξ
ξ 6=ζ

dist(ξ, ζ). (2.10)

The mesh norm measures the density of Ξ in M, the separation radius determines the spacing
of Ξ. The mesh ratio ρ := h/q measures the uniformity of the distribution of Ξ in M. If ρ is
bounded, then we say that the point set Ξ is quasi-uniformly distributed, or simply that Ξ is
quasi-uniform.

3 Interpolation by Kernels

The purpose of this section is to discuss further this interpolation problem and to present
the kernels we employ. The kernels we consider are fundamental solutions of certain elliptic
PDEs. They happen also to be conditionally positive definite, a well known class for which
interpolation is understood. In particular, interpolation is well posed, and has a dual nature,
as best interpolation from a function space.

In 3.1 we discuss interpolation with conditionally positive definite kernels, and present the
associated problem of best interpolation. In 3.2 we present some motivating examples for our
problem: surface spline interpolation on spheres and on SO(3). In 3.3 we give the formal
definition of the kernels we use and the operators they invert; we also discuss the associated
variational problem they solve.

3.1 Interpolation with conditionally positive definite kernels

The kernels we consider in this article are conditionally positive definite on the compact
Riemannian manifold. As a reference on this topic, we suggest [10, Section 4].
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Definition 3.1. A kernel is conditionally positive definite with respect to a finite dimensional
space Π if, for any set of centers Ξ, the matrix

(
k(ξ, ζ)

)
ζ,ξ∈Ξ is positive definite on the subspace

of all vectors α ∈ C
Ξ satisfying

∑
ξ∈Ξ αξp(ξ) = 0 for p ∈ Π.

This is a very general definition which we will make concrete in the next subsections.
Given a complete orthonormal basis (φj)j∈N, of continuous functions, normalized in L∞ (i.e.,
‖φj‖∞ = 1) any kernel

k(x, y) :=
∑

j∈N
k̃(j)ϕj(x)ϕj(y)

with coefficients k̃ ∈ ℓ1(N) for which all but finitely many coefficients k̃(j) are positive is
conditionally positive definite with respect to ΠJ = span(φj | j ∈ J ), where J = {j | k̃(j) ≤
0}, since, evidently,

∑

ξ∈Ξ

∑

ζ∈Ξ
αξk(ξ, ζ)αζ =

∑

ξ∈Ξ

∑

ζ∈Ξ
αξαζ


∑

j∈N
k̃(j)φj(ξ)φj(ζ)




=
∑

j∈N
k̃(j)

∑

ξ,ζ∈Ξ
αξφj(ξ)αζφj(ζ) =

∑

j /∈J
k̃(j)‖αφj‖2ℓ2(Ξ) > 0

provided
∑

ξ αξφj(ξ) = 0 for j satisfying k̃(j) ≤ 0.
In this case if the set of centers Ξ ⊂ M is unisolvent with respect to ΠJ = span(ϕj | j ∈ J )

(meaning that p ∈ ΠJ and p(ξ) = 0 for ξ ∈ Ξ implies that p = 0) then the system of equations

{ ∑
ξ∈Ξ aξk(ζ, ξ) +

∑
j∈J bjϕj(ζ) = yζ ζ ∈ Ξ∑

ξ∈Ξ aξϕj(ξ) = 0 j ∈ J

has a unique solution in C
Ξ×C

J for each data sequence
(
yζ
)
ζ∈Ξ ∈ C

Ξ.When data is sampled

from a continuous function at the points Ξ (i.e., yζ = f(ζ)) this solution generates a continuous
interpolant:

IΞf = Ik,J ,Ξf =
∑

ξ∈Ξ
aξk(·, ξ) +

∑

j∈J
bjϕj

with the property that it is the minimizer of the semi-norm |||·|||k,J , called the “native space”
norm, given by ∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

j∈N
û(j)ϕj

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

2

k,J

=
∑

j /∈J

|û(j)|2
k̃(j)

, (3.1)

over all functions u =
∑

j∈N û(j) for which u(ξ) = yξ, ξ ∈ Ξ. If k is conditionally positive
definite with respect to the set ΠJ , it will be conditionally positive definite with respect to
ΠJ ′ for any J ′ ⊃ J . For this reason, the interpolant and norm both are decorated by k and
J .

This has the consequence that any two conditionally positive definite kernels k, k′ which
have eigenfunction expansions that coincide on all but finitely many indices (say I), produce
the same interpolants. That is: Ik,I,Ξ = Ik′,I,Ξ.

10



3.2 Examples of conditionally positive definite kernels

Example 1 (Surface Splines). As a first example of a conditionally positive definite kernel, we
take M = R

d, and consider the kernels km(x, α) = φs(x− α) given by the functions

φs(x) = Cm,d

{
|x|2s log |x| d is even

|x|2s d is odd

where s + d/2 = m. For a certain Cm,d 6= 0, this is a fundamental solution for the operator
∆m.

Because of the positivity of the generalized Fourier transform, one can see that φs is con-
ditionally positive definite on R

d with respect to Πm−1. These have been studied by Duchon
[9, 8], and they comprise some of the earliest and most popular examples of conditionally
positive definite kernels.

Although our focus in this paper is on kernels on compact manifolds, the family of surface
splines acts as a useful benchmark, since they have a simple, direct representation, as well as
being conditionally positive definite, not to mention that for certain interpolation problems,
their Lagrange functions decay rapidly (this was demonstrated in a least squares sense by
Matveev in [21, Lemma 5] and pointwise in [16]) and have a uniformly bounded Lebesgue
constant (cf. [16]).

Example 2 (Restricted Surface Splines on S
d). When M = S

d, the eigenvalues of the Laplace–

Beltrami operator are µℓ = ℓ(ℓ + d − 1) and each eigenvalue has N(d, ℓ) = (2d+ℓ)Γ(ℓ+d−1)
Γ(ℓ+1)Γ(d)

linearly independent eigenfunctions, the spherical harmonics Yℓ,m.
We now introduce a family of kernels known as the restricted surface splines. These are

kernels indexed by m ∈ N, m > d/2. By writing m = s+ d/2, we give the zonal expression

φs(t) :=

{
|1− t|s log |1− t| s ∈ N

|1− t|s s ∈ N+ 1/2.
(3.2)

When d is even, s is integral and the first formula is used. When d is odd, the second is
used. For a given d and an integer m > d/2, we write km(x, y) = φs(x · y) to denote the
corresponding kernel on Sd.

A spherical harmonic expansion of the restricted surface splines can be found in [2, Equa-
tions (2.12) & (2.20)]. It is known that, for m > d/2, km(x, y) =

∑
ℓ

∑
j k̃m(ℓ, j)Yℓ,j(x)Yℓ,j(y),

where

k̃m(ℓ, j) = Cm

m∏

ν=1

[(
ℓ+

(
d− 1

2

))2

− (ν − 1/2)2

]−1

, for ℓ > s. (3.3)

When d is odd, this equation holds for all ℓ.
From this formula, it follows that km is conditionally positive definite with respect to the

space Π⌊s⌋ := span(Yℓ,j | ℓ ≤ s, j ≤ N(d, ℓ)).
A second consequence is that, by a possible slight correction of the spherical harmonic

expansion (discussed below), km is the fundamental solution for a differential operator of

11



order 2m that is polynomial in ∆:

Lm := Cm

m∏

ν=1

[∆− (ν − d/2)(ν + d/2 + 1)] .

We note that when d is odd, the operator Lm is invertible on W 2m
2 (Sd). Indeed, it is

nonvanishing on each spherical harmonic Yℓ,m.
When d is even, the Fourier coefficients of the kernel follow (3.3) for ℓ > s only, but Lm

annihilates spherical harmonics of degree s or less. Indeed, in this case, we can re-index the
operator to get:

Lm = Cm

d/2−1∏

ν=1

[∆− (ν − d/2)(ν + d/2− 1)]

m∏

ν=d/2

[∆− (ν − d/2)(ν + d/2 − 1)]

= Cm

d/2−1∏

ν=1

[∆− (ν − d/2)(ν + d/2− 1)]

m−d/2∏

J=0

[∆− J(J + d− 1)] .

So Lm annihilates all the spherical harmonics of order up to s = m− d/2.
In other words, for sufficiently smooth functions, say f ∈ C2m(Sd) represented by the

series f =
∑∞

ℓ=0

∑N(d,ℓ)
m=1 f̂(ℓ, j)Yℓ,j ,

f(x) =

∫

Sd

Lm[f ](α)φs(x · α)dµ(α) + pf

where we add a spherical harmonic term pf =
∑s

ℓ=0

∑N(d,ℓ)
j=1 f̂(ℓ, j)Yℓ,j ∈ Πs when d is even

(when d is odd, pf = 0).

Example 3 (Surface Splines on SO(3)). When M = SO(3), the group of proper rotations of
R
3, the eigenvalues of the Laplace–Beltrami operator are µℓ = ℓ(ℓ + 1) and each eigenvalue

is associated with N(ℓ) = (1 + 2ℓ)2 linearly independent eigenfunctions, called Wigner D-
functions and denoted by (Dℓ

j,ι)(|j|,|ι|≤ℓ).
For m ≥ 2 and s = m− 3/2, the surface spline kernels are

km(x, y) =

(
sin

(
ω(y−1x)

2

))2m−3

, (3.4)

where ω(z) is the rotational angle of z ∈ SO(3). The corresponding Wigner D-function

expansion km(x, y) =
∑

ℓ

∑
j,ι k̃m(ℓ, j, ι)D

(ℓ)
j,ι (x)D

(ℓ)
j,ι (y) is discussed in [17, Lemma 2], where

it is shown that for some Cm 6= 0,

k̃m(ℓ, j, ι) = Cm

m−1∏

ν=−(m−1)

[
ℓ+ ν +

1

2

]−1

.

Thus, km is conditionally positive definite with respect to the space Πm−2 = span{Dℓ
j,ι | ℓ ≤

m− 2, |j|, |ι| ≤ ℓ}.

12



It also follows (from [17, Lemma 3]) that km is the fundamental solution for the differential
operator of order 2m having the form:

Lm := Cm

m−1∏

ν=0

[
∆− (ν2 − 1/4)

]

in the sense that for f ∈ C2m, f =
∑∞

ℓ=0

∑
|j|,|ι|≤ℓ f̂(ℓ, j, ι)D

ℓ
j,ι the formula

f(x) =

∫

SO(3)
Lm[f ](α)km(x, α)dµ(α)

holds true.

3.3 Polyharmonic and related kernels

The kernels we wish to treat are fundamental solutions of differential operators that are
polynomial in the Laplace–Beltrami operator, or are directly related to them. Since, on
a compact Riemannian manifold ∆ is a self adjoint operator with a countable sequence of
nonnegative eigenvalues λj ≤ λj+1 having +∞ as the only accumulation point, we can express
the kernel in terms of the associated eigenfunctions ∆φj = λjφj . We now make this clear
with a formal definition.

