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Abstract

We consider a framework for the construction of iterative schemes for operator
equations that combine low-rank approximation in tensor formats and adaptive ap-
proximation in a basis. Under fairly general assumptions, we obtain a rigorous con-
vergence analysis, where all parameters required for the execution of the methods
depend only on the underlying infinite-dimensional problem, but not on a concrete
discretization. Under certain assumptions on the rates for the involved low-rank ap-
proximations and basis expansions, we can also give bounds on the computational
complexity of the iteration as a function of the prescribed target error. Our theo-
retical findings are illustrated and supported by computational experiments. These
demonstrate that problems in very high dimensions can be treated with controlled
solution accuracy.

Keywords: Low-rank tensor approximation, adaptive methods, high-dimensional
operator equations, computational complexity

Mathematics Subject Classification (2000): 41A46, 41A63, 65D99, 65J10,
65N12, 65N15

1 Introduction

1.1 Motivation

Any attempt to recover or approximate a function of a large number of variables with
the aid of classical low-dimensional techniques is inevitably impeded by the curse of di-
mensionality. This means that, when only assuming classical smoothness (e.g. in terms
of Sobolev or Besov regularity) of order s > 0, the necessary computational work needed
to realize a desired target accuracy ε in d dimensions scales like ε−d/s, i.e., one faces an
exponential increase in the spatial dimension d. This can be ameliorated by dimension-
dependent smoothness measures. In many high-dimensional problems of interest, the ap-
proximand has bounded high-order mixed derivatives, which under suitable assumptions
can be used to construct sparse grid-type approximations where the computational work
scales like Cdε

−1/s. Under such regularity assumptions, one can thus obtain a convergence
rate independent of d. In general, however, the constant Cd will still grow exponentially in
d. This has been shown to hold even under extremely restrictive smoothness assumptions
in [31], and has been observed numerically in a relatively simple but realistic example
in [14].
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Hence, in contrast to the low-dimensional regime, regularity is no longer a sufficient
structural property that ensures computational feasibility, and further low-dimensional
structure of the sought high-dimensional object is required. Such a structure could be
the dependence of the function on a much smaller (unknown) number of variables, see
e.g. [13]. It could also mean sparsity with respect to some (a priori) unknown dictionary. In
particular, dictionaries comprized of rank-one tensors g(x1, . . . , xd) = g1(x1) · · · gd(xd) =:
(g1⊗· · ·⊗gd)(x) open very promising perspectives and have recently attracted substantial
attention.

As a simple example consider g(x) =
⊗d

i=1 gi(xi) on the unit cube Ω = [0, 1]d, where
the gi are sufficiently smooth. Employing for each factor gi a standard spline approxi-
mation of order s with n knots yields an L∞-accuracy of order n−s, which gives rise to
an overall accuracy of the order of dn−s at the expense of dn =: N degrees of freedom.
Hence, assuming that ‖g‖∞ does not depend on d, an accuracy ε requires

N = N(ε, d) ∼ d
1+s
s ε−1/s (1)

degrees of freedom. In contrast, it would take the order of N = nd degrees of freedom to
realize an accuracy of order n−s = N−d/s when using a standard tensor product spline
approximation, which means that in this case N(ε, d) ∼ ε−d/s. Thus, while the first
approximation – using a nonlinear parametrization of a reference basis – breaks the curse
of dimensionality, the second one obviously does not.

Of course, u being a simple tensor is in general an unrealistic assumption, but the
curse of dimensionality can still be significantly mitigated when f is well approximable by
relatively short sums of rank-one tensors. By this we mean that for some norm ‖ · ‖ we
have ∥∥∥u− r(ε)∑

j=1

g1,j ⊗ · · · ⊗ gj,d
∥∥∥ ≤ ε (2)

where the rank r(ε) grows only moderately as ε decreases. In our initial example, in
these terms we had r(ε) = 1 for all ε > 0. Assuming that all the factors gj,i in the above
approximation are sufficiently smooth, the count (1) applied to each summand with target
accuracy ε/r shows that now at most

N(ε, d, r) . r1+ 1
s d

1+s
s ε−

1
s (3)

degrees of freedom are required, which is still acceptable. This is clearly a very crude
reasoning because it does not take a possible additional decay in the rank-one summands
into account.

This argument, however, already indicates that good approximability in the sense of
(2) is not governed by classical regularity assumptions. Instead, the key is to exploit an
approximate global low-rank structure of u. This leads to a highly nonlinear approximation
problem, where one aims to identify suitable lower-dimensional tensor factors, which can
be interpreted as a u-dependent dictionary.

This discussion, although admittedly somewhat oversimplified, immediately raises sev-
eral questions which we will briefly discuss as they guide subsequent developments.

Format of approximation: The hope that r(ε) in (2) can be rather small is based on
the fact that the rank-one tensors are allowed to “optimally adapt” to the approximand
u. The format of the approximation used in (2) is sometimes called canonical since it is
a formal direct generalization of classical Hilbert Schmidt expansions for d = 2. However,
a closer look reveals a number of well-known pitfalls. In fact, they are already encoun-
tered in the discrete case. The collection of sums of ranks one tensors of a given length
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is not closed, and the best approximation problem is not well-posed, see e.g. [12]. There
appears to be no reliable computational strategy that can be proven to yield near-minimal
rank approximations for a given target accuracy in this format. In this work, we there-
fore employ different tensor formats that allow us to obtain provably near-minimal rank
approximations, as explained later.

A two-layered problem: Given a suitable tensor format, even if a best tensor approxima-
tion is known in the infinite-dimensional setting of the continuous problem, the resulting
lower-dimensional factors still need to be approximated. Since finding these factors is part
of the solution process, the determination of efficient discretizations for these factors will
need to be intertwined with the process of finding low-rank expansions. We have chosen
here to organize this process through selecting low-dimensional orthonormal wavelet bases
for the tensor factors. However, other types of basis expansions would be conceivable as
well.

The issue of the total complexity of tensor approximations, taking the approximation
of the involved lower-dimensional factors into account, is addressed in [20,35].

1.2 Conceptual Preview

The problem of finding a suitable format of tensor approximations has been extensively
studied in the literature over that past years, however, mainly in the discrete or finite-
dimensional setting, see e.g. [18, 23, 26, 32, 34]. Some further aspects in a function space
setting have been addressed e.g. in [15, 39, 40]. For an overview and further references we
also refer to [21] and the recent survey [19]. A central question in these works is: given a
tensor, how can one in a stable manner obtain low-rank approximations, and how accurate
are they when compared with best tensor approximations in the respective format?

We shall heavily draw on these findings in the present paper, but under the following
somewhat different perspectives. First of all, we are interested in the continuous infinite-
dimensional setting, i.e., in sparse tensor approximations of a function which is a priori
not given in any finite tensor format but which one may expect to be well approximable by
simple tensors in a way to be made precise later. We shall not discuss here the question
under which concrete conditions this is actually the case. Moreover, the objects to be
recovered are not given explicitly but only implicitly as a solution to an operator equation

Au = f, (4)

where A : V → V ′ is an isomorphism of some Hilbert space V onto its dual V ′. One may
think of V , in the simplest instance, as a high-dimensional L2 space, or as a Sobolev space.
More generally, as in the context of parametric diffusion problems, V could be a tensor
product of a Sobolev space and an L2 space. Accordingly, we shall always assume that we
have a Gelfand triplet

V ⊂ H ≡ H ′ ⊂ V ′, (5)

in the sense of dense continuous embeddings, where we assume that H is a tensor product
Hilbert space, that is,

H = H1 ⊗ · · · ⊗Hd (6)

with lower-dimensional Hilbert spaces Hi. A typical example would be H = L2(Ωd) =
L2(Ω)⊗ · · · ⊗ L2(Ω) for a domain Ω of small spatial dimension.

The main contribution of this work is to put forward a strategy that addresses the main
obstacles identified above and results in an algorithm which, under mild assumptions, can
be rigorously proven to provide for any target accuracy ε an approximate solution of near-
minimal rank and representation complexity of the involved tensor factors. Specifically, (i)
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it is based on stable tensor formats relying on optimal subspaces; (ii) successive solution
updates involve a combined refinement of ranks and factor discretizations; (iii) (near-
)optimality is achieved, thanks to (i), through accompanying suitable subspace correction
and coarsening schemes.

The following comments on the main ingredients are to provide some orientation.
A first essential step is to choose a universal basis for functions of a single variable in
Hi. Here, we focus on wavelet bases, but other systems like the trigonometric system
for periodic problems are conceivable as well. As soon as functions of a single variable,
especially the factors in our rank-one tensors, are expanded in such a basis, the whole
problem of approximating u reduces to approximating its infinite coefficient tensor u
induced by the expansion

u =
∑
ν∈∇d

uν Ψν , Ψν := ψν1 ⊗ · · · ⊗ ψνd , u = (uν)ν∈∇d ,

see below. The original operator equation (4) is then equivalent to an infinite system

Au = f , where A =
(
〈AΨν ,Ψν′

〉)
ν,ν′∈∇d , f =

(
〈f,Ψν〉

)
ν∈∇d . (7)

For standard types of Sobolev spaces V it is well understood how to rescale the tensor
product basis {Ψν}ν∈∇d in such a way that it becomes a Riesz basis for V . This, in
turn, together with the fact that κV→V ′(A) := ‖A‖V→V ′‖A−1‖V ′→V is finite, allows one
to show that κ`2→`2(A) is finite, see [11]. Hence one can find a positive ω such that
‖I− ωA‖`2→`2 ≤ ρ < 1, i.e., the operator I− ωA is a contraction so that the iteration

uk+1 := uk + ω(f −Auk), k = 0, 1, 2, . . . , (8)

converges for any initial guess to the solution u of (7).
Of course, (8) is only an idealization because the full coefficient sequences uk cannot

be computed. Nevertheless, adaptive wavelet methods can be viewed as realizing (8)
approximately, keeping possibly few wavelet coefficients “active” while still preserving
enough accuracy to ensure convergence to u (see e.g. [9, 10]).

In the present high-dimensional context this kind of adaptation is no longer feasi-
ble. Instead, we propose here a “much more nonlinear” adaptation concept. Being able
to keep increasingly accurate approximations on a path towards near-minimal rank ap-
proximations with properly sparsified tensor factors relies crucially on suitable correction
mechanisms. An important contribution of this work is to identify and analyze just such
methods. Conceptually, they are embedded in a properly perturbed numerical realization
of (8) of the form

uk+1 = Cε2(k)

(
Pε1(k)(uk + ω(f −Auk))

)
, k = 0, 1, 2, . . . , (9)

where Pε1(k), Cε2(k) are certain reduction operators and the εi(k), i = 1, 2, are suitable
tolerances which decrease for increasing k.

More precisely, the purpose of Pε is to “correct” the current tensor expansion and,
in doing so, reduce the rank subject to an accuracy tolerance ε. We shall always refer
to such a rank reduction operation as a recompression. For this operation to work as
desired, it is essential that the employed tensor format is stable in the sense that the
best approximation problem for any given ranks is well-posed. As explained above, this
excludes the use of the canonical format. Instead we use the so-called hierarchical Tucker
(HT) format, since on the one hand it inherits the stability of the Tucker format [15], as a
classical best subspace method, while on the other hand it better ameliorates the curse of
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dimensionality that the Tucker format may still be prone to. In §2 we collect the relevant
prerequisites. This draws to a large extent on known results for the finite-dimensional case,
but requires proper formulation and extension of these notions and facts for the current
sequence space setting. The second reduction operation Cε, in turn, is a coarsening scheme
that reduces the number of degrees of freedom used by the wavelet representations of the
tensor factors, again subject to some accuracy constraint ε.

1.3 What is New?

The use of rank reduction techniques in iterative schemes is in principle not new, see
e.g. [3, 5, 6, 22, 25, 27, 29] and the further references given in [19]. To our knowledge,
corresponding approaches can be subdivided roughly into two categories. In the first
one, iterates are always truncated to a fixed tensor rank. This allows one to control the
complexity of the approximation, but convergence of such iterations can be guaranteed
only under very restrictive assumptions (e.g. concerning highly effective preconditioners).
In the second category, schemes achieve a desired target accuracy by instead prescribing
an error tolerance for the rank truncations, but the corresponding ranks arising during
the iteration are not controlled. A common feature of both groups of results is that they
operate on a fixed discretization of the underlying continuous problems.

In contrast, the principal novelty of the present approach can be sketched as follows.
The first key element is to show that based on a known error bound for a given approxima-
tion to the unknown solution, a judiciously chosen recompression produces a near-minimal
rank approximation to the solution of the continous problem for a slightly larger accuracy
tolerance. Moreover, the underlying projections are stable with respect to certain sparsity
measures. As pointed out before, this reduction needs to be intertwined with a sufficiently
accurate but possibly coarse approximation of the tensor factors. A direct coarsening of
the full wavelet coefficient tensor would face the curse of dimensionality, and thus would be
practically infeasible. The second critical element is therefore to introduce certain lower-
dimensional quantities, termed tensor contractions, from which the degrees of freedom to
be discarded in the coarsening are identified. This notion of contractions also serves to
define suitable sparsity classes with respect to wavelet coefficients, facilitating a computa-
tionally efficient, rigorously founded combination of tensor recompression and coefficient
coarsening.

These concepts culminate in the main result of this paper, which can be summarized
in an admittedly oversimplified way as follows.

Meta-Theorem: Whenever the solution to (7) has certain tensor-rank approximation
rates and when the involved tensor factors have certain best N -term approximation rates,
then a judicious numerical realization of the iteration (9) realizes these rates. Moreover,
up to logarithmic factors, the computational complexity is optimal. More specifically, for
the smallest k such that the approximate solution uk satisfies ‖uk − u‖`2 ≤ τ , uk has
HT-ranks that can be bounded, up to multiplication by a uniform constant, by the smallest
possible HT-ranks needed to realize accuracy τ .

In the theorem that we will eventually prove we admit classes of operators with un-
bounded ranks, in which case the rank bounds contain a factor of the form |log τ |c, where
c is a fixed exponent.

To our knowledge this is the first result of this type, where convergence to the solution
of the infinite-dimensional problem is guaranteed under realistic assumptions, and all
ranks arising during the process remain proportional to the respective smallest possible
ones. A rigorous proof of rank near optimality, using an iteration of the above type, is to
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be contrasted to approaches based on greedy approximation as studied e.g. in [7], where
approximations in the (unstable) canonical format are constructed through successive
greedy updates. This does, in principle, not seem to offer much hope for finding minimal
or near-minimal rank approximations, as the greedy search operates far from orthonormal
bases, and errors committed early in the iteration cannot easily be corrected. Although
variants of the related proper generalized decomposition, as studied in [17], can alleviate
some of these difficulties, e.g. by employing different tensor formats, the basic issue of
controlling ranks in a greedy procedure remains.

1.4 Layout

The remainder of the paper is devoted to the development of the ingredients and their
complexity analysis needed to make the statements in the above Meta-Theorem precise.
Trying to carry out this program raises some issues which we will briefly address now, as
they guide the subsequent developments.

After collecting in §2 some preliminaries, §3 is devoted to a pivotal element of our
approach, namely the development and analysis of suitable recompression and coarsening
schemes that yield an approximation in the HT-format that is, for a given target accuracy,
of near-minimal rank with possibly sparse tensor factors (in a sense to be made precise
later).

Of course, one can hope that the solution of (4) is particularly tensor sparse in the
sense that relatively low HT-ranks already provide high accuracy if the data f are tensor
sparse, and if the operator A (resp. A) is tensor sparse in the sense that its application
does not increase ranks too drastically. Suitable models of operator classes that allow us to
properly weigh tensor sparsity and wavelet expansion sparsity are introduced and analyzed
in §4. The approximate application of such operators with certified output accuracy builds
on the findings in §3.

Finally, in §5 we formulate an adaptive iterative algorithm and analyze its complexity.
Starting from the coarsest possible approximation u0 = 0, approximations in the tensor
format are built successively, where the error tolerances in the iterative scheme are updated
for each step in such a way that two goals are achieved. On the one hand, the tolerances
are sufficiently stringent to guarantee the convergence of the iteration up to any desired
target accuracy. On the other hand, we ensure that at each stage of the iteration, the
approximations remain sufficiently coarse to realize the Meta-Theorem formulated above.
Here we specify concrete tensor approximability assumptions on u, f and A that allow us
to make its statement precise.

2 Preliminaries

In this section we set the notation and collect the relevant ingredients for stable tensor
formats in the infinite-dimensional setting. In the remainder of this work, we shall use for
simplicity the abbreviation ‖·‖ := ‖·‖`2 , with the `2-space on the appropriate index set.

Our basic assumption is that we have a Riesz basis {Ψν}ν∈∇d for V , where ∇ is a
countable index set. In other words, we require that the index set has Cartesian product
structure. Therefore any u ∈ V can be identified with its basis coefficient sequence u :=
(uν)ν∈∇d in the unique representation u =

∑
ν∈∇d uνΨν , with uniformly equivalent norms.

