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THE MAGNUS EXPANSION, TREES AND
KNUTH'S ROTATION CORRESPONDENCE

KURUSCH EBRAHIMI-FARD AND DOMINIQUE MANCHON

AsstracT. W. Magnus introduced a particularfid@rential equation characterizing the logarithm of the tsofuof
linear initial value problems for linear operators. Theumsive solution of this dierential equation leads to a
peculiar Lie series, which is known as Magnus expansion,imralves Bernoulli numbers, iterated Lie brackets
and integrals. This paper aims at obtaining further insighto the fine structure of the Magnus expansion.
By using basic combinatorics on planar rooted trees we peoesed formula for the Magnus expansion in
the context of free dendriform algebra. From this, by usingedi-known dendriform algebra structure on the
vector space generated by the disjoint union of the symmgtaups, we derive the Mielnik—Plebahski—Strichartz
formula for the continuous Baker—Campbell-Haugdseries.
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1. INTRODUCTION

During the last decade, some surprising convergencefi@rent areas of mathematical sciences has oc-
curred. The seemingly separate fields: numerical integratiethods, Lyons’ rough path theoiy [23] 36],
Ecalle’s mould calculus [12], and Connes’ noncommutatizergetry [16], share a common algebraic formal-
ism where algebraic structures on trees and its underlyongbinatorics are central.

Let us give two closely related examples coming from the theb numerical integration. First we men-
tion the pioneering work of J. Butcher on an algebraic thadrintegration methods in the 1960s and 1970s
[7, [24]. Butcher'sB-series can be seen as a generalization of Taylor serieshichwooted trees naturally
appear. They uniquely represent elementafiedéntials, as Cayley noticed already in his classical 1&pep
[8]. Motivated by the problem of extending Butcher’s workth@ construction of generalized Runge—Kutta
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methods for integration of fferential equations evolving on Lie groups, Munthe-Kaaothiced in[[40, 41]
the notion of Lie—Butcher series. In applications of bottidBer and Lie—Butcher series, algebraic and related
combinatorial structures on rooted trees (in non-plandranar version, respectively,) play an essential role.
Since then, identifying genuine algebraic structures imeca useful part of the theory of numerical integration
methods, see e.d. [14,115,134 85| 43]. The other exampleevaut of W. Magnus’ seminal 1954 paper
[37], where the author introduced a particulaffeliential equation characterizing the exponential sahutib
differential equations for a linear operator in terms of a LigeserThe latter is known as Magnus expansion
and has become a well-known tool in the solution and appration theory of linear initial value problems
[B, [42,[46]. Iserles and collaboratofs [27] 29] were that fo use planar tree structures in an intriguing
way to study the Magnus expansion in the context of numeircagration.

Recently it became clear that in general most of the comdiigtstructures on trees can be traced back
to the fact that free pre-Lie and dendriform algebras ararafly described in terms of rooted trees and pla-
nar binary trees, respectively [13,/31] 32]. Indeed, treesige genuine examples for combinatorial objects
spanning connected graded locally finite-dimensional aregspaces, on which rich and various extra alge-
braic patterns are given in explicit terms by so-called gesdting operations. These algebraic structures are
summarized by the notion of combinatorial Hopf algebra,esge[26)].

As it turns out, both Butcher'8-series and Magnus’ expansion are most naturally desciib&etms of
pre-Lie algebras. Indeed, Chapoton [9] was the first to sBidgries as genuine formal series of rooted trees
in the free pre-Lie algebra in one generator. In fact, ldtbecame clear that also Magnus’ series is contained,
though in more disguised form, in his 2002 preprint. See Klaoua’s work [43] for a link of Magnus’ series
to the Butcher—Connes—Kreimer Hopf algebra of rooted fraed the underlying pre-Lie algebra. Based on
the work by Iserles et al., we studied in [18] 19] the Magnysaasion in the light of its underlying pre-Lie
structure, using the corresponding dendriform algebraerhe realized that Agrachev and GamkrelidZe [1]
wrote down the Magnus expansion in the general context andhogical algebras, which is another name
for pre-Lie algebras, as early as 1981. The interpretatsom lagarithm, however, necessitates the dendriform
structure as well.

This paper is a continuation of our work [n]18]. It aims atahing further insights into the fine structure of
the Magnus expansion by using basic combinatorial methedsmsng from the description of free dendriform
algebra in terms of planar binary trees. This allows us tggmea closed formula for the Magnus expansion.
A dendriform algebra structure on the linear span of the sgimmgroups([3B] allows us to derive the contin-
uous Baker—-Campbell-Hausdfoseries. In other words, we recover the known Mielnik—Ptestk&-Strichartz
formula for the (classical) Magnus expansion. Using faatlmentary tools, our result may be seen as a pedes-
trian approach to parts of Chapoton’s etlal.[10, 11] and dinibet al. [22] work on the Magnus series, where
descent algebra, operads, and the theory of non-comnmaugtimmetric functions play a dominant role.

The paper is organized as follows: in Sectidn 2 we introdbeeréquired structures, both combinatorial
(planar binary trees, planar rooted trees and Knuth'siostatorrespondence) and algebraic (Rota—Baxter,
dendriform and pre-Lie algebras). We show how the dendhrifalgebra structure on the vector space spanned
by planar binary trees together with the associative proiducansported through Knuth's rotation correspon-
dence to the vector space spanned by planar rooted trees.eddle the classical Magnus expansion in
Section[B, writing it in terms of the pre-Lie product given e space of locally integrable matrix-valued
numerical functions by:

(f > 9)(9) = [ fo (U) du g(s)].
The corresponding dendriform products are given by:
(f > )9 == ( [ f(u)du) o9, (F<g)9= f(s)( [ g(u)du).