Definition 3.2. Let m ∈ N such that m > d/2. We say that the kernel km : M×M → R is
polyharmonic if the following hold:

1. There exists a polynomial Q(x) =
∑m

ν=0 cνx
ν in Πm(R), with the highest order coefficient

cm > 0, so that Q(x) > 0 for all x sufficiently large. Let the corresponding differential
operator of order 2m > d be given by

Lm =

m∑

ν=0

cν∆
ν = Q(∆),

and let J ⊂ N be a finite set that includes all j for which the eigenvalue Q(λj) of Lm

satisfies Q(λj) ≤ 0. (In addition to this finite set, J may also include a finite number
j’s for which Q(λj) > 0.)

2. The kernel has the eigenfunction expansion km(x, y) =
∑

j∈N k̃m(j)ψj(x)ψj(y), with

coefficients k̃m(j) = 1/Q(λj) for j /∈ J . (On J , k̃m(j) can assume arbitrary values.)

It follows immediately from this definition that km is conditionally positive definite with
respect to the finite dimensional space ΠJ = spanj∈J ϕj . Another consequence is that, for
f ∈ C∞,

f(x) =

∫

M

Lm[f − pf ](α)km(x, α)dµ(α) + pf (3.5)

where pf =
∑

j∈J projjf is the orthogonal projection onto ΠJ .
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As previously stated, the interpolation operator IΞ,km,J produces the minimizer of the
seminorm |||u|||km,J . Since km(x, y) =

∑
j /∈J k̃m(j)ϕj(x)ϕj(y) and, for j /∈ J ,

k̃m(j) = Q(λj)
−1 =

(
m∑

ν=0

cν(λj)
ν

)−1

,

which is the inverse symbol of Lm, it follows from (3.1) that

|||u|||2km,J =
∑

j /∈J

|û(j)|2
k̃(j)

= 〈Lmu, u〉L2(M) −
∑

j∈J
Q(λj)|û(j)|2.

This relation connects the norm |||u|||km,J with the quadratic form 〈Lmu, u〉L2(M). The goal of
the next section is to study this quadratic form.

4 Operators and quadratic forms

Of the two quadratic forms considered, the one derived from the native space seminorm:
|||u|||2km,J , and the one derived from the operator [u]2 := 〈Lmu, u〉L2(M), the latter has much to
offer from the point of view of analysis, but the former is tied to the variational problem sat-
isfied by the kernel interpolants. The object of this section is to attain a better understanding
of [u]2.

To this end, we seek an analogue of the bilinear form 〈Lu, v〉L2(M) – one that is defined on
measurable subsets of M. A reasonable goal would be to find a form that is comparable to
the corresponding Sobolev form

∑m
j=0〈u, v〉j,Ω, where

〈u, v〉j,Ω :=

∫

Ω
〈∇ju,∇jv〉g,xdµ(x).

This is the bilinear form used to define the Sobolev space inner product: (2.8) of Definition
2.1 for Ω ⊂ M.

The rest of this section is structured as follows. In 4.1 we demonstrate that on a wide class
of manifolds, the elliptic operator composed of covariant and contravariant derivatives, which
is at the heart of [16], is a polynomial in ∆ and, conversely, the Laplace–Beltrami operator
has an expansion in terms of these elliptic operators. This permits us immediately to classify
the Sobolev kernels on spheres (as well-known kernels of a type studied in [14, 22]) and to
give concrete approximation results for them. In 4.2 we present analogues to the bilinear form
generated by Lm on measurable subsets. Using this, we demonstrate that this bilinear form
behaves like a norm for functions with many zeros.

4.1 The Laplace–Beltrami operator and the covariant derivative

Simply considering 〈Lu, v〉L2(Ω) for measurable subsets Ω ⊂ M is not suitable, since there will

be many functions for which Lu may vanish on Ω. This is true even on R
d when L = ∆m.

In this case there are many polyharmonic functions (and even harmonic functions!) on a a
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given subdomain Ω that may have nonzero Sobolev norms, despite the fact that they are in
the kernel of L.

Guided by the observation that on R
d,
∫
Rd v∆

mu =
∫
Rd〈∇mv∇mu〉 holds for test functions

u, v, we first attempt to compare ∆m, the principle part of L, to (∇m)∗∇m. It is important to
stress that (∇m)∗ means the adjoint to ∇m, in the L2(M) inner product, as defined in (2.7).
2 To this end, we make the following assumption

Assumption 4.1. For all k ∈ N, there exists a real polynomial pk−1 of degree k − 1, such
that

(∇k)∗∇k = (−1)k∆k + pk−1(∆).

A class of Riemannian manifolds that satisfy this are the two-point homogeneous spaces
[18], both compact and non-compact. A manifold M is homogeneous if M = G/K, where G
is a Lie group and K is a Lie subgroup of G. Two-point homogeneous means that for any two
pairs of points p, q and p′, q′ such that the distances d(p, q) = d(p′, q′) there is an isometry
Φ ∈ G such that p′ = Φ(p) and q′ = Φ(q). These manifolds3 have been completely classified
(see [18, p. 167 & p. 177] for lists), and include S

d and the real projective spaces Pd. (The
rotation group SO(3) = P3.)

Lemma 4.2. Let M be a two-point homogeneous space. Then M satisfies Assumption 4.1.

Proof. The proof proceeds in two steps. The first is showing that if Φ : M → M is a diffeo-
morphism that is also an isometry (i.e., preserves distances), then the operator D := (∇k)∗∇k

is invariant in the sense that for any smooth function f : M → R, Df = (D(f ◦Φ)) ◦Φ−1. We
will follow a technique used in [18, Proposition 2.4, p. 246]. Let (U, φ) be a local chart, with
coordinates xj = φj(p), j = 1, . . . , n for p ∈ U. Since Φ is a diffeomorphism, (Φ(U), φ ◦ Φ−1)
is also a local chart. Let ψ = φ ◦ Φ−1, and use the coordinates yj = ψj(q) for q ∈ Φ(U). The
choice of coordinates has the effect of assigning the same point in R

n to p and q, provided
q = Φ(p) – i.e., xj(p) = yj(q). Thus, relative to these coordinates the map Φ is the identity,
and consequently, the two tangent vectors ( ∂

∂yj
)q ∈ TqM and ( ∂

∂xj )p ∈ TpM are related via

(
∂

∂yj

)

Φ(p)

= dΦp

(
∂

∂xj

)

p

.

So far, we have only used the fact that Φ is a diffeomorphism. The map Φ being in addition
an isometry then implies that

〈
∂

∂yj
,
∂

∂yk

〉

Φ(p)

=

〈
dΦp

(
∂

∂xj

)
, dΦp

(
∂

∂xk

)〉

Φ(p)

=

〈
∂

∂xj
,
∂

∂xk

〉

p

.

The expression on the left is the metric tensor at Φ(p), gjk(y), and on the right, the metric
tensor at p, gjk(x). The equation above implies that, as functions of y and x, gjk(y) = gjk(x).

2and not with respect to L2(Ω) – e.g., even though ∆m = (−1)m(∇m)∗∇m holds on R
d, it is not the case

that (−1)m
∫
Ω
v∆mu =

∫
Ω
∇mv∇mu for subsets Ω ⊂ R

d.
3We note that they have also appeared in other approximation theory literature. See, e.g., [3, 20]
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This means that the expressions for the Christoffel symbols, covariant derivatives and various
expressions formed from them will, as functions, be the same. Since the operatorD = (∇k)∗∇k

is constructed from such objects, it follows that Df = (D(f ◦Φ))◦Φ−1, and so D is invariant.
The second step makes use of two-point homogeneity. Since (∇k)∗∇k is invariant under

every isometry Φ in G, applying [18, Proposition 4.11, p. 288] yields the result that (∇k)∗∇k

is a polynomial in the Laplace–Beltrami operator: (∇k)∗∇k = ak+1∆
k + ak∆

k−1 + · · · a0.
Comparing terms in the highest order derivatives involved in coordinate expressions for both
sides shows that ak+1 = (−1)k.

Induction ensures that

∆k − (−1)k(∇k)∗∇k = ck−1(∇k−1)∗∇k−1 + ck−2(∇k−2)∗∇k−2 · · · + c0.

From this we have the following.

Lemma 4.3. Suppose M is a Riemannian manifold satisfying Assumption 4.1. If Q(x) =
cmx

m + · · · + c0 is a (real) polynomial of degree m, then there exist real numbers aj , with
am = cm, so that

Q(∆) =

m∑

j=0

aj(∇j)∗∇j .

Conversely, for any constants bj , there is a real polynomial p for which the operators p(∆)
and

∑
j=0n bj(∇j)∗∇j coincide.

An immediate consequence is that the Sobolev kernels κm,M considered in [16] and [15]
are Green’s functions for operators of the form Q(∆), with Q a real polynomial of degree m.

We note, furthermore, that because the lead coefficient cm of Q is assumed positive (see
Definition 3.1), we have that am > 0.

4.2 Connecting the quadratic form to the Sobolev norm

The benefit of Lemma 4.3 is that we can use it to obtain useful local versions of the form
〈Lu, v〉L2(M). In particular, we consider, for Lm = Q(∆), coefficients a0, . . . , am as guaranteed
by Lemma 4.3. When Ω ⊂ M, the form 〈∑m

j=0 aj(∇j)∗∇ju, v〉L2(Ω) =
∑m

j=0 aj〈u, v〉j,Ω is the
local version of 〈Lu, v〉L2(M). Indeed, we have

[u]2m,Ω :=

∫

Ω
β(u, u)xdµ

where β(·, ·)x : C∞ × C∞ → R is the bilinear form β(u, v)x =
∑m

j=0 aj〈∇ju,∇jv〉x. Clearly
for

a := max
j≤m

|aj | and a = max
j≤m−1

|aj | (4.1)

we have

am〈∇mu,∇mu〉x − a
m−1∑

j=0

〈∇ju,∇ju〉x ≤ β(u, u)x ≤ a
m∑

j=0

〈∇ju,∇ju〉x. (4.2)
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If we integrate over a region Ω ⊂ M, we obtain

am|u|2Wm
2 (Ω) − a‖u‖2

Wm−1
2 (Ω)

≤ [u]2m,Ω :=

∫

Ω
β(u, u)xdµ(x) ≤ a‖u‖2Wm

2 (Ω).

Now if u vanishes on a sufficiently dense set X0 ⊂ Ω, then a corollary of the “zeros”
estimate Theorem A.11, given in Section A, will imply that am|u|2Wm

2 (Ω) − a‖u‖2
Wm−1

2 (Ω)
≥

ε‖u‖2Wm
2 (Ω) where ε depends on am, a, properties of X0 and the boundary of Ω, but noth-

ing else. The two most important types of subset Ω, for our purposes, are annuli a and
complements of balls bc.

Annuli. In this case we consider an annulus a = B(p0, R) \ B(p0, R − t) with outer
radius R < 1

2rM and we apply Corollary A.16 to a function u that vanishes on a set X
satisfying h = h(X,a) ≤ γt. If, in addition, h ≤

√
am
2Λa , we have ‖u‖2Wm−1

2 (a)
≤ Λh2|u|2Wm

2 (a) ≤
am
2a |u|2Wm

2 (a) and, simultaneously, am
4 ‖u‖2Wm

2 (a) ≤ am
2 |u|2Wm

2 (a), so am|u|2Wm
2 (Ω)−a‖u‖2Wm−1

2 (Ω)
≥

am
4 ‖u‖2Wm

2 (Ω) follows and

am
4
‖u‖2Wm

2 (a) ≤
∫

a

β(u, u)dµ ≤ a ‖u‖2Wm
2 (a). (4.3)

(Note that h must be chosen to be less than
√

am
2Λa , as well as γt).

