
Localization from Incomplete Noisy Distance Measurements

Adel Javanmard∗ Andrea Montanari ∗†

Abstract

We consider the problem of positioning a cloud of points in the Euclidean space Rd, using
noisy measurements of a subset of pairwise distances. This task has applications in various areas,
such as sensor network localization and reconstruction of protein conformations from NMR
measurements. Also, it is closely related to dimensionality reduction problems and manifold
learning, where the goal is to learn the underlying global geometry of a data set using local (or
partial) metric information. Here we propose a reconstruction algorithm based on semidefinite
programming. For a random geometric graph model and uniformly bounded noise, we provide
a precise characterization of the algorithm’s performance: In the noiseless case, we find a radius
r0 beyond which the algorithm reconstructs the exact positions (up to rigid transformations).
In the presence of noise, we obtain upper and lower bounds on the reconstruction error that
match up to a factor that depends only on the dimension d, and the average degree of the nodes
in the graph.

1 Introduction

1.1 Problem Statement

Given a set of n nodes in Rd, the localization problem requires to reconstruct the positions of the
nodes from a set of pairwise measurements d̃ij for (i, j) ∈ E ⊆ {1, . . . , n}×{1, . . . , n}. An instance
of the problem is therefore given by the graph G = (V,E), V = {1, . . . , n}, and the vector of
distance measurements d̃ij associated to the edges of this graph.

In this paper we consider the random geometric graph model G(n, r) = (V,E) whereby the n
nodes in V are independent and uniformly random in the d-dimensional hypercube [−0.5, 0.5]d, and
E ∈ V ×V is a set of edges that connect the nodes which are close to each other. More specifically
we let (i, j) ∈ E if and only if dij = ‖xi − xj‖ ≤ r. For each edge (i, j) ∈ E, d̃ij denotes the
measured distance between nodes i and j. Letting zij ≡ d̃2

ij − d2
ij the measurement error, we will

study a “worst case model”, in which the errors {zij}(i,j)∈E are arbitrary but uniformly bounded
|zij | ≤ ∆. We propose an algorithm for this problem based on semidefinite programming and
provide a rigorous analysis of its performance, focusing in particular on its robustness properties.

Notice that the positions of the nodes can only be determined up to rigid transformations (a
combination of rotation, reflection and translation) of the nodes, because the inter point distances
are invariant to rigid transformations. For future use, we introduce a formal definition of rigid
transformation. Let X ∈ Rn×d be the matrix whose ith row, xTi ∈ Rd, is the coordinate of node i.
Further, let O(d) denote the orthogonal group of d× d matrices. A set of positions Y ∈ Rn×d is a

∗Department of Electrical Engineering, Stanford University
†Department of Statistics, Stanford University

1

ar
X

iv
:1

10
3.

14
17

v4
 [

m
at

h.
ST

]
 2

1
N

ov
 2

01
2

rigid transform of X, if there exists a d-dimensional shift vector s ∈ Rd and an orthogonal matrix
O ∈ O(d) such that

Y = XO + usT . (1)

Throughout u ∈ Rn is the all-ones vector. Therefore, Y is obtained as a result of first rotating
(and/or reflecting) nodes in position X by matrix O and then shifting by s. Also, two position
matrices X and Y are called equivalent up to rigid transformation, if there exists O ∈ O(d) and
a shift s ∈ Rd such that Y = XO + usT . We use the following metric, similar to the one defined
in [16], to evaluate the distance between the original position matrix X ∈ Rn×d and the estimation
X̂ ∈ Rn×d. Let L = I−(1/n)uuT be the centering matrix . Note that L is an n×n symmetric matrix
of rank n−1 which eliminates the contribution of the translation, in the sense that LX = L(X+usT)
for all s ∈ Rd. Furthermore, LXXTL is invariant under rigid transformation and LXXL = LX̂X̂TL
implies that X and X̂ are equal up to rigid transformation. The metric is defined as

d(X, X̂) ≡ 1

n2
‖LXXTL− LX̂X̂TL‖1. (2)

This is a measure of the average reconstruction error per point, whenX and X̂ are aligned optimally.
To get a better intuition about this metric, consider the case in which all the entries of LXXTL−
LX̂X̂TL are roughly of the same order. Then

d(X, X̂) ≈ d2(X, X̂) =
1

n
‖LXXTL− LX̂X̂TL‖F .

Denote by Y = X̂ − X the estimation error, and assume without loss of generality that both X
and X̂ are centered. Then for small Y , we have

d2(X, X̂) =
1

n
‖XY T + Y XT + Y Y T ‖F ≈

1

n
‖XY T + Y XT ‖F

(a)

≥ C√
n
‖Y ‖F = C

{
1

n

n∑

i=1

‖x̂i − xi‖2
}1/2

,

where the bound(a) holds with high probability for a suitable constant C, if X is distributed
according to our model.1

Remark. Clearly, connectivity of G is a necessary assumption for the localization problem to be
solvable. It is a well known result that the graphG(n, r) is connected w.h.p. ifKdr

d > (log n+cn)/n,
where Kd is the volume of the d-dimensional unit ball and cn → ∞ [18]. Vice versa, the graph is
disconnected with positive probability if Kdr

d ≤ (log n + C)/n for some constant C. Hence, we
focus on the regime where r ≥ α(log n/n)1/d for some constant α. We further notice that, under
the random geometric graph model, the configuration of the points is almost surely generic, in the
sense that the coordinates do not satisfy any nonzero polynomial equation with integer coefficients.

1.2 Algorithm and main results

The following algorithm uses semidefinite programming (SDP) to solve the localization problem.

1Estimates of this type will be repeatedly proved in the following .

2

Algorithm SDP-based Algorithm for Localization

Input: dimension d, distance measurements d̃ij
for (i, j) ∈ E, bound on the measurement noise ∆
Output: estimated coordinates in Rd
1: Solve the following SDP problem:

minimize Tr(Q)

s.t.
∣∣∣〈Mij , Q〉 − d̃ij

2
∣∣∣ ≤ ∆, (i, j) ∈ E

Q � 0.
2: Compute the best rank-d approximation UdΣdU

T
d of Q

3: Return X̂ = UdΣ
1/2
d .

Here Mij = eije
T
ij ∈ Rn×n, where eij ∈ Rn is the vector with +1 at ith position, −1 at jth position

and zero everywhere else. Also, 〈A,B〉 ≡ Tr(ATB). Note that with a slight abuse of notation, the
solution of the SDP problem in the first step is denoted by Q.

Let Q0 := XXT be the Gram matrix of the node positions, namely Q0,ij = xi · xj . A key
observation is that Q0 is a low rank matrix: rank(Q0) ≤ d, and obeys the constraints of the SDP
problem. By minimizing Tr(Q) in the first step, we promote low-rank solutions Q (since Tr(Q) is
the sum of the eigenvalues of Q). Alternatively, this minimization can be interpreted as setting the
center of gravity of {x1, . . . , xn} to coincide with the origin, thus removing the degeneracy due to
translational invariance.

In step 2, the algorithm computes the eigen-decomposition of Q and retains the d largest
eigenvalues. This is equivalent to computing the best rank-d approximation of Q in Frobenius
norm. The center of gravity of the reconstructed points remains at the origin after this operation.

Our main result provides a characterization of the robustness properties of the SDP-based
algorithm. Here and below ‘with high probability (w.h.p.)’ means with probability converging to
1 as n→∞ for d fixed.

Theorem 1.1. Let {x1, . . . , xn} be n nodes distributed uniformly at random in the hypercube
[−0.5, 0.5]d. Further, assume connectivity radius r ≥ α(log n/n)1/d, with α ≥ 10

√
d. Then w.h.p.,

the error distance between the estimate X̂ returned by the SDP-based algorithm and the correct
coordinate matrix X is upper bounded as

d(X, X̂) ≤ C1(nrd)5 ∆

r4
. (3)

Conversely, w.h.p., there exist adversarial measurement errors {zij}(i,j)∈E such that

d(X, X̂) ≥ C2 min{∆

r4
, 1} , (4)

Here, C1 and C2 denote universal constants that depend only on d.

The proof of this theorem relies on several technical results of independent interest. First, we
will prove a general deterministic error estimate in terms of the condition number of the stress
matrix of the graph G, see Theorem 5.1. Next we will use probabilistic arguments to control the
stress matrix of random geometric graphs, see Theorem 5.2. Finally, we will prove several estimates
on the rigidity matrix of G, cf. in particular Theorem 6.1. The necessary background in rigidity
theory is summarized in Section 2.1.

3

1.3 Related work

The localization problem and its variants have attracted significant interest over the past years
due to their applications in numerous areas, such as sensor network localization [6], NMR spec-
troscopy [14], and manifold learning [19, 23], to name a few.

Of particular interest to our work are the algorithms proposed for the localization problem [16,
21, 6, 24]. In general, few performance guarantees have been proved for these algorithms, in
particular in the presence of noise.

The existing algorithms can be categorized in to two groups. The first group consists of algo-
rithms who try first to estimate the missing distances and then use MDS to find the positions from
the reconstructed distance matrix [16, 10]. MDS-MAP [10] and ISOMAP [23] are two well-known
examples of this class where the missing entries of the distance matrix are approximated by com-
puting the shortest paths between all pairs of nodes. The algorithms in the second group formulate
the localization problem as a non-convex optimization problem and then use different relaxation
schemes to solve it. An example of this type is relaxation to an SDP [6, 22, 25, 1, 24]. A crucial
assumption in these works is the existence of some anchors among the nodes whose exact positions
are known. The SDP is then used to efficiently check whether the graph is uniquely d-localizable
and to find its unique realization.

Maximum Variance Unfolding (MVU) is an SDP-based algorithm with a very similar flavor as
ours [24]. MVU is an approach to solving dimensionality reduction problems using local metric
information and is based on the following simple interpretation. Assume n points lying on a low
dimensional manifold in a high dimensional ambient space. In order to find a low dimensional
representation of this data set, the algorithm attempts to somehow unfold the underlying manifold.
To this end, MVU pulls the points apart in the ambient space, maximizing the total sum of their
pairwise distances, while respecting the local information. However, to the best of our knowledge,
no performance guarantee has been proved for the MVU algorithm.

Given the large number of applications, and computational methods developed in this broad
area, the present paper is in many respects a first step. While we focus on a specific model, and
a relatively simple algorithm, we expect that the techniques developed here will be applicable to a
broader setting, and to a number of algorithms in the same class.

1.4 Organization of the paper

The remainder of this paper is organized as follows. Section 2 is a brief review of some notions in
rigidity theory and some properties of G(n, r) which will be useful in this paper. In Section 3, we
discuss the implications of Theorem 1.1 in different applications. The proof of Theorem 1.1 (upper
bound) is given in Section 4. Sections 5 and 6 contain the proof of two important lemmas used
in proving Theorem 1.1. Several technical steps are discussed in Appendices. Finally, We prove
Theorem 1.1 (lower bound) in Section 7.

For the reader’s convenience, an overview of the symbols used throughout this paper is given
in Table 1 in Appendix N.

4

2 Preliminaries

2.1 Rigidity Theory

Rigidity theory studies whether a given partial set of pairwise distances dij = ‖xi − xj‖ between a
finite set of nodes in Rd uniquely determine the coordinates of the points up to rigid transformations.
This section is a very brief overview of definitions and results in rigidity theory which will be useful
in this paper. We refer the interested reader to [13, 2], for a thorough discussion.

A framework GX in Rd is an undirected graph G = (V,E) along with a configuration X ∈ Rn×d
which assigns a point xi ∈ Rd to each vertex i of the graph. The edges of G correspond to the
distance constraints. In the following, we discuss two important notions, namely Rigidity matrix
and Stress matrix. As mentioned above, a crucial part of the proof of Theorem 1.1 consists in
establishing some properties of the stress matrix and of the rigidity matrix of the random geometric
graph G(n, r).

Rigidity matrix. Consider a motion of the framework with xi(t) being the position vector of
point i at time t. Any smooth motion that instantaneously preserves the distance dij must satisfy
d
dt‖xi − xj‖

2 = 0 for all edges (i, j). Equivalently,

(xi − xj)T (ẋi − ẋj) = 0 ∀(i, j) ∈ E, (5)

where ẋi is the velocity of the ith point. Given a frameworkGX ∈ Rd, a solution Ẋ = [ẋT1 ẋT2 · · · ẋTn]T ,
with ẋi ∈ Rd, for the linear system of equations (5) is called an infinitesimal motion of the frame-
work GX . This linear system of equations consists of |E| equations in dn unknowns and can be
written in the matrix form RG(X)Ẋ = 0, where RG(X) is called the |E| × dn rigidity matrix of
GX .

It is easy to see that for every anti-symmetric matrix A ∈ Rd×d and for every vector b ∈ Rd,
ẋi = Axi + b is an infinitesimal motion. Notice that these motions are the derivative of rigid
transformations. (A corresponds to orthogonal transformations and b corresponds to translations).
Further, these motions span a d(d+1)/2 dimensional subspace of Rdn, accounting d(d−1)/2 degrees
of freedom for orthogonal transformations (corresponding to the choice of A), and d degrees of
freedom for translations (corresponding to the choice of b). Hence, dim Ker(RG(X)) ≥ d(d+ 1)/2.
A framework is said to be infinitesimally rigid if dim Ker(RG(X)) = d(d+ 1)/2.

Stress matrix. A stress for a framework GX is an assignment of scalars ωij to the edges such
that for each i ∈ V ,

∑

j:(i,j)∈E

ωij(xi − xj) = (
∑

j:(i,j)∈E

ωij)xi −
∑

j:(i,j)∈E

ωijxj = 0.

A stress vector can be rearranged into an n× n symmetric matrix Ω , known as the stress matrix,
such that for i 6= j, the (i, j) entry of Ω is Ωij = −ωij , and the diagonal entries for (i, i) are
Ωii =

∑
j:j 6=i ωij . Since all the coordinate vectors of the configuration as well as the all-ones vector

are in the null space of Ω, the rank of the stress matrix for generic configurations is at most n−d−1.
There is an important relation between stress matrices of a framework and the notion of global

rigidity. A framework GX is said to be globally rigid in Rd if all frameworks in Rd with the same set
of edge lengths are congruent to GX , i.e. are a rigid transformation of GX . Further, a framework
GX is generically globally rigid in Rd if GX is globally rigid at all generic configurations X. (Recall

5

that a configuration of points is called generic if the coordinates of the points do not satisfy any
nonzero polynomial equation with integer coefficients).

The connection between global rigidity and stress matrices is demonstrated in the following two
results proved in [9] and [13].

Theorem 2.1 (Connelly, 2005). If X is a generic configuration in Rd with a stress matrix Ω of
rank n− d− 1, then GX is globally rigid in Rd.

Theorem 2.2 (Gortler, Healy, Thurston, 2010). Suppose that X is a generic configuration in Rd,
such that GX is globally rigid in Rd. Then either GX is a simplex or it has a stress matrix Ω with
rank n− d− 1.

Among other results in this paper, we construct a special stress matrix Ω for the random
geometric graph G(n, r). We also provide upper bound and lower bound on the maximum and
the minimum nonzero singular values of this stress matrix. These bounds are used in proving
Theorem 1.1.

2.2 Some Properties of G(n, r)

In this section, we study some of the basic properties of G(n, r) which will be used several times
throughout the paper.

Our first remark provides probabilistic bounds on the number of nodes contained in a region
R ⊆ [−0.5, 0.5]d.