Thus, d will in general correspond to the spatial dimension of the domain of functions under
consideration. In addition it can be important to reserve the option of grouping some of
the variables in a possibly smaller number m ≤ d of portions of variables, i.e., m ∈ N and
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d = d1 + . . .+ dm for di ∈ N.
A canonical point of departure for the construction of {Ψν} is a collection of Riesz

bases for each component Hilbert space Hi (see (6)), which we denote by {ψHiν }ν∈∇Hi .
To fit in the above context, we may assume without loss of generality that all ∇Hi are
identical, denoted by ∇. The precise structure of ∇ is irrelevant at this point; however,
in the case that the ψHiν are wavelets, each ν = (j, k) encodes a dyadic level j = |ν| and a
spatial index k = k(ν). This latter case is of particular interest, since for instance when
V is a Sobolev space, a simple rescaling of ψH1

ν1 ⊗ · · · ⊗ ψ
Hd
νd

yields a Riesz basis {Ψν} for
V ⊆ H as well.

A simple scenario would be V = H = L2([0, 1]d), which is the situation considered in
our numerical illustration in §6. A second example are elliptic diffusion equations with
stochastic coefficients. In this case, V = H1

0(Ω)⊗L2([−1, 1]∞), and H = L2(Ω× [−1, 1]∞).
Here a typical choice of bases for L2([−1, 1]∞) are tensor products of polynomials on
[−1, 1], while one can take a wavelet basis for H1

0(Ω), obtained by rescaling a standard L2

basis. A third representative scenario concerns diffusion equations on high-dimensional
product domains Ωd. Here, for instance, V = H1(Ωd) and H = L2(Ωd). We shall comment
on some additional difficulties that arise in the application of operators in this case in
Remark 18.

We now regard u as a tensor of order m on ∇d = ∇d1 × · · · × ∇dm and look for
representations or approximations of u in terms of rank-one tensors

V(1) ⊗ · · · ⊗V(m) :=
(
V (1)
ν1 · · ·V

(m)
νm

)
ν=(ν1,...,νm)∈∇d .

Rather than looking for approximations or representations in the canonical format

u =

r∑
k=1

akU
(1)
k ⊗ · · · ⊗U

(m)
k ,

we will employ tensor representations of a format that is perhaps best motivated as follows.
Consider for each i = 1, . . . ,m (finitely or infinitely many) pairwise orthonormal sequences

U
(i)
k = (U

(i)
νi,k

)νi∈∇di ∈ `2(∇di), k = 1, . . . , ri, that is,

〈U(i)
k ,U

(i)
l 〉 :=

∑
νi∈∇di

U
(i)
νi,k

U
(i)
νi,l

= δk,l, i = 1, . . . ,m.

We stress that here and in the sequel ri =∞ is admitted. The matrices U(i) =
(
U

(i)
νi,k

)
νi∈∇di ,1≤k≤ri

are often termed orthonormal mode frames. It will be convenient to use the notational
convention k = (k1, . . . , kt), n = (n1, . . . , nt), r = (r1, . . . , rt), and so forth, for multiindices
in Nt

0, t ∈ N. Defining for r ∈ Nm
0

Km(r) :=

{
Śm

i=1{1, . . . , ri} if min r > 0,
∅ if min r = 0 ,

and noting that `2(∇d) =
⊗m

j=1 `2(∇dj ) is a tensor product Hilbert space, the tensors

Uk := U
1)
k1
⊗ · · · ⊗U

(m)
km

, k ∈ Km(r), (10)

form an orthonormal basis for the subspace of `2(∇d), generated by the system U :=
(Uk)k∈Km(r). Hence, for any u ∈ `2(∇d) the orthogonal projection

PU u =
∑

k∈Km(r)

akUk, ak = 〈u,Uk〉, k ∈ Km(r), (11)
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is the best approximation to u ∈ `2(∇d) from the subspace spanned by U. The uniquely
defined order-m tensor a with entries 〈u,Uk〉, k ∈ Km(r), is referred to as core tensor.

Moreover, when the U
(i)
k , k ∈ N are bases for all of `2(∇di), that is, Km(r) = Nm, one has,

of course, PU u = u, while for any s ≤ r, componentwise, the “box-truncation”

PU,s u :=
∑

k∈Km(s)

〈u,Uk〉Uk (12)

is a simple mechanism of further reducing the ranks of an approximation from the subspace
spanned by U at the expense of a minimal loss of accuracy.

The existence of best approximations and their realizability through linear projections
suggests approximating a given tensor in `2(∇d) by expressions of the form

u =

r1∑
k1=1

· · ·
rm∑

km=1

ak1,...,km (U
(1)
k1
⊗ · · · ⊗U

(m)
km

) , (13)

even without insisting on the ith mode frame U(i) to have pairwise orthonormal column

vectors U
(i)
k ∈ `2(∇di), k = 1, . . . , ri. However, these columns can always be orthonor-

malized, which results in a corresponding modification of the core tensor a = (ak)k∈Km(r);
for fixed mode frames, the latter is uniquely determined. When writing sometimes for

convenience (U
(i)
k )k∈N, although the U

(i)
k may be specified through (13) only for k ≤ ri,

it will always be understood to mean U
(i)
k = 0, for k > ri.

If the core tensor a is represented directly by its entries, (13) corresponds to the so-
called Tucker format [37, 38] or subspace representation. The hierarchical Tucker format
[23], as well as the special case of the tensor train format [34], correspond to representations
in the form (13) as well, but use a further structured tensor decomposition for the core
tensor a that can exploit a stronger type of information sparsity. For m = 2 the singular
value decomposition (SVD) or its infinite dimensional counterpart, the Hilbert-Schmidt
decomposition, yield u-dependent mode frames that even give a diagonal core tensor.
Although this is no longer possible for m > 2, the SVD remains the main work horse
behind Tucker as well as hierarchical Tucker formats. For the convenience of the reader,
we summarize below the relevant facts for these tensor representations in a way tailored
to the present needs.

2.1 Tucker format

It is instructive to consider first the simpler case of the Tucker format in more detail.

2.1.1 Some Prerequisites

As mentioned before, for a general u ∈ `2(∇d), the sum in (13) may be infinite. For
each i ∈ {1, . . . ,m} we consider the mode-i matricization of u, that is, the infinite matrix

(u
(i)
ν,ν̃)ν∈∇di ,ν̃∈∇d−di with entries u

(i)
νi,ν̌i

:= uν for ν ∈ ∇d, which defines a Hilbert-Schmidt
operator

T
(i)
u : `2(∇d−di)→ `2(∇di) , (cν̃)ν̃∈∇d−di 7→

( ∑
ν̃∈∇d−di

u
(i)
ν,ν̃cν̃

)
ν∈∇di

. (14)

We define the rank vector rank(u) by its entries

ranki(u) := dim rangeT
(i)
u , i = 1, . . . ,m , (15)
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see [24]. It is referred to as the multilinear rank of u. We denote by

R = RT := (N0 ∪ {∞})m (16)

the set of admissible rank vectors in the Tucker format. For such rank vectors r ∈ R, we
introduce the notation

|r|∞ := max
j=1,...,m

rj .

Given any r ∈ R, we can then define the set

T (r) :=
{
u ∈ `2(∇d) : ranki(u) ≤ ri, i = 1, . . . ,m

}
, (17)

of those sequences whose multilinear rank is bounded componentwise by r. It is easy to
see that the elements of T (r) possess a representation of the form (13). Specifically, for
any system of orthonormal mode frames V =

(
V(i)

)m
i=1

with ri columns (where ri could
be infinity), the V-rigid Tucker class

T (V, r) := {PV v : v ∈ `2(∇d)} (18)

is contained in T (r).
The actual computational complexity of the elements of T (r) can be quantified by

suppi(u) :=
⋃

z∈rangeT
(i)
u

supp z . (19)

It is not hard to see that these quantities are controlled by the “joint support” of the ith

mode frame, that is, suppi(u) ⊆
⋃
k≤ri U

(i)
k . Note that if # suppi(u) <∞, one necessarily

also has ranki(u) <∞.
The following result, which can be found e.g. in [15, 21, 39], ensures the existence of

best approximations in T (r) also for infinite ranks.

Theorem 1. Let u ∈ `2(∇d) and 0 ≤ ri ≤ ranki(u), then there exists v ∈ T (r) such that

‖u− v‖ = min
rank(w)≤r

‖u−w‖ .

The matricization T
(i)
u of a given u ∈ `2(∇d), defined in (14), allows one to invoke the

SVD or Hilbert-Schmidt decomposition. By the spectral theorem, for each i there exist

a nonnegative real sequence (σ
(i)
n )n∈N, where σ

(i)
n are the eigenvalues of

(
(T

(i)
u )∗T

(i)
u

)1/2
,

as well as orthonormal bases U(i) = {U(i)
n }n∈N for a subspace of `2(∇di) and {V(i)

n }n∈N
for `2(∇d−di) (again tacitly assuming that U

(i)
n = V

(i)
n = 0 for n > dim range(T

(i)
u )), such

that
T

(i)
u =

∑
n∈N

σ(i)
n 〈V(i)

n , ·〉U(i)
n . (20)

The σ
(i)
k are referred to as mode-i singular values.

To simplify notation in a summary of the properties of the particular orthonormal
mode frames U(i), i = 1, . . . ,m, defined by (20), we define for any vector x = (xi)i=1,...,m

and for i ∈ {1, . . . ,m},

x̌i := (x1, . . . , xi−1, xi+1, . . . , xm) ,

x̌i|y := (x1, . . . , xi−1, y, xi+1, . . . , xm)
(21)
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to refer to the corresponding vector with entry i deleted or entry i replaced by y, respec-
tively. We shall also need the auxiliary quantities

a(i)
pq :=

∑
ǩi∈Km−1 (̌ri)

aǩi|paǩi|q , (22)

derived from the core tensor, where i ∈ {1, . . . ,m} and p, q ∈ {1, . . . , ri}.

2.1.2 Higher-Order Singular Value Decomposition

The representation (20) is the main building block of the higher-order singular value
decomposition (HOSVD) [28], for the Tucker tensor format (13). In the following theorem,
we summarize its properties in the more general case of infinite-dimensional sequence
spaces, where the singular value decomposition is replaced by the spectral theorem for
compact operators. These facts could also be extracted from the treatment in [21, Section
8.3].

Theorem 2. For any u ∈ `2(∇d) the orthonormal mode frames {U(i)
k }k∈N, i = 1, . . . ,m,

with U
(i)
k ∈ `2(∇di), defined by (20), and the corresponding core tensor a with entries

ak = 〈u,Uk〉, have the following properties:

(i) For all i ∈ {1, . . . ,m} we have (σ
(i)
k )k∈N ∈ `2(N), and σ

(i)
k ≥ σ

(i)
k+1 ≥ 0 for all k ∈ N,

where σ
(i)
k are the mode-i singular values in (20).

(ii) For all i ∈ {1, . . . ,m} and all p, q ∈ N, we have a
(i)
pq =

∣∣σ(i)
p

∣∣2δpq where the a
(i)
pq are

defined by (22).

(iii) For each r ∈ Nm
0 , we have

∥∥∥u− ∑
k∈Km(r)

akUk

∥∥∥ ≤ ( m∑
i=1

∞∑
k=ri+1

|σ(i)
k |

2
) 1

2 ≤
√
m inf

rank(w)≤r
‖u−w‖ . (23)

If in addition supp u ⊆ Λ1 × · · · × Λm ⊂ ∇d for finite Λi ⊂ ∇di, then supp U
(i)
k ⊆ Λi and

we have supp a ⊆ Km(̄r) with r̄ ∈ Nm
0 satisfying r̄i ≤ #Λi for i = 1, . . . ,m.

Proof. The representation (20) converges in the Hilbert-Schmidt norm and, as a conse-
quence, we have

u =
(∑
n∈N

σ(i)
n U(i)

νi,nV
(i)
ν̌i,n

)
ν∈∇d

, (24)

with convergence in `2(∇d). Furthermore, {Un}n∈Nm with Un :=
⊗m

j=1 U
(j)
nj is an orthonor-

mal system in `2(∇d) (spanning a strict subspace of `2(∇d) when |rank(u)|∞ < ∞). For
an = 〈u,Un〉 we have thus shown a = (an) ∈ `2(Nm) and u =

∑
n∈Nm anUn. The further

properties of the expansion can now be obtained along the lines of [28], see also [2,21].

In what follows we shall denote by

U(u) = UT (u) := {U(i) : i = 1, . . . ,m, generated by HOSVD} (25)

the particular system of orthonormal mode frames generated for a given u by HOSVD.
It will occasionally be important to identify the specific tensor format to which a given

12



system of mode frames refers, for which we use a corresponding superscript, such as in UT
for the Tucker format.

Property (iii) in Theorem 2 leads to a simple procedure for truncation to lower multi-
linear ranks with an explicit error estimate in terms of the mode-i singular values. In this
manner, one does not necessarily obtain the best approximation for prescribed rank, but
the approximation is quasi-optimal in the sense that the error is at most by a factor

√
m

larger than the error of best approximation with the same multilinear rank.
We now introduce the notation

λr̃(u) = λTr̃ (u) :=
( m∑
i=1

ranki(u)∑
k=r̃i+1

∣∣σ(i)
k

∣∣2) 1
2
, r̃ ∈ Nm

0 . (26)

This quantity plays the role of a computable error estimate, as made explicit in the fol-
lowing direct consequence of Theorem 2.

Corollary 1. For an HOSVD of u ∈ `2(∇d), as in Theorem 2, and for r̃ with 0 ≤ r̃i ≤
ranki(u), we have

‖u− PU(u),̃r(u)‖ ≤ λTr̃ (u) ≤
√
m inf

w∈T (r)
‖u−w‖ ,

where PU(u),̃r is defined in (12).

While projections to subspaces spanned by the Uk(u), k ∈ Km(r), do in general not re-
alize the best approximation from T (r) (only from T (U(u), r)), exact best approximations
are still orthogonal projections based on suitable mode frames.

Corollary 2. For u ∈ `2(∇d) and r = (ri)
m
i=1 ∈ Nm

0 with 0 ≤ ri ≤ ranki(u), i = 1, . . . ,m,
there exists an orthonormal mode frame system Ū(u, r) such that

‖u− PŪ(u,r) u‖ = min
w∈T (r)

‖u−w‖,

with PŪ(u,r) given by (11).

Proof. By Theorem 1, a best approximation of ranks r for u,

ū ∈ arg min{‖u− v‖ : rankα(u) ≤ rα} ,

exists. Defining Ū(u, r) := U(ū) as the orthonormal mode frame system for ū, given by
the HOSVD, we obtain the assertion.

Remark 1. Suppose that for a finitely supported vector u on ∇d, we have a possibly
redundant representation

u =
∑

k∈Km (̃r)

ãk

m⊗
i=1

Ũ
(i)
ki
,

where the vectors Ũ
(i)
k , k = 1, . . . , r̃i may be linearly dependent. Then by standard linear

algebra procedures, we can obtain a HOSVD of u with a number of arithmetic operations
that can be estimated by

Cm|̃r|m+1
∞ + C |̃r|2∞

m∑
i=1

# suppi(u) . (27)

where C > 0 is an absolute constant (see, e.g., [21]).
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2.2 The Hierarchical Tucker Format

The Tucker format as it stands, in general, still gives rise to an increase of degrees of
freedom that is exponential in d. One way to mitigate the curse of dimensionality is to
further decompose the core tensor a in (13). We now briefly formulate the relevant notions
concerning the hierarchical Tucker format in the present sequence space context, following
essentially the developments in [18,23], see also [21].

2.2.1 Dimension Trees

Definition 1. Let m ∈ N, m ≥ 2. A set Dm ⊂ 2{1,...,m} is called a (binary) dimension
tree if the following hold:

(i) {1, . . . ,m} ∈ Dm and for each i ∈ {1, . . . ,m}, we have {i} ∈ Dm.

(ii) Each α ∈ Dm is either a singleton or there exist unique disjoint α1, α2 ∈ Dm, called
children of α, such that α = α1 ∪ α2.

Singletons {i} ∈ Dm are referred to as leaves,

0m := {1, . . . ,m}

as root, and elements of I(Dm) := Dm \
{

0m, {1}, . . . , {m}
}

as interior nodes. The set
of leaves is denoted by L(Dm), where we additionally set N (Dm) := Dm \ L(Dm) =
I(Dm) ∪ {0m}. When an enumeration of L(Dm) is required, we shall always assume the
ascending order with respect to the indices, i.e., in the form {{1}, . . . , {m}}.

It will be convenient to introduce the two functions

ci : Dm \ L(Dm)→ Dm \ {0m}, ci(α) := αi , i = 1, 2 ,

producing the “left” and “right” children of a non-leaf node α∈ N (Dm) which, in view of
Definition 1, are well-defined up to their order, which we fix by the condition minα1 <
minα2.

Note that for a binary dimension tree as defined above, #Dm = 2m−1 and #N (Dm) =
m− 1.

