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RANDOM DESIGN ANALYSIS OF RIDGE REGRESSION

DANIEL HSU, SHAM M. KAKADE, AND TONG ZHANG

Abstract. This work gives a simultaneous analysis of both the ordinary least squares estimator and the
ridge regression estimator in the random design setting under mild assumptions on the covariate/response
distributions. In particular, the analysis provides sharp results on the “out-of-sample” prediction error, as

opposed to the “in-sample” (fixed design) error. The analysis also reveals the effect of errors in the estimated
covariance structure, as well as the effect of modeling errors, neither of which effects are present in the fixed
design setting. The proofs of the main results are based on a simple decomposition lemma combined with
concentration inequalities for random vectors and matrices.

1. Introduction

In the random design setting for linear regression, we are provided with samples of covariates and re-
sponses, (x1, y1), (x2, y2), . . . , (xn, yn), which are sampled independently from a population, where the xi are
random vectors and the yi are random variables. Typically, these pairs are hypothesized to have the linear
relationship

yi = 〈β, xi〉+ ǫi

for some linear function β (though this hypothesis need not be true). Here, the ǫi are error terms, typically

assumed to be normally distributed as N (0, σ2). The goal of estimation in this setting is to find coefficients β̂
based on these (xi, yi) pairs such that the expected prediction error on a new draw (x, y) from the population,

measured as E[(〈β̂, x〉 − y)2], is as small as possible. This goal can also be interpreted as estimating β with
accuracy measured under a particular norm.

The random design setting stands in contrast to the fixed design setting, where the covariates x1, x2, . . . , xn

are fixed (i.e., deterministic), and only the responses y1, y2, . . . , yn treated as random. Thus, the covariance
structure of the design points is completely known and need not be estimated, which simplifies the analysis
of standard estimators. However, the fixed design setting does not directly address out-of-sample prediction,

which is of primary concern in many applications; for instance, in prediction problems, the estimator β̂ is

computed from an initial sample from the population, and the end-goal is to use β̂ as a predictor of y given

x where (x, y) is a new draw from the population. A fixed design analysis only assesses the accuracy of β̂ on
data already seen, while a random design analysis is concerned with the predictive performance on unseen
data.

This work gives a detailed analysis of both the ordinary least squares and ridge estimators [9] in the random
design setting that quantifies the essential differences between random and fixed design. In particular, the
analysis reveals, through a simple decomposition:

• the effect of errors in the estimated covariance structure;
• the effect of errors in the estimated covariance structure, as well as the effect of approximating the
true regression function by a linear function in the case the model is misspecified;

• the effect of errors due to noise in the response.

Neither of the first two effects is present in the fixed design analysis of ridge regression, and the random
design analysis shows that the effect of errors in the estimated covariance structure is minimal—essentially
a second-order effect as soon as the sample size is large enough. The analysis also isolates the effect of
approximation error in the main terms of the estimation error bound so that the bound reduces to one that
scales only with the noise variance when the approximation error vanishes.
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Another important feature of the analysis that distinguishes it from that of previous work is that it
applies to the ridge estimator with an arbitrary setting of λ ≥ 0. The estimation error is given in terms
of the spectrum of the second moment of x and the particular choice of λ—the dimension of the covariate
space does not enter explicitly except when λ = 0. When λ = 0, we immediately obtain an analysis of
ordinary least squares; we are not aware of any other random design analysis of the ridge estimator with
this characteristic. More generally, the convergence rate can be optimized by appropriately setting λ based
on assumptions about the spectrum.

Finally, while our analysis is based on an operator-theoretical approach similar to that of [19] and [4], it
relies on probabilistic tail inequalities in a modular way that gives explicit dependencies without additional
boundedness assumptions other than those assumed by the probabilistic bounds.

Outline. Section 2 discusses the model, preliminaries, and related work. Section 3 presents the main results
on the excess mean squared error of the ordinary least squares and ridge estimators under random design
and discusses the relationship to the standard fixed design analysis. Section 4 discusses an application to
accelerating least squares computations on large data sets. The proofs of the main results are given in
Section 5.

2. Preliminaries

2.1. Notation. Unless otherwise specified, all vectors in this work are assumed to live in a finite dimensional
inner product space with inner product 〈·, ·〉. The restriction to finite-dimensions is due to the probabilistic
bounds used in the proofs; the main results of this work can be extended to (possibly infinite-dimensional)
separable Hilbert spaces under mild assumptions by using suitable infinite-dimensional generalizations of
these probabilistic bounds. We denote the dimensionality of this space by d, but stress that our results will
not explicitly depend on d except when considering the special case of λ = 0. Let ‖ · ‖M for a self-adjoint

positive definite linear operator M ≻ 0 denote the vector norm given by ‖v‖M :=
√
〈v,Mv〉. When M is

omitted, it is assumed to be the identity I, so ‖v‖ =
√
〈v, v〉. Let u⊗u denote the outer product of a vector

u, which acts as the rank-one linear operator v 7→ (u ⊗ u)v = 〈v, u〉u. For a linear operator M , let ‖M‖
denote its spectral (operator) norm, i.e., ‖M‖ = supv 6=0 ‖Mv‖/‖v‖, and let ‖M‖F denote its Frobenius norm,

i.e., ‖M‖F =
√
tr(M∗M). If M is self-adjoint, ‖M‖F =

√
tr(M2). Let λmax[M ] and λmin[M ], respectively,

denote the largest and smallest eigenvalue of a self-adjoint linear operator M .

2.2. Linear regression. Let x be a random vector, and let y be a random variable. Throughout, it
is assumed that x and y have finite second moments (E[‖x‖2] < ∞ and E[y2] < ∞). Let {vj} be the
eigenvectors of

(1) Σ := E[x ⊗ x],

so that they form an orthonormal basis. The corresponding eigenvalues are

λj := 〈vj , Σvj〉 = E[〈vj , x〉2].
It is without loss of generality that we assume all eigenvalues λj are strictly positive, since otherwise we may
restrict attention of all vectors to a subspace in which the assumption holds. Let β achieve the minimum
mean squared error over all linear functions, i.e.,

E[(〈β, x〉 − y)2] = min
w

{
E[(〈w, x〉 − y)2]

}
,

so that

(2) β :=
∑

j

βjvj where βj :=
E[〈vj , x〉y]
E[〈vj , x〉2]

.

We also have that the excess mean squared error of w over the minimum is

E[(〈w, x〉 − y)2]− E[(〈β, x〉 − y)2] = ‖w − β‖2Σ
(see Proposition 5).
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2.3. The ridge and ordinary least squares estimators. Let (x1, y1), (x2, y2), . . . , (xn, yn) be indepen-

dent copies of (x, y), and let Ê denote the empirical expectation with respect to these n copies, i.e.,

(3) Ê[f ] :=
1

n

n∑

i=1

f(xi, yi) Σ̂ := Ê[x⊗ x] =
1

n

n∑

i=1

xi ⊗ xi.

Let β̂λ denote the ridge estimator with parameter λ ≥ 0, defined as the minimizer of the λ-regularized
empirical mean squared error, i.e.,

(4) β̂λ := argmin
w

{
Ê[(〈w, x〉 − y)2] + λ‖w‖2

}
.

The special case with λ = 0 is the ordinary least squares estimator, which minimizes the empirical mean

squared error. These estimators are uniquely defined if and only if Σ̂ + λI ≻ 0 (a sufficient condition is
λ > 0), in which case

β̂λ = (Σ̂ + λI)−1
Ê[xy].

2.4. Data model. We now specify the conditions on the random pair (x, y) under which the analysis applies.

2.4.1. Covariate model. We first define the following effective dimensions of the covariate x based on the
second moment operator Σ and the regularization level λ:

(5) dp,λ :=
∑

j

(
λj

λj + λ

)p

, p ∈ {1, 2}.

It will become apparent in the analysis that these dimensions govern the sample size needed to ensure that
Σ is estimated with sufficient accuracy. For technical reasons, we also use the quantity

(6) d̃1,λ := max{d1,λ, 1}
merely to simplify certain probability tail inequalities in the main result in the peculiar case that λ → ∞
(upon which d1,λ → 0). We remark that d2,λ appears naturally arises in the standard fixed design analysis
of ridge regression (see Proposition 1), and that d1,λ was also used by [23] and [4] in their random design
analyses of (kernel) ridge regression. It is easy to see that d2,λ ≤ d1,λ, and that dp,λ is at most the dimension
d of the inner product space (with equality iff λ = 0).

Our main condition requires that the squared length of (Σ + λI)−1/2x is never more than a constant
factor greater than its expectation (hence the name bounded statistical leverage). The linear mapping x 7→
(Σ+λI)−1/2x is sometimes called whitening when λ = 0. The reason for considering λ > 0, in which case we
call the mapping λ-whitening, is that the expectation E[‖(Σ+λI)−1/2x‖2] may only be small for sufficiently
large λ, as

E[‖(Σ + λI)−1/2x‖2] = tr((Σ + λI)−1/2Σ(Σ + λI)−1/2) =
∑

j

λj

λj + λ
= d1,λ.

