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THE MAGNUS EXPANSION, TREES AND
KNUTH’S ROTATION CORRESPONDENCE

KURUSCH EBRAHIMI-FARD AND DOMINIQUE MANCHON

Abstract. W. Magnus introduced a particular differential equation characterizing the logarithm of the solution of
linear initial value problems for linear operators. The recursive solution of this differential equation leads to a
peculiar Lie series, which is known as Magnus expansion, andinvolves Bernoulli numbers, iterated Lie brackets
and integrals. This paper aims at obtaining further insights into the fine structure of the Magnus expansion.
By using basic combinatorics on planar rooted trees we provea closed formula for the Magnus expansion in
the context of free dendriform algebra. From this, by using awell-known dendriform algebra structure on the
vector space generated by the disjoint union of the symmetric groups, we derive the Mielnik–Plebański–Strichartz
formula for the continuous Baker–Campbell–Hausdorff series.

key words: Magnus expansion;B-series; trees; pre-Lie algebra; dendriform algebra, Rota–Baxter
algebra; permutations.
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1. Introduction

During the last decade, some surprising convergence of different areas of mathematical sciences has oc-
curred. The seemingly separate fields: numerical integration methods, Lyons’ rough path theory [23, 36],
Ecalle’s mould calculus [12], and Connes’ noncommutative geometry [16], share a common algebraic formal-
ism where algebraic structures on trees and its underlying combinatorics are central.

Let us give two closely related examples coming from the theory of numerical integration. First we men-
tion the pioneering work of J. Butcher on an algebraic theoryof integration methods in the 1960s and 1970s
[7, 24]. Butcher’sB-series can be seen as a generalization of Taylor series, in which rooted trees naturally
appear. They uniquely represent elementary differentials, as Cayley noticed already in his classical 1857 paper
[8]. Motivated by the problem of extending Butcher’s work tothe construction of generalized Runge–Kutta
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methods for integration of differential equations evolving on Lie groups, Munthe-Kaas introduced in [40, 41]
the notion of Lie–Butcher series. In applications of both Butcher and Lie–Butcher series, algebraic and related
combinatorial structures on rooted trees (in non-planar and planar version, respectively,) play an essential role.
Since then, identifying genuine algebraic structures became a useful part of the theory of numerical integration
methods, see e.g. [14, 15, 34, 35, 43]. The other example evolved out of W. Magnus’ seminal 1954 paper
[37], where the author introduced a particular differential equation characterizing the exponential solution of
differential equations for a linear operator in terms of a Lie series. The latter is known as Magnus expansion
and has become a well-known tool in the solution and approximation theory of linear initial value problems
[5, 42, 46]. Iserles and collaborators [27, 28, 29] were the first to use planar tree structures in an intriguing
way to study the Magnus expansion in the context of numericalintegration.

Recently it became clear that in general most of the combinatorial structures on trees can be traced back
to the fact that free pre-Lie and dendriform algebras are naturally described in terms of rooted trees and pla-
nar binary trees, respectively [13, 31, 32]. Indeed, trees provide genuine examples for combinatorial objects
spanning connected graded locally finite-dimensional vector spaces, on which rich and various extra alge-
braic patterns are given in explicit terms by so-called treegrafting operations. These algebraic structures are
summarized by the notion of combinatorial Hopf algebra, seee.g. [26].

As it turns out, both Butcher’sB-series and Magnus’ expansion are most naturally describedin terms of
pre-Lie algebras. Indeed, Chapoton [9] was the first to studyB-series as genuine formal series of rooted trees
in the free pre-Lie algebra in one generator. In fact, later it became clear that also Magnus’ series is contained,
though in more disguised form, in his 2002 preprint. See alsoMurua’s work [43] for a link of Magnus’ series
to the Butcher–Connes–Kreimer Hopf algebra of rooted trees, and the underlying pre-Lie algebra. Based on
the work by Iserles et al., we studied in [18, 19] the Magnus expansion in the light of its underlying pre-Lie
structure, using the corresponding dendriform algebra. Later we realized that Agrachev and Gamkrelidze [1]
wrote down the Magnus expansion in the general context of chronological algebras, which is another name
for pre-Lie algebras, as early as 1981. The interpretation as a logarithm, however, necessitates the dendriform
structure as well.

This paper is a continuation of our work in [18]. It aims at obtaining further insights into the fine structure of
the Magnus expansion by using basic combinatorial methods steaming from the description of free dendriform
algebra in terms of planar binary trees. This allows us to present a closed formula for the Magnus expansion.
A dendriform algebra structure on the linear span of the symmetric groups [33] allows us to derive the contin-
uous Baker–Campbell–Hausdorff series. In other words, we recover the known Mielnik–Pleba´nski–Strichartz
formula for the (classical) Magnus expansion. Using fairlyelementary tools, our result may be seen as a pedes-
trian approach to parts of Chapoton’s et al. [10, 11] and Thibon’s et al. [22] work on the Magnus series, where
descent algebra, operads, and the theory of non-commutative symmetric functions play a dominant role.

The paper is organized as follows: in Section 2 we introduce the required structures, both combinatorial
(planar binary trees, planar rooted trees and Knuth’s rotation correspondence) and algebraic (Rota–Baxter,
dendriform and pre-Lie algebras). We show how the dendriform algebra structure on the vector space spanned
by planar binary trees together with the associative product is transported through Knuth’s rotation correspon-
dence to the vector space spanned by planar rooted trees. We describe the classical Magnus expansion in
Section 3, writing it in terms of the pre-Lie product given onthe space of locally integrable matrix-valued
numerical functions by:

( f ⊲ g)(s) :=

[∫ s

0
f (u) du, g(s)

]
.

The corresponding dendriform products are given by:

( f ≻ g)(s) :=

(∫ s

0
f (u) du

)
g(s), ( f ≺ g)(s) := f (s)

(∫ s

0
g(u) du

)
.

In Section 4 we look for a closed formula (Theorem 4) in the completion of the free unital dendriform algebra,
giving the logarithm of the solutionX of the linear dendriform equation:

X = 1+ a ≺ X.
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A q-analog of this result, relying on the abstract notion ofdescentsfor planar binary trees can be found e.g. in
a recent paper by Chapoton [10]. In our approach however, we refrained from using tools from the theory
of non-commutative symmetric functions [22, 17], and derived the formula directly by invoking elementary
combinatorial methods. Through the rotation correspondence the planar rooted tree picture reveals to be par-
ticularly useful here, since the number of descents of a planar binary tree simply corresponds to the number of
leaves of its planar rooted image, excluding the leftmost leaf. The formula in the free setting yields of course a
similar formula in any complete filtered dendriform algebra(Corollary 6). In the last section we recover from
Theorem 4 and Corollary 6 the well-known Mielnik–Plebański–Strichartz formula [42, 46] for the classical
Magnus expansion, also know as continuous Baker–Campbell–Hausdorff series. For that purpose we use a
dendriform algebra structure on the direct sum

⊕
n≥1 k[Sn], whereSn is the permutation group ofn letters

[21, 33], and the fact that the notion of descent for a planar binary tree matches well with the well-known
corresponding notion for a permutation.