In Sectior 4 we look for a closed formula (Theorgim 4) in the plation of the free unital dendriform algebra,
giving the logarithm of the solutioX of the linear dendriform equation:

X=1+a< X
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A g-analog of this result, relying on the abstract notiordescentsor planar binary trees can be found e.g. in
a recent paper by Chapotdn [10]. In our approach howeverefvained from using tools from the theory
of non-commutative symmetric functioris [22,]17], and dedithe formula directly by invoking elementary
combinatorial methods. Through the rotation correspoceléhe planar rooted tree picture reveals to be par-
ticularly useful here, since the number of descents of agplaimary tree simply corresponds to the number of
leaves of its planar rooted image, excluding the leftmaadt [Ehe formula in the free setting yields of course a
similar formula in any complete filtered dendriform algef@orollary[8). In the last section we recover from
TheorenT# and Corollary] 6 the well-known Mielnik—Pleba#askrichartz formulal[42, 46] for the classical
Magnus expansion, also know as continuous Baker—Camptaisdoff series. For that purpose we use a
dendriform algebra structure on the direct s®1n>1 k[Sn], where S, is the permutation group af letters
[21,[33], and the fact that the notion of descent for a plamaary tree matches well with the well-known
corresponding notion for a permutation.

Acknowledgements: We thank H. Munthe-Kaas and A. Lundervold for discussiond i@marks. The first
author is supported by a Ramoén y Cajal research grant frensgfanish government. Both authors were sup-
ported by the CNRS (GDR Renormalisation).

2. ALGEBRAIC AND COMBINATORIAL PRELIMINARIES

Letk be a field of characteristic zero (in our case it will alwaysliberR or C).

2.1. Trees. Recall that a tret¢is a connected and simply connected graph made out of vediue edges, the
sets of which we denote by(t) andE(t), respectively.

2.1.1. Planar binary trees.A planar binary treés a finite oriented tree given an embedding in the plane, such
that all vertices have exactly two incoming edges and ongoing edge. An edge can be internal (connecting
two vertices) or external (with one loose end). The extemmadming edges are the leaves. The root edge is
the unique edge not ending in a vertex. For any planar bimaptta partial order on the set of its vertices
V(t) is defined as followsu, v € V(t), u < vif and only if there is a path from the root bthroughu up tov.

Y VY YV YVY

The single edgéis the unique planar binary tree without internal vertickde denote byTglin (resp.‘T&i”)

the set (resp. the linear span) of planar binary trees. Alsimading for such trees is given in terms of the
number of internal vertices. Above we listed all planar byriaees up to degree three. The number of trees of
ordern is given by the Catalan numbey = % The first ones are, 1, 2,5,14,42 132 . ... Alternatively,

one can use the number of leaves. Observe that for any paarmdipbinary trees,, t, we can build up a new
planar binary tree via the grafting operatiof;= t; v to, i.e. by considering the uniguéshaped planar binary

tree VY, and replacing the left branch (resp. the right branchf lfyesp.ty).

MERY; Vv|=¥/ |vV:\y VVV:V |VX/:\$/.

Any planar binary tree¢ # | obviously expresses itself asVv t, in a unique way. The treg (resp.ty) is
the left part (resp. theright par} of t. The grafting operatiowv makesTBI‘” the free magma algebra with one
generator: the binary operationshows no relation of any kind, in particular it is neither qoaotative nor
associative. Notice that this product is of degree one veiipect to the grading in terms of internal vertices,
i.e. for two treeds, t, of degreesy, ny, respectively, the produdt Vv t, is of degreen; + np + 1. However,
with respect to the leave number grading this product is gfeezero. We call the treeg‘), TI(”) recursively

defined byr(” := | =: 7@ and+™Y := | v 7V, {1V = {V .

right and left combs, respectively.
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2.1.2. Planar rooted trees A planar rooted treas a finite oriented tree given an embedding in the plane, such
that all vertices, except one, theot have arbitrarily many incoming edges and one outgoing .etdige root
vertex has no outgoing edge, and the leaves have no incordgese

o1 v i%\zf‘f‘f

The single verte is the unique rooted tree without edges. Note that we putdabeat the bottom of the
tree. The set (resp. the linear span) of planar non-emptiedadmees will be denoted by (resp.7,). A
natural grading for such trees is given in terms of the nurobedges. Another one is given by the number of
vertices. Observe that any rooted tree of degree biggerzianwrites in a unique way:

t=B(t1--tn),

whereB, associates to the forest: - - t, the planar tree obtained by grafting all the planar ttges=1,...,n,
on a common root.

Bi(e)=19¢, Bi(eo)=%, Bi({e)= I&, B.(el) = '&; B.(eee) = 0.
Sometimes, one finds the notatibe: [t; - - - ty] in the literature[[7]. Note that the order in which the branc

trees are displayed has to be taken into account. We inteothedeft Butcher productf two planar rooted
treest = B.(t1-- - ty) andu = B, (uy - - - up):

Q) tos U= B,(tuy---up).

Hence, it is defined by connecting the root @fa a new edge to the root afsuch that becomes the leftmost
branch tree. Observe that it is neither associative nor aastative. Moreover, it is clear that any rooted
treet = B,(ty---ty) € Tp of degree bigger than zero uniquely decomposeis=as; o~ to. The rooted trees

recursively defined by© := ¢ =: @, and (™D = () o, o (™D := ¢ o ¢ are called ladder trees and
corollas, respectively.

2.1.3. Knuth’s correspondence between planar binary and planatead trees.A natural question is how to
relate the two sets of planar trees just presented. Knuttrides in [30] a natural way to do this, known as
rotation correspondence between planar binary and plaoted trees. We only give a recursive description
of this bijection denoted a® : TBI‘” — Tpi, by defining®d(]) := « and:

(2) O(ty V tp) 1= O(t1) o O(t2).
This map is well-defined and bijective, with its inverse msoeely given by:

D~ X(tn)

o7 Xta)
()

® OBty 1) = D7Ht) V OBtz 1) = K

The first few terms write:

W=e o=l o=V o=
‘I’W/’:i o=t ea=T  e=V  e=T

Observe the compatibility with the gradings by the numbentafnal vertices irTSI‘” and the number of edges
in Ty This simple bijection implies that the left Butcher protd(@) is also purely magmatic. Left and right
combSTl(”), 7 map via® to the ladder tree€™ and corollas™, respectively. For reasons to become clear
in the sequel, we ask the reader to note the equality betvinieemumber of those leaves of a planar binary tree
which point to the left, and the number of leaves of the c@uesing planar rooted tree.
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2.2. Pre-Lie algebras. Recall that a left pre-Lie algebrd(>) is ak-vector spacé\ equipped with an opera-
tion> : A® A — Asubject to the following relation:
(@arbrc-ax(b>c)=(bra)>c-b>(a>c).

