
ETH Library

Polynomial-Time Homology for
Simplicial Eilenberg–MacLane
Spaces

Journal Article

Author(s):
Krčál, Marek; Matoušek, Jiří; Sergeraert, Francis

Publication date:
2013-12

Permanent link:
https://doi.org/10.3929/ethz-b-000412816

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Foundations of Computational Mathematics 13(6), https://doi.org/10.1007/s10208-013-9159-7

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000412816
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10208-013-9159-7
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Found Comput Math (2013) 13:935–963
DOI 10.1007/s10208-013-9159-7

Polynomial-Time Homology for Simplicial
Eilenberg–MacLane Spaces

Marek Krčál · Jiří Matoušek · Francis Sergeraert

Received: 30 January 2012 / Accepted: 24 April 2013 / Published online: 30 May 2013
© SFoCM 2013

Abstract In an earlier paper of Čadek, Vokřínek, Wagner, and the present authors,
we investigated an algorithmic problem in computational algebraic topology, namely,
the computation of all possible homotopy classes of maps between two topological
spaces, under suitable restriction on the spaces.

We aim at showing that, if the dimensions of the considered spaces are bounded
by a constant, then the computations can be done in polynomial time. In this paper
we make a significant technical step towards this goal: we show that the Eilenberg–
MacLane space K(Z,1), represented as a simplicial group, can be equipped with
polynomial-time homology (this is a polynomial-time version of effective homology
considered in previous works of the third author and co-workers).

To this end, we construct a suitable discrete vector field, in the sense of Forman’s
discrete Morse theory, on K(Z,1). The construction is purely combinatorial and it
can be understood as a certain procedure for reducing finite sequences of integers,
without any reference to topology.

Communicated by Peter Buergisser.

M. Krčál · J. Matoušek (�)
Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha 1,
Czech Republic
e-mail: matousek@kam.mff.cuni.cz

J. Matoušek
Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland

F. Sergeraert
Institut Fourier, BP 74, 38402 St Martin, d’Hères Cedex, France

mailto:matousek@kam.mff.cuni.cz

936 Found Comput Math (2013) 13:935–963

The Eilenberg–MacLane spaces are the basic building blocks in a Postnikov sys-
tem, which is a “layered” representation of a topological space suitable for homotopy-
theoretic computations. Employing the result of this paper together with other re-
sults on polynomial-time homology, in another paper we obtain, for every fixed k, a
polynomial-time algorithm for computing the kth homotopy group πk(X) of a given
simply connected space X, as well as the first k stages of a Postnikov system for X,
and also a polynomial-time version of the algorithm of Čadek et al. mentioned above.

Keywords Computational homotopy theory · Eilenberg–MacLane space ·
Postnikov system · Effective homology

Mathematics Subject Classification 68U05 · 68W99 · 55S45 · 55S37

1 Introduction

Recently our co-authors and we [2] have developed an algorithm for a problem in
computational algebraic topology (more precisely, in computational homotopy the-
ory), namely, computing all homotopy classes of maps between two topological
spaces X and Y (given as finite simplicial complexes, say), under certain natural
conditions on X and Y .

Our original motivation was understanding the computational complexity of the
Z2-index of a given Z2-space, which is a quantity appearing in various applications
of topology in combinatorics and geometry (e.g., topological lower bounds for the
chromatic number of a graph, or an algorithm for testing the embeddability of a given
simplicial complex into R

d). We hope to reach results in this direction in the future,
and we also expect that the developed methods will be applicable for other natural
problems (such as extendability of maps; as a concrete application, it was already
possible to answer a question of Franek et al. [11] on testing nullhomotopy of maps
into a sphere). For more information on this project we refer to [2, 3, 4].

Towards Polynomial-Time Homology The implementation of some of the opera-
tions in the algorithm of [2] relies on the methods of effective homology, initiated by
the third author in [21] and further developed by him and his co-workers (see, e.g.,
[18–20]). These provide algorithmic solutions of many problems in algebraic topol-
ogy, but so far no analysis of their running time was available, and for some parts the
running time can actually be exponential.

One of our aims is to obtain polynomial-time algorithms for these tasks where
possible, or alternatively, show computational hardness.

Let us stress that by “polynomial-time” we mean, throughout this paper, polynomial-
time for every fixed dimension. Thus, assuming that the input to an algorithm is a
space represented as a finite simplicial complex X, we want that the running time is
polynomial in the number of simplices of X, but the polynomial may depend on the
dimension k of X (and the dependence on k may be exponential or even worse). Of
course, one could be even more ambitious and ask for a polynomial dependence on k

as well; however, we do not expect such algorithms to exist, in view of computational
hardness results [1, 4].

Found Comput Math (2013) 13:935–963 937

To integrate this effort with existing algorithms, we start with the framework of
effective homology mentioned above, and we introduce an analogous definition of
polynomial-time homology; see Sect. 2. In another paper [3], we show that vari-
ous known constructions and operations on objects with effective homology have
polynomial-time versions. With a repertoire of such operations, we also obtain a
polynomial-time version of the algorithm of [2], as well as other algorithms, such
as computing the higher homotopy group πk(X) in polynomial time for every fixed
k, or computing the first k stages of a Postnikov system for X.

This Paper Here we make a significant step in this development. First we set up the
framework of polynomial-time homology (modeled after effective homology men-
tioned above) and some tools of general applicability. Then, in the second part of
the paper, we present our main technical result. The problem which we solve can
be formulated purely combinatorially, although in this language it perhaps does not
sound extremely natural: it is a question about reducing finite sequences of integers
by certain simple operations. We will state it below, and no topological notion at all
is required for understanding this problem and our solution.

However, to explain its role in computational topology, we first need to sketch
some background information. A standard reference for this material is May [15];
a concise overview is given in [2], and more leisurely explanations can be found in
[22] or [20].

A common technique in mathematics and in computer science is to decompose
a general, presumably complicated object into simpler building blocks. For the pur-
poses of understanding continuous mappings going into a given topological space Y ,
a suitable decomposition is a Postnikov system for Y ; indeed, this is a crucial ingre-
dient of the algorithm in [2].

We do not need to define the rather complicated notion of Postnikov system here;
it suffices to say that its “building blocks” belong to a particular class of topological
spaces, called Eilenberg–MacLane spaces and denoted by K(G,k), where G is an
Abelian group and k ≥ 1 is an integer. In the Eilenberg–MacLane spaces appearing in
a Postnikov system for Y , the role of the group G is played by the homotopy groups
πi(Y), i ≥ 2.

In topology, K(G,k) is defined as a topological space T whose homotopy groups
satisfy πk(T) ∼= G and πi(T) = 0 for all i �= k. It is determined uniquely up to ho-
motopy equivalence (in the class of all CW complexes).

Generally speaking, the spaces K(G,k) are infinite-dimensional and they do not
look like very simple objects (with the exception of K(Z,1), which is homotopy
equivalent to the circle S1). However, they are in some sense the simplest possible
spaces concerning maps going into them. These spaces are of basic importance in al-
gebraic topology, and a lot of work has been devoted to studying their properties, and
in particular, computing their homology and cohomology (Serre [23] and H. Cartan
[5] are two of the most famous classical works; see, e.g., Clément [6] for an overview
and some computational aspects). We also refer to Romero and Rubio [16] for an
algorithmic study of K(G,1) for noncommutative groups G.

For the intended algorithmic use, we need a particular representation of K(G,k);
namely, we need it represented as a particular kind of a simplicial set (simplicial sets

938 Found Comput Math (2013) 13:935–963

will be briefly introduced in Sect. 2 below), a so-called Kan simplicial set. We use
the standard Eilenberg–MacLane simplicial model for K(G,k); see [8, Chap. III],
[15, Chap. V].

For the algorithms, we need to equip the simplicial Eilenberg–MacLane spaces
with polynomial-time homology. The K(G,k) we may encounter can have any
finitely generated Abelian group as G, and any positive integer as k.

However, in this paper we will deal only with K(Z,1), which serves as a base
case, while the other K(G,k) can be obtained from it using several operations. First,
for direct products of groups, we have K(G × H,k) ∼= K(G,k) × K(H,k), and so,
with a general product operation available, we may assume that G is cyclic. Second,
a general construction, known as the classifying space (actually, in the simplicial set-
ting, we deal with the so-called W -construction), allows one to pass from K(G,k) to
K(G,k+1), so indeed k = 1 is the important base case. Finally, polynomial-time ho-
mology for K(Z/mZ,1) can be obtained from that for K(Z,1) using another opera-
tion, namely, computing the base space of a fibration. These reductions are discussed
in [20], and polynomial-time versions are discussed in [3]; here we just wanted to
provide a quick explanation of why the K(Z,1) case deserves special attention.1

The Combinatorial Problem About Integer Sequences The k-dimensional simplices
of the standard simplicial model of K(Z,1), k = 0,1, . . . can be represented by k-
term sequences of integers. With the traditional “bar notation”, such a sequence is
written as

σ = [a1 | a2 | · · · | ak], a1, a2, . . . , ak ∈ Z. (1)

In the rest of this introduction, a “k-dimensional simplex” will thus be synonymous
with a “k-term sequence of integers”.

For our problem we consider only nondegenerate simplices, represented by se-
quences with no zero terms. Thus, from now on, we always assume that all the ai are
nonzero.

For each k, there are k + 1 face operators ∂0, ∂1, . . . , ∂k , which map k-term se-
quences to k − 1 term sequences: ∂0 deletes the first component, ∂k deletes the last
component, and for i = 1,2, . . . , k − 1, ∂i reduces the number of components by one
by adding together the ith and (i + 1)st component. More formally, with σ as above,

∂0σ = [a2 | · · · | ak], ∂kσ = [a1 | · · · | ak−1],
∂iσ = [a1 | · · · | ai−1 | ai + ai+1 | ai+2 | · · · | ak], 1 ≤ i ≤ k − 1.

The goal is to divide the set of all possible finite sequences σ of nonzero integers
into three classes S , T , and C (the source simplices, target simplices, and critical

1Curiously, K(Z,1) as a topological space almost cannot be simpler—as we mentioned, it is homotopy

equivalent to the circle S1, and other Eilenberg–MacLane spaces are much more complicated. But we
need to work with the Kan simplicial model of K(Z,1) as introduced above, which has infinitely many
simplices in every dimension k ≥ 1. As we will see, for effective (or polynomial-time) homology, it is
not sufficient to know, for example, that H2(K(Z,1)) = 0, but we need to be able to actually compute
“witnesses” for it; that is, given a 2-cycle z2 on K(Z,1), compute a 3-chain for which z2 is its boundary.
This problem would be trivial for the standard simplicial representation of S1 with one vertex and one
edge, but it is not trivial for the considered Kan model of K(Z,1).

Found Comput Math (2013) 13:935–963 939

simplices), and construct a bijection V : S → T (which will be called a discrete
vector field), such that for every σ ∈ S , we have σ = ∂iV (σ) for exactly one i. We
also require certain additional properties, which we explain next.