Remark 2.1.[Sampling Lemma] Let R be a measurable subset of the hypercube [−0.5, 0.5]d,
and let V (R) denote its volume. Assume n nodes are deployed uniformly at random in [−0.5, 0.5]d,
and let n(R) be the number of nodes in region R. Then,

n(R) ∈ nV (R) + [−
√

2cnV (R) log n,
√

2cnV (R) log n], (6)

with probability at least 1− 2/nc.

The proof is immediate and deferred to Appendix A.
In the graph G(n, r), every node is connected to all the nodes within its r-neighborhood. Using

Remark 2.1 for r-neighborhood of each node, and the fact r ≥ 10
√
d(log n/n)1/d, we obtain the

following corollary after applying union bound over all the r-neighborhoods of the nodes.

Corollary 2.1. In the graph G(n, r), with r ≥ 10
√
d(log n/n)1/d, the degrees of all nodes are

in the interval [(1/2)Kdnr
d, (3/2)Kdnr

d], with high probability. Here, Kd is the volume of the
d-dimensional unit ball.

Next, we discuss some properties of the spectrum of G(n, r).
Recall that the Laplacian L of the graph G is the symmetric matrix indexed by the vertices

V , such that Lij = −1 if (i, j) ∈ E, Lii = degree(i) and Lij = 0 otherwise. The all-ones vector
u ∈ Rn is an eigenvector of L(G) with eigenvalue 0. Further, the multiplicity of eigenvalue 0 in
spectrum of L(G) is equal to the number of connected components in graph G. Let us stress that
our definition of L(G) has opposite sign with respect to the one adopted by part of the computer
science literature. In particular, with the present definition, L(G) is a positive semidefinite matrix.

It is useful to recall a basic estimate on the Laplacian of random geometric graphs.

6

Remark 2.2. Let Ln denote the normalized Laplacian of the random geometric graph G(n, r),
defined as Ln = D−1/2LD−1/2, where D is the diagonal matrix with degrees of the nodes on
diagonal. Then, w.h.p., λ2(Ln), the second smallest eigenvalue of Ln, is at least Cr2 ([7, 18]). Also,
using the result of [8] (Theorem 4) and Corollary 2.1, we have λ2(L) ≥ C(nrd)r2, for some constant
C = C(d).

2.3 Notations

For a vector v ∈ Rn, and a subset T ⊆ {1, · · · , n}, vT ∈ RT is the restriction of v to indices in T .
We use the notation 〈v1, · · · , vn〉 to represent the subspace spanned by vectors vi, 1 ≤ i ≤ n. The
orthogonal projections onto subspaces V and V ⊥ are respectively denoted by PV and P⊥V . The
identity matrix, in any dimension, is denoted by I. Further, ei always refers to the ith standard
basis element, e.g., e1 = (1, 0, · · · , 0). Throughout this paper, u ∈ Rn is the all-ones vector and C
is a constant depending only on the dimension d, whose value may change from case to case.

Given a matrix A, we denote its operator norm by ‖A‖2, its Frobenius norm by ‖A‖F , its
nuclear norm by ‖A‖∗, and its `1-norm by ‖A‖1. (‖A‖∗ is simply the sum of the singular values of
A and ‖A‖1 =

∑
ij |Aij |). We also use σmax(A) and σmin(A) to respectively denote the maximum

and the minimum nonzero singular values of A.
For a graph G, we denote by V (G) the set of its vertices and we use E(G) to denote the set of

edges in G. Following the convention adopted above, the Laplacian of G is represented by L(G).
Finally, we denote by x(i) ∈ Rn, i ∈ {1, . . . , d} the ith column of the positions matrix X. In

other words x(i) is the vector containing the ith coordinate of points x1, . . . , xn.
Throughout the proof we shall adopt the convention of using the notations X, {xj}j∈[n], and

{x(i)}i∈[d] to denote the centered positions. In other words X = LX ′ where the rows of X ′ are i.i.d.

uniform in [−0.5, 0.5]d.

3 Discussion

In this section, we make some remarks about Theorem 1.1 and its implications.

Tightness of the Bounds. The upper and the lower bounds in Theorem 1.1 match up to the
factor C(nrd)5. Note that nrd is the average degree of the nodes in G (up to a constant) and
when the rang r is of the same order as the connectivity threshold, i.e., r = O((log n/n)1/d), it
is logarithmic in n. Furthermore, we believe that this factor is the artifact of our analysis. The
numerical experiments in Section 8 also support the idea that the performance of the SDP-based
algorithm, evaluated by d(X, X̂), scales as C∆/r4 for some constant C. In addition, the theorem
states the bounds for r ≥ α(log n/n)1/d, with α ≥ 10

√
d. However, numerical experiments in

Section 8 show that the bounds hold for much smaller α, namely α ≥ 3 for d = 2, 4. Finally, it
is immediate to see that under the worst case model for the measurement errors, no algorithm
can perform better than C∆/r2. More specifically, for any algorithm d(X, X̂) ≥ C∆/r2, for some

constant C. The reason is that letting d̃ij
2

= (1 + ∆/r2)d2
ij , no algorithm can differentiate between

X and its scaled version X̂ =
√

1 + ∆/r2X. Also d(X, X̂) = (∆/r2)(1/n2)‖LXXTL‖1 ≥ C∆/r2,
w.h.p. and for some constant C that depends on the dimension d.

Global Rigidity of G(n, r). As a special case of Theorem 1.1 we can consider the problem of
reconstructing the point positions from exact measurements. The case of exact measurements was

7

also studied recently in [20] following a different approach. This corresponds to setting ∆ = 0. The
underlying question is whether the point positions {xi}i∈V can be efficiently determined (up to a
rigid motion) by the set of distances {dij}(i,j)∈E . If this is the case, then, in particular, the random
graph G(n, r) is globally rigid.

Since the right-hand side of our error bound Eq. (3) vanishes for ∆ = 0, we immediately obtain
the following.

Corollary 3.1. Let {x1, . . . , xn} be n nodes distributed uniformly at random in the hypercube
[−0.5, 0.5]d. If r ≥ 10

√
d(log n/n)1/d, and the distance measurements are exact, then w.h.p., the

SDP-based algorithm recovers the exact positions (up to rigid transformations). In particular, the
random geometric graph G(n, r) is w.h.p. globally rigid if r ≥ 10

√
d(log n/n)1/d.

In [3], the authors prove a similar result on global rigidity of G(n, r). Namely, they show that
if n points are drawn from a Poisson process in [0, 1]2, then the random geometric graph G(n, r) is
globally rigid w.h.p. when r is of the order

√
log n/n.

As already mentioned above, the graph G(n, r) is disconnected with high probability if r ≤
K
−1/d
d ((log n + C)/n)1/d for some constant C. Hence, our result establishes the following rigidity

phase transition phenomenon: There exist dimension-dependent constants C1(d), C2(d) such that a
random geometric graph G(n, r) is with high probability not globally rigid if r ≤ C1(d)(log n/n)1/d,
and with high probability globally rigid if r ≥ C2(d)(log n/n)1/d. Applying Stirling formula, it is
easy to see that the above arguments yield C1(d) ≥ C1,∗

√
d and C2(d) ≤ C2,∗

√
d for some numerical

(dimension independent) constants C1,∗, C2,∗.
It is natural to conjecture that the rigidity phase transition is sharp.

Conjecture 1. Let G(n, rn) be a random geometric graph with n nodes, and range rn, in d
dimensions. Then there exists a constant C∗(d) such that, for any ε > 0, the following hap-
pens. If rn ≤ (C∗(d) − ε)(log n/n)1/d, then G(n, rn) is with high probability not globally rigid. If
rn ≥ (C∗(d) + ε)(log n/n)1/d, then G(n, rn) is with high probability globally rigid.

Sensor Network Localization. Research in this area aims at developing algorithms and systems
to determine the positions of the nodes of a sensor network exploiting inexpensive distributed
measurements. Energy and hardware constraints rule out the use of global positioning systems,
and several proposed systems exploit pairwise distance measurements between the sensors [17, 15].
These techniques have acquired new industrial interest due to their relevance to indoor positioning.
In this context, global positioning systems are not a method of choice because of their limited
accuracy in indoor environments.

Semidefinite programming methods for sensor network localization have been developed starting
with [6]. It is common to study and evaluate different techniques within the random geometric graph
model, but no performance guarantees have been proven for advanced (SDP based) algorithms,
with inaccurate measurements. We shall therefore consider n sensors placed uniformly at random
in the unit hypercube, with ambient dimension either d = 2 or d = 3 depending on the specific
application. The connectivity range r is dictated by various factors: power limitations; interference
between nearby nodes; loss of accuracy with distance.

The measurement error zij depends on the method used to measure the distance between nodes
i and j. We will limit ourselves to measurement errors due to noise (as opposed –for instance–
to malicious behavior of the nodes) and discuss two common techniques for measuring distances

8

between wireless devices: Received Signal Indicator (RSSI) and Time Difference of Arrival (TDoA).
RSSI measures the ratio of the power present in a received radio signal (Pr) and a reference
transmitted power (Ps). The ratio Pr/Ps is inversely proportional to the square of the distance
between the receiver and the transmitter. Hence, RSSI can be used to estimate the distance. It
is reasonable to assume that the dominant error is in the measurement of the received power, and
that it is proportional to the transmitted power. We thus assume that there is an error ε Ps in
measuring the received power Pr., i.e., P̃r = Pr + ε Ps, where P̃r denotes the measured received
power. Then, the measured distance is given by

d̃2
ij ∝

Ps

P̃r
=
Ps
Pr
·
(

1 +
Ps
Pr

ε
)−1
≈ Ps
Pr

(
1− Ps

Pr
ε
)
∝ d2

ij(1− Cd2
ijε). (7)

Therefore the overall error |zij | ∝ d4
ijε and its magnitude is ∆ ∝ r4ε. Applying Theorem 1.1, we

obtain an average error per node of order

d(X, X̂) ≤ C ′1(nrd)5 ε .

In other words, the positioning accuracy is linear in the measurement accuracy, with a propor-
tionality constant that is polynomial in the average node degree. Remarkably, the best accuracy
is obtained by using the smallest average degree, i.e. the smallest measurement radius that is
compatible with connectivity.

TDoA technique uses the time difference between the receipt of two different signals with
different velocities, for instance ultrasound and radio signals. The time difference is proportional
to the distance between the receiver and the transmitter, and given the velocity of the signals the
distance can be estimated from the time difference. Now, assume that there is a relative error ε
in measuring this time difference (this might be related to inaccuracies in ultrasound speed). We
thus have t̃ij = tij(1 + ε), where t̃ij is the measured time while tij is the ‘ideal’ time difference.
This leads to an error in estimating dij which is proportional to dijε. Therefore, |zij | ∝ d2

ijε and

∆ ∝ r2ε. Applying again Theorem 1.1, we obtain an average error per node of order

d(X, X̂) ≤ C ′1(nrd)5 ε

r2
.

In other words the reconstruction error decreases with the measurement radius, which suggests
somewhat different network design for such a system.

Let us stress in passing that the above error bounds are proved under an adversarial error model
(see below). It would be useful to complement them with similar analysis carried out for other,
more realistic, models.

Manifold Learning. Manifold learning deals with finite data sets of points in ambient space RN
which are assumed to lie on a smooth submanifoldMd of dimension d < N . The task is to recover
M given only the data points. Here, we discuss the implications of Theorem 1.1 for applications
of SDP methods to manifold learning.

It is typically assumed that the manifold Md is isometrically equivalent to a region in Rd. For
the sake of simplicity we shall assume that this region is convex (see [12] for a discussion of this
point). With little loss of generality we can indeed identify the region with the unit hypercube
[−0.5, 0.5]d. A typical manifold learning algorithm ([23] and [24]) estimates the geodesic distances
between a subset of pairs of data points dM(yi, yj), yi ∈ RN , and then tries to find a low-dimensional
embedding (i.e. positions xi ∈ Rd) that reproduce these distances.

9

The unknown geodesic distance between nearby data points yi and yj , denoted by dM(yi, yj),
can be estimated by their Euclidean distance in Rn. Therefore the manifold learning problem
reduces mathematically to the localization problem whereby the distance ‘measurements’ are d̃ij =
‖yi − yj‖RN , while the actual distances are dij = dM(yi, yj). The accuracy of these estimates
depends on the curvature of the manifoldM. Let r0 = r0(M) be the minimum radius of curvature
defined by:

1

r0
= max

γ,t
{‖γ̈(t)‖},

where γ varies over all unit-speed geodesics in M and t is in the domain of γ. For instance, an
Euclidean sphere of radius r0 has minimum radius of curvature equal to r0.

As shown in [5] (Lemma 3), (1 − d2
ij/24r2

0)dij ≤ d̃ij ≤ dij . Therefore, |zij | ∝ d4
ij/r

2
0, and

∆ ∝ r4/r2
0. Theorem 1.1 supports the claim that the estimation error d(X, X̂) is bounded by

C(nrd)5/r2
0.

As mentioned several times, this paper focuses on a particularly simple SDP relaxation, and
noise model. This opens the way to a number of interesting directions:

1. Stochastic noise models. A somewhat complementary direction to the one taken here would
be to assume that the distance measurements are d̃2

ij = d2
ij + zij with {zij} a collection of

independent zero-mean random variables. This would be a good model, for instance, for
errors in RSSI measurements.

Another interesting case would be the one in which a small subset of measurements are grossly
incorrect (e.g. due to node malfunctioning, obstacles, etc.).

2. Tighter convex relaxations. The relaxation considered here is particularly simple, and can
be improved in several ways. For instance, in manifold learning it is useful to maximize the
embedding variance Tr(Q) under the constraint Qu = 0 [24].

Also, for any pair (i, j) 6∈ E it is possible to add a constraint of the form 〈Mij , Q〉 ≤ d̂2
ij , where

d̂ij is an upper bound on the distance obtained by computing the shortest path between i
and j in G.

3. More general geometric problems. The present paper analyzes the problem of reconstructing
the geometry of a cloud of points from incomplete and inaccurate measurements of the points
local geometry. From this point of view, a number of interesting extensions can be explored.
For instance, instead of distances, it might be possible to measure angles between edges in
the graph G (indeed in sensor networks, angles of arrival might be available [17, 15]).

4 Proof of Theorem 1.1 (Upper Bound)

Let V = 〈u, x(1), · · · , x(d)〉 and for any matrix S ∈ Rn×n, define

S̃ = PV SPV + PV SP
⊥
V + P⊥V SPV , S⊥ = P⊥V SP

⊥
V . (8)

Thus S = S̃ + S⊥. Also, denote by R the difference between the optimum solution Q and the
actual Gram matrix Q0, i.e., R = Q−Q0. The proof of Theorem 1.1 is based on the following key
lemmas that bound R⊥ and R̃ separately.

10

Lemma 4.1. There exists a numerical constant C = C(d), such that, w.h.p.,

‖R⊥‖∗ ≤ C
n

r4
(nrd)5∆. (9)

Lemma 4.2. There exists a numerical constant C = C(d), such that, w.h.p.,

‖R̃‖1 ≤ C
n2

r4
(nrd)5∆. (10)

We defer the proof of lemmas 4.1 and 4.2 to the next section.