See e.g.[[39] for a survey on pre-Lie algebras. A genuine plain the pre-Lie algebra of vector fields. Let
M be a ditferentiable manifold equipped with a flat, torsion-free axtionV. The space of vector fieldggM)
can be given the structure of a pre-Lie algebra by definingptbductf > g = V¢g. In the case oM = R"
with its canonical flat and torsion-free connection we héna for f = 3" | fid; andg = Z?:l 0j0;:

n(n
frg:= Z [Z f;0;0i
=1

i=1

0.

Recall from Chapoton and Livernét[13] that the basis of tee pre-Lie algebra in one generatB(e), can be
expressed in terms of undecorated, non-planar rooted fféesset (resp. the linear span) of the latter will be
denoted byT (resp.7"). In T too, any rooted tree of degree bigger than zero wtite8, (t; - - - t,). However,
the order in which the branch trees are displayed plays r@ rbhe pre-Lie product ifP(e) becomes very
explicit in terms of tree grafting, that i$; ~ t, is given by summing over all trees resulting from grafting
successively the treg to each vertex ofs:

th ~ = Z t) Ay b,
VeV(t2)

where~,, denotes the grating of the root iafvia a new edge to vertexof t,.

of‘\«o:I, (of‘\«o)/‘\«o:i, of‘\«(of'\«o):£+\.’, of‘\«(o/'\«(o/‘\«o))=§+3u;+'\y+y.

Any tree can of course be written as a polynomial expressidhe generatos using~ and suitable paren-
thesizing. See |1, 44] for the description of monomial bdsefree pre-Lie algebra.

Let f be any smooth vector field ax". To go from the free pre-Lie algebra on one generator to the &
algebra of vector fields one applies the elementaffipdintial magr; : Ple) — x(R™), which is defined as the
unique pre-Lie algebra morphism such tifafe] = f. Using standard notations, fo= B, (t1---t)) € T we
have:

FH) = FOF I, .., Frtal(X)-
Elaborating on the introduction of this paper, we menticat Butcher'sB-series can be seen as series expan-
sionsb(a) = Yt (a(t)/o (1))t in (the appropriate completion df(e). The linear functionr onP(s) maps trees
to k, ando(t) is the symmetry factor of the non-planar titeePassing to usud-series amounts to applying
the elementary dierential magFns, wherehf is a smooth vector field cR" multiplied by the so-called step
size parameten:;
B(:y) = 3 0201y
teT O'(t)
Indeed, a canonica-series consists of a formal power series in the step siznpeerh containing elemen-
tary differentials and arbitrary céficients encoded in a functianon the set of rooted treds Further below
we will see another natural example of pre-Lie algebra ircthrgext of numerical integration methods.

As a final remark we mention that composition®&eries leads to what is called Butcher’s group, which
clarified important aspects in the theory of Runge—Kuttahoes$. Later, Chartier, Hairer and Vilmart intro-
duced a so-called substitution law fBrseries in the context of backward error analysis. Seel[B}f@
concise reviews.

2.3. Rota—Baxter algebras. Recall that a Rota—Baxter algebra ik-algebraA endowed with &-linear map
R: A — Athat satisfies the relation

4) R(@)R(D) = R(R(@)b + aR(b) + dab),

where¢ € k. The mapR s called aRota—Baxter operator of weight The mapR = —6id — Ralso is a
weight 6 Rota—Baxter map. Both imagé¥A) and R(A) are subalgebras iA. One may think of[(4) as a
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generalized integration by parts identity. Indeed, a sarvglample is given by the classical integration by

parts rule showing that the ordinary Riemann integral is myinezero Rota—Baxter map. Other examples can
be found for instance in [18, 19]. Observe that for an asswei&kota—Baxter algebra the two compositions

axb = R(@)b+aR(b) +#abandarb := [R(a), b] — fbadefine a new associative product and a pre-Lie product,
respectively.

2.4. Dendriform algebras. We introduce the notion of dendriform algebral[31] okemwhich is ak-vector
spaceD endowed with two bilinear operatiorsand> subject to the following three axioms:

(5) (a<b)<c = a<((b=<c+b>0
(6) (@a>b)y<c = a>(b<g
) a>(b>c) = (a<b+a>b)>c

In a commutative dendriform algebra (also known under timeai@inbiel algebr), the left and right operations
are identified, that isx > y = y < x. Axioms (8)-[7) imply that form, b € D the composition:

(8) axb:=a<b+a>b

defines an associative product. Hence, a dendriform algehraassociative algebra together with a bimodule
structure on itself, such that the associative productsspito the sum of the left- and right-module struc-
tures. Moreover, dendriform algebras are at the same tiewtipralgebras. Indeed, one verifies that the two
products:

9) arb:=a>b-b<a, a<b:=a<b-b>a

are left pre-Lie and right pre-Lie, respectively. That i€ have:
(arb)yrc-ax(b>c) = (bra)>c-bx>(axc),
(a<b)<c-a<(b<c) = (a<c)<b-a<(c<b).

These two pre-Lie products vanish if the dendriform algéb@mmutative. Recall that a left pre-Lie algebra
is Lie admissible[[l, 13], that is:

[a,b]:=a<b-b<a
defines a Lie bracket. An analogous statement holds for ggglie algebras. Moreover, the Lie brackets
following from the associative operatidi (8) and the pre-tperationg(9) all define the same Lie bracket. For
any dendriform algebrd we denote byA = A @ k.1 the corresponding dendriform algebra augmented by a
unit 1, with the following rules:

a<l:=a=:1>a l<a:=0=a>1,
implying ax1 = 1xa = a. Note that the equalit§+1 = 1 makes sense, but thhic 1 and1 > 1 are not defined.

