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Abstract

We study numerical integration of functions depending on an infinite number
of variables. We provide lower error bounds for general deterministic linear algo-
rithms and provide matching upper error bounds with the help of suitable multilevel
algorithms and changing dimension algorithms.

More precisely, the spaces of integrands we consider are weighted reproducing
kernel Hilbert spaces with norms induced by an underlying anchored function space
decomposition. Here the weights model the relative importance of different groups
of variables. The error criterion used is the deterministic worst case error. We
study two cost models for function evaluation which depend on the number of
active variables of the chosen sample points, and two classes of weights, namely
product and order-dependent (POD) weights and the newly introduced weights
with finite active dimension. We show for these classes of weights that multilevel
algorithms achieve the optimal rate of convergence in the first cost model while
changing dimension algorithms achieve the optimal convergence rate in the second
model.

As an illustrative example, we discuss the anchored Sobolev space with smooth-
ness parameter α and provide new optimal quasi-Monte Carlo multilevel algorithms
and quasi-Monte Carlo changing dimension algorithms based on higher-order poly-
nomial lattice rules.
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1 Introduction

The evaluation of integrals over functions with an unbounded or even infinite number of
variables is an important task in physics, quantum chemistry or in quantitative finance,
see, e.g., [19, 48] and the references therein. In recent years a large number of researchers
contributed to the design of new algorithms as, e.g., multilevel and changing dimension al-
gorithms or dimension-wise quadrature methods, to approximate such integrals efficiently.
Multilevel algorithms were introduced by Heinrich and Sindambiwe [28, 29] in the context
of integral equations and parametric integration, and by Giles [19, 20] in the context of
stochastic differential equations. Changing dimension algorithms were introduced by Kuo
et al. [35] in the context of infinite-dimensional integration in weighted Hilbert spaces
and dimension-wise quadrature methods were introduced by Griebel and Holtz [27] for
multivariate integration. (Changing dimension algorithms and dimension-wise quadrature
methods are based on a similar idea.)

In this paper we want to study infinite-dimensional numerical integration on a weighted
reproducing kernel Hilbert space of functions with infinitely many variables as it has been
done in [31, 35, 39, 30, 40, 23, 43, 22, 4, 7, 24]. The Hilbert spaces we consider here
posses so-called anchored function space decompositions. For a motivation of this specific
function space setting and connections to problems in the theory of stochastic processes
and mathematical finance we refer to [30, 39, 40].

We provide error bounds for the worst case error of deterministic linear algorithms;
these bounds are expressed in terms of the cost of the algorithms. We solely take account
of function evaluations, i.e., the cost of function sampling, and neglect other cost as, e.g.,
combinatorial cost. To evaluate the cost of sampling, we consider two cost models: the
nested subspace sampling model (introduced in [10], where it was called variable subspace
sampling model) and the unrestricted subspace sampling model (introduced in [35]).

In the nested subspace sampling model lower error bounds for infinite-dimensional
integration were provided in [40] for general n-point quadrature formulas in the case
where the weighted Hilbert space of integrands is defined via an anchored kernel and the
weights are product weights. We generalize these error bounds to general weights. In
the unrestricted subspace sampling model lower error bounds where provided for product
weights and anchored kernels in [35], and for general weights and the Wiener kernel in
[23]. We generalize these results to anchored kernels and general weights. (Let us mention
that in the randomized setting similar general lower error bounds for infinite-dimensional
integration on weighted Hilbert spaces are provided for anchored decompositions in [22]
and for underlying ANOVA-type decompositions in [7]; to treat the latter decompositions,
a technically more involved analysis is necessary.)

In this paper we further study two classes of weights in more depths: The class of prod-
uct and order-dependent (POD) weights, which includes, in particular, product weights
and finite-product weights, and the class of weights of finite active dimension, which in-
cludes, in particular, finite-diameter weights and (the more general) finite-intersection
weights. We derive several new results for both classes of weights which might also be
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of interest for other tractability studies of continuous numerical problems on weighted
spaces, apart from the infinite-dimensional integration problem.