Acknowledgements:We thank H. Munthe-Kaas and A. Lundervold for discussions and remarks. The first
author is supported by a Ramón y Cajal research grant from the Spanish government. Both authors were sup-
ported by the CNRS (GDR Renormalisation).

2. Algebraic and combinatorial preliminaries

Let k be a field of characteristic zero (in our case it will always beeitherR orC).

2.1. Trees. Recall that a treet is a connected and simply connected graph made out of vertices and edges, the
sets of which we denote byV(t) andE(t), respectively.

2.1.1. Planar binary trees.A planar binary treeis a finite oriented tree given an embedding in the plane, such
that all vertices have exactly two incoming edges and one outgoing edge. An edge can be internal (connecting
two vertices) or external (with one loose end). The externalincoming edges are the leaves. The root edge is
the unique edge not ending in a vertex. For any planar binary tree t, a partial order on the set of its vertices
V(t) is defined as follows:u, v ∈ V(t), u < v if and only if there is a path from the root oft throughu up tov.

∣∣∣∣ . . .

The single edge| is the unique planar binary tree without internal vertices.We denote byTbin
pl (resp.T bin

pl )
the set (resp. the linear span) of planar binary trees. A simple grading for such trees is given in terms of the
number of internal vertices. Above we listed all planar binary trees up to degree three. The number of trees of
ordern is given by the Catalan numbercn =

(2n)!
(n+1)!n! . The first ones are 1, 1, 2, 5, 14, 42, 132, . . .. Alternatively,

one can use the number of leaves. Observe that for any pair of planar binary treest1, t2 we can build up a new
planar binary tree via the grafting operation,t3 := t1∨ t2, i.e. by considering the uniqueY-shaped planar binary
tree , and replacing the left branch (resp. the right branch) byt1 (resp.t2).

| ∨ | = ∨ | = | ∨ = ∨ = | ∨ = .

Any planar binary treet , | obviously expresses itself ast1 ∨ t2 in a unique way. The treet1 (resp. t2) is
the left part (resp. theright part) of t. The grafting operation∨ makesTbin

pl the free magma algebra with one
generator: the binary operation∨ shows no relation of any kind, in particular it is neither commutative nor
associative. Notice that this product is of degree one with respect to the grading in terms of internal vertices,
i.e. for two treest1, t2 of degreesn1, n2, respectively, the productt1 ∨ t2 is of degreen1 + n2 + 1. However,
with respect to the leave number grading this product is of degree zero. We call the treesτ(n)

r , τ(n)
l recursively

defined byτ(0)
r := | =: τ(0)

l andτ(n+1)
r := | ∨ τ(n)

r , τ(n+1)
l := τ(n)

l ∨ |:

· · · · · ·

right and left combs, respectively.
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2.1.2. Planar rooted trees.A planar rooted treeis a finite oriented tree given an embedding in the plane, such
that all vertices, except one, theroot, have arbitrarily many incoming edges and one outgoing edge. The root
vertex has no outgoing edge, and the leaves have no incoming edges.

· · ·

The single vertex is the unique rooted tree without edges. Note that we put the root at the bottom of the
tree. The set (resp. the linear span) of planar non-empty rooted trees will be denoted byTpl (resp.Tpl). A
natural grading for such trees is given in terms of the numberof edges. Another one is given by the number of
vertices. Observe that any rooted tree of degree bigger thanzero writes in a unique way:

t = B+(t1 · · · tn),

whereB+ associates to the forestt1 · · · tn the planar tree obtained by grafting all the planar treest j , j = 1, . . . , n,
on a common root.

B+( ) = , B+( ) = , B+( ) = , B+( ) = , B+( ) = .

Sometimes, one finds the notationt = [t1 · · · tn] in the literature [7]. Note that the order in which the branch
trees are displayed has to be taken into account. We introduce theleft Butcher productof two planar rooted
treest = B+(t1 · · · tn) andu = B+(u1 · · ·up):

(1) t � u := B+(tu1 · · · up).

Hence, it is defined by connecting the root oft via a new edge to the root ofu such thatt becomes the leftmost
branch tree. Observe that it is neither associative nor commutative. Moreover, it is clear that any rooted
tree t = B+(t1 · · · tn) ∈ Tpl of degree bigger than zero uniquely decomposes ast = t1 � t2. The rooted trees
recursively defined byℓ(0) := =: c(0), andℓ(n+1) := ℓ(n)

� , c(n+1) := � c(n) are called ladder trees and
corollas, respectively.

2.1.3. Knuth’s correspondence between planar binary and planar rooted trees.A natural question is how to
relate the two sets of planar trees just presented. Knuth described in [30] a natural way to do this, known as
rotation correspondence between planar binary and planar rooted trees. We only give a recursive description
of this bijection denoted asΦ : Tbin

pl → Tpl, by definingΦ(|) := and:

(2) Φ(t1 ∨ t2) := Φ(t1)� Φ(t2).

This map is well-defined and bijective, with its inverse recursively given by:

(3) Φ
−1(B+(t1 · · · tn)

)
= Φ

−1(t1) ∨ Φ−1(B+(t2 · · · tn)
)
=

Φ
−1(t1)

Φ
−1(t2)

Φ
−1(t3)

Φ
−1(tn)

The first few terms write:

Φ(|) = Φ( ) = Φ( ) = Φ( ) =

Φ( ) = Φ( ) = Φ( ) = Φ( ) = Φ( ) = .

Observe the compatibility with the gradings by the number ofinternal vertices inTbin
pl and the number of edges

in Tpl. This simple bijection implies that the left Butcher product (1) is also purely magmatic. Left and right
combsτ(n)

l , τ(n)
r map viaΦ to the ladder treesℓ(n) and corollasc(n), respectively. For reasons to become clear

in the sequel, we ask the reader to note the equality between the number of those leaves of a planar binary tree
which point to the left, and the number of leaves of the corresponding planar rooted tree.
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2.2. Pre-Lie algebras. Recall that a left pre-Lie algebra (A,⊲) is ak-vector spaceA equipped with an opera-
tion ⊲ : A⊗ A→ A subject to the following relation:

(a⊲ b) ⊲ c− a⊲ (b⊲ c) = (b⊲ a) ⊲ c− b⊲ (a⊲ c).

See e.g. [39] for a survey on pre-Lie algebras. A genuine example is the pre-Lie algebra of vector fields. Let
M be a differentiable manifold equipped with a flat, torsion-free connection∇. The space of vector fieldsχ(M)
can be given the structure of a pre-Lie algebra by defining theproduct f ⊲ g = ∇ f g. In the case ofM = Rn

with its canonical flat and torsion-free connection we have that for f =
∑n

i=1 fi∂i andg =
∑n

j=1 g j∂ j :

f ⊲ g :=
n∑

i=1


n∑

j=1

f j∂ jgi

 ∂i .

Recall from Chapoton and Livernet [13] that the basis of the free pre-Lie algebra in one generator,P( ), can be
expressed in terms of undecorated, non-planar rooted trees. The set (resp. the linear span) of the latter will be
denoted byT (resp.T ). In T too, any rooted tree of degree bigger than zero writest = B+(t1 · · · tn). However,
the order in which the branch trees are displayed plays no role. The pre-Lie product inP( ) becomes very
explicit in terms of tree grafting, that is,t1 y t2 is given by summing over all trees resulting from grafting
successively the treet1 to each vertex oft2:

t1y t2 :=
∑

v∈V(t2)

t1yv t2,

whereyv denotes the grating of the root oft1 via a new edge to vertexv of t2.

y = , ( y )y = , y ( y ) = + , y ( y ( y )) = + 3 + + .