With S, T , C , and V as above, let us consider a sequence (simplex) σ̃ ∈ S of some
dimension k, and let us say that a simplex τ (of dimension k or k + 1) is reachable
from σ̃ if it can be reached from σ̃ by finitely many moves, where the allowed moves
are

• passing from a current simplex σ ∈ S to the simplex τ = V (σ) ∈ T , and
• passing from a current simplex τ ∈ T to a simplex σ = ∂iτ ∈ S ∪ C such that

τ �= V (σ), where i ∈ {0,1, . . . , k}.
With these definitions, it is required that

(i) for every k, C contains only finitely many k-dimensional simplices; and
(ii) starting with any σ̃ , we can never make an infinite sequence of allowed moves;

that is, we can reach only finitely many simplices, and we also cannot get into a
cycle.

Moreover, we measure the size of a simplex σ = [a1| · · · |ak] as the total number of
bits needed to write down a1, . . . , ak ; more formally, we set size(σ) := ∑k

i=1 size(ai)

and size(a) := 1 + 	log2(|a| + 1)
. Then we also require that

(iii) For every k-dimensional simplex σ̃ , the sum of size(σ) over all σ reachable
from σ̃ is bounded by a polynomial (depending on k) in size(σ̃).

To illustrate these definitions, let us present a classical vector field VEML due to
Eilenberg and Mac Lane, which satisfies (i) and (ii) (and yields effective homology
for K(Z,1)) but not (iii).

There are only two critical simplices, the 0-dimensional [] (the empty sequence)
and the 1-dimensional [1].2 The set S of source simplices consists of the sequences
with a1 �= 1, while T contains the sequences with a1 = 1 (the two critical simplices
are exceptions to this rule).

For σ = [a1 | · · · |ak] ∈ S , a1 �= 1, the vector field VEML is defined by

VEML(σ) :=
{

[1 | a1 − 1 | a2 | · · · | ak] for a1 > 1,

[1 | a1 | a2 | · · · | ak] for a1 < 0.

It can be checked that, for any starting σ̃ , the sequence of moves is determined
uniquely (there is no branching), and that it always terminates after finitely many
steps.

It is easy to see that, for a positive integer a, the sequence of moves starting from
[a] is [a] → [1|a − 1] → [a − 1] → [1|a − 2] → [a − 2] → · · · ; there are about a

moves, and this is exponential in the number of bits of a. Thus, condition (iii) above
indeed fails.

2This actually corresponds to the topological fact that the considered K(Z,1), as a topological space, is

homotopy equivalent to S1; [] represents a vertex, and [1] an edge glued to that vertex by both ends,
forming an S1.

940 Found Comput Math (2013) 13:935–963

We will provide a solution satisfying (i)–(iii) in Sect. 4. Before that, we introduce
simplicial sets, polynomial-time homology, and discrete vector fields in general.

2 Simplicial Sets with Polynomial-Time Homology

Simplicial Sets A simplicial complex is a way of specifying a topological space
in purely combinatorial terms, and also a way of presenting a topological space as
an input to an algorithm; we assume that the reader is basically familiar with this
concept.

A simplicial set can be regarded as a generalization of a simplicial complex; it
is more complicated, but more powerful and flexible. The algorithms we consider
use simplicial sets as the main data type for representing topological spaces and their
maps. A friendly introduction to simplicial sets is [12], and another introductory treat-
ment can be found in [22]; older compact sources are, e.g., [7, 15], and [13] is a more
modern and comprehensive treatment.

Similar to a simplicial complex, a simplicial set is a space built of vertices, edges,
triangles, and higher-dimensional simplices, but simplices are allowed to be glued
to each other and to themselves in more general ways. For example, one may have
several 1-dimensional simplices connecting the same pair of vertices, a 1-simplex
forming a loop, two edges of a 2-simplex identified to create a cone, or the boundary
of a 2-simplex all contracted to a single vertex, forming an S2.

Another new feature of a simplicial set, in comparison with a simplicial complex,
is the presence of degenerate simplices. For example, the edges of the triangle with a
contracted boundary (in the last example above) do not disappear, but each of them
becomes a degenerate 1-simplex.

A simplicial set X is represented as a sequence (X0,X1,X2, . . .) of mutually dis-
joint sets, where the elements of Xk are called the k-simplices of X (we note that,
unlike for simplicial complexes, a simplex in a simplicial set need not be determined
by the set of its vertices; indeed, there can be many simplices with the same vertex
set). For every k ≥ 1, there are k + 1 mappings ∂0, . . . , ∂k : Xk → Xk−1 called face
operators; the intuitive meaning is that for a simplex σ ∈ Xk , ∂iσ is the face of σ op-
posite to the ith vertex. Moreover, there are k + 1 mappings s0, . . . , sk : Xk → Xk+1

(opposite direction) called the degeneracy operators; the approximate meaning of siσ

is the degenerate simplex which is geometrically identical to σ , but with the ith vertex
duplicated. A simplex is called degenerate if it lies in the image of some si ; other-
wise, it is nondegenerate. We write Xndg for the set of all nondegenerate simplices
of X.

There are natural axioms that the ∂i and the si have to satisfy, but we will not
list them here, since we will not really use them. Moreover, the usual definition of

Found Comput Math (2013) 13:935–963 941

simplicial sets uses the language of category theory and is very elegant and concise;
see, e.g., [13, Sect. I.1].

Every simplicial set X specifies a topological space |X|, the geometric realization
of X. It is obtained by assigning a geometric k-dimensional simplex to each nonde-
generate k-simplex of X, and then gluing these simplices together according to the
face operators; we refer to the literature for the precise definition.

There is a canonical way of converting a simplicial complex to a simplicial set;
basically, one just needs to add appropriate degenerate simplices.

We have already given a relatively sophisticated example of a simplicial set,
namely, K(Z,1), or more precisely, the standard Eilenberg–MacLane representation
of K(Z,1) as a Kan simplicial set3 as defined in the introduction (except that we have
not yet specified the degeneracy operators, which are very simple: si inserts 0 after
the ith component of a sequence).

Representing Infinite Simplicial Sets In many areas where computer scientists seek
efficient algorithms, both the input objects and the intermediate results in the algo-
rithms are finite, and they can be explicitly represented in the computer memory; this
is the case, e.g., for algorithms dealing with graphs or with matrices.

In contrast, in the algorithms for homotopy-theoretic questions considered here
and in related works, we need to deal with infinite objects. For example, even if the
input is a finite simplicial complex, its Postnikov system (mentioned in the introduc-
tion) is made of Eilenberg–MacLane spaces, such as K(Z,1), represented as Kan
simplicial sets, and these are necessarily infinite. More concretely, as we have seen,
K(Z,1) has infinitely many simplices in each dimension k ≥ 1, and thus we cannot
explicitly store even the part up to some fixed dimension.

For algorithmic purposes, we thus represent a simplicial set X by a collection of
several algorithms, which allow us to access certain information about X, without
having all of it explicitly stored in memory. (In computer science, this is also called
a black box or oracle representation of X, and in the terminology of object-oriented
programming, we can think of X as an instance of a class “simplicial set”.) A similar
representation is used for other kinds of infinite topological or algebraic objects as
well.

Locally Effective Simplicial Sets For some computations, it may be sufficient to
represent X by a black box providing only “local” information about X, and in that
case, in accordance with the terminology in earlier papers, e.g., [17, 19, 20], we speak
of a locally effective representation.

Concretely, let X be a simplicial set, and suppose that some computer represen-
tation (“encoding”) for the simplices of X has been fixed. For example, in the case
of K(Z,1), we can fix the representation of the simplices of K(Z,1) by integer se-
quences, and represent the integers in the sequences by the standard binary encoding.

3We will not define a Kan simplicial set, but we just mention a key property, which is the reason why
these simplicial sets are essential to the considered algorithms. Namely, if X is a simplicial set and Y is a
Kan simplicial set, then every continuous map |X| → |Y | is homotopic to a simplicial map X → Y . Thus,
continuous maps into Y have a combinatorial representation, describing them up to homotopy.

942 Found Comput Math (2013) 13:935–963

We say that X is a locally effective simplicial set if algorithms are available that,
given (an encoding of) a k-simplex σ of X and i ∈ {0,1, . . . , k}, computes the sim-
plex ∂iσ , and similarly for the degeneracy operators si . Briefly speaking, the face and
degeneracy operators should be computable maps.

Computing Global Information Suppose that we want to compute some “global”
information about a given simplicial set X, for example, the kth homology group
Hk(X). Then a locally effective representation of X is typically insufficient, and we
need to augment it in some way.

Of course, in the particular example with the homology groups, we could insist
that X be augmented with a black box that, given k, returns some representation of
Hk(X). The problem is that X may not be given to us directly; rather, we may need to
construct it from other simplicial sets by a sequence of various operations. For exam-
ple, in the introduction we mentioned that the Eilenberg–MacLane spaces K(G,k)

can be constructed starting with K(Z,1) and applying operations of several kinds,
such as product or classifying space.4 Then, for example, a black box for computing
the homology groups of X is not in itself sufficient to compute the homology groups
of the classifying space of X.

The third author and his co-authors have developed a more sophisticated way of
augmenting a locally effective simplicial set X with homological information, which
is captured in the notion of a simplicial set with effective homology. These simpli-
cial sets do possess a black box for computing homology groups, but they are also
equipped with additional information, which makes them stable under a large reper-
toire of operations: if we apply some of the “classical” operations, such as product,
classifying space, loop space, etc. to simplicial sets with effective homology, the re-
sult is again a simplicial set with effective homology (and in particular, it has a black
box for computing homology groups).5

It may be useful to keep in mind that, since a simplicial set is represented by a
black box, operations on such simplicial sets are performed by composition of al-
gorithms; i.e., the black box for the new simplicial set operates by calling the black
boxes of the old sets and processing the values returned by them.6

For defining a simplicial set with effective homology, and their polynomial-time
counterpart, we need to recall some notions concerning chain complexes.

Chain Complexes For our purposes, a chain complex C∗ is a sequence (Ck)
∞
k=−∞

of free Z-modules (i.e., free Abelian groups), together with a sequence (dk : Ck →

4As another, perhaps more sophisticated example, we can mention the computation of the homotopy group
πk(X) for a 1-connected simplicial set X: for this, given X, one first produces another simplicial set X′
from X, by a sequence of operations that “kill” the first k − 1 homotopy groups, and then πk(X) is
computed as Hk(X′) using the Hurewicz isomorphism.
5One can also consider other kinds of objects with effective homology, such as chain complexes, but for
concreteness, we will stick to simplicial sets.
6This feature makes it very natural to implement algorithms from this area using functional programming
languages, as was done for the package Kenzo; see, e.g., [14].