For these two classes of weights we provide upper error bounds with the help of
multilevel algorithms and changing dimension algorithms. These bounds show that for
the cost functions most relevant in applications, namely those cost functions which grow
at least linearly in the number of active variables, the convergence rate of our algorithms
is arbitrarily close to the convergence rate of the Nth minimal integration error and our
lower bounds are thus sharp. For the remaining cost functions, which grow sub-linearly in
the number of active variables, our bounds are still sharp in most of the cases (depending
on the smoothness of the kernel and the decay rate of the weights).

These new upper bounds improve on the results obtained for product weights in [40]
and [23]. Furthermore, in contrast to [40, Thm. 3], we are able to formulate our results
on upper bounds without introducing additional auxiliary weights that are not problem
inherent.

We provide explicit quasi-Monte Carlo multilevel and changing dimension algorithms
based on higher order polynomial lattice rules for weighted Hilbert spaces of integrands
that correspond to anchored Sobolev spaces with smoothness parameter α > 1. These
algorithms are optimal in the sense that they achieve convergence rates arbitrarily close
to the optimal convergence rate (i.e., the convergence rate of the Nth minimal integration
error).

The article is organized as follows: In Section 2 the setting we want to study is intro-
duced. In Section 3 we provide lower error bounds for deterministic quadrature formulas
for solving the infinite-dimensional integration problem on weighted Hilbert spaces. In
Section 3.1 we present the most general form of the lower bounds which is valid for arbi-
trary weights. In Section 3.2 we state the form of the lower bounds for the two specific
classes of weights we consider. In Section 4.1 and 4.2 we explain multilevel and changing
dimension algorithms. In Section 4.3 we provide upper error bounds for POD weights,
and in Section 4.4 for weights with finite active dimension. In Section 5 we illustrate the
upper and lower bounds in the situation where the space of integrands is based on the
univariate anchored Sobolev space with smoothness parameter α > 1. Here we consider
specific quasi-Monte Carlo multilevel and changing dimension algorithms that achieve
higher-order convergence.

2 The general setting

2.1 Notation

For n ∈ N we denote the set {1, . . . , n} by [n]. If u is a finite set, then its size is denoted
by |u|. We put

U := {u ⊂ N | |u| < ∞}.
We use the common Landau O-notation. For two non-negative functions f and g we write
occasionally f = Ω(g) for g = O(f), and f = Θ(g) if f = Ω(g) and f = O(g) holds.

3



2.2 The function spaces

As spaces of integrands of infinitely many variables, we consider reproducing kernel Hilbert
spaces which are discussed in more detail in [30, 25]. Our standard reference for general
reproducing kernel Hilbert spaces is [3].

We start with univariate functions. Let D ⊆ R be a Borel measurable set of R
and let K : D × D → R be a measurable reproducing kernel with anchor c ∈ D, i.e.,
K(c, c) = 0. This implies K(·, c) ≡ 0. We assume that K is non-trivial, i.e., K 6= 0. We
denote the reproducing kernel Hilbert space with kernel K by H = H(K) and its scalar
product and norm by 〈·, ·〉H and ‖ · ‖H , respectively. We use corresponding notation for
other reproducing kernel Hilbert spaces. If g is a constant function in H(K), then the
reproducing property implies g = g(c) = 〈g,K(·, c)〉H = 0.

Let ρ be a probability measure on D. We assume that

M :=

∫

D

K(x, x) ρ(dx) < ∞. (1)

For arbitrary x,y ∈ DN and u ∈ U we define

Ku(x,y) :=
∏

j∈u

K(xj , yj),

where by convention K∅ ≡ 1. The Hilbert space with reproducing kernel Ku will be
denoted by Hu = H(Ku). Its functions depend only on the coordinates j ∈ u. If it is
convenient for us, we identify Hu with the space of functions defined on Du determined
by the kernel