Condition 1 (Bounded statistical leverage at λ). There exists finite ρλ ≥ 1 such that, almost surely,

‖(Σ + λI)−1/2x‖√
E[‖(Σ + λI)−1/2x‖2]

=
‖(Σ + λI)−1/2x‖√

d1,λ
≤ ρλ.

The hard “almost sure” bound in Condition 1 may be relaxed to moment conditions simply by using
different probability tail inequalities in the analysis. We do not consider this relaxation for sake of simplicity.
We also remark that it is possible to replace Condition 1 with a subgaussian condition (specifically, a
requirement that every projection of (Σ + λI)−1/2x be subgaussian), which can lead to a sharper deviation
bound in certain cases.

Remark 1 (Ordinary least squares). If λ = 0, then Condition 1 reduces to the requirement that there exists
a finite ρ0 ≥ 1 such that, almost surely,

‖Σ−1/2x‖√
E[‖Σ−1/2x‖2]

=
‖Σ−1/2x‖√

d
≤ ρ0.
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Remark 2 (Bounded covariates). If ‖x‖ ≤ r almost surely, then

‖(Σ + λI)−1/2x‖√
d1,λ

≤ r√
(inf{λj}+ λ)d1,λ

in which case Condition 1 holds with ρλ satisfying

ρλ ≤ r√
λd1,λ

.

2.4.2. Response model. The response model considered in this work is a relaxation of the typical Gaussian
model; the model specifically allows for approximation error and general subgaussian noise. Define the
random variables

(7) noise(x) := y − E[y|x] and approx(x) := E[y|x]− 〈β, x〉
where noise(x) corresponds to the response noise, and approx(x) corresponds to the approximation error of
β. This gives the following modeling equation:

y = 〈β, x〉 + approx(x) + noise(x).

Conditioned on x, noise(x) is random, while approx(x) is deterministic.
The noise is assumed to satisfy the following subgaussian moment condition:

Condition 2 (Subgaussian noise). There exists finite σ ≥ 0 such that, almost surely,

E [exp(η noise(x))|x] ≤ exp(η2σ2/2) ∀η ∈ R.

Condition 2 is satisfied, for instance, if noise(x) is normally distributed with mean zero and variance σ2.
For the next condition, define βλ to be the minimizer of the regularized mean squared error, i.e.,

(8) βλ := argmin
w

{
E[(〈w, x〉 − y)2] + λ‖w‖2

}
= (Σ + λI)−1

E[xy],

and also define

(9) approxλ(x) := E[y|x] − 〈βλ, x〉.
The final condition requires a bound on the size of approxλ(x).

Condition 3 (Bounded approximation error at λ). There exist finite bλ ≥ 0 such that, almost surely,

‖(Σ + λI)−1/2x approxλ(x)‖√
E[‖(Σ + λI)−1/2x‖2]

=
‖(Σ + λI)−1/2x approxλ(x)‖√

d1,λ
≤ bλ.

The hard “almost sure” bound in Condition 3 can easily be relaxed to moment conditions, but we do not
consider it here for sake of simplicity. We also remark that bλ only appears in lower-order terms in the main
bounds.

Remark 3 (Ordinary least squares). If λ = 0 and the dimension of the covariate space is d, then Condition 3
reduces to the requirement that there exists a finite b0 ≥ 0 such that, almost surely,

‖Σ−1/2x approx(x)‖√
E[‖Σ−1/2x‖2]

=
‖Σ−1/2x approx(x)‖√

d
≤ b0.

Remark 4 (Bounded approximation error). If | approx(x)| ≤ a almost surely and Condition 1 (with parameter
ρλ) holds, then

‖(Σ + λI)−1/2x approxλ(x)‖√
d1,λ

≤ ρλ| approxλ(x)|

≤ ρλ(a+ |〈β − βλ, x〉|)
≤ ρλ(a+ ‖β − βλ‖Σ+λI‖x‖(Σ+λI)−1)

≤ ρλ(a+ ρλ
√
d1,λ‖β − βλ‖Σ+λI)

where the first and last inequalities use Condition 1, the second inequality uses the definition of approxλ(x)
in (9) and the triangle inequality, and the third inequality follows from Cauchy-Schwarz. The quantity
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‖β − βλ‖Σ+λI can be bounded by
√
λ‖β‖ using the arguments in the proof of Proposition 7. In this case,

Condition 3 is satisfied with
bλ ≤ ρλ(a+ ρλ

√
λd1,λ‖β‖).

If in addition ‖x‖ ≤ r almost surely, then Condition 1 and Condition 3 are satisfied with

ρλ ≤ r√
λd1,λ

and bλ ≤ ρλ(a+ r‖β‖)

as per Remark 2.

2.5. Related work. The ridge and ordinary least squares estimators are classically studied in the fixed
design setting: the covariates x1, x2, . . . , xn are fixed vectors in R

d, and the responses y1, y2, . . . , yn are
independent random variables, each with mean E[yi] = 〈β, xi〉 and variance var(yi) ≤ σ2 [16]. The analysis

reviewed in Section 3.1 reveals the expected prediction error E[‖β̂λ − β‖2Σ] is controlled by the sum of a
bias term, which is zero when λ = 0, and a variance term, which is bounded by σ2d2,λ/n. As discussed in
the introduction, our random design analysis of the ridge estimator reveals the essential differences between
fixed and random design by comparing with this classical analysis.

Many classical analyses of the ridge and ordinary least squares estimators in the random design setting
(e.g., in the context of nonparametric estimators) do not actually show nonasymptotic O(d/n) convergence
of the mean squared error to that of the best linear predictor, where d is the dimension of the covariate
space. Rather, the error relative to the Bayes error is bounded by some multiple c > 1 of the error of the
optimal linear predictor relative to the Bayes error, plus a O(d/n) term [8]:

E[(〈β̂, x〉 − E[y|x])2] ≤ c · E[(〈β, x〉 − E[y|x])2] +O(d/n).

Such bounds are appropriate in non-parametric settings where the error of the optimal linear predictor
also approaches the Bayes error at an O(d/n) rate. Beyond these classical results, analyses of ordinary
least squares often come with nonstandard restrictions on applicability or additional dependencies on the
spectrum of the second moment operator (see the recent work of [2] for a comprehensive survey of these
results); for instance, a result of [5] gives a bound on the excess mean squared error of the form

‖β̂ − β‖2Σ ≤ O

(
d+ log(det(Σ̂)/ det(Σ))

n

)
,

but the bound is only shown to hold when every linear predictor with low empirical mean squared error
satisfies certain boundedness conditions.

This work provides ridge regression bounds explicitly in terms of the vector β (as a sequence) and in terms
of the eigenspectrum of the second moment operator Σ. While the essential setting we study is not new,
previous analyses make unnecessarily strong boundedness assumptions or fail to give a bound in the case
λ = 0. Here we review the analyses of [23], [19], [4], and [20]. [23] assumes ‖x‖ ≤ bx and |〈β, x〉−y| ≤ bapprox
almost surely, and gives the bound

‖β̂λ − β‖2Σ ≤ λ‖β̂λ − β‖2 + c · d1,λ · (bapprox + bx‖β̂λ − β‖)2
n

for some c > 0, where d1,λ is the effective dimension at scale λ as defined in (5). The quantity ‖β̂λ − β‖ is
then bounded by assuming ‖β‖ < ∞. Thus, the dominant terms of the final bound have explicit dependences
on bapprox and bx. [19] assume that |y| ≤ by and ‖x‖ ≤ bx almost surely, and prove the bound

‖β̂λ − βλ‖2Σ ≤ c′ · b
2
xb

2
y

nλ2

for some c′ > 0 (and note that the bound becomes trivial when λ = 0); this is then used to bound ‖β̂λ−β‖2Σ
under explicit assumptions on β. [4] assume ‖x‖ ≤ bx almost surely, and prove the bound (in their Theorem
4)

‖β̂λ − β‖2Σ ≤ c′′ ·
(
‖βλ − β‖2Σ +

bx‖βλ − β‖2Σ
nλ

+
σ2d1,λ

n
+ o(1/n)

)
.

Here, we also note that, if one desires the bound to hold with probability ≥ 1 − e−t for some t > 0, then
the leading factor c′′ > 1 depends quadratically on t. Finally, [20] explicitly require |y| ≤ by and their main
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bound on ‖β̂λ −β‖2Σ (specialized for the ridge estimator) depends on by in a dominant term. Moreover, this
main bound contains c′′′ · (λ‖βλ‖2 + ‖βλ − β‖2Σ) as a dominant term for some c′′′ > 1, and it is only given
under explicit decay conditions on the eigenspectrum (their Equation 6). The bound is also trivial when
λ = 0. Our result for ridge regression is given explicitly in terms of ‖βλ − β‖2Σ (and therefore explicitly in
terms of β as a sequence, the eigenspectrum of Σ, and λ); this quantity vanishes when λ = 0 and can be
small even when ‖β‖ itself is large. We note that ‖βλ − β‖2Σ is precisely the bias term from the classical
fixed design analysis of ridge regression, and therefore is natural to expect in a random design analysis.