Any tree can of course be written as a polynomial expression in the generator usingy and suitable paren-
thesizing. See [1, 44] for the description of monomial basesfor free pre-Lie algebra.

Let f be any smooth vector field onRn. To go from the free pre-Lie algebra on one generator to the pre-Lie
algebra of vector fields one applies the elementary differential mapF f : P( )→ χ(Rn), which is defined as the
unique pre-Lie algebra morphism such thatF f [ ] = f . Using standard notations, fort = B+(t1 · · · tn) ∈ T we
have:

F f [t](x) = f (n)(x)
(
F f [t1](x), . . . ,F f [tn](x)

)
.

Elaborating on the introduction of this paper, we mention that Butcher’sB-series can be seen as series expan-
sionsb(α) =

∑
t∈T

(
α(t)/σ(t)

)
t in (the appropriate completion of)P( ). The linear functionα onP( ) maps trees

to k, andσ(t) is the symmetry factor of the non-planar treet. Passing to usualB-series amounts to applying
the elementary differential mapFh f , whereh f is a smooth vector field onRn multiplied by the so-called step
size parameterh:

Bf (α; y) =
∑

t∈T

hV(t) α(t)
σ(t)
F f [t](y).

Indeed, a canonicalB-series consists of a formal power series in the step size parameterh containing elemen-
tary differentials and arbitrary coefficients encoded in a functionα on the set of rooted treesT. Further below
we will see another natural example of pre-Lie algebra in thecontext of numerical integration methods.

As a final remark we mention that composition ofB-series leads to what is called Butcher’s group, which
clarified important aspects in the theory of Runge–Kutta methods. Later, Chartier, Hairer and Vilmart intro-
duced a so-called substitution law forB-series in the context of backward error analysis. See [14, 35] for
concise reviews.

2.3. Rota–Baxter algebras. Recall that a Rota–Baxter algebra is ak-algebraA endowed with ak-linear map
R : A→ A that satisfies the relation

(4) R(a)R(b) = R
(
R(a)b+ aR(b) + θab

)
,

whereθ ∈ k. The mapR is called aRota–Baxter operator of weightθ. The mapR̃ := −θid − R also is a
weight θ Rota–Baxter map. Both imagesR(A) and R̃(A) are subalgebras inA. One may think of (4) as a
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generalized integration by parts identity. Indeed, a simple example is given by the classical integration by
parts rule showing that the ordinary Riemann integral is a weight zero Rota–Baxter map. Other examples can
be found for instance in [18, 19]. Observe that for an associative Rota–Baxter algebra the two compositions
a∗b := R(a)b+aR(b)+θabanda⊲b := [R(a), b]−θbadefine a new associative product and a pre-Lie product,
respectively.

2.4. Dendriform algebras. We introduce the notion of dendriform algebra [31] overk, which is ak-vector
spaceD endowed with two bilinear operations≺ and≻ subject to the following three axioms:

(a ≺ b) ≺ c = a ≺ (b ≺ c+ b ≻ c)(5)

(a ≻ b) ≺ c = a ≻ (b ≺ c)(6)

a ≻ (b ≻ c) = (a ≺ b+ a ≻ b) ≻ c.(7)

In a commutative dendriform algebra (also known under the nameZinbiel algebra), the left and right operations
are identified, that is,x ≻ y = y ≺ x. Axioms (5)-(7) imply that fora, b ∈ D the composition:

(8) a ∗ b := a ≺ b+ a ≻ b

defines an associative product. Hence, a dendriform algebrais an associative algebra together with a bimodule
structure on itself, such that the associative product splits into the sum of the left- and right-module struc-
tures. Moreover, dendriform algebras are at the same time pre-Lie algebras. Indeed, one verifies that the two
products:

(9) a⊲ b := a ≻ b− b ≺ a, a⊳ b := a ≺ b− b ≻ a

are left pre-Lie and right pre-Lie, respectively. That is, we have:

(a⊲ b) ⊲ c− a⊲ (b⊲ c) = (b⊲ a) ⊲ c− b⊲ (a⊲ c),

(a⊳ b) ⊳ c− a⊳ (b⊳ c) = (a⊳ c) ⊳ b− a⊳ (c⊳ b).

These two pre-Lie products vanish if the dendriform algebrais commutative. Recall that a left pre-Lie algebra
is Lie admissible [1, 13], that is:

[a, b] := a⊳ b− b⊳ a

defines a Lie bracket. An analogous statement holds for rightpre-Lie algebras. Moreover, the Lie brackets
following from the associative operation (8) and the pre-Lie operations (9) all define the same Lie bracket. For
any dendriform algebraA we denote byA = A ⊕ k.1 the corresponding dendriform algebra augmented by a
unit 1, with the following rules:

a ≺ 1 := a =: 1 ≻ a 1 ≺ a := 0 =: a ≻ 1,

implying a∗1 = 1∗a = a. Note that the equality1∗1 = 1 makes sense, but that1 ≺ 1 and1 ≻ 1 are not defined.

Now suppose that the dendriformA is complete with respect to the topology given by a decreasing filtration
A = A1 ⊃ A2 ⊃ A3 ⊃ · · · compatible with the dendriform structure, in the sense thatAp ≺ Aq ⊂ Ap+q and
Ap ≻ Aq ⊂ Ap+q for any p, q ≥ 1. In the unital algebra we can then define the exponential andlogarithm map
in terms of the associative product (8):

exp∗(x) :=
∑

n≥0

x∗n/n! resp. log∗(1+ x) := −
∑

n>0

(−1)nx∗n/n.

Let La≻ (b) := a ≻ b =: R≻b (a). Note thatLa≻Lb≻ = La∗b≻ andR≺aR≺b = R≺b∗a. We recursively define the set
of dendriform words inA for fixed elementsx1, . . . , xn ∈ A, n ∈ N by:

w(0)
≺ (x1, . . . , xn) := 1 =: w(0)

≻ (x1, . . . , xn)

w(n)
≺ (x1, . . . , xn) := x1 ≺

(
w(n−1)
≺ (x2, . . . , xn)

)

w(n)
≻ (x1, . . . , xn) :=

(
w(n−1)
≻ (x1, . . . , xn−1)

)
≻ xn.

In case thatx1 = · · · = xn = x we simply writew(n)
≺ (x, . . . , x) = x(n)

≺ andw(n)
≻ (x, . . . , x) = x(n)

≻ .
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A simple example of dendriform algebra is given in by the Riemann integral on an algebraF of locally
integrable functions overR. The dendriform left and right products are:

( f ≺ g)(t) := f (t)

(∫ t

0
g(s)ds

)
( f ≻ g)(t) :=

(∫ t

0
f (s)ds

)
g(t).