Proof (Theorem 1.1). Let Q =
∑n

i=1 σiuiu
T
i , where ‖ui‖ = 1, uTi uj = 0 for i 6= j and σ1 ≥ σ2 ≥

· · · ≥ σn ≥ 0. Let Pd(Q) =
∑d

i=1 σiuiu
T
i be the best rank-d approximation of Q in Frobenius

norm (step 2 in the algorithm). Recall that Qu = 0, because Q minimizes Tr(Q). Consequently,
Pd(Q)u = 0 and Pd(Q) = LPd(Q)L. Further, by our assumption Q0u = 0 and thus Q0 = LQ0L.
Using triangle inequality,

‖LPd(Q)L− LQ0L‖1 = ‖Pd(Q)−Q0‖1
≤ ‖Pd(Q)− Q̃‖1 + ‖Q̃−Q0‖1. (11)

Observe that, Q̃ = Q0 + R̃ and Q⊥ = R⊥. Since Pd(Q) − Q̃ has rank at most 3d, it follows that
‖Pd(Q)− Q̃‖1 ≤ n‖Pd(Q)− Q̃‖F ≤

√
3dn‖Pd(Q)− Q̃‖2 (for any matrix A, ‖A‖2F ≤ rank(A)‖A‖22).

By triangle inequality, we have

‖Pd(Q)− Q̃‖2 ≤ ‖Pd(Q)−Q‖2 + ‖Q− Q̃︸ ︷︷ ︸
R⊥

‖2. (12)

Note that ‖Pd(Q)−Q‖2 = σd+1. Recall the variational principle for the eigenvalues.

σq = min
H,dim(H)=n−q+1

max
y∈H,‖y‖=1

yTQy.

Taking H = 〈x(1), · · · , x(d)〉⊥, for any y ∈ H, yTQy = yTP⊥V QP
⊥
V y = yTQ⊥y = yTR⊥y, where we

used the fact Qu = 0 in the first equality. Therefore, σd+1 ≤ max‖y‖=1 y
TR⊥y = ‖R⊥‖2 It follows

from Eqs. (11) and (12) that

‖LPd(Q)L− LQ0L‖1 ≤ 2
√

3dn‖R⊥‖2 + ‖R̃‖1.

Using Lemma 4.1 and 4.2, we obtain

d(X, X̂) =
1

n2
‖LPd(Q)L− LQ0L‖1 ≤ C(nrd)5 ∆

r4
,

which proves the claimed upper bound on the error.
The lower bound is proved in Section 7.

11

5 Proof of Lemma 4.1

The proof is based on the following three steps: (i) Upper bound ‖R⊥‖∗ in terms of σmin(Ω) and
σmax(Ω), where Ω is an arbitrary positive semidefinite (PSD) stress matrix of rank n−d−1 for the
framework; (ii) Construct a particular PSD stress matrix Ω of rank n − d − 1 for the framework;
(iii) Upper bound σmax(Ω) and lower bound σmin(Ω).

Theorem 5.1. Let Ω be an arbitrary PSD stress matrix for the framework GX such that rank(Ω) =
n− d− 1. Then,

‖R⊥‖∗ ≤ 2
σmax(Ω)

σmin(Ω)
|E|∆. (13)

Proof. Note that R⊥ = Q⊥ = P⊥V QP
⊥
V � 0. Write R⊥ =

∑n−d−1
i=1 λiuiu

T
i , where ‖ui‖ = 1,

uTi uj = 0 for i 6= j and λ1 ≥ λ2 ≥ · · ·λn−d−1 ≥ 0. Therefore,

〈Ω, R⊥〉 = 〈Ω,
n−d−1∑

i=1

λi uiu
T
i 〉 =

n−d−1∑

i=1

λiu
T
i Ωui ≥ σmin(Ω)‖R⊥‖∗. (14)

Here, we used the fact that ui ∈ V ⊥ = Ker⊥(Ω). Note that σmin(Ω) > 0, since Ω � 0.
Now, we need to upper bound the quantity 〈Ω, R⊥〉. Since Ωu = 0, the stress matrix Ω = [ωij]

can be written as Ω =
∑

(i,j)∈E ωijMij . Define ωmax = max
i 6=j
|ωij |. Then,

〈Ω, R⊥〉 (a)
= 〈Ω, R〉 =

∑

(i,j)∈E

ωij〈Mij , R〉

≤
∑

(i,j)∈E

ωmax|〈Mij , Q−Q0〉|

≤
∑

(i,j)∈E

ωmax(|〈Mij , Q〉 − d̃ij
2|+ | d̃ij

2 − d2
ij︸ ︷︷ ︸

zij

|)

≤ 2ωmax|E|∆, (15)

where (a) follows from the fact that 〈PV ,Ω〉 = 0. Since Ω � 0, we have ω2
ij ≤ ωiiωjj =

(eTi Ωei)(e
T
j Ωej) ≤ σ2

max(Ω), for 1 ≤ i, j ≤ n. Hence, ωmax ≤ σmax(Ω). Combining Eqs. (14)
and (15), we get the desired result.

Next step is constructing a PSD stress matrix of rank n− d− 1. For each node i ∈ V (G) define
Ci = {j ∈ V (G) : dij ≤ r/2}. Note that the nodes in each Ci form a clique in G. In addition, let Si
be the following set of cliques.

Si := ∪
k∈Ci
{Ci\k} ∪ {Ci}.

Therefore, Si is a set of |Ci| + 1 cliques. For the graph G, we define cliq(G) := S1 ∪ · · · ∪ Sn.
Next lemma establishes a simple property of cliques Ci. Its proof is immediate and deferred to
Appendix B.

Proposition 5.1. If r ≥ 4c
√
d(log n/n)1/d with c > 1, the following is true w.h.p.. For any two

nodes i and j, such that ‖xi − xj‖ ≤ r/2, |Ci ∩ Cj | ≥ d+ 1.

12

Now we are ready to construct a special stress matrix Ω of GX . Define the |Qk| × |Qk| matrix
Ωk as follows.

Ωk = P⊥
〈uQk

,x
(1)
Qk

,··· ,x(d)Qk
〉
.

Let Ω̂k be the n× n matrix obtained from Ωk by padding it with zeros. Define

Ω =
∑

Qk∈cliq(G)

Ω̂k.

The proof of the next statement is again immediate and discussed in Appendix C.

Proposition 5.2. The matrix Ω defined above is a positive semidefinite (PSD) stress matrix for
the framework GX . Further, almost surely, rank(Ω) = n− d− 1.

Final step is to upper bound σmax(Ω) and lower bound σmin(Ω).

Claim 5.1. There exists a constant C = C(d), such that, w.h.p.,

σmax(Ω) ≤ C(nrd)2.

Proof. For any vector v ∈ Rn,

vTΩv =
∑

Qk∈cliq(G)

vT Ω̂kv =
∑

Qk∈cliq(G)

‖Ω̂kv‖2 =
∑

Qk∈cliq(G)

‖P⊥
〈uQk

,x
(1)
Qk

,··· ,x(d)Qk
〉
vQk
‖2

≤
∑

Qk∈cliq(G)

‖vQk
‖2 =

n∑

j=1

v2
j

∑

k:j∈Qk

1 =
n∑

j=1

(
∑

i∈Cj

|Ci|)v2
j ≤ (Cnrd‖v‖)2.

The last inequality follows from the fact that, w.h.p., |Cj | ≤ Cnrd for all j and some constant C
(see Corollary 2.1).

We now pass to lower bounding σmin(Ω).

Theorem 5.2. There exists a constant C = C(d), such that, w.h.p., Ω⊥ � C(nrd)−3r2L⊥. (see
Eq. (8)).

The proof is given in Section 5.1. We are finally in position to prove Lemma 4.1.

Proof (Lemma 4.1). Following Theorem 5.2 and Remark 2.2, we obtain σmin(Ω) ≥ C(nrd)−2r4.
Also, by Corollary 2.1, w.h.p., the node degrees in G are bounded by 3/2Kdnr

d. Hence, w.h.p.,
|E| ≤ 3/4n2Kdr

d. Using the bounds on σmax(Ω), σmin(Ω) and |E| in Theorem 5.1 yields the
thesis.

5.1 Proof of Theorem 5.2

Before turning to the proof, it is worth mentioning that the authors in [4] propose a heuristic
argument showing Ωv ≈ L2v for smoothly varying vectors v. Since σmin(L) ≥ C(nrd)r2 (see
Remark 2.2), this heuristic supports the claim of the theorem.

In the following, we first establish some claims and definitions which will be used in the proof.

13

Claim 5.2. There exists a constant C = C(d), such that, w.h.p.,

L � C
n∑

k=1

P⊥uCk
.

The argument is closely related to the Markov chain comparison technique [11]. The proof is
given in Appendix D.

The next claim provides a concentration result about the number of nodes in the cliques Ci. Its
proof is immediate and deferred to Appendix E.

Claim 5.3. For every node i ∈ V (G), define C̃i = {j ∈ V (G) : dij ≤ r
2(1

2 + 1
100)}. There exists an

integer number m such that the following is true w.h.p..

|C̃i| ≤ m ≤ |Ci|, ∀i ∈ V (G).

Now, for any node i, let i1, · · · im denote the m-nearest neighbors of that node. Using claim 5.3,
C̃i ⊆ {i1, · · · , im} ⊆ Ci. Define the set S̃i as follows.

S̃i = {Ci, Ci\i1, · · · , Ci\im}.

Therefore, S̃i is a set of (m+ 1) cliques. Let cliq∗(G) = S̃1 ∪ · · · ∪ S̃n. Note that cliq∗(G) ⊆ cliq(G).
Construct the graph G∗ in the following way. For every element in cliq∗(G), there is a corresponding
vertex inG∗. (Thus, |V (G∗)| = n(m+1)). Also, for any two nodes i and j, such that ‖xi−xj‖ ≤ r/2,
every vertex in V (G∗) corresponding to an element in S̃i is connected to every vertex in V (G∗)
corresponding to an element in S̃j .

Our next claim establishes some properties of the graph G∗. For its proof, we refer to Ap-
pendix F.

Claim 5.4. With high probability, the graph G∗ has the following properties.

(i) The degree of each node is bounded by C(nrd)2, for some constant C = C(d).

(ii) Let L∗ denote the Laplacian of G∗. Then σmin(L∗) ≥ C(nrd)2r2, for some constant C.

Now, we are in position to prove Theorem 5.2

Proof (Theorem 5.2). Let v ∈ V ⊥ be an arbitrary vector. For every clique Qi ∈ cliq(G), de-

compose v locally as vQi =
∑d

`=1 β
(`)
i x̃

(`)
Qi

+ γiuQi
+ w(i), where x̃

(`)
Qi

= P⊥uQi
x

(`)
Qi

and w(i) ∈

〈x(1)
Qi
, · · · , x(d)

Qi
, uQi〉⊥. Hence,

vTΩv =
∑

Qi∈cliq(G)

‖w(i)‖2.

Note that vQi∩Qj has two representations; One is obtained by restricting vQi to indices in Qj , and
the other is obtained by restricting vQj to indices in Qi. From these two representations, we get

w
(i)
Qi∩Qj

− w(j)
Qi∩Qj

=
d∑

`=1

(β
(`)
j − β

(`)
i)x̃

(`)
Qi∩Qj

+ γ̃i,juQi∩Qj . (16)

14

Here, x̃
(`)
Qi∩Qj

= P⊥uQi∩Qj
x

(`)
Qi∩Qj

. The value of γi,j does not matter to our argument; however it can

be given explicitly.
Note that {C1, · · · , Cn} ⊆ cliq∗(G) ⊆ cliq(G). Invoking Claim 5.2,

vTLv ≤ C
n∑

k=1

‖P⊥uCk
vCk‖

2 ≤ C
∑

Qi∈cliq∗(G)

‖P⊥uQi
vQi
‖2 = C

∑

Qi∈cliq∗(G)

∥∥∥
d∑

`=1

β
(`)
i x̃

(`)
Qi

+ w(i)
∥∥∥

2

= C


 ∑

Qi∈cliq∗(G)

∥∥∥
d∑

`=1

β
(`)
i x̃

(`)
Qi

∥∥∥
2

+
∑

Qi∈cliq∗(G)

‖w(i)‖2



≤ C


d

∑

Qi∈cliq∗(G)

d∑

`=1

∥∥∥β(`)
i x̃

(`)
Qi

∥∥∥
2

+
∑

Qi∈cliq∗(G)

‖w(i)‖2

 .

Hence, we only need to show that

∑

Qi∈cliq(G)

‖w(i)‖2 ≥ C(nrd)−3r2
∑

Qi∈cliq∗(G)

d∑

`=1

∥∥∥β(`)
i x̃

(`)
Qi

∥∥∥
2
, (17)

for some constant C = C(d).
In the following we adopt the convention that for j ∈ V (G∗), Qj is the corresponding clique in

cliq∗(G). We have

∑

Qi∈cliq(G)

‖w(i)‖2 ≥
∑

Qi∈cliq∗(G)

‖w(i)‖2 =
∑

i∈V (G∗)

‖w(i)‖2

(a)

≥ C(nrd)−2
∑

(i,j)∈E(G∗)

(‖w(i)‖2 + ‖w(j)‖2)

≥ C(nrd)−2
∑

(i,j)∈E(G∗)

‖w(i)
Qi∩Qj

− w(j)
Qi∩Qj

‖2

(b)

≥ C(nrd)−2
∑

(i,j)∈E(G∗)

∥∥∥
d∑

`=1

(β
(`)
j − β

(`)
i)x̃

(`)
Qi∩Qj

∥∥∥
2

(c)

≥ C(nrd)−1r2
∑

(i,j)∈E(G∗)

d∑

`=1

(β
(`)
j − β

(`)
i)2. (18)

Here, (a) follows from the fact that the degrees of nodes in G∗ are bounded by C(nrd)2 (Claim 5.4,
part (i)); (b) follows from Eq. (16) and (c) follows from Claim 5.5, whose proof is deferred to
Appendix G.

Claim 5.5. There exists a constant C = C(d), such that, for any set of values {β(`)
i } the following

holds with high probability.

∥∥∥
d∑

`=1

(β
(`)
j − β

(`)
i)x̃

(`)
Qi∩Qj

∥∥∥
2
≥ C(nrd)r2

d∑

`=1

(β
(`)
j − β

(`)
i)2, ∀(i, j) ∈ E(G∗).

15

Also note that ‖x̃(`)
Qi
‖2 ≤ |Qi|r2 and w.h.p., |Qi| ≤ C(nrd), for all i ∈ V (G∗) (since, w.h.p.,

|Ci| ≤ C(nrd) for all i ∈ V (G) by Corollary 2.1). Therefore, using Eq. (18), in order to prove (17)
it suffices to show that

d∑

`=1

∑

(i,j)∈E(G∗)

(β
(`)
j − β

(`)
i)2 ≥ C(nrd)−1r2

d∑

`=1

∑

i∈V (G∗)

(β
(`)
i)2.

Define β(`) = (β
(`)
i)i∈V (G∗). Observe that,

∑

(i,j)∈E(G∗)

(β
(`)
j − β

(`)
i)2 = (β(`))TL∗β(`) ≥ σmin(L∗)‖P⊥u β(`)‖2.

Using Claim 5.4 (part (ii)) we obtain

∑

(i,j)∈E(G∗)

(β
(`)
j − β

(`)
i)2 ≥ C(nrd)2r2‖P⊥u β(`)‖2.

The proof is completed by the following claim, whose proof is given in Appendix H.

Claim 5.6. There exists a constant C = C(d), such that, the following holds with high probability.

Consider an arbitrary vector v ∈ V ⊥ with local decompositions vQi =
∑d

`=1 β
(`)
i x̃

(`)
Qi

+ γiuQi + w(i).
Then,

d∑

`=1

‖P⊥u β(`)‖2 ≥ C(nrd)−3
d∑

`=1

‖β(`)‖2.