∏
j∈uK(xj , yj), and write fu(xu) instead of fu(x) for fu ∈ Hu and x ∈ DN,

where xu := (xj)j∈u ∈ Du. For all fu ∈ Hu and x ∈ DN we have

fu(x) = 0 if xj = c for some j ∈ u. (2)

This property yields an anchored decomposition of functions, see, e.g., [36].
Let now γ = (γu)u∈U be weights, i.e., a family of non-negative numbers. We assume

that γ satisfies ∑

u∈U

γuM
|u| < ∞. (3)

(One may also consider slightly weaker conditions as done, e.g., in [35, Sect. 5] or [43]; for
a comparison of these different conditions see [25].) We denote the set of active coordinate
sets, {u ∈ U | γu > 0} by A = A(γ). (Sets u ⊆ N with |u| = ∞ are always assumed to
be inactive.) We always assume that A is non-trivial, i.e., that there exists a ∅ 6= u ∈ U
with u ∈ A.

Let us define the domain X of functions of infinitely many variables by

X :=

{
x ∈ DN |

∑

u∈A

γu
∏

j∈u

K(xj , xj) < ∞
}
.

Let µ be the infinite-product probability measure of ρ on DN. Due to our assumptions
we have µ(X) = 1, see [30, Lemma 1] or [25]. For x,y ∈ X we define

Kγ(x,y) :=
∑

u∈A

γuKu(x,y).
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Kγ is well-defined and, since Kγ is symmetric and positive semi-definite, it is a reproducing
kernel on X × X, see [3]. We denote the corresponding reproducing kernel Hilbert space
by Hγ = H(Kγ) and its norm by ‖ · ‖γ . For the next lemma see [31, Cor. 5] or [25].

Lemma 1 The space Hγ consists of all functions f =
∑

u∈A fu, fu ∈ Hu, such that

∑

u∈A

γ−1
u ‖fu‖2Hu

< ∞.

In the case of convergence, we have

‖f‖2γ =
∑

u∈A

γ−1
u ‖fu‖2Hu

.

For u ∈ A let Pu denote the orthogonal projection Pu : Hγ → Hu, f 7→ fu onto Hu.
Then each f ∈ Hγ has a unique representation

f =
∑

u∈A

fu with fu = Pu(f) ∈ Hu, u ∈ A.

2.3 Infinite-dimensional integration

Due to (3), we have Hγ ⊆ L1(X, dµ), and the integration functional

I(f) :=

∫

X

f(x)µ(dx)

is continuous on Hγ , i.e., the operator norm of I is finite:

‖I‖2Hγ
=
∑

u∈A

γuC
|u|
0 < ∞, where C0 :=

∫

D

∫

D

K(x, y) ρ(dx) ρ(dy) < ∞, (4)

see, e.g., [25]. We assume that I is non-trivial, i.e., that C0 > 0. Notice that C0 ≤ M .
For a given set of weights γ we denote by γ̂ the set of weights defined by

γ̂u := γuC
|u|
0 for all u ∈ U . (5)

The representer h ∈ Hγ of I, i.e., the function h satisfying I(f) = 〈f, h〉γ for all f ∈ Hγ ,
is given by

h(x) =

∫

X

Kγ(x,y)µ(dy)

and consequently the operator norm of the functional I satisfies ‖I‖Hγ
= ‖h‖γ . For u ∈ A

we define Iu := I ◦ Pu on Hγ , i.e., Iu(f) = 〈f, Pu(h)〉γ for all f ∈ Hγ . More concretely,
we have

Iu(f) =

∫

Du

fu(xu) ρ
u(dxu),

and the representer hu of Iu in Hγ is given by hu(xu) = Pu(h)(xu). Thus we have

I(f) =
∑

u∈A

Iu(fu) for all f ∈ Hγ .
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2.4 Admissible algorithms, errors, and cost models

We define the set of admissible sample points S by

S := {(xu; c) | u ∈ U}. (6)

Here again xu = (xj)j∈u ∈ Du, and (xu; c) denotes the vector y = (y1, y2, . . .) ∈ DN with
yj = xj if j ∈ u and yj = c otherwise. Note that (xu; c) ∈ X. We consider algorithms of
the form

Q(f) =

n∑

i=1

aif(tvi ; c), for v1, . . . , vn ∈ U , (7)

with points tvi ∈ (D \ {c})vi and coefficients ai ∈ R. The worst case error is given by

e(Q;Hγ) := sup
‖f‖γ≤1

|I(f)−Q(f)|.