Now suppose that the dendriforfis complete with respect to the topology given by a decregfdimation
A=Al 5 A2 5 A3 5 ... compatible with the dendriform structure, in the sense #fak A9 c AP*9 and
AP > A9 c AP*Afor any p,q > 1. In the unital algebra we can then define the exponentialagatithm map
in terms of the associative prodult (8):

exp (x) ;= Z X/nl resp log‘(1+ X) = - Z(—l)”x*”/n.

n>0 n>0

LetLa. (b):=a>b = Rop (a). Note thatLa. Lp. = Lawp- andR.gR.p = Rop.a. We recursively define the set
of dendriform words imA for fixed elementy, ..., X, € A, n € N by:

vv(<0)(x1, X)) = 1= W(>O)(X1, ey Xn)
WO, %) = < WD, X))
WO, %) = (WD Xel1)) > X

In case thaky = - -- = X, = xwe simply writew(x, ..., X) = xX™ andw(x, ..., %) = x™.
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A simple example of dendriform algebra is given in by the Ra@mintegral on an algebra of locally
integrable functions oveR. The dendriform left and right products are:

t t
(f <)) = f(t)( fo g(s)ds) (f > 9 = ( fo f(s)ds)g(t).

With 1(f)(t) := fot f(s)ds the dendriform axioms simply encode integration by parts

(f<g)<h = fI(gI(h) = fI(gl(h)+ fI(I(Gh) = f <(g<h)+ f <(g>h)
(f>g) <h = (I(Holh) =I1(f)glh) =f>(g=<h)
f>(g>h = I(HI@h=1(flg)h+1(1(Hgh=(f<g) >h+(f>g) >h

The pre-Lie product f( > g) is given by the bracketl (f), g]. The last example generalizes to any associative
Rota—Baxter algebraA, R) of weight#, giving rise to a dendriform algebra( <, >) defined in terms of:

a<b = aRb)+6ab=-aR(b), a> b= R(@)h.
The dendriform associative and left pre-Lie products amieiXly given for a,b € A by:
(20) axb=R@b+aRb)+60ab resp arxb=][R(a),b]-6oba

2.4.1. Dendriform algebra structure on planar treetn [31] it was shown that planar binary treegfdrent
from | generate the free dendriform algebra in one generator. 3ueative product for two trees= s, v s,
andt =t; vV tyin ‘T’B‘{‘ = 7‘&'” —{l} is given recursively by:

Sxt=5 V(Sp*t)+(sxty) Vi
The two terms on the right define the dendriform compositierad > respectively. A simple computation
shows the following link between the dendriform structunel ghe magmatic product:

(1)) svt=s> V<t

The tree| can be taken as the unit for the corresponding augmentediftendalgebra. For any dendriform
algebraA there is a unique morphisiy, : 7"*5',” — A. Using [11), it is recursively given bly,(Y) = aand:

Fa() = Fat1 Vi)
= Fa(tl > \/ < tg)
(12) = Fa(t1) > a< Fa(t).

This unital dendriform algebra structure @'@i” transfers via Knuth’s correspondence between planaryinar
and planar rooted tre€ls| (2) to the dendriform associativdymt defined fois = s; o» S, t =ty oo tp € T
by:
Skt=S 0> (S *xt)+(Sxt1) o to
The treee is the unit for this product. In the free dendriform algebridhvone generatoa, the dendriform

Wordsa(f) anda(f) translate into the left and right comb trees, respectivalyd via Knuth’'s correspondence
they are mapped to the ladder trees and corolla trees, tesghgcObserve that for rooted ladder trees we find:

£ M — (g(n—l) o 5(0)) * (g(m—l) o 5(0))
(g(n—l) o g(m)) + (g(n) * g(m—l)) o £©

m

(. (D o 6D o () o ) o 1O

r=0 )
r times

For instance:

I*I=V+£ I*£=\;+Y+§ E*I:b+i
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3. THE M AGNUS EXPANSION

We start by recalling how to solve the linear initial valueiplem (IVP):
EX(0) = ADXO.  X(0)= X,

with A(t) being, for instance, a matrix valuedidirentiable function. In fact, let us further simplify theoptem
by assuming scalar-valued functions, i.e. we ignore anyngotativity issues. Then the solution of the IVP in

terms of the exponential map ¥(t) = exp(fot A(X)dX)Xo. Expanding the exponential and making use of the
integration by parts rule immediately yields the identity:

t t S1 t
(13) 1+f0 A(sp)ds +f0 A(sl)fo A(sy)dsds +---:exp(f0 A(s)ds).

The left hand side, known as Dyson—Chen series, corresgoridse formal solution of the integral equation:

X(t) =1+ ft A(9)X(9)ds
0

which is associated to the above IVP. This solution is stllid/in the case wherd is a constanh x n
matrix. However, this changes drastically in the generatcommutative case. Wilhelm Magnus described in
a seminal 1954 papé€r [37] a particulaffdrential equation for the matrix-valued functi@t; A):

adosA) _ Bn_ (n
Taen) 7 AG) = AQ + ) rady (A9),

n>0

Q(s A) =

such that the solution of the IVP writes:
X(t) = exp(€(t; A))Xo.
It is clear that(0; A) = 0, henceQ(t; A) = fotQ(s; A)ds TheB, are the Bernoulli numbers:

1 1 1
Bo=1 Bi=——,By==,Bs=-—,... and B =0fork> 1
0 1 2 2 6 4 30 2k+1
As usual.ad® (W) stands for ther-fold iterated Lie bracketl, [U, - --[U, W]] - - -]. Let us write down the first
few terms of what is called Magnus’ seri€¥(s; A) = > -0 Qn(S; A), following from Picard iteration to solve
the above recursion:

. 212
Qs 1A) = AA(S)—?