6 Proof of Lemma 4.2

Recall that R̃ = PVRPV + PVRP
⊥
V + P⊥V RPV , and V = 〈x(1), · · · , x(d), u〉. Therefore, there exist

a matrix Y ∈ Rn×d and a vector a ∈ Rn such that R̃ = XY T + Y XT + uaT + auT . We can further
assume that Y Tu = 0. Otherwise, define Ỹ = Y − u(uTY/‖u‖2) and ã = a+X(Y Tu/‖u‖2). Then
R̃ = XỸ T + Ỹ XT + uãT + ãuT , and Ỹ Tu = 0.

Also note that, uTQu = uT R̃u = 2(aTu)‖u‖2. Hence, aTu = 0, since Qu = 0. In addition,
Qu = R̃u = a‖u‖2, which implies that a = 0. Therefore, R̃ = XY T + Y XT where Y Tu = 0.
Denote by yTi ∈ Rd, i ∈ [n], the ith row of the matrix Y .

Define the operator RG,X : Rn×d → RE as RG,X(Y) = RG(X)Y, where Y = [yT1 , · · · , yTn]T and
RG(X) is the rigidity matrix of framework GX . Observe that

‖RG,X(Y)‖1 =
∑

(l,k)∈E(G)

|〈xl − xk, yl − yk〉|.

The following theorem compares the operators RG,X and RKn,X , where G = G(n, r) and Kn is
the complete graph with n vertices. This theorem is the key ingredient in the proof of Lemma 4.2.

Theorem 6.1. There exists a constant C = C(d), such that, w.h.p.,

‖RKn,X(Y)‖1 ≤ Cr−d−2‖RG,X(Y)‖1, for all Y ∈ Rn×d.

16

Proof of Theorem 6.1 is discussed in next subsection. The next statement provides an upper
bound on ‖R̃‖1. Its proof is immediate and discussed in Appendix I.

Proposition 6.1. Given R̃ = XY T + Y XT , with Y Tu = 0, we have

‖R̃‖1 ≤ 5‖RKn,X(Y)‖1.

Now we have in place all we need to prove lemma 4.2.

Proof (Lemma 4.2). Define the operator AG : Rn×n → RE as AG(S) = [〈Mij , S〉](i,j)∈E . By our
assumptions,

|〈Mij , R̃〉+ 〈Mij , R
⊥〉| = |〈Mij , Q〉 − 〈Mij , Q0〉|

≤ |〈Mij , Q〉 − d̃2
ij |+ |d̃2

ij − 〈Mij , Q0〉|︸ ︷︷ ︸
|zij |

≤ 2∆.

Therefore, ‖AG(R̃)‖1 ≤ 2|E|∆ + ‖AG(R⊥)‖1. Write the Laplacian matrix L as L =
∑

(i,j)∈EMij .

Then, 〈L, R⊥〉 =
∑

(i,j)∈E〈Mij , R
⊥〉 = ‖AG(R⊥)‖1. Here, we used the fact that 〈Mij , R

⊥〉 ≥ 0,

since Mij � 0 and R⊥ � 0. Hence, ‖AG(R̃)‖1 ≤ 2|E|∆ + 〈L, R⊥〉. Due to Theorem 5.2, Eq. (15),
and Claim 5.1,

〈L, R⊥〉 ≤ C(nrd)3r−2〈Ω, R⊥〉 ≤ C(nrd)6 n

r2
∆,

whence we obtain
‖AG(R̃)‖1 ≤ C(nrd)6 n

r2
∆.

The last step is to write ‖AG(R̃)‖1 more explicitly. Notice that,

‖AG(R̃)‖1 =
∑

(l,k)∈E

|〈Mlk, XY
T + Y XT 〉| = 2

∑

(l,k)∈E

|〈xl − xk, yl − yk〉| = 2‖RG,X(Y)‖1.

Invoking Theorem 6.1 and Proposition 6.1, we have

‖R̃‖1 ≤ Cr−d−2‖RG,X(Y)‖1

= Cr−d−2‖AG(R̃)‖1 ≤ C(nrd)5n
2

r4
∆.

6.1 Proof of Theorem 6.1

We begin with some definitions and initial setup.

Definition 1. The d-dimensional hypercube Md is the simple graph whose vertices are the d-tuples
with entries in {0, 1} and whose edges are the pairs of d-tuples that differ in exactly one position.

Also, we use M
(2)
d to denote the graph with the same set of vertices as Md, whose edges are the

pairs of d-tuples that differ in at most two positions.

17

u

H
1

H
2 H

k

v

Figure 1: An illustration of a chain Guv

Definition 2. An isomorphism of graphs G and H is a bijection between the vertex sets of G and
H, say φ : V (G)→ V (H), such that any two vertices u and v of G are adjacent in G if and only if
φ(u) and φ(v) are adjacent in H. The graphs G and H are called isomorphic, denoted by G ' H
if an isomorphism exists between G and H.

Chains and Force Flows. A chain Gij between nodes i and j is a sequence of subgraphs

H1, H2, · · · , Hk of G, such that, Hp ' M
(2)
d for 1 ≤ p ≤ k, Hp ∩Hp+1 ' M

(2)
d−1 for 1 ≤ p ≤ k − 1

and Hp ∩ Hp+2 is empty for 1 ≤ p ≤ k − 2. Further, i (resp. j) is connected to all vertices in
V (H1) \ V (H2) (resp. V (Hk) \ V (Hk−1)). See Fig. 1 for an illustration of a chain in case d = 2.

A force flow γ is a collection of chains {Gij}1≤i 6=j≤n for all
(
n
2

)
node pairs. Let Γ be the collection

of all possible γ. Consider the probability distribution induced on Γ by selecting the chains between
all node pairs in the following manner. Chains are chosen independently for different node pairs.
Consider a particular node pair (i, j). Let ` = ‖xi − xj‖ and a = (xi − xj)/‖xi − xj‖. Define
r̃ = 3r

4
√

2
, and choose nonnegative numbers m ∈ Z and η ∈ R, such that, ` = mr̃ + η and η < r̃.

Consider the following set of points on the line segment between xi and xj .

ξk = xi +
η

2
+ (k − 1)r̃a, for 1 ≤ k ≤ m+ 1.

Construct the sequence of hypercubes in direction of a, with centers at (ξk + ξk+1)/2, and side
length r̃. (See Fig. 2 for an illustration). Denote the set of vertices in this construction by {zk}.
Now, partition the space [−0.5, 0.5]d into hypercubes (bins) of side length r

8
√
d
. From the proof of

Proposition 5.1, w.h.p., every bin contains at least one of the nodes {xk}k∈[n]. For every vertex
zk, choose a node xk uniformly at random among the nodes in the bin that contains zk. Hence,
‖xk − zk‖ ≤ r

8 and

‖xl − xk‖ ≤ ‖xl − zl‖+ ‖zl − zk‖+ ‖zk − xk‖ ≤
r

4
+ ‖zl − zk‖, ∀l, k.

By wiggling points {zk} to nodes {xk}, we obtain a perturbation of the sequence of hypercubes,
call it Gij . It is easy to see that Gij is a chain between nodes i and j.

Under the above setup, we claim the following two lemmas.

Lemma 6.1. Under the probability distribution on Γ as described above, the expected number of
chains containing a particular edge is upper bounded by Cr−d−1, w.h.p., where C = C(d) is a
constant.

The proof is discussed in Appendix J.

18

�
1

�
2

�
3

�
m

�
m+1

z
k

x
k

B
i

Bin

x j
x
i

r

8 d

˜ r =
3r

4 2

Figure 2: Construction of chain Gij for case d = 2.

Lemma 6.2. Let Gij be the chain between nodes i and j as described above. There exists a constant
C = C(d), such that,

|〈xi − xj , yi − yj〉| ≤ Cr−1
∑

(l,k)∈E(Gij)

|〈xl − xk, yl − yk〉| , ∀1 ≤ i, j ≤ n.

The proof is deferred to Section 6.1.1. Now, we are in position to prove Theorem 6.1.

Proof(Theorem 6.1). Consider a force flow γ = {Gij}1≤i,j≤n. Using lemma 6.2, we have

∑

i,j

|〈xi − xj , yi − yj〉| ≤ Cr−1
∑

i,j

∑

(l,k)∈E(Gij)

|〈xl − xk, yl − yk〉|

≤ Cr−1
∑

(l,k)∈E(G)

(∑

Gij :(l,k)∈E(Gij)

1
)
|〈xl − xk, yl − yk〉|

= Cr−1
∑

(l,k)∈E(G)

b(γ, (l, k)) |〈xl − xk, yl − yk〉| , (19)

where b(γ, (l, k)) denotes the number of chains passing through edge (l, k). Notice that in Eq. (19),
b(γ, (l, k)) is the only term that depends on the force flow γ. Hence, b(γ, (l, k)) can be replaced by
its expectation under a probability distribution on Γ. According to Lemma 6.1, under the described
distribution on Γ, the average number of chains containing any particular edge is upper bounded
by Cr−d−1, w.h.p. Therefore,

∑

i,j

|〈xi − xj , yi − yj〉| ≤ Cr−d−2
∑

(l,k)∈E(G)

|〈xl − xk, yl − yk〉| .

Equivalently, ‖RKn,X(Y)‖1 ≤ Cr−d−2‖RG,X(Y)‖1, with high probability.

19

6.1.1 Proof of Lemma 6.2

Proof. Assume that |V (Gij)| = m + 1 . Relabel the vertices in the chain Gij such that the nodes
i and j have labels 0 and m respectively, and all the other nodes are labeled in {1, · · · ,m − 1}.
Since both sides of the desired inequality are invariant to translations, without loss of generality
we assume that x0 = y0 = 0. For a fixed vector ym consider the following optimization problem:

Θ = min
y1,··· ,ym−1∈Rd

∑

(l,k)∈E(Gij)

|〈xl − xk, yl − yk〉| .

To each edge (l, k) ∈ E(Gij), assign a number λlk. (Note that λlk = λkl). For any assignment with
max(l,k)∈E(Gij) |λlk| ≤ 1, we have

Θ ≥ min
y1,··· ,ym−1∈Rd

∑

(l,k)∈E(Gij)

λlk〈xl − xk, yl − yk〉

= min
y1,··· ,ym−1∈Rd

∑

l∈Gij

l 6=0

∑

k∈∂l
λlk〈yl, xl − xk〉

= min
y1,··· ,ym−1∈Rd

∑

l∈Gij

l 6=0

〈yl,
∑

k∈∂l
λlk(xl − xk)〉,

where ∂l denotes the set of adjacent vertices to l in Gij . Therefore,

Θ ≥ max
λlk:|λlk|≤1

min
y1,··· ,ym−1∈Rd

∑

l∈Gij

l 6=0

〈yl,
∑

k∈∂l
λlk(xl − xk)〉. (20)

Note that the numbers λlk that maximize the right hand side should satisfy
∑

k∈∂l λlk(xl − xk) =
0,∀l 6= 0,m. Thus, Θ ≥ 〈ym,

∑
k∈∂m λmk(xm − xk)〉. Assume that we find values λlk such that





∑
k∈∂l λlk(xl − xk) = 0 ∀l 6= 0,m,∑
k∈∂m λmk(xm − xk) = xm,

max
(l,k)∈E(Gij)

|λlk| ≤ Cr−1.
(21)

Given these values λlk, define λ̃lk =
λlk

max
(l,k)∈E(Gij)

|λlk|
. Then |λ̃lk| ≤ 1 and

Θ ≥ 〈ym,
∑

k∈∂m
λ̃mk(xm − xk)〉 = 〈ym,

1

maxl,k |λlk|
xm〉 ≥ Cr〈ym, xm〉,

which proves the thesis.
Notice that for any values λlk satisfying (21), we have

{ ∑
l∈V (Gij)

∑
k∈∂l λlk(xl − xk) =

∑
k∈∂0 λ0k(x0 − xk) + xm∑

l∈V (Gij)

∑
k∈∂l λlk(xl − xk) =

∑
(l,k)∈E(Gij) λlk(xl − xk) + λkl(xk − xl) = 0

20

Hence,
∑

k∈∂0 λ0k(x0 − xk) = −xm.
It is convenient to generalize the constraints in Eq. (21). Consider the following linear system

of equations with unknown variables λlk.
∑

k∈∂l
λlk(xl − xk) = ul, for l = 0, · · · ,m. (22)

Writing Eq. (22) in terms of the rigidity matrix of Gij , and using the characterization of its null
space as discussed in section 2.1, it follows that Eq. (22) have a solution if and only if

m∑

i=0

ui = 0,
m∑

i=0

uTi Axi = 0, (23)

where A ∈ Rd×d is an arbitrary anti-symmetric matrix.

A mechanical interpretation. For any pair (l, k) ∈ E(Gij), assume a spring with spring constant
λlk between nodes l and k. Then, by Eq. (22), ul will be the force imposed on node l. The first
constraint in Eq. (23) states that the net force on Gij is zero (force equilibrium), while the second
condition states that the net torque is zero (torque equilibrium).

Indeed,
∑m

i=0 u
T
i Aui = 〈A,

∑m
i=0 uix

T
i 〉 = 0, for every anti-symmetric matrix A if and only if∑m

i=0 uix
T
i is a symmetric matrix. Therefore,

m∑

i=0

ui ∧ xi =

m∑

i=0

(
d∑

`=1

u
(`)
i e`

)
∧

(
d∑

k=1

x
(k)
i ek

)
=
∑

`,k

m∑

i=0

(u
(`)
i x

(k)
i − x

(`)
i u

(k)
i)(e` ∧ ek) = 0.

With this interpretation in mind, we propose a two-part procedure to find the spring constants
λlk that obey the constraints in (21).

Part (i): For the sake of simplicity, we focus here on the special case d = 2. The general
argument proceeds along the same lines and is deferred to Appendix K.

Consider the chain Gij between nodes i and j, cf. Fig. 1. For every 1 ≤ p ≤ k, let Fp denote
the common side of Hp and Hp+1. Without loss of generality, assume V (Fp) = {1, 2}, and xm is in
the direction of e1. Find the forces f1, f2 such that

f1 + f2 = xm, f1 ∧ x1 + f2 ∧ x2 = 0,

‖f1‖2 + ‖f2‖2 ≤ C‖xm‖2.
(24)

To this end, we solve the following optimization problem.

minimize
1

2
(‖f1‖2 + ‖f2‖2)

subject to f1 + f2 = xm, f1 ∧ x1 + f2 ∧ x2 = 0
(25)

It is easy to see that the solutions of (25) are given by
{
f1 = 1

2xm + 1
2γA(x1 − x2)

f2 = 1
2xm −

1
2γA(x1 − x2)

γ = − 1

‖x1 − x2‖2
xTmA(x1 + x2), A =

(
0 −1
1 0

)
.

21

Now, we should show that the forces f1 and f2 satisfy the constraint ‖f1‖2 + ‖f2‖2 ≤ C‖xm‖2,
for some constant C. Clearly, it suffices to prove ‖γ(x1 − x2)‖ ≤ C‖xm‖. Observe that

‖γ(x1 − x2)‖
‖xm‖

=
1

‖x1 − x2‖

∣∣∣∣
xTm
‖xm‖

A(x1 + x2)

∣∣∣∣

=
1

‖x1 − x2‖
|eT1 A(x1 + x2)|

=
1

‖x1 − x2‖
|eT2 (x1 + x2)|.

From the construction of chain Gij , we have

|eT2 (x1 + x2)| ≤ r

4
, ‖x1 − x2‖ ≥

r

4
,

which shows that ‖γ(x1 − x2)‖ ≤ ‖xm‖.

Part (ii): For each Hp consider the following set of forces

ui =

{
fi if i ∈ V (Fp)
−fi if i ∈ V (Fp−1)

, (26)

Also, let u0 = −xm and um = xm. (cf. Fig. 3).
Notice that

∑
i∈V (Hp) ui = 0,

∑
i∈V (Hp) ui∧xi = 0, and thus by the discussion prior to Eq. (23),

there exist values λ
(Hp)
lk , such that

∑

k:(l,k)∈E(Hp)

λ
(Hp)
lk (xl − xk) = ul, ∀l ∈ V (Hp).