Found Comput Math (2013) 13:935–963 943

Ck−1)
∞
k=−∞ of group homomorphisms.7 The Ck are the chain groups, their elements

are called k-chains, and the dk the differentials. The differentials have to satisfy
dk−1dk = 0 for every k (here dk−1dk denotes the composition of maps). We also
recall that the kth homology group Hk(C∗) of the chain complex C∗ is defined as the
factor-group kerdk/ imdk+1.

For every simplicial set X, there is a canonically associated chain complex, which
is used to define the homology groups Hk(X). Actually, there are two natural possi-
bilities, depending on whether degenerate simplices are taken into account. We use
the normalized chain complex, which is based solely on the nondegenerate simplices.
We reserve the simple notation C∗(X) for it.

Thus, Ck(X) denotes the free Abelian group over X
ndg
k , the set of all k-

dimensional nondegenerate simplices (in particular, Ck(X) = 0 for k < 0). This
means that a k-chain is a formal sum

c =
∑

σ∈X
ndg
k

ασ · σ,

where the ασ are integers, only finitely many of them nonzero. The differentials are
defined in a standard way using the face operators: for k-chains of the form 1 · σ ,
which constitute a basis of Ck(X), we set dk(1 · σ) := ∑k

i=0(−1)i · ∂iσ (some of the
∂iσ may be degenerate simplices; then they are ignored in the sum), and this extends
to a homomorphism in a unique way (“linearly”).

We note that if X is a locally effective simplicial set, then the k-chains of C∗(X)

are finite objects; a k-chain c can be represented by a list of the k-simplices σ on
which c is nonzero, and of the corresponding coefficients ασ . Then the differentials
are computable maps.

However, if X
ndg
k is infinite, then Ck(X) has infinite rank, and we cannot use it

directly for computing homology groups. The solution adopted in effective homology
is to have, together with a locally effective simplicial set X, a reduction from C∗(X)

to an “effective” chain complex EC∗, for which each chain group ECk has a finite
rank.

Reductions Let C∗, C̃∗ be two chain complexes. To define a reduction from C∗ to
C̃∗, we first recall two other standard notions from homological algebra: A chain map
f : C∗ → C̃∗ is a sequence (fk)

∞
k=−∞ of homomorphisms fk : Ck → C̃k compatible

with the differentials, i.e., fk−1dk = d̃kfk . If f,g : C∗ → C̃∗ are two chain maps, then
a chain homotopy of f and g is a sequence (hk)

∞
k=−∞ of homomorphisms hk : Ck →

C̃k+1 such that f − g = d̃k+1hk + hk−1dk .
Now a reduction ρ from C∗ to C̃∗ consists of three maps f,g,h, such that

7These chain complexes are over Z; more generally, one considers chain complexes over a commutative
ring R, where the Ck are R-modules. These are needed, among others, for homology with coefficients
in R. But for our purposes, homology with integer coefficients suffices; if needed, homology groups with
other coefficients can be computed using universal coefficient theorems. Alternatively, all of the theory
can be built with coefficients from a fixed ring R, provided that R is equipped with sufficiently strong
algorithmic primitives.

944 Found Comput Math (2013) 13:935–963

• f : C∗ → C̃∗ and g : C̃∗ → C∗ are chain maps;
• the composition fg : C̃∗ → C̃∗ is equal to the identity id

C̃∗ , while the composition
gf : C∗ → C∗ is chain-homotopic to idC∗ , with h : C∗ → C∗ providing the chain
homotopy; and

• f h = 0, hg = 0, and hh = 0.

The notion of reduction goes back to Eilenberg and Mac Lane [8, Sect. 12], who
called it a contraction.8 It is routine to check that if there is a reduction from C∗
to C̃∗, then C∗ and C̃∗ have isomorphic homology groups in each dimension. Re-
ductions can also be composed, as follows: if (f, g,h) is a reduction from C∗ to C̃∗
and (f ′, g′, h′) is a reduction from C̃∗ to

≈
C∗, then (f ′f,gg′, h+ gh′f) is a reduction

from C∗ to
≈
C∗.

Effective Homology We are getting close to stating the definition of a simplicial
set with effective homology. The last step is to define what we mean by an effective
chain complex EC∗. We assume that, first, EC∗ is locally effective, meaning that
each chain group ECk has some distinguished basis Bask , k-chains are represented as
linear combinations of elements of Bask (and thus they can be added and subtracted
algorithmically), and there is an algorithm for evaluating the differentials dk . Second,
EC∗ is effective, which means, in addition to the above, that there is an algorithm that,
given k, outputs the list of elements of the distinguished basis Bask ; in particular, this
implies that each ECk has a finite rank rk . We note that by combining the construction
of Bask with the ability to evaluate the differential dk , we can compute the matrix of
dk with respect to the distinguished bases Bask and Bask−1.

We can now define a simplicial set with effective homology as a locally effective
simplicial set X together with an effective chain complex EC∗ and a reduction ρ

from C∗(X) to EC∗, where the three maps f,g,h from the definition of reduction are
computable.9

In this paper we will not have the opportunity to demonstrate the usefulness of
effective homology in algorithms; we refer to, e.g., [3, 20, 22] for examples of appli-
cations.

Polynomial-Time Homology The meaning of polynomial-time homology for the
simplicial set K(Z,1) considered in this paper is defined in a straightforward way: we
want the face and degeneracy operators to be computable in polynomial time (which
is obvious in this particular case), and K(Z,1) should be equipped with effective ho-
mology as above in such a way that, for every k, the maps fk, gk, hk are computable
in polynomial time, with the polynomial possibly depending on k as usual.

8They did not require the condition hh = 0, but simple transformation converts a reduction without this
condition into another one satisfying it.
9In [20] and in other papers, effective homology is defined in a more general way, using strong equivalence

of chain complexes instead of just a reduction. A strong equivalence of C∗ and C̃∗ means that there is an
auxiliary chain complex A∗ and reductions of A∗ to both C∗ and C̃∗. However, here the simpler notion
using a single reduction suffices, and this only makes the result formally stronger, since a reduction is a
special case of a strong equivalence.

Found Comput Math (2013) 13:935–963 945

We stress that since we deal with a single effective chain complex EC∗, the ranks
rk depend only on k and thus, for k fixed, they are constants. The matrix of the
differential dk in EC∗, too, is a constant-size object.

However, our setting with K(Z,1) is somewhat unusual in the analysis of algo-
rithms: We are dealing with a single simplicial set, fixed once and for all, which does
not depend on any input. This is an exceptional setting; most algorithms work with
objects that do depend on the input. To draw an analogy from a different area, the
setting of the present paper can be compared to seeking an algorithm for comput-
ing the nth digit of the number π , while the more usual case would be to consider
algorithms for evaluating arithmetic expressions with arbitrary precision, where we
start with integer numbers as inputs and apply addition, subtraction, multiplication,
division, roots and functions like exp, ln or arcsin.

To have an example from the area considered here, in an algorithm for computing
with a given topological space X, say specified as a finite simplicial complex, we may
need polynomial-time homology for the Eilenberg–MacLane space K(Zn,1), where
n is a parameter depending on X. Then we want that in the corresponding effective
chain complex for K(Zn,1), the ranks r2, r3, etc. each depend polynomially on n.
(Of course, for this to be useful, we also need that n depends at most polynomially
on the size of X.)

This example suggests that, in order to have a generally useful notion of
polynomial-time homology, we need to define it formally for a whole family, typ-
ically infinite, of simplicial sets. Here we present this issue briefly, referring to [3] for
a more detailed discussion.

Let I be a set, typically countable, such that each element I ∈ I has some agreed-
upon computer representation (i.e. encoding by a finite string of bits). A simplicial set
parameterized by I is a mapping X that assigns a simplicial set X(I) to each I ∈ I .
We also assume that the simplices of each X(I) have some encoding by bit strings.
Then we define a locally polynomial-time simplicial set as a simplicial set X param-
eterized by some I such that the face and degeneracy operators on a k-simplex σ of
X(I) can be evaluated in time polynomial in size(I)+size(σ), where the polynomial
may depend on k (and size(·) denotes the number of bits in the encoding).

Quite analogously, we define a chain complex C∗ = (C(I)∗ : I ∈ I) parameterized
by a set I . We say that such a C∗ is locally polynomial-time if each C(I)∗ is a locally
effective chain complex (and in particular, it has a distinguished basis Bas(I)k , and
k-chains are represented w.r.t. this basis), and for each fixed k, the differential (dI)k
on C(I)k can be evaluated in time polynomial in size(I) plus the size of the input
k-chain. We observe that addition and subtraction of k-chains are polynomial-time
operations automatically.

We say that a simplicial set X parameterized by a set I is equipped with
polynomial-time homology if the following hold.

• X is locally polynomial-time.
• There is a locally polynomial-time chain complex EC∗, also parameterized by I ,

such that, for each fixed k, the distinguished basis Bas(I)k of EC(I)k can be com-
puted in time polynomial in size(I), and in particular, the rank r(I)k is bounded
by such a polynomial.

946 Found Comput Math (2013) 13:935–963

• For every I ∈ I , there is a reduction ρI from C∗(X(I)) to EC(I)∗, where the maps
(fI)k, (gI)k, (hI)k of ρI are all computable in time bounded by a polynomial in
size(I) plus the size of the input k-chain; the polynomial may depend on k.

3 Polynomial-Time Homology from a Discrete Vector Field

Discrete Morse theory, developed by Forman [9] (also see [10]), belongs among fun-
damental tools in combinatorial topology. For us, the important point is that a suitable
discrete vector field on a simplicial set10 X can be used to equip X with effective ho-
mology; this is an implication of one of Forman’s results, as was observed by Romero
and Sergeraert [17] (they also generalized Forman’s construction by dropping a cer-
tain finiteness condition). Here we review the definitions, more or less repeating in
a general setting the definitions given for K(Z,1) in the introduction. Then we for-
mulate a sufficient condition on the vector field so that the construction provides
polynomial-time homology for X.

Discrete Vector Fields Let X be a simplicial set. For a simplex τ ∈ X, it may happen
that two face operators give the same simplex, i.e., ∂iτ = ∂j τ , i �= j (geometrically,
this means that the two faces of the simplex τ are “glued together”). We say that σ is
a regular face of τ if σ = ∂iτ for exactly one index i.

A discrete vector field V on a simplicial set X is a set of ordered pairs (directed
edges) of the form (σ, τ), where σ, τ ∈ Xndg, σ is a regular face of τ , and for every
two distinct pairs (σ, τ), (σ ′, τ ′) ∈ V , all of σ, τ, σ ′, τ ′ are distinct.

Given a discrete vector field V , the nondegenerate simplices of X are classified
into three subsets S, T , and C as follows:

• S are the source simplices; these are simplices σ such that (σ, τ) ∈ V for some τ .
• T are the target simplices; these are simplices τ such that (σ, τ) ∈ V for some σ .
• C are the critical simplices; these are the remaining simplices, not occurring in any

edge of V .

Often it is useful to regard V as a bijective mapping V : S → T , as we did in the
introduction. Thus, for (σ, τ) ∈ V , we sometimes write τ = V (σ) and σ = V −1(τ).