Recently, [3] derived sharp risk bounds for the ordinary least squares and ridge estimators (in addition to
specially developed PAC-Bayesian estimators) in a random design setting under very mild moment assump-
tions using PAC-Bayesian techniques. Their nonasymptotic bound for ordinary least squares holds with
probability at least 1 − e−t but only for t ≤ lnn; this is essentially due to their weak moment assumptions.
By relying on stronger moment assumptions, we allow the probability tail parameter t to be as large as
Ω(n/d). Our analysis is also arguably more transparent and yields more reasonable quantitative bounds.
The analysis of [3] for the ridge estimator is established only in an asymptotic sense and therefore are not
directly comparable to those provided here.

Finally, although the focus of our present work is on understanding the ordinary least squares and ridge
estimators, it should also be mentioned that a number of other estimators have been considered in the
literature with nonasymptotic prediction error bounds [14, 3, 13]. Indeed, the works of [3] and [13] propose
estimators that require considerably weaker moment conditions on x and y to obtain optimal rates.

3. Random design regression

This section presents the main results of the paper on the excess mean squared error of the ridge estimator
under random design (and its specialization to the ordinary least squares estimator). First, we review the
standard fixed design analysis.

3.1. Review of fixed design analysis. It is informative to first review the fixed design analysis of the ridge
estimator. Recall that, in this setting, the design points x1, x2, . . . , xn are fixed (deterministic) vectors, and

the responses y1, y2, . . . , yn are independent random variables. Therefore, we define Σ := Σ̂ = n−1
∑n

i=1 xi⊗
xi (which is nonrandom), and assume it has eigenvectors {vj} and corresponding eigenvalues λj := 〈vj , Σvj〉.
As in the random design setting, the linear function β :=

∑
j βjvj where βj := (nλj)

−1
∑n

i=1〈vj , xi〉E[yi]
minimizes the expected mean squared error, i.e.,

β := argmin
w

1

n

n∑

i=1

E[(〈w, xi〉 − yi)
2].

Similar to the random design setup, define noise(xi) := yi − E[yi] and approx(xi) := E[yi] − 〈β, xi〉 for
i = 1, 2, . . . , n, so the following modeling equation holds:

yi = 〈β, xi〉+ approx(xi) + noise(xi)

for i = 1, 2, . . . , n. Because Σ = Σ̂, the ridge estimator β̂λ in the fixed design setting is an unbiased estimator
of the minimizer of the regularized mean squared error, i.e.,

E[β̂λ] = (Σ + λI)−1

(
1

n

n∑

i=1

xiE[yi]

)
= argmin

w

{
1

n

n∑

i=1

E[(〈w, xi〉 − yi)
2] + λ‖w‖2

}
.

This unbiasedness implies that the expected mean squared error of β̂λ has the bias-variance decomposition

(10) E[‖β̂λ − β‖2Σ ] = ‖E[β̂λ]− β‖2Σ + E[‖β̂λ − E[β̂λ]‖2Σ ].
The following bound on the expected excess mean squared error easily follows from this decomposition and
the definition of β (see, e.g., Proposition 7).

Proposition 1 (Ridge regression: fixed design). Fix λ ≥ 0, and assume Σ+λI is invertible. If there exists
σ ≥ 0 such that var(y2i ) ≤ σ2 for all i = 1, 2, . . . , n, then

E[‖β̂λ − β‖2Σ ] ≤
∑

j

λj

(
λj

λ + 1)2
β2
j +

σ2

n

∑

j

(
λj

λj + λ

)2

6



with equality iff var(yi) = σ2 for all i = 1, 2, . . . , n.

Remark 5 (Effect of approximation error in fixed design). Observe that approx(xi) has no effect on the
expected excess mean squared error.

Remark 6 (Effective dimension). The second sum in the bound is equal to d2,λ, a notion of effective dimension
at regularization level λ.

Remark 7 (Ordinary least squares in fixed design). Setting λ = 0 gives the following bound for the ordinary

least squares estimator β̂0:

E[‖β̂0 − β‖2Σ] ≤
σ2d

n
where, as before, equality holds iff var(yi) = σ2 for all i = 1, 2, . . . , n.

3.2. Ordinary least squares. Our analysis of the ordinary least squares estimator (under random design)
is based on a simple decomposition of the excess mean squared error, similar to the one from the fixed design
analysis. To state the decomposition, first let β̄0 denote the conditional expectation of the least squares

estimator β̂0 conditioned on x1, x2, . . . , xn, i.e.,

β̄0 := E[β̂0|x1, x2, . . . , xn] = Σ̂−1
Ê[xE[y|x]].

Also, define the bias and variance as:

εbs := ‖β̄0 − β‖2Σ , εvr := ‖β̂0 − β̄0‖2Σ
Proposition 2 (Random design decomposition). We have

‖β̂0 − β‖2Σ ≤ εbs + 2
√
εbsεvr + εvr

≤ 2(εbs + εvr)

Proof. The claim follows from the triangle inequality and the fact (a+ b)2 ≤ 2(a2 + b2). �

Remark 8. Note that, in general, E[β̂0] 6= β (unlike in the fixed design setting where E[β̂0] = β). Hence, our
decomposition differs from that in the fixed design analysis (see (10)).

Our first main result characterizes the excess loss of the ordinary least squares estimator.

Theorem 1 (Ordinary least squares regression). Pick any t > max{0, 2.6 − log d}. Assume Condition 1
(with parameter ρ0), Condition 2 (with σ), and Condition 3 (with b0) hold and that

n ≥ 6ρ20d(log d+ t).

With probability at least 1− 3e−t, the following holds:

(1) Relative spectral norm error in Σ̂: Σ̂ is invertible, and

‖Σ1/2Σ̂−1Σ1/2‖ ≤ (1− δs)
−1,

where Σ is defined in (1), Σ̂ is defined in (3), and

δs :=

√
4ρ20d(log d+ t)

n
+

2ρ20d(log d+ t)

3n

(note that the lower bound on n ensures δs ≤ 0.93 < 1).
(2) Effect of bias due to random design:

εbs ≤
2

(1− δs)2

(
E[‖Σ−1/2x approx(x)‖2]

n
(1 +

√
8t)2 +

16b20dt
2

9n2

)

≤ 2

(1− δs)2

(
ρ20dE[approx(x)

2]

n
(1 +

√
8t)2 +

16b20dt
2

9n2

)
,

and approx(x) is defined in (9).
7



(3) Effect of noise:

εvr ≤
1

1− δs
· σ

2(d+ 2
√
dt+ 2t)

n
.

Remark 9 (Simplified form). Suppressing the terms that are o(1/n), the overall bound from Theorem 1 is

‖β̂0 − β‖2Σ ≤ 2E[‖Σ−1/2x approx(x)‖2]
n

(1 +
√
8t)2 +

σ2(d+ 2
√
dt+ 2t)

n
+ o(1/n)

(so b0 appears only in the o(1/n) terms). If the linear model is correct (i.e., E[y|x] = 〈β, x〉 almost surely),
then

(11) ‖β̂0 − β‖2Σ ≤ σ2(d+ 2
√
dt+ 2t)

n
+ o(1/n).

One can show that the constants in the first-order term in (11) are the same as those that one would obtain
for a fixed design tail bound.

Remark 10 (Tightness of the bound). Since

‖β̄0 − β‖2Σ = ‖(Σ1/2Σ̂−1Σ1/2)Ê[Σ−1/2x approx(x)]‖2

and

‖Σ1/2Σ̂−1Σ1/2 − I‖ → 0

as n → ∞ (Lemma 2), ‖β̄0 − β‖2Σ is within constant factors of ‖Ê[Σ−1/2x approx(x)]‖2 for sufficiently large
n. Moreover,

E[‖Ê[Σ−1/2x approx(x)]‖2] = E[‖Σ−1/2x approx(x)‖2]
n

,

which is the main term that appears in the bound for εbs. Similarly, ‖β̂0 − β̄0‖2Σ is within constant factors

of ‖β̂0 − β̄0‖2Σ̂ for sufficiently large n, and

E[‖β̂0 − β̄0‖2Σ̂ ] ≤
σ2d

n

with equality iff var(y) = σ2 (this comes from the fixed design risk bound in Remark 7). Therefore, in
this case where var(y) = σ2, we conclude that the bound Theorem 1 is tight up to constant factors and
lower-order terms.