For an algorithm Q of the form (7) we put (Q)u := Q ◦ Pu, i.e.,

(Q)u(f) =
n∑

i=1

aifu(tvi∩u; c).

We have the identity

[e(Q;Hγ)]
2 =

∑

u∈A

γu[e((Q)u;Hu)]
2, (8)

where
e((Q)u;Hu) = sup

‖g‖Hu≤1

|Iu(g)− (Q)u(g)|.

For the cost of an algorithm we only take into account the cost for function evaluations.
To make this more precise, let us fix a cost function $ : N → [1,∞), which is non-
decreasing. In this paper we consider two models for the cost of function evaluations, the
nested subspace sampling and the unrestricted subspace sampling model.

In the nested subspace sampling model we first define for a fixed strictly increasing
sequence w = (wi)i∈N of coordinate sets w1 ⊂ w2 ⊂ · · · ∈ U the cost of a function
evaluation in x ∈ X to be

cw,c(x) := inf{$(|wi|) | xj = c ∀j /∈ wi}. (9)

Here we use the standard convention that inf ∅ = ∞. For a linear algorithm Q of the
form (7) we define

cw,c(Q) :=
n∑

i=1

cw,c(tvi ; c).

Let Cnest denote the set of all cost functions cw,c of the form (9) where w runs through
all strictly increasing sequences w of coordinate sets. Then we define the cost of Q in the
nested subspace sampling model to be

costnest(Q) := inf
cw,c∈Cnest

cw,c(Q).
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This model was introduced in [10].1

In the unrestricted subspace sampling model a function evaluation f(x) costs

cc(x) := inf{$(|u|) | u ∈ U , xj = c ∀j /∈ u}.

The cost of a linear algorithm Q of the form (7) in the unrestricted subspace sampling
model is given by

costunr(Q) :=
n∑

i=1

cc(tvi ; c) =
n∑

i=1

$(|vi|).

The unrestricted subspace sampling model was introduced in [35].2

We denote the cost of an algorithmQ in the nested and unrestricted subspace sampling
model by costnest(Q) and costunr(Q), respectively. Obviously, the unrestricted subspace
sampling model is more generous than the nested subspace sampling model. Note that in
both sampling models the cost for function evaluations in non-admissible sample points
is infinite.

2.5 Strong tractability

Let mod ∈ {nest, unr}. The ε-complexity is defined as the minimal cost among all algo-
rithms of the form (7), whose worst case errors are at most ε, i.e.,

compmod(ε;Hγ) := inf {costmod(Q) |Q is of the form (7) and e(Q;Hγ) ≤ ε} . (10)

The integration problem I is said to be strongly tractable3 if there are non-negative con-
stants C and p such that

compmod(ε;Hγ) ≤ C ε−p for all ε > 0. (11)

The exponent of strong tractability is given by

pmod = pmod(γ) := inf{p | p satisfies (11)}.

Essentially, 1/pmod is the convergence rate of the N th minimal worst case error

emod(N ;Hγ) := inf{e(Q;Hγ) |Q is of the form (7) and costmod(Q) ≤ N}. (12)

In particular, we have for all p > pmod that emod(N ;Hγ) = O(N−1/p).

1In [10] it was actually called “variable subspace sampling model”. We have chosen a different name to
emphasize the difference between this model and the “unrestricted subspace sampling model” explained
below.