3

j(; Z(x)dx, A(s)]
23 A
+— + —

) fos 7 fozx(x)dx[fozx(y)dy,A(s)

where we introduced a dummy paramete®bserve that the Lie bracket at ordérsimply serves to eliminate
the second term on the righthand side:

1 t 2 1 { S1 { S1
S [ aoas” =5 [ [ Asiaedsds + [ [ Awadeds),

such that up to second order.n

t 2 pt s t t ey
eXp(fO AA(9) —%‘f; [fOA(X)dX, A(s)|ds+ 0(3)) = /lj(; A(S)+/12f0 fo A(s)A(S)dsds + 0(23).

Let us remark that since its publication, Magnus’ paper ivecemuch attention and triggered important
progress in both applied mathematics and physics. We re¢ereader to [5] for a comprehensive overview
of its applications including a concise review of its backgrd. Iserles et al.[ 27, 28.129] used planar tree
to explore Magnus’ expansion. Magnus’ result has also baplord from a more algebraic-combinatorial

perspective using operads, pre-Lie algebras, dendrifdgebeas and noncommutative symmetric functions

[9,[10,/18/19. 22, 43].

+...’

Y
fo AX)dx A(y)] dy, A9
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3.1. The pre-Lie Magnus expansion.Motivated by Spitzer's work[[45] in probability theory, Beex [4],
see also[[3], followed a more general approach to the aboReslyygesting to look at the following fixpoint
equation:

(14) X =1+ AR(aX),

in A[[1]], where A is a commutative unital algebra. The linear mRmpn A is supposed to satisfy the
Rota—Baxter relation of scalar weight(@). The solution of[(I4) is known as Spitzer’s identity. 8]
we generalized this to a noncommutative Rota—Baxter adg@liny showing that equatiof (114) is solved by
X(1a) = expR(QY' (1)), where:

, B
(15) Q'(1a) = da+ ) n—I”Lg?(a)> (1a)

n>0

denotes th@re-Lie Magnus expansiorHereLy. (y) := x>y wherer is the pre-Lie product defined in_{110).
The prime notation shall remind the reader of Magnus’ oggdifterential equation. The first few terms are:

1 1 1
Q'(1a) :Aa—AZEaD a+/13(zr(a> a)>a+ l—2a>(a> a))+--- .

The reader is refereed tb [18.]119] for more details. Thisde@dthe following so-called noncommutative
Spitzer identity:

(16) 1+ AR() + 1°R(@R@)) + 1°R@R@ar(@))) + - - = exp(R(Q'(1a))).

Let us briefly note that proceeding analogously to the exaroff8-series in Paragrafgh 2.2, we may abstract
the pre-Lie Magnus expansion into (the appropriate conupleif) free pre-Lie algebra in one generaf):

W' (B) = ) (BO/r ).
teT

Now, to go from the free pre-Lie algebra on one generatordth-Lie algebraf, =) with the pre-Lie product
defined in[(ID), one applies for amye A the mapF, : Pls) — A, which is defined as the unique pre-Lie
algebra morphism such th@&t[e] = a. For rooted trees of higher orders, we must recall that wechanse a
monomial basis of(s). Once the monomial basis is fixed, the decomposition ofesttee7” of ordernin this
basis gives rise to a unique polynomgal (e) of ordern in the generatos. ThenF,[t] = Fa[pL. ()] := p.(a),
and the series’(B) in P(e) is mapped td2’(a). Of course, this picture demands for more details, sucloras f
instance the way to chose the monomial basis. Moreover, wad} remarked in [18, 19] that this approach
will lead to a Magnus expansion with fewer terms than thesitas series. A more complete account of this
perspective on the Magnus expansion will be presented irtlacfaming work.

3.2. Pre-Lie Magnus expansion and the group of formal flows.Using the dendriform product given by
X <y = xR(y) (we put the weigh# to zero for simplicity), equatiod_(16) in the last paragraphads:
1+Rla+a<a+a<(a<a)+- ) =exp(RCQ (1a)).

Using the associative produet=< + > given byx =y = R(X)y + XR(y) and extending the linear mdgto the
associated unital dendriform algebra by setf{d) := 1, yields:
X = exp' (Q'(1a)),
where:
X = Z(/la)(”) =1+la+a<a+la<(@a<a)+'a<@<@<a)+---
n>0

is the solution of the equatiod = 1+ 1a < X.
In [18],[19] we showed in the general dendriform algebrarsgtiie following

Theorem 1. ([18,[19]) The elemen®’ = log*(X(1a)) in A satisfies the recursive formula similar 8):

(18) = Y 2L (12

m=0

LQ’>

Q=
elos — 1
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with By, the m-th Bernoulli number. The first few terms are:

1 1 1
Q’'(1a) :/la—/lzéa> a+/l3(z(a> a)>a+ 1—2a>(a> a))+--- .

3.3. Group of formal flows. In [20] we adapted a result on the Baker—Campbell-Had&dormula by
Agrachev and Gamkrelidzel[1] to dendriform algebras. Rehat a left pre-Lie algebra is calledchrono-
logical algebran [1], and that the left pre-Lie identity rewrites as:

Liab> = [Lass Lbs]s

where as above,. : A — Ais defined byLg. (b) = axb, and where the bracket on the left-hand side is defined
by [a,b] := a> b - b a Recall that as a consequence this bracket satisfies thiei Jdeotity. We denote by
ALie the Lie algebra with the aforementioned bracket. Supposethat A is a left pre-Lie algebra endowed
with a decreasing filtration, namely = A; > A D A3 D - - -, such that the intersection of ti#g’s reduces to
{0}, and such thaf\, > Aq C Ap.q. Suppose moreover thatis complete with respect to this filtration. The
Baker—Campbell-Hausddiformula:

Cab)=a+b+S[ab]+ (alabl +bba) +

endowsA with a structure of pro-unipotent group. This group admiti@re transparent presentation as
follows. First, introduce a fictitious unit such thatl>a = a1 = afor anya € A, and definaV : A — Aby:

1 1
W@ =eé=1-1=a+ sava+ 6a|>(a|>a)+...‘

The applicationV is a bijection. The inverse is the pre-Lie Magnus expansi@) introduced in Theorem
[I. Transferring the BCH product by means of the riémamely:

(17) a#b := W(C(Q(a), (b)),

we haveW(a)#W(b) = W(C(a, b)) = e-»=¢e-»1 — 1, henceW(a)#W(b) = W(a) + e->W(b). The product # is
thus given by the simple formula:

atb = a+ e-o@rp,

The inverse is given bg*! = W(-Q(a)) = e@-1 — 1. In particular, when the pre-Lie produst is
associative, this simplifies @#b = a>b+a+banda*! = £ - 1= Y .;(-1)"a,. If (A,>) and B, >) are
two such pre-Lie algebras agd: A — B is a filtration-preserving pre-Lie algebra morphism, itrtamediate
to check that for ang, b € A we have:

Y (atb) = y(a)#y(b).