In a drawing of a simplicial set, the pairs (σ, τ) of a vector field can be indicated
by arrows pointing from σ into τ , as in Fig. 1.

Admissible Vector Fields and the V ∂-Graph The vector fields useful in discrete
Morse theory, as well as in our context, have an extra property. For defining it, we
first introduce an auxiliary directed graph, as drawn in Fig. 2, which we call the V∂-
graph.

The vertex set of the V∂-graph is Xndg. In the drawing, the empty circles corre-
spond to source simplices, the full circles to target simplices, and the critical simplices
are marked by double circles.

10In [17], vector fields are considered in somewhat greater generality, on algebraic cell complexes. Here
it is sufficient to stay in the perhaps more intuitive setting of vector fields on simplicial sets.

Found Comput Math (2013) 13:935–963 947

Fig. 1 A triangulation of the
real projective plane with a
discrete vector field (after
Forman [10], Fig. 4.1). Pairs of
vertices with the same label
should be identified; thus, there
are only one critical edge and
one critical vertex

Fig. 2 The V∂-graph corresponding to Fig. 1

The edges of the V∂-graph are of two kinds: first, those belonging to V (drawn
bold and pointing upwards), and second, all edges of the form (τ, σ), where τ is a
target simplex, σ is a face of τ and a source or critical simplex, and (σ, τ) /∈ V (these
edges point downwards).11 These edges correspond to the “allowed moves” defined
in the introduction.

We call the vector field V admissible if the V∂-graph contains no directed cycle
and no infinite directed path. The field in Fig. 1 is admissible, for example.

One of Forman’s results says that an admissible vector field V can be used to
“simplify” the underlying simplicial set X: by a sequence of suitable collapsing oper-
ations, which is defined based on V , one obtains a cell complex (no longer necessarily
a simplicial set), which is homotopy equivalent to X but typically much smaller—its
cells correspond only to the critical simplices.

We will not use this result directly (and thus we do not formulate it precisely).
Rather, we build on a related result (obtained implicitly by Forman with an addi-
tional finiteness assumption, and explicitly and in general in [17]), asserting that an
admissible vector field provides a reduction of the normalized chain complex C∗(X)

to a suitable chain complex Ccrit∗ . In this chain complex, each Ccrit
k is the free Abelian

group on the set of all k-dimensional critical simplices. The differentials in Ccrit∗ are

11In a simplicial set, it may happen that σ is a “multiple” face of τ . i.e., σ = ∂iτ holds for several indices i.
In such case, we connect τ to σ with multiple edges in the V∂-graph, one edge for each such index i.

948 Found Comput Math (2013) 13:935–963

defined based on V , and they are locally effective assuming that X and V are locally
effective in a natural sense.

Polynomially Bounded Vector Fields We need a polynomial-time version of this
result. Let V be an admissible vector field V on a locally polynomial-time simplicial
set; we assume that both X and V are parameterized by a set I , as in the definition
of a locally polynomial-time simplicial set.12 For σ ∈ Xndg, let reachV (σ) (or just
reach(σ) if V is understood) denote the set of all simplices reachable from σ by a
directed path in the V∂-graph.

Let us say that V is polynomially bounded if the following hold:

(PBV1) An algorithm is available that, given I ∈ I and a simplex σ ∈ X(I)
ndg
k , clas-

sifies σ as source, target, or critical. In the source case, it also returns the
simplex V (σ). The running time is polynomial in size(I) + size(σ) for ev-
ery fixed k.

(PBV2) For every fixed k and every σ ∈ X(I)
ndg
k , the sum of encoding sizes of all

simplices in reachV (σ) is bounded by a polynomial in size(I) + size(σ).

Theorem 3.1 If X is a locally polynomial-time simplicial set and V is a polynomially
bounded vector field on X such that, for every k, the sum of the encoding sizes of all
k-dimensional critical simplices is polynomially bounded (in size(I)), then X can be
turned into a simplicial set with polynomial-time homology.

Proof The proof essentially follows by inspecting the work of Forman [9] (mainly
Sects. 7 and 8) and making simple observations about the computation of the rele-
vant maps. For the reader’s convenience, we provide a self-contained presentation;
this seems simpler and not much longer than referring to the appropriate claims in
Forman’s paper, introducing his notation, etc. Our presentation is, similar to that of
Forman, mainly in a combinatorial language. We refer to [17] for two other, more
algebraic variants of essentially the same proof.

Throughout the proof, we keep the parameterization of X and V by I implicit.
To provide the desired reduction from C∗ := C∗(X), we need to define the target

chain complex Ccrit∗ and provide the three maps f,g,h as in the definition of a reduc-
tion. We begin with introducing several auxiliary maps and checking some of their
properties.

The vector field V induces a sequence V# = (V#k)
∞
k=−∞ of homomorphisms V#k :

Ck → Ck+1, as follows: for a source k-simplex σ , we have V#k(1 · σ) := (−1)i+1 ·
V (σ), where i is the unique index with σ = ∂iV (σ), and for σ target or critical, we
have V#k(1 · σ) := 0.

Next, we introduce a chain map Φ : C∗ → C∗ by

Φ := 1 + V#d + dV#,

12Of course, for the main result of this paper, polynomial-time homology for K(Z,1), parameterization is
not needed, but we need it if we want to have a general tool for obtaining polynomial-time homology from
a vector field.

Found Comput Math (2013) 13:935–963 949

Fig. 3 Forming the image Φ(1 · σ)

where 1 stands for the identity chain map and d is the differential of C∗. It is easy
to check that Φ is a chain map: indeed, dΦ = d + dV#d + ddV# = d + dV#d = Φd

(using dd = 0).
For the proof, it is important to understand how Φ works. We will thus discuss

how the image Φ(1 · σ) is formed, depending on the type of a k-simplex σ .

1. The simplest case is σ a target simplex; see Fig. 3 left. Then V#(1 · σ) = 0, and
thus Φ(1 ·σ) = 1 ·σ +∑k

i=0 V#k−1((−1)i · ∂iσ). So we consider all faces σ ′ of σ ,
with the appropriate signs, and apply V# to them. Only the σ ′ that are sources may
contribute to the image (and then (σ,σ ′) are edges of the V∂-graph), and Φ(1 · σ)

is supported only on target simplices.
Moreover, we observe that, crucially, the coefficient of σ in Φ(1 · σ) is 0;

indeed, if j is the unique index with V −1(σ) = ∂jσ , then we have V#((−1)j ·
∂jσ) = (−1)j+1(−1)j ·σ = −1 ·σ , which cancels out with the 1 ·σ coming from
the 1 in the definition of Φ . (Here we rely on the condition that V −1(σ) is a
regular face of σ from the definition of discrete vector field, since we need the
coefficient of V −1(σ) in d(1 · σ) to be invertible, i.e., equal to ±1.)

Summarizing, Φ(1 · σ) consists of the target simplices reachable from σ in
exactly two steps in the V∂-graph, with appropriate signs.

2. For σ a critical simplex we find, by a similar reasoning, that Φ(1 · σ) consists of
σ with coefficient 1, plus all the (target) simplices reachable from σ in exactly
two steps in the V∂-graph, again with appropriate signs.

3. Finally, for σ a source, both the dV# and the V#d terms may make a nonzero
contribution to Φ(1 · σ). For dV# (going first up, then down), we get, with ap-
propriate signs, all the source simplices reachable from σ in exactly two steps in
the V∂-graph, with σ itself cancelled out, plus some additional target and critical
simplices (here we do not follow the edges of the V∂-graph—that is why the ar-
rows are dotted in the picture). For V#d (first down, then up), we get only target
simplices.

Next, we define Φ∞ = limN→∞ ΦN as the stabilization of Φ; that is, given a
k-chain c, we compute Φ(c), Φ(Φ(c)), etc., until we reach a chain c̃ with Φ(c̃) = c̃,
and we set Φ∞(c) := c̃.

950 Found Comput Math (2013) 13:935–963

To check that the iterations of Φ indeed stabilize after finitely many steps, it suf-
fices to consider the case c = 1 · σ , and then the stabilization follows easily from the
above discussion of the action of Φ (and from the admissibility of the vector field V).
Moreover, we can see that the chains in imΦ∞ are supported only on critical and tar-
get simplices.

We also need to check that Φ∞ is computable in polynomial time. In order to
compute Φ∞(1 · σ) (which is sufficient), we just compute the iterations ΦN(1 · σ),
N = 1,2, . . . , until they stabilize. We observe that each simplex in the support of
some ΦN(1 · σ) can be reached from σ by following a directed path in the V∂-graph,
then possibly going to a face of the current simplex (a step corresponding to a dotted
arrow in Fig. 3), and then again following a directed path in the V∂-graph. Hence,
by the polynomial boundedness of the vector field V , the stabilization occurs for N

at most polynomially large, and the sum of the encoding sizes of all simplices in
the supports of all chains encountered along the way is also polynomially bounded
(essentially by the square of the bound in condition (PBV2)).

Each coefficient in the chain ΦN+1(1 · σ) is the sum of O(k) coefficients in
ΦN(1 · σ). So each coefficient in ΦN(1 · σ) is bounded by exp(O(N)), and hence
its size (number of bits) is at most O(N). Therefore, Φ∞ is indeed polynomial-time
computable.

Now we define an auxiliary chain complex CΦ∗ ; we set CΦ
k := imΦ∞

k ⊆ Ck .
Equivalently, as is easily seen, CΦ

k = {c ∈ Ck : Φ(c) = c}. The differential of CΦ
k

is the restriction of the differential of C∗ (this works since Φ is a chain map). Let
i : CΦ

k → C∗ be the inclusion (which is a chain map).
Next, we come to the definition of Ccrit∗ ; as was announced above, the chain group

Ccrit
k is the free Abelian group (Z-module) with the set of the k-dimensional critical

simplices in X as a basis. It remains to define the differential.
First we let jk : CΦ

k → Ccrit
k be the homomorphism that restricts a chain c ∈ CΦ

k to
the critical simplices (i.e., for c = ∑

σ∈Xk
ασ · σ , we set jk(c) := ∑

σ∈Xk∩C ασ · σ).

We observe that Φ∞
k , viewed as a homomorphism Ccrit

k → CΦ
k , is an inverse to jk .

Indeed, from the description of Φ given above, it is easy to see that for σ critical,
Φ∞(1 · σ) = 1 · σ + c′ for some c′ supported on target simplices, and from this the
claim follows.

Hence each Ccrit
k is isomorphic to CΦ

k , and the differential dcrit of Ccrit∗ can be
defined so as to make j and Φ∞ mutually inverse chain isomorphisms; explicitly,
dcrit := jdΦ∞. This finishes the definition of the target chain complex for the de-
sired reduction; it is clear that the matrices of the differential dcrit are polynomially
computable, provided that the total encoding size of the critical simplices is polyno-
mial in each dimension.