Writing this in terms of R(Hp), the rigidity matrix of Hp, we have

(R(Hp))Tλ(Hp) = u, (27)

where the vector λ(Hp) = [λ
(Hp)
lk] has size |E(Hp)| = d(d + 1)2d−2, and the vector u = [ul] has size

d × |V (Hp)| = d2d. Among the solutions of Eq. (27), choose the one that is orthogonal to the
nullspace of (R(Hp))T . Therefore,

σmin(R(Hp))‖λ(Hp)‖∞ ≤ σmin(R(Hp))‖λ(Hp)‖2 ≤ ‖u‖ ≤ C‖xm‖.

Form the construction of the chains, Hp is a perturbation of the d-dimensional hypercube with
side length r̃ = 3r

4
√

2
. (each vertex wiggles by at most r

8). Using the fact that σmin(.) is a Lipschitz

continuos function of its argument, we get that σmin(R(Hp)) ≥ Cr, for some constant C = C(d).
Also, ‖xm‖ ≤ 1. Hence, ‖λ(Hp)‖∞ ≤ Cr−1.

Now define
λlk =

∑

Hp:(l,k)∈E(Hp)

λ
(Hp)
lk , ∀(l, k) ∈ E(Gij). (28)

We claim that the values λlk satisfy the constraints in (21).

22

Hp
ui

1

= f i
1

ui
2

= f i
2

ui
3

= � f i
3

ui
4

= � f i
4

Figure 3: Hp and the set of forces in Part (ii)

First, note that for every node l,

∑

k∈∂l
λlk(xl − xk) =

∑

k∈∂l


 ∑

Hp:(l,k)∈E(Hp)

λ
(Hp)
lk


 (xl − xk)

=
∑

Hp:l∈V (Hp)


 ∑

k:(l,k)∈E(Hp)

λ
(Hp)
lk (xl − xk)




=
∑

Hp:l∈V (Hp)

ul. (29)

For nodes l /∈ {0,m}, there are two Hp containing l. In one of them, ul = fl and in the other
ul = −fl. Hence, the forces ul cancel each other in Eq. (29) and the sum is zero. At nodes 0 and
m, this sum is equal to −xm and xm respectively.

Second, since each edge participates in at most two Hp, it follows from Eq. (28) that |λlk| ≤
Cr−1.

7 Proof of Theorem 1.1 (Lower Bound)

Proof. Consider the ‘bending ’ map T : [−0.5, 0.5]d → Rd+1, defined as

T (t1, t2, · · · , td) = (R sin
t1
R
, t2, · · · , td, R(1− cos

t1
R

))

This map bends the hypercube in the d+ 1 dimensional space. Here, R is the curvature radius of
the embedding (for instance, R� 1 corresponds to slightly bending the hypercube, cf. Fig. 4).

Now for a given ∆, let R = max{1, r2∆−1/2} and give the distances d̃ij = ‖T (xi)−T (xj)‖ as the
input distance measurements to the algorithm. First we show that these adversarial measurements
satisfy the noise constraint ‖d̃2

ij − d2
ij‖ ≤ ∆.

23

e
1

e
2

e
3

e
1

e
2

e
3

Figure 4: Bending map T , with R = 2, and d = 2.

d2
ij − d̃2

ij = (x
(1)
i − x

(1)
j)2 −R2

[
sin
(x(1)

i

R

)
− sin

(x(1)
j

R

)]2

−R2
[

cos
(x(1)

i

R

)
− cos

(x(1)
j

R

)]2

= (x
(1)
i − x

(1)
j)2 −R2

[
2− 2 cos

(x(1)
i − x

(1)
j

R

)]

≤
(x

(1)
i − x

(1)
j)4

2R2
≤ r4

2R2
≤ ∆.

Also, d̃ij ≤ dij . Therefore, |zij | = |d̃2
ij − d2

ij | ≤ ∆.
The crucial point is that the SDP in the first step of the algorithm is oblivious of dimension

d. Therefore, given the measurements d̃ij as the input, the SDP will return the Gram matrix Q
of the positions x̃i = LT (xi), i.e., Qij = x̃i · x̃j . Denote by {u1, · · · , ud}, the eigenvectors of Q
corresponding to the d largest eigenvalues. Next, the algorithm projects the positions {x̃i}i∈[n] onto

the space U = 〈u1, · · · , ud〉 and returns them as the estimated positions in Rd. Hence,

d(X, X̂) =
1

n2
‖XXT − PUX̃X̃TPU‖1.

Let W = 〈e1, e2, · · · , ed〉 (see Fig. 5). Then,

d(X, X̂) ≥ 1

n2
‖XXT − X̃PW X̃T ‖1 −

1

n2
‖X̃PW X̃T − PUX̃X̃TPU‖1. (30)

24

e
3

e
2

e
1

U

W

Figure 5: An illustration of subspaces U and W .

We bound each terms on the right hand side separately. For the first term,

1

n2
‖XXT − X̃PW X̃T ‖1

=
1

n2

∑

1≤i,j≤n

∣∣∣∣x
(1)
i x

(1)
j −R

2 sin
(x(1)

i

R

)
sin
(x(1)

j

R

)∣∣∣∣

(a)
=

1

n2

∑

1≤i,j≤n

∣∣∣∣x
(1)
i x

(1)
j −R

2
(x(1)

i

R
−

(x
(1)
i)3

3!R3
+

ξ5
i

5!R5

)(x(1)
j

R
−

(x
(1)
j)3

3!R3
+

ξ5
j

5!R5

)∣∣∣∣

(b)

≥ C

(
R

n

)2 ∑

1≤i,j≤n

∣∣∣∣
1

3!

(x(1)
i

R

)(x(1)
j

R

)3
+

1

3!

(x(1)
j

R

)(x(1)
i

R

)3
∣∣∣∣

≥ C

(nR)2

(∑

1≤i≤n
|x(1)
i |
)(∑

1≤j≤n
|x(1)
i |

3
)
≥ C

R2
, (31)

where (a) follows from Taylor’s theorem, and (b) follows from |ξi/R| ≤ |xi/R| ≤ 1/2.
The next Proposition provides an upper bound for the second term on the right hand side of

Eq. (30).

Proposition 7.1. The following is true.

1

n2
‖X̃PW X̃T − PUX̃X̃TPU‖1 → 0 a.s., as n→∞.

Proof of this Proposition is provided in the next section.
Using the bounds given by Proposition 7.1 and Eq. (31), we obtain that, w.h.p.,

d(X, X̂) ≥ C1

R2
≥ C min{1, ∆

r4
}.

The result follows.

25

7.1 Proof of Proposition 7.1

We first establish the following remarks.

Remark 7.1. Let a, b ∈ Rm be two unitary vectors. Then,

‖aaT − bbT ‖2 =
√

1− (aT b)2.

For proof, we refer to Appendix L

Remark 7.2. Assume A and Ã are p×p matrices. Let {λi} be the eigenvalues of A such that λ1 ≥
· · · ≥ λp−1 > λp. Also, let v and ṽ respectively denote the eigenvectors of A and Ã corresponding
to their smallest eigenvalues. Then,

1− (vT ṽ)2 ≤ 4‖A− Ã‖2
λp−1 − λp

.

The proof is deferred to Appendix M.

Proof(Proposition 7.1). Let X̃ =
∑d+1

i=1 σiuiŵ
T
i be the singular value decomposition of X̃, where

‖ui‖ = ‖ŵi‖ = 1, ui ∈ Rn, ŵi ∈ Rd+1 and σ1 ≥ σ2 ≥ · · · ≥ σd+1. Notice that

PUX̃ =
d∑

i=1

σiuiŵ
T
i = (

d+1∑

i=1

σiuiŵ
T
i)(

d∑

j=1

ŵjŵ
T
j) = X̃PŴ ,

where Ŵ = 〈ŵ1, · · · , ŵd〉, and PŴ ∈ R(d+1)×(d+1). Hence, PUX̃X̃
TPU = X̃PŴ X̃

T . Define M =
PŴ − PW . Then, we have

1

n2
‖X̃PW X̃T − PUX̃X̃TPU‖1 =

1

n2
‖X̃MX̃T ‖1 =

1

n2

∑

1≤i,j≤n
|x̃Ti Mx̃j |

≤ 1

n2
‖M‖2

∑

1≤i,j≤n
‖x̃i‖‖x̃j‖ ≤ ‖M‖2. (32)

Now, we need to bound ‖M‖2. We have,

M = PŴ − PW = (I − Pŵd+1
)− (I − Ped+1

) = Ped+1
− Pŵd+1

.

Using Remark 7.1, we obtain ‖M‖2 = ‖ed+1e
T
d+1 − ŵd+1ŵ

T
d+1‖2 =

√
1− (eTd+1ŵd+1)2.

Let Zi = x̃ix̃
T
i ∈ R(d+1)×(d+1), Z̄ = 1

n

∑n
i=1 Zi and Z = E(Zi). Notice that Z̄ = 1

nX̃
T X̃ =

1
n

∑d+1
i=1 σ

2
i ŵiŵ

T
i . Therefore, ŵd+1 is the eigenvector of Z̄ corresponding to its smallest eigenvalue.

In addition, Z is a diagonal matrix (with Z(d+1),(d+1) the smallest diagonal entry). Hence, ed+1 is
its eigenvector corresponding to the smallest eigenvalue, Z(d+1),(d+1).

By applying Remark 7.2, we have

‖M‖2 ≤
√

1− (eTd+1ŵd+1)2 ≤

√
4‖Z − Z̄‖2
λd − λd+1

, (33)

26

where λd > λd+1 are the two smallest eigenvalues of Z. Let t be a random variable, uniformly
distributed in [−0.5, 0.5]. Then,

λd = E
[
R2 sin2

(
t

R

)]
and λd+1 = E

[
R2

(
1− cos2

(
t

R

))]
.

Hence, λd − λd+1 = R3(−1/R− sin(1/R) + 4 sin(1/2R)) ≥ 0.07, since R ≥ 1.
Also, note that {Zi}1≤i≤n is a sequence of iid random matrices with dimension (d + 1) and

‖Z‖∞ = ‖E(Zi)‖∞ <∞. By Law of large numbers, Z̄ → Z, almost surely. Now, since the operator
norm is a continuos function, we have ‖Z − Z̄‖2 → 0, almost surely. The result follows directly
from Eqs. (32) and (33).

8 Numerical experiments

Theorem 1.1 considers a worst case model for the measurement noise in which the errors {zij}(i,j)∈E
are arbitrary but uniformly bounded as |zij | ≤ ∆. The proof of the lower bound (cf. Section 7)
introduces errors {zij}(i,j)∈E defined based on a bending map, T . This set of errors results in the

claimed lower bound. For clarity, we denote this set of errors by {zTij}. In this section, we consider
a mixture model for the measurement errors. For given parameters ∆ and ε, we let

zij ∼ εγ∆/2 + (1− ε)δzTi,j , (34)

where γσ(x) = 1/(
√

2πσ)e−x
2/2σ2

is the density function of the normal distribution with mean zero
and variance σ2. The goal of the numerical experiments is to show the dependency of the algorithm
performance on each of the parameters n, r and ∆. We consider the following configurations. For
each configuration we run the SDP-based algorithm and evaluate d(X, X̂). The error bars in figures
correspond to 10 realizations of that configuration. Throughout the measurement errors are defined
according to (34) with ε = 0.1.

1. Fix ∆ = 0.005 and d ∈ {2, 4}. Let r = 3(log n/n)1/d, with n ∈ {100, 120, 140, · · · , 300}. Fig. 6
summarizes the results. According to the plot, d(X, X̂) ∝ n2 for d = 2 and d(X, X̂) ∝ n for
d = 4.

2. Fix ∆ = 0.005, d = 2 and n = 150. Let r ∈ {0.5, 0.55, 0.6, · · · , 0.8}. The results are shown in
Fig. 7. As we see, d(X, X̂) is fairly proportional to r−4.

3. Fix n = 150, r = 0.6 and d = 2. Let ∆ ∈ {0.005, 0.01, 0.015, 0.02, 0.025}. Fig. 8 showcases
the results. The performance deteriorates linearly with respect to ∆.

Acknowledgment. Adel Javanmard is supported by Caroline and Fabian Pease Stanford
Graduate Fellowship. This work was partially supported by the NSF CAREER award CCF-
0743978, the NSF grant DMS-0806211, and the AFOSR grant FA9550-10-1-0360. The authors
thank the anonymous reviewers for their insightful comments.

27

4.5 5 5.5 6
−8

−7

−6

−5

−4

−3

−2

−1

0

1

log n

lo
g
d
(X

,
X̂
)

d = 2
d = 4

Figure 6: Performance results for ∆ = 0.005, d = 2, 4, and r = 3(log n/n)1/d. The plot shows log d(X, X̂)

vs. log n for a set of values of n. The solid line and the dashed line respectively correspond to d(X, X̂) ∝ n2
and d(X, X̂) ∝ n and are plotted as reference.

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log r

lo
g
d
(X

,
X̂
)

Figure 7: Performance results for ∆ = 0.005, d = 2, and n = 150. The plot shows log d(X, X̂) vs. log r for

a set of values of r. The solid line corresponds to d(X, X̂) ∝ r−4 and is plotted as reference.

28

−5.5 −5 −4.5 −4 −3.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

log ∆

lo
g
d
(X

,
X̂
)

Figure 8: Performance results for n = 150, r = 0.6, and d = 2. The plot shows log d(X, X̂) vs. log ∆ for a

set of values of ∆. The solid line corresponds to d(X, X̂) ∝ ∆ and is plotted as reference.

A Proof of Remark 2.1

For 1 ≤ j ≤ n, let random variable zj be 1 if node j is in region R and 0 otherwise. The variables
{zj} are i.i.d. Bernoulli with probability V (R) of success. Also, n(R) =

∑n
j=1 zj .

By application of the Chernoff bound we obtain

P
(∣∣∣

n∑

j=1

zj − nV (R)
∣∣∣ ≥ δnV (R)

)
≥ 2 exp

(
− δ2nV (R)

2

)
.

Choosing δ =

√
2c log n

nV (R)
, the right hand side becomes 2 exp(−c log n) = 2/nc. Therefore, with

probability at least 1− 2/nc,

n(R) ∈ nV (R) + [−
√

2cnV (R) log n,
√

2cnV (R) log n]. (35)

B Proof of Proposition 5.1

We apply the bin-covering technique. Cover the space [−0.5, 0.5]d with a set of non-overlapping
hypercubes (bins) whose side lengths are δ. Thus, there are a total of m = d1/δed bins, each of
volume δd. In formula, bin (j1, · · · , jd) is the hypercube [(j1 − 1)δ, j1δ)× · · · × [(jd − 1)δ, jdδ), for
jk ∈ {1, · · · , d1/δe} and k ∈ {1, · · · , d}. Denote the set of bins by {Bk}1≤k≤m. Assume n nodes
are deployed uniformly at random in [−0.5, 0.5]d. We claim that if δ ≥ (c log n/n)1/d, where c > 1,
then w.h.p., every bin contains at least d+ 1 nodes.