Remark 2. The restriction to binary trees in Definition 1 is not necessary, but leads
to the most favorable complexity estimates for algorithms operating on the resulting ten-
sor format. With this restriction dropped, the Tucker format (13) can be treated in the
same framework, with the m-ary dimension tree consisting only of root and leaves, i.e.,{

0m, {1}, . . . , {m}
}

. In principle, all subsequent results carry over to more general dimen-
sion trees (see [16, Section 5.2]).

Definition 2. We shall refer to a family

U =
{
U

(α)
k ∈ `2(∇

∑
j∈α dj ) : α ∈ Dm \ {0m

}
, k = 1, . . . , kα} ,

with kα ∈ N ∪ {∞} for each α ∈ Dm \ {0m}, as hierarchical mode frames. In addition,

these are called orthonormal if for all α ∈ Dm \ {0m}, we have 〈U(α)
i ,U

(α)
j 〉 = δij for

i, j = 1, . . . , kα, and nested if

span{U(α)
k : k = 1, . . . , kα}

⊆ span{U(c1(α))
k : k = 1, . . . , kc1(α)} ⊗ span{U(c2(α))

k : k = 1, . . . , kc2α} .
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As for the Tucker format, we set U(i) := U({i}), and for k ∈ Nm we retain the notation

Uk :=

m⊗
i=1

U
(i)
ki
.

Again to express that U is associated with the hierarchical format we sometimes write
UH. Of course, UH depends on the dimension tree Dm, which will be kept fixed in what
follows.

To define hierarchical tensor classes and to construct specific u-dependent hierarchical
mode frames one can proceed as for the Tucker format. Let Dm be a dimension tree, let
α ∈ I(Dm) be an interior node, and β := {1, . . . ,m} \ α. For u ∈ `2(∇d), we define the
Hilbert-Schmidt operator

T
(α)
u : `2(∇

∑
i∈β di)→ `2(∇

∑
i∈α di) , c 7→

( ∑
(νi)i∈β

uνc(νi)i∈β

)
(νi)i∈α

, (28)

and set
rankα(u) := dim rangeT

(α)
u , α ∈ Dm \ 0m .

To be consistent with our previous notation for leaf nodes {i} ∈ Dm, we use the abbre-
viation ranki(u) := rank{i}(u). Again, rankα(u) can be infinite. The root element of the
dimension tree, 0m = {1, . . . ,m} ∈ Dm, is a special case. Here we define

T
(0m)
u : R→ `2(∇d), t 7→ tu

and correspondingly set

rank0m(u) := 1 , U
(0m)
1 := u , U

(0m)
k := 0 , k > 1,

if u 6= 0, and otherwise rank0m(u) := 0. To be consistent with the Tucker format we
denote by

rank(u) = rankDm(u) := (rankα(u))α∈Dm\{0m}

the hierarchical rank vector associated with u. Since in what follows the dimension tree
Dm will be kept fixed we suppress the corresponding subscript in the rank vector.

This allows us to define for a given r = (rα)α∈Dm\{0m} ∈ (N0∪{∞})Dm\{0m}, in analogy
to (17), the class

H(r) :=
{
u ∈ `2(∇d) : rankα(u) ≤ rα for all α ∈ Dm \ {0m}

}
. (29)

For H(r) to be non-empty the rank vectors must satisfy certain compatibility conditions,
see Proposition 1 below. As detailed later, the elements of H(r) can be represented in
terms of hierarchical mode frames in the so called hierarchical format with ranks r.

Now, for a given u ∈ `2(∇d), let {U(α)
k }

rankα(u)
k=1 , U

(α)
k ∈ `2(∇

∑
i∈α di) be the left singular

vectors and σ
(α)
k be the singular values of T

(α)
u . In analogy to the Tucker format we denote

by

U(u) = UH(u) :=
{
{U(α)

k }
rankα(u)
k=1 : α ∈ Dm

}
(30)

the system of orthonormal hierarchical mode frames with rank vectors rank(u).
The observation that the specific systems of hierarchical mode frames U(u) have the

following nestedness property, including the root element, will be crucial. The following
fact has been established in a more generally applicable framework of minimal subspaces
in [21] (cf. Corollary 6.18 and Theorem 6.31 there).
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Proposition 1. For u ∈ `2(∇d) and α ∈ N (Dm), the mode frames {U(α)
k } given by the

left singular vectors of the operators T
(α)
u defined in (28) satisfy

span{U(α)
k : k = 1, . . . , rankα(u)} ⊆ span{U(c1(α))

k : k = 1, . . . , rankc1(α)(u)}

⊗ span{U(c2(α))
k : k = 1, . . . , rankc2(α)(u)} ,

i.e., the family of left singular vectors of the operators T
(α)
u is comprized of orthonormal

and nested mode frames for u.

Nestedness entails compatibility conditions on the rank vectors r. In fact, it readily fol-
lows from Proposition 1 that for α ∈ Dm\L(Dm) one has rankα(u) ≤ rankc1(α)(u) rankc2(α)(u).
For necessary and sufficient conditions on a rank vector r = (rα)α∈Dm\{0m} for existence of
corresponding nested hierarchical mode frames, we refer to [21, Section 11.2.3]. In what
follows we denote by

R = RH ⊂ (N0 ∪ {∞})Dm\L(Dm) (31)

the set of all hierarchical rank vectors satisfying the compatibility conditions for nested-
ness.

Following [15,21], we can formulate now the analogue to Theorem 1.

Theorem 3. Let u ∈ `2(∇d), let Dm be a dimension tree, and let r = (rα) ∈ RH with
0 ≤ rα ≤ rankα(u) for α ∈ Dm \ {0m}, then there exists v ∈ H(r) such that

‖u− v‖ = min
{
‖u−w‖ : rankα(w) ≤ rα, α ∈ Dm \ {0m}

}
.

We recall next the specific structure of the hierarchical format. Let U be a system of
hierarchical orthonormal mode frames. By orthonormality and nestedness, we obtain for
each α ∈ N (Dm) and k = 1, . . . , rankα(u) the expansion

U
(α)
k =

rankc1(α)
(u)∑

k1=1

rankc2(α)
(u)∑

k2=1

〈
U

(α)
k ,U

(c1(α))
k1

⊗U
(c2(α))
k2

〉
U

(c1(α))
k1

⊗U
(c2(α))
k2

. (32)

Defining the matrices B(α,k) ∈ `2(N×N) with entries

B
(α,k)
k1,k2

:=
〈
U

(α)
k ,U

(c1(α))
k1

⊗U
(c2(α))
k2

〉
, (33)

(32) can be rewritten as

U
(α)
k =

rankc1(α)
(u)∑

k1=1

rankc2(α)
(u)∑

k2=1

B
(α,k)
k1,k2

U
(c1(α))
k1

⊗U
(c2(α))
k2

, (34)

providing a decomposition into vectors U
ci(α)
k , i = 1, 2, which now involve shorter multi-

indices supported in the children ci(α). This decomposition can be iterated as illustrated
by the next step. Abbreviating ci,j(α) = ci(cj(α)), one obtains

U
(α)
k =

rankc1(α)
(u)∑

k1=1

rankc2(α)
(u)∑

k2=1

∑
ki,1,ki,2kj,1,kj,2

(i,j)∈{1,2}2

B
(α,k)
(k1,k2)

×B(c1(α),k1)
ki,1,kj,1

B
(c2(α),k2)
ki,2,kj,2

U
(ci,1(α))
ki,1

⊗U
(cj,1(α))
kj,1

⊗U
(ci,2(α))
ki,2

⊗U
(cj,2(α))
kj,2

. (35)
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Applying this recursively, any u ∈ `2(∇d) can be expanded in the form

u =

rank1(u)∑
k1=1

· · ·
rankm(u)∑
km=1

ak1,...,km U
(1)
k1
⊗ · · · ⊗U

(m)
km

, (36)

where the core tensor a has a further decomposition in terms of the matrices B(α,k) for all
non-leaf nodes α and k = 1, . . . , rankα(u). This decomposition can be given explicitly as
follows: For each (kα)α∈Dm , we define the auxiliary expression

B̂(kα)α∈Dm
:=

∏
β∈N (Dm)

B
(β,kβ)

(kc1(β),kc2(β))
.

We now use this to give an entrywise definition of the tensor ΣDm({B(α,k)}) ∈ `2(Nm),
for each tuple of leaf node indices (kβ)β∈L(Dm) ∈ N#L(Dm), as(

ΣDm
(
{B(α,k) : α ∈ N (Dm), k = 1, . . . , rankα(u)}

))
(kβ)β∈L(Dm)

=
∑

(kδ)δ∈I(Dm)

kδ=1,...,rankδ(u)

B̂(kδ)δ∈Dm
. (37)

Note that the quantity on the right hand side involves a summation over all indices cor-
responding to non-leaf nodes. Since the summands depend on all indices, this leaves
precisely the indices corresponding to leaf nodes as free parameters, as on the left hand
side (recall that the index for the root of the tree is restricted to the value 1). The tensor
defined in (37) then equals the core tensor a, which is thus represented as

a = ΣDm
(
{B(α,k) : α ∈ N (Dm), k = 1, . . . , rankα(u)}

)
. (38)

This representation is illustrated explicitly for m = 4 in Example 1 below.

Example 1. Consider m = 4, D4 =
{
{1, 2, 3, 4}, {1, 2}, {3, 4}, {1}, {2}, {3}, {4}

}
. For this

example, we use the abbreviation rα := rankα(u) and derive from (35) the expansion

u =

r1∑
k1=1

r2∑
k2=1

r3∑
k3=1

r4∑
k4=1

r{1,2}∑
k{1,2}=1

r{3,4}∑
k{3,4}=1

B
({1,2,3,4},1)
(k{1,2},k{3,4})

×B({1,2},k{1,2})
(k1,k2) B

({3,4},k{3,4})
(k3,k4) U

(1)
k1
⊗U

(2)
k2
⊗U

(3)
k3
⊗U

(4)
k4
,

that is, for the core tensor we have the decomposition

ak1,k2,k3,k4 =

r{1,2}∑
k{1,2}=1

r{3,4}∑
k{3,4}=1

B
({1,2,3,4},1)
(k{1,2},k{3,4})

B
({1,2},k{1,2})
(k1,k2) B

({3,4},k{3,4})
(k3,k4) .

Example 2. A tensor train (TT) representation for m = 4 as in Example 1 would cor-
respond to D4 =

{
{1, 2, 3, 4}, {1}, {2, 3, 4}, {2}, {3, 4}, {3}, {4}

}
, i.e., a degenerate instead

of a balanced binary tree. More precisely, the special case of the hierarchical Tucker for-
mat resulting from this type of tree has also be considered under the name extended TT
format [33].
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2.2.2 Hierarchical Singular Value Decomposition

For any given u ∈ `2(∇d) the decomposition (36), with a defined by (38), can be regarded
as a generalization of the HOSVD, which we shall refer to as hierarchical singular value
decomposition or HSVD. The next theorem summarizes the main properties of this decom-
position in the present setting. The finite-dimensional versions of the following claims have
been established in [18]. All arguments given there carry over to the infinite-dimensional
case as in the proof of Theorem 2.

Theorem 4. Let u ∈ `2(∇d), where d = d1 + . . . + dm, and let Dm be a dimension tree.
Then u can be represented in the form

u =
∑

k∈Nm
akUk , a = ΣDm

(
{B(α,k) : α ∈ N (Dm), k = 1, . . . , rankα(u)}

)
with a ∈ `2(∇d), B(α,k) ∈ `2(N×N), defined by (37), for α ∈ N (Dm), k ∈ N, and where
the following hold:

(i) 〈U(i)
k ,U

(i)
l 〉 = δkl for i = 1, . . . ,m and k, l ∈ N;

(ii) rank0m(u) = 1, ‖B(0m,1)‖ = ‖u‖, and B(0m,k) = 0 for k > 1;

(iii) 〈B(α,k),B(α,l)〉 = δkl for α ∈ I(Dm) and k, l ∈ N;

(iv) for all i ∈ {1, . . . ,m} we have (σ
(i)
k )k∈N ∈ `2(N), and σ

(i)
k ≥ σ

(i)
k+1 ≥ 0 for all k ∈ N;

(v) for all i ∈ {1, . . . ,m} we have a
(i)
pq =

∣∣σ(i)
p

∣∣2δpq, 1 ≤ p, q ≤ ranki(u).

2.2.3 Projections

As in the case of the Tucker format it will be important to associate suitable orthogo-
nal projections with a given system V of nested orthonormal mode frames. Recall that
r = (rα)α∈Dm\{0m} ∈ RH always stands for a rank vector for the hierarchical Tucker for-
mat, satisfying the compatibility conditions implied by Proposition 1. Again rα = ∞ is
permitted. We begin with introducing an analog to (18), with a slightly more involved
definition. The hierarchical V-rigid tensor class of rank r is given by

H(V, r) :=
{
w : rangeT

(α)
w ⊆ span{V(α)

k : k = 1, . . . , rα} , α ∈ Dm \ {0m}
}
, (39)

where T
(α)
w is defined by (28). Clearly H(V, r) ⊂ H(r).

In analogy to (12) we address next a truncation of hierarchical ranks to r̃ ≤ r for
elements in H(V, r), when V is a given system of orthonormal and nested mode frames
with ranks r. We assume first that r̃ belongs also to RH. The main point is that an
approximation with restricted mode frames can still be realized through an operation
represented as a sequence of projections involving the given mode frames from V. However,
the order in which these projections are applied now matters.

In a way the proof of Lemma 1 below already indicates how to proceed, namely re-
stricting first on lower “levels” of the dimension tree. To make this precise we denote
by D`m the collection of elements of Dm that have distance exactly ` to the root (i.e.,
D0
m = {0m}, D1

m = {c1(0m), c2(0m)} and so forth). Let L be the maximal integer such
that DLm 6= ∅. For ` = 1, . . . , L, let D̄`m :=

⋃
{i ∈ α : α ∈ D`m}. Then, given V, and

abbreviating

PV,α,̃r :=

r̃α∑
k=1

〈V(α)
k , ·〉V(α)

k ,
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we define
PV,`,̃r :=

( ⊗
i∈{1,...,m}\D̄`m

Ii

)
⊗
( ⊗
α∈D`m

PV,α,̃r

)
,

with Ii denoting the identity operation on the i-th tensor mode. Then, as observed in [18],
the truncation operation with mode frames V restricted to ranks r̃ can be represented as

PV,̃r := PV,L,̃r · · · PV,2,̃r PV,1,̃r . (40)

Here the order is important because the projections PV,α,̃r,PV,β,̃r corresponding to α, β ∈
Dm with α ⊂ β do not necessarily commute. Therefore a different order of projections
may in fact lead to an end result that has ranks larger than r̃, cf. [18].

Specifically, given u ∈ `2(∇d), we can choose V = U(u) provided by the HSVD, see
(30). Hence PU(u),̃r u gives the truncation of u based on the HSVD. For this particular
truncation an error estimate, in terms of the error of best approximation with rank r̃, is
given in Theorem 5 below.

Remark 3. By (40), we have a representation of ũ := PU(u),̃r u in terms of a sequence
of non-commuting orthogonal projections. When r̃ ≤ r does not belong to RH the operator
defined by (40) is still a projection which, however, modifies the mode frames for those
nodes α ∈ N (Dm) for which the rank compatibility conditions are violated. The resulting
projected mode frames are then nested, that is, ũ may again be represented in terms of the
orthonormal and nested mode frames Ũ := U(ũ).

The situation simplifies if we consider the projection to a fixed nested system of mode
frames, without a further truncation of ranks that could entail non-nestedness.

Lemma 1. Let V be a family of orthonormal and nested hierarchical mode frames with
ranks r. Then there exists a linear projection PV : `2(∇d) → H(V, r) such that the unique
best approximation in H(V, r) of any u ∈ `2(∇d) is given by PV u, that is,

‖u− PV u‖ = min
w∈H(V,r)

‖u−w‖ .

Proof. The sought projection is given by PV = PV,1,r, since

PV,L,r · · · PV,2,r PV,1,r = PV,1,r

holds as a consequence of the nestedness property.

2.2.4 Best approximation

In analogy to (26), we define the error estimate

λr̃(u) = λHr̃ (u) :=
(∑

α

rankα(u)∑
k=r̃α+1

∣∣σ(α)
k

∣∣2) 1
2
. (41)

Here the sum over α extends over Dm \ {0m, c2(0m)} if r̃c1(0m) ≤ r̃c2(0m), and otherwise
over Dm \ {0m, c1(0m)}. We then have the following analogue of Corollary 1, see [18].

Theorem 5. For a given u ∈ `2(∇d) let UH(u) = U(u) the hierarchical orthonormal
system of mode frames generated by the HSVD of u as in Theorem 4. Then for hierarchical
ranks r̃ = (r̃α) ∈ RH, we have

‖u− PU(u),̃r u‖ ≤ λHr̃ (u) ≤
√

2m− 3 inf
{
‖u− v‖ : v ∈ H(̃r)

}
.
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Corollary 3. For u ∈ `2(∇d) and r = (rα)α∈Dm∈ RH with 0 ≤ rα ≤ rankα(u), there exist
orthonormal and nested hierarchical mode frames Ū(u, r) such that

‖u− PŪ(u,r) u‖ = min
w∈H(r)

‖u−w‖

with PŪ(u,r) as in Lemma 1.