It remains to define the maps f,g,h in the reduction. The following diagram sum-
marizes the relevant chain complexes and maps defined so far, plus f,g,h:

Found Comput Math (2013) 13:935–963 951

As the diagram suggests, we put f := jΦ∞ and g := iΦ∞. Then, since j and Φ∞
are mutually inverse and Φ∞i = 1, we have fg = 1, as required by the definition of
a reduction, and gf = iΦ∞.

The chain homotopy h of iΦ∞ with the identity (Forman uses the letter L for this
map) is now defined as the stabilization of the maps

−V#
(
1 + Φ + Φ2 + · · · + ΦN

)
, N = 1,2, . . .

To see that these iterations indeed stabilize on each chain 1 · σ , we recall that for
sufficiently large N , ΦN(1 · σ) is supported only on critical and target simplices,
and V# sends such chains to 0. By essentially the same argument as that for the
computability of Φ∞, we also see that each hk is computable in polynomial time.

We need to verify that h is the required chain homotopy, i.e., dh+hd = 1 − iΦ∞.
This is a simple formal calculation (showing where the formula for h comes from),
which we leave to the reader (also see [9, proof of Th. 7.3]).

As the last step, we want to check the conditions f h = 0, hg = 0, and hh = 0.
To this end, we note that the chains in imh are supported only on target simplices.
Moreover, if c is a chain supported only on target and critical simplices, then Φ(c)

has the same property, and hence h(c) = 0. These two properties immediately give
hh = 0. Similarly, img = imΦ∞ is supported only on target and critical simplices,
and hence hg = 0. Finally, we have seen that Φ∞ maps target simplices to 0, and so
does f = jΦ∞, which gives f h = 0 and concludes the proof of Theorem 3.1. �

4 A Polynomially Bounded Vector Field for K(Z,1)

Here we finally get to the combinatorial core of the paper; we will provide a polyno-
mially bounded vector field for K(Z,1).

A Simple Composition of Vector Fields For the sake of presentation, it will be easier
to split the vector field into two parts. Roughly speaking, the first part will get rid of
all negative components in the considered sequences [a1| · · · |ak], and the second part
will do the rest.

Here is the way of “splitting into two parts” in a general setting. Let X be a sim-
plicial set, let V1 be a vector field on X, with the set C1 of critical simplices, and
suppose that C1 is closed under the face operators (each face of a critical simplex is
again critical, or degenerate). Let Y be the simplicial subset of X induced by C1 (i.e.,
its nondegenerate simplices are the critical simplices of V1), and let V2 be a vector
field on Y .

Then we can define a “composition” V of V1 and V2 in the obvious way; formally,
if we regard a vector field a set of ordered pairs, we simply set V := V1 ∪V2. Clearly,
V is a vector field, and it is easily seen that V1,V2 admissible imply V admissible,
and similarly for polynomial boundedness.

In the case of X = K(Z,1), the role of Y will be played by the simplicial set whose
simplices are the integer sequences with all terms nonnegative. With some abuse of
the usual notation, we will denote this simplicial set by K(N,1).

952 Found Comput Math (2013) 13:935–963

The first vector field will be denote by Vbs and called the bubblesort field, since
directed paths in its V∂-graph resemble the computation of a sorting algorithm called
Bubblesort. Its critical simplices are integer sequences with all entries positive.

The second vector field is defined on K(N,1), and it has only two critical simplices
[] and [1], the same as the Eilenberg–MacLane field VEML. We call it the bit-chipping
field and denote it by Vbch.

Let us remark that one can consider composition of vector fields in a more general
and more flexible setting, as is done in [17], but for our purposes, the simple notion
above suffices.

4.1 The Bubblesort Field

Translating Positive Sequences to Sorted Sequences To define the vector field Vbs,
it is convenient to consider a different representation of the simplices of K(Z,1).
Namely, we represent a k-dimensional simplex σ = [a1| · · · |ak] by a (k + 1)-tuple
(b0, b1, . . . , bk), where b0 ∈ Z can be chosen arbitrarily and bi := bi−1 + ai , i =
1,2, . . . , k. Thus, each σ is represented as an equivalence class of (k + 1)-tuples of
integers, where two (k + 1)-tuples are equivalent if their difference is of the form
(a, a, . . . , a) (all components equal). We denote the equivalence class of (b0, . . . , bk)

by [b0, . . . , bk].
This correspondence between simplices of the form [a1| · · · |ak] and equivalence

classes of (k + 1)-tuples is obviously bijective. Nondegenerate simplices [a1| · · · |ak],
i.e., those with no zero component, translate to [b0, . . . , bk] with bi−1 �= bi , i =
1,2, . . . , k.

A (nondegenerate) simplex from K(N,1) corresponds to [b0, . . . , bk] with strictly
increasing components, i.e., b0 < b1 < · · · < bk . The face operators become ex-
tremely simple in this notation: ∂i corresponds to deleting the ith component.

The Field As was already announced, the critical simplices of Vbs are the
[b0, . . . , bk] with b0 < · · · < bk . If σ = [b0, . . . , bk] is not critical, we look at the
smallest 	 such that b	 > b	+1; let us call it the leading index of σ . Let us write
v = b	 and u = b	+1. We consider the maximal contiguous segment in the sequence
b0, b1, . . . starting at the 	th position and containing only v’s and u’s; formally, we
take the largest m ≥ 	 + 1 such that bi ∈ {u,v} for all i = 	, 	 + 1, . . . ,m, and either
bm+1 /∈ {u,v} or m = k. We call b	, b	+1, . . . , bm the leading alternating segment of
σ (indeed, there can be no two consecutive u’s or v’s, since this would mean that σ

is degenerate), and we denote it by LAS(σ).
Then we let σ be a source if LAS(σ) ends with u, and otherwise, σ is a target. For

a source σ , still with u,v,m as above, we set

τ = Vbs(σ) := [b0, . . . , bm, v, bm+1, . . . , bk], (2)

i.e., Vbs inserts another v just after LAS(σ).
With τ = Vbs(σ) as in the just given definition, we have σ = ∂m+1τ , and m + 1 is

easily seen to be the only index i with σ = ∂iτ (thus, σ is a regular face of τ). More-
over, σ can be uniquely reconstructed from τ (delete the last element of LAS(τ)), and
so Vbs is indeed a discrete vector field.

Found Comput Math (2013) 13:935–963 953

Next, we observe that once we show that Vbs is admissible, it becomes obvious that
it is also polynomially bounded. This is because the boundary operators only delete
components and the vector field duplicates them, and so any simplex reachable from
a given k-dimensional σ is made of the components of σ . Hence at most (k + 1)k+1

distinct source simplices are reachable from σ , which is a constant for k fixed.
It remains to prove admissibility, which is tricker than it might seem. Let us con-

sider a source simplex σ = [b0, . . . , b	−1, v, . . . , u, bm+1, . . . , bk], b0 < b1 < · · · <

b	−1 < v > u, where the part between the v and u is the LAS. We set τ = Vbs(σ), and
ask for which i’s the simplex σ ′ = ∂iτ can again be a source simplex (in this case we
say that σ ′ arises from σ by a double move).

If LAS(σ ′) = LAS(τ), then σ ′ is a target simplex, and so ∂i must change LAS(τ).
It cannot delete elements from the middle of LAS(τ), since the result would be de-
generate, and it cannot delete the final v, since this was inserted by Vbs.

Thus, one possibility is i = 	, in which case σ ′ is obtained from σ by appending v

to the end of the LAS and deleting the initial v of the LAS. Let us call this a switching
double move. This is the “intended” type of double moves that do the bubble-sorting,
provided that the LAS has length 2; for example, σ = [3,1,2] is transformed to σ ′ =
[1,3,2]. A switching double move may also occur for LAS(σ) of length 4 or more,
if the deletion of the initial v creates a new LAS; i.e., if b	−1 > u. An example is
σ = [2,3,1,3,1], σ ′ = [2,1,3,1,3].

However, there is a second, less obvious possibility for a double move: if the se-
quence [bm+1, bm+2, . . .] following LAS(τ) has the form [x,u, v,u, v, . . . , u, y, . . .],
x, y /∈ {u,v}, or the form [x,u, v, . . . , u], then we can also have i = m + 2. In this
case, ∂m+2 deletes the component following the LAS, and produces a longer LAS.
We call this an appending double move. For example, for σ = [2,3,1,4,1,3,1], the
switching double move yields σ ′ = [2,1,3,4,1,3,1] and the appending one yields
σ ′ = [2,3,1,3,1,3,1].

If we follow a sequence of directed edges in the V ∂-graph starting at some source
simplex σ̃ , and if all source simplices encountered along the way have LAS of
length 2, then the path has a bounded length, since all the double moves are switch-
ing in this case, and each of them decreases the number of inversions (i.e., pairs (i, j)

with i < j and bi > bj) in the current source simplex.
The following lemma shows that if LAS(σ̃) has length greater than 2, then every

sequence of double moves starting at σ̃ finishes after a finite number of steps, and this
already implies the admissibility of Vbs. All the difficulty of the lemma is in getting
the statement right; the proof is routine.

Lemma 4.1 Let σ̃ = [b0, . . . , b	−1, b	 = v,u, v, . . . , u, . . .] , b0 < · · · < b	 > u, be a
source simplex with LAS(σ̃) of length greater than 2. Then every source σ obtainable
from σ̃ by a sequence of double moves has the following structure: [β0, β1, . . . , β	, γ],
where each βi is a block of length ki ≥ 1 starting with bi and possibly continuing with
u,bi, u, bi, . . . (alternations of bi and u, u < bi), and γ is a possibly empty block that
does not start with u. The sequence (k0, k1, . . . , k) has the form

(1,1, . . . ,1
︸ ︷︷ ︸

j

, kj , kj+1, . . . , k),

954 Found Comput Math (2013) 13:935–963

where kj ≥ 2 is even, while all of the other ki are odd, and there is at least one ki ≥ 3.
In each double move of a sequence starting at σ̃ , either j decreases, or it stays the

same and kj increases. Thus, each such sequence is finite.

Proof The initial σ̃ clearly has the claimed form. Let us assume that σ is of this form,
and let a source σ ′ be obtained from it by a double move.

We have LAS(σ) = βj , of even length kj ≥ 2. If the double move is switching,
then

σ ′ = [b0, b1, . . . , bj−1, u, bj , . . . , u, bj
︸ ︷︷ ︸

kj −1

, βj+1, . . . , γ].

If we had j = 0 or bj−1 < u, then LAS(σ ′) would be either the block bj , . . . , u, bj of
odd length kj − 1 (for kj ≥ 4), or, for kj = 2, another βi , i > j , of odd length ki ≥ 3
(guaranteed to exist by the inductive assumption). In both cases σ ′ would be target,
and so bj−1 > u. Then σ ′ has the claimed structure [β ′

0, . . . , β
′
	, γ], with j ′ = j − 1,

β ′
i = βi for all i /∈ {j −1, j}, β ′

j−1 = bj−1, u of length k′
j−1 = 2, and β ′

j of odd length
k′
j = kj − 1. So j has decreased.