2In [35] the cost model did not get a specific name.
3We chose this notion, since it seems to us to be consistent with the usual notion of tractability in the

multivariate setting. A more precise notion would be “strongly polynomially tractable”, to distinguish
this kind of tractability from more general notions of tractability as introduced in [26], see also [41]. But
for convenience we stay with the shorter notion “strongly tractable”.
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2.6 Weights

Here we introduce further definitions and notation which is necessary for our analysis of
lower and upper bounds for the exponents of strong tractability in the different models.

Let γ = (γu)u∈U be a given family of weights. Weights γ are called finite-order weights
of order ω if there exists an ω ∈ N such that γu = 0 for all u ∈ U with |u| > ω. Finite-order
weights were introduced in [16] for spaces of functions with a finite number of variables.
The following definition is taken from [23].

Definition 1 For weights γ and σ ∈ N let us define the cut-off weights of order σ

γ(σ) = (γ(σ)
u )u∈U via γ(σ)

u =

{
γu if |u| ≤ σ,

0 otherwise.
(13)

Clearly, cut-off weights of order σ are in particular finite-order weights of order σ.
We always assume that the weights γ we consider satisfy (3).

Let us denote by u1(σ), u2(σ), . . ., the distinct non-empty sets u ∈ U with γ
(σ)
u > 0 for

which γ̂
(σ)
u1(σ)

≥ γ̂
(σ)
u2(σ)

≥ · · · . Let us put u0(σ) := ∅. We can make the same definitions for

σ = ∞; then we have obviously γ(∞) = γ. For convenience we will usually suppress any
reference to σ in the case where σ = ∞. For σ ∈ N ∪ {∞} let us define

tailγ,σ(d) :=
∞∑

j=d+1

γ̂
(σ)
uj(σ)

∈ [0,∞] and decayγ,σ := sup

{
p ∈ R

∣∣∣ lim
j→∞

γ̂
(σ)
uj(σ)

jp = 0

}
.

The following definition is from [23].

Definition 2 For σ ∈ N ∪ {∞} let t∗σ ∈ [0,∞] be defined as

t∗σ := inf
{
t ≥ 0 | ∃Ct > 0 ∀ v ∈ U : |{i ∈ N | ui(σ) ⊆ v}| ≤ Ct|v|t

}
.

Let σ ∈ N. Since |ui(σ)| ≤ σ for all i ∈ N, we have obviously t∗σ ≤ σ. On the other
hand, if we have an infinite sequence (uj(σ))j∈N, it is not hard to verify that t∗σ ≥ 1, see
[23].

In the following two subsections we describe the classes of weights we want to consider
in this article.

2.6.1 Product and order-dependent weights

Product and order-dependent (POD) weights γ were introduced in [33] and are a hybrid
of so-called product weights and order-dependent weights. Their general form is

γu = Γ|u|

∏

j∈u

γj , where γ1 ≥ γ2 ≥ · · · ≥ 0, and Γ0 = Γ1 = 1, Γ2,Γ3, . . . ≥ 0. (14)

Special cases are product and finite-product weights that are defined as follows.

8



Definition 3 Let (γj)j∈N be a sequence of non-negative real numbers satisfying γ1 ≥ γ2 ≥
. . . . With the help of this sequence we define for ω ∈ N ∪ {∞} weights γ = (γu)u⊂fN by

γu =

{∏
j∈u γj if |u| ≤ ω,

0 otherwise,
(15)

where we use the convention that the empty product is 1. In the case where ω = ∞, we call
such weights product weights, in the case where ω is finite, we call them finite-product
weights of order (at most) ω.

Product weights were introduced by Sloan and Woźniakowski in [45] and have been
studied extensively since then. Finite-product weights were considered in [23] and are
obviously finite-order weights of order at most ω.

It is easily seen that product weights and finite product weights of order ω are POD
weights; in (14) one just has to choose Γν = 1 for all ν ∈ N to obtain product weights
and Γ|u| = 1 for |u| ≤ ω and Γ|u| = 0 for |u| > ω to obtain finite product weights. Other
concrete examples of POD weights can be found in [33, 34].

2.6.2 Algorithmic dimension

The following definition introduces the concept of the algorithmic dimension of a family
of weights.