Proof. By Theorem 3, a best approximation of hierarchical ranks r for u,

ū ∈ arg min{‖u− v‖ : rankα(u) ≤ rα} ,

exists. Defining Ū(u, r) := U(ū) as the nested and orthonormal mode frames for ū, given
by the HSVD, we obtain the assertion with Lemma 1.

Remark 4. Suppose that, in analogy to Remark 1, a compactly supported vector u on ∇d
is given in a possibly redundant hierarchical representation

u =
∑

k∈Km (̃r)

ãk

m⊗
i=1

Ũ
(i)
ki
, ã = ΣDm({B̃(α,kα)}) ,

where the summations in the expansion of ã range over kα = 1, . . . , r̃α for each α, and

where the vectors Ũ
(i)
k , k = 1, . . . , r̃i, and B̃(α,k), k = 1, . . . , r̃α, may be linearly dependent.

Employing standard linear algebra procedures, an HSVD of u can be computed from such
a representation, using a number of operations that can be estimated by

Cm
(

max
α∈Dm\{0m}

r̃α
)4

+ C
(
max
i
r̃i
)2 m∑

i=1

# suppi(u), (42)

where C > 0 is a fixed constant, cf. [18, Lemma 4.9].

3 Recompression and Coarsening

As explained in §1.2, iterations of the form (9) provide updates v = uk + ω(f − Auk)
which differ from the unknown u by some known tolerance. However, even when using a
“tensor-friendly” structure of the operator A or a known “tensor-sparsity” of the data f ,
the arithmetic operations leading to the update v do not give any clue as to whether the
resulting ranks are close to minimal. Hence, one needs a mechanism that realizes a subspace
correction leading to tensor representations with ranks at least close to minimal ones. This
consists in deriving from the known v a near best approximation to the unknown u where
the notion of near best in terms of ranks is made precise below. Specifically, suppose that
v ∈ `2(∇d) is an approximation of u ∈ `2(∇d) which for some η > 0 satisfies

‖u− v‖`2(∇d) ≤ η. (43)

We shall show next how to derive from v a near-minimal rank tensor approximation to
u. Based on our preparations in §2, the following developments apply to both formats
F ∈ {T ,H}, in fact, to any format F with associated mode frame systems U = UF
(see (25), (30)) for which one can formulate suitable projections PFV ,P

F
V,̃r with analogous

properties. Accordingly,
R = RF , F ∈ {T ,H} (44)

denotes the respective set of admissible rank vectors RT , RH, defined in (16), (31), re-
spectively. A crucial role in what follows is played by the following immediate consequence
of Corollaries 2, 3 combined with Corollary 1 and Theorem 5.
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Remark 5. Let for a given v ∈ `2(∇d) the mode frame system U(v) be either UT (v) or
UH(v). Then, for any rank vector r ≤ rank(v), r ∈ R, one has

‖v − PU(v),r v‖ ≤ λr(v) ≤ κP‖v − PŪ(v,r) v‖ = κP min
rank(w)≤r

‖u−w‖, (45)

where κP =
√
m when F = T , and κP =

√
2m− 3 when F = H.

As mentioned earlier, for F = H the above notions depend on the dimension tree Dm.
Since Dm is fixed we dispense with a corresponding notational reference.

3.1 Tensor Recompression

Given u ∈ `2(∇d), in what follows by U(u) we either mean UT (u) or UH(u), see (25),
(30).

We introduce next two notions of “minimal ranks” r(u, η), r̄(u, η) for a given target
accuracy η, one for the specific mode frame system U(u) provided by either HOSVD or
HSVD, and one for the respective best mode frame systems.

Definition 3. For each η > 0 we choose r(u, η) ∈ R such that

λr(u,η)(u) ≤ η ,

and hence ‖u− PU(u),r(u,η) u‖ ≤ η, with minimal |r(u, η)|∞, that is,

r(u, η) ∈ arg min
{
|r|∞ : r ∈ R, λr(u,η)(u) ≤ η

}
.

Similarly, for each η > 0 we choose r̄(u, η) ∈ R such that

‖u− PŪ(u,̄r(u,η)) u‖ ≤ η,

with minimal |̄r(u, η)|∞, that is (see Corollary 2 and Remark 5),

r̄(u, η) ∈ arg min
{
|r|∞ : r ∈ R, ∃ w ∈ F(r), ‖u−w‖`2(∇d) ≤ η

}
. (46)

Recall that the projections PU(v),r = PFU(v),r to F(r) are given either by (11) or (40)

when F ∈ {T ,H}, respectively. In both cases, they will be used to define computable
coarsening operators for any given v (of finite support in ∇d). In fact, setting

P̂η v := PU(v),r(v,η) v , (47)

we have by definition

‖v − P̂η v‖ ≤ λr(v,η)(v) ≤ η, |rank(P̂η v)|∞ = |r(v, η)|∞. (48)

Lemma 2. Fix any α > 0. For any u,v, η satisfying (43), i.e. ‖u− v‖ ≤ η, one has

‖u− P̂κP(1+α)η v‖ ≤ (1 + κP(1 + α))η (49)

while
|rank(P̂κP(1+α)η v)|∞ = |r(v, κP(1 + α)η)|∞ ≤ |̄r(u, αη)|∞ . (50)

In other words, the ranks of P̂κP(1+α)η v are bounded by the minimum ranks required
to realize a somewhat higher accuracy.
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Proof. Bearing Remark 5 in mind, given u, one has for the projection PŪ(u,̄r(u,αη))

‖v − PŪ(u,̄r(u,αη)) v‖ ≤ ‖(I− PŪ(u,̄r(u,αη)))(v − u)‖
+ ‖u− PŪ(u,̄r(u,αη)) u‖ ≤ (1 + α)η. (51)

On the other hand, we know that for any r ∈ R,

‖v − PU(v),r v‖≤ λr(v) ≤ κP inf
w∈F(r)

‖v −w‖ ,

so that, by (51), for r = r̄(u, αη) we have

‖v − PU(v),̄r(u,αη) v‖≤ λr̄(u,αη)(v) ≤ κP(1 + α)η .

Since, by definition, |rank(P̂κP(1+α)η v)|∞ is minimal to achieve the accuracy bound κP(1+
α)η, (50) follows. Estimate (49) follows by triangle inequality.

Thus, appropriately coarsening v yields an approximation to u of still the same quality
up to a fixed (dimension-dependent) constant, where the rank of this new approximation
is bounded by a minimal rank of a best Tucker or hierarchical Tucker approximation to u
for somewhat higher accuracy.

Let us reinterpret this in terms of minimal ranks, i.e., for r ∈ N0 and F ∈ {T ,H}, let

σr(v) = σr,F (v) := inf
{
‖v −w‖ : w ∈ F(r) with r ∈ R, |r|∞ ≤ r} .

We now consider corresponding approximation classes.

Definition 4. We call a positive, strictly increasing γ =
(
γ(n)

)
n∈N0

with γ(0) = 1 and

γ(n)→∞, as n→∞, a growth sequence. For a given growth sequence γ, we define

A(γ) = AF (γ) :=
{
v ∈ `2(∇d) : sup

r∈N0

γ(r)σr,F (v) =: |v|AF (γ)<∞
}

and ‖v‖AF (γ) := ‖v‖+ |v|AF (γ). We call the growth sequence γ admissible if

ργ := sup
n∈N

γ(n)/γ(n− 1) <∞ ,

which corresponds to a restriction to at most exponential growth.

In the particular case when γ(n) ∼ ns for some s > 0, ‖v‖AF (γ) := ‖v‖+ |v|AF (γ) is a
quasi-norm and AF (γ) is a linear space.

Remark 6. For the subsequent developments it will be helpful to keep the following way
of reading v ∈ AF (γ) in mind: a given target accuracy ε can be realized at the expense
of ranks of the size γ−1(|v|AF (γ)/ε) so that a rank bound of the form γ−1(C|v|AF (γ)/ε),
where C is any constant, marks a near-optimal performance.

Theorem 6. Let κP be as in Remark 2, and let α > 0. Assume that u ∈ AF (γ) and that
v ∈ `2(∇d) satisfies ‖u− v‖ ≤ η. Then, defining wη := P̂κP(1+α)η v, one has

|rank(wη)|∞ ≤ γ−1
(
ργ‖u‖AF (γ)/(αη)

)
, ‖u−wη‖ ≤ (1 + κP(1 + α))η, (52)

and
‖wη‖AF (γ) ≤ C‖u‖AF (γ), η > 0, (53)

where C = α−1(1 + κP(1 + α)) + 1.
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Proof. The second relation in (52) has already been shown in Lemma 2. We also know
from (50) that |rank(wη)|∞ ≤ |̄r(u, αη)|∞. Thus the first relation in (52) is clear if
|̄r(u, αη)|∞ = 0. Assume that |̄r(u, αη)|∞ > 1. Then for r′ := |̄r(u, αη)|∞ − 1, by
definition of |·|AF (γ) we have

|u|AF (γ) ≥ γ(|r′|∞)σr′,F (u) ≥ γ(|r′|∞)αη ≥ ργ−1γ(|̄r(u, αη)|∞)αη. (54)

Also, when |̄r(u, αη)|∞ = 1, we have

σ0,T (u) = ‖u‖ > αη = γ(0)αη ≥ ργ−1γ(|̄r(u, αη)|∞)αη .

Therefore
|̄r(u, αη)|∞ ≤ γ−1

(
ργ‖u‖AF (γ)/(αη)

)
,

which is the first relation in (52).
As for the remaining claim, we need to estimate γ(r)σr,F (wη) for r ∈ N0. Whenever

r ≥ |̄r(u, αη)|∞ we have, by (50), σr,F (wη) = 0. It thus suffices to consider r < |̄r(u, αη)|∞.
By (49),

inf
r∈R : |r|∞≤r

‖wη − PŪ(u,r) u‖ ≤ ‖wη − u‖+ inf
r∈R : |r|∞≤r

‖u− PŪ(u,r) u‖

≤ (1 + κP(1 + α))η + σr,F (u).

Since for r < |̄r(u, αη)|∞ we have σr,F (u) > αη, while σ|̄r(u,αη)|∞,F (u) ≤ αη, we conclude
that

γ(r)σr,F (wη) ≤ γ(r)
(1 + κP(1 + α))αη

α
+ γ(r)σr,F (u)

≤
(

1 + κP(1 + α)

α
+ 1

)
γ(r)σr,F (u)

≤
(

1 + κP(1 + α)

α
+ 1

)
|u|AF (γ),

which shows (53).

3.2 Coarsening of Mode Frames

We now turn to a second type of operation for reducing the complexity of given coefficient
sequences in tensor representation, an operation that coarsens mode frames by discarding
basis indices whose contribution is negligible. We shall use the following standard notions
for best N -term approximations.

Definition 5. For d̂ ∈ N and Λ ⊂ ∇d̂, we define the restrictions

RΛ v := v � χΛ , v ∈ `2(∇d̂) ,

where � denotes the Hadamard (elementwise) product. The compressibility of v can again

be described through approximation classes. For s > 0, we denote by As(∇d̂) the set of

v ∈ `2(∇d̂) such that

‖v‖As(∇d̂)
:= sup

N∈N0

(N + 1)s inf
Λ⊂∇d̂
#Λ≤N

‖v − RΛ v‖ <∞ .

Endowed with this (quasi-)norm, As(∇d̂) becomes a (quasi-)Banach space. When no

confusion can arise, we shall suppress the index set dependence and write As = As(∇d̂).
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Remark 7. The same comment as in Remark 6 applies. Thinking of the growth sequence
to be γs(n) = (n+ 1)s, realizing an accuracy ε at the expense of (C‖v‖As(∇d̂)

/ε)1/s terms,

where C is a constant independent of ε, signifies an “optimal work-accuracy balance” over

the class As(∇d̂).

We deliberately restrict the discussion to polynomial decay rates here since this cor-
responds to finite Sobolev or Besov regularity. However, with appropriate modifications,
the subsequent considerations can be adapted also to approximation classes corresponding
to more general growth sequences.

3.2.1 Tensor Contractions

Searching through a sequence u ∈ `2(∇d) (of finite support) would suffer from the curse of
dimensionality. Being content with near best N -term approximations one can get around
this by introducing, for each given u ∈ `2(∇d), the following quantities formed from certain

contractions of the tensor u⊗ u which are given by diag(T
(i)
u (T

(i)
u )∗).

Definition 6. Let u ∈ `2(∇d). For i ∈ {1, . . . ,m} we define, using the notation (21),

π(i)(u) =
(
π(i)
νi (u)

)
νi∈∇di

:=

((∑
ν̌i

|uν |2
) 1

2

)
νi∈∇di

.

With a slight abuse of terminology, we shall refer to these π(i)(·) simply as contractions.
Their direct computation would involve high-dimensional summations over the index sets
∇d−di . However, the following observations show how this can be avoided. This makes
essential use of the particular orthogonality properties of the tensor formats.

Proposition 2. Let u ∈ `2(∇d).

(i) We have ‖u‖ = ‖π(i)(u)‖, i = 1, . . . ,m.

(ii) Let Λ(i) ⊆ ∇di, then

‖u− RΛ(1)×···×Λ(m) u‖ ≤
( m∑
i=1

∑
ν∈∇di\Λ(i)

|π(i)
ν (u)|2

) 1
2
. (55)

(iii) Let in addition U(i) and a be mode frames and core tensor, respectively, as in Theo-

rems 2 or 4, and let (σ
(i)
k ) be the corresponding sequences of mode-i singular values.

Then

π(i)
ν (u) =

(∑
k

∣∣U(i)
ν,k

∣∣2∣∣σ(i)
k

∣∣2) 1
2
, ν ∈ ∇di . (56)

Proof. Property (i) is clear, and (iii) is a simple consequence of the orthogonality prop-
erties of mode frames and core tensor stated in Theorems 2 and 4. Abbreviating ũ :=
RΛ(1)×···×Λ(m) u, property (ii) follows, in view of (i), from

‖ũ− u‖2 ≤ ‖u− RΛ(1)×∇d2×···×∇dm u‖2 + . . .+ ‖u− R∇d1×···×∇dm−1×Λ(m) u‖2

=
m∑
i=1

∑
ν∈∇di\Λ(i)

∣∣π(i)
ν (u)

∣∣2 .
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The following subadditivity property is an immediate consequence of the triangle in-
equality.

Proposition 3. Let N ∈ N and un ∈ `2(∇d), n = 1, . . . , N . Then for each i and each
ν ∈ ∇di, we have

π(i)
ν

( N∑
n=1

un

)
≤

N∑
n=1

π(i)
ν (un).

Relation (56) allows us to realize (in practice, of course, for finite ranks rank(u) and
finitely supported mode frames U(i)) best N -term approximations of the contractions

π(i)(u) through those of the mode frames U
(i)
k . Moreover, expressing coarsening errors in

terms of tails of contraction sequences requires finding good Cartesian index sets. To see
how to determine them consider a non-increasing rearrangement

π
(i1)

νi1,1
(u) ≥ π(i2)

νi2,2
(u) ≥ · · · ≥ π(ij)

νij ,j
(u) ≥ · · · , νij ,j ∈ ∇dij , (57)

of the entire set of contractions for all tensor modes,{
π(i)
ν (u) : ν ∈ ∇di , i = 1, . . . ,m

}
.

Next, retaining only the N largest from the latter total ordering (57) and redistributing
them to the respective dimension bins

Λ(i)(u;N) :=
{
νij ,j : ij = i, j = 1, . . . , N

}
, i = 1, . . . ,m, (58)

the product set

Λ(u;N) :=
m

ą

i=1

Λ(i)(u;N) (59)

can be obtained at a cost that is roughly m times the analogous low-dimensional cost. By
construction, one has

m∑
i=1

#Λ(i)(u;N) ≤ N (60)

and
m∑
i=1

∑
ν∈∇di\Λ(i)(u;N)

|π(i)
ν (u)|2 = min

Λ̂

{ m∑
i=1

∑
ν∈∇di\Λ̂(i)

|π(i)
ν (u)|2

}
, (61)

where Λ̂ ranges over all product sets
Śm

i=1 Λ̂(i) with
∑m

i=1 #Λ̂(i) ≤ N .

Proposition 4. For any u ∈ `2(∇d) one has

‖u− RΛ(u;N) u‖ ≤
( m∑
i=1

∑
ν∈∇di\Λ(i)(u;N)

∣∣π(i)
ν (u)

∣∣) 1
2

=: µN (u) , (62)

and for any Λ̂ =
Śm

i=1 Λ̂(i) with Λ(i) ⊂ ∇di satisfying
∑m

i=1 #Λ̂(i) ≤ N , one has

‖u− RΛ(u;N) u‖ ≤ µN (u) ≤
√
m‖u− RΛ̂ u‖ . (63)

Proof. The bound (62) is immediate from (55). Let now Λ̂ be as in the hypothesis, then
one obtains by (62) and (61),

‖u− RΛ(u;N) u‖2 ≤
m∑
i=1

∑
ν∈∇di\Λ̂(i)

∣∣π(i)
ν (u)

∣∣2 = ‖u− RΛ̂(1)×∇d2×···×∇dm u‖2 + . . .