For an appending double move, we distinguish two cases. For j < 	, there is at
least one more block βj+1 following βj in σ , with kj+1 ≥ 3 (since βj+1 must have
an u to append to βj), and we have

σ ′ = [b0, b1, . . . , bj−1, bj , . . . , u, bj , u
︸ ︷︷ ︸

kj +2

, bj+1, u, . . . , bj+1
︸ ︷︷ ︸

kj+1−2

, βj+2, . . . , γ].

This is the claimed structure with j ′ = j , k′
j = kj + 2, and k′

j+1 = kj+1 − 2.
Finally, if j = 	, then γ has to start with x,u, . . . , and here we get j ′ = j = 	 and

k′
	 ≥ k	 + 2 (depending on the number of u,v alternations in γ following x). �

A Lower Bound Although the bubble-sorting process itself is only quadratic, it turns
out that |reachVbs(σ̃)| for a suitable source simplex σ̃ may indeed be exponential in
k, and thus the bound (k + 1)k+1 claimed above is not so far off the mark. Mainly
to illustrate the behavior of the vector field Vbs, we indicate the lower bound via a
concrete example without proof. Namely, from

σ̃ = [2,3,4,5,6,7,1,7,1,7,1,7,1,7,1,7,1,7,1]
we can reach source simplices such as [2,1,2,1,3,1,3,4,5,1,5,1,5,6,7,1,7,1,7].
Such simplices have 6 blocks (denoted by β0, . . . , β5 in the proof above), and we can
choose the block lengths at will, with the obvious restrictions (the total length is
fixed, and the block lengths are all odd except for the first one). In an analogous con-
struction with 6 replaced by an arbitrary integer b we take k = 3b and obtain a lower
bound exponential in k.

4.2 The Bit-Chipping Field

Here we return to the “bar” notation [a1|a2| · · · |ak], and we will consider only sim-
plices of K(N,1), which means ai ≥ 1 for all i.

Found Comput Math (2013) 13:935–963 955

The Anatomy of a Simplex Let σ = [a1|a2| · · · |ak] be a nondegenerate k-simplex of
K(N,1). We introduce the following terminology.

• Let p = p(σ) ∈ {0,1, . . . , k} be the largest index such that a1, . . . , ap are all pow-
ers of 2 and a1 ≤ a2 ≤ · · · ≤ ap . The sequence a1|a2| · · · |ap is called the nonde-
creasing dyadic part of σ . If 1 ≤ p < k and ap > ap+1, then p is called the peak
of σ ; otherwise, σ has no peak.

• Let q = q(σ) ∈ {0,1, . . . , k} be the largest index such that a1, . . . , aq are all powers
of 2 (thus, q ≥ p). The sequence a1|a2| · · · |aq is called the dyadic part of σ . If
q = k, then σ is called fully dyadic. If, on the other hand, q < k, then q + 1 is the
breakpoint of σ and aq+1 is the breakpoint value of σ (which is not a power of 2).
The sequence aq+2|aq+3| · · · |ak is the right part of σ .

Here are two concrete examples:

The Vector Field We define a vector field Vbch on K(N,1). There are two types of
source simplices.

(a) The first type of source simplices are the simplices that are not fully dyadic and
have no peak. Thus, all of the dyadic part is nondecreasing (i.e., p = q; we also
admit p = q = 0) and the breakpoint value is larger than the last element of the
dyadic part. Explicitly, they are of the form

σ = [
2i1 | 2i2 | · · · | 2iq | b | aq+2 | · · · | ak

]
,

2i1 ≤ 2i2 ≤ · · · ≤ 2iq < b. In this case we set

Vbch(σ) = τ := [
2i1 | 2i2 | · · · | 2iq | lpow(b) | ltrim(b) | aq+2 | · · · | ak

]
, (3)

where lpow(b) is the largest power of 2 not exceeding b, and ltrim(b) := b −
lpow(b). That is, τ is obtained by splitting the breakpoint value b into two com-
ponents, lpow(b) and ltrim(b); informally, we can think of this as “chipping off”
the leading bit of b.

We observe that each target simplex τ as defined above has a peak, namely,
p(τ) = q(σ) + 1, and in particular, τ has a nonempty dyadic part (but it may
happen that the dyadic part of τ is longer than the nondecreasing dyadic part,
since ltrim(b) may be a power of two).

(b) The second type of source simplices are the fully dyadic simplices σ = [2i1 |
2i2 | · · · | 2ik] with 2i1 ≤ 2i2 ≤ · · · ≤ 2ik−1 < 2ik with ik ≥ 1 (this last condition is
important only for k = 1). In this case we set

τ = Vbch(σ) := [
2i1 | 2i2 | · · · | 2ik−1 | 2ik−1 | 2ik−1]; (4)

956 Found Comput Math (2013) 13:935–963

i.e., we split the last component of σ into two equal halves.

Lemma 4.2 This definition indeed yields a vector field, and the only critical sim-
plices are [] and [1].

Proof Let us consider an arbitrary simplex τ . If it is not fully dyadic and is not
a source simplex, then it has a peak, and thus it has the form τ = [2i1 | · · · |2ip |
cp+1 | · · · | ck+1] with 2i1 ≤ · · · ≤ 2ip > cp+1. This equals Vbch(σ) for σ = [2i1 | · · ·
|2ip−1 | 2ip + cp+1 | cp+2 | · · · | ck+1]. Thus, τ is a target simplex and there is exactly
one edge (σ, τ) ∈ Vbch. Moreover, we have σ = ∂pτ , while ∂j τ �= σ for j �= p, so σ

is a regular face of τ as needed.
Next, if τ is fully dyadic and has a peak p, i.e., τ = [2i1 | · · · |2ik+1], 2i1 ≤ · · · ≤

2ip > 2ip+1 , then τ is again a target simplex with τ = Vbch(σ) for σ = [2i1 | · · · |2ip−1 |
2ip + 2ip+1 | 2ip+1 | · · · |2ik+1] (here 2ip + 2ip+1 is the breakpoint value). Again, j = p

is the only index with ∂j τ = σ .
The last remaining case is a fully dyadic τ with no peak, which must be nonde-

creasing. If it is not a source simplex, then either we have one of the cases [], [1],
or k ≥ 2 and the last two components of τ are equal, which means that τ is of the
form (4) and σ can again be uniquely reconstructed from it. We have σ = ∂j τ for the
unique index j = d − 1. �

Preparations for Analyzing Vbch It will be convenient to work mainly with the target
simplices. Thus, given a target simplex τ , we let t-reach(τ) ⊂ reach(τ) be the set of
all target simplices reachable from τ .

First we will classify all possible target simplices τ ′ reachable from a given target
simplex τ by two steps in the V∂-graph; in other words, the τ ′ of the form Vbch(∂j τ)

for some j . This is a straightforward, if somewhat lengthy, case analysis. The subse-
quent proofs of admissibility and polynomial boundedness will use this classification.
It would be nice to avoid considering so many cases, but one needs to be careful in
the analysis: for several other candidate vector fields we have tried, “most” cases
apparently worked fine, but those fields failed in what seemed like minor details.

Lemma 4.3 Let τ = [a1|a2| · · · |ak] be a k-dimensional target simplex.
If τ is not fully dyadic, we can write it in the form

[
2i1 | 2i2 | · · · | 2ip | 2ip+1 | · · · |2iq | b | aq+2 | · · · | ak

]
,

where b is not a power of 2, 2i1 ≤ · · · ≤ 2ip , p ≥ 1, p ≤ q ≤ k − 1, and either
2ip > 2ip+1 (if p < q) or 2ip > b (for p = q). Let τ ′ be a target simplex of the form
Vbch(∂j τ) for some j , where σ = ∂j τ is a (k − 1)-dimensional source simplex. Then
τ ′ has one of the following forms:

(A) If p = 1 and 2i2 ≤ · · · ≤ 2iq < b, then we can have

τ ′ = [
2i2 | · · · |2iq | lpow(b) | ltrim(b) | aq+2 | · · · |ak

]

(we drop the first component and split b). Example: τ = [22|1|2|7], τ ′ =
[1|2|22|3].

Found Comput Math (2013) 13:935–963 957

(B) If ij < ij+1 for some j , 1 ≤ j ≤ p − 1, then we can have

τ ′ = [
2i1 | · · · |2ij−1 | 2ij+1 | 2ij | 2ij+2 | · · · |2iq | b | aq+2 | · · · |ak

]

(the entries 2ij and 2ij+1 are swapped). Example: τ = [1|22|2|7], τ ′ = [22|1|2|7].
(C) If q ≥ p + 2, ip − 1 = ip+1 = ip+2 < ip+3 ≤ · · · ≤ iq , and 2iq < b, then we can

have

τ ′ = [
2i1 | · · · |2ip | 2ip | 2ip+3 | · · · |2iq | lpow(b) | ltrim(b) | aq+2 | · · · |ak

]

(two components following the peak are merged and b is split). Example: τ =
[2|1|1|2|7], τ ′ = [2|2|2|22|3].

(D) If q ≥ p + 2 and ip+2 ≥ ip > ip+1, then we can have

τ ′ = [
2i1 | · · · |2ip | 2ip+2 | 2ip+1 | 2ip+3 | · · · |2iq | b | aq+2 | · · · |ak

]

(the entries 2ip+1 and 2ip+2 are swapped). Example: τ = [2|1|22|7], τ ′ =
[2|22|1|7].

(E) If q = p + 1, b′ = 2ip+1 + b satisfies b′ ≥ 2ip , and b′ is not a power of 2, then we
can have

τ ′ = [
2i1 | · · · |2ip | lpow

(
b′) | ltrim

(
b′) | aq+2 | · · · |ak

]
.

Example: τ = [23|2|7], τ ′ = [23|23|1].
(F) If the situation is as in (E) except that b′ = 2i is a power of 2, then we can have

τ ′ = Vbch
([

2i1 | · · · |2ip | 2i | aq+2 | · · · |ak

])

(note that here we do not write out τ ′ explicitly, since there are still several cases
to distinguish depending on the right part of τ , but we will not need to discuss
them explicitly). Example: τ = [23|1|7|19], τ ′ = [23|23|24|3].

(G) If q = p ≤ k − 2, b′ := b + aq+2 ≥ 2ip , and b′ is not a power of 2, then we can
have

τ ′ = [
2i1 | · · · |2ip | lpow

(
b′) | ltrim

(
b′) | aq+3 | · · · |ak

]
.

Example: τ = [23|7|4], τ ′ = [23|23|3].
(H) If the conditions are as in (G) except that b′ = 2i is a power of 2, then we can

have

τ ′ = Vbch
([

2i1 | · · · |2ip | 2i | aq+3 | · · · |ak

])

(as in (F), we need not write out τ ′ explicitly). Example: τ = [23|7|1|7],
τ ′ = [23|23|22|3].