Definition 4 Let W ⊆ U . Let d ∈ N ∪ {∞} be such that there exists a function

φ : N → [d] with the property ∀u ∈ W ∀j 6= j′ ∈ u : φ(j) 6= φ(j′), (16)

where [∞] = N. That is, φ|u is injective for each u ∈ W. If d ∈ N, then we say that W
has finite algorithmic dimension. In this case we call the minimal d∗ = d∗(W) for which
such a φ exists the algorithmic dimension of W.

Let γ = (γu)u∈U be a family of weights. If its set A of active coordinate sets has algo-
rithmic dimension d∗(A), we say that the family of weights γ has algorithmic dimension
d∗(γ) := d∗(A). If we do not want to specify the algorithmic dimension d∗, we just say
that γ has finite algorithmic dimension.

Weights γ of finite algorithmic dimension d∗ are obviously finite-order weights of order
ω ≤ d∗, but finite-order weights do not necessarily have finite algorithmic dimension.

We define a graph associated with W in the following way. For a given set W ⊆ U we
consider the infinite simple graph GW = (N, EW), where (i, j) with i 6= j, belongs to the
set of edges EW if and only if there exists a u ∈ W with i, j ∈ u. The graph GW does not
contain loops, i.e. edges (i, i). We call GW the associated graph of W. Notice that two
different subsets W, W ′ of U may have the same associated graph.

The following lemma connects the concept of minimal algorithmic dimension to the
chromatic number χ(GW) of GW . Recall that the chromatic number of a graph G is the
minimal number of colors needed to color the vertices of G in such a way that any two
vertices connected by an edge have a different color.

Lemma 2 Let W ⊆ U and GW be the associated graph. Then the algorithmic dimension
d∗(W) of W and the chromatic number χ(GW) coincide, i.e.

d∗(W) = χ(GW).
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Proof. Assume that we have given a coloring of the vertices of the graph GW . Let the
vertices of GW be denoted by N and the colors be denoted by 1, 2, . . . , χ(GW). Then we
can define the function φ : N → [χ(GW)] by setting φ(i) = ci, where ci ∈ [χ(GW)] denotes
the color of the vertex i. On the other hand, if we have a function φ : N → [d∗(W)] given,
then we can obtain a coloring of the graph GW by coloring the vertex i by φ(i). By the
definition of the function φ and the graph GW this yields a coloring of the graph GW .
Since both d∗(W) and χ(GW) are minimal, the result follows. ✷

With the help of Lemma 2 we derive in the following remark a lower bound on the
algorithmic dimension.

Remark 1 A complete graph G with n vertices has chromatic number n, since all vertices
are connected to each other by an edge and hence all vertices must have a different color.
If W has algorithmic dimension d ∈ N, then |u| ≤ d for all coordinate sets u in W, since
GW contains a subgraph which is a complete graph with |u| vertices. Hence

d∗(W) ≥ sup
u∈W

|u|. (17)

Thus weights with algorithmic dimension d ∈ N are necessarily finite-order weights of
order ω ≤ d.

The lower bound (17) is not necessarily sharp, as shown by the following example: Let
|u| ≤ 2 for all u ∈ W and let there exist a sequence of sets {i1, i2}, {i2, i3}, . . . , {ik−1, ik},
{ik, i1} ∈ W where k is odd. In other words, GW contains an odd cycle. Then this graph
has chromatic number 3 as can easily be shown. An even more drastic example is the set
W := {u ∈ U | |u| = 2}, which has not even finite algorithmic dimension.

Let us now turn to upper bounds on the algorithmic dimension.

Remark 2 As a consequence of Lemma 2, we obtain that if GW is a planar graph (mean-
ing that every finite subgraph is planar), then the famous Four Color Theorem [1, 2] says
that GW can be colored with at most four colors. Hence in this situation the minimal
algorithmic dimension of W is at most four.

We provide further upper bounds on the algorithmic dimension in Theorem 1 and 2.