Complements of balls We consider the punctured manifold bc = M \ b(p0, R) with
outer radius R < 1

2rM. We apply Corollary A.17 to a function u that vanishes on a set X
satisfying h = h(X,a) ≤ γt. By picking h <

√
am
2Λa ,

am
4
‖u‖2Wm

2 (b(p,r)c) ≤
∫

b(p,r)c
β(u, u)dµ ≤ a‖u‖2Wm

2 (b(p,r)c). (4.4)

follows. (Note that in this case, h must be less than h0 and
√

am
2Λa , but that it can be chosen

independently of r. In Lemma 5.1 we refer to this critical value, the minimum of h0 and√
am
2Λa , as H0.)

5 The Lagrange function

We wish to uniformly bound the Lagrange function χξ(x) and establish its rate of decay as x
moves away from its center ξ. There are two cases that we will consider.

The first is the special case that involves interpolation by a polyharmonic kernel km (cf.
Definition 3.2) that is conditionally positive definite with respect to a space Π annihilated
by the operator Lm. This case is significant because the rate of decay is exponential (cf.
Theorem 5.3). It includes the restricted surface splines on S

d discussed in Example 2, for d
even.

The second case is the general one, where we do not assume any annihilation properties
concerning the space Π that is to be reproduced. This case includes the surface splines in odd
dimensions. The decay rate in this case is algebraic, rather than exponential.
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These results are similar to ones for the case of a lattice in R
d [5]. The restricted surface

splines defined in (3.2) have Lagrange functions that decay exponentially, for d even, but only
algebraically for d odd. For d odd, the lattice case has an additional family of polyharmonic
splines with exponential decay. We conjecture that this exponential decay holds for odd-
dimensional spheres, and that we have obtained only algebraic decay is simply an artifact of
the proof.

Notation Constant Introduce in ...

am (Positive) lead coefficient of the polynomial Q(x) Lemma 4.3

a maximum coefficient of Q(x) (4.1)
(in absolute value)

a maximum coefficient of Q(x)− amx
m (4.1)

CQ ℓ1(R
J ) norm of eigenvalues of Lm|ΠJ

(5.5)

rM injectivity radius Section 2

Γ1,Γ2 constants of metric equivalence from Exp (2.3)

c1, c2 constants of metric equivalence for Sobolev spaces Lemma 2.2

Λ constant for zeros lemma for annuli (A.20)

h0 threshold h level for the zeros lemma (A.19)

H0 threshold h level for results of 5.1 Lemma 5.1

H1 threshold h level for results of 5.2 Lemma 5.4

Table 2: Constants frequently used in Section 5. The first four constants are related to the
elliptic operator Lm = Q(∆). The final seven are geometric constants depending on M.

5.1 Lm annihilates ΠJ

We first consider the special case where km satisfies (3.5), with an operator Lm = Q(∆) for
which k̃m(j) = (Q(j))−1 > 0 for j /∈ J and Lmφj = 0 for j ∈ J . In other words, km is
conditionally positive definite with respect to ΠJ , and LmΠJ = 0. This the case for Example
2 for surface splines on even dimensional spheres.

In this case, the native space seminorm (3.1) is precisely the quadratic form derived from
the operator, namely

|||u|||2km,J = 〈Lmu, u〉L2(M) = [u]2km,M.

The more general case is considered in the next section, although the basic elements are
present here.

We begin by observing that if Ξ is sufficiently dense, with h ≤ min(h0,
√

am
2Λa), then by

(4.4) it is possible to estimate the norm of the Lagrange function by comparing it to a bump
φξ with φξ ◦ Expξ(x) = σ(|x|/q). We note that this bump is 1 at ξ and vanishes on the rest
of Ξ, thus it interpolates χξ on Ξ and has a smaller native space seminorm.

am
4
‖χξ‖2Wm

2 (M) ≤ |||χξ|||2km,J ≤ |||φξ|||2km,J ≤ a‖φξ‖2Wm
2 (M) ≤ Caqd−2m. (5.1)
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The final inequality follows from Lemma 2.2, and a direct computation of ‖σ(| · |/q)‖W 2m
2 (Rd).

The main result, the near-exponential decay of the Lagrange functions, now is a conse-
quence of an argument developed in [16] but given here in a somewhat different, streamlined
form. First we prove a lemma showing that a fraction of the seminorm of the Lagrange func-
tion χξ taken over the punctured manifold b(ξ, r)c resides in a narrow annular region around
the circle dist(x, ξ) = r.

Lemma 5.1. Suppose M is a d-dimensional compact Riemannian manifold satisfying As-
sumption 4.1. Suppose further that m > d/2, km satisfies Definition 3.2 and that Lm annihi-
lates the space ΠJ . Then there is a constant K > 0, depending only on m and M so that the
following holds. If Ξ is sufficiently dense, meaning that

h < H0 := min

(
h0,

√
am
2Λa

)

and if a = b(p, r) \ b(p, r − t) is an annulus of outer radius r < rM and sufficient width t, so
that 4h/h0 ≤ t, then the Lagrange functions for interpolation by km satisfy

‖χξ‖2Wm
2 (b(p,r−t)c) ≤ K‖χξ‖2Wm

2 (b(p,r)\b(p,r−t)).

Proof. Since χξ minimizes the native space seminorm we have [χξ]
2
km,M ≤ [φξχξ]

2
km,M for any

function φξ equaling 1 at ξ. If φξ is a C∞ cut-off, equaling 1 in the ball b = b(p, r − t) and
vanishing outside of the ball b ∪ a, then

[χξ]
2
km,b + [χξ]

2
km,bc ≤ [χξ]

2
km,b + [φξχξ]

2
km,a

By (4.4) and (4.3)

am
4
‖χξ‖2Wm

2 (bc) ≤ [χξ]
2
km,bc ≤ [φξχξ]

2
km,a ≤ a‖φξχξ‖2Wm

2 (a).

The result follows with K = 4aK ′/am, where the constant K ′ is introduced in Lemma 5.2,
which we prove below.

Lemma 5.2. Assume the manifold M, the kernel km, the set of centers Ξ and the annulus
a ⊂ M satisfy the conditions of Lemma 5.1. If φξ is a smooth “bump” function, satisfying

φξ ◦ Expξ(x) = σ

(
1

t
dist(Expξ(x),Expξ(0)) −

2t− r

t

)
= σ

( |x|
t

+
2t− r

t

)
(5.2)

with σ : R+ → R+ a C∞, non-increasing cutoff function equaling 1 on [0, 1]and 0 on [2,∞),
then

‖φξχξ‖Wm
2 (a) ≤ K ′‖χξ‖Wm

2 (a)

where K ′ depends only on M, m and the choice of cutoff σ.
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Proof. We follow the proof of [16, Lemma 4.3]. Let χ̃ξ(x) = χξ ◦ Expξ. By using the metric
equivalence guaranteed by Lemma 2.2, we can estimate ‖φξχξ‖2Wm

2 (a) by

‖φξχξ‖2Wm
2 (a) ≤ c22

∫

Rd

∑

|α|≤m

∣∣∣∣D
α

[
σ

( |x|
t

+
2t− r

t

)
χ̃ξ(x)

]∣∣∣∣
2

dx

≤ c22C
m∑

j=0

t2(j−m)

∫

B(0,r)\B(0,r−t)

∑

|α|=j

|Dαχ̃ξ(x)|2 dx

≤
(
c2
c1

)2

C
m∑

j=0

t2(j−m)‖χξ‖2W j
2 (a)

≤ C

(
c2
c1

)2

Λ
m∑

j=0

(
h

t

)2(m−j)

‖χξ‖2Wm
2 (a).

and K ′ = C( c2c1 )
2Λ
∑m

j=0(h0/4)
2(m−j). The second inequality follows from the product rule,

and C is a constant depending only on m, d and σ. The third inequality is Lemma 2.2 again,
and the final inequality is the zeros lemma for annuli, Corollary A.16.

At this point, we can follow the example of [16, Section 4]

Theorem 5.3. Suppose that M is a compact d-dimensional Riemannian manifold satisfying
Assumption 4.1. Suppose further that m > d/2 and that km satisfies Definition 3.2 and that
Lm annihilates the space ΠJ . There exist positive constants h0, ν and C, depending only on
m, M and the operator Lm so that if the set of centers Ξ is quasiuniform with mesh ratio ρ
and has density h ≤ H0 then the Lagrange functions for interpolation by km satisfy

|χξ(x)| ≤ Cρm−d/2 exp
(
−ν
h
min

(
d(x, ξ), rM

))
. (5.3)

Furthermore, for any 0 < ǫ ≤ 1, there is a constant C depending only on m,M, ρ and ǫ, so
that the Lagrange functions satisfy

|χξ(x)− χξ(y)| ≤ C

(
d(x, y)

q

)ǫ

. (5.4)

Proof. Set t = 4h/h0 =: γh, and note that for t ≤ r ≤ rM, Lemma 5.1 implies that

‖χξ‖2Wm
2 (b(ξ,r)c) ≤ ǫ‖χξ‖2Wm

2 (b(ξ,r−t)c),

with ǫ = (K − 1)/K. Letting n := ⌊r/t⌋, we have

‖χξ‖2Wm
2 (b(ξ,r)c) ≤ ǫn‖χξ‖2Wm

2 (M)

≤ ǫ−1e(log ǫ)r/t‖χξ‖2Wm
2 (M) ≤ ǫ−1e−νr/h‖χξ‖2Wm

2 (M)

≤ Ce−νr/hq2m−d

with ν := −γ log ǫ. Since ǫ = K
K+1 < 1, it follows that ν > 0. The final inequality follows

from (5.1).
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The bound (5.3) follows from the observation that χξ(x) can be estimated using The-
orem A.11. The intersection b(x, t) ∩ b(ξ,dist(x, ξ))c is contained the ball b(x,R), since
t < R < 1

2rM. Because geodesic spheres are smooth hypersurfaces whose intersection is
nontangential, The intersection b(x, t) ∩ b(ξ,dist(x, ξ))c is a Lipschitz domain contained in
b(x,R). Moreover, h ≤ γt. Thus, Theorem A.11 applies, giving us

|χξ(x)| ≤ Chm−d/2‖χξ‖Wm
2 (b(x,t)∩b(ξ,dist(x,ξ))c) ≤ Chm−d/2‖χξ‖Wm

2

(
b

(
ξ,d(x,ξ)

)c)

for h < γt. Similarly, the estimate in (5.4) follows from Corollary A.15.

5.2 General Case

In this case, the native space seminorm (3.1) and the quadratic form induced by the operator,
differ by some low order terms:

|||u|||2km,J = 〈Lmu, u〉L2(M) −
∑

j∈J
Q(λj)|〈u, ϕj〉|2 = [u]2km,M −

∑

j∈J
Q(λj)|〈u, ϕj〉|2.