3.3. Random design ridge regression. The analysis of the ridge estimator under random design is again
based on a simple decomposition of the excess mean squared error. Here, let β̄λ denote the conditional

expectation of β̂λ given x1, x2, . . . , xn, i.e.,

(12) β̄λ := E[β̂λ|x1, x2, . . . , xn] = (Σ̂ + λI)−1
Ê[xE[y|x]].

Define the bias from regularization, the bias from the random design, and the variance as:

εrg := ‖βλ − β‖2Σ , εbs := ‖β̄λ − βλ‖2Σ , εvr := ‖β̂λ − β̄λ‖2Σ,
where βλ is the minimizer of the regularized mean squared error (see (8)).

Proposition 3 (General random design decomposition).

‖β̂λ − β‖2Σ ≤ εrg + εbs + εvr + 2(
√
εrgεbs +

√
εrgεvr +

√
εbsεvr)

≤ 3(εrg + εbs + εvr)

Proof. The claim follows from the triangle inequality and the fact (a+ b)2 ≤ 2(a2 + b2). �

Remark 11. Again, note that E[β̂λ] 6= βλ in general, so the bias-variance decomposition in (10) from the
fixed design analysis is not directly applicable in the random design setting.

The following theorem is the main result of the paper:
8



Theorem 2 (Ridge regression). Fix some λ ≥ 0, and pick any t > max{0, 2.6− log d̃1,λ}. Assume Condi-
tion 1 (with parameter ρλ), Condition 2 (with parameter σ), and Condition 3 (with parameter bλ) hold; and
that

n ≥ 6ρ2λd1,λ(log d̃1,λ + t),

where dp,λ for p ∈ {1, 2} is defined in (5), and d̃1,λ is defined in (6).
With probability at least 1− 4e−t, the following holds:

(1) Relative spectral norm error in Σ̂ + λI: Σ̂ + λI is invertible, and

‖(Σ + λI)1/2(Σ̂ + λI)−1(Σ + λI)1/2‖ ≤ (1− δs)
−1,

where Σ is defined in (1), Σ̂ is defined in (3), and

δs :=

√
4ρ2λd1,λ(log d̃1,λ + t)

n
+

2ρ2λd1,λ(log d̃1,λ + t)

3n

(note that the lower bound on n ensures δs ≤ 0.93 < 1).

(2) Frobenius norm error in Σ̂:

‖(Σ + λI)−1/2(Σ̂ −Σ)(Σ + λI)−1/2‖F ≤
√
d1,λδf ,

where

δf :=

√
ρ2λd1,λ − d2,λ/d1,λ

n
(1 +

√
8t) +

4
√
ρ4λd1,λ + d2,λ/d1,λt

3n
.

(3) Effect of regularization:

εrg ≤
∑

j

λj

(
λj

λ + 1)2
β2
j .

If λ = 0, then εrg = 0.
(4) Effect of bias due to random design:

εbs ≤
2

(1− δs)2

(
E[‖(Σ + λI)−1/2(x approxλ(x)− λβλ)‖2]

n
(1 +

√
8t)2 +

16
(
bλ
√
d1,λ +

√
εrg
)2
t2

9n2

)

≤ 4

(1− δs)2

(
ρ2λd1,λE[approxλ(x)

2] + εrg
n

(1 +
√
8t)2 +

(
bλ
√
d1,λ +

√
εrg
)2
t2

n2

)
,

and approxλ(x) is defined in (9). If λ = 0, then approxλ(x) = approx(x) as defined in (7).
(5) Effect of noise:

εvr ≤
σ2
(
d2,λ +

√
d1,λd2,λδf

)

n(1− δs)2
+

2σ2

√(
d2,λ +

√
d1,λd2,λδf

)
t

n(1− δs)3/2
+

2σ2t

n(1− δs)
.

We now discuss various aspects of Theorem 2.

Remark 12 (Simplified form). Ignoring the terms that are o(1/n) and treating t as a constant, the overall
bound from Theorem 2 is

‖β̂λ − β‖2Σ ≤ ‖βλ − β‖2Σ +O

(
E[‖(Σ + λI)−1/2(x approxλ(x) − λβλ)‖2] + σ2d2,λ

n

)

≤ ‖βλ − β‖2Σ +O

(
ρ2λd1,λE[approxλ(x)

2] + ‖βλ − β‖2Σ + σ2d2,λ
n

)

≤ ‖βλ − β‖2Σ +O

(
ρ2λd1,λE[approx(x)

2] + (ρ2λd1,λ + 1)‖βλ − β‖2Σ + σ2d2,λ
n

)

where the last inequality follows from the fact
√
E[approxλ(x)

2] ≤
√
E[approx(x)2] + ‖βλ − β‖Σ .

9



Remark 13 (Effect of errors in Σ̂). The accuracy of Σ̂ has a relatively mild effect on the bound—it appears
essentially through multiplicative factors (1−δs)

−1 = 1+O(δs) and 1+δf , where both δs and δf are decreasing
with n (as n−1/2), and therefore only contribute to lower-order terms overall.

Remark 14 (Effect of approximation error). The effect of approximation error is isolated in the term ‖β̄λ −
βλ‖2Σ . The bound εbs scales with a fourth-moment quantity E[‖(Σ + λI)−1/2(x approxλ(x) − λβλ‖2]; when
using the looser bound O(ρ2λd1,λE[approx(x)

2] + (ρ2d1,λ + 1)‖βλ − β‖2Σ), the overall simplified bound from
Remark 12 can be viewed as

E[(〈β̂λ, x〉 − E[y|x])2|β̂λ]

≤ E[(〈β, x〉 − E[y|x])2]
(
1 +

c1ρ
2
λd1,λ
n

)
+ E[〈βλ − β, x〉2]

(
1 +

c2(ρ
2
λd1,λ + 1)

n

)

+ terms due to stochastic noise

for some positive constants c1 and c2. Therefore, the (bound on the) mean squared error of β̂λ is the sum
of two contributions (up to lower-order terms): the first is a scaling of the approximation errors E[(〈β, x〉 −
E[y|x])2]+E[〈βλ−β, x〉2], where the scaling 1+O((ρ2λd1,λ+1)/n) tends to one as n → ∞; and the second is
the stochastic noise contribution. The approximation error contribution is unique to random design, while
the stochastic noise appears in both random and fixed design.

Remark 15 (Bounded covariates). Suppose approx(x) = 0 and that there exists r > 0 such that ‖x‖ ≤ r
almost surely. This is the setting of a well-specified model with bounded covariates; the minimax risk over
the class of models β with ‖β‖ ≤ B for some B > 0 is at least Ω(

√
σ2r2B2/n) [17]. In this case, using the

inequalities ‖βλ − β‖2Σ ≤ λ‖β‖2/2 and d2,λ ≤ tr(Σ)/(2λ), the simplified bound from Remark 12 reduces to

‖β̂λ − β‖2Σ ≤
(
1 +O

(
1 + r2/λ

n

))
· λ‖β‖

2

2
+

σ2

n
· tr(Σ)

2λ
.

Choosing λ > 0 to minimize the bound and using the fact tr(Σ) ≤ r2 gives

‖β̂λ − β‖2Σ ≤
√

σ2r2B2

n
·
(
1 +O(1/n)

)
+O

(
r2B2

n

)
,

which matches the lower bound up to constant factors and lower-order terms.

Remark 16 (Application to smoothing splines). The applications of ridge regression considered by [23] can
also be analyzed using Theorem 2 (although technically our result is only proved in the finite-dimensional
setting). We specifically consider the problem of approximating a periodic function with smoothing splines,
which are functions f : R → R whose s-th derivatives f (s), for some s > 1/2, satisfy

∫ (
f (s)(t)

)2
dt < ∞.

The one-dimensional covariate t ∈ R can be mapped to the infinite-dimensional representation x := φ(t) ∈
R

∞ where

x2k :=
sin(kt)

(k + 1)s
and x2k+1 :=

cos(kt)

(k + 1)s
, k ∈ {0, 1, 2, . . .}.

Assume that the regression function is

E[y|x] = 〈β, x〉
so approx(x) = 0 almost surely. Observe that ‖x‖2 ≤ 2s

2s−1 , so Condition 1 is satisfied with

ρλ :=

(
2s

2s− 1

)1/2
1√
λd1,λ

10



as per Remark 2. Therefore, the simplified bound from Remark 12 becomes in this case

‖β̂λ − β‖2Σ ≤ ‖βλ − β‖2Σ + C ·
(

2s

2s− 1
· ‖βλ − β‖2Σ

λn
+

‖βλ − β‖2Σ + σ2d2,λ
n

)

≤ λ‖β‖2
2

+ C · σ
2d2,λ
n

+ C ·
(

2s

2s− 1
+

λ

2

)
· ‖β‖

2

n

for some constant C > 0, where we have used the inequality ‖βλ − β‖2Σ ≤ λ‖β‖2/2. [23] shows that

d1,λ ≤ inf
k≥1

{
2k +

2/λ

(2s− 1)k2s−1

}
.