+ ‖u− R∇d1×···×∇dm−1×Λ̂(m) u‖2 ≤ m‖u− RΛ̂ u‖2 .
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Note that the sorting (57) used in the construction of (59) can be replaced by a quasi-
sorting by binary binning; we shall return to this point in the proof of Remark 11. With
the above preparations at hand we define the coarsening operator

Cu,N v := RΛ(u;N) v , v ∈ `2(∇d) . (64)

While Cu,N is computationally feasible, it is not necessarily strictly optimal. However,
we remark that for each N ∈ N, there exists Λ̄(u;N) =

Ś

i Λ̄(i)(u;N) such that the best
tensor coarsening operator

C̄u,Nv := RΛ̄(u;N) v , v ∈ `2(∇d) , (65)

realizes
‖u− C̄u,Nu‖ = min∑

i # suppi(w)≤N
‖u−w‖ . (66)

The next observation is that the contractions are stable under the projections PUF (u),r,
F ∈ {T ,H}.

Lemma 3. Let u ∈ `2(∇d) and R = RF , as in (44), given by (16), (31), respectively.
Then for i ∈ {1, . . . ,m}, ν ∈ ∇di, and any rank vector r ∈ R, with r ≤ rank(u) compo-
nentwise, we have

π(i)
ν (PU(u),r u) ≤ π(i)

ν (u) ,

where U(u) either stands for UT (u) or UH(u) for the Tucker and hierarchical Tucker
format, respectively, see (25), (30).

Proof. We consider first the Tucker format. Using the orthonormality of the mode frames
U(u), we obtain

(
π(i)
ν (PU(u),r u)

)2
=

∑
ǩi∈Km (̌ri)

( ri∑
ki=1

U
(i)
ν,ki

ak

)2
, ν ∈ ∇di . (67)

For any fixed ǩi, we have

ri∑
ki=1

ri∑
li=1

U
(i)
ν,ki

U
(i)
ν,li
aǩi|ki

aǩi|li
=
( ri∑
ki=1

U
(i)
ν,ki

aǩi|ki

)2
≥ 0 , ν ∈ ∇di . (68)

Combining this with (67) and abbreviating R := rank(u), we obtain

(
π(i)
ν (PU(u),r u)

)2 ≤ ri∑
ki=1

ri∑
li=1

U
(i)
ν,ki

U
(i)
ν,li

∑
ǩi∈Km(Ři)

aǩi|ki
aǩi|li

, ν ∈ ∇di .

By Theorem 2(ii), the right hand side equals

ri∑
ki=1

∣∣σ(i)
ki
U

(i)
ν,ki

∣∣2 ≤ (π(i)
ν (u)

)2
.

This shows the assertion for the Tucker format. The proof for the hierarchical Tucker
format follows similar lines. We treat additional summations arising in the core tensor in
the same way as the summation over ǩi above, and apply the same argument as in (68)
recursively.
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As a next step, we shall combine the coarsening procedure of this subsection with the
tensor recompression considered earlier. To this end, we defineN(v, η) := min

{
N : µN (v) ≤

η
}

, where µN is defined in (62), as well as

Ĉη(v) := Cv,N(v;η) v , (69)

in order to switch from N -term approximation to the corresponding thresholding proce-
dures. As a consequence of (62), we have

‖v − Cv,N v‖≤ µN (v) ≤ κC‖v − C̄v,Nv‖, κC =
√
m. (70)

Our general assumption on the approximability of mode frames is that π(i)(u) ∈ As
which, as mentioned before, reflects finite Sobolev or Besov regularity of the functions
whose wavelet coefficients are given by the lower-dimensional tensor factors.

3.2.2 Combination of Tensor Recompression and Coarsening

Recall that we use ‖ · ‖As , ‖ · ‖AF (γ) to quantify sparsity of wavelet expansions of mode
frames, and low-rank approximability, respectively. The following main result of this
section applies again to both the Tucker and the hierarchical Tucker format. It extends
Theorem 6 in combining tensor recompression and wavelet coarsening, and shows that
both reduction techniques combined are optimal up to uniform constants, and stable in
the respective sparsity norms.

Theorem 7. For a given v ∈ `2(∇d), let the mode frame system U(v) be either UT (v) or
UH(v) (see (25), (30)). Let u,v ∈ `2(∇d) with u ∈ AF (γ), π(i)(u) ∈ As for i = 1, . . . ,m,
and ‖u − v‖ ≤ η. As before let κP = κC =

√
m for the Tucker format, while for the

H-Tucker format κP =
√

2m− 3 and κC =
√
m. Then for

wη := ĈκC(κP+1)(1+α)η

(
P̂κP(1+α)η(v)

)
, (71)

we have
‖u−wη‖ ≤

(
1 + κP(1 + α) + κC(κP + 1)(1 + α)

)
η, (72)

as well as

|rank(wη)|∞ ≤ γ−1
(
ργ‖u‖AF (γ)/(αη)

)
, ‖wη‖AF (γ) ≤ C1‖u‖AF (γ), (73)

with C1 = (α−1(1 + κP(1 + α)) + 1) and

m∑
i=1

# suppi(wη) ≤ 2η−
1
smα−

1
s

( m∑
i=1

‖π(i)(u)‖As
) 1
s
,

m∑
i=1

‖π(i)(wη)‖As ≤ C2

m∑
i=1

‖π(i)(u)‖As ,
(74)

with C2 = 2s(1 + 3s) + 24sα−1
(
1 + κP(1 + α) + κC(κP + 1)(1 + α)

)
mmax{1,s}.

Proof. Taking (49) in Lemma 2 and the definition (69) into account, the relation (72)
follows from the triangle inequality.

The statements in (73) follow from Theorem 6. Note that the additional mode frame
coarsening considered here does not affect these estimates.
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For the proof of (74), we can proceed similary to [9, Corollary 5.2] (see also [8, Theorem
4.9.1]). We set ŵ := P̂κP(1+α)η(v). Let N ∈ N be minimal such that ‖u− C̄u,Nu‖ ≤ αη.
Then

‖ŵ − C̄u,Nŵ‖ ≤ ‖(I− C̄u,N )(u− ŵ)‖+ ‖u− C̄u,Nu‖
≤ ‖u− ŵ‖+ ‖u− C̄u,Nu‖ ≤

(
1+κP(1 + α) + α

)
η ,

where we have used Lemma 2 to bound the first summand on the right hand side. Con-
sequently, by (70),

‖ŵ − Cŵ,N ŵ‖ ≤ µN (ŵ) ≤κC‖ŵ − C̄ŵ,Nŵ‖
≤ κC‖ŵ − C̄u,Nŵ‖ ≤ κC

(
1+κP(1 + α) + α

)
η . (75)

Furthermore, note that without loss of generality, we may assume N ≥ m. Keeping the
definition (65) and the optimality (66) in mind, (55) yields

αη < ‖u− C̄u,N−1u‖ ≤ inf∑
i #Λi≤N−1

( m∑
i=1

‖π(i)(u)− RΛi π
(i)(u)‖2

) 1
2

≤
m∑
i=1

inf
#Λi≤(N−1)/m

‖π(i)(u)− RΛi π
(i)(u)‖

≤
(
(N − 1)/m

)−s m∑
i=1

‖π(i)(u)‖As

≤ 2s
(
N/m

)−s m∑
i=1

‖π(i)(u)‖As .

Using the latter estimate and noting that, by (75), the coarsening operator ĈκC(1+κP)(1+α)η

retains at most N terms, we conclude that

m∑
i=1

# suppi(wη) ≤ N ≤ 2mα−
1
s η−

1
s

( m∑
i=1

‖π(i)(u)‖As
) 1
s
, (76)

and hence the first statement in (74). Now let N̂ =
∑m

i=1 N̂i with N̂i := # suppi(wη),

where we may also assume N̂i > 0 without loss of generality. Resolving (76) for η, one
can rewrite (72) as

‖u−wη‖ ≤ N̂−sC(α)ms
( m∑
i=1

‖π(i)(u)‖As
)
, (77)

where C(α) := 2sα−1(1 + κP(1 + α) + κC(κP + 1)(1 + α)). Let ûi be the best N̂i-term
approximation to π(i)(u), then

‖π(i)(wη)‖As ≤ 2s
(
‖ûi‖As + ‖ûi − π(i)(wη)‖As

)
≤ 2s

(
‖π(i)(u)‖As + (2N̂i + 1)s‖ûi − π(i)(wη)‖

)
≤ 2s

(
‖π(i)(u)‖As

+ (2N̂i + 1)s(‖ûi − π(i)(u)‖+ ‖π(i)(u)− π(i)(wη)‖)
)

≤ 2s
(
(1 + 3s)‖π(i)(u)‖As + (2N̂i + 1)s‖π(i)(u)− π(i)(wη)‖

)
,
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where we have used that ‖ûi−π(i)(u)‖ ≤ N̂−si ‖π(i)(u)‖As as well as # supp(ûi−π(i)(wη)) ≤
2N̂i. Moreover, as a consequence of the Cauchy-Schwarz inequality, we have the compo-
nentwise estimate

|π(i)
ν (u)− π(i)

ν (wη)| ≤ π(i)
ν (u−wη) ,

which yields

‖π(i)(u)− π(i)(wη)‖ ≤ ‖π(i)(u−wη)‖ = ‖u−wη‖ .

Combining this with (77), we obtain

‖π(i)(wη)‖As ≤ 2s(1 + 3s)‖π(i)(u)‖As

+ 2sC(α)msN̂−s(2N̂i + 1)s
( m∑
k=1

‖π(k)(u)‖As
)
.

Summing over i = 1, . . . ,m and noting that

N̂−s
m∑
i=1

(2N̂i + 1)s ≤ 22smmax{0,1−s} ,

we arrive at the second assertion in (74).

4 Adaptive Approximation of Operators

Whether the solution to an operator equation actually exhibits some tensor- and expansion
sparsity is expected to depend strongly on the structure of the involved operator. The
purpose of this section is formulate a class of operators which are “tensor-friendly” in the
sense that their approximate application does not increase the rank too much. Making
this precise requires some model assumptions which at this point we feel are relevant in
that a wide range of interesting cases is covered. But of course, many possible variants
would be conceivable as well. In that sense the main issue in the subsequent discussion
is to identify the essential structural mechanisms that would still work under somewhat
different model assumptions.

We shall approach this on two levels. First we consider operators with an exact low rank
structure. Of course, assuming that the operator is a single tensor product of operators
acting on functions of a smaller number of variables would be far too restrictive and also
concern a trivial scenario, since ranks would be preserved. More interesting are sums of
tensor products such as the m-dimensional Laplacian

∆ = ∂2
x1 + · · ·+ ∂2

xm ,

where strictly speaking each summand ∂xj is a tensor product of the identity operators
acting on all but the jth variable with the second order partial derivative with respect to
the jth variable. Hence the wavelet representation A of ∆ in an L2-orthonormal wavelet
basis has the form

A = A1 ⊗ I2 ⊗ · · · ⊗ Im + · · ·+ I1 ⊗ · · · ⊗ Im−1 ⊗Am, (78)

where Aj is the wavelet representation of ∂xj . There is, however, an issue concerning the
scaling of the wavelet bases. For L2-orthonormalized wavelets A is not bounded, an issue
to be taken up later again in Remark 18.
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At a second stage it is important to cover also operators which do not have an explicit
low-rank structure but can be approximated in a quantified manner by low-rank opera-
tors. A typical example are potential terms, such as those arising in electronic structure
calculations, see, e.g., [2] and the references cited there, as well as the rescaled versions of
operators of the type (78), mentioned above.

4.1 Operators with Explicit Low-Rank Form

We start with a technical observation that will be used at several points. Given operators

B(i) = (b
(i)
νi,ν̃i

)νi,ν̃i∈∇di : `2(∇di)→ `2(∇di), recall that their tensor product B = B(1)⊗· · ·⊗
B(m) is given by Bν,ν̃ = b

(1)
ν1,ν̃1
· · · b(m)

νm,ν̃m
so that, whenever v = v1⊗· · ·⊗vm, vj ∈ `2(∇dj ),

we have Bv = (B(1)v1)⊗ · · · ⊗ (B(m)vm). Observing that for any v ∈ `2(∇)

Bv =
(

I1 ⊗B(2) ⊗ · · · ⊗B(m)
)((

B(1) ⊗ I2 ⊗ · · · ⊗ Im
)
v
)
, (79)

we conclude

‖Bv‖ ≤
∥∥B(2) ⊗ · · · ⊗B(m)

∥∥∥∥π(1)
(
(B(1) ⊗ I2 ⊗ · · · ⊗ Im)v

)∥∥
More generally, one obtains by the same argument

‖Bv‖ ≤
∥∥B(1) ⊗ · · · ⊗B(i−1) ⊗B(i+1) ⊗ · · · ⊗B(m)

∥∥
×
∥∥π(i)

(
(I1 ⊗ Ii−1 ⊗B(i) ⊗ Ii+1 ⊗ · · · ⊗ Im)v

)∥∥ . (80)

Similarly, one derives from (79) the inequality

π(i)(Bv)νi ≤
∥∥B(1) ⊗ · · · ⊗B(i−1) ⊗B(i+1) ⊗ · · · ⊗B(m)

∥∥
× π(i)

(
(I1 ⊗ · · · ⊗ Ii−1 ⊗B(i) ⊗ Ii+1 ⊗ · · · ⊗ Im)v

)
νi
, νi ∈ ∇di . (81)

4.1.1 Tucker Format

We shall be concerned first with (wavelet representations of) operators A = (aν,ν̃)ν,ν̃∈∇d :

`2(∇d)→ `2(∇d) composed of tensor products of operators according to the Tucker format.
For a given rank vector R ∈ Nm throughout this section we assume that A : `2(∇d) →
`2(∇d) is bounded and has the form

A =
∑

n∈Km(R)

cn

m⊗
i=1

A(i)
ni , (82)

where A
(i)
ni : `2(∇di)→ `2(∇di) for i ∈ {1, . . . ,m} and ni ∈ {1, . . . , Ri}.

Example 3. In particular, any operator of the form

A1 ⊗ I2 ⊗ · · · ⊗ Im + . . . + I1 ⊗ · · · ⊗ Im−1 ⊗Am

can be written in the form (82) with R = (2, . . . , 2), A
(i)
1 = Ii, A

(i)
2 = Ai for i = 1, . . . ,m,

and core tensor

c2,1,...,1 = . . . = c1,...,1,2,1,...,1 = . . . = c1,...,1,2 = 1 , cn = 0 otherwise.
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The A
(i)
ni are in general infinite matrices and not necessarily sparse in the strict sense.

We shall further require, however, that they are nearly sparse as will be quantified next.

To this end, suppose that for each A
(i)
ni we have a sequence of approximations (in the

spectral norm) such that for a given sequence ε
(i)
ni,p, p ∈ N0, of tolerances,

‖A(i)
ni − Ã

(i)
ni,[p]
‖ ≤ ε(i)

ni,p, p ∈ N0. (83)

Moreover, it will be important to apply such sparsified versions of the A
(i)
ni to vectors

which are supported on the elements of a partition {Λ(i)
ni,[p]
}p∈N0 of ∇di .

We shall then consider approximations Ã to A of the form

Ã =
∑

n∈Km(R)

cn

m⊗
i=1

Ã(i)
ni , Ã(i)

ni :=
∑
p∈N0

Ã
(i)
ni,[p]

R
Λ
(i)
ni,[p]

, (84)

where as before RΛ denotes the restriction of a given input sequence to Λ. The parti-

tions Λ
(i)
ni will later be identified for a class of matrices studied in the context of wavelet

methods [9, 36]. In particular, choosing them in dependence on a given input sequence v
facilitates an adaptive approximate application of A to v. The following lemma describes
the accuracy of such approximations.