Because of the orthonormality of ϕj , we have |〈u, ϕj〉|2 ≤ ‖u‖2L2(M). Setting

CQ :=
∑

j∈J
|Q(λj)| (5.5)

(this is the ℓ1(R
J ) norm of the spectrum of the operator Lm restricted to ΠJ ) we note that,

by Corollary A.13, if u vanishes on a sufficiently dense set, then the lower order terms are
controlled ∑

j∈J
|Q(λj)||〈u, ϕj〉|2 ≤ CQh

2m‖u‖2Wm
2 (M).

Indeed it follows that am
8 ‖u‖2Wm

2
≤ |||u|||2km,J when h is chosen small enough that CQh

2m ≤ am
8 .

This allows us to provide a basic estimate for the Lagrange function, similar to (5.1). In
this case

am
8
‖χξ‖2Wm

2 (M) ≤ |||χξ|||2km,J ≤ |||φξ|||2km,J ≤ (a+ CQh
2m)‖φξ‖Wm

2 (M) ≤ Caqd−2m. (5.6)

Lemma 5.4. Suppose M is a d-dimensional compact Riemmanian manifold satisfying As-
sumption 4.1. Suppose further that m > d/2 and that km satisfies Definition 3.2. Then
there is a constant K > 0, depending only on m and M so that the following holds. If Ξ is
sufficiently dense, meaning that

h < H1 := min

(
H0, 2m

√
am
8CQ

)
= min

(
h0,

√
am
2Λa

, 2m

√
am
8CQ

)

and if a = b(p, r) \ b(p, r − t) is an annulus of outer radius r < rM, satisfying, in addition,

‖χξ‖Wm
2 (b(p,r)c) ≥ C0h

2m‖χξ‖Wm
2 (M)
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(for a constant C0 depending only on m, M, km, and J which we define in the proof) and
sufficient width t, so that h ≤ γt, then the Lagrange functions for interpolation by km with
auxiliary space ΠJ satisfy

‖χξ‖2Wm
2 (b(p,r−t)c) ≤ K‖χξ‖2Wm

2 (b(p,r)\b(p,r−t)).

Proof. Since χξ minimizes the native space seminorm, we have

[χξ]
2
km,M ≤ [φξχξ]

2
km,M −

∑
Q(λj)

(∣∣∣∣
∫

M

φξ(x)χξ(x)ϕj(x)dµ(x)

∣∣∣∣
2

−
∣∣∣∣
∫

M

χξ(x)ϕj(x)dµ(x)

∣∣∣∣
2
)

for a cut-off φξ equaling 1 in the ball b = b(p, r − t) and vanishing outside of the ball
b(p, r) = b ∪ a. Using the sum of squares factorization |A|2 − |B|2 = ℜ

[
(A−B)(A+B)

]
, we

may write

∣∣∣∣
∫

M

φξ(x)χξ(x)ϕj(x)dµ(x)

∣∣∣∣
2

−
∣∣∣∣
∫

M

χξ(x)ϕj(x)dµ(x)

∣∣∣∣
2

= ℜ
[(∫

M

(
φξ(x)− 1

)
χξ(x)ϕj(x)dµ(x)

)
×
(∫

M

(
φξ(x) + 1

)
χξ(x)ϕj(x)dµ(x)

)]

= ℜ
[(∫

a

(
φξ(x)

)
χξ(x)ϕj(x)dµ(x)−

∫

bc

χξ(x)ϕj(x)dµ(x)

)

×
(∫

M

(
φξ(x) + 1

)
χξ(x)ϕj(x)dµ(x)

)]
.

The second factor can be bounded by using Corollary A.13, along with the cutoff function φξ
being bounded by 1 and ‖ϕj‖2 = 1:

∣∣∣∣
∫

M

(
φξ(x) + 1

)
χξ(x)ϕj(x)dµ(x)

∣∣∣∣ ≤ 2‖χξ‖L2(M) ≤ 2Λhm‖χξ‖Wm
2 (M)

To bound the first factor, start by using Corollary A.16 and Lemma 5.2 to obtain

∣∣∣∣
∫

a

(
φξ(x)

)
χξ(x)ϕj(x)dµ(x)

∣∣∣∣ ≤
(∫

a

|φξχξ|2dµ(x)
)1/2

≤ Λhm‖φξχξ‖Wm
2 (a) ≤ ΛK ′hm‖χξ‖Wm

2 (a).

Next, from Corollary A.17 we have that

∣∣∣∣
∫

bc

χξ(x)ϕj(x)dµ(x)

∣∣∣∣ ≤
(∫

bc

|χξ|2dµ(x)
)1/2

≤ Λhm‖χξ‖Wm
2 (bc).

So the first factor is bounded by

ΛK ′hm‖χξ‖Wm
2 (a) + Λhm‖χξ‖Wm

2 (bc) ≤ Λ(K ′ + 1)hm‖χξ‖Wm
2 (bc),
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and the product itself is bounded by

C ′h2m‖χξ‖Wm
2 (bc)‖χξ‖Wm

2 (M), where C
′ = 2Λ2(K ′ + 1).

Putting these bounds together gives us

∑
|Q(λj)|

∣∣∣∣∣

∣∣∣∣
∫

M

φξ(x)χξ(x)ϕj(x)dµ(x)

∣∣∣∣
2

−
∣∣∣∣
∫

M

χξ(x)ϕj(x)dµ(x)

∣∣∣∣
2
∣∣∣∣∣

≤ C ′CQh
2m‖χξ‖Wm

2 (M)‖χξ‖Wm
2 (bc).

Thus for h sufficiently small, say for C ′CQh
2m‖χξ‖Wm

2 (M) ≤ am
8 ‖χξ‖Wm

2 (bc), which follows
by taking

C0 :=
8C ′CQ

am
,

we have

∑
|Q(λj)|

∣∣∣∣∣

∣∣∣∣
∫

M

φξ(x)χξ(x)ϕj(x)dµ(x)

∣∣∣∣
2

−
∣∣∣∣
∫

M

χξ(x)ϕj(x)dµ(x)

∣∣∣∣
2
∣∣∣∣∣ ≤

am
8
‖χξ‖2Wm

2 (bc). (5.7)

We note from (4.4) that
am
4
‖χξ‖2Wm

2 (bc) ≤ [χξ]
2
km,Wm

2 (bc) (5.8)

and by subtracting right and left sides of (5.7) from the left and right sides of (5.8) the lemma
follows since then

am
8
‖χξ‖2Wm

2 (bc)

≤ [χξ]
2
km,bc −

∣∣∣∣∣
∑

Q(λj)

(∣∣∣∣
∫

M

φξ(x)χξ(x)ϕj(x)dµ(x)

∣∣∣∣
2

−
∣∣∣∣
∫

M

χξ(x)ϕj(x)dµ(x)

∣∣∣∣
2
)∣∣∣∣∣

≤ [φξχξ]
2
km,bc = [φξχξ]

2
km,a ≤ aK ′‖χξ‖2Wm

2 (a)

where the last inequality follows from (4.3). The result follows with K = 8aK ′/am.

We are now ready for the full result.

Theorem 5.5. Suppose that M is a compact d-dimensional Riemannian manifold satisfying
Assumption 4.1. Suppose further that m > d/2 and that km satisfies Definition 3.2. There
exist positive constants h0, ν and C, depending only on m, M and the operator Lm so that
if the set of centers Ξ is quasiuniform with mesh ratio ρ and has density h ≤ H1 then the
Lagrange functions for interpolation by km with auxiliary space ΠJ satisfy

|χξ(x)| ≤ Cρm−d/2 max
(
exp

(
−ν
h
min

(
d(x, ξ), rM

))
, h2m

)
. (5.9)

Furthermore, for any 0 < ǫ ≤ 1 for which m > d/2, there is a constant C depending only on
m,M, ρ and ǫ, so that the Lagrange functions satisfy

|χξ(x)− χξ(y)| ≤ C

(
d(x, y)

q

)ǫ

. (5.10)
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Proof. Let r0 be the smallest radius r so that ‖χξ‖Wm
2 (b(p,r)c) ≤ C0h

2m‖χξ‖Wm
2 (M). Since

r 7→ ‖χξ‖Wm
2 (b(p,r)c) is decreasing, r0 ≤ diam(M). Assume without loss that r0 ≤ rM, since

otherwise the proof proceeds exactly as in Theorem 5.3.
Set t = h/γ, and note that for t ≤ r ≤ r0, Lemma 5.4 implies that

‖χξ‖2Wm
2 (b(ξ,r)c) ≤ ǫ‖χξ‖2Wm

2 (b(ξ,r−t)c)

with ǫ = (K − 1)/K.
As in the proof of Theorem 5.3

‖χξ‖2Wm
2 (b(ξ,r)c) ≤ ǫ−1e−νr/h‖χξ‖2Wm

2 (M) ≤ Ce−νr/hq2m−d.

Where we have set ν := −γ log ǫ. Since ǫ = K
K+1 < 1, it follows that ν > 0. The last

inequality follows from (5.6). On the other hand, for r ≥ r0, we have that ‖χξ‖Wm
2 (b(p,r)c) ≤

C0h
2m‖χξ‖Wm

2 (M) ≤ CC0q
2m−dh2m, by (5.6). Therefore,

‖χξ‖Wm
2 (b(p,r)c) ≤ Cq2m−dmax(h2m, e−νr/h)

Again, estimate (5.9) follows from the observation that χξ(x) can be estimated by way of
the zeros lemma:

|χξ(x)| ≤ Chm−d/2‖χξ‖Wm
2 (b(x,t)∩b(ξ,dist(x,ξ))c) ≤ Chm−d/2‖χξ‖Wm

2

(
b

(
ξ,d(x,ξ)

)c),

for h < γt.
Similarly, estimate (5.10) follows from Corollary A.15.

5.3 Implications for Interpolation and Approximation

At this point, we are able to state three important corollaries to Theorem 5.5 that satisfac-
torily answer the questions concerning bases and approximation properties of VX discussed
in Section 1. These results were previously obtained in [16, 15] for a class of Sobolev kernels.
Here, we get them for a much broader, computationally implementable class of kernels. Our
first result is that the Lebesgue constant for interpolation is uniformly bounded.

Theorem 5.6 (Lebesgue Constant). Let M be a compact Riemannian manifold of dimension
d satisfying Assumption 4.1. Suppose further that m > d/2 and that km satisfies Definition
3.2. For a quasi-uniform set Ξ ⊂ M, with mesh ratio h/q ≤ ρ, if h ≤ H0, then the Lebesgue
constant, L = supα∈M

∑
ξ∈Ξ |χξ(α)|, associated with km and J is bounded by a constant

depending only on m, ρ and M.

Proof. Fix x. Using Theorem 5.5, we estimate the sum as

∑

ξ∈Ξ
|χξ(x)| ≤

∑

ξ∈Ξ
Cρm−d/2 exp

(
−νmin(dist(x, ξ), rM)

h

)
+
∑

ξ∈Ξ
Cρm−d/2h2m =: I + II
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The first sum can be treated exactly as in [16, Theorem 4.6], and is bounded independently
of h. The second sum, II, can be estimated using the fact that #Ξ ≤ Cq−d, with a constant
C = µ(M)/α(M), where α(M) := infx∈M inf0<r<rM r

−dµ(b(x, r)). Thus

II ≤ Cρm−d/2q−dh2m ≤ Ch2m−dρm+d/2

which is bounded since 2m > d (indeed it vanishes as h→ 0).