29

Fix k and let random variable ξl be 1 if node l is in bin Bk and 0 otherwise. The variables
{ξl}1≤l≤n are i.i.d. Bernoulli with probability 1/m of success. Also ξ =

∑n
l=1 ξl is the number

of nodes in bin Bk. By Markov inequality, P(ξ ≤ d) ≤ E{Zξ−d}, for any 0 ≤ Z ≤ 1. Choosing
Z = md/n, we have

P(ξ ≤ d) ≤ E{Zξ−d} = Z−d
n∏

l=1

E{Zξl}

= Z−d
(

1

m
Z + 1− 1

m

)n
=
(n

md

)d(
1 +

d

n
− 1

m

)n

≤
(ne
md

)d
e−n/m =

(
neδd

d

)d
e−nδ

d ≤
(ce log n

d

)d
n−c.

By applying union bound over all the m bins, we get the desired result.
Now take δ = r/(4

√
d). Given that r ≥ 4c

√
d(log n/n)1/d, for some c > 1, every bin contains

at least d + 1 nodes, with high probability. Note that for any two nodes xi, xj ∈ [−0.5, 0.5]d with
‖xi − xj‖ ≤ r/2, the point (xi + xj)/2 (the midpoint of the line segment between xi and xj) is
contained in one of the bins, say Bk. For any point s in this bin,

‖s− xi‖ ≤
∥∥∥s− xi + xj

2

∥∥∥+
∥∥∥xi + xj

2
− xi

∥∥∥ ≤ r

4
+
r

4
=
r

2
.

Similarly, ‖s−xj‖ ≤ r/2. Since s ∈ Bk was arbitrary, Ci∩Cj contains all the nodes in Bk. This
implies the thesis, since Bk contains at least d+ 1 nodes.

C Proof of Proposition 5.2

Let mk = |Qk| and define the matrix Rk as follows.

Rk =
[
x

(1)
Qk

∣∣∣ · · · |x(d)
Qk

∣∣∣uQk

]T
∈ R(d+1)×mk .

Compute an orthonormal basis wk,1, · · · , wk,mk−d−1 ∈ Rmk for the nullspace of Rk. Then

Ωk = P⊥
〈uQk

,x
(1)
Qk

,··· ,x(d)Qk
〉

=

mk−d−1∑

l=1

wk,lw
T
k,l.

Let ŵk,l ∈ Rn be the vector obtained from wk,l by padding it with zeros. Then, Ω̂k =
∑mk−d−1

l=1 ŵk,lŵ
T
k,l.

In addition, the (i, j) entry of Ω̂k is nonzero only if i, j ∈ Qk. Any two nodes in Qk are connected
in G (Recall that Qk is a cliques of G). Hence, Ω̂k is zero outside E. Since Ω =

∑
Qk∈cliq(G) Ω̂k,

the matrix Ω is also zero outside E.
Notice that for any v ∈ 〈x(1), · · · , x(d), u〉,

Ωv = (
∑

Qk∈cliq(G)

Ω̂k)v =
∑

Qk∈cliq(G)

ΩkvQk
= 0.

30

So far we have proved that Ω is a stress matrix for the framework. Clearly, Ω � 0, since Ω̂k � 0
for all k. We only need to show that rank(Ω) = n − d − 1. Since Ker(Ω) ⊇ 〈x(1), · · · , x(d), u〉, we
have rank(Ω) ≤ n− d− 1. Define

Ω̃ =
∑

Qk∈{C1,··· ,Cn}

Ω̂k.

Since Ω � Ω̃ � 0, it suffices to show that rank(Ω̃) ≥ n− d− 1. For an arbitrary vector v ∈ Ker(Ω̃),

vT Ω̃v =
n∑

i=1

‖P⊥
〈uCi ,x

(1)
Ci
,··· ,x(d)Ci 〉

vCi‖
2 = 0,

which implies that vCi ∈ 〈uCi , x
(1)
Ci , · · · , x

(d)
Ci 〉. Hence, the vector vCi can be written as

vCi =

d∑

`=1

β
(`)
i x

(`)
Ci + β

(d+1)
i uCi

for some scalars β
(`)
i . Note that for any two nodes i and j, the vector vCi∩Cj has the following two

representations

vCi∩Cj =
d∑

`=1

β
(`)
i x

(`)
Ci∩Cj + β

(d+1)
i uCi∩Cj =

d∑

`=1

β
(`)
j x

(`)
Ci∩Cj + β

(d+1)
j uCi∩Cj

Therefore,
d∑

`=1

(β
(`)
i − β

(`)
j)x

(`)
Ci∩Cj + (β

(d+1)
i − β(d+1)

j)uCi∩Cj = 0 (36)

According to Proposition 5.1, with high probability, for any two nodes i and j with ‖xi−xj‖ ≤ r/2,

we have |Ci∩Cj | ≥ d+ 1. Thus, the vectors x
(`)
Ci∩Cj , uCi∩Cj , 1 ≤ ` ≤ d are linearly independent, since

the configuration is generic. More specifically, let Y be the matrix with d+ 1 columns {x(`)
Ci∩Cj}

d
`=1,

uCi∩Cj . Then, det(Y TY) is a nonzero polynomial in the coordinates x
(`)
k , k ∈ Ci ∩ Cj with integer

coefficients. Since the configuration of the points is generic, det(Y TY) 6= 0 yielding the linear

independence of the columns of Y . Consequently, Eq. (36) implies that β
(`)
i = β

(`)
j for any two

adjacent nodes in G(n, r/2). Given that r > 10
√
d(log n/n)1/d, the graph G(n, r/2) is connected

w.h.p. and thus the coefficients β
(`)
i are the same for all i. Dropping subscript (i), we obtain

v =

d∑

`=1

β(`)x(`) + β(d+1)u,

proving that Ker(Ω̃) ⊆ 〈u, x(1), · · · , x(d)〉, and thus rank(Ω̃) ≥ n− d− 1.

31

D Proof of Claim 5.2

Let G̃ = (V, Ẽ), where Ẽ = {(i, j) : dij ≤ r/2}. The Laplacian of G̃ is denoted by L̃. We first show
that for some constant C,

L̃ � C
n∑

k=1

P⊥uCk
. (37)

Note that,

n∑

k=1

P⊥uCk
=

n∑

k=1

(I − 1

|Ck|
uCku

T
Ck) =

n∑

k=1

1

|Ck|

(∑

i,j∈Ck

Mij

)

�
∑

(i,j)∈Ẽ

(∑

k:(i,j)∈Ck

1

|Ck|

)
Mij =

∑

(i,j)∈Ẽ

(∑

k∈Ci∩Cj

1

|Ck|

)
Mij .

The inequality follows from the fact that Mij � 0, ∀i, j. By application of Remark 2.1, we have
|Ck| ≤ C1(nrd) and |Ci ∩ Cj | ≥ C2nr

d, for some constants C1 and C2 (depending on d) and ∀k, i, j.
Therefore,

n∑

k=1

P⊥uCk
�

∑

(i,j)∈Ẽ

C2

C1
Mij =

C2

C1
L̃.

Next we prove that for some constant C,

L � CL̃. (38)

To this end, we use the Markov chain comparison technique.
A path between two nodes i and j, denoted by γij , is a sequence of nodes (i, v1, · · · , vt−1, j),

such that the consecutive pairs are connected in G̃. Let γ = (γij)(i,j)∈E denote a collection of paths
for all pairs connected in G, and let Γ be the collection of all possible γ. Consider the probability
distribution induced on Γ by choosing paths between all connected pairs in G in the following way.

Cover the space [−0.5, 0.5]d with bins of side length r/(4
√
d) (similar to the proof of Propo-

sition 5.1. As discussed there, w.h.p., every bin contains at least one node). Paths are selected
independently for different node pairs. Consider a particular pair (i, j) connected in G. Select γij
as follows. If i and j are in the same bin or in the neighboring bins then γij = (i, j). Otherwise,
consider all bins intersecting the line joining i and j. From each of these bins, choose a node vk
uniformly at random. Then the path γij is (i, v1, · · · , j).

In the following, we compute the average number of paths passing through each edge in Ẽ. The
total number of paths is |E| = Θ(n2rd). Also, since any connected pair in G are within distance
r of each other and the side length of the bins is O(r), there are O(1) bins intersecting a straight
line joining a pair (i, j) ∈ E. Consequently, each path contains O(1) edges. The total number of
bins is Θ(r−d). Hence, by symmetry, the number of paths passing through each bin is Θ(n2r2d).
Consider a particular bin B and the paths passing through it. All these paths are equally likely
to choose any of the nodes in B. Therefore, the average number of paths containing a particular
node in B, say i, is Θ(n2r2d/nrd) = Θ(nrd). In addition, the average number of edges between i
and neighboring bins is Θ(nrd). Due to symmetry, the average number of paths containing an edge
incident on i is Θ(1). Since this is true for all nodes i, the average number of paths containing an
edge is Θ(1).

32

Now, let v ∈ Rn be an arbitrary vector. For a directed edge e ∈ Ẽ from i → j, define
v(e) = vi − vj . Also, let |γij | denote the length of the path γij .

vTLv =
∑

(i,j)∈E

(vi − vj)2 =
∑

(i,j)∈E

(∑

e∈γij

v(e)

)2

≤
∑

(i,j)∈E

|γij |
∑

e∈γij

v(e)2 =
∑

e∈Ẽ

v(e)2
∑

γij3e
|γij |

≤ γ∗
∑

e∈Ẽ

v(e)2b(γ, e), (39)

where γ∗ is the maximum path lengths and b(γ, e) denotes the number of paths passing through e
under γ = (γij). The first inequality follows from the Cauchy-Schwartz inequality. Since all paths
have length O(1), we have γ∗ = O(1). Also, note that in Eq. (39), b(γ, e) is the only term that
depends on the paths. Therefore, we can replace b(γ, e) with its expectation under the distribution
on Γ, i.e., b(e) =

∑
γ∈Γ P(γ)b(γ, e). We proved above that the average number of paths passing

through an edge is Θ(1). Hence, max
e∈Ẽ

b(γ, e) = Θ(1). using these bounds in Eq. (39), we obtain

vTLv ≤ C
∑

e∈Ẽ

v(e)2 = CvT L̃v, (40)

for some constant C and all vectors v ∈ Rn. Combining Eqs. (37) and (40) implies the thesis.

E Proof of Claim 5.3

In Remark 2.1, let region R be the r/2-neighborhood of node i, and take c = 2. Then, with
probability at least 1− 2/n2,

|Ci| ∈ npd + [−
√

4npd log n,
√

4npd log n], (41)

where pd = Kd(r/2)d. Similarly, with probability at least 1− 2/n2,

|C̃i| ∈ np̃d + [−
√

4np̃d log n,
√

4np̃d log n], (42)

where p̃d = Kd(
r
2)d(1

2 + 1
100)d. By applying union bound over all 1 ≤ i ≤ n, Eqs. (41) and (42)

hold for any i, with probability at least 1− 4/n. Given that r > 10
√
d(log n/n)

1
d , the result follows

after some algebraic manipulations.

F Proof of Claim 5.4

Part (i): Let G̃ = (V, Ẽ), where Ẽ = {(i, j) : dij ≤ r/2}. Also, let AG̃ and AG∗ respectively denote

the adjacency matrices of the graphs G̃ and G∗. Therefore, AG̃ ∈ Rn×n and AG∗ ∈ RN×N , where
N = |V (G∗)| = n(m+ 1). From the definition of G∗, we have

AG∗ = AG̃ ⊗B, B =




1 · · · 1
... · · ·

...
1 · · · 1




(m+1)×(m+1)

(43)

33

where ⊗ stands for the Kronecher product. Hence,

max
i∈V (G∗)

degG∗(i) = (m+ 1) max
i∈V (G̃)

degG̃(i).

Since the degree of nodes in G̃ are bounded by C(nrd) for some constant C, and m ≤ C(nrd) (by
definition of m in Claim 5.3), we have that the degree of nodes in G∗ are bounded by C(nrd)2, for
some constant C.

Part (ii): Let DG̃ ∈ Rn×n be the diagonal matrix with degrees of the nodes in G̃ on its diagonal.
Define DG∗ ∈ RN×N analogously. From Eq. (43), it is easy to see that

(D
−1/2

G̃
AG̃D

−1/2

G̃
)⊗ (

1

m+ 1
B) = D

−1/2
G∗ AG∗D

−1/2
G∗ .

Now for any two matrices A and B, the eigenvalues of A⊗ B are all products of eigenvalues of A
and B. The matrix 1/(m + 1)B has eigenvalues 0, with multiplicity m, and 1, with multiplicity
one. Thereby,

σmin(I −D−1/2
G∗ AG∗D

−1/2
G∗) ≥ min{σmin(I −D−1/2

G̃
AG̃D

−1/2

G̃
), 1} ≥ Cr2,

where the last step follows from Remark 2.2. Due to the result of [8] (Theorem 4), we obtain

σmin(LG∗) ≥ dmin,G∗σmin(Ln,G∗),

where dmin,G∗ denotes the minimum degree of the nodes in G∗, and Ln,G∗ = I −D−1/2
G∗ AG∗D

−1/2
G∗

is the normalized Laplacian of G∗. Since dmin,G∗ = (m+ 1)dmin,G̃ ≥ C(nrd)2, for some constant C,
we obtain

σmin(LG∗) ≥ C(nrd)2r2,

for some constant C.

G Proof of Claim 5.5

Fix a pair (i, j) ∈ E(G∗). Let mij = |Qi ∩ Qj |, and without loss of generality assume that the

nodes in Qi ∩ Qj are labeled with {1, · · · ,mij}. Let z(`) = x̃
(`)
Qi∩Qj

, for 1 ≤ ` ≤ d, and let

zk = (z
(1)
k , · · · , z(d)

k), for 1 ≤ k ≤ mij . Define the matrix M (ij) ∈ Rd×d as M
(ij)
`,`′ = 〈z(`), z(`′)〉, for

1 ≤ `′, ` ≤ d. Finally, let βij = (β
(1)
j − β

(1)
i , · · · , β(d)

j − β
(d)
i) ∈ Rd. Then,

‖
d∑

`=1

(β
(`)
j − β

(`)
i)x̃

(`)
Qi∩Qj

‖2 = βTijM
(ij)βij ≥ σmin(M (ij))‖βij‖2. (44)

In the following, we lower bound σmin(M (i,j)). Notice that

M (ij) =

mij∑

k=1

zkz
T
k =

mij∑

k=1

{zkzTk − E(zkz
T
k)}+

mij∑

k=1

E(zkz
T
k). (45)

34

We first lower bound the quantity σmin(
∑mij

k=1 E(zkz
T
k)). Let S ∈ Rd×d be an orthogonal matrix

that aligns the line segment between xi and xj with e1. Now, let ẑk = Szk for 1 ≤ k ≤ mij . Then,

mij∑

k=1

E(zkz
T
k) =

mij∑

k=1

STE(ẑkẑ
T
k)S.

The matrix E(ẑkẑ
T
k) is the same for all 1 ≤ k ≤ mij . Further, it is a diagonal matrix whose diagonal

entries are bounded from below by C1r
2, for some constant C1. Therefore, σmin(

∑mij

k=1 E(ẑkẑ
T
k)) ≥

mijC1r
2. Consequently,

σmin(

mij∑

k=1

E(zkz
T
k)) = σmin(

mij∑

k=1

E(ẑkẑ
T
k)) ≥ mijC1r

2. (46)

Let Z(k) = zkz
T
k −E(zkz

T
k), for 1 ≤ k ≤ mij . Next, we upper bound the quantity σmax(

∑mij

k=1 Z
(k)).

Note that for any matrix A ∈ Rd×d,

σmax(A) = max
‖x‖=‖y‖=1

xTAy ≤ max
‖x‖=‖y‖=1

∑

1≤p,q≤d
|Apq||xpyq|

≤ max
1≤p,q≤d

|Apq| · max
‖x‖=1

(
d∑

p=1

|xp|) · max
‖y‖=1

(
d∑

q=1

|yq|) ≤ d max
1≤p,q≤d

|Apq|.