Since d2,λ ≤ d1,λ, it follows that setting λ := k−2s where k = ⌊((2s− 1)n/(2s))1/(2s+1)⌋ gives the bound

‖β̂λ − β‖2Σ ≤
(‖β‖2

2
+ 2Cσ2

)
·
(
2s− 1

2s
· n
)− 2s

2s+1

+ lower-order terms

which has the optimal data-dependent rate of n− 2s
2s+1 [22].

Remark 17 (Comparison with fixed design). As already discussed, the ridge estimator behaves similarly

under fixed and random designs, with the main differences being the lack of errors in Σ̂ under fixed design,
and the influence of approximation error under random design. These are revealed through the quantities ρλ
and d1,λ (and bλ in lower-order terms), which are needed to apply the probability tail inequalities. Therefore,
the scaling of ρ2λd1,λ with λ crucially controls the effect of random design compared with fixed design.

4. Application to accelerating least squares computations

Our results for the ordinary least squares estimator can be used to analyze a randomized approxima-
tion scheme for overcomplete least squares problems [7, 18]. The goal of these randomized methods is to
approximately solve the least squares problem

min
w∈Rd

1

m
‖Aw − b‖2

for some large, full-rank design matrix A ∈ R
m×d (m ≫ d) and vector b ∈ R

m. Note that using a standard
method to exactly solve the least squares problem requires Ω(md2) operations, which can be prohibitive
for large-scale problems. However, when an approximate solution is satisfactory, significant computational
savings can be achieved through the use of randomization.

4.1. A randomized approximation scheme for least squares. The approximation scheme is as follows:

(1) The columns of A and the vector b are first subjected to a randomly chosen rotation matrix (i.e., an
orthogonal transformation) Θ ∈ R

m×m. The distribution over rotation matrices that may be used
is discussed below.

(2) A sample of n rows of [ΘA,Θb] ∈ R
m×(d+1) are then selected uniformly at random with replacement;

let {[x⊤

i , yi] : i = 1, 2, . . . , n} (where xi ∈ R
d and yi ∈ R) be the n selected rows of [ΘA,Θb].

(3) Finally, the least squares problem

min
w∈Rd

1

n

n∑

i=1

(〈w, xi〉 − yi)
2

is solved by computing the ordinary least squares estimator β̂0 on the sample {(xi, yi) : i =
1, 2, . . . , n}.

The motivation for the random rotation Θ is captured in Lemma 1, which shows that, if Θ is chosen randomly
from certain distributions over rotation matrices, then applying Θ to A and b creates an equivalent least
squares problem for which the statistical leverage parameter (the quantity ρ0 in Condition 1) is small.
Consequently, the new least squares problem can be approximately solved with a small random sample, as
per Theorems 2 and 1. Without the random rotation, the statistical leverage parameter could be so large
that small random sample of the rows will likely miss a row crucial for obtaining an accurate approximation.
The role of statistical leverage in this setting was also pointed out by [6], although Lemma 1 makes the
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connection more direct. We note that Lemma 1 and the analysis below can be generalized to the case where
Θ is only approximately orthogonal; for most standard distributions over rotation matrices, the additional
error terms that arise do not affect the overall analysis.

The running time of the approximation scheme is given by (i) the time required to apply the m×m random
rotation operator Θ to the original m× (d+1) matrix [A, b] and randomly sample n rows, plus (ii) the time
to solve the least squares problem on the smaller design matrix of size n × d. For (i), näıvely applying an
arbitrary m×m rotation matrix requires Ω(m2d) operations; however, there are (distributions over) rotation
matrices for which this running time can be reduced to O(md logm) (see Example 2 in Section 4.3 below),
which is a considerable speed-up when m is large. In fact, because only n out of m rows are to be retained
anyway, this computation can be reduced to O(md log n) [1]. For (ii), standard methods can produce the
ordinary least squares estimator or the ridge regression estimator with O(nd2) operations. Therefore, we are
interested in the sample size n that suffices to yield an accurate approximation.

4.2. Analysis of the approximation scheme. Our approach to analyzing the above approximation
scheme is to treat it as a random design regression problem. We apply Theorem 1 in this setting to give
error bounds for the solution produced by the approximation scheme.

Let (x, y) ∈ R
d × R be a random pair distributed uniformly over the rows of [ΘA,Θb], where we assume

that Θ is randomly chosen from a suitable distribution over rotation matrices such as those described in
Example 1 and Example 2. Lemma 1 (below) implies that there exists a constant c0 > 0 such that Condition 1
is satisfied with

ρ20 ≤ c0 ·
(
1 +

logm+ τ

d

)

with probability at least 1− e−τ over the choice of the random rotation matrix Θ. Henceforth, we condition
on the event that this holds.

Let β ∈ R
d be the solution to the original least squares problem (i.e., β := argminw ‖Aw − b‖2/m), and

let β̂0 ∈ R
d be the ordinary least squares estimator computed on the random sample of the rows of [ΘA,Θb].

Note that, for any w ∈ R
d,

E[(〈w, x〉 − y)2] =
1

m
‖ΘAw −Θb‖2 = 1

m
‖Aw − b‖2.

Moreover, we may assume for simplicity that y − 〈β, x〉 = approx(x) (i.e., there is no stochastic noise), so
E[approx(x)2] = E[(〈β, x〉 − y)2] = ‖Aβ − b‖2/m.

By Theorem 1, if at least

n ≥ 6
(
d+ c0(logm+ τ)

)
(log d+ t)

rows of [ΘA,Θb] are sampled, then the ordinary least squares estimator β̂0 satisfies the following approxi-
mation error guarantee (with probability at least 1− 3e−t over the random sample of rows):

1

m
‖Aβ̂0 − b‖2 ≤ 1

m
‖Aβ − b‖2 ·

(
1 + c1

(d+ logm+ τ)t

n

)
+ o(1/n)

for some constant c1 > 0. We note that the o(1/n) terms can be removed if one only requires constant
probability of success (i.e., τ and t treated as constants), as is considered by [7]. In this case, we achieve an
error bound of

1

m
‖Aβ̂0 − b‖2 ≤ 1

m
‖Aβ − b‖2 · (1 + ǫ)

for ǫ > 0 provided that the number of rows sampled is

n ≥ c2(d+ logm)

(
1

ǫ
+ log d

)

for some constant c2 > 0.
12



4.3. Random rotations and bounding statistical leverage. The following lemma gives a simple con-
dition on the distribution of the random orthogonal matrix Θ ∈ R

n×n used to preprocess a data matrix A
so that Condition 1 is applicable to a random vector x drawn uniformly from the rows of ΘA. Its proof is a
straightforward application of Lemma 8.

Lemma 1. Fix any τ > 0 and λ ≥ 0. Suppose Θ ∈ R
m×m is a random orthogonal matrix and κ > 0 is a

constant such that

(13) E
[
exp

(
α⊤
(√

mΘ⊤ei
))]

≤ exp
(
κ‖α‖2/2

)
, ∀α ∈ R

m, ∀i = 1, 2, . . . ,m,

where ei is the i-th coordinate vector in R
m. Let A ∈ R

m×d be any matrix of rank d, and let Σ :=
(1/m)(ΘA)⊤(ΘA) = (1/m)A⊤A. There exists

ρ2λ ≤ κ

(
1 + 2

√
logm+ τ

d1,λ
+

2(logm+ τ)

d1,λ

)

such that

Pr

[
max

i=1,2,...,m
‖(Σ + λI)−1/2(ΘA)⊤ei‖2 > ρ2λd1,λ

]
≤ e−τ

where d1,λ :=
∑d

j=1
λj

λj+λ and {λ1, λ2, . . . , λd} are the eigenvalues of Σ.

Proof. Let zi :=
√
mΘ⊤ei for each i = 1, 2, . . . , n. Let U ∈ R

m×d be a matrix of left orthonormal singular
vectors of (1/

√
m)A, and let Dλ := diag( λ1

λ1+λ ,
λ2

λ2+λ , . . . ,
λd

λd+λ). Note that Dλ = I if λ = 0. We have

‖(Σ + λI)−1/2(ΘA)⊤ei‖ = ‖√mD
1/2
λ U⊤Θ⊤ei‖ = ‖D1/2

λ U⊤zi‖.
Since tr(UDλU

⊤) = d1,λ, tr(UD2
λU

⊤) ≤ d1,λ, and λmax[UDλU
⊤] ≤ 1, Lemma 8 implies

Pr

[
‖D1/2

λ U⊤zi‖2 > κ

(
d1,λ + 2

√
d1,λ(logm+ τ) + 2(logm+ τ)

)]
≤ e−τ/m.

Therefore, by a union bound,

Pr

[
max

i=1,2,...,m
‖(Σ + λI)−1/2(ΘA)⊤ei‖2 > κ

(
d1,λ + 2

√
d1,λ(logm+ τ) + 2(logm+ τ)

)]
≤ e−τ . �

Below, we give two simple examples under which the condition (13) in Lemma 1 holds.