With I ( f )(t) :=
∫ t

0 f (s)ds, the dendriform axioms simply encode integration by parts

( f ≺ g) ≺ h = f I (g)I (h) = f I
(
gI(h)

)
+ f I

(
I (g)h

)
= f ≺ (g ≺ h) + f ≺ (g ≻ h)

( f ≻ g) ≺ h =
(
I ( f )g

)
I (h) = I ( f )

(
gI(h)

)
= f ≻ (g ≺ h)

f ≻ (g ≻ h) = I ( f )I (g)h = I
(
f I (g)

)
h+ I

(
I ( f )g

)
h = ( f ≺ g) ≻ h+ ( f ≻ g) ≻ h.

The pre-Lie product (f ⊲ g) is given by the bracket [I ( f ), g]. The last example generalizes to any associative
Rota–Baxter algebra (A,R) of weightθ, giving rise to a dendriform algebra (A,≺,≻) defined in terms of:

a ≺ b := aR(b) + θab= −aR̃(b), a ≻ b := R(a)b.

The dendriform associative and left pre-Lie products are explicitly given for a, b ∈ A by:

a ∗ b = R(a)b+ aR(b) + θab resp. a⊲ b = [R(a), b] − θba.(10)

2.4.1. Dendriform algebra structure on planar trees.In [31] it was shown that planar binary trees different
from | generate the free dendriform algebra in one generator. The associative product for two treess= s1 ∨ s2

andt = t1 ∨ t2 in T ′bin
pl := T bin

pl − {|} is given recursively by:

s∗ t = s1 ∨ (s2 ∗ t) + (s∗ t1) ∨ t2.

The two terms on the right define the dendriform compositions≺ and≻ respectively. A simple computation
shows the following link between the dendriform structure and the magmatic product:

(11) s∨ t = s≻ ≺ t.

The tree| can be taken as the unit for the corresponding augmented dendriform algebra. For any dendriform
algebraA there is a unique morphismFa : T ′bin

pl → A. Using (11), it is recursively given byFa( ) = a and:

Fa(t) = Fa(t1 ∨ t2)

= Fa(t1 ≻ ≺ t2)

= Fa(t1) ≻ a ≺ Fa(t2).(12)

This unital dendriform algebra structure onT bin
pl transfers via Knuth’s correspondence between planar binary

and planar rooted trees (2) to the dendriform associative product defined fors = s1 � s2, t = t1 � t2 ∈ Tpl

by:

s⋆ t = s1 � (s2 ⋆ t) + (s⋆ t1)� t2.

The tree is the unit for this product. In the free dendriform algebra with one generatora, the dendriform
wordsa(n)

≺ anda(n)
≻ translate into the left and right comb trees, respectively.And via Knuth’s correspondence

they are mapped to the ladder trees and corolla trees, respectively. Observe that for rooted ladder trees we find:

ℓ(n) ⋆ ℓ(m)
= (ℓ(n−1)

� ℓ(0)) ⋆ (ℓ(m−1)
� ℓ(0))

= (ℓ(n−1)
� ℓ(m)) + (ℓ(n) ⋆ ℓ(m−1))� ℓ(0)

=

m∑

r=0

(
· · ·

(
(ℓ(n−1)

� ℓ(m−r))� ℓ(0))
� · · ·

)
� ℓ(0)

︸                   ︷︷                   ︸
r times

.

For instance:

⋆ = + ⋆ = + + ⋆ = + .
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3. TheMagnus expansion

We start by recalling how to solve the linear initial value problem (IVP):

d
dt

X(t) = A(t)X(t), X(0) = X0,

with A(t) being, for instance, a matrix valued differentiable function. In fact, let us further simplify the problem
by assuming scalar-valued functions, i.e. we ignore any commutativity issues. Then the solution of the IVP in
terms of the exponential map isX(t) = exp(

∫ t

0 A(x)dx)X0. Expanding the exponential and making use of the
integration by parts rule immediately yields the identity:

(13) 1+
∫ t

0
A(s1)ds1 +

∫ t

0
A(s1)

∫ s1

0
A(s2)ds2ds1 + · · · = exp

( ∫ t

0
A(s)ds

)
.

The left hand side, known as Dyson–Chen series, correspondsto the formal solution of the integral equation:

X(t) = 1+
∫ t

0
A(s)X(s)ds,

which is associated to the above IVP. This solution is still valid in the case whereA is a constantn × n
matrix. However, this changes drastically in the general non-commutative case. Wilhelm Magnus described in
a seminal 1954 paper [37] a particular differential equation for the matrix-valued functionΩ(t; A):

Ω̇(s; A) =
adΩ(s;A)

e(adΩ(s;A)) − 1
(A(s)) = A(s) +

∑

n>0

Bn

n!
ad(n)
Ω(s;A)(A(s)),

such that the solution of the IVP writes:

X(t) = exp
(
Ω(t; A)

)
X0.

It is clear thatΩ(0;A) = 0, henceΩ(t; A) =
∫ t

0 Ω̇(s; A) ds. TheBn are the Bernoulli numbers:

B0 = 1, B1 = −
1
2
, B2 =

1
6
, B4 = −

1
30
, . . . and B2k+1 = 0 for k ≥ 1.

As usual,ad(n)
U (W) stands for then-fold iterated Lie bracket [U, [U, · · · [U,W]] · · · ]. Let us write down the first

few terms of what is called Magnus’ series,Ω(s; A) =
∑

n≥0Ωn(s; A), following from Picard iteration to solve
the above recursion:

Ω̇(s; λA) = λA(s) −
λ2

2

[∫ s

0
A(x)dx,A(s)

]

+
λ3

4

[∫ s

0

[∫ y

0
A(x)dx,A(y)

]
dy,A(s)

]
+
λ3

12

[∫ s

0
A(x)dx,

[∫ s

0
A(y)dy,A(s)

]]
+ · · · ,

where we introduced a dummy parameterλ. Observe that the Lie bracket at orderλ2 simply serves to eliminate
the second term on the righthand side:

1
2

( ∫ t

0
A(s)ds

)2
=

1
2

( ∫ t

0

∫ s1

0
A(s1)A(s2)ds2ds1 +

∫ t

0

∫ s1

0
A(s2)A(s1)ds2ds1

)
,

such that up to second order inλ:

exp

(∫ t

0
λA(s) −

λ2

2

∫ t

0

[∫ s

0
A(x)dx,A(s)

]
ds+ O(3)

)
= λ

∫ t

0
A(s) + λ2

∫ t

0

∫ s1

0
A(s1)A(s2)ds2ds1 + O(λ3).

Let us remark that since its publication, Magnus’ paper received much attention and triggered important
progress in both applied mathematics and physics. We refer the reader to [5] for a comprehensive overview
of its applications including a concise review of its background. Iserles et al. [27, 28, 29] used planar tree
to explore Magnus’ expansion. Magnus’ result has also been explored from a more algebraic-combinatorial
perspective using operads, pre-Lie algebras, dendriform algebras and noncommutative symmetric functions
[9, 10, 18, 19, 22, 43].
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3.1. The pre-Lie Magnus expansion.Motivated by Spitzer’s work [45] in probability theory, Baxter [4],
see also [3], followed a more general approach to the above IVP suggesting to look at the following fixpoint
equation:

(14) X = 1+ λR(aX),

in A[[λ]], where A is a commutative unital algebra. The linear mapR on A is supposed to satisfy the
Rota–Baxter relation of scalar weightθ (4). The solution of (14) is known as Spitzer’s identity. In [18]
we generalized this to a noncommutative Rota–Baxter algebra A by showing that equation (14) is solved by
X(λa) = exp(R(Ω′(λa)), where:

(15) Ω
′(λa) = λa+

∑

n>0

Bn

n!
L(n)
Ω′(a)⊲ (λa)

denotes thepre-Lie Magnus expansion. HereLx⊲(y) := x ⊲ y where⊲ is the pre-Lie product defined in (10).
The prime notation shall remind the reader of Magnus’ original differential equation. The first few terms are:

Ω
′(λa) = λa− λ2 1

2
a⊲ a+ λ3

(
1
4

(a⊲ a) ⊲ a+
1
12

a⊲ (a⊲ a)

)
+ · · · .