The next consequence is the Lp stability of the Lagrange basis. To this end, we define

S(km,J ,Ξ) :=




∑

ξ∈Ξ
Aξkm(·, ξ) + p | p ∈ ΠJ and

∑
Aξq(ξ) = 0 for all q ∈ ΠJ





and use this notation in lieu of VX used in the introduction.

Theorem 5.7 (Stability of Lagrange Basis). Under the assumptions of Theorem 5.5, there
exist constants 0 < c1 < c2, depending only on km, J , M and ρ so that

c1‖Ap,·‖ℓp(Ξ) ≤ ‖s‖Lp(M) ≤ c2‖Ap,·‖ℓp(Ξ).

holds for all s =
∑

ξ∈ΞAξχξ ∈ S(km,J ,Ξ), with normalized coefficients Ap,ξ := qd/pAξ.

Proof. When Lm annihilates ΠJ , this is a direct consequence of the pointwise estimates
obtained in Theorem 5.3. We observe that the following three conditions hold:

1. The basis (χξ)ξ∈Ξ is a Lagrange basis.

2. The basis has decay |χξ(x)| ≤ Cρm−d/2 exp
(
− ν

h min
(
d(x, ξ), rM

))
.

3. The basis has the equicontinuity condition |χξ(x)− χξ(y)| ≤ C2

[
dist(x,y)

q

]ǫ
.

Thus the result [15, Theorem 3.10] applies.
In the general case, the result still holds, despite the fact that item 2 may fail. I.e., the

Lagrange functions may decay more slowly than the basis functions considered in [15], and a
minor modification is required to apply of [15, Theorem 3.10].

The upper bound ‖s‖Lp(M) ≤ c2‖Ap,·‖ℓp(Ξ) follows directly from the estimate (5.9). Indeed,
the case p = ∞, is none other than the Lebesgue constant estimate Theorem 5.6, while the
p = 1 case follows by the uniform bound on

‖χξ‖1 ≤ Cρm−d/2
(
Chd + vol(M)

(
h2m + e−νrM/h

))
≤ Cρm+d/2qd.

The case 1 < p <∞ follows by interpolation.
To handle the lower bound, we utilize functions φξ, defined in a similar way as in (5.2),

satisfying φξ ◦ Expξ = σ, with

σ(x) =





1 |x| ≤ r0

h−2me−
ν|x|
h r0 < |x| ≤ rM

h−2me−
νrM
h |x| > rM

or σ(x) =

{
1 |x| ≤ r0

h−2me−
ν|x|
h r0 < |x|

(5.11)
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and with threshold value r0 := −2m
ν h log h (the second definition is chosen if rM < r0). It

follows that
χξ = χξφξ + χξ(1− φξ) =: gξ + bξ,

and gξ satisfies items 1–3 above (in particular, item 3 follows since φξ is bounded and Lip(1),
with Lipschitz constant ν/h) and [15, Theorem 3.10] applies. In particular, there is c1 > 0 so
that ‖∑ξ∈ΞAξgξ‖p ≥ c1‖Ap,·‖ℓp(Ξ).

On the other hand, |bξ(x)| ≤ h2m, implies that ‖∑ξ∈ΞAξbξ‖p ≤ Cρd‖Ap,·‖ℓpΞh2m−d since

∫

M

|
∑

ξ∈Ξ
Aξbξ(x)|dx ≤ ‖A‖ℓ1(Ξ)µ(M)h2m and max

x∈M
|
∑

ξ∈Ξ
Aξbξ(x)| ≤ Cρd‖A‖ℓ∞(Ξ)h

2m−d.

Thus, for s =
∑

ξ∈ΞAξχξ,

‖s‖p = ‖
∑

ξ∈Ξ
Aξχξ‖p ≥


21−p‖

∑

ξ∈Ξ
Aξgξ‖pp − ‖

∑

ξ∈Ξ
Aξbξ‖pp




1/p

≥
(c1
2

− o(h)
)
‖Ap,·‖ℓp(Ξ),

where we have used the inequality |∑ξ∈ΞAξgξ|p ≤ 2p−1
(
|∑ξ∈ΞAξχξ|p + | −∑ξ∈ΞAξbξ|p

)
.

Our final consequence treats the Lp stability of the L2 projector. This was a primary
goal of [15], and, in light of Theorem 5.5, we can produce a similar result here, with a minor
modification to handle the slower decay of the Lagrange functions.

Let V : CΞ → S(km,J ,Ξ) be a basis “synthesis operator” V : (Aξ)ξ∈Ξ 7→ ∑
ξ∈ΞAξvξ,

for a basis (vξ)ξ∈Ξ of S(km,J ,Ξ). Likewise, let V ∗ : L1(M) → C
Ξ be its formal adjoint

V ∗ : f 7→
(
〈f, vξ〉

)
ξ∈Ξ. The L2 projector is then TΞ = V (V ∗V )−1V ∗ : L1(M) → S(km,J ,Ξ),

in the sense that when f ∈ L2(M), TΞf is the best L2 approximant to f from S(km,J ,Ξ).
The L2 norm of this projector is 1 (it being an orthogonal projector), while the Lp and

L′
p norms are equal, because it is self-adjoint. Thus, to estimate its Lp operator norm (1 ≤

p ≤ ∞), it suffices to estimate its L∞ norm.

Theorem 5.8. Under the assumptions of Theorem 5.5, for all 1 ≤ p ≤ ∞, the Lp operator
norm of the L2 projector TΞ is bounded by a constant depending only on M, ρ km and J .

Proof. When Lm annihilates ΠJ , Theorem 5.3 and Theorem 5.7 satisfy the conditions of [15,
Theorem 5.1] (the Lagrange basis is stable and rapidly decaying), and the result follows.

In the general case, we cannot directly apply this theorem, because the basis does not decay
rapidly enough. We take as our basis vξ = χξ,2 := q−d/2χξ, the L2 normalized Lagrange basis.
It follows from Theorem 5.7 that ‖V ‖ℓ∞(Ξ)→L∞(M) ≤ c2q

−d/2 and ‖V ∗‖L∞(M)→ℓ∞(Ξ) ≤ c2q
d/2.

Thus, to estimate the L∞ operator norm of TΞ (and thereby all other Lp norms), it suffices
to estimate the ℓ∞(Ξ) → ℓ∞(Ξ) norm of the inverse Gram matrix (V ∗V )−1.

We make the split gξ = χξφξ and bξ = χξ(1− φξ) with φξ ◦Expξ = σ defined as in (5.11).
And note that χξ,2 = χξ,2φξ + χξ,2(1− φξ) =: gξ,2 + bξ,2,
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It follows that V ∗V = G+B, with Gξ,ζ = 〈gξ,2, gζ,2〉L2(M).
The functions (gξ) are a Lagrange basis, in the sense that gξ(ζ) = δξ,ζ (although they span

a different space than S(km,J ,Ξ) and, as observed in the proof of Theorem 5.7, they are Lp

stable. They also satisfy the decay conditions of [15, Proposition 4.1], and by applying this
result we see that ‖G−1‖∞ is bounded by a constant.

On the other hand, |Bξ,ζ | ≤ |〈gξ,2, bζ,2〉|+ |〈bξ,2, gζ,2〉|+ |〈bξ,2, bζ,2〉| ≤ Ch2m, and ‖B‖∞ ≤
maxξ

∑
ζ |Bξ,ζ | ≤ Cρdh2m−d. The theorem follows by noting that (V ∗V ) = G(Id + G−1B),

and, hence, ‖(V ∗V )−1‖∞ ≤ ‖G−1‖∞ (1 + o(h)) .

5.4 Spheres and SO(3)

We now explore some further consequences of the results of the previous section. We will
shortly see that Theorems 5.6 and 5.8 imply that IΞ and TΞ are near-best. In some important
cases, we can then use these projectors to observe precise rates of convergence for interpolation
and least squares minimization, better rates than were previously known.

For the kernels considered in section 3.2, theoretical approximation results are known
in some special cases, including spheres and SO(3). The difficulty is that these results are
often not practical, because they are derived from approximation schemes that are difficult
to implement. The good news is that the stability of the schemes IΞ and TΞ imply that these
operators, which are associated with practical schemes, inherit the same convergence rates.
Indeed, for a normed linear space Y and a bounded projector P : Y → Y , one has for f ∈ Y ,

‖f − Pf‖ = inf
s∈ranP

‖f − s+ Ps− Pf‖ ≤ (1 + ‖P‖)dist(f, ranP ). (5.12)

This fundamental observation is known as a Lebesgue inequality, and we employ it with
P = IΞ and Y = C(M) as well as with P = TΞ and Y = Lp(M). In recent years, a concerted
effort has been undertaken4 to understand the general Lp convergence rates (i.e., the behavior
of dist(f, S(km,J ,Ξ))p as Ξ becomes dense in M) of certain well-known kernels in terms
of smoothness assumptions on the target function f and on the density of the point-set Ξ,
measured by the fill distance h.

To measure smoothness of the target function, we make use of the classical (Sobolev,
Besov) smoothness spaces introduced in Definition 2.1 and Definition 2.3, with the exception
that for approximation in L∞, we make the (usual) replacement of C2m for W 2m

∞ (but using
the same norm). As a shorthand, we capture the smoothness spaces we use by means of a
common notation, Ws

p(M). For m > d/2 denote the space Ws
p(M) by

• Ws
p(M) = C2m(M), when p = ∞ and s = 2m

• Ws
p(M) =W 2m

p (M) when 1 ≤ p <∞ and s = 2m

4This stands in contrast to the more classical, mainstream theory of kernel approximation, where approx-
imation properties are investigated and understood only for functions coming from the reproducing kernel
(semi-)Hilbert space associated with a conditionally positive definite kernel. Obtaining an understanding out-
side of this context has generally required indirect, theoretical approximation schemes, and it has not been
obvious, until now, that such results would have practical consequences.
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• Ws
p(M) = Bs

p,∞(M) when 1 ≤ p ≤ ∞ and 0 < s < 2m.

Corollary 5.9. For M = S
d, and m > d/2 the surface splines introduced in Example 3:

km(x, y) = φs(x·, y) satisfy the following. There is a constant C so that, for a sufficiently
dense set Ξ ⊂ S

d, and for f ∈ Ws
p .

1. For f ∈ Ws
∞, ‖IΞf − f‖ ≤ Chs‖f‖Ws

∞

2. For 1 ≤ p ≤ ∞ and for f ∈ Ws
p , ‖TΞf − f‖p ≤ hs‖f‖Ws

∞
.

Proof. As with the Sobolev kernels, φs is of the form Gβ + ψ ∗ Gβ as considered in [22], the
result follows direct from [22, Theorem 6.8]. Alternatively, it follows from [14, Theorem 6.1],
which treats kernels on the sphere of the type in Definition 3.2. The Besov space result follows
from [22, Corollary 6.13] or [14, Corollary 6.2].