Lemma 4. Let v ∈ `2(∇d) and let A : `2(∇d) → `2(∇d) have the form (82) for some
R ∈ Nm, while Ã, given by (84), satisfies (83). Then we have

‖Av − Ãv‖ ≤
m∑
i=1

Ri∑
ni=1

∑
p∈N0

C
(i)

Ã
ε

(i)
ni,[p]

∥∥R
Λ
(i)
ni,[p]

π(i)(v)
∥∥ , (85)

where

C
(i)

Ã
= max

ni=1,...,Ri

∥∥∥∑
ňi

cn

( i−1⊗
j=1

Ã(j)
nj

)
⊗
( m⊗
j=i+1

A(j)
nj

)∥∥∥ .
Proof. The usual insertion-triangle inequality argument for estimating differences of prod-

ucts yields, upon using (80) and the definition of the constants C
(i)

Ã
,

‖Av − Ãv‖ ≤
∥∥∥∑
n1

(A(1)
n1
− Ã(1)

n1
)⊗

(∑
ň1

cnA
(2)
n2
⊗ · · · ⊗A(m)

nm

)
v
∥∥∥

+ . . .+
∥∥∥∑
nm

(∑
ňm

cnÃ
(1)
n1
⊗ · · · ⊗ Ã(m−1)

nm−1

)
⊗ (A(m)

nm − Ã(m)
nm ) v

∥∥∥
≤ C(1)

Ã

∑
n1

∥∥[(A(1)
n1
− Ã(1)

n1
)⊗ I⊗ · · · ⊗ I]v

∥∥
+ . . .+ C

(m)

Ã

∑
nm

∥∥[I⊗ · · · ⊗ I⊗ (A(m)
nm − Ã(m)

nm )]v
∥∥ .

The assertion (85) follows now, using (83), from

‖[(A(1)
n1
− Ã(1)

n1
)⊗ I⊗ · · · ⊗ I]v‖ ≤

∑
p

∥∥[(A(1)
n1
− Ã

(1)
n1,[p]

) R
Λ
(1)
n1,[p]

⊗I⊗ · · · ⊗ I]v
∥∥

≤
∑
p

ε(1)
n1,p

∥∥R
Λ
(1)
n1,[p]

π(1)(v)
∥∥

and analogous estimates for the other summands.
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Remark 8. The constants C
(i)

Ã
, depending on the operator and its approximation, may

introduce a dependence on m. In certain cases, this dependence is exponential. For in-
stance, in the case of an operator of the form A = B⊗B⊗ · · · ⊗B with ‖B̃‖ ≤ ‖B‖, we

obtain C
(i)

Ã
= ‖B‖m−1. This constant can therefore also strongly depend on an appropriate

scaling of the problem under consideration. However, in the case of an operator

A = B⊗ I⊗ · · · ⊗ I + I⊗B⊗ I⊗ · · · ⊗ I + . . . + I⊗ · · · ⊗ I⊗B ,

we obtain instead C
(i)

Ã
≤ (m− 1)‖B‖.

Definition 7. Let Λ be a countable index set and let s∗ > 0. We call an operator
B : `2(Λ) → `2(Λ) s∗-compressible if for any 0 < s < s∗, there exist summable positive
sequences (αj)j≥0, (βj)j≥0 and for each j ≥ 0, there exists Bj with at most αj2

j nonzero
entries per row and column, such that ‖B − Bj‖ ≤ βj2

−sj . For a given s∗-compressible
operator B, we denote the corresponding sequences by α(B), β(B).

Moreover, we say that a family of operators {B(n)}n is equi-s∗-compressible if all B(n)
are s∗-compressible with the same choice of sequences (αj), (βj) and in addition, for all
λ ∈ Λ the number of nonzero elements in the rows and columns of the approximations
B(n)j can be estimated jointly for all n in the form

#
(⋃
n

{
λ′ ∈ Λ: (B(n)j)λ,λ′ 6= 0 ∨ (B(n)j)λ′,λ 6= 0

})
≤ αj2j .

Example 4. To give a structural example, let us assume that {ψλ}λ∈∇ is an orthonormal
wavelet basis on R. As before, let |λ| denote the level of the basis function ψλ. For
c, σ, β > 0, we denote by Mc,σ,β the class of infinite matrices for which

|bλ,λ′ | ≤ c 2−||λ|−|λ
′||σ(1 + dist(suppψλ, suppψλ′)

)−β
.

Such bounds are known to hold, for instance, for wavelet representations of the double layer
potential operator. Again, with a suitable rescaling of the wavelets, the representations
of other potential types, as well as elliptic partial differential operators, exhibit the same
decay of entries. It is shown in [9, Proposition 3.4] that (when specialized to the present
case of one-dimensional factors) any B ∈ Mc,σ,β with σ > 1/2, β > 1 is s∗-compressible
with s∗ = min{σ − 1/2, β − 1}.

If B(n) ∈ Mc(n),σ(n),β(n) with c(n) and σ(n)−1, β(n)−1 uniformly bounded, then from
the construction in the proof of [9, Proposition 3.4] it can be seen that the B(n) are
equi-s∗-compressible with s∗ = min{infn σ(n) − 1/2, infn β(n) − 1}, since the same set of
nonzero matrix entries can be used for each n.

The key property of s∗-compressible matrices in the context of adaptive methods is
that they are not only bounded in `2 but also on the smaller approximation spaces, and
thus preserve sparsity in a quantifiable manner. We wish to establish such concepts next
for the tensor setting.

To this end, assume that the components A
(i)
ni in A, given by (82), are s∗-compressible,

and let A
(i)
ni,j

be the corresponding approximations according to Definition 7. Quite in
the spirit of the adaptive application of an operator in wavelet coordinates (see [9]), for
approximating Av for a given v ∈ `2(∇d), the a-priori knowledge about A in terms of
s∗-compressibility is to be combined with a-posteriori information on v. In fact, given
v ∈ `2(∇d), we describe now how to construct for any J ∈ N approximations wJ to the
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sequence Av as follows. For each i and for j ∈ N, let Λ̄
(i)
j be the support of the best 2j-

term approximation of π(i)(v) so that, in particular, Λ̄
(i)
p ⊂ Λ̄

(i)
p+1. If A

(i)
ni = I, we simply

set Ã
(i)
ni = I. If A

(i)
ni 6= I, we let Λ̄

(i)
−1 := ∅ and

Λ
(i)
[p] :=


Λ̄

(i)
p \ Λ̄

(i)
p−1, p = 0, . . . , J,

∇di \ Λ̄
(i)
J , p = J + 1,

∅, p > J + 1.

(86)

Moreover, let

Ã
(i)
ni,[p]

:=

{
A

(i)
ni,J−p, p = 0, . . . , J,

0, p > J.
(87)

Note that due to the particular choice of the sets Λ
(i)
[p] , the factors Ã

(i)
ni,[p]

formed according

to (84) depend on the sequence v. However, as a simple consequence of Definition 7, the

Ã
(i)
ni are bounded independently of v.

Lemma 5. Assume that the components A
(i)
ni of A as in (82) are s∗-compressible. Given

any v ∈ `2(∇d), J ∈ N, let

ÃJ :=
∑

n∈Km(R)

cn

m⊗
i=1

Ã(i)
ni , Ã(i)

ni :=
∑
p∈N0

Ã
(i)
ni,[p]

R
Λ
(i)
ni,[p]

with R
Λ
(i)
ni,[p]

, Ã
(i)
ni defined by (86), (87), respectively. Then, whenever π(i)(v) ∈ As for

some 0 < s < s∗, the finitely supported sequence wJ := ÃJv satisfies

‖Av − ÃJv‖ ≤ 2−s(J−1)
m∑
i=1

C
(i)

Ã
Ri
(
max
n
‖A(i)

n ‖+ ‖β̂(i)‖`1
)
‖π(i)(v)‖As , (88)

as well as
# suppi(ÃJv) ≤ Ri‖α̂(i)‖`12J , (89)

where the sequences α̂, β̂ are defined as the componentwise maxima of the sequences in

Definition 7 for each A
(i)
ni , that is,

α̂
(i)
j := max

n
αj(A

(i)
n ) , β̂

(i)
j := max

n
βj(A

(i)
n ) . (90)

Proof. We apply Lemma 4 with Ã
(i)
ni,[p]

, defined in (87), and Λ
(i)
ni,[p]

:= Λ
(i)
[p] , according to

(86). By s∗-compressibility, we have ‖A(i)
ni − Ã

(i)
ni,[p]
‖ ≤ β̂(i)

J−p2
−s(J−p) =: ε

(i)
ni,p, p = 0, . . . , J,

‖A(i)
ni − Ã

(i)
ni,[J+1]‖ = ‖A(i)

ni ‖, ‖RΛ
(i)
[p]

π(i)(v)‖ = 0 for p > J + 1, and therefore

‖Av −wJ‖ ≤
m∑
i=1

Ri∑
ni=1

C
(i)

Ã


J∑
p=0

β̂
(i)
J−p2

−s(J−p) ∥∥R
Λ
(i)
ni,[p]

π(i)(v)
∥∥

+ ‖A(i)
ni ‖
∥∥R

Λ
(i)
ni,[J+1]

π(i)(v)
∥∥} . (91)

By the choice of the Λ
(i)
[p] and the definition of ‖·‖As , we obtain ‖R

Λ
(i)
[p]

π(i)(v)‖ ≤ 2−s(p−1)‖π(i)(v)‖As

for p = 0, . . . , J + 1, which confirms (88). Furthermore,

# suppi(ÃJv) ≤ Ri(α̂(i)
J 2J20 + α̂

(i)
J−12J−121 + . . .+ α̂

(i)
0 202J) ≤ Ri‖α̂(i)‖`12J , (92)

which is (89).
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Remark 9. Whenever v is finitely supported there exists a p(v) ∈ N0 such that Λ
(i)
[p] = ∅

for i = 1, . . . ,m, p > p(v). Hence, the right hand side of (91) can be computed for each
J ∈ N0, where the sum over p terminates for J ≥ p(v) at p(v). Further increasing J will
then decrease all summands on the right hand side of (91). Therefore, fixing any s < s∗

(close to s∗), we can find for any η > 0 the integer J(η) defined by

J(η) := arg min
J∈N0

{ m∑
i=1

Ri∑
ni=1

C
(i)

Ã

{ J∑
p=0

β̂
(i)
J−p2

−s(J−p) ∥∥R
Λ
(i)
ni,[p]

π(i)(v)
∥∥

+ ‖A(i)
ni ‖
∥∥R

Λ
(i)
ni,[J+1]

π(i)(v)
∥∥} ≤ η}. (93)

To further examine the properties of ÃJ(η)v for a given finitely supported v let

C
(i)
α̂ := ‖α̂(i)‖`1 , C

(i)

β̂
:=
(
max
n
‖A(i)

n ‖+ ‖β̂(i)‖`1
)
. (94)

Theorem 8. Under the assumptions of Lemma 5 on A and any given finitely supported
v ∈ `2(∇d), for any η > 0 let

wη := ÃJ(η)v =: Ãηv, (95)

where J(η) is defined by (93). Then

‖Av − Ãηv‖ ≤ η , (96)

# suppi(Ãηv) ≤ 4C
(i)
α̂ Ri η

− 1
s

( m∑
j=1

C
(j)

β̂
C

(j)

Ã
Rj‖π(j)(v)‖As

) 1
s
, (97)

‖π(i)(Ãηv)‖As ≤
23s+2

2s − 1

(
C

(i)
α̂

)s
C

(i)

β̂
C

(i)

Ã
R1+s
i ‖π(i)(v)‖As , (98)

for all i = 1, . . . ,m, where C
(i)

Ã
is as in Lemma 4, and the constants C

(i)
α̂ , C

(i)

β̂
are defined

by (94) and are independent of v, η, and m. Moreover,

ranki(Ãηv) ≤ Ri ranki(v), i = 1, . . . ,m . (99)

Proof. (96) follows from (93). The bound (97) is an immediate consequence of (89).
Choosing for a given finitely supported v the mode frame system U = U(v) according to
HOSVD, (99) is clear, since with U(i) and a as in Lemma 4, we obtain

Ãηv =
∑

n∈Km(R)

∑
k∈Nm

d(n1,k1),...,(nm,km)

m⊗
i=1

Ã(i)
ni U

(i)
ki
, (100)

where d(n1,k1),...,(nm,km) = cnak.
Without loss of generality it suffices to prove (98) only for i = 1, which allows us to

temporarily simplify the notation by writing Λ[p] for Λ
(1)
[p] . Note first that for each ν1 ∈ ∇d1 ,

using Proposition 3 followed by (81) and (56), we obtain

π(1)
ν1 (Ãηv) ≤ C(1)

Ã

R1∑
n1=1

π(1)
ν1 (Ã(1)

n1
⊗ I · · · ⊗ Iv)

= C
(1)

Ã

R1∑
n1=1

(∑
k

∣∣σ(1)
k

∣∣2∣∣(Ã(1)
n1

U
(1)
k )ν1

∣∣2) 1
2
, (101)
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where we have used (56) in the last step for the mode frame system U(v) from Theorem
2. In order to bound next the terms on the right hand side of (101) let

Λ̂n1,[0] := supp range A
(1)
n1,0

RΛ[0]
,

Λ̂n1,[q] :=
( ⋃
j+`=q

supp range A
(1)
n1,j

RΛ[`]

)
\
(⋃
i<q

Λ̂n1,[i]

)
, q > 0 .

By the same argument as in (92), we also obtain

#Λ̂n1,[q] ≤ ‖α̂
(1)‖`12q. (102)

For q = 0, . . . , J , and each k, we have

‖RΛ̂n1,[q]
Ã(1)
n1

U
(1)
k ‖ ≤

q−1∑
`=0

‖RΛ̂n1,[q]
Ã(1)
n1

RΛ[`]
U

(1)
k ‖+

∥∥∥Ã(1)
n1

J∑
`=q

RΛ[`]
U

(1)
k

∥∥∥,
On the one hand, by (87), we obtain for ` = 0, . . . , q − 1,

RΛ̂n1,[q]
Ã(1)
n1

RΛ[`]
= RΛ̂n1,[q]

(A
(1)
n1,J−` −A

(1)
n1,q−`−1) RΛ[`]

,

and hence

‖RΛ̂n1,[q]
Ã(1)
n1

RΛ[`]
U

(1)
k ‖ ≤

(
‖A(1)

n1
−A

(1)
n1,J−`‖+ ‖A(1)

n1
−A

(1)
n1,q−`−1‖

)
‖RΛ[`]

U
(1)
k ‖

≤
(
β̂

(1)
J−`2

−s(J−`) + β̂
(1)
q−`−12−s(q−`−1)

)
‖RΛ[`]

U
(1)
k ‖

≤ γ`2−s(q−`−1)‖RΛ[`]
U

(1)
k ‖

where we abbreviate γ` := β̂
(1)
J−` + β̂

(1)
q−`−1. On the other hand,∥∥∥Ã(1)

n1

J∑
`=q

RΛ[`]
U

(1)
k

∥∥∥ ≤ ∥∥∥ J∑
`=q

[
(A

(1)
n1,J−` −A(1)

n1
) + A(1)

n1

]
RΛ[`]

U
(1)
k

∥∥∥
≤

J∑
`=q

β̂
(1)
J−`2

−s(J−`)‖RΛ[`]
U

(1)
k ‖+ ‖A(1)

n1
‖
∥∥R⋃

j≥q Λ[j]
U

(1)
k

∥∥ .
Combining these estimates and applying the Cauchy-Schwarz inequality, yields

‖RΛ̂n1,[q]
Ã(1)
n1

U
(1)
k ‖

≤
(
3‖β̂(1)‖`1 + ‖A(1)

n1
‖
) 1

2

(q−1∑
`=0

γ`2
−2s(q−`−1)‖RΛ[`]

U
(1)
k ‖

2

+

J∑
`=q

β̂
(1)
J−`2

−2s(J−`)‖RΛ[`]
U

(1)
k ‖

2 + ‖A(1)
n1
‖
∥∥R⋃

j≥q Λ[j]
U

(1)
k

∥∥2
) 1

2
.

Again using (56), as in (101), leads to

‖RΛ̂n1,[q]
π(1)(Ã(1)

n1
⊗ I2 · · · ⊗ Imv)‖2

≤ 3C
(1)

β̂

(q−1∑
`=0

γ`2
−2s(q−`−1)‖RΛ[`]

π(1)(v)‖2

+

J∑
`=q

β̂
(1)
J−`2

−2s(J−`)‖RΛ[`]
π(1)(v)‖2 + ‖A(1)

n1
‖
∥∥R⋃

j≥q Λ[j]
π(1)(v)

∥∥2
)
,
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and thus, since ‖RΛ[`]
π(1)(v)‖ ≤ 2−s(`−1)‖π(1)(v)‖As and

∥∥R⋃
j≥q Λ[j]

π(1)(v)
∥∥ ≤ 2−s(q−1)‖π(1)(v)‖As ,

for q = 0, . . . , J we arrive at

‖RΛ̂n1,[q]
π(1)(Ã(1)

n1
⊗ I · · · ⊗ Iv)‖ ≤ 2−sq 22(s+1)C

(1)

β̂
‖π(1)(v)‖As . (103)

Recall that the sets Λ̂n1,[q] are disjoint with #Λ̂n1,[q] ≤ ‖α̂(1)‖`12q. By definition of the
As-quasi-norm, we have

‖π(1)(Ã(1)
n1
⊗ I · · · ⊗ Iv)‖As

≤ sup
q∈N0

(∑
j<q

#Λ̂n1,[j] + 1
)s∑

j≥q
‖RΛ̂n1,[j]

π(1)(Ã(1)
n1
⊗ I · · · ⊗ Iv)‖.