In other words, the group of formal flows is a functor from tlagegory of complete filtered pre-Lie algebras to
the category of groups. Concerning linear dendriform eqoat(18) in a complete filtered unital dendriform
algebraA we observe the following interesting fact: for any colleati@y, . .., a,) in A with filtration degree

> 1, the producX = X(a1) = - - - = X(an) whereX(a) is the solution of the equatiod(g) = 1+ a < X(g) is
the solution of the linear dendriform equati®n= 1 + a < X, with:

a=a#- - #a,,

which also writes explicitly:

n-1
a = a;+ eLQ(al#---#aj)> aj+l
=1
Logag)> Lo )e L >
A + ey + .- 4+ e .. @1 gy,
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4. LINEAR DENDRIFORM EQUATIONS

Let us emphasize that, although the sefie$ (15) has beemkioow long time in the pure pre-Lie context
[1], the results in[[18, 19], interpreting this series as@alithm, were obtained in the more restricted context
of dendriform algebras.

The starting point is the linear dendriform equatiotiAfi 1]] below, whereA is now any unital dendriform
algebra:

(18) X=1+Jda<X
for a € A. Its formal solution is:

X:Z(/la)(f):1+/la+/12a<a+/l3a<(a<a)+/l4a<(a<(a<a))+---
n>0

Remark 2. In this work we deliberately have suppressed any Hopf algphrlance. However, a few words are
in order. Recall that the associative algelﬂr”gi'f, ) is the free algebra generated by the elempriis T € 7 gl'”

[32, Theorem 3.8]. The subalgebra generated by the righbsatfl = \/, n > 0 is free and is a cocom-
mutative Hopf subalgebral of 75" The left combs™ = /) n > 0 also belong te. It follows thatF

is isomorphic, as a Hopf algebra, to the Hopf algebra of nomatative symmetric functions [22]. In Hopf
algebraic terms the solutioX = ano(/la)(f) of (I8) is characterized as group-like, thatiX) = X ® X.

4.1. A closed form for the logarithm. In this section, discarding the pre-Lie product, we give aplieit
expression of logX) in the freedendriform algebra in one generaﬂ)r For this we use Knuth’s rotation
correspondence and consider the representation in terplaradr rooted trees rather than planar binary trees.
The generatoa corresponds to the treg Then the solutionX is given by the sum of rooted ladder trees,
X =14+ Ypof™ =:1+L. Here we identifyl = £© = o,

log*(X) = log*(1 + L)

I
|
[any
Nt
o}

- ZZ_% Z 200 g )

n>0 k>0 igtiEn

We have omitted the parametér Recall that the degrelé™| of the treet™ is equal ton, i.e. its number
of edges. The series above makes sense in the completior &ethdendriform algebral with respect to
the grading. Recall that a ladder tree witliedges stands for the dendriform wm‘ﬁ), which in the classical
example[(IB) corresponds to the- 1 fold iterated integrai(t)l (al(a- - - 1(a)))(t).

Remark 3. SinceX is group-like, the logarithm is given by applying the eud@ridempotent, that is, I[3@X) =
log* (id)(X).

Theorem 4. The elemen®’ = log* (X) in Ais given by the formula:

(19) _ Z Z (=)= 1)£

n>0 reTp| L(T) 1)
7l=n

(M-1

where () denotes the number of leaves of the planar rooted#remd|r| its degree, i.e. its number of edges.

The first few terms are:
, 1 1 1% 1 1 1§ 1
Q_I_EV+§£+§ —6b+§?—(—5 —(—SY"""

Iwe recover they = 1 case of a-analog formula by F. Chapoton (s€el[10, Proposition 5.10])
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Proof. First observe that for any ordered compositioa i1 +- - - + ik of some positive integar, the expression
£01) 5 ... x £04 s a linear combination of planar rooted trees witadges, with coficients equal to 0 or 1.
Moreover, for any planar rooted treewith n edges and leaves, there is a unique ordered composition
n=iy+---+ ix of the integem such that:

(1) The corresponding-monomial of ladder tree&'?) x - - % £() contains the tree precisely once.
(2) For any other compositiom= ji + - - - + j, of the integemn, the x-monomialéliv) x - - . x £Ur) contains
7 with a nontrivial codficient only if the composition of the integaris finer than the first one.

Recall that each leaf of a planar rooted tree is connectduetoobt by a unique shortest path, i.e. including
a minimal number of edges. The compositioq (.., ix) is defined as follows: first we number the leaves
consecutively from left to right. The rightmost leaf is letk down to the root by the pai¥¥) of lengthiy
(i.e. the height of the rightmost leaf). For asye {1,...,k — 1}, is is the length of the pati(s) from leaf
numbersto the vertex lying on the unique path joining leaf numberl down to the root. As an example the
following six-leaved tree with 13 edges:
FAO R/ R O]

£
@

is associated to the ordered composition=13+ 1+ 1+ 3+ 2 + 4 of its degree.
Next we write for fixedn > O:

Sn(-1) = Z G 1) Z JAC Y AL Z si(0)r.

k>0 i+ H=n Te‘]’p|
ij>0.j=1....k [ti=n

The codficients in the last equality follow by projectios,(r) = (Z;, Sp), whereZ.(7') = é.r. Now, we
introduce a dummy parameterin the sum:

n(a)—Z—— Z A~

k>0 ig+Hy=n

such thatfo_1 %Sn(a)da = Sp(—1). Looking first at rooted ladder trees, we observe thabitw) only one
type of rooted ladder tree appears, i.e. the one of lengimd:

. . n-1
Sn(a) = Z Z £00) 5 s o) = Z —a*1 5(”) + non-ladder rooted trees
k>0 i+ H=n k>0 k -
|J1>0,J::t....k

Here we have used that the total number of lerigtitdered compositions af is (Ej) Projecting onto the
ladder part, and integrating, we find the number of rooteddadrees™ in the sumS,(-1):

-1
(M) = (Zym, Sn(-1 _f - kl(”_l)d :f _(1+a)"de = L.
S(E7) = Zo, Sa(-1)) é“k—l“o(”’)“n

Now consider an arbitrary rooted treeof degreen with £(7) = k leaves. It is associated with an ordered
compositionn = i1 + - - - + ix as explained above. Using the fact that considering an eddsymposition oh
finer than the first one is nothing but choosing an ordered caitipn ofis for anys=1,...,k, we get:

-1
! o1 T 1
f Z Z:l : (11— ) i (Jk— )da
Jk

j1=1

1
_f (1 + @)y
0

(1) = (Zr, Sn(-1))
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(_1)k—1 fl ak—l(l _ a)l’l—k da
0

(-1 18(k,n -k + 1)
)k 1(k 1) (n k)l

= (-1 -
( 1)L(T)—1
(k)
L(7)-1
In the last step we used thaequals the numbef(r) of leaves of tree. O

Using the inverse of Knuth'’s correspondence we end up witkcglivalent formulation in the planar binary
tree picture. Recall that a leaf of a planar binary treedescenif it is not the leftmost one and if it is pointing
to the left [10]. The rotation correspondence yields a hipecbetween the left-pointing leaves of a planar
binary treet and the leaves of its image trégt) = 7. The leftmost leaf of (i.e. the one which, by definition,
is not a descent) is mapped to the leftmost leaf.ohs an immediate consequence we have:

Corollary 5. In the planar binary tree picture, the eleme®t = log*(X) in Ais given by the formula:

(—1)10
@ RPN

n>0 te’]'gl'”

[tl=n
where dt) denotes the number of descents of the planar binary treed |thits degree, i.e. its number of
internal vertices.

Proof. Follows from the rotation correspondence between plamaritrees and planar rooted trees. 0O

Note that the extra sign-(L)** in Chapoton’s formulal[10] could be retrieved starting witie solution
Y = Y(a) of the equatiorY = 1+ Y > ainstead ofX. Both are linked through the antipode provided the sign
of the generator is changed, nam¥kg) = S(X(-a)).

Corollary 6. For any complete filtered dendriform algeh# = A; > A, D Az O --- and for any ac A, the
elemen’(a) = log* (X(a)) in A, where Xa) is the solution of the linear dendriform equatiorfaX= 1+ a <
X(a), is given by the formula:

de)
(21) o=31 3 Er,
(d(t))

I’l>0 tefrbln
It= o

where R, : 79" — A is the unique dendriform algebra morphism definedid (12)hghat Fy(Y) =

Hence, using the underlying dendriform algebra structather than the pre-Lie one, this result gives a
closed formula for the Magnus expansion in Theotém 1 in Papdi3.2.

5. A ForMULA BY MIELNIK—PLEBANSKI, AND STRICHARTZ

We would like to give a more precise formulation of Theoldemwvhen the dendriform algebr# is an
algebra of matrix-valued functions together with the Riamintegral as a Rota—Baxter operator (of weight
6 = 0). In the next section we follow [6, 32]. We will see that thentinuous Baker—Campbell-Haustfor
series, also known as Mielnik—Plebanski—Strichartz fdemgives a closed expression for the classical Magnus
expansion due to deep structural reasons on the symmaetrip gitgebra, i.e. a natural underlying dendriform
algebra, which matches with the dendriform algebra streabm planar binary trees.
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5.1. A dendriform structure on permutations. S, is the group of permutations afelements, anl[S,] its
group algebra. The concatenation of two permutations S, andr € Sy, is the permutationr X T € Spim
obtained by lettingr act on the firsh elements and letting act on thanlast elements. An associative product
is given by:
O*T = Z wo (o X71).
weShpm

Shwm € Sn+m Stands for the set oh(m) shutles. We denote the graded connected algebra with this product
by H := D, .o Hn, WhereH, = k[Sp].

The crucial observation is that the producbn permutations splits inte =< + >, where< and > are
defined by:

o<T= Z wo (oX1), o>T= Z wo (oXx1),

weShZ, weShym

where Sﬁ’m, respectively Sﬁ]m stands for the shiesw such thatw(n+ m) = n+ m, resp.w(n) = n+m. Itis
shown in [33] that< and> endow the augmentation idedl’ := 5 __, Hy, with the structure of a dendriform
algebra.

Remark: The (dendriform) algebra just described represents onfyhthe picture. Completing the structure
amounts to what is known as Malvenuto—Reutenauer Hopf edd&8], which is a graded connected Hopf al-
gebra onH. We refrain from giving more details and refer the readehtoreferences [6, 17, 832]. However,
let us add that the coproduct splits also into two parts, #maowing the Hopf algebra with the much richer
structure ofbidendriform Hopf algebrasee Foissy’s work [21].

n>1

5.2. Planar binary trees and permutations. The material presented in this paragraph is mostly borrowed
from [32]. See alsd |6] for a very detailed similar descopti A bijective correspondence between permuta-
tions andplanar binary trees with leveis well-known in combinatorics [25]. A planar binary treetlwlevels

is a planar binary treewith, say,n internal vertices together with a bijective decreasing mpé&pm the poset

of its internal vertices intél, . . ., n}. Such a tree admits a graphical realization by drawing tteznial vertices

at the prescribed levels, with level 1 being the top one avel tebeing the deepest one. Any planar binary tree
with levels ¢, ¢) gives rise to two such treet (¢1) and (o, ¢2), wheret = t; Vv t, andy; is the "standardized”
restriction of the injectiorp to the internal vertices df, namely its composition on the left with the unique
increasing bijection from its image ontd, .. ., |tj|},i = 1, 2.