Taking A =
∑mij

k=1 Z
(k), we have

P
(
σmax(

mij∑

k=1

Z(k)) > ε
)
≤ P

(
max

1≤p,q≤d

∣∣∣
mij∑

k=1

Z(k)
pq

∣∣∣ > ε

d

)
≤ d2 max

1≤p,q≤d
P
(∣∣∣

mij∑

k=1

Z(k)
pq

∣∣∣ > ε

d

)
, (47)

where the last inequality follows from union bound. Take ε = C1mijr
2/2. Note that {Z(k)

pq }1≤k≤mij

is a sequence of independent random variables with E(Z
(k)
pq) = 0, and |Z(k)

pq | ≤ r2/4, for 1 ≤ k ≤ mij .
Applying Hoeffding ’s inequality,

P
(∣∣∣

mij∑

k=1

Z(k)
pq

∣∣∣ > C1mijr
2

2d

)
≤ 2 exp

(
− 2C2

1mij

d2

)
≤ 2n−3. (48)

Combining Eqs. (47) and (48), we obtain

P
(
σmax(

mij∑

k=1

Z(k)) >
C1mijr

2

2

)
≤ 2d2n−3. (49)

Using Eqs. (45), (46) and (49), we have

σmin(M (ij)) ≥ σmin(

mij∑

k=1

E(zkz
T
k))− σmax(

mij∑

k=1

Z(k)) ≥ C1mijr
2

2
,

with probability at least 1−2d2n−3. Applying union bound over all pairs (i, j) ∈ E(G∗), we obtain
that w.h.p., σmin(M (ij)) ≥ C1mijr

2/2 ≥ C(nrd)r2, for all (i, j) ∈ E(G∗). Invoking Eq. (44),

‖
d∑

`=1

(β
(`)
j − β

(`)
i)x̃

(`)
Qi∩Qj

‖2 ≥ C(nrd)r2‖βij‖2 = C(nrd)r2
d∑

`=1

(β
(`)
j − β

(`)
i)2.

35

H Proof of Claim 5.6

Proof. Let N = |V (G∗)| = n(m+ 1). Define β̄(`) = (1/N)
∑N

i=1 β
(`)
i and let ṽ = v −

∑d
`=1 β̄

(`)x(`).
Then, the vector ṽ has the following local decompositions.

ṽQi =

d∑

`=1

(β
(`)
i − β̄

(`))x̃
(`)
Qi

+ γ̃iuQi + w(i),

where γ̃i = γi −
∑d

`=1 β̄
(`) 1
|Qi|〈x

(`)
Qi
, uQi〉. For convenience, we establish the following definitions.

M ∈ Rd×d is a matrix with M`,`′ = 〈x(`), x(`′)〉. Also, for any 1 ≤ i ≤ N , define the matrix

M (i) ∈ Rd×d as M
(i)
`,`′ = 〈x̃(`)

Qi
, x̃

(`′)
Qi
〉. Let β̂

(`)
i := β

(`)
i − β̄(`) and η

(`)
i =

∑
`′M

(i)
`,`′ β̂

(`′)
i . Finally, for

any 1 ≤ ` ≤ d, define the matrix B(`) ∈ RN×n as follows.

B
(`)
i,j =

{
x̃

(`)
Qi,j

if j ∈ Qi
0 if j /∈ Qi

Now, note that 〈ṽQi , x̃
(`)
Qi
〉 =

∑d
`′=1M

(i)
`,`′ β̂

(`′)
i = η

(`)
i . Writing it in matrix form, we have B(`)ṽ = η(`).

Our first lemma provides a lower bound for σmin(B(`)). For its proof, we refer to Section H.1.

Lemma H.1. Let G̃ = (V, Ẽ), where Ẽ = {(i, j) : dij ≤ r/2} and denote by L̃ the Laplacian of G̃.
Then, there exists a constant C = C(d), such that, w.h.p.

B(`)(B(`))T � C(nrd)−1r2L̃, ∀1 ≤ ` ≤ d.

Next lemma establishes some properties of the spectral of the matrices M and M (i). Its proof
is deferred to Section H.2.

Lemma H.2. There exist constants C1 and C2, such that, w.h.p.

σmin(M) ≥ C1n, σmax(M (i)) ≤ C2(nrd)r2, ∀ 1 ≤ i ≤ N.

Now, we are in position to prove Claim 5.6. Using Lemma H.1 and since 〈ṽ, u〉 = 0,

‖η(`)‖2 ≥ σmin(B(`)(B(`))T)‖ṽ‖2 ≥ C(nrd)−1r2σmin(L̃) ≥ Cr4‖ṽ‖2,

for some constant C. The last inequality follows from the lower bound on σmin(L̃) provided by
Remark 2.2. Moreover,

[d∑

`′=1

M`,`′ β̄
(`′)

]2

= 〈ṽ, x(`)〉2 ≤ ‖ṽ‖2‖x(`)‖2 ≤ Cr−4‖η(`)‖2‖x(`)‖2.

Summing both hand sides over ` and using ‖x(`)‖2 ≤ Cn, we obtain

d∑

`=1

[d∑

`′=1

M`,`′ β̄
(`′)

]2

≤ C(nr−4)
d∑

`=1

‖η(`)‖2.

36

Equivalently,
d∑

`=1

〈M`,·, β̄〉2 ≤ C(nr−4)
d∑

`=1

N∑

i=1

〈M (i)
`,· , β̂i〉

2.

Here, β̄ = (β̄(1), · · · , β̄(d)) ∈ Rd and β̂i = (β̂
(1)
i , · · · , β̂(d)

i) ∈ Rd. Writing this in matrix form,

‖Mβ̄‖2 ≤ C(nr−4)
N∑

i=1

‖M (i)β̂i‖2.

Therefore,

σ2
min(M)‖β̄‖2 ≤ C(nr−4)

[
max

1≤i≤N
σ2

max(M (i))

] N∑

i=1

‖β̂i‖2.

Using the bounds on σmin(M) and σmax(M (i)) provided in Lemma H.2, we obtain

‖β̄‖2 ≤ C

n
(nrd)2

N∑

i=1

‖β̂i‖2. (50)

Now, note that

‖β̄‖2 =
d∑

`=1

(β̄(`))2 =
d∑

`=1

(∑N
i=1 β

(`)
i

N

)2

=
1

N

d∑

`=1

‖Puβ(`)‖2, (51)

N∑

i=1

‖β̂i‖2 =
d∑

`=1

N∑

i=1

(β
(`)
i − β̄

(`))2 =
d∑

`=1

‖P⊥u β(`)‖2. (52)

Consequently,

d∑

`=1

‖β(`)‖2 =

d∑

`=1

‖Puβ(`)‖2 +

d∑

`=1

‖P⊥u β(`)‖2

(a)
= N‖β̄‖2 +

d∑

`=1

‖P⊥u β(`)‖2

(b)

≤ CN

n
(nrd)2

N∑

i=1

‖β̂i‖2 +
d∑

`=1

‖P⊥u β(`)‖2

(c)
= (1 +

CN

n
(nrd)2)

d∑

`=1

‖P⊥u β(`)‖2

≤ C(nrd)3
d∑

`=1

‖P⊥u (β(`))‖2.

Here, (a) follows from Eq. (51); (b) follows from Eq. (50) and (c) follows from Eq. (52). The result
follows.

37

H.1 Proof of Lemma H.1

Recall that eij ∈ Rn is the vector with +1 at the ith position, −1 at the jth position and zero
everywhere else. For any two nodes i and j with ‖xi − xj‖ ≤ r/2, choose a node k ∈ C̃i ∩ C̃j
uniformly at random and consider the cliques Q1 = Ck, Q2 = Ck\i, and Q3 = Ck\j. Define
Sij = {Q1,Q2,Q3}. Note that Sij ⊂ cliq∗(G).

Let a1, a2 and a3 respectively denote the center of mass of the points in cliques Q1, Q2 and Q3.

Find scalars ξ
(ij)
1 , ξ

(ij)
2 , and ξ

(ij)
3 , such that





ξ
(ij)
1 + ξ

(ij)
2 + ξ

(ij)
3 = 0,

ξ
(ij)
1 a

(`)
1 + ξ

(ij)
2 a

(`)
2 + ξ

(ij)
3 a

(`)
3 = 0,

ξ
(ij)
1 (x

(`)
i − a

(`)
1) + ξ

(ij)
3 (x

(`)
i − a

(`)
3) = 1.

(53)

Note that the space of the solutions of this linear system of equations is invariant to translation
of the points. Hence, without loss of generality, assume that

∑
l∈Q1,l 6=i,j

xl = 0. Also, let m = |Ck|.

Then, it is easy to see that

a1 =
xi + xj
m

, a2 =
xj
m
, a3 =

xi
m
,

and the solution of Eqs. (53) is given by

ξ
(ij)
1 =

x
(`)
j − x

(`)
i

x
(`)
j (x

(`)
i −

x
(`)
j

m
)

, ξ
(ij)
2 = −

x
(`)
j

x
(`)
j (x

(`)
i −

x
(`)
j

m
)

, ξ
(ij)
3 =

x
(`)
i

x
(`)
j (x

(`)
i −

x
(`)
j

m
)

.

Firstly, observe that

• ξ
(ij)
1 (x

(`)
i − a

(`)
1) + ξ

(ij)
2 (x

(`)
i − a

(`)
3) = 1.

• ξ
(ij)
1 (x

(`)
j − a

(`)
1) + ξ

(ij)
2 (x

(`)
j − a

(`)
2) = −1.

• For t ∈ Ck and t 6= i, j:

ξ
(ij)
1 (x

(`)
t − a

(`)
1) + ξ

(ij)
2 (x

(`)
t − a

(`)
2) + ξ

(ij)
3 (x

(`)
t − a

(`)
3)

= (ξ
(ij)
1 + ξ

(ij)
2 + ξ

(ij)
3)x

(`)
t − (ξ

(ij)
1 a

(`)
1 + ξ

(ij)
2 a

(`)
2 + ξ

(ij)
3 a

(`)
3) = 0.

Therefore,

ξ
(ij)
1 x̃

(`)
Q1,t

+ ξ
(ij)
2 x̃

(`)
Q2,t

+ ξ
(ij)
3 x̃

(`)
Q3,t

=





1 if t = i,

−1 if t = j,

0 if t ∈ Ck, t 6= i, j

(54)

Let ξ(ij) ∈ RN be the vector with ξ
(ij)
1 , ξ

(ij)
2 and ξ

(ij)
3 at the positions corresponding to the

cliques Q1, Q2, Q3 and zero everywhere else. Then, Eq. (54) gives (B(`))T ξ(ij) = eij .

Secondly, note that ‖ξ(ij)‖2 = (ξ
(ij)
1)2 + (ξ

(ij)
2)2 + (ξ

(ij)
3)2 ≤ C

r2
, for some constant C.

38

Now, we are in position to prove Lemma H.1.
For any vector z ∈ Rn, we have

〈z, L̃z〉 =
∑

(i,j)∈Ẽ

〈eij , z〉2 =
∑

(i,j)∈Ẽ

〈ξ(ij), B(`)z〉2 =
∑

(i,j)∈Ẽ

(∑

Qt∈Sij

ξ
(ij)
t 〈B

(`)
Qt,·, z〉

)2

≤
∑

(i,j)∈Ẽ

(∑

Qt∈Sij

[ξ
(ij)
t]2

)(∑

Qt∈Sij

〈B(`)
Qt,·, z〉

2

)
≤ max

(i,j)∈Ẽ
‖ξ(ij)‖2

∑

Qt

〈B(`)
Qt,.

, z〉2(
∑

Sij3Qt

1)

≤ C

r2
(nrd)‖B(`)z‖2.

Hence, B(`)(B(`))T � C(nrd)−1r2L̃.

H.2 Proof of Lemma H.2

First, we prove that σmin(M) ≥ Cn, for some constant C.
By definition, M =

∑n
i=1 xix

T
i . Let Zi = xix

T
i ∈ Rd×d, and Z̄ = 1/n

∑n
i=1 Zi. Note that

{Zi}1≤i≤n is a sequence of i.i.d. random matrices with Z = E(Zi) = 1/12Id×d. By Law of large
number we have Z̄ → Z, almost surely. In addition, since σmax(.) is a continuos function of its
argument, we obtain σmax(Z̄ − Z)→ 0, almost surely. Therefore,

σmin(M) = nσmin(Z̄) ≥ n
(
σmin(Z)− σmax(Z̄ − Z)

)
= n

(1

12
− σmax(Z̄ − Z)

)
,

whence we obtain σmin(M) ≥ n/12, with high probability.
Now we pass to proving the second part of the claim.

Let mi = |Qi|, for 1 ≤ i ≤ N . Since M (i) � 0, we have

σmax(M (i)) ≤ Tr(M (i)) =
∑

`=1

‖x̃(`)
Qi
‖2 ≤ Cmir

2.

With high probability, mi ≤ C(nrd), ∀1 ≤ i ≤ N , and for some constant C. Hence,

max
1≤i≤N

σmax(M (i)) ≤ C(nrd)r2,

with high probability. The result follows.

I Proof of Proposition 6.1

Proof. Recall that R̃ = XY T + Y XT with X,Y ∈ Rn×d and Y Tu = 0. By triangle inequality, we
have

|〈xi − xj , yi − yj〉| ≥ |〈xi, yj〉+ 〈xj , yi〉| − |〈xi, yi〉| − |〈xj , yj〉|

= |R̃ij | −
|R̃ii|

2
− |R̃jj |

2
.

39

Therefore, ∑

i,j

|〈xi − xj , yi − yj〉| ≥
∑

i,j

|R̃ij | − n
∑

i

|R̃ii|. (55)

Again, by triangle inequality,

∑

ij

|〈xi − xj , yi − yj〉| ≥
∑

i

|n〈xi, yi〉+
∑

j

〈xj , yj〉 − 〈xi,
∑

j

yj〉 − 〈
∑

j

xj , yi〉|

= n
∑

i

|〈xi, yi〉+
1

n

∑

j

〈xj , yj〉|, (56)

where the last equality follows from Y Tu = 0 and XTu = 0.

Remark I.1. For any n real values ξ1, · · · , ξn, we have

∑

i

|ξi + ξ̄| ≥ 1

2

∑

i

|ξi|,

where ξ̄ = (1/n)
∑

i ξi.

Proof (Remark I.1). Without loss of generality, we assume ξ̄ ≥ 0. Then,

∑

i

|ξi + ξ̄| ≥
∑

i:ξi≥0

ξi ≥
1

2
(
∑

i:ξi≥0

ξi −
∑

i:ξi<0

ξi) =
1

2

∑

i

|ξi|,

where the second inequality follows from
∑

i ξi = nξ̄ ≥ 0.

Using Remark I.1 with ξi = 〈xi, yi〉, Eq. (56) yields

∑

ij

|〈xi − xj , yi − yj〉| ≥
n

2

∑

i

|〈xi, yi〉| =
n

4

∑

i

|R̃ii|. (57)

Combining Eqs. (55) and (57), we obtain

‖RKn,X(Y)‖1 =
∑

ij

|〈xi − xj , yi − yj〉| ≥
1

5
‖R̃‖1. (58)

which proves the desired result.