Hence from (103) we infer

‖π(1)(Ã(1)
n1
⊗ I · · · ⊗ Iv)‖As ≤ 23s+2(2s − 1)−1‖α̂(1)‖s`1C

(1)

β̂
‖π(1)(v)‖As .

Since by the first inequality in (101), we have

‖π(1)(Ãηv)‖As ≤ C(1)

Ã
Rs1

R1∑
n1=1

‖π(1)(Ã(1)
n1
⊗ I · · · ⊗ Iv)‖As ,

we arrive at (98).

Remark 10. The estimate (98) corresponds to the worst case that the sets Λ̂ni,[q] con-

structed in the proof are disjoint for different ni. If, on the contrary, the {A(i)
ni }ni are

equi-s∗-compressible, and hence these sets are the same for all ni, we can combine (101)
directly with (103) to obtain instead

‖π(i)(Ãηv)‖As .
(
C

(i)
α̂

)s
C

(i)

β̂
C

(i)

Ã
Ri‖π(i)(v)‖As ,

i.e., an improvement by a factor Rsi . Similarly, in this case we also obtain that by a
modification of (92), the estimate (97) can be replaced by

# suppi(Ãηv) . C(i)
α̂ η−

1
s

( m∑
j=1

C
(j)

β̂
C

(j)

Ã
Rj‖π(j)(v)‖As

) 1
s
.

Remark 11. If ri := ranki(v) < ∞, the number ops(Ãηv) of arithmetic operations for
evaluating Ãηv as in Theorem 8, for a given HOSVD of v, can be estimated by

ops(Ãηv) .
m∏
i=1

Riri + η−
1
s

m∑
i=1

C
(i)
α̂ Riri

( m∑
j=1

C
(j)

β̂
C

(j)

Ã
Rj‖π(j)(v)‖As

) 1
s

(104)

with a constant independent of v, η, and m.

Proof. The sorting of entries of π(i)(v) required for obtaining the index sets of best 2j-
term approximations in Theorem 8 can be replaced by an approximate sorting by binary
binning, requiring only # suppi(v) operations, as suggested in [4, 30]. This only leads to
a change in the generic constants in the resulting estimates.

Let v have the HOSVD v =
∑

k akUk, then, on the one hand, we need to form the core
tensor for the result, which takes

∏m
i=1Riri operations, and evaluate the approximations

to Ã
(i)
ni U

(i)
ki

for ni = 1, . . . , Ri and ki = 1, . . . , ri. The number of operations for each of
these terms can be estimated as in [9], which leads to (104).

As the first term on the right hand side of (104) shows, the Tucker format still suffers
from the curse of dimensionality due to the complexity of the core tensors.
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4.1.2 Hierarchical Tucker Format

For applying operators to coefficient sequences given in the hierarchical Tucker format, we
need a representation of these operators with analogous hierarchical structure. That is, in
the representation

A =
∑

n∈Km(R)

cn

m⊗
i=1

A(i)
ni , (105)

for the finitely supported tensor c = (cn) ∈ `2(Nm) we need in addition a hierarchical
decomposition

c = ΣDm({C(α,ν) : α ∈ N (Dm), ν ∈ N}) , (106)

see (37), (38). Here for α ∈ N (Dm), we extend the definition of representation ranks in
the representation of A to each α ∈ Dm by setting R{i} := Ri and

Rα := #{ν : C(α,ν) 6= 0} . (107)

In what follows, we assume maxα∈Dm Rα < ∞ and R0m = 1. According to Theorem 4,
v ∈ `2(∇d) has a representation

v =
∑

k∈Nm
akUk , a = ΣDm({B(α,k)}).

If maxα∈Dm rankα(v) <∞, then Ãηv can be represented in the form (100), with d again
admitting a hierarchical representation in terms of matrices D(α,(ν,k))) on N2 × N2 with
entries

D
(α,(ν,k)))
((µ1,l1),(µ2,l2)) := C

(α,ν)
(µ1,µ2)B

(α,k)
l1,l2

.

That is, as in (37), we have an explicit representation

d = ΣDm
(
{D(α,(ν,k))) : α ∈ N (Dm), ν = 1, . . . , Rα, k = 1, . . . , rankα(v)}

)
in (100), where the indices in k ∈ N are replaced in the definition of ΣDm(·) by the indices
(ν, k) ∈ N2.

Example 5. To give a specific example, we consider an operator of the form

A1 ⊗ I2 ⊗ · · · ⊗ Im + . . . + I1 ⊗ · · · ⊗ Im−1 ⊗Am

in the hierarchical format with dimension tree

Dm =
{

0m, {1}, {2, . . . ,m}, {2}, {3, . . . ,m}, . . . , {m}
}

as in Example 2. Setting A
(i)
1 = Ii, A

(i)
2 = Ai for i = 1, . . . ,m, we obtain a representation

as in (106) with Rα = 2 for α 6= 0m, and

C(0m,1) =

(
0 1
1 0

)
, C(α,1) =

(
1 0
0 0

)
, C(α,2) =

(
0 1
1 0

)
, α ∈ N (Dm) \ {0m} .

The estimates in Theorem 8 now directly carry over to the hierarchical Tucker format,
where as the only modification, (99) is replaced by

rankα(Ãηv) ≤ Rα rankα(v) .
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Remark 12. If for a given HSVD of v, rα := rankα(v) < ∞, α ∈ N (Dm), the number
ops(Ãηv) of arithmetic operations for evaluating Ãηv as in Theorem 8 can be estimated
by

ops(Ãηv) .
∑

α∈N (Dm)

Rαrα

2∏
q=1

Rcq(α)rcq(α)

+ η−
1
s

m∑
i=1

C
(i)
α̂ Riri

( m∑
j=1

C
(j)

β̂
C

(j)

Ã
Rj‖π(j)(v)‖As

) 1
s
, (108)

with a constant independent of v, η, and m.

Comparing the first summand on the right hand side of (108) to the one in (104), we
observe a substantial reduction in complexity regarding the dependence on m (and hence
d).

4.2 Low-Rank Approximations of Operators

In many applications of interest, the involved operators do not have an explicit low-rank
form, but there exist efficient approximations to these operators in low-rank representation.

Such a case can be handled by replacing a given operator A by such an approximation
and then applying the construction for operators given in low-rank form as in the previous
subsections.

To make this precise, we assume that for a suitable growth sequence γA, there exist
approximations AN for N ∈ N with

sup
N
γA(N)‖A−AN‖ =: MA <∞ , (109)

where each AN has a representation (105) with Ri ≤ N . Moreover, in the case of the
hierarchical Tucker format we assume in addition that Rα ≤ N with Rα as in (107).

Moreover, we need to quantify the approximability of the AN . We assume that all
tensor factors arising in each AN are s∗-compressible, and that for the approximations

ÃN,η of AN according to Lemma 4 and Theorem 8 – with constants C
(i)

ÃN
, C

(i)
α̂N

, C
(i)

β̂N
in

Theorem 8 – we have

CA,Ã := sup
N

(
max
i
C

(i)
α̂N

)s(
max
i
C

(i)

ÃN
C

(i)

β̂N

)
<∞ . (110)

Under these conditions, we shall say that the approximations AN to A are uniformly
s∗-compressible.

Under this assumption, the estimates for ops(Ãηv) obtained in Remarks 11 and 12
carry over to the present setting with additional low-rank approximation of the operator.
Here for given η > 0 and v, we choose Nη such that ‖A −ANη‖ ≤ η/2 and ÃNη ,η such

that ‖ANηv − ÃNη ,ηv‖ ≤ η/2, which in summary yields for the Tucker format

ops(ÃNη ,ηv) .
(
γ−1
A (2MA/η)

)m m∏
i=1

ranki(v)

+ C
1
s

A,Ã
η−

1
s
(
γ−1
A (2MA/η)

)1+s−1
m∑
i=1

ranki(v)
( m∑
j=1

‖π(j)(v)‖As
) 1
s
, (111)
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and for the hierarchical Tucker format

ops(ÃNη ,ηv) .
(
γ−1
A (2MA/η)

)3 ∑
α∈N (Dm)

rankα(v)
2∏
q=1

rankcq(α)(v)

+ C
1
s

A,Ã
η−

1
s
(
γ−1
A (2MA/η)

)1+s−1
m∑
i=1

ranki(v)
( m∑
j=1

‖π(j)(v)‖As
) 1
s
. (112)

Note again the reduction in complexity in the first term of (112) over (111).

5 An Adaptive Iterative Scheme

5.1 Formulation and Basic Convergence Properties

We have now all prerequisites in place to formulate an adaptive method whose basic
structure resembles the one introduced in [10] for linear operator equations Au = f ,
where f ∈ `2 and A is bounded and elliptic on `2, that is,

〈Av,v〉`2 ≥ λA‖v‖2`2 , ‖Av‖`2 ≤ ΛA‖v‖`2

holds for fixed constants λA,ΛA > 0. The scheme can be regarded as a perturbation of a
simple Richardson iteration,

vi+1 := vi − ω(Avi − f) , (113)

which applies to both symmetric and nonsymmetric elliptic A. In both cases, the param-
eter ω > 0 can be chosen such that ‖I− ωA‖ < 1.

Based on the developments in the previous sections, we have at hand numerically real-
izable procedures apply, rhs, recompress, and coarsen, which for finitely supported
v and any tolerance η > 0 satisfy

‖Av − apply(v; η)‖ ≤ η , ‖f − rhs(η)‖ ≤ η ,
‖v − recompress(v; η)‖ ≤ η , ‖v − coarsen(v; η)‖ ≤ η .

(114)

Specifications of the complexities of these procedures will be summarized in §5.2. The
adaptive scheme that we analyze in what follows is given in Algorithm 5.1.

Proposition 5. Let the step size ω > 0 in Algorithm 5.1 satisfy ‖I−ωA‖ ≤ ρ < 1. Then
the intermediate steps uk of Algorithm 5.1 satisfy ‖uk − u‖ ≤ θkδ, and in particular, the
output uε of Algorithm 5.1 satisfies ‖uε − u‖ ≤ ε.

Proof. Since κ1 + κ2 + κ3 ≤ 1, it suffices to show that for any k, after the termination of
the inner loop the error bound

‖wj − u‖ ≤ κ1θ
k+1δ (115)

holds. By the choice of ω, we have

‖wj+1 − u‖ ≤ ‖(I− ωA)(wj − u)‖+ ω‖(Awj − f)− rj‖+ βηj

≤ ρ‖wj − u‖+ (ω + β)ηj ,
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Algorithm 5.1 uε = solve(A, f ; ε)

input
ω > 0 and ρ ∈ (0, 1) such that ‖I− ωA‖ ≤ ρ,
θ, κ1, κ2, κ3 ∈ (0, 1) with κ1 + κ2 + κ3 ≤ 1, and β ≥ 0.

output uε satisfying ‖uε − u‖ ≤ ε.
1: u0 := 0, δ := λ−1

A ‖f‖
2: k := 0, J := min{j : ρj(1 + (ω + β)j) ≤ κ1θ}
3: while θkδ > ε
4: w0 := uk, j ← 0
5: repeat
6: ηj := ρj+1θkδ
7: rj := apply(wj ;

1
2ηj)− rhs(1

2ηj)
8: wj+1 := recompress(wj − ωrj ;βηj)
9: j ← j + 1.

10: until (j ≥ J ∨ λ−1
A ρ‖rj−1‖+ (λ−1

A ρ+ ω + β)ηj−1 ≤ κ1θ
k+1δ)

11: uk+1 := coarsen
(
recompress(wj ;κ2θ

k+1δ);κ3θ
k+1δ

)
12: k ← k + 1
13: end while
14: uε := uk

and recursive application of this estimate yields

‖wj − u‖ ≤ ρj‖w0 − u‖+ (ω + β)

j−1∑
l=0

ρj−1−lηl ≤ ρj
(
1 + j(ω + β)

)
θkδ .

Thus on the one hand, if the inner loop exits with the first condition in line 10, then (115)
holds by definition of J . On the other hand, if the second condition is met, then (115)
holds because

‖wj − u‖ ≤ ρ‖wj−1 − u‖+ (ω + β)ηj−1

≤ ρc−1
A (‖rj−1‖+ ηj−1) + (ω + β)ηj−1 ≤ κ1θ

k+1δ .

5.2 Complexity

Quite in the spirit of adaptive wavelet methods we analyze the performance of the above
scheme by comparing it to an “optimality benchmark” addressing the following question:
suppose the unknown solution exhibits a certain (unknown) rate of tensor approximability
where the involved tensors have a certain (unknown) best N -term approximability with
respect to their wavelet representations. Does the scheme automatically recover these
rates? Thus, unlike the situation in wavelet analysis we are dealing here with two types
of approximation, and the choice of corresponding rates as a benchmark model should,
of course, be representative for relevant application scenarios. For the present complexity
analysis, we focus on growth sequences of subexponential or exponential type for the in-
volved low-rank approximations, combined with an algebraic approximation rate for the
corresponding tensor mode frames. The rationale for this choice is the following. Ap-
proximation rates in classical methods are governed by the regularity of the approximand
which, unless the approximand is analytic, results in algebraic rates suffering from the
curse of dimensionality. However, functions of many variables may very well exhibit a
high degree of tensor sparsity without being very regular in the Sobolev or Besov sense.
Therefore, fast tensor-rates combined with polynomial rates for the compressibility of the
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mode frames mark an ideal target scenario for tensor methods, since, as will be shown,
the curse of dimensionality can be significantly ameliorated without requiring excessive
regularity.

The precise formulation of our benchmark model reads as follows.

Assumptions 1. Concerning the tensor approximability of u, A, and f , we make the
following assumptions:

(i) u ∈ AH(γu) with γu(n) = edun
1/bu

for some du > 0, bu ≥ 1.

(ii) A satisfies (109) for an MA > 0, with γA(n) = edAn
1/bA where dA > 0, bA ≥ 1.

(iii) Furthermore, let f ∈ AH(γf ) with γf (n) = edf n
1/bf , where df = min{du, dA} and

bf = bu + bA.

Concerning the approximability of lower-dimensional components, we assume that for some
s∗ > 0, we have the following:

(iv) π(i)(u) ∈ As for i = 1, . . . ,m, for any s with 0 < s < s∗.

(v) The low-rank approximations to A are uniformly s∗-compressible in the sense of §4.2,
with CA := supη>0CA,Ã < ∞, where CA,Ã is defined as in (110) for each value of
η.

(vi) π(i)(f) ∈ As for i = 1, . . . ,m, for any s with 0 < s < s∗.

Furthermore, we assume that the number of operations required for evaluating each required
entry in the tensor approximations of A or f is uniformly bounded.

Note that the requirement on f in (iii) is actually very mild because the data are
typically more tensor sparse than the solution.

The following complexity estimates are formulated only for the more interesting case
of the hierarchical Tucker format. Similar statements hold for the Tucker format, involv-
ing however additional terms that depend exponentially on m, which makes this format
suitable only for moderate values of m.

Remark 13. Let v have finite support with finite ranks, i.e., rankα(v) < ∞ for α ∈
Dm. Then under Assumptions 1, apply can be realized numerically such that for wη :=
apply(v; η) we have (see Theorem 8 and Remark 9)

# suppi(wη) . C
1
s
A

(
d−1
A ln(MA/η)

)(1+s−1)bA
( m∑
j=1

‖π(j)(v)‖As
) 1
s
η−

1
s , (116)

‖π(i)(wη)‖As . CA

(
d−1
A ln(MA/η)

)(s+1)bA‖π(i)(v)‖As , (117)

|rank(wη)|∞ ≤
(
d−1
A ln(MA/η)

)bA |rank(v)|∞ , (118)

and, by (112),

ops(wη) . (m− 1)
(
d−1
A ln(MA/η)

)3bA |rank(v)|3∞

+ mC
1
s
A

(
d−1
A ln(MA/η)

)(1+s−1)bA |rank(v)|∞
( m∑
i=1

‖π(i)(v)‖As
) 1
s
η−

1
s . (119)

Thus, up to polylogarithmic terms, the curse of dimensionality is avoided. If in addition
the approximations of A are equi-s∗-compressible, the polylogarithmic terms in the above
estimates improve according to Remark 10.
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Remark 14. Under Assumptions 1, the routine rhs can be realized numerically such that
for fη := rhs(η) we have

# suppi(fη) . η
− 1
s ‖π(i)(f)‖

1
s
As , (120)

‖π(i)(fη)‖As . ‖π(i)(f)‖As , (121)

|rank(fη)|∞ .
(
d−1
f ln(‖f‖AH(γf )/η)

)bf , (122)

as well as

ops(fη) . (m− 1)|rank(fη)|3∞ + |rank(fη)|∞
m∑
i=1

# suppi(fη) . (123)

Remark 15. We take recompress as a numerical realization of P̂η as defined in (47).
This amounts to the computation of an HOSVD or HSVD, respectively, for which we have
the complexity bounds given in Remarks 1 and 4.