Theorem 1 Let W ⊆ U . Then the minimal algorithmic dimension of W is bounded by

d∗(W) ≤ sup
i∈N

∣∣∣∣∣
⋃

u∈W :i∈u

u

∣∣∣∣∣ .

Proof. By Lemma 2 it follows that it suffices to show that χ(GW) satisfies the bound.
By [17, Theorem 8.1.3] it follows that χ(GW) is equal to the maximum of the chromatic
numbers χ(H) over all finite subgraphs H of GW . Thus it suffices to show that for all
finite subgraphs H of GW the chromatic number χ(H) satisfies the bound.

Let H be an arbitrary finite subgraph of GW and let VH denote the set of vertices of
H . By [17, p.115] we have χ(H) ≤ ∆(H) + 1, where ∆(H) is the maximum degree of the
vertices of H . But the degree of a vertex i in the graph GW is equal to

∆(i) =

∣∣∣∣∣
⋃

u∈W :i∈u

u

∣∣∣∣∣− 1.
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By taking the maximum of the degrees over all vertices in the graph GW we obtain the
result. ✷

In some circumstances the above result can be slightly improved using Brooks’ theorem
from graph theory, see [17, Theorem 8.1.3].

Theorem 2 Let W ⊆ U such that supu∈W |u| ≥ 3. Let Z = supi∈N

∣∣⋃
u∈W :i∈u u

∣∣. Let
i1, i2, . . . be the set of vertices for which | ∪u∈W :ik∈u u| = Z. Assume that for each k ≥ 1
the subgraph consisting of the vertices in ∪u∈W :ik∈uu is not complete. Then

d∗(W) ≤ max
i∈N

∣∣∣∣∣
⋃

u∈W :i∈u

u

∣∣∣∣∣− 1.

Various other bounds on d∗ can be obtained from graph theory via bounds on the
chromatic number of the associated graph, see for instance [17].

Remark 3 In general it is difficult to find a function φ as in (16) for a given set W.
This can be done by a greedy algorithm for graph coloring, see [17, p. 114]. However, this
algorithm does not necessarily find a coloring with the smallest possible number of colors.

A particular class of weights whose set W = A of active coordinate sets has a finite
minimal algorithmic dimension d, is the class of finite-intersection weights defined in [23].

Definition 5 Let ρ ∈ N. The finite-order weights (γui
)i∈N, where γui

> 0, are called
finite-intersection weights with intersection degree at most ρ ∈ N0 if we have

|{j ∈ N | ui ∩ uj 6= ∅}| ≤ 1 + ρ for all i ∈ N. (18)

Note that for finite-order weights condition (18) is equivalent to the following condi-
tion: There exists an η ∈ N such that

|{i ∈ N | k ∈ ui}| ≤ η for all k ∈ N. (19)

Indeed, if (18) is satisfied, then (19) holds with η ≤ 1 + ρ, and if (19) is satisfied, then
(18) holds with ρ ≤ (η − 1)ω.

Due to [23, Lemma 3.10] the setA of active coordinate sets of finite intersection weights
has algorithmic dimension d∗(A) at most [η(ω − 1) + 1]; this was shown by constructing
inductively a mapping φ : N → [η(ω − 1) + 1] that satisfies (16). It also follows from
Theorem 1 by

d∗(A) ≤ max
i∈N

∣∣∣∣∣
⋃

u∈A:i∈u

u

∣∣∣∣∣ ≤ max
i∈N

|{u ∈ A | i ∈ u}|(ω − 1) + 1 ≤ η(ω − 1) + 1.