J Proof of Lemma 6.1

We will compute the average number of chains passing through a particular edge in the order
notation. Notice that the total number of chains is Θ(n2) since there are

(
n
2

)
node pairs. Each

chain has O(1/r) vertices and thus intersects O(1/r) bins. The total number of bins is Θ(1/rd).
Hence, by symmetry, the number of chains intersecting each bin is Θ(n2rd−1). Consider a particular
bin B, and the chains intersecting it. Such chains are equally likely to select any of the nodes in
B. Since the expected number of nodes in B is Θ(nrd), the average number of chains containing
a particular node, say i, in B, is Θ(n2rd−1/nrd) = Θ(nr−1). Now consider node i and one of its

40

neighbors in the chain, say j. Denote by B∗ the bin containing node j. The number of edges
between i and B∗ is Θ(nrd). Hence, by symmetry, the average number of chains containing an edge
incident on i will be Θ(nr−1/nrd) = Θ(r−d−1). This is true for all nodes. Therefore, the average
number of chains containing any particular edge is O(r−d−1). In other words, on average, no edge
belongs to more than O(r−d−1) chains.

K The Two-Part Procedure for General d

In proof of Lemma 6.2, we stated a two-part procedure to find the values {λlk}(l,k)∈E(Gij) that
satisfy Eq. (21). Part (i) of the procedure was demonstrated for the special case d = 2. Here, we
discuss this part for general d.

Let Gij = {i} ∪ {j} ∪H1 ∪ · · · ∪Hk be the chain between nodes i and j. Let Fp = Hp ∩Hp+1.
Without loss of generality, assume V (Fp) = {1, 2, · · · , q}, where q = 2d−1. The goal is to find a set
of forces, namely f1, · · · , fq, such that

q∑

i=1

fi = xm,

q∑

i=1

fi ∧ xi = 0,

q∑

i=1

‖fi‖2 ≤ C‖xm‖2.
(59)

It is more convenient to write this problem in matrix form. Let X = [x1, x2, · · · , xq] ∈ Rd×q and
Φ = [f1, f2, · · · , fq] ∈ Rd×q. Then, the problem can be recast as finding a matrix Φ ∈ Rd×d, such
that,

Φu = xm, XΦT = ΦXT ,

‖Φ‖2F ≤ C‖xm‖2.
(60)

Define X̃ = X(I − 1/quuT), where I ∈ Rq×q is the identity matrix and u ∈ Rq is the all-ones
vector. Let

Φ =
1

q
xmu

T + (
1

q
XuxTm + S)(X̃X̃T)−1X̃, (61)

where S ∈ Rd×d is an arbitrary symmetric matrix. Observe that

Φu = xm, XΦT = ΦXT . (62)

Now, we only need to find a symmetric matrix S ∈ Rd×d such that the matrix Φ given by Eq. (61)
satisfies ‖Φ‖F ≤ C‖xm‖. Without loss of generality, assume that the vector xm is in the di-
rection e1 = (1, 0, · · · , 0) ∈ Rd. Let xc = 1

qXu be the center of the nodes {xi}qi=1, and let

xc = (x
(1)
c , · · · , x(d)

c). Take S = −‖xm‖x(1)
c e1e

T
1 . From the construction of the chain Gij , the nodes

{xi}qi=1 are obtained by wiggling the vertices of a hypercube aligned in the direction xm/‖xm‖ = e1,
and with side length r̃ = 3r/4

√
2. (each node wiggles by at most r

8). Therefore, xc is almost aligned

with e1, and has small components in the other directions. Formally, |x(i)
c | ≤ r

8 , for 2 ≤ i ≤ d.

41

Therefore

1

q
XuxTm + S = (

d∑

i=1

x(i)
c ei) · (‖xm‖e1)T − ‖xm‖x(1)

c e1e
T
1

=

d∑

i=2

‖xm‖x(i)
c eie

T
1 .

Hence, 1
qXux

T
m + S ∈ Rd×d has entries bounded by r

8‖xm‖. In the following we show that there

exists a constant C = C(d), such that all entries of (X̃X̃T)−1X̃ are bounded by C/r. Once we
show this, it follows that

‖(1

q
XuxTm + S)(X̃X̃T)−1X̃‖F ≤ C‖xm‖,

for some constant C = C(d). Therefore,

‖Φ‖F ≤ ‖
1

q
xmu

T ‖F + ‖(1

q
XuxTm + S)(X̃X̃T)−1X̃‖F ≤ C‖xm‖,

for some constant C.
We are now left with the task of showing that all entries of (X̃X̃T)−1X̃ are bounded by C/r,

for some constant C.
The nodes xi were obtained by wiggling the vertices of a hypercube of side length r̃ = 3r/4

√
2.

(each node wiggles by at most r/8). Let {zi}qi=1 denote the vertices of this hypercube, and thus
‖xi − zi‖ ≤ r

8 . Define

Z =
1

r̃
[z1, · · · , zq], δZ =

1

r̃
X̃ − Z.

Then, X̃X̃T = r̃2(Z + δZ)(Z + δZ)T = r̃2(ZZT + Z̄), where Z̄ = Z(δZ)T + (δZ)ZT + (δZ)(δZ)T .
Consequently,

(X̃X̃T)−1X̃ =
1

r̃
(ZZT + Z̄)−1(Z + δZ)

Now notice that the columns of Z represent the vertices of a unit (d − 1)-dimensional hypercube.
Also, the norm of each column of δZ is bounded by r

8r̃ <
1
4 . Therefore, σmin(ZZT + Z̄) ≥ C, for

some constant C = C(d). Hence, for every 1 ≤ i ≤ q

‖(X̃X̃T)−1X̃ei‖ ≤
1

r̃
σ−1

min(ZZT + Z̄) ‖(Z + δZ)ei‖ ≤
C

r
,

for some constant C. Therefore, all entries of (X̃X̃T)−1X̃ are bounded by C/r.

L Proof of Remark 7.1

Let θ be the angle between a and b and define a⊥ = b−cos(θ)a
‖b−cos(θ)a‖ . Therefore, b = cos(θ)a+ sin(θ)a⊥.

In the basis (a, a⊥), we have

aaT =

[
1 0
0 0

]
, bbT =

[
cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

]
.

42

Therefore,

‖aaT − bbT ‖2 =

∥∥∥∥
[

sin2(θ) − sin(θ) cos(θ)
− sin(θ) cos(θ) − sin2(θ)

] ∥∥∥∥
2

= | sin(θ)| =
√

1− (aT b)2.

M Proof of Remark 7.2

Proof. Let {λ̃i} be the eigenvalues of Ã such that λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃p. Notice that

‖A− Ã‖2 ≥ vT (Ã−A)v

≥ λ̃p(vT ṽ)2 + λ̃p−1‖Pṽ⊥(v)‖2 − λp
= λ̃p(v

T ṽ)2 + λ̃p−1(1− (vT ṽ)2)− λp
= (λ̃p − λ̃p−1)(vT ṽ)2 + λ̃p−1 − λp.

Therefore,

(vT ṽ)2 ≥ λ̃p−1 − λp − ‖A− Ã‖2
λ̃p−1 − λ̃p

.

Furthermore, due to Weyl’s inequality, |λ̃i − λi| ≤ ‖A− Ã‖2. Therefore,

(vT ṽ)2 ≥ λp−1 − λp − 2‖A− Ã‖2
λp−1 − λp + 2‖A− Ã‖2

, (63)

which implies the thesis after some algebraic manipulations.

43

N Table of Symbols

n number of nodes

d dimension (the nodes are scattered in [−0.5, 0.5]d)

L ∈ Rn×n I − 1
nuu

T , where I is the identity matrix and u is the all-ones vector

xi ∈ Rd coordinate of node i, for 1 ≤ i ≤ n
x(`) ∈ Rn the vector containing the `th coordinate of the nodes, for 1 ≤ ` ≤ d
X ∈ Rn×d the (original) position matrix

X̂ estimated position matrix

Q ∈ Rn×n Solution of SDP in the first step of the algorithm

Q0 ∈ Rn×n Gram matrix of the node (original) positions, namely Q0 = XXT

Subspace V the subspace spanned by vectors x(1), · · · , x(d), u

R ∈ Rn×n Q−Q0

R̃ ∈ Rn×n PVRPV + PVRP
⊥
V + P⊥V RPV

R⊥ ∈ Rn×n P⊥V RP
⊥
V

Ci {j ∈ V (G) : dij ≤ r/2} (the nodes in Ci form a clique in G(n, r))

Si {Ci} ∪ {Ci\k}k∈Ci
cliq(G) S1 ∪ · · · ∪ Sn
C̃i {j ∈ V (G) : dij ≤ r/2(1/2 + 1/100)}
S̃i {Ci, Ci\i1, · · · , Ci\im}, where i1, · · · , im are the m nearest neighbors of node i

cliq∗(G) {S̃1 ∪ · · · ∪ S̃n}
G G(n, r)

G̃ G(n, r/2)

Gij the chain between nodes i and j

G∗ the graph corresponding to cliq∗(G) (see page 13)

N number of vertices in G∗

L ∈ Rn×n the Laplacian matrix of the graph G

L̃ ∈ Rn×n the Laplacian matrix of the graph G̃

Ω ∈ Rn×n stress matrix

RG(X) ∈ R|E|×dn rigidity matrix of the framework GX
RG,X(Y) : Rn×n → RE For a matrix Y ∈ Rn×d, with rows yTi , i = 1, · · · , n,

RG,X(Y) = RG(X)Y, where Y = [yT1 , · · · , yTn]T

x
(`)
Qi
∈ R|Qi| restriction of vector x(`) to indices in Qi, for 1 ≤ ` ≤ d and Qi ∈ cliq(G)

x̃
(`)
Qi
∈ R|Qi| component of x

(`)
Qi

orthogonal to the all-ones vector uQi , i.e., P⊥uQi
x

(`)
Qi

β
(`)
i coefficients in local decomposition of an arbitrary (fixed) vector v ∈ V ⊥

(vQi =
∑d

`=1 β
(`)
i x̃

(`)
Qi

+ γiuQi + w(i))

β(`) ∈ RN (β
(`)
1 , · · · , β(`)

N), for ` = 1, · · · d
β̄(`) average of numbers β

(`)
i , i.e., (1/N)

∑N
i=1 β

(`)
i

β̂
(`)
i β

(`)
i − β̄(`)

β̂i ∈ Rd (β̂
(1)
i , · · · , β̂(d)

i), for i = 1, · · · , N
Table 1: Table of Symbols

44

References

[1] A. Y. Alfakih, A. Khandani, and H. Wolkowicz. Solving Euclidean distance matrix completion
problems via semidefinite programming. Computational Optimization and Applications, 12:13–
30, January 1999.

[2] L. Asimow and B. Roth. The rigidity of graphs. Transactions of the American Mathematical
Society, 245:279–289, 1978.

[3] J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O.
Anderson, and P. N. Belhumeur. A theory of network localization. IEEE Transactions on
Mobile Computing, 5(12):1663–1678, 2006.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data repre-
sentation. Neural Computation, 15:1373–1396, 2002.

[5] M. Bernstein, V. de Silva, J. Langford, and J. Tenenbaum. Graph Approximations to Geodesics
on Embedded Manifolds. Technical report, Stanford University, Stanford, 2000.

[6] P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network localiza-
tion. In Proceedings of the 3rd international symposium on Information processing in sensor
networks, IPSN ’04, pages 46–54, New York, NY, USA, 2004. ACM.

[7] S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Mixing times for random walks on geometric
random graphs. In Proceedings of the 7th Workshop on Algorithm Engineering and Experiments
and the 2nd Workshop on Analytic Algorithmics and Combinatorics, ALENEX /ANALCO
2005, Vancouver, BC, Canada, 22 January 2005, pages 240–249. SIAM, 2005.

[8] S. Butler. Eigenvalues and Structures of Graphs. PhD thesis, University of California, San
Diego, 2008.

[9] R. Connelly. Generic global rigidity. Discrete & Computational Geometry, 33:549–563, April
2005.

[10] T. Cox and M. Cox. Multidimensional Scaling. Monographs on Statistics and Applied Proba-
bility 88. Chapman and Hall, 2001.

[11] P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible markov chains. Annals
of Applied Probability, 3(3):696–730, 1993.

[12] D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding techniques for
high-dimensional data. Proceedings of the National Academy of Sciences of the United States
of America, 100(10):5591–5596, May 2003.

[13] S. J. Gortler, A. D. Healy, and D. P. Thurston. Characterizing generic global rigidity. American
Journal of Mathematics, 132:897–939, 2010.

[14] F. Lu, S. J. Wright, and G. Wahba. Framework for kernel regularization with application to
protein clustering. Proceedings of the National Academy of Sciences of the United States of
America, 102(35):12332–12337, 2005.

45

[15] G. Mao, B. Fidan, and B. D. O. Anderson. Wireless sensor network localization techniques.
Computer Networks and Isdn Systems, 51:2529–2553, 2007.

[16] S. Oh, A. Karbasi, and A. Montanari. Sensor Network Localization from Local Connectivity :
Performance Analysis for the MDS-MAP Algorithm. In IEEE Information Theory Workshop
2010 (ITW 2010), 2010.

[17] N. Patwari, J. N. Ash, S. Kyperountas, R. Moses, and N. Correal. Locating the nodes:
cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22:54–
69, 2005.

[18] M. Penrose. Random Geometric Graphs. Oxford University Press Inc., 2003.

[19] L. K. Saul, S. T. Roweis, and Y. Singer. Think globally, fit locally: Unsupervised learning of
low dimensional manifolds. Journal of Machine Learning Research, 4:119–155, 2003.

[20] D. Shamsi, Y. Ye, and N. Taheri. On sensor network localization using SDP relaxation.
arXiv:1010.2262, 2010.

[21] A. Singer. A remark on global positioning from local distances. Proceedings of the National
Academy of Sciences of the United States of America, 105(28):9507–11, 2008.

[22] A. M.-C. So and Y. Ye. Theory of semidefinite programming for sensor network localization.
In Symposium on Discrete Algorithms, pages 405–414, 2005.

[23] J. B. Tenenbaum, V. Silva, and J. C. Langford. A Global Geometric Framework for Nonlinear
Dimensionality Reduction. Science, 290(5500):2319–2323, 2000.

[24] K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimensionality reduction
by maximum variance unfolding. In proceedings of the 21st national conference on Artificial
intelligence, volume 2, pages 1683–1686. AAAI Press, 2006.

[25] Z. Zhu, A. M.-C. So, and Y. Ye. Universal rigidity: Towards accurate and efficient localization
of wireless networks. In IEEE International Conference on Computer Communications, pages
2312–2320, 2010.

46

	1 Introduction
	1.1 Problem Statement
	1.2 Algorithm and main results
	1.3 Related work
	1.4 Organization of the paper

	2 Preliminaries
	2.1 Rigidity Theory
	2.2 Some Properties of G(n,r)
	2.3 Notations

	3 Discussion
	4 Proof of Theorem ?? (Upper Bound)
	5 Proof of Lemma ??
	5.1 Proof of Theorem ??

	6 Proof of Lemma ??
	6.1 Proof of Theorem ??
	6.1.1 Proof of Lemma ??

	7 Proof of Theorem ?? (Lower Bound)
	7.1 Proof of Proposition ??

	8 Numerical experiments
	A Proof of Remark ??
	B Proof of Proposition ??
	C Proof of Proposition ??
	D Proof of Claim ??
	E Proof of Claim ??
	F Proof of Claim ??
	G Proof of Claim ??
	H Proof of Claim ??
	H.1 Proof of Lemma ??
	H.2 Proof of Lemma ??

	I Proof of Proposition ??
	J Proof of Lemma ??
	K The Two-Part Procedure for General d
	L Proof of Remark ??
	M Proof of Remark ??
	N Table of Symbols