Likewise, coarsen is a numerical realization of Ĉη as defined in (69), with the modifi-

cation of replacing the exact sorting of the values π
(i)
νi (·), i = 1, . . . ,m, ν ∈ ∇di, as required

by Ĉη, by an approximate sorting as proposed in [4, 30], see Remark 11. This leads to an
increase of κC by only a fixed factor; for finitely supported v, the procedure can be realized
in practice such that κC = 2

√
m, and using a number of operations bounded by

C|rank(v)|∞
m∑
i=1

# suppi(v)

with a fixed C > 0. Note that here we make the implicit assumption that the orthogonality
properties required by coarsen have been enforced if necessary before the application of
coarsen. This can be done by an application of recompress(·, 0).

Note that under the assumptions of Proposition 5, the iteration converges for any
fixed β ≥ 0. A call to recompress (possibly with β = 0, i.e., without performing an
approximation) is in fact necessary in each inner iteration to ensure the orthogonality
properties required by apply.

The main result of this paper is the following theorem. It says that whenever the
solution has the approximation properties specified in Assumptions 1, then the adaptive
scheme recovers these rates and the required computational work has optimal complexity
up to logarithmic factors. We have made an attempt to identify the dependencies of the
involved constants on the problem parameters as explicitly as possible.

Theorem 9. Let α > 0 and let κP, κC be as in Theorem 7. Let the constants κ1, κ2, κ3 in
Algorithm 5.1 be chosen as

κ1 =
(
1 + (1 + α)(κP + κC + κPκC)

)−1
,

κ2 = (1 + α)κPκ1 , κ3 = κC(κP + 1)(1 + α)κ1 .

Let Au = f , where A, u, f satisfy Assumptions 1. Then uε produced by Algorithm 5.1
satisfies

|rank(uε)|∞ ≤
(
d−1
u ln

[
(θα)−1ργu ‖u‖AH(γu) ε

−1
])bu , (124)

m∑
i=1

# suppi(uε) .
( m∑
i=1

‖π(i)(u)‖As
) 1
s
ε−

1
s , (125)
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as well as

‖uε‖AH(γu) . ‖u‖AH(γu) , (126)
m∑
i=1

‖π(i)(uε)‖As .
m∑
i=1

‖π(i)(u)‖As . (127)

The multiplicative constant in (126) depends only on α and m, those in (125) and (127)
depend only on α, m and s. For the number of required operations, we have the estimate

ops(uε) . |ln ε|J(3+s−1)bA+2bf
( m∑
i=1

max{‖π(i)(u)‖As , ‖π(i)(f)‖As}
) 1
s
ε−

1
s , (128)

with a multiplicative constant independent of ε and ‖π(i)(u)‖As, ‖π(i)(f)‖As, and with an
algebraic explicit dependence on m and CA.

Remark 16. Recalling the form of the growth sequence γu(n) = edun
1/bu

, the rank bound
(124) can be reformulated in terms of γ−1

u

(
C‖u‖AH(γu)/ε

)
which, in view of Remark 6,

means that up to a multiplicative constant, the ranks remain minimal. On account of
Remark 7, the same holds for the bound (125) on the sparsity of the factors.

Remark 17. The maximum number of inner iterations J that arises in the complexity
estimate is defined in line 2 of Algorithm 5.1. This value depends on the freely chosen
algorithm parameters β and θ, on the constants ω and ρ that depend only on A, and on
κ1. Thus, J depends on m: The choice of κ1 in Theorem 9 leads to κ1 ∼ m−1, and hence
J ∼ logm. Note that since |ln ε|c lnm = mc ln|ln ε|, this leads to an algebraic dependence
of the complexity estimate on m. Furthermore, the precise dependence of the constant in
(128) on m is also influenced by the problem parameters from Assumption 1, which may
contain additional implicit dependencies on m. In particular, as can be seen from the

proof, the constant has a linear dependence on C
J/s
A if CA > 1 (cf. Remark 8).

Theorem 9. By the choice of κ1, κ2, κ3, we can apply Lemma 7 to each ui produced in
line 11 of Algorithm 5.1, which yields the bounds (124), (125), (126), (127) for the values
ε = θkδ, k ∈ N.

It therefore remains to estimate the computational complexity of each inner loop. Note
that recompress in line 8 does not deteriorate the approximability of the intermediates
wj as a consequence of Lemma 3.

Let εk := θkδ. We already know from Theorem 7 that

|rank(uk)|∞ ≤
(
d−1
u ln[α−1ργu ‖u‖AH(γu) ε

−1
k ]
)bu . |ln εk|bu , (129)

m∑
i=1

# suppi(uk) .
( m∑
i=1

‖π(i)(u)‖As
) 1
s
ε
− 1
s

k , (130)

m∑
i=1

‖π(i)(uk)‖As .
m∑
i=1

‖π(i)(u)‖As , (131)

where the multiplicative constants in the last two equations depend on α, m, and s.
Similarly, we obtain (126) from (73). Furthermore, by definition of the iteration,

|rank(wj+1)|∞ ≤
(
d−1
A ln(2MA/ηj)

)bA |rank(wj)|∞ +
(
d−1
f ln(2|f |AH(γf )/ηj)

)bf .
Combining this with (129) and using bf > bu, we obtain

|rank(wj)|∞ . |ln εk|jbA+bf .
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The definition of the iterates also yields

# suppi(wj+1) . # suppi(wj)

+ C
1
s
A

(
d−1
A ln(2MA/ηj)

)(1+s−1)bA
( m∑
l=1

‖π(l)(wj)‖As
) 1
s
η
− 1
s

j

+ ‖π(i)(f)‖
1
s
Asη

− 1
s

j ,

and by (117),

‖π(i)(wj)‖As . ‖π(i)(wj−1)‖As

+ ωCA

(
d−1
A ln(2MA/ηj−1)

)(1+s)bA‖π(i)(wj−1)‖As + ω‖π(i)(f)‖As .

Using these estimates recursively together with (131), (130), we obtain

‖π(i)(wj)‖As . |ln εk|j (1+s) bA max
{
‖π(i)(u)‖As , ‖π(i)(f)‖As

}
and

m∑
i=1

# suppi(wj) . |ln εk|j (1+s−1) bA
( m∑
i=1

max{‖π(i)(u)‖As , ‖π(i)(f)‖As}
) 1
s
ε
− 1
s

k .

The total number of operations for the calls of apply in an inner loop according to (119)
is dominated by that for the calls of recompress, which can be bounded up to a constant
by

m|rank(wJ)|4∞ + |rank(wJ)|2∞
m∑
i=1

# suppi(wJ) .

We thus arrive at (128).

Remark 18. The above results apply directly to problems posed on separable tensor product
Hilbert spaces, for which tensor product Riesz bases are available. Note that this is not
the case for standard Sobolev spaces Hs(Ωd), since in this case the norm induced by the
scalar product is not a cross norm. However, for tensor product domains Ωd, these spaces
can be represented as intersections of d tensor product spaces with induced norms.

As mentioned in the introduction, from a sufficiently regular tensor product wavelet
basis {Ψν := ψν1 ⊗ · · · ⊗ ψνd}ν∈∇d of L2(Ωd), we can obtain a Riesz basis of Hs(Ωd) by a
level-dependent rescaling of basis functions, e.g.,{

2−smaxi|νi|Ψν

}
ν∈∇d .

To again arrive at a problem on `2, we now rewrite the original operator equation Au = f ,
with A : Hs(Ωd)→ (Hs(Ωd))′, in the form∑

µ∈∇d

(
2−s(maxi|νi|+maxi|µi|)〈AΨµ,Ψν〉

)(
2smaxi|µi|〈u,Ψµ〉

)
= 2−s(maxi|νi|〈f,Ψν〉 , ν ∈ ∇d .

We thus obtain a well-posed problem on `2(∇d) for the rescaled coefficient sequence u =
2smaxi|µi|〈u,Ψµ〉 and the infinite matrix A = 2−s(maxi|νi|+maxi|µi|)〈AΨµ,Ψν〉.
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This diagonal rescaling, which in the case of finite-dimensional Galerkin approxima-
tions corresponds to a preconditioning of A, leads to additional problems in our context:
the sequence (2−smaxi|νi|)ν∈∇d (as well as possible equivalent alternatives) has infinite rank
on the full index set ∇d. Hence, the application of A has to involve an approximation by
low rank operators as discussed in §4.2. Strategies for handling this issue are discussed in
more detail in [2]. The complexity analysis of iterative schemes when A involves such a
rescaling will be treated in a separate paper.

6 Numerical Experiments

We choose our example to illustrate the results of the previous section numerically ac-
cording to several criteria. In order to arrive at a valid comparison between different
dimensions, we choose a problem on L2([0, 1]d) that has similar properties for different
values of d. The problem has a discontinuous right hand side and solution, which means
that reasonable convergence rates can be achieved only by adaptive approximation. It is
also still sufficiently simple such that all constants used in Algorithm 5.1 can be chosen
rigorously according to the requirements of the convergence analysis.

We set Ω := [0, 1]d and use tensor order m = d. As an orthonormal wavelet basis
{ψν}ν∈∇ of L2([0, 1]), we use Alpert multiwavelets [1] of polynomial order p ∈ N. Let

(Tv)(t) :=

∫ t

0
v ds ,

then T is a compact operator on L2([0, 1]) with ‖T‖ = 2/π. The infinite matrix represen-
tation

(
〈Tψµ, ψν〉

)
ν,µ∈∇ is s∗-compressible for any s∗ > 0.

For f ∈ L2(Ω), we consider the integral equation(
I− ωd

d⊗
i=1

T
)
u = f (132)

with ωd = 1
2(π2 )d. Note that for B := ωd

⊗d
i=1 T and A := I − B we have ‖B‖ = 1

2 , and
therefore

A−1 = (I−B)−1 =

∞∑
k=0

Bk =
∞∑
k=0

ωkd

d⊗
i=1

T k .

Furthermore, A := I−B is a nonsymmetric, L2-elliptic operator with 〈Av, v〉 ≥ 1
2‖v‖

2
L2(Ω)

as well as ‖A‖ ≤ 3
2 . Since A is the representation with respect to an orthonormal basis,

we obtain λA = 1
2 and ΛA = 3

2 . Due to the special structure of the operator, choosing the
iteration parameter ω as ω := 1, we have ‖I − ωA‖ ≤ 1

2 =: ρ. We choose the right hand
side as

f = (1− τ)

∞∑
k=0

τk
d⊗
i=1

fk , fk(x) :=
√

2π χ[0,1/π] cos(2π2(k + 1)x) , (133)

where τ ∈ (0, 1). This gives ‖fk‖L2([0,1]) = 1 and ‖f‖L2(Ω) = ‖f‖ = 1, and π(i)(f) ∈ As for
any s > 0. The functions fk have jump discontinuities at π−1, which need to be resolved
adaptively in order to maintain the optimal approximation rate for the given wavelet basis.

From the expansion for (I − B)−1, we already know that π(i)(u) ∈ As for any s < p,
for i = 1, . . . ,m. We also have the explicit representation

u = (1− τ)
∞∑

k,n=0

τkωnd

d⊗
i=1

Tnfk .
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For the choice of fk under consideration, evaluating ωnd
⊗d

i=1 T
nfk, we obtain u → f as

d→∞; that is, the mode singular values of the solution approach exponential decay with
rate τ for growing d. Since ‖u − f‖L2 is small for any d > 3, u has similar low-rank
approximability for all relevant d.

Hence for our particular choice of f , the action of A−1 is close to the identity. It
should be emphasized, however, that this only simplifies the interpretation of the results,
but does not simplify the problem from a computational point of view, since our algorithm
does not make use of this particularity. We have also chosen a problem that is completely
symmetric with respect to all variables to simplify the tests and the comparison between
values of d, but do not make computational use of this symmetry.

For the further constants arising in the iteration, we choose θ := 1
2 and β := 1.

For the hierarchical Tucker format, we have κP =
√

2m− 3 and κC =
√
m, and fix the

derived constants κ1, κ2, κ3 as in Theorem 9 by taking α := 1. Furthermore, we have
δ = λ−1

A ‖f‖ = 2.

Remark 19. Since many steps of the algorithm – including the comparably expensive ap-
proximate application of lower-dimensional operators to tensor factors and QR factoriza-
tions of mode frames – can be done independently for each mode, an effective parallelization
of our adaptive scheme is quite easy to achieve.

In all following examples, we use piecewise cubic wavelets. The implementation was
done in C++ using standard LAPACK routines for linear algebra operations. Iterations
are stopped as soon as a required wavelet index cannot be represented as a signed 64-bit
integer.

We make some simplifications in counting the number of required operations: For each
matrix-matrix product, QR factorization, and SVD, we use the standard estimates for
the required number of multiplications (see, e.g., [21]); for the approximation of A and
f , we count one operation per multiplication with a matrix entry and per generated right
hand side entry, respectively (note that we thus make the simplifying assumption that
all required wavelet coefficients can be evaluated using O(1) operations, which could in
principle be realized in the present example, but is not strictly satisfied in our current im-
plementation). We thus neglect some minor contributions that do not play any asymptotic
role, such as the number of operations required for adding two tensor representations, and
the sorting of tensor contraction values for coarsen, which here is done by a standard
library call for simplicity.

6.1 Results with Right Hand Side of Rank 1

For comparison, we first consider a simplified version of the right hand side reduced to the
first summand, that is,

f =

d⊗
i=1

√
2π χ[0,1/π] cos(2π2 ·) .

In high dimensions, the solution u coincides with f up to very small correction terms.
The evolution of the computed approximate residual norms and the corresponding

estimates for the L2-deviation from the solution of the infinite-dimensional problem is
shown in Figure 1. Here one can clearly observe the effect of the coarsening steps after
a certain number of inner iterations. Apart from the expected increase in the number J
of such inner iterations with dimension, the iteration shows quite similar behaviour for
different d. In particular, in each case the resulting iterates wj in Algorithm 5.1 have rank
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Figure 1: Computed approximate residual norms (markers) and corresponding solution
error estimates (solid lines), for f of rank one, in dependence on the total number of inner
iterations (horizontal axis).

1, the residuals rj have ranks at most 3, thus the maximum rank arising in the iteration
is 4.

Note that the iteration is stopped a few steps earlier with increasing dimension because
slightly stricter error tolerances are applied in the approximation of operator and right
hand side. This means that the technical limit for the maximum possible wavelet level is
reached earlier.
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Figure 2: Total operation count (� d = 32, ◦ d = 64, × d = 128) at the end of each inner
iteration in dependence on the estimated error (horizontal axis), for f of rank one. The
triangle shows a slope of 1

4 .

We see that the number of operations, shown in Figure 2, increases at a rate close to
the approximation order 4 of our wavelet basis. What is most remarkable here, however,
is the very mild – almost linear – dependence of the total complexity on the dimension: a
doubling of dimension leads to only slightly more than twice the number of operations.

6.2 Results with Right Hand Side of Unbounded Rank

We now use the full right hand side f as in (133), which leads to a solution with unbounded
rank, and approximately the same exponential decay of singular values as f .

As shown in Figure 3, the computed residual estimates and the corresponding estimates
for the solution error behave quite similarly to the previous example. In the present case,
the computed residual norms show a less regular pattern, which is mostly due to the
adjustment of approximation ranks for the right hand side.

47



20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

20 40 60 80
10

−8

10
−6

10
−4

10
−2

10
0

10 20 30 40 50 60 70
10

−8

10
−6

10
−4

10
−2

10
0

d = 32 d = 64 d = 128

Figure 3: Computed approximate residual norms (markers) and corresponding solution
error estimates (solid lines), for f of unbounded rank, in dependence on the total number
of inner iterations (horizontal axis).
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Figure 4: Maximum ranks of iterates wj (solid lines) and maximum ranks of all inter-
mediates arising in the inner iteration steps (dashed lines), for f of unbounded rank, in
dependence on the total number of inner iterations (horizontal axis).

The ranks of the produced iterates wj , as well as those of the intermediate quantities
arising in the iteration (see line 8 of Algorithm 5.1 prior to the recompression operation),
shows a steady but controlled increase during the iteration, as shown in Figure 4.
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Figure 5: Operation count (� d = 32, ◦ d = 64, × d = 128) at the end of each inner
iteration in dependence on the estimated error (horizontal axis), for f of unbounded rank.
The triangle shows a slope of 1

4 .

Note that in this case, the number of operations, shown in Figure 5, increases visi-
bly faster than the limiting rate corresponding to the approximation order of the lower-
dimensional multiresolution spaces. Due to the higher tensor ranks involved, this is to
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be expected in view of our complexity estimates. The increase of complexity with the
problem dimension, however, still remains very moderate.

7 Conclusion and Outlook

The presented theory and examples indicate that the schemes developed in this work
can be applied to very high-dimensional problems, with a rigorous foundation for the
type of elliptic operator equations considered here. The results can be extended to more
general operator equations, as long as the variational formulation, in combination with a
suitable basis, induces a well-conditioned isomorphism on `2. However, when the operator
represents an isomorphism between spaces that are not simple tensor products, such as
Sobolev spaces and their duals, additional concepts are required, which will be developed
in a subsequent publication.
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