To any such treet(yp) we can associate a permutatiot), as follows: o (i) is the level of the internal
vertexy; situated between leavgsandl;, 1 (the leftmost being the first and the rightmost being nunmoed.).
This correspondencP is a bijection, the inverse of which is recursively given akoivs: the permutation
o € Sy gives rise to two sequences of integers: the sequence beéoré the sequence after n (. .., o).
One of them may be empty. By “standardizing” the integersaichesequence, they form a permutation. For
instance (341625) gives the two sequences (341) and (2®hwdfter standardizing, give (231) and (12). By
induction these two permutations give rise to two trees \eikls. The grafting/ of the two trees (in the order
given above) gives the underlying treeR®f'(c), and the original permutation is used to determine theseve
of each vertex, namely(u;) = a1(j).

Recall that the descent set of a permutatioa S, is the subseD (o) c {1,...,n— 1} of indicesi such that
o(i) > o(i+1). We denote byl(c) the cardinality of the descent set. The following lemma,ghoof of which
is simple, establishes a link with descents of planar bifress:

Lemma 7. For any planar binary tree with leveld, ¢), the correspondence
j = ljr i {1,...,n} — {leaves of }

restricts to a bijection from the descent sepf),) onto the descent set of t.

Forgetting the levels, the bijectio®™* provides a surjective map, : S, — (T‘Igl"‘)n foranyn > 0. As a
corollary of Lemmdl7, we have:

(22) d(o) = d(y(0))
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for anyo € Sy. Dually, we get a linear injection’; (Tgli”)n — K[Sp] given by:

v = D o

Yn(o)=t

These maps together give a degree zero linear injegtiofrom 7‘&‘” to the dendriform algebrg{. The
following theorem is due to Loday and Ronco ([32, Theoren}, 3B, Proposition 5.3]):

Theorem 8. [33] The linear injections* defined above is a unital dendriform algebra morphism.

Remark 9. The mapy* is even a bidendriform Hopf algebra morphismi[21].

5.3. The Mielnik—Plebanski—Strichartz formula. Let A be an algebra of locally integrable functions of
one real variable, with values in some topological not nemely commutative algebra, for examphdy (C),

N € N. The weight zero Rota-Baxter map : A — A given by Ras) = fosa(u)du endowsA with a
dendriform algebra structure, as explained in Paradraphtive. Fix somain A, suppose > 0, and define
F.(a) € A for any permutationr € Sp, n > 1 as follows:

)9 = g ] et atu) dud

O<Up<---<U1<S

In particular, Fa((1)) = a, Fa((12)) = aR@), Fa((21)) = R(@)a, Fa((123) = aR@aR@)) and F((321) =
R(R(a)a)a. Observe that there are permutatieng Sy, n > 2, which, strictly speaking, can not be written as
iterated operators, e.g. (231) and (132). However, theybeanritten as iterated integrals in the above sense.
Therefore, the following only applies to the special casthefdendriform algebra structure defined in terms
of Ra9) = fosa(u)du on A. The crucial point is to transfer the dendriform calculatido the simplicies

forming the integration domains. The correspondefRgebviously extends uniquely to a linear map from the
augmentation ideal off to A.

Before stating the theorem, let us introduce some notatiansany positive integeN we denote by, C
[0, g)N the simplex{u = (Ug,...,uN), 0 < Uy < --- < U; < S}). The symmetric groufSy acts on [0s]N by
permutation of the variables, namely:

o.(Ug,...,UN) = (u(,zl, e, u(ml).

We have then:
oAy ={u=(Ug,...,UN), O0< Uy <+ < Uy < S

Theorem 10. F, is a dendriform algebra morphism from the augmentation lidéa/ to A, linked to the
dendriform algebra morphismof Corollary[8 by:

Fa = ﬁa o l//>‘<
Proof. By direct computation: take € S, andr € Sy, Then,

R(Fa(o < 7))(9) > RFa@o (e x D)9

weShZ(n m)
- f f aUy,) - AUy )aUnery) - Alnery) AU
weShZ(nm) O<u 1 << 1<s
= 3 [ ) et Al du
weSh?(n,m) Anem
= [ )l ) A
W " Antm

weSh?(n,m)
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f e ﬁ<un<---<u1<s a(Ug,) - - - aUe,)a(Vy,) - - - a(vy,,) dudv

O<Vm<--<vy<s* V1<U

R(Fa(c)R(Fa(1)))
= R(Fa(0) < Fa(®)),

henceFa(o < 1) = Fa(c) < Fa(r). The corresponding computation feris entirely similar and left to the
reader, using Sifn, m) instead of SA(n, m). The second statement is an immediate consequence oféfheor
and the freeness of the dendriform algebra of planar binees. O

Corollary 11. The elemenf)’(a) = log* (X(a)) in A, where Xa) is the solution of the linear dendriform
equation Xa) = 1 + a < X(a), is formally given by the series:

d(a)
(23) Z Z (=17

Fa(0).
n>0 O'GSn d(a'))
Proof. This is an immediate consequence of Corol[dry 6, ThedrédmiiEa [22). |

Corollary 12 (Mielnik—Plebanski—Strichartz formula [42, 146]The Magnus elemer2(a) = R(Q'(a)) is
formally given by the series:

(24) aEe =y > B 1)d(

n>0 o€eS, d(a')

o)
a(ua'l) T a(ucrn) dup - - - dun.

) O<Up<-+<U1<S

Remark : As Q(a) is a Lie element, we can use the Dynkin-Specht-Wever tineose that we recover the
formula in its original setting:

aEe =y Y S

n>0 o€Sn (d(‘f)) O<Un<--<U1<S

1)d(a')
[a(u(Tl)’ [a(uO'z)’ o [a(uO'n_l’ a(u(Tn)] e ]] dul to dLh

The order of theyj's is reversed compared to the original, sizce exp2(a)) solves the initial value problem
Z = aZrather tharZ = Zaas in [46].
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