Example 1. Let Θ be distributed uniformly over all m ×m orthogonal matrices. Fix any i = 1, 2, . . . ,m.
The random vector v := Θ⊤ei is distributed uniformly on the unit sphere §m−1. Let l be a χ random variable
with m degrees of freedom, so z := lv follows an isotropic multivariate Gaussian distribution. By Jensen’s
inequality and the fact that E[exp(q⊤z)] ≤ exp(‖q‖2/2) for any vector q ∈ R

m,

E
[
exp

(
α⊤
(√

mΘ⊤ei
))]

= E
[
exp

(
α⊤
(√

mv
))]

= E

[
E

[
exp

(√
m

E[l]
α⊤(E[l]v)

) ∣∣∣ v
]]

≤ E

[
exp

(√
m

E[l]
α⊤(lv)

)]

= E

[
exp

(√
m

E[l]
α⊤z

)]

≤ exp

(‖α‖2m
2E[l]2

)

≤ exp

(
‖α‖2
2

(
1− 1

4m
− 1

360m3

)−2
)

where the last inequality is due to the following lower estimate for χ random variables:

E[l] ≥ √
m

(
1− 1

4m
− 1

360m3

)
.
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Therefore, the condition (13) is satisfied with κ = 1 +O(1/m).

Example 2. Let m be a power of two, and let Θ := H diag(s)/
√
m, where H ∈ {±1}m×m is the

m × m Hadamard matrix, and s := (s1, s2, . . . , sn) ∈ {±1}m is a vector of m Rademacher variables (i.e.,
s1, s2, . . . , sm are i.i.d. with Pr[s1 = 1] = Pr[s1 = −1] = 1/2). It is easy to check that Θ is an orthogonal
matrix. The random rotation Θ is a key component of the fast Johnson-Lindenstrauss transform of [1], also
used by [7]. It is especially important for the present application because it can be applied to vectors with
O(m logm) operations, which is significantly faster than the Ω(m2) running time of näıve matrix-vector
multiplication.

For each i = 1, 2, . . . ,m, the distribution of
√
mΘ⊤ei is the same as that of s, and therefore

E
[
exp

(
α⊤
(√

mΘ⊤ei
))]

= E [exp (α⊤s)] ≤ exp(‖α‖2/2)

where the last step follows by Hoeffding’s inequality. Therefore, the condition (13) is satisfied with κ = 1.

5. Proofs of Theorem 1 and Theorem 2

The proof of Theorem 2 uses the decomposition of ‖β̂λ − β‖2Σ in Proposition 3, and then bounds each
term using the lemmas proved in this section.

The proof of Theorem 1 omits one term from the decomposition in Proposition 3 due to the fact that
β = βλ when λ = 0; and it uses a slightly simpler argument to handle the effect of noise (Lemma 6 rather
than Lemma 7), which reduces the number of lower-order terms. Other than these differences, the proof is
the same as that for Theorem 2 in the special case of λ = 0.

Define

Σλ := Σ + λI,(14)

Σ̂λ := Σ̂ + λI, and(15)

∆λ := Σ
−1/2
λ (Σ̂ −Σ)Σ

−1/2
λ(16)

= Σ
−1/2
λ (Σ̂λ −Σλ)Σ

−1/2
λ .

Recall the basic decomposition from Proposition 3:

‖β̂λ − β‖2Σ ≤
(
‖βλ − β‖Σ + ‖β̄λ − βλ‖Σ + ‖β̂λ − β̄λ‖Σ

)2
.

Section 5.1 first establishes basic properties of β and βλ, which are then used to bound ‖βλ − β‖2Σ; this part
is exactly the same as the standard fixed design analysis of ridge regression. Section 5.2 employs probability
tail inequalities for the spectral and Frobenius norms of random matrices to bound the matrix errors in

estimating Σ with Σ̂. Finally, Section 5.3 and Section 5.4 bound the contributions of approximation error

(in ‖β̄λ−βλ‖2Σ) and noise (in ‖β̂λ− β̄λ‖2Σ), respectively, using probability tail inequalities for random vectors

as well as the matrix error bounds for Σ̂.

5.1. Basic properties of β and βλ, and the effect of regularization. The following propositions are
well known in the study of inverse problems:

Proposition 4 (Normal equations). E[〈w, x〉y] = E[〈w, x〉〈β, x〉] for any w.

Proof. It suffices to prove the claim for w = vj . Since E[〈vj , x〉〈vj′ , x〉] = 0 for j′ 6= j, it follows that
E[〈vj , x〉〈β, x〉] =

∑
j′ βj′E[〈vj , x〉〈vj′ , x〉] = βjE[〈vj , x〉2] = E[〈vj , x〉y], where the last equality follows from

the definition of β in (2). �

Proposition 5 (Excess mean squared error). E[(〈w, x〉 − y)2]−E[(〈β, x〉 − y)2] = E[〈w− β, x〉2] for any w.
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Proof. Directly expanding the squares in the expectations reveals that

E[(〈w, x〉 − y)2]− E[(〈β, x〉 − y)2]

= E[〈w, x〉2 ]− 2E[〈w, x〉y] + 2E[〈β, x〉y]− E[〈β, x〉2]
= E[〈w, x〉2 ]− 2E[〈w, x〉〈β, x〉] + 2E[〈β, x〉〈β, x〉] − E[〈β, x〉2]
= E[〈w, x〉2 − 2〈w, x〉〈β, x〉 + 〈β, x〉2]
= E[〈w − β, x〉2]

where the third equality follows from Proposition 4. �

Proposition 6 (Shrinkage). For any j,

〈vj , βλ〉 =
λj

λj + λ
βj .

Proof. Since (Σ + λI)−1 =
∑

j(λj + λ)−1vj ⊗ vj ,

〈vj , βλ〉 = 〈vj , (Σ + λI)−1
E[xy]〉 = 1

λj + λ
E[〈vj , x〉y] =

λj

λj + λ

E[〈vj , x〉y]
〈vj , x〉2

=
λj

λj + λ
βj .

�

Proposition 7 (Effect of regularization).

‖β − βλ‖2Σ =
∑

j

λj

(
λj

λ + 1)2
β2
j .

Proof. By Proposition 6,

〈vj , β − βλ〉 = βj −
λj

λj + λ
βj =

λ

λj + λ
βj .

Therefore,

‖β − βλ‖2Σ =
∑

j

λj

(
λ

λj + λ
βj

)2

=
∑

j

λj

(
λj

λ + 1)2
β2
j .

�

5.2. Effect of errors in Σ̂.

Lemma 2 (Spectral norm error in Σ̂). Assume Condition 1 (with parameter ρλ) holds. Pick t > max{0, 2.6−
log d̃1,λ}. With probability at least 1− e−t,

‖∆λ‖ ≤

√
4ρ2λd1,λ(log d̃1,λ + t)

n
+

2ρ2λd1,λ(log d̃1,λ + t)

3n

where ∆λ is defined in (16).

Proof. The claim is a consequence of the tail inequality from Lemma 10. First, define

x̃ := Σ
−1/2
λ x and Σ̃ := Σ

−1/2
λ ΣΣ

−1/2
λ

(where Σλ is defined in (14)), and let

Z := x̃⊗ x̃− Σ̃

= Σ
−1/2
λ (x⊗ x−Σ)Σ

−1/2
λ

so ∆λ = Ê[Z]. Observe that E[Z] = 0 and

‖Z‖ = max{λmax[Z], λmax[−Z]} ≤ max{‖x̃‖2, 1} ≤ ρ2λd1,λ

where the second inequality follows from Condition 1. Moreover,

E[Z2] = E[(x̃⊗ x̃)2]− Σ̃2 = E[‖x̃‖2(x̃⊗ x̃)]− Σ̃2

15



so

λmax[E[Z
2]] ≤ λmax[E[(x̃ ⊗ x̃)2]] ≤ ρ2λd1,λλmax[Σ̃] ≤ ρ2λd1,λ

tr(E[Z2]) ≤ tr(E[‖x̃‖2(x̃ ⊗ x̃)]) ≤ ρ2λd1,λ tr(Σ̃) = ρ2λd
2
1,λ.

The claim now follows from Lemma 10 (recall that d̃1,λ = max{1, d1,λ}). �

Lemma 3 (Relative spectral norm error in Σ̂λ). If ‖∆λ‖ < 1 where ∆λ is defined in (16), then

‖Σ1/2
λ Σ̂−1

λ Σ
1/2
λ ‖ ≤ 1

1− ‖∆λ‖
where Σλ is defined in (14) and Σ̂λ is defined in (15).