Corollary 5.10. For M = SO(3), and m ≥ 2 The surface splines, km, introduced in Example
4 satisfy the following. There is a constant C so that, for a sufficiently dense set Ξ ⊂ SO(3),
and for f ∈ Ws

p .

1. For f ∈ Ws
∞, ‖IΞf − f‖ ≤ Chs‖f‖Ws

∞

2. For 1 ≤ p ≤ ∞ and for f ∈ Ws
p , ‖TΞf − f‖p ≤ hs‖f‖Ws

∞
.

Proof. This follows from [17, Theorem 9] for the case of full smoothness and from [17, Theorem
12] when 0 < s < 2m.

A A Zeros Lemma for Lipschitz Domains on Manifolds

Results concerning Sobolev bounds on functions with many zeros are known for Lipschitz
domains in R

d [25, 26]. Our aim is to extend these results to certain Lipschitz domains on
manifolds. Before we do that, however, we will need to improve the R

d results in [25, 26].

A.1 Lipschitz domains in Rd

Consider a domain Ω ⊂ R
d that is bounded, has a Lipschitz boundary, and satisfies an interior

cone condition, where the cone CΩ has a maximum radius R0 and aperture5 2ϕ. Of course,
the cone condition will be obeyed if we use any radius 0 < R ≤ R0. The theorem that we will
give below requires covering Ω with certain star-shaped domains.

We will say that a domain D is star shaped with respect to a ball B(xc, r) := {x ∈
R
d : |x− xc| < r} if, for every x ∈ D, the closed convex hull of {x} ∪B is contained in D [4,

Chapter 4]. For D bounded, there is a measure of how close to spherical D is; namely, the
chunkiness parameter γ [4, Definition 4.2.16]. This is defined as the ratio of dD to the radius
of the largest ball relative to which D is star shaped. When D is a sphere, γ = 2. If there is a
ball B(xc, R) ⊇ D, then r < dD < 2R and γ ≤ 2R

r . Finally, such domains satisfy an interior
cone condition and certain Sobolev bounds, which are stated in the next two propositions.

5Aperture here is the angle across the cone, 2ϕ in this case. In optics, aperture would be ϕ.
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Proposition A.1 ([25, Proposition 2.1]). If D is bounded, star shaped with respect to B(xc, r)
and contained in B(xc, R), then every x ∈ D is the vertex of a cone CD ⊂ D having radius r
and aperture θ := 2 arcsin

(
r
2R

)
.

This proposition also implies that the chunkiness parameter for D is bounded in terms of
the aperture:

γ ≤ 2R

r
= csc(θ/2).

Proposition A.2 ([16, Proposition 3.5]). Let D ⊂ R
d be as above, m ∈ N and p ∈ R,

1 ≤ p ≤ ∞. Assume m > d/p when p > 1, and m ≥ d, for p = 1. If u ∈ Wm
p
(D) satisfies

u|X = 0, where X = {x1, . . . , xN} ⊂ D and if h = hX ≤ dD
16m2γ2 , then

|u|W k
p
(D) ≤ Cm,d,pγ

d+2kdm−k
D |u|Wm

p
(D) (A.1)

‖u‖L∞(D) ≤ Cm,d,pγ
dd

m−d/p
D |u|Wm

p (D). (A.2)

Our next task is to obtain Sobolev bounds for the domain Ω ⊂ R
d that are similar those

in (A.1). The idea is to cover Ω with star-shaped domains. To do that, we will use a
construction due to Duchon [8]. With R0, 2ϕ being the radius and aperture for the cone CΩ,
and 0 < R ≤ R0, let

r := 2RF (ϕ), where F (ϕ) :=
sin(ϕ)

4(1 + sin(ϕ))
, and Tr :=

{
t ∈ 2r√

d
Z
d : B(t, r) ⊂ Ω

}
. (A.3)

For t ∈ Tr, let Dt be the set of all x ∈ Ω such that the closed convex hull of {x} ∪ B(t, r)
is contained in Ω ∩ B(t, R). From [25, Lemma 2.11], we have that each Dt is star shaped
with respect to the ball B(t, r), and satisfies B(t, r) ⊆ Dt ⊆ Ω ∩B(t, R), dDt < 2R. Because
2R/r = 1/F (ϕ), the aperture for CDt is

θ = 2arcsin(1/F (ϕ)),

and the chunkiness parameter γt for Dt is uniformly bounded:

2 ≤ γt <
2R

r
=

1

F (ϕ)
. (A.4)

We also have that Ω =
⋃

t∈Tr
Dt, that #Tr < Cd vol(Ω)(F (ϕ)R)

−d, and that vol(Dt) ≤ CdR
d.

The integer-valued simple function
∑

t∈Tr
χB(t,R)(x) is the number of B(t, R)’s that contain

x. This is easily bounded above by Md,ϕ, maximum number of such balls intersecting a fixed
one, say B(0, R). A little geometry shows that

M(d, ϕ) ≤ (2R/r + 1)d ≤ 2d/(F (ϕ)d

Note that the existence of Md,ϕ implies that for any function f in L1(Ω) we have

∑

t

∫

Dt

|f(x)|dx =

∫

Ω

∑

t

χDt(x)|f(x)|dx ≤Md,ϕ

∫

Ω
|f(x)|dx ≤ (2d/(F (ϕ)d)

∫

Ω
|f(x)|dx.

(A.5)
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Lemma A.3. Suppose that h = hX,Ω satisfies h ≤ R
8m2F (ϕ)

2, then (A.1) and (A.2) hold
uniformly in t for Dt, provided γt and dDt are replaced by 1/F (ϕ) and 2R, respectively.

Proof. The mesh norm for Ω satisfies

h ≤ m−2(2RF (ϕ)︸ ︷︷ ︸
r

)× (F (ϕ)/16) < r,

since F (ϕ) < 1. It follows that B(xc, r)∩X 6= ∅, and so Dt ∩X contains at least one point of
X. From this we have that hDt∩X ≤ h. The lemma then follows from the bound on h being
less than the one required in Proposition A.2.

We wish to prove the following result, which differs from an earlier result in [25, Theo-
rem 2.12] in that it applies to cases in which the index k ≤ m−1, as opposed to k < m−n/p.

Theorem A.4 (Euclidean Case). Suppose that Ω is a Lipschitz domain obeying a cone
condition, where the cone CΩ has radius R0 and aperture 2ϕ. Let k, m, and p be as in
Proposition A.2, and and let X ⊂ Ω be a discrete set with mesh norm h satisfying

h <
R0

8m2
F (ϕ)2. (A.6)

If u ∈Wm
p (Ω) satisfies u|X = 0, then

|u|W k
p
(Ω) ≤

2d/p(4m)2m−2kCm,d,p

F (ϕ)2m+d+d/p
hm−k|u|Wm

p (Ω) (A.7)

and

‖u‖L∞(Ω) ≤
(4m)2m−2d/pCm,d,p

F (ϕ)2m+d−2d/p
hm−d/p|u|Wm

p (Ω). (A.8)

Proof. Given h, choose R = 8m2h/F (ϕ)2 < R0. Applying Lemma A.3 and Proposition A.2
to the domain Dt then results in the bound

|u|W k
p (Dt) ≤

(4m)2m−2kCm,d,p

F (ϕ)d+2m
hm−k|u|Wm

p (Dt)

We will follow the proof in [25, Theorem 2.12]. Summing over t on both sides of the previous
inequality, using Ω = ∪tDt and applying (A.5), we have that

|u|p
W k

p (Ω)
≤
(
(4k)2m−2kCm,d,ph

m−k

F (ϕ)d+2m

)p

(2d/(F (ϕ)d)|u|pWm
p

(Ω),

from which (A.7) is immediate. The bound on ‖u‖L∞(Ω) follows similarly.
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A.2 Lipschitz domains in M

A domain Ω on a smooth, compact Riemannian manifold M satisfies an interior cone condition
if there is a cone C ⊂ R

n with center 0, aperture 2ϕ, and radius R such that, with some
orientation of C, Expp : C → Cp ⊂ Ω. That is, the image of the fixed cone C is a geodesic
cone Cp contained in Ω. In addition, Ω satisfies the uniform cone condition if, for every
p0 ∈ ∂Ω and some orientation of C, Expp(C \ {0}) ⊆ Ω for all p ∈ b(p0, r) ∩ Ω. Finally, Ω is
said to be locally strongly Lipschitz [23, 19] if for every p0 ∈ ∂Ω there is a local chart (U,ψ),
ψ : U → R

n,with ψ(p0) = 0, a Lipschitz function λ : Rn−1 → R, with λ(0) = 0, and an ε > 0
such that

ψ(U ∩ Ω) = {(x′, λ(x′) + t) : 0 < t < ε, x′ ∈ R
n−1, |x′| < ε}.

Our approach to a manifold analogue of Theorem A.4 is to employ a set of points for M
that are similar to those described in (A.3). The set that we need is described and studied
in [13, §3]. Let ε > 0. There exists an ordered set of points {p1, . . . , pN} ⊂ M such that
the ∪N

j=1b(pj, ε) = M and such that the balls b(pj , ε/2) are disjoint. Such a set is called a

minimal ε-net in M.6 It has the following two important properties: First, there is a number
N1 = N1(ε,M) for which N ≤ N1. Second, there exists an integer N2 = N2(M) ≥ 1 such that
for any p ∈ M the ball b(p, ε) intersects at most N2 of the balls b(pj , ε). It is remarkable that
N2 is independent of ε and, in fact, depends only on general properties of M itself. We will
need a slightly stronger version of this result.

Lemma A.5. Let {p1, . . . , pN} be a minimal ε-set, p ∈ M, and let 1 ≤ α. Suppose ε ≤ dM/α,
where dM is the diameter of M. Then the cardinality s := #{pj : b(p, αε) ∩ b(pj , ε) 6= ∅} ≤
(4α+ 1)de

3(d−1)√
|κ|

dM
.

Proof. The argument used in [13, Lemma 3.3] gives, mutatis mutandis,

s ≤
∫ (2α+ 1

2
)ε

0 sinhd−1(
√

|κ| t)dt
∫ ε/2
0 sinhd−1(

√
|κ |t)dt

=: H(α, ε, κ) = H(α, ε/
√

|κ|, 1)

where (d−1)κ is a lower bound on the Ricci curvature ofM. Making use of 1 ≤ sinh(x)/x ≤ ex,
we see that

d−1xd ≤
∫ x

0
td−1dt ≤

∫ x

0
sinhd−1(t)dt ≤ d−1xde(d−1)x,

and consequently that

H(α, ε, κ) ≤ (4α+ 1)de(d−1)(2α+ 1
2
)ε/

√
|κ| ≤ (4α+ 1)de

3(d−1)√
|κ|

dM
,

which completes the proof.

6An ε-net is a set of points X = {p1, . . . , pN} for which
⋃

b(pj , ε) covers M – in other words, for which
h(X,M) ≤ ε. Likewise, a minimal ε-net is quasiuniform, with separation distance q ≥ ǫ/2 and mesh ratio
h/q ≤ 2.
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Lemma A.6. Let R < rM/3, ϕ ∈ (0, π/2] and ε = Γ1R sin(ϕ)
2(1+sin(ϕ)) . If {p1, . . . , pN} is an ε-set and

if Cp is a geodesic cone with center p, radius R, and angle ϕ, then for some j we have that
b(pj, ε) ⊂ Cp.