The reader is refereed to [18, 19] for more details. This leads to the following so-called noncommutative
Spitzer identity:

(16) 1+ λR(a) + λ2R(aR(a)) + λ3R(aR(aR(a))) + · · · = exp
(
R(Ω′(λa))

)
.

Let us briefly note that proceeding analogously to the example of B-series in Paragraph 2.2, we may abstract
the pre-Lie Magnus expansion into (the appropriate completion of) free pre-Lie algebra in one generatorP( ):

ω′(β) =
∑

t∈T

(
β(t)/σ(t)

)
t.

Now, to go from the free pre-Lie algebra on one generator to the pre-Lie algebra (A,⊲) with the pre-Lie product
defined in (10), one applies for anya ∈ A the mapFa : P( ) → A, which is defined as the unique pre-Lie
algebra morphism such thatFa[ ] = a. For rooted trees of higher orders, we must recall that we canchoose a
monomial basis ofP( ). Once the monomial basis is fixed, the decomposition of a tree t ∈ T of ordern in this
basis gives rise to a unique polynomialpt

y( ) of ordern in the generator. ThenFa[t] = Fa[pt
y( )] := pt

⊲
(a),

and the seriesω′(β) in P( ) is mapped toΩ′(a). Of course, this picture demands for more details, such as for
instance the way to chose the monomial basis. Moreover, we already remarked in [18, 19] that this approach
will lead to a Magnus expansion with fewer terms than the classical series. A more complete account of this
perspective on the Magnus expansion will be presented in a forthcoming work.

3.2. Pre-Lie Magnus expansion and the group of formal flows.Using the dendriform product≺ given by
x ≺ y = xR(y) (we put the weightθ to zero for simplicity), equation (16) in the last paragraphreads:

1+ R
(
λa+ λ2a ≺ a+ λ3a ≺ (a ≺ a) + · · ·

)
= exp

(
R(Ω′(λa))

)
.

Using the associative product∗ =≺ + ≻ given byx ∗ y = R(x)y+ xR(y) and extending the linear mapR to the
associated unital dendriform algebra by settingR(1) := 1, yields:

X = exp∗
(
Ω
′(λa)

)
,

where:
X =

∑

n≥0

(λa)(n)
= 1+ λa+ λ2a ≺ a+ λ3a ≺ (a ≺ a) + λ4a ≺ (a ≺ (a ≺ a)) + · · ·

is the solution of the equationX = 1+ λa ≺ X.
In [18, 19] we showed in the general dendriform algebra setting the following

Theorem 1. ([18, 19])The elementΩ′ = log∗(X(λa)) in A satisfies the recursive formula similar to(15):

Ω
′
=

LΩ′⊲
eLΩ′⊲ − 1

(λa) =
∑

m>0

Bm

m!
L(m)
Ω′⊲

(λa)
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with Bm the m-th Bernoulli number. The first few terms are:

Ω
′(λa) = λa− λ2 1

2
a⊲ a+ λ3

(
1
4

(a⊲ a) ⊲ a+
1
12

a⊲ (a⊲ a)

)
+ · · · .

3.3. Group of formal flows. In [20] we adapted a result on the Baker–Campbell–Hausdorff formula by
Agrachev and Gamkrelidze [1] to dendriform algebras. Recall that a left pre-Lie algebraA is calledchrono-
logical algebrain [1], and that the left pre-Lie identity rewrites as:

L[a,b]⊲ = [La⊲, Lb⊲],

where as aboveLa⊲ : A→ A is defined byLa⊲(b) = a⊲b, and where the bracket on the left-hand side is defined
by [a, b] := a⊲ b− b⊲ a. Recall that as a consequence this bracket satisfies the Jacobi identity. We denote by
ALie the Lie algebra with the aforementioned bracket. Suppose now that A is a left pre-Lie algebra endowed
with a decreasing filtration, namelyA = A1 ⊃ A2 ⊃ A3 ⊃ · · · , such that the intersection of theA j ’s reduces to
{0}, and such thatAp ⊲ Aq ⊂ Ap+q. Suppose moreover thatA is complete with respect to this filtration. The
Baker–Campbell–Hausdorff formula:

C(a, b) = a+ b+
1
2

[a, b] +
1
12

([a, [a, b]] + [b, [b, a]]) + · · ·

endowsA with a structure of pro-unipotent group. This group admits amore transparent presentation as
follows. First, introduce a fictitious unit1 such that1⊲ a = a⊲ 1 = a for anya ∈ A, and defineW : A→ A by:

W(a) := eLa⊲1− 1 = a+
1
2

a⊲ a+
1
6

a⊲ (a⊲ a) + · · · .

The applicationW is a bijection. The inverse is the pre-Lie Magnus expansionΩ′(a) introduced in Theorem
1. Transferring the BCH product by means of the mapW, namely:

(17) a#b :=W
(
C
(
Ω(a),Ω(b)

))
,

we haveW(a)#W(b) = W
(
C(a, b)

)
= eLa⊲eLb⊲1 − 1, henceW(a)#W(b) = W(a) + eLa⊲W(b). The product # is

thus given by the simple formula:

a#b = a+ eLΩ(a)⊲b.

The inverse is given bya#−1
= W

(
−Ω(a)

)
= e−LΩ(a)⊲1 − 1. In particular, when the pre-Lie product⊲ is

associative, this simplifies toa#b = a⊲ b+ a+ b anda#−1
=

1
1+a − 1 =

∑
n≥1(−1)nan. If (A,⊲) and (B,⊲) are

two such pre-Lie algebras andψ : A→ B is a filtration-preserving pre-Lie algebra morphism, it is immediate
to check that for anya, b ∈ A we have:

ψ(a#b) = ψ(a)#ψ(b).

In other words, the group of formal flows is a functor from the category of complete filtered pre-Lie algebras to
the category of groups. Concerning linear dendriform equations (18) in a complete filtered unital dendriform
algebraA we observe the following interesting fact: for any collection (a1, . . . , an) in A with filtration degree
≥ 1, the productX = X(a1) ∗ · · · ∗ X(an) whereX(ai ) is the solution of the equationX(ai) = 1+ ai ≺ X(ai ) is
the solution of the linear dendriform equationX = 1+ a ≺ X, with:

a = a1# · · · #an,

which also writes explicitly:

a = a1 +

n−1∑

j=1

eLΩ(a1#···#aj )⊲a j+1

= a1 + eLΩ(a1)⊲a2 + · · · + eLΩ(a1)⊲ · · ·eLΩ(an−1)⊲an.
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4. Linear dendriform equations

Let us emphasize that, although the series (15) has been known for a long time in the pure pre-Lie context
[1], the results in [18, 19], interpreting this series as a logarithm, were obtained in the more restricted context
of dendriform algebras.