Proof. Observe that

Σ
−1/2
λ Σ̂λΣ

−1/2
λ = Σ

−1/2
λ (Σλ + Σ̂λ −Σλ)Σ

−1/2
λ

= I +Σ
−1/2
λ (Σ̂λ −Σλ)Σ

−1/2
λ

= I +∆λ,

and that
λmin[I +∆λ] ≥ 1− ‖∆λ‖ > 0

by the assumption ‖∆λ‖ < 1 and Weyl’s theorem [10]. Therefore,

‖Σ1/2
λ Σ̂−1

λ Σ
1/2
λ ‖ = λmax[(Σ

−1/2
λ Σ̂λΣ

−1/2
λ )−1] = λmax[(I +∆λ)

−1] =
1

λmin[I +∆λ]
≤ 1

1− ‖∆‖ .

�

Lemma 4 (Frobenius norm error in Σ̂). Assume Condition 1 (with parameter ρλ) holds. Pick any t > 0.
With probability at least 1− e−t,

‖∆λ‖F ≤

√
E[‖Σ−1/2

λ x‖4]− d2,λ
n

(1 +
√
8t) +

4
√
ρ4λd

2
1,λ + d2,λt

3n

≤

√
ρ2λd

2
1,λ − d2,λ

n
(1 +

√
8t) +

4
√
ρ4λd

2
1,λ + d2,λt

3n

where ∆λ is defined in (16).

Proof. The claim is a consequence of the tail inequality in Lemma 9. As in the proof of Lemma 2, define

x̃ := Σ
−1/2
λ x and Σ̃ := Σ

−1/2
λ ΣΣ

−1/2
λ , and let Z := x̃ ⊗ x̃ − Σ̃ so ∆λ = Ê[Z]. Now endow the space of

self-adjoint linear operators with the inner product given by 〈A,B〉F := tr(AB), and note that this inner
product induces the Frobenius norm ‖M‖F = 〈M,M〉F. Observe that E[Z] = 0 and

‖Z‖2F = 〈x̃⊗ x̃− Σ̃, x̃⊗ x̃− Σ̃〉F
= 〈x̃⊗ x̃, x̃⊗ x̃〉F − 2〈x̃⊗ x̃, Σ̃〉F + 〈Σ̃, Σ̃〉F
= ‖x̃‖4 − 2‖x̃‖2

Σ̃
+ tr(Σ̃2)

= ‖x̃‖4 − 2‖x̃‖2
Σ̃
+ d2,λ

≤ ρ4λd
2
1,λ + d2,λ,

where the inequality follows from Condition 1. Moreover,

E[‖Z‖2F] = E[〈x̃⊗ x̃, x̃⊗ x̃〉F]− 〈Σ̃, Σ̃〉F
= E[‖x̃‖4]− d2,λ

≤ ρ2λd1,λE[‖x̃‖2]− d2,λ

= ρ2λd
2
1,λ − d2,λ,

where the inequality again uses Condition 1. The claim now follows from Lemma 9. �
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5.3. Effect of approximation error.

Lemma 5 (Effect of approximation error). Assume Condition 1 (with parameter ρλ) and Condition 3 (with
parameter bλ) hold. Pick any t > 0. If ‖∆λ‖ < 1 where ∆λ is defined in (16), then

‖β̄λ − βλ‖Σ ≤ 1

1− ‖∆λ‖
‖Ê[x approxλ(x)− λβλ]‖Σ−1

λ

,

where β̄λ is defined in (12), βλ is defined in (8), approxλ(x) is defined in (9), and Σλ is defined in (14).
Moreover, with probability at least 1− e−t,

‖Ê[x approxλ(x) − λβλ]‖Σ−1

λ

≤

√
E[‖Σ−1/2

λ (x approxλ(x) − λβλ)‖2]
n

(1 +
√
8t) +

4(bλ
√
d1,λ + ‖β − βλ‖Σ)t

3n

≤
√

2(ρ2λd1,λE[approxλ(x)
2] + ‖β − βλ‖2Σ)

n
(1 +

√
8t) +

4(bλ
√
d1,λ + ‖β − βλ‖Σ)t

3n
.

Proof. By the definitions of β̄λ and βλ,

β̄λ − βλ = Σ̂−1
λ

(
Ê[xE[y|x]] − Σ̂λβλ

)

= Σ
−1/2
λ (Σ

1/2
λ Σ̂−1

λ Σ
1/2
λ )Σ

−1/2
λ

(
Ê[x(approx(x) + 〈β, x〉)] − Σ̂βλ − λβλ

)

= Σ
−1/2
λ (Σ

1/2
λ Σ̂−1

λ Σ
1/2
λ )Σ

−1/2
λ

(
Ê[x(approx(x) + 〈β, x〉 − 〈βλ, x〉)] − λβλ

)

= Σ
−1/2
λ (Σ

1/2
λ Σ̂−1

λ Σ
1/2
λ )Σ

−1/2
λ

(
Ê[x approxλ(x) − λβλ]

)
.

Therefore, using the submultiplicative property of the spectral norm,

‖β̄λ − βλ‖Σ ≤ ‖Σ1/2Σ
−1/2
λ ‖‖Σ1/2

λ Σ̂−1
λ Σ

1/2
λ ‖‖Ê[x approxλ(x)− λβλ]‖Σ−1

λ

≤ 1

1− ‖∆λ‖
‖Ê[x approxλ(x) − λβλ]‖Σ−1

λ

where the second inequality follows from Lemma 3 and because

‖Σ1/2Σ
−1/2
λ ‖2 = λmax[Σ

−1/2
λ ΣΣ

−1/2
λ ] = max

i

λi

λi + λ
≤ 1.

The second part of the claim is a consequence of the tail inequality in Lemma 9. Observe that E[x approx(x)] =
E[x(E[y|x]−〈β, x〉)] = 0 by Proposition 4, and that E[x〈β−βλ, x〉]−λβλ = Σβ−(Σ+λI)βλ = 0. Therefore,

E[Σ
−1/2
λ (x approxλ(x) − λβλ)] = Σ

−1/2
λ E[x(approx(x) + 〈β − βλ, x〉)− λβλ] = 0.

Moreover, by Proposition 6 and Proposition 7,

‖λΣ−1/2
λ βλ‖2 =

∑

j

λ2

λj + λ
〈vj , βλ〉2

=
∑

j

λ2

λj + λ

(
λj

λj + λ
βj

)2

≤
∑

j

λ2

λj + λ

(
λj

λj + λ

)
β2
j

=
∑

j

λj

(
λj

λ + 1)2
β2
j

= ‖β − βλ‖2Σ.(17)

17



Combining the inequality from (17) with Condition 3 and the triangle inequality, it follows that

‖Σ−1/2
λ (x approxλ(x) − λβλ)‖ ≤ ‖Σ−1/2

λ x approxλ(x)‖ + ‖λΣ−1/2
λ βλ‖

≤ bλ
√
d1,λ + ‖β − βλ‖Σ .

Finally, by the triangle inequality, the fact (a+ b)2 ≤ 2(a2 + b2), the inequality from (17), and Condition 1,

E[‖Σ−1/2
λ (x approxλ(x) − λβλ)‖2] ≤ 2(E[‖Σ−1/2

λ x approxλ(x)‖2] + ‖βλ − β‖2Σ)
≤ 2(ρ2λd1,λE[approxλ(x)

2] + ‖βλ − β‖2Σ).

The claim now follows from Lemma 9. �

5.4. Effect of noise.

Lemma 6 (Effect of noise, λ = 0). Assume λ = 0. Assume Condition 2 (with parameter σ) holds. Pick any
t > 0. With probability at least 1− e−t, either ‖∆0‖ ≥ 1, or

‖∆0‖ < 1 and ‖β̄0 − β̂0‖2Σ ≤ 1

1− ‖∆0‖
· σ

2(d+ 2
√
dt+ 2t)

n
,

where ∆0 is defined in (16).

Proof. Observe that

‖β̄0 − β̂0‖2Σ ≤ ‖Σ1/2Σ̂−1/2‖2‖β̄0 − β̂0‖2Σ̂ = ‖Σ1/2Σ̂−1Σ1/2‖‖β̄0 − β̂0‖2Σ̂;

and if ‖∆0‖ < 1, then ‖Σ1/2Σ̂−1Σ1/2‖ ≤ 1/(1− ‖∆0‖) by Lemma 3.
Let ξ := (noise(x1), noise(x2), . . . , noise(xn)) be the random vector whose i-th component is noise(xi) =

yi − E[yi|xi]. By the definition of β̂0 and β̄0

‖β̂0 − β̄0‖2Σ̂ = ‖Σ̂−1/2
Ê[x(y − E[y|x])]‖2 = ξ⊤K̂ξ,

where K̂ ∈ R
n×n is the symmetric matrix whose (i, j)-th entry is K̂i,j := n−2〈Σ̂−1/2xi, Σ̂

−1/2xj〉. Note that
the nonzero eigenvalues of K̂ are the same as those of

1

n
Ê

[
(Σ̂−1/2x)⊗ (Σ̂−1/2x)

]
=

1

n
Σ̂−1/2Σ̂Σ̂−1/2 =

1

n
I.