Proof. We will work in normal coordinates on TpM , where the cone C has vertex at the origin
and en = (0, . . . , 1) is chosen to be along the axis of C. The largest Euclidean ball in C has
radius ρ = R sin(ϕ)/(1+sin(ϕ)) and center xc = (R−ρ)en. It follows that any ball having its
center a Euclidean distance ρ/2 from xc and having its radius less than ρ/2 is also contained
in C. Let pc = Exp(xc). Since the balls b(pj, ε), j = 1, . . . , N , cover M, we can find pj such
that pc ∈ b(pj , ε).

Let xj = Exp−1
p (pj). Equation (2.3) implies that |xc−xj| ≤ dist(pc, pj)/Γ1 < ε/Γ1 = ρ/2.

Now consider the ball b(pj ,Γ1ρ/2). Let q ∈ b(pj ,Γ1ρ/2) and let x = Exp−1
p (q). Applying

equation (2.3) then yields that |x−xj| ≤ dist(p, q)/Γ1 < ρ/2, and consequently that b(pj , r) ⊂
Cp, with r ≤ ρ/2 = Γ1R sin(ϕ)

2(1+sin(ϕ)) .

Our goal is now to cover Ω with domains analogous to those used in the previous section.
To that end, let R ≤ RΩ, fix

r :=
Γ1R sin(ϕ)

2(1 + sin(ϕ))
= 2F (ϕ)R (A.9)

and find a minimal ε-net (with ε = r) {p1, . . . , pN} and set Tr := {pj : b(pj , r) ⊂ Ω}. Because
Ω obeys a uniform cone condition, with radius RΩ and angle ϕ, Lemma A.6 implies that Tr
is nonempty.

Next, for each pj ∈ Tr, let Dj be the set of all p ∈ Ω ∩ b(pj, R) such that the geodesic
convex hull of {p} ∪ b(pj , r) – i.e., the set comprising all points on every geodesic connecting
p to a point in b(pj , r) – is contained in Ω ∩ b(pj, R). Again by Lemma A.6, for every p ∈ Ω
there is a pj ∈ Tr such that the geodesic cone Cp contains b(pj , r). Since this cone also
contains the geodesic convex hull of {p} ∪ b(pj , r), it follows that p ∈ Dj and, hence, that
Ω = ∪pj∈TrDj .

We claim that the domain Dj := Exp−1
pj (Dj) is star shaped with respect to the Euclidean

ball b(Exp−1
pj (pj), r/Γ2). To show this, we will need the following lemma.

Lemma A.7. Let p ∈ M, u,v ∈ TpM satisfy |u|p = |v|p = 1, α := arccos(〈u,v〉) ∈ (0, π].
If pρ = Expp(ρu), so that ρ = dist(p, pρ) < rM/3, then the geodesic distance r from pρ to the
ray along v satisfies

Γ1ρ sin
(
min(α, π/2)

)
≤ r ≤ Γ2ρ sin

(
min(α, π/2)

)
.

Proof. Consider the sector in span(u,v) formed by tu + sv, where s, t ≥ 0. We will work
in normal coordinates based at p. The minimum geodesic distance r from pρ to geodesic
Expp(sv) occurs at a point Expp(tv). In addition, the minimum Euclidean distance r′ from
ρu = Exp−1

p (pρ) to the ray will occur at another point, t′v, where v is perpendicular to t′v−ρu,
in the Euclidean sense. These facts imply that r = dist(pρ, tv) ≤ dist(pρ,Expp(t

′v)) ≤
Γ2|ρu−t′v|eucl. Using a little trigonometry, together with t′v−ρu and v being perpendicular,
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we see that |ρu− t′v|eucl = ρ sin(α) when α < π/2, and that |ρu− t′v|eucl = |ρu|eucl = ρ when
α ≥ π/2. In a similar way, we have r = dist(p,Expp(tv)) ≥ Γ1|ρu−tv|eucl ≥ Γ1|ρu−t′v|eucl =
Γ1ρ sin

(
min(α, π/2)

)
. Combining the inequalities completes the proof.

There is corollary to the lemma that will be useful for smooth surfaces, in particular balls and
annuli. We state and prove it now, although it will only become useful after the zeros result
Theorem A.11.

Corollary A.8. Let q ∈ ∂Ω and suppose there is a ball b(p, ρ), ρ < rM/3, such that b(p, ρ) ⊂
Ω and that d(q, p) = ρ. Then, the geodesic cone Cq, with vertex q, axis along the geodesic
joining q to p, radius Γ1ρ/2 and angle ϕ = arcsin( 1

2Γ2
) satisfies Cq \ {q} ⊂ Ω.

Proof. Let q′ be a point on the lateral side of the cone that is ρ away from p – denote it in
coordinates around q by q′ = sv. With this, we identify two triangles.

PSfrag replacements

p

p′

q

q′

∂b(p, ρ)

Figure 1: In this figure, p is the center of the ball of radius ρ, q is a point on the boundary,
q′ is a point simultaneously on the boundary of the ball and on the side of the cone and p′ is
the nearest point on the ray Expq(tv) to q

′.

The first triangle has corners p = Expq(ρu), q
′ = Expq(sv) and a point on the ray Expq(tu)

with 0 < t < ρ ( Lemma A.7 guarantees that the vertex at p is acute, since s ≤ Γ1ρ/2). Let
us denote the third corner of this triangle by p′ = Expq(t

′u) Note that p′ is a distance of t′

from q and a distance of ρ− t′ from p. The triangle inequality gives us that

ρ ≤ dist(p′, q′) + (ρ− t′) −→ t′ ≤ dist(p′, q′).

The second triangle we consider has corners q, q′ and p′, and Lemma A.7 ensures that
dist(q′, p′) ≤ Γ2s sinα = s/2. So the triangle inequality here gives us that s ≤ dist(p′, q′)+t′ ≤
s/2 + t′ – so s/2 ≤ t′.

Combining estimates from both triangles, we see that s/2 ≤ t′ ≤ dist(p′, q′) ≤ s/2, so both
t′ and dist(p′, q′) are s/2.
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In other words, the curve from p to q′ has the same length as the curve from p to p′ to q′.
By [7, Corollary 3.9, p. 73], any piecewise differentiable curve joining two points – p to p′ to
q′ our case – with length less than or equal to any other such curve is a geodesic. Because this
occurs inside b(p, rM), where geodesics do not cross, there can only be one geodesic joining p
and q′. Since p to p′ has to be on the geodesic joining p′ to q′, and since the length is ρ, q′

and q coincide.

Proposition A.9. The domain Dj := Exp−1
pj (Dj) is star shaped with respect to the Euclidean

ball B(Exp−1
pj (pj),Γ1r/Γ

2
2). Also, the chunkiness parameter and diameter for Dj satisfy

γDj
≤ 2Γ2

2R

Γ1r
=

(
Γ2

Γ1

)2 4(1 + sin(ϕ))

Γ1 sin(ϕ)
=

Γ2
2

Γ2
1F (ϕ)

and dDj
≤ 2R. (A.10)

Proof. We begin by fixing a point p ∈ Dj . The geodesic convex hull of {p} ∪b(pj , r) contains
a largest cone with vertex p and central axis the geodesic ray connecting p to pj. On this
cone, whose (lateral) surface consists of geodesics emanating from p, there exists a geodesic
lying tangent to the sphere ∂b(pj , r). In other words, we take the cone of largest aperture 2α
for which all geodesics pass through b(pj , r).

PSfrag replacements

r

pρ

p pj
r′

Figure 2: The largest cone with vertex p and with central axis the geodesic that connects p
to pj for which no geodesic lies outside of the ball b(pj, r). The radius r′ of the ball centered

at pρ lying tangent to the cone is greater than Γ1rρ
Γ2ρj

From this two things follow. First, by Lemma A.7, the distance from p to pj, ρj =
dist(p, pj), the angle α, and the radius r are related by r ≤ Γ2ρj sin

(
min(α, π/2)

)
. Second,

for ρ ≤ ρj and for a point pρ lying a distance of ρ from p along the central axis, the distance
r′ of pρ to the surface of the cone satisfies:

r′ ≥ Γ1ρ sin
(
min(α, π/2)

)
≥ Γ1rρ

Γ2ρj
.
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It follows the cone contains the ball b(pρ, (Γ2ρj)
−1Γ1rρ), which obviously is also contained in

the convex hull of {p} ∪ b(pj, r).
Shifting to normal coordinates centered at pj , rather than at p, we see that the geodesic ball

b(pρ, (Γ2ρj)
−1Γ1rρ) contains the (image of the) Euclidean ball B(Exp−1

pj (pρ), (Γ
2
2ρj)

−1Γ1rρ).

Indeed, if |y − Exp−1
pj (pρ)| ≤ (Γ2

2ρj)
−1Γ1rρ then

dist(Exppj(y), pρ) ≤ Γ2|y − Exp−1
pj (pρ)| ≤

Γ1rρ

Γ2ρj
.

A straightforward argument using Euclidean geometry implies that the Euclidean convex hull
of {Exp−1

pj (p)} ∪ B(0,Γ1r/Γ
2
2) is contained in Dj . Hence, in the Euclidean metric, Dj is star

shaped with respect to the ball B(Exp−1
pj (pj),Γ1r/Γ

2
2). Moreover, since Dj ⊂ b(pj , R), we

have that Dj ⊂ B(Exp−1
pj (pj), R). Finally, from these facts it is easy to see that the bounds

in (A.10) hold.

Applying this together with Proposition A.2 and Lemma 2.2 , we have the following result.

Proposition A.10. Let Dj be as above, m ∈ N and p ∈ R, 1 ≤ p ≤ ∞. Assume m > d/p
when p > 1, and m ≥ d, for p = 1. If u ∈ Wm

p
(Dj) satisfies u|X = 0, where X is a finite

subset of Dj , and if the geodesic meshnorm h = hX ≤ Γ5
1F (ϕ)2

8m2Γ4
2
R, then

‖u‖W k
p (Dj) ≤ Cm,k,p,MR

m−kF (ϕ)−d−2k‖u‖Wm
p

(Dj) (A.11)

‖u‖L∞(Dj) ≤ Cm,k,p,MR
m−d/pF (ϕ)−d‖u‖Wm

p (Dj). (A.12)

Proof. We first apply Proposition A.2 with h̃ the Euclidean meshnorm for Exp−1
pj X, satisfying

h̃ ≤ h/Γ1 ≤ dDj

16m2γ2
Dj

≤ 2Γ4
1RF (ϕ)2

16m2Γ4
2

. Then, equations (A.1) and (A.2) hold for u ◦ Exppj on

Dj, with γDj
and dDj

replaced by the bounds in (A.10). Applying Lemma 2.2 then gives the
bounds above.