The starting point is the linear dendriform equation inA[[λ]] below, whereA is now any unital dendriform
algebra:

(18) X = 1+ λa ≺ X

for a ∈ A. Its formal solution is:

X =
∑

n≥0

(λa)(n)
≺ = 1+ λa+ λ2a ≺ a+ λ3a ≺ (a ≺ a) + λ4a ≺ (a ≺ (a ≺ a)) + · · · .

Remark 2. In this work we deliberately have suppressed any Hopf algebra parlance. However, a few words are
in order. Recall that the associative algebra (T bin

pl , ∗) is the free algebra generated by the elements|∨T, T ∈ T bin
pl

[32, Theorem 3.8]. The subalgebra generated by the right combs τ(n)
r =

(n)
≺ , n ≥ 0 is free and is a cocom-

mutative Hopf subalgebraH of T bin
pl . The left combsτ(n)

l =
(n)
≻ , n ≥ 0 also belong toH . It follows thatH

is isomorphic, as a Hopf algebra, to the Hopf algebra of noncommutative symmetric functions [22]. In Hopf
algebraic terms the solutionX =

∑
n≥0(λa)(n)

≺ of (18) is characterized as group-like, that is∆(X) = X ⊗ X.

4.1. A closed form for the logarithm. In this section, discarding the pre-Lie product, we give an explicit
expression of log∗(X) in the freedendriform algebra in one generator1. For this we use Knuth’s rotation
correspondence and consider the representation in terms ofplanar rooted trees rather than planar binary trees.
The generatora corresponds to the tree. Then the solutionX is given by the sum of rooted ladder trees,
X = 1+

∑
n>0 ℓ

(n)
=: 1+ L. Here we identify1 = ℓ(0)

= .

log⋆(X) = log⋆(1+ L) =
∑

n>0

(−1)n+1L⋆n

n

=

∑

n>0

∑

k>0

−
(−1)k

k

∑

i1+···+ik=n
i j>0, j=1,...,k

ℓ(i1) ⋆ · · · ⋆ ℓ(ik).

We have omitted the parameterλ. Recall that the degree|ℓ(n)| of the treeℓ(n) is equal ton, i.e. its number
of edges. The series above makes sense in the completion of the free dendriform algebrâA with respect to
the grading. Recall that a ladder tree withn edges stands for the dendriform worda(n)

≺ , which in the classical
example (13) corresponds to then− 1 fold iterated integrala(t)I (aI(a · · · I (a)))(t).

Remark 3. SinceX is group-like, the logarithm is given by applying the eulerian idempotent, that is, log⋆(X) =
log⋆(id)(X).

Theorem 4. The elementΩ′ = log⋆(X) in Â is given by the formula:

(19) Ω
′
=

∑

n>0

1
n

∑

τ∈Tpl
|τ|=n

(−1)L(τ)−1

(
n−1
L(τ)−1

) τ,

whereL(τ) denotes the number of leaves of the planar rooted treeτ, and|τ| its degree, i.e. its number of edges.

The first few terms are:

Ω
′
= −

1
2
+

1
2
+

1
3
−

1
6
+

1
3
−

1
6

−
1
6
+ · · · .

1We recover theq = 1 case of aq-analog formula by F. Chapoton (see [10, Proposition 5.10]).
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Proof. First observe that for any ordered compositionn = i1+ · · ·+ ik of some positive integern, the expression
ℓ(i1) ⋆ · · · ⋆ ℓ(ik) is a linear combination of planar rooted trees withn edges, with coefficients equal to 0 or 1.
Moreover, for any planar rooted treeτ with n edges andk leaves, there is a unique ordered composition
n = i1 + · · · + ik of the integern such that:

(1) The corresponding⋆-monomial of ladder treesℓ(i1) ⋆ · · · ⋆ ℓ(ik) contains the treeτ precisely once.
(2) For any other compositionn = j1 + · · ·+ jr of the integern, the⋆-monomialℓ( j1) ⋆ · · ·⋆ ℓ( jr ) contains

τ with a nontrivial coefficient only if the composition of the integern is finer than the first one.

Recall that each leaf of a planar rooted tree is connected to the root by a unique shortest path, i.e. including
a minimal number of edges. The composition (i1, . . . , ik) is defined as follows: first we number the leaves
consecutively from left to right. The rightmost leaf is linked down to the root by the pathℓ(ik) of length ik
(i.e. the height of the rightmost leaf). For anys ∈ {1, . . . , k − 1}, is is the length of the pathℓ(is) from leaf
numbers to the vertex lying on the unique path joining leaf numbers+ 1 down to the root. As an example the
following six-leaved tree with 13 edges:

ℓ(2)

ℓ(4)ℓ(2)ℓ(3)ℓ(1)

ℓ(1)

is associated to the ordered composition 13= 2+ 1+ 1+ 3+ 2+ 4 of its degree.
Next we write for fixedn > 0:

Sn(−1) :=
∑

k>0

−
(−1)k

k

∑

i1+···+ik=n
i j>0, j=1,...,k

ℓ(i1) ⋆ · · · ⋆ ℓ(ik)
=

∑

τ∈Tpl
|t|=n

sn(τ)τ.

The coefficients in the last equality follow by projection,sn(τ) := 〈Zτ,Sn〉, whereZτ(τ′) = δτ,τ′ . Now, we
introduce a dummy parameterα in the sum:

Sn(α) :=
∑

k>0

−
αk

k

∑

i1+···+ik=n
i j>0, j=1,...,k

ℓ(i1) ⋆ · · · ⋆ ℓ(ik),

such that
∫ −1

0
d

dαSn(α)dα = Sn(−1). Looking first at rooted ladder trees, we observe that inSn(α) only one
type of rooted ladder tree appears, i.e. the one of lengthn, and:

Ṡn(α) =
∑

k>0

−αk−1
∑

i1+···+ik=n
i j>0, j=1,...,k

ℓ(i1) ⋆ · · · ⋆ ℓ(ik)
=

∑

k>0

−αk−1
(
n− 1
k− 1

)
ℓ(n)
+ non-ladder rooted trees.

Here we have used that the total number of lengthk ordered compositions ofn is
(
n−1
k−1

)
. Projecting onto the

ladder part, and integrating, we find the number of rooted ladder treesℓ(n) in the sumSn(−1):

sn(ℓ(n)) = 〈Zℓ(n),Sn(−1)〉 =
∫ −1

0

∑

k>0

−αk−1
(
n− 1
k− 1

)
dα =

∫ −1

0
−(1+ α)n−1dα =

1
n
.