By Lemma 8, with probability at least 1− e−t (conditioned on x1, x2, . . . , xn),

ξ⊤K̂ξ ≤ σ2(tr(K̂) + 2

√
tr(K̂2)t+ 2λmax(K̂)t) =

σ2(d+ 2
√
dt+ 2t)

n
.

The claim follows. �

Lemma 7 (Effect of noise, λ ≥ 0). Assume Condition 2 (with parameter σ) holds. Pick any t > 0. Let K
be the n× n symmetric matrix whose (i, j)-th entry is

Ki,j :=
1

n2
〈Σ1/2Σ̂−1

λ xi, Σ
1/2Σ̂−1

λ xj〉,

where Σ̂λ is defined in (15). With probability at least 1− e−t,

‖β̄λ − β̂λ‖2Σ ≤ σ2(tr(K) + 2
√
tr(K)λmax(K)t+ 2λmax(K)t).

Moreover, if ‖∆λ‖ < 1 where ∆λ is defined in (16), then

λmax(K) ≤ 1

n(1− ‖∆λ‖)
and tr(K) ≤ d2,λ +

√
d2,λ‖∆λ‖2F

n(1− ‖∆λ‖)2
.
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Proof. Let ξ := (noise(x1), noise(x2), . . . , noise(xn)) be the random vector whose i-th component is noise(xi) =

yi − E[yi|xi]. By the definition of β̂λ, β̄λ, and K,

‖β̂λ − β̄λ‖2Σ = ‖Σ̂−1
λ Ê[x(y − E[y|x])]‖2Σ = ξ⊤Kξ.

By Lemma 8, with probability at least 1− e−t (conditioned on x1, x2, . . . , xn),

ξ⊤Kξ ≤ σ2(tr(K) + 2
√
tr(K2)t+ 2λmax(K)t)

≤ σ2(tr(K) + 2
√
tr(K)λmax(K)t+ 2λmax(K)t),

where the second inequality follows from von Neumann’s theorem [10].
Note that the nonzero eigenvalues of K are the same as that of

1

n
Ê

[
(Σ1/2Σ̂−1

λ x)⊗ (Σ1/2Σ̂−1
λ x)

]
=

1

n
Σ1/2Σ̂−1

λ Σ̂Σ̂−1
λ Σ1/2.

To bound λmax(K), observe that by the submultiplicative property of the spectral norm and Lemma 3,

nλmax(K) = ‖Σ1/2Σ̂−1
λ Σ̂1/2‖2

≤ ‖Σ1/2Σ
−1/2
λ ‖2‖Σ1/2

λ Σ̂
−1/2
λ ‖2‖Σ̂−1/2

λ Σ̂1/2‖2

≤ ‖Σ1/2
λ Σ̂

−1/2
λ ‖2

= ‖Σ1/2
λ Σ̂−1

λ Σ
1/2
λ ‖

≤ 1

1− ‖∆λ‖
.

To bound tr(K), first define the λ-whitened versions of Σ, Σ̂, and Σ̂λ as

Σw := Σ
−1/2
λ ΣΣ

−1/2
λ ,

Σ̂w := Σ
−1/2
λ Σ̂Σ

−1/2
λ ,

Σ̂λ,w := Σ
−1/2
λ Σ̂λΣ

−1/2
λ .

Using these definitions with the cycle property of the trace,

n tr(K) = tr(Σ1/2Σ̂−1
λ Σ̂Σ̂−1

λ Σ1/2)

= tr(Σ̂−1
λ Σ̂Σ̂−1

λ Σ)

= tr(Σ̂−1
λ,wΣ̂wΣ̂

−1
λ,wΣw).

Let {λj [M ]} denote the eigenvalues of a linear operator M . By von Neumann’s theorem [10],

tr(Σ̂−1
λ,wΣ̂wΣ̂

−1
λ,wΣw) ≤

∑

j

λj [Σ̂
−1
λ,wΣ̂wΣ̂

−1
λ,w]λj [Σw]

and by Ostrowski’s theorem [10],

λj [Σ̂
−1
λ,wΣ̂wΣ̂

−1
λ,w] ≤ λmax[Σ̂

−2
λ,w]λj [Σ̂w].
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Therefore

tr(Σ̂−1
λ,wΣ̂wΣ̂

−1
λ,wΣw) ≤ λmax[Σ̂

−2
λ,w]

∑

j

λj [Σ̂w]λj [Σw]

≤ 1

(1− ‖∆λ‖)2
∑

j

λj [Σ̂w]λj [Σw]

=
1

(1− ‖∆λ‖)2
∑

j

(
λj [Σw]

2 + (λj [Σ̂w]− λj [Σw])λj [Σw]
)

≤ 1

(1− ‖∆λ‖)2


∑

j

λj [Σw]
2 +

√∑

j

(λj [Σ̂w]− λj [Σw])2
√∑

j

λj [Σw]2




=
1

(1− ‖∆λ‖)2


d2,λ +

√∑

j

(λj [Σ̂w]− λj [Σw])2
√
d2,λ




≤ 1

(1− ‖∆λ‖)2
(
d2,λ + ‖Σ̂w −Σw‖F

√
d2,λ

)

=
1

(1− ‖∆λ‖)2
(
d2,λ + ‖∆λ‖F

√
d2,λ

)
,

where the second inequality follows from Lemma 3, the third inequality follows from Cauchy-Schwarz, and
the fourth inequality follows from Mirsky’s theorem [21]. �
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Appendix A. Probability tail inequalities

The following probability tail inequalities are used in our analysis. These specific inequalities were chosen
in order to satisfy the general conditions set up in Section 2.4; however, our analysis can specialize or
generalize with the availability of other tail inequalities of these sorts.

The first tail inequality is for positive semidefinite quadratic forms of a subgaussian random vector. It
generalizes a standard tail inequality for Gaussian random vectors based on linear combinations of χ2 random
variables [15].

Lemma 8 (Quadratic forms of a subgaussian random vector; [11]). Let ξ be a random vector taking values
in R

n such that for some c ≥ 0,

E[exp(〈u, ξ〉)] ≤ exp(c‖u‖2/2), ∀u ∈ R
n.

For all symmetric positive semidefinite matrices K � 0, and all t > 0,

Pr

[
ξ⊤Kξ > c

(
tr(K) + 2

√
tr(K2)t+ 2‖K‖t

)]
≤ e−t.

The next lemma is a tail inequality for sums of bounded random vectors; it is a standard application of
Bernstein’s inequality.

Lemma 9 (Vector Bernstein bound; see, e.g., [11]). Let x1, x2, . . . , xn be independent random vectors such
that

n∑

i=1

E[‖xi‖2] ≤ v and ‖xi‖ ≤ r

for all i = 1, 2, . . . , n, almost surely. Let s := x1 + x2 + · · ·+ xn. For all t > 0,

Pr
[
‖s‖ >

√
v(1 +

√
8t) + (4/3)rt

]
≤ e−t

The last tail inequality concerns the spectral accuracy of an empirical second moment matrix.

Lemma 10 (Matrix Bernstein bound; [12]). Let X be a random matrix, and r > 0, v > 0, and k > 0 be
such that, almost surely,

E[X ] = 0, λmax[X ] ≤ r, λmax[E[X
2]] ≤ v, tr(E[X2]) ≤ vk.

If X1, X2, . . . , Xn are independent copies of X, then for any t > 0,

Pr

[
λmax

[
1

n

n∑

i=1

Xi

]
>

√
2vt

n
+

rt

3n

]
≤ kt(et − t− 1)−1.

If t ≥ 2.6, then t(et − t− 1)−1 ≤ e−t/2.

(D. Hsu) Department of Computer Science, Columbia University, 450 Computer Science Building, 1214 Amster-

dam Avenue, Mailcode: 0401, New York, NY 10027-7003

E-mail address, D. Hsu: djhsu@cs.columbia.edu

(S. M. Kakade) Microsoft Research, One Memorial Drive, Cambridge, MA, 02142

E-mail address, S.M. Kakade: skakade@microsoft.com

(T. Zhang) Department of Statistics, Rutgers University, 501 Hill Center, 110 Frelinghuysen Road, Piscataway,

NJ 08854

E-mail address, T. Zhang: tzhang@stat.rutgers.edu

21


	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Linear regression
	2.3. The ridge and ordinary least squares estimators
	2.4. Data model
	2.5. Related work

	3. Random design regression
	3.1. Review of fixed design analysis
	3.2. Ordinary least squares
	3.3. Random design ridge regression

	4. Application to accelerating least squares computations
	4.1. A randomized approximation scheme for least squares
	4.2. Analysis of the approximation scheme
	4.3. Random rotations and bounding statistical leverage

	5. Proofs of Theorem ?? and Theorem ??
	5.1. Basic properties of  and , and the effect of regularization
	5.2. Effect of errors in "0362
	5.3. Effect of approximation error
	5.4. Effect of noise

	References
	Appendix A. Probability tail inequalities