(I) If q = p = k − 1 and either p = 1 or ip−1 < ip , then we can have

τ ′ = [
2i1 | · · · |2ip−1 | 2ip−1 | 2ip−1].

Example: τ = [2|23|7], τ ′ = [2|22|22].

958 Found Comput Math (2013) 13:935–963

If τ = [2i1 | · · · |2ik] is fully dyadic, then either p < k (τ has a peak), or p = k (τ is
nondecreasing) and ik−1 = ik . In the peak case, we have the following possibilities
for τ ′ = Vbch(∂j τ):

(dA) If p = 1 and i2 ≤ i3 ≤ · · · ≤ ik−1 < ik , we can have

τ ′ = [
2i2 | · · · |2ik−1 | 2ik−1 | 2ik−1]

(deleting the first entry of τ and splitting the last).
(dB) For 1 ≤ j ≤ p −1 and ij < ij+1, τ ′ can be obtained by swapping 2ij and 2ij+1 .
(dC) If ip − 1 = ip+1 = ip+2 < ip+3 ≤ · · · ≤ ik−1 < ik , we can have

τ ′ = [
2i1 | · · · |2ip | 2ip | 2ip+3 | · · · |2ik−1 | 2ik−1 | 2ik−1]

(merging two equal entries and splitting the last).
(dD) For ip+2 ≥ ip > ip+1, τ ′ can be obtained from τ by swapping 2ip+1 and 2ip+2 .

Finally, if a fully dyadic τ has no peak, we have the possibility (dB) for τ ′ and the
following additional one:

(dI) If k = 2 or ik−2 < ik−1, then we can have

τ ′ = [
2i1 | · · · |2ik−2 | 2ik−1−1 | 2ik−1−1]

(drop the last component and split the previous one).

Proof As was already mentioned, the proof is totally straightforward and could prob-
ably be left to the reader. Yet, since getting used to the definitions and notation prob-
ably needs some practice, we chose to present the proof.

As in the lemma, we first consider τ not fully dyadic. If σ = ∂j τ is a source
simplex, then it has no peak, and thus the operation ∂j has to “destroy” the peak of
τ in some way. In particular, we have j ≤ p + 1, for otherwise, the peak of τ is also
present in ∂j τ . We just need to discuss the values of j in this range.

For j = 0, ∂0 removes the first coordinate, and this may destroy the peak only for
p = 1. For p = 1, σ is a source iff 2ip+1 ≤ · · · ≤ 2iq < b (this condition is void for
q = 1), and if this holds, then τ ′ is as in (A).

If 1 ≤ j ≤ p − 1, σ = [2i1 | · · · |2ij−1 |2ij + 2ij+1 |2ij+2 | · · · |2iq |b| · · ·]. In this case,
if ij = ij+1, then 2ij +2ij+1 is a power of two, σ necessarily has a peak, and thus it is
not a source. So ij < ij+1; then σ is a source and 2ij + 2ij+1 is the breakpoint value,
and τ ′ is as in (B).

Next, we consider j = p. Here the pth component of σ is 2ip + 2ip+1 (for q > p)
or 2ip + b (for p = q). In both of these cases the pth component is not a power of
2 (since p was the peak of τ), hence p is the breakpoint of σ , and so Vbch(σ) = τ .
Therefore, j = p does not contribute any τ ′.

Finally, we need to discuss j = p+1. Here the sum of the two entries of τ follow-
ing the peak must greater or equal to 2ip (and, in particular, p ≤ k −2), for otherwise,
p would be a peak in σ . We consider three cases, depending on how many of these
two entries are powers of 2.

Found Comput Math (2013) 13:935–963 959

First, if q ≥ p + 2, then the peak is followed by 2ip+1 and 2ip+2 in τ . If
2ip+1 + 2ip+2 = 2ip , then ip+1 = ip+2 = ip − 1. Then σ begins with [2i1 | · · · |
2ip |2ip |2ip+3 | · · · |2iq |b| · · ·], and since it has no peak, the dyadic part is nondecreas-
ing. Then τ ′ is as in (C). If, on the other hand 2ip+1 + 2ip+2 > 2ip , then 2ip+1 + 2ip+2

is not a power of 2. Then τ ′ is as in (D).
Second, we can have q = p + 1 (still with j = p + 1). Then the entry of σ follow-

ing 2ip is b′ = 2ip+1 + b, which has to be at least 2ip . If b′ is not a power of two, then
τ ′ is as in (E), and otherwise, we get (F).

Third, we can have q = p. If q ≤ k − 2, then the pth entry of σ is followed by
b′ := b + aq+2, which has to be at least 2ip . If b′ is not a power of two, then τ ′ is as
in (G), and otherwise, we get (H).

There is still one remaining case for j = p + 1, namely, when p = k − 1; then
∂j just deletes the last coordinate and σ is fully dyadic. Then σ is a source precisely
when p = 1 or ip−1 < ip , and we have τ ′ as in (I).

It remains to consider the case of τ = [2i1 | · · · |2ik] fully dyadic; thus, q = k. First
we assume that τ has a peak p ≤ k − 1. Then most of the analysis as above applies.

For j = 0, we find that ∂0τ is a source iff p = 1 and i2 ≤ i3 ≤ · · · ≤ ik−1 < ik , and
then we have τ ′ as in (dA).

For 1 ≤ j ≤ p − 1, arguing as in the not fully dyadic case above, for ij < ij+1 we
get τ ′ by swapping 2ij and 2ij+1 as in (dB). The case j = p again brings no τ ′.

For j = p + 1, we have essentially the first of the three cases of the analogous
analysis for the not fully dyadic case (q = k ≥ p + 2). For ip − 1 = ip+1 = ip+2 <

ip+3 ≤ · · · ≤ ik−1 < ik , we obtain (dC), and for ip+2 ≥ ip > ip+1 we get (dD) (a
swap).

Finally, we may have τ without a peak, which means that τ = [2i1 | · · · |2ik−2

|2ik−1 |2ik−1], i1 ≤ · · · ≤ ik−1 (see case (b) of the definition of Vbch). Here ∂0 and ∂k−1
bring no τ ′ (since Vbch(∂0τ) = Vbch(∂k−1τ) = τ). For 1 ≤ k ≤ k−2 and ij < ij+1, we
get a τ ′ by swapping 2ij and 2ij+1 as in (dB). For j = k, ∂k drops the last component,
and if ik−2 < ik−1, we get a τ ′ by splitting the last component as in (dI). �

Acyclicity Given Lemma 4.3, admissibility of Vbch can be proved quickly. Here we
will check only acyclicity of the V∂-graph, since the non-existence of infinite paths
will be a side-product of the proof of polynomial boundedness below.

Lemma 4.4 The V∂-graph contains no directed cycle.

Proof If τ ′ = Vbch(∂j τ) is obtained from τ as in Lemma 4.3, then for τ not fully
dyadic, one of the following can happen:

1. q(τ ′) > q(τ), i.e., the length of the dyadic part increases. This is always the case
in (F), (G), (H), and (I), and it may also happen in (A) and (C).

2. q(τ ′) = q(τ) and the breakpoint value decreases. This happens in (A) and (C)
(unless q drops) and also in (E). The latter is not entirely obvious, since we need
to check that ltrim(2ip+1 + b) < b, but this holds since ltrim(2ip+1 + b) ≤ 2ip+1 +
b − 2ip , and 2ip > 2ip+1 .

3. q(τ ′) = q(τ), the breakpoint value stays the same, and the dyadic part becomes
lexicographically larger. This happens in (B) and (D), since the swaps move a
larger component forward.

960 Found Comput Math (2013) 13:935–963

If τ is fully dyadic, then so is τ ′, and either the sum of components of τ ′ is smaller
than that of τ (cases (dA) and (dI)), or the sums of components are equal and τ ′ is
lexicographically larger than τ (cases (dB), (dC), and (dD)).

This implies that there can be no directed cycle. �

We remark that an alternative proof of Lemma 4.4 can go along the following lines:
If τ = [a1| · · · |ak] is not fully dyadic, then it can be shown that either ones(τ ′) <

ones(τ), where ones(τ) is the total number of 1’s in a1, . . . , ak written in binary,
or ones(τ ′) = ones(τ) and the sequence (i1, . . . , ip) is lexicographically (strictly)
larger than (i′1, . . . , i′p′), where 2i1 | · · · |2ip is the dyadic nondecreasing part of τ , and

similarly for 2i′1 | · · · |2i′
p′ and τ ′.

Polynomial Boundedness Condition (PBV1), polynomial computability of the vec-
tor field, is clearly satisfied for Vbch, and so we need to check (PVB2); i.e., we need a
polynomial bound on the total encoding size of all simplices reachable from a given
simplex σ . Obviously, we can focus only on target simplices: it suffices to provide,
for every target simplex τ̃ , a polynomial bound on

∑
τ∈t-reach(τ̃) size(τ) in terms of

size(τ̃).
Moreover, it is easy to see that neither the application of Vbch nor the face operators

∂i can increase the sum of the components of the simplex. Thus, size(τ) ≤ size(τ̃) for
every τ ∈ t-reach(τ̃), and it is enough to bound the number of simplices in t-reach(τ̃).

Thus, let us fix a target simplex τ̃ and set n := size(τ̃). Our goal is a polynomial
bound, in terms of n, on |t-reach(τ̃)|.

First we observe that fully dyadic simplices are easily accounted for. In-
deed, a fully dyadic simplex [2i1 | · · · |2ik] ∈ t-reach(τ̃) is specified by i1, . . . , ik ∈
{0,1, . . . , n − 1}, and so there are at most nk such simplices.

So we consider only the τ ∈ t-reach(τ̃) that are not fully dyadic. Let us write
τ̃ = [ã1| · · · |ãk] and τ = [2i1 | · · · |2iq |b|aq+2| · · ·ak], where q = q(τ) is the length of
the dyadic part and b is the breakpoint value.

We would like to show that with τ̃ fixed, there are only polynomially many possi-
bilities for τ . First, as was noted above, the number of choices for the dyadic part of
τ is polynomially bounded.

Second, it turns out that all of the right part of τ is inherited from τ̃ , i.e., ai = ãi

for all i ≥ q + 2. This “stability of the right part” is not hard to prove inductively
using Lemma 4.3, and it will be the first part of the key lemma below.

Thus, the last thing to do is showing that there are only polynomially many pos-
sibilities for the breakpoint value b of τ , and this is the most tricky part of the proof.
We will distinguish two cases: if b = ãq+1, i.e., b is “inherited” from τ̃ , then we call
τ a raw simplex, and otherwise, τ is processed.

The following lemma shows that if τ is processed, then its breakpoint value be-
longs to a certain inductively defined set, which is of polynomial size. In order that the
proof goes through, we need to strengthen the inductive hypothesis: namely, we need
that for a processed τ , the breakpoint value is smaller than the maximum entry of the
dyadic part. This will play a role only in a single case among those in Lemma 4.3,
namely (E); while all the other cases are natural and straightforward, (E) seems to
work only by a small miracle.