Now consider an arbitrary rooted treeτ of degreen with L(τ) = k leaves. It is associated with an ordered
compositionn = i1 + · · · + ik as explained above. Using the fact that considering an ordered composition ofn
finer than the first one is nothing but choosing an ordered composition of is for anys= 1, . . . , k, we get:

sn(τ) = 〈Zτ,Sn(−1)〉 =
∫ −1

0
−αk−1

i1∑

j1=1

· · ·

ik∑

jk=1

α j1−1
(
i1 − 1
j1 − 1

)
· · ·α jk−1

(
ik − 1
jk − 1

)
dα

= −

∫ −1

0
αk−1(1+ α)i1+···+ik−kdα
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= (−1)k−1
∫ 1

0
αk−1(1− α)n−k dα

= (−1)k−1β(k, n− k+ 1)

= (−1)k−1 (k− 1)!(n− k)!
n!

=
(−1)L(τ)−1

n
(

n−1
L(τ)−1

) .

In the last step we used thatk equals the numberL(τ) of leaves of treeτ. �

Using the inverse of Knuth’s correspondence we end up with anequivalent formulation in the planar binary
tree picture. Recall that a leaf of a planar binary tree is adescentif it is not the leftmost one and if it is pointing
to the left [10]. The rotation correspondence yields a bijection between the left-pointing leaves of a planar
binary treet and the leaves of its image treeΦ(t) = τ. The leftmost leaf oft (i.e. the one which, by definition,
is not a descent) is mapped to the leftmost leaf ofτ. As an immediate consequence we have:

Corollary 5. In the planar binary tree picture, the elementΩ′ = log∗(X) in Â is given by the formula:

(20) Ω
′
=

∑

n>0

1
n

∑

t∈Tbin
pl

|t|=n

(−1)d(t)

(
n−1
d(t)

) t,

where d(t) denotes the number of descents of the planar binary tree t, and |t| its degree, i.e. its number of
internal vertices.

Proof. Follows from the rotation correspondence between planar binary trees and planar rooted trees. �

Note that the extra sign (−1)n−1 in Chapoton’s formula [10] could be retrieved starting withthe solution
Y = Y(a) of the equationY = 1+ Y ≻ a instead ofX. Both are linked through the antipode provided the sign
of the generator is changed, namelyY(a) = S

(
X(−a)

)
.

Corollary 6. For any complete filtered dendriform algebraA = A1 ⊃ A2 ⊃ A3 ⊃ · · · and for any a∈ A, the
elementΩ′(a) = log∗

(
X(a)

)
inA, where X(a) is the solution of the linear dendriform equation X(a) = 1+ a ≺

X(a), is given by the formula:

(21) Ω
′
=

∑

n>0

1
n

∑

t∈Tbin
pl

|t|=n

(−1)d(t)

(
n−1
d(t)

) Fa(t),

where Fa : T ′bin
pl → A is the unique dendriform algebra morphism defined in (12), such that Fa( ) = a.

Hence, using the underlying dendriform algebra structure rather than the pre-Lie one, this result gives a
closed formula for the Magnus expansion in Theorem 1 in Paragraph 3.2.

5. A formula byMielnik–Plebański, and Strichartz

We would like to give a more precise formulation of Theorem 4,when the dendriform algebraA is an
algebra of matrix-valued functions together with the Riemann integral as a Rota–Baxter operator (of weight
θ = 0). In the next section we follow [6, 32]. We will see that the continuous Baker–Campbell–Hausdorff
series, also known as Mielnik–Plebański–Strichartz formula, gives a closed expression for the classical Magnus
expansion due to deep structural reasons on the symmetric group algebra, i.e. a natural underlying dendriform
algebra, which matches with the dendriform algebra structure on planar binary trees.
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5.1. A dendriform structure on permutations. Sn is the group of permutations ofn elements, andk[Sn] its
group algebra. The concatenation of two permutationsσ ∈ Sn andτ ∈ Sm is the permutationσ × τ ∈ Sn+m

obtained by lettingσ act on the firstn elements and lettingτ act on them last elements. An associative product
is given by:

σ ∗ τ =
∑

ω∈Shn,m

ω ◦ (σ × τ).

Shn,m ⊂ Sn+m stands for the set of (n,m) shuffles. We denote the graded connected algebra with this product
byH :=

⊕
n≥0Hn, whereHn = k[Sn].

The crucial observation is that the product∗ on permutations splits into∗ =≺ + ≻, where≺ and≻ are
defined by:

σ ≺ τ =
∑

ω∈Sh2
n,m

ω ◦ (σ × τ), σ ≻ τ =
∑

ω∈Sh1
n,m

ω ◦ (σ × τ),

where Sh1n,m, respectively Sh2n,m stands for the shufflesω such thatω(n+m) = n+m, resp.ω(n) = n+m. It is
shown in [33] that≺ and≻ endow the augmentation idealH ′ :=

⊕
n≥1Hn with the structure of a dendriform

algebra.
Remark: The (dendriform) algebra just described represents only half of the picture. Completing the structure
amounts to what is known as Malvenuto–Reutenauer Hopf algebra [38], which is a graded connected Hopf al-
gebra onH . We refrain from giving more details and refer the reader to the references [6, 17, 32]. However,
let us add that the coproduct splits also into two parts, thusendowing the Hopf algebraH with the much richer
structure ofbidendriform Hopf algebra, see Foissy’s work [21].

5.2. Planar binary trees and permutations. The material presented in this paragraph is mostly borrowed
from [32]. See also [6] for a very detailed similar description. A bijective correspondence between permuta-
tions andplanar binary trees with levelsis well-known in combinatorics [25]. A planar binary tree with levels
is a planar binary treet with, say,n internal vertices together with a bijective decreasing mapϕ from the poset
of its internal vertices into{1, . . . , n}. Such a tree admits a graphical realization by drawing the internal vertices
at the prescribed levels, with level 1 being the top one and level n being the deepest one. Any planar binary tree
with levels (t, ϕ) gives rise to two such trees (t1, ϕ1) and (t2, ϕ2), wheret = t1 ∨ t2 andϕi is the ”standardized”
restriction of the injectionϕ to the internal vertices ofti , namely its composition on the left with the unique
increasing bijection from its image onto{1, . . . , |ti |}, i = 1, 2.

To any such tree (t, ϕ) we can associate a permutationσt,ϕ as follows: σt,ϕ(i) is the level of the internal
vertexui situated between leavesl i andl i+1 (the leftmost being the first and the rightmost being numbern+ 1).
This correspondenceP is a bijection, the inverse of which is recursively given as follows: the permutation
σ ∈ Sn gives rise to two sequences of integers: the sequence beforen and the sequence after n in (σ1, . . . , σn).
One of them may be empty. By “standardizing” the integers in each sequence, they form a permutation. For
instance (341625) gives the two sequences (341) and (25), which, after standardizing, give (231) and (12). By
induction these two permutations give rise to two trees withlevels. The grafting∨ of the two trees (in the order
given above) gives the underlying tree ofP−1(σ), and the original permutation is used to determine the levels
of each vertex, namelyϕ(u j) = σ−1( j).