Theorem A.11 (Manifold Case). Suppose that Ω ⊆ M is a bounded, Lipschitz domain
that satisfies a uniform cone condition, with the cone having radius RΩ < rM/3 and angle ϕ.
Let k, m, and p be as in Proposition A.2, and let X ⊂ Ω be a discrete set with mesh norm h
satisfying

h ≤ h0RΩ, h0 :=
Γ5
1

8m2Γ4
2

F (ϕ)2, (A.13)

where Γ1,Γ2 and F (·) are defined in (2.3) and (A.3), respectively. If u ∈ Wm
p
(Ω) satisfies

u|X = 0, then we have

‖u‖W k
p (Ω) ≤ Cm,k,p,MF (ϕ)

−(1+1/p)d−2mhm−k‖u‖Wm
p (Ω) (A.14)

and
‖u‖L∞(Ω) ≤ Cm,p,Mh

m−d/pF (ϕ)−d+2d/p−2m‖u‖Wm
p

(Ω). (A.15)
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Proof. We are given h in (A.13) to begin with. Thus, we may choose R =
8m2Γ4

2

Γ5
1
hF (ϕ)−2 ≤

RΩ, and also take the Dj’s to be the domains corresponding to this R. It follows that the
conditions on h in Proposition A.10 hold; consequently,

‖u‖W k
p
(Dj) ≤ Cm,k,p,Mh

m−kF (ϕ)−d−2m‖u‖Wm
p (Dj), (A.16)

‖u‖L∞(Dj) ≤ Cm,p,Mh
m−d/pF (ϕ)−d+2d/p−2m‖u‖Wm

p (Dj). (A.17)

Because of the decomposition Ω = ∪pj∈TrDj, the bound in (A.17) immediately implies (A.15).
Moreover, this decomposition also gives us

‖u‖p
W k

p
(Ω)

≤
∑

j

‖u‖p
W k

p
(Dj)

≤ (Cm,k,p,Mh
m−kF (ϕ)−d−2m)p(

∑

j

‖u‖pWm
p

(Dj)
).

From Definition 2.1, we see that

∑

j

‖u‖pWm
p

(Dj)
=

m∑

i=0

∫

Ω

∑

j

χDj
(p)|∇if |pg,p dµ(p) ≤ sup

p∈Ω


∑

j

χDj
(p)


 ‖u‖pWm

p
(Ω).

The sum
∑

j χDj
(p) is precisely the number of Dj ’s that contain p. Since Dj ⊂ b(pj , R), pj

is itself also in b(p,R). Consequently, the number of Dj’s containing p is bounded above by
the number of balls b(pj , r), where r = 2RF (ϕ) ∼ h/F (ϕ), that contain p, and, ultimately
by the maximum number of b(pj, r)’s that can intersect each b(p,R). By Lemma A.5, this is

(4α+1)de
3(d−1)√

|κ|
dM

, where α = R/r = 1
2F (ϕ)

−1. Putting together the two previous inequalities
then yields

‖u‖p
W k

p
(Ω)

≤ (Cm,k,p,Mh
m−kF (ϕ)−d−2m)p 22dF (ϕ)−de

3(d−1)√
|κ|

dM‖u‖pWm
p

(Ω).

Taking the pth root, lumping constants, and manipulating the result, we obtain (A.14).

We remark that the various constants appearing in Theorem A.11, including h0, only
depend on ϕ, and only the right side of (A.13) depends on the radius RΩ, and that dependence
is linear. Thus, the dependence on Ω is completely explicit.

At this point we can extend the Duchon type error estimates for approximation by con-
ditionally positive definite kernels. To our knowledge, this is the first result of this kind on
bounded regions in compact Riemannian manifolds.

To this end, suppose K : Ω × Ω → R is positive definite (i.e. the matrix
(
K(ξ, ζ)

)
ξ,ζ

is positive definite for each Ξ – see Definition 3.1) and consider that the “native space”
NK , the reproducing kernel Hilbert space constructed by taking the space of arbitrary linear
combinations of K(·, ξ), completed under the inner product 〈f, g〉 7→ ∑

ξ,ζ AξBζK(ξ, ζ) for
f =

∑
AξK(·, ξ) and g =

∑
BζK(·, ζ). In this case, it is well known that the kernel interpolant

IΞf is the optimal interpolant in the sense of NK. Namely, ‖IΞf‖NK
≤ ‖s‖NK

for all s ∈ NK

with s|Ξ = f |Ξ.
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Corollary A.12. Let m > d/2, and let K be a positive definite kernel on M for which NK is
continuously embedded in Wm

2 (M). Let Ω ⊂ M satisfy a uniform cone condition with radius
RΩ ≤ rM/3 and angle ϕ. For Ξ ⊂ Ω having meshnorm h ≤ h0RΩ and for f ∈ NK ,

‖f − IΞf‖L∞(Ω) ≤ CKF (ϕ)
−2mhm−d/2‖f‖NK(M).

We note that this result holds for a much larger class of kernels than considered in the
previous sections (i.e., defined by Definition 3.2). In particular, there are numerous examples
of compactly supported kernels on R

d and S
d having native spaces that are Sobolev spaces, but

which do not invert an elliptic differential operator. However, his type of error estimate should
be compared to those in Corollary 5.9 and Corollary 5.10 – observe that the condition on the
target function is quite restrictive (it needs to be in NK and there is a basic disagreement
between the approximation order m− d/2 and the smoothness assumption).

Proof. Apply Theorem A.11 to u = f − IΞ, we see that

‖f − IΞf‖2L∞(Ω) ≤
(
Cm,Mh

m−d/pF (ϕ)−2m
)2

‖f − IΞf‖2Wm
2 (Ω)

≤
(
Cm,Mh

m−d/pF (ϕ)−2m
)2

‖f − IΞf‖2Wm
2 (M)

≤ C
(
Cm,Mh

m−d/pF (ϕ)−2m
)2

‖f − IΞf‖2NK

≤ CKF (ϕ)
−4mh2m−d‖f‖2NK

.

The next to last inequality is the embedding NK ⊂ Wm
2 (M), while the last inequality is the

Pythagorean theorem for orthogonal projectors ‖f − IΞf‖2NK
+ ‖IΞf‖2NK

= ‖f‖2NK
.

There are several domains that are important for us, and that we will discuss below.
We begin with the manifold itself. In that case, we may take RΩ = rM/3. The angle ϕ
may be set equal to π/2, because every such cone is contained in M. This means that
F (ϕ) = F (π/2) = 1/8.

Corollary A.13 (Full Manifold). Suppose that M is compact. Let k, m, and p be as in

Theorem A.11. Then, with h0 :=
Γ2
2

83m2Γ2
1
, there is a constant Cm,k,d,M such that if X ⊂ M has

mesh norm h ≤ h0rM/3 and if u ∈Wm
p
(M) satisfies u|X = 0, then

‖u‖W k
p (M) ≤ Cm,k,p,Mh

m−k‖u‖Wm
p

(M). (A.18)

The domains that we now turn to are balls, annuli, and complements of balls. In all of the
cases discussed below, the domains Ω satisfy the ball property described in Corollary A.8 at
each point q ∈ ∂Ω. Consequently, we may take ϕ = arcsin( 1

2Γ2
), and so F (ϕ) = 1/(8Γ2 + 4).

It thus follows that in all such cases

h0 =
Γ5
1

128m2Γ4
2(2Γ2 + 1)2

. (A.19)
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and all of the factors in Theorem A.11 depend only on parameters from the manifold itself,
as well as p, k,m, but not at all on the center and the radius of the ball/annulus/punctured
ball.

We now turn to balls. A ball of any size may be treated; however, if the the radius is larger
that rM it may intersect itself, giving rise to corners with angles that have to be dealt with
on a case by case basis. This phenomenon is easy to see in the case of the torus embedded in
R
3, where a sufficiently large ball begins to wrap back on itself. When the radius of the ball

is less than rM, this wrapping doesn’t happen. With this assumption, we have the following
result:

Corollary A.14 (Zeros estimate on balls). Assume m > d/2. Suppose that r < rM. If
u ∈Wm

p (M) vanishes on X ⊂ b(p, r), where h ≤ h0r/2, where h0 is given by (A.19), we have

‖u‖W k
p (b(p,r)) ≤ Cm,k,p,Mh

m−k|u|Wm
p (b(p,r)).

Proof. Obviously every point q ∈ ∂b(p, r) satisfies the conditions in Corollary A.8. A direct
application of Theorem A.11 then completes the proof.

Corollary A.15 (Hölder estimate on balls). If m is greater than d/2 + ǫ, and the
conditions of Corollary A.14hold (in particular, r is less than rM, and h ≤ h0r), and if
u ∈Wm

2 (b(p, r)) satisfies u|X = 0, then for every z ∈ b(p, r),

|u(p)− u(z)| ≤ Crm−ǫ−d/2dist(p, z)ǫ‖u‖Wm
2 (b(p,r)),

where C is a constant depending only on m, M and ǫ.

Proof. This follows because the Sobolev embedding theorem, in conjunction with Lemma 2.2
ensures that w̃ = w ◦ Expp ∈ Cǫ(B(0, rM)). Thus for z = Expp(x) ∈ b(p, rM),

|w(p) − w(z)|
dist(p, z)ǫ

=
|w̃(0) − w̃(x)|

|x|ǫ ≤ |w̃|Cǫ(B(0,rM)) ≤ C‖w̃‖Wm
2 (B(0,rM)).

For a general r < rM, set w̃( rMr x) = ũ(x). Then

|u(p)− u(z)|
dist(p, z)ǫ

≤
(rM
r

)ǫ
C‖w̃‖Wm

2 (B(0,rM)) =
(rM
r

)ǫ
C


∑

k≤m

(
r

rM

)2k

|ũ|2
W k

2 (B(0,r))




1/2

.

The result follows by applying Lemma 2.2 in conjunction with Corollary A.14.

A similar argument to the proof of Corollary A.14 given above yields these results for annuli
and complements of balls. In the following two lemmas, we are concerned with the case p = 2.
Consequently, we suppress dependence on these parameters by expressing the constant from
the zeros lemma for such domains simply as Λ. In other words,

Λ := max
k=0...m−1

Cm,k,2,M (8Γ2 + 4)(3/2)d+2m , (A.20)

which depends only on m and M.
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Corollary A.16 (Zeros lemma on annuli). Assume m > d/2, Let a = b(p, r)\b(p, r− t),
where 0 < t < r < rM, and let h0 be given by (A.19). If u ∈ Wm

p (a) vanishes on X ⊂ a,
where h ≤ h0 min(t/2, rM/3), we have

‖u‖W k
2 (a) ≤ Λhm−k|u|Wm

p (a).

Proof. At each point q of the boundary of a an open ball of radius t/2 can be placed inside a
with a boundary that passes through q. The result follows from Corollary A.8 and Theorem
A.11.

Corollary A.17 (Zeros lemma on complements of balls). If r < rM/3 and if u ∈
Wm

2 (M) vanishes on X with h = h(X,b(p, r)c) ≤ h0rM/3, then

‖u‖Wm−k
2 (b(p,r)c) ≤ Λhm−k|u|Wm

2 (b(p,r)c).

Proof. By placing its center, q, a distance of r+2rM/3 away from p, the ball b(q, 2rM/3) can be
placed in b(p, r)c. It follows that the set satisfies a cone condition with radius R = rM/3.
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