Found Comput Math (2013) 13:935–963 961

Lemma 4.5 (Key lemma) Let τ ∈ t-reach(τ̃) be as above. Then ai = ãi for all
i ≥ q + 2, i.e., the right part of τ coincides with the corresponding segment of τ̃ .
Moreover, if τ is processed, then b < max(2i1, . . . ,2iq), and b ∈ Bq+1, where the sets
B1, . . . ,Bk are defined inductively as follows:

• B1 = ltrim∗(ã1), where, for a positive integer a, we define ltrim∗(a) = ∅ if a is a
power of 2, and ltrim∗(a) = {ltrim(a)} ∪ ltrim∗(ltrim(a)) otherwise.

• Bj+1 = ltrim∗({ãj+1, ãj + ãj+1} ∪ {2i + ãj+1 : 0 ≤ i ≤ n − 1} ∪ {b + ãj+1 : b ∈
Bj }), where we extend ltrim∗(·) to sets by ltrim∗(A) := ⋃

a∈A ltrim∗(a).

Proof It suffices to prove that if τ is as claimed in the lemma, then τ ′ = Vbch(∂j τ)

as in Lemma 4.3 has this form as well (moreover, we may assume that τ ′ is not fully
dyadic). We need to consider the cases (A)–(I) in Lemma 4.3, but we can right away
settle (I), where τ ′ is fully dyadic, as well as (B) and (D), which only permute the
dyadic part. This leaves us with cases (A), (C), (E), (F), (G), and (H).

First let τ be raw, with b = ãq+1. In cases (A) and (C) τ ′ contains lpow(ãq+2)

followed by b′ := ltrim(ãq+2), at the (q + 1)st position. If b′ is a power of 2, then
τ ′ is raw, and otherwise, we have b′ ∈ Bq+1 and b′ < lpow(ãq+1); the latter is the
required entry larger than b′ in the dyadic part. Hence τ ′ is a processed simplex as
claimed in the lemma.

In (E) and (G), we have a situation similar to the one just discussed, except that
b′ = ãq+1 + 2i for some i < n in (E), and b′ = ãq+1 + ãq+2 in (G). Moreover, in (E),
b′ is at position q + 1, while in (G) it is at position q + 2. Again we find that τ ′ is
a processed simplex of the claimed form. In cases (F) and (H), we either get τ ′ fully
dyadic, or the breakpoint value of τ ′ is ltrim(ãq ′+1) for some q ′ ≥ q + 1, preceded
by lpow(ãq ′+1). Then τ ′ is a processed simplex as in the lemma as well, and the
discussion of a raw τ is finished.

Now let τ be processed, with b ∈ Bq+1, b < max(2i1 , . . . ,2iq). In cases (A) and
(C) τ ′ may be raw, which is fine, or processed with breakpoint value ltrim(b), which
lies in Bq+1, since Bq+1 is closed under ltrim(·).

Case (E) is, in a sense, the most sophisticated, and it is here where the inductive
hypothesis b < max(2i1, . . . ,2iq) is crucial. In the setting of (E), 2ip is the maximum
of the dyadic part of τ , and so 2ip > b. Let b′ = b + 2ip+1 , where 2ip+1 < 2ip ; by the
conditions in case (E), we have b′ > 2ip .

We claim that ltrim(b′) ∈ ltrim∗(b) (this will show that b′ ∈ Bq+1 and thus τ ′
is as required). To check this, let us write, for brevity, u = ip and v = ip+1, and
let βu−1βu−2 · · ·β0 be the binary notation for b, i.e., b = ∑u−1

i=0 βi2i , βi ∈ {0,1}.
Since 2u − 2v < b < 2u, we have βu−1 = · · · = βv = 1. Then b′ in binary is
1000 · · ·0βv−1βv−2 · · ·β0, and so ltrim(b′) can be obtained from b by iterating ltrim(·).
Thus, b′ ∈ Bq+1 indeed.

The consideration in cases (F) and (H) is the same as the one for τ̃ raw.
The last case to consider is (G). Here the dyadic part of τ ′ is longer than that of τ .

By induction, we have b ∈ Bq+1, and so ltrim(b + ãq+2) ∈ Bq+2 by the definition of
Bq+2 (or it is a power of 2, in which case τ ′ is raw). As in the previous case, the entry
lpow(b + ãq+2) supplies the power of 2 greater than ltrim(b + ãq+2), as required for
the induction. The lemma is proved. �

962 Found Comput Math (2013) 13:935–963

Corollary 4.6 For τ̃ as in Lemma 4.5, we have |t-reach(τ̃)| = O(n2k), with the im-
plicit constant depending on k.

Proof For each τ ∈ t-reach(τ̃), we have at most nk choices for the dyadic part (which
includes fixing q , the length of the dyadic part). A raw τ is already determined by τ̃

and by the dyadic part, while for τ processed, we also need to specify b.
The definition of Bj gives |B1| ≤ n and |Bj+1| ≤ 3n + n2 + n|Bj |, which yields

|Bj | = O(nj), and the corollary follows. �

Remark A more careful (and more complicated) analysis should probably give O(nk)

instead of O(n2k) in Corollary 4.6. However, as we will now indicate, our vector field
is not much better; there can indeed be about nk reachable simplices in t-reach(τ̃).

To see this, let us take n that is an integer multiple of k2, i.e., n = k2	, and
let us consider a source simplex σ̃ = [ã1| · · · |ãk], where ãi := (2	 − 1)2(i−1)	,
i = 1,2, . . . , k. Put differently, if we think of the binary encoding of each ãi as con-
sisting of k blocks of 	 bits each (thus, ãi has at most n/k bits and size(σ̃) ≤ n),
then ãi has 1’s in the ith block and 0’s elsewhere. It can be shown that each simplex
σ = [a1| · · · |ak], where ai has exactly one 1 in the ith block and 0’s everywhere else,
belongs to reach(σ̃). Since for each i, the position of the single 1 in ai can be chosen
in 	 ways, we have |reach(σ̃)| ≥ 	k = (n/k2)k .

It would be interesting to see if one could reach a significantly better bound with a
different vector field, or if there is perhaps a good lower bound valid for every vector
field.

Acknowledgements We would like to thank Martin Čadek, Lukáš Vokřínek, and Uli Wagner for useful
discussions and ongoing collaboration. Moreover, we thank Uli Wagner and Martin Čadek for insightful
comments on a preliminary version of the manuscript. The research by J. M. and M. K. was supported by
the Institute for Theoretical Computer Science (ITI), Charles University, Prague (project 1M0545 of the
Czech Ministry of Education) and by the ERC Advanced Grant No. 267165. The research by M. K. was
also supported by the project GAUK 49209.

References

1. D.J. Anick, The computation of rational homotopy groups is #℘-hard, in Computers in Geometry and
Topology, Proc. Conf. Chicago/Ill., 1986. Lect. Notes Pure Appl. Math., vol. 114 (1989), pp. 1–56.

2. M. Čadek, M. Krčál, J. Matoušek, F. Sergeraert, L. Vokřínek, U. Wagner, Computing all maps into
a sphere. Preprint arXiv:1105.6257 (2011). Extended abstract in Proc. ACM–SIAM Symposium on
Discrete Algorithms (SODA 2012).

3. M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, U. Wagner, Polynomial-time computation of homo-
topy groups and Postnikov systems in fixed dimension. Preprint arXiv:1211.3093 (2012).

4. M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, U. Wagner, Extendability of continuous maps is
undecidable. Preprint arXiv:1302.2370 (2013).

5. H. Cartan, Algèbres d’Eilenberg–MacLane et homotopie. Exposés 2 à 16, Séminaire Henri Cartan
(École Normale Supérieure, Paris, 1956).

6. A. Clément, Integral cohomology of finite Postnikov towers. Doctoral Thesis, Univ. de Lausanne,
2002.

7. E.B. Curtis, Simplicial homotopy theory, Adv. Math. 6, 107–209 (1971).
8. S. Eilenberg, S. Mac Lane, On the groups of H(Π,n). I, Ann. Math. 58, 55–106 (1953).
9. R. Forman, Morse theory for cell complexes, Adv. Math. 134(1), 90–145 (1998).

10. R. Forman, A user’s guide to discrete Morse theory, Séminaire Lotharingien de Combinatoire 48
(2002). Article B48c.

http://arxiv.org/abs/arXiv:1105.6257
http://arxiv.org/abs/arXiv:1211.3093
http://arxiv.org/abs/arXiv:1302.2370

Found Comput Math (2013) 13:935–963 963

11. P. Franek, S. Ratschan, P. Zgliczynski, Satisfiability of systems of equations of real analytic functions
is quasi-decidable, in Proc. 36th International Symposium on Mathematical Foundations of Computer
Science (MFCS). LNCS, vol. 6907 (Springer, Berlin, 2011), pp. 315–326.

12. G. Friedman, An elementary illustrated introduction to simplicial sets, Rocky Mt. J. Math. 42(2), 353–
423 (2012).

13. P.G. Goerss, J.F. Jardine, Simplicial Homotopy Theory (Birkhäuser, Basel, 1999).
14. J. Heras, V. Pascual, J. Rubio, F. Sergeraert, fKenzo: a user interface for computations in algebraic

topology, J. Symb. Comput. 46(6), 685–698 (2011).
15. J.P. May, Simplicial Objects in Algebraic Topology (Chicago University Press, Chicago, 1992).

Reprint of the 1967 original; the page numbers do not quite agree with the 1967 edition.
16. A. Romero, J. Rubio, Computing the homology of groups: the geometric way. Preprint arXiv:

1107.3396, http://arxiv.org/pdf/1107.3396v1 (2011).
17. A. Romero, F. Sergeraert, Discrete vector fields and fundamental algebraic topology. Preprint (2011)

an updated version at http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/. arXiv:1005.5685
18. A. Romero, J. Rubio, F. Sergeraert, Computing spectral sequences, J. Symb. Comput. 41(10), 1059–

1079 (2006).
19. J. Rubio, F. Sergeraert, Constructive algebraic topology, Bull. Sci. Math. 126(5), 389–412 (2002).
20. J. Rubio, F. Sergeraert, Constructive homological algebra and applications. Preprint arXiv:1208.3816

(2012). Written in 2006 for a MAP Summer School at the University of Genova.
21. F. Sergeraert, The computability problem in algebraic topology, Adv. Math. 104(1), 1–29 (1994).
22. F. Sergeraert, Introduction to combinatorial homotopy theory. Available at http://www-fourier.ujf-

grenoble.fr/~sergerar/Papers/. (2008).
23. J.-P. Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv. 27,

198–232 (1953).

http://arxiv.org/abs/arXiv:1107.3396
http://arxiv.org/abs/arXiv:1107.3396
http://arxiv.org/pdf/1107.3396v1
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/
http://arxiv.org/abs/arXiv:1005.5685
http://arxiv.org/abs/arXiv:1208.3816
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/