Recall that the descent set of a permutationσ ∈ Sn is the subsetD(σ) ⊂ {1, . . . , n− 1} of indicesi such that
σ(i) > σ(i+1). We denote byd(σ) the cardinality of the descent set. The following lemma, the proof of which
is simple, establishes a link with descents of planar binarytrees:

Lemma 7. For any planar binary tree with levels(t, ϕ), the correspondence

j 7→ l j+1 : {1, . . . , n} → {leaves of t}

restricts to a bijection from the descent set D(σt,ϕ) onto the descent set of t.

Forgetting the levels, the bijectionP−1 provides a surjective mapψn : Sn →
(
Tbin

pl

)
n

for any n ≥ 0. As a
corollary of Lemma 7, we have:

(22) d(σ) = d
(
ψ(σ)

)
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for anyσ ∈ Sn. Dually, we get a linear injectionψ∗n :
(
T bin

pl

)
n
→ k[Sn] given by:

ψ∗n(t) =
∑

ψn(σ)=t

σ.

These maps together give a degree zero linear injectionψ∗ from T bin
pl to the dendriform algebraH . The

following theorem is due to Loday and Ronco ([32, Theorem 3.1], [33, Proposition 5.3]):

Theorem 8. [33] The linear injectionψ∗ defined above is a unital dendriform algebra morphism.

Remark 9. The mapψ∗ is even a bidendriform Hopf algebra morphism [21].

5.3. The Mielnik–Plebański–Strichartz formula. Let A be an algebra of locally integrable functions of
one real variable, with values in some topological not necessarily commutative algebra, for exampleMN(C),
N ∈ N. The weight zero Rota-Baxter mapR : A → A given by Ra(s) :=

∫ s

0 a(u)du endowsA with a
dendriform algebra structure, as explained in Paragraph 2.4 above. Fix somea inA, supposes> 0, and define
F̃σ(a) ∈ A for any permutationσ ∈ Sn, n ≥ 1 as follows:

F̃a(σ)(s) :=
d
ds

(

0<un<···<u1<s

a(uσ1) · · · a(uσn) du1 · · · dun.

In particular, F̃a
(
(1)

)
= a, F̃a

(
(12)

)
= aR(a), F̃a

(
(21)

)
= R(a)a, F̃a

(
(123)

)
= aR(aR(a)) and F̃a

(
(321)

)
=

R(R(a)a)a. Observe that there are permutationsσ ∈ Sn, n > 2, which, strictly speaking, can not be written as
iterated operators, e.g. (231) and (132). However, they canbe written as iterated integrals in the above sense.
Therefore, the following only applies to the special case ofthe dendriform algebra structure defined in terms
of Ra(s) :=

∫ s

0
a(u)du onA. The crucial point is to transfer the dendriform calculations to the simplicies

forming the integration domains. The correspondenceF̃a obviously extends uniquely to a linear map from the
augmentation ideal ofH toA.

Before stating the theorem, let us introduce some notations: for any positive integerN we denote by∆s
N ⊂

[0, s]N the simplex{u = (u1, . . . , uN), 0 < uN < · · · < u1 < s}. The symmetric groupSN acts on [0, s]N by
permutation of the variables, namely:

σ.(u1, . . . , uN) := (uσ−1
1
, . . . , uσ−1

N
).

We have then:

σ.∆s
N = {u = (u1, . . . , uN), 0 < uσN < · · · < uσ1 < s}.

Theorem 10. F̃a is a dendriform algebra morphism from the augmentation ideal of H to A, linked to the
dendriform algebra morphism Fa of Corollary 6 by:

Fa = F̃a ◦ ψ
∗.

Proof. By direct computation: takeσ ∈ Sn andτ ∈ Sm. Then,

R
(
F̃a(σ ≺ τ)

)
(s) =

∑

ω∈Sh2(n,m)

R
(
F̃a(ω ◦ (σ × τ)

)
(s)

=

∑

ω∈Sh2(n,m)

(

0<u
ω−1

n+m
<···<u

ω−1
1
<s

a(uσ1) · · · a(uσn)a(un+τ1) · · · a(un+τm) du

=

∑

ω∈Sh2(n,m)

(

ω−1.∆n+m

a(uσ1) · · · a(uσn)a(un+τ1) · · · a(un+τm) du

=

(

⋃
ω∈Sh2(n,m)

ω−1.∆n+m

a(uσ1) · · · a(uσn)a(un+τ1) · · · a(un+τm) du
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=

(

0<un<···<u1<s
0<vm<···<v1<s, v1<u1

a(uσ1) · · · a(uσn)a(vτ1) · · · a(vτm) dudv

= R
(
F̃a(σ)R

(
F̃a(τ)

))

= R
(
F̃a(σ) ≺ F̃a(τ)

)
,

henceF̃a(σ ≺ τ) = F̃a(σ) ≺ F̃a(τ). The corresponding computation for≻ is entirely similar and left to the
reader, using Sh1(n,m) instead of Sh2(n,m). The second statement is an immediate consequence of Theorem
8 and the freeness of the dendriform algebra of planar binarytrees. �

Corollary 11. The elementΩ′(a) = log∗
(
X(a)

)
in A, where X(a) is the solution of the linear dendriform

equation X(a) = 1+ a ≺ X(a), is formally given by the series:

(23) Ω
′
=

∑

n>0

1
n

∑

σ∈Sn

(−1)d(σ)

(
n−1
d(σ)

) F̃a(σ).

Proof. This is an immediate consequence of Corollary 6, Theorem 10 and Eq (22). �

Corollary 12 (Mielnik–Plebański–Strichartz formula [42, 46]). The Magnus elementΩ(a) = R
(
Ω
′(a)

)
is

formally given by the series:

(24) Ω(a)(s) =
∑

n>0

∑

σ∈Sn

(−1)d(σ)

n
(

n−1
d(σ)

)
(

0<un<···<u1<s

a(uσ1) · · · a(uσn) du1 · · · dun.

Remark : As Ω(a) is a Lie element, we can use the Dynkin-Specht-Wever theorem, so that we recover the
formula in its original setting:

Ω(a)(s) =
∑

n>0

∑

σ∈Sn

(−1)d(σ)

n2
(

n−1
d(σ)

)
(

0<un<···<u1<s

[a(uσ1), [a(uσ2), . . . [a(uσn−1, a(uσn)] · · · ]] du1 · · ·dun.

The order of theu j ’s is reversed compared to the original, sinceZ = exp(Ω(a)) solves the initial value problem
Ż = aZ rather thanŻ = Zaas in [46].

References

[1] A. Agrachev, R. Gamkrelidze,Chronological algebras and nonstationary vector fields, J. Sov. Math.17, 1650–1675
(1981).

[2] A. A. Agrachev, R. V. Gamkrelidze,The shuffle product and symmetric groups, in K. D. Elworthy, W. N. Everitt, and E.
B. Lee, editors,Differential Equations, Dynamical Systems and Control Science, Lecture Notes in Pure and Appl. Math.
152, 36582. Marcel Dekker, Inc., New York, 1994.

[3] F. V. Atkinson,Some aspects of Baxter’s functional equation, J. Math. Anal. Appl.7, 1–30 (1963).
[4] G. Baxter,An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math.10, 731–742

(1960).
[5] S. Blanes, F. Casas, J.A. Oteo, J. Ros,Magnus expansion: mathematical study and physical applications, Phys. Rep.470,

151–238 (2009).
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