11



3 Lower bounds

Here we provide lower bounds for the exponents of tractability in the nested and in the
unrestricted subspace sampling model. We assume that there exist constants ̺, β > 0
such that the nth minimal error of univariate integration on H = H(K) satisfies

e(n;H) ≥ ̺(n+ 1)−β for all n ∈ N0, (20)

where

e(n;H) := inf

{
e(Q;H)

∣∣∣∣Q(f) =

n∑

i=1

aif(x
(i)) with ai ∈ R, x(i) ∈ D

}
. (21)

Since for ∅ 6= u ∈ U the integration problem over Hu is at least as hard as in the
univariate case, assumption (20) results in

e(Qu;Hu) ≥ ̺C
|u|−1

2
0 (n+ 1)−β (22)

for any quadrature of the form

Qu(f) =

n∑

i=1

aif(x
(i)), ai ∈ R, x(i) ∈ Du, f ∈ Hu,

see [42, Theorem 17.11]. If now Q is an algorithm of the form (7) and (Q)u = Q ◦ Pu,
then (8) and (22) imply

[e(Q;Hγ)]
2 =

∞∑

j=0

γuj
[e((Q)uj

;Huj
)]2 ≥ b2

∞∑

j=1

γ̂uj

(nj + 1)2β
, (23)

where b2 := ̺2C−1
0 and nj := |{vi | uj ⊆ vi}|. Since we assumed that A is non-trivial, we

obtain from (23)
pnest ≥ punr ≥ 1/β. (24)

3.1 Lower bounds for general weights

In this section we study general weights; here “general” means that we only require the
condition (3) to hold.

3.1.1 Nested subspace sampling

We start with a new lower bound for the exponent of strong tractability for general weights
in the nested subspace sampling model.

Theorem 3 Let $(k) = Ω(ks) for some s > 0, and let γ be weights that satisfy (3). Then
I is only strongly tractable in the nested subspace sampling model if decayγ > 1. In this
case,

pnest ≥ max

{
1

β
, sup
σ∈N

2s/t∗σ
decayγ,σ −1

}
. (25)

12



Proof. Let Q be of form (7) with costnest(Q) ≤ N . Then there exists an increasing
sequence of sets w = (wi)i∈N such that cw,c(Q) ≤ N + 1. Let m be the largest integer
that satisfies $(|wm|) ≤ N + 1. Hence, v1, . . . , vn ⊆ wm. Let σ ∈ N, and let γ(σ) be the
corresponding cut-off weights of γ. Then it is easily seen that e(Q;Hγ) ≥ e(Q;Hγ(σ)), cf.
[23, Remark 3.3]. Thus we get from (23)

[e(Q;Hγ)]
2 ≥ b2

∑

j:uj(σ)*wm

γ̂
(σ)
uj(σ)

.

Let now t > t∗σ. Then, for a suitable constant Ct > 0,

τm := |{j | uj(σ) ⊆ wm}| ≤ Ct|wm|t = O(N t/s),

since N + 1 ≥ $(|wm|) = Ω(|wm|s). Hence we obtain for every pσ > max{1, decayγ,σ}

[e(Q;Hγ)]
2 ≥ b2

∞∑

j=τm+1

γ̂
(σ)
uj(σ)

= Ω(τ 1−pσ
m ) = Ω(N t(1−pσ)/s).

This shows that I is only strongly tractable if decayγ > 1. In that case,

pnest ≥ 2s/t∗σ
decayγ,σ −1

.

From this and (24) follows the statement of the theorem. ✷

Note that we have on the one hand t∗1 ≤ t∗2 ≤ t∗3 ≤ · · · , and on the other hand
decayγ,1 ≥ decayγ,2 ≥ decayγ,3 ≥ · · · . Thus it is not a priori clear for which σ ∈ N the
supremum in (26) is attained. As shown in [23] and as we will see below, this may vary
for different classes of weights.

3.1.2 Unrestricted subspace sampling

The next theorem is a generalization of [23, Cor. 4.1], where only the specific kernel
K(x, y) = min{x, y} on D ×D = [0, 1]2 was treated.

Theorem 4 Let $(k) = Ω(ks) for some s > 0, and let γ be weights that satisfy (3). Then
I is only strongly tractable in the unrestricted subspace sampling model if decayγ > 1. In
this case,

punr ≥ max

{
1

β
, sup
σ∈N

2min{1, s/t∗σ}
decayγ,σ −1

}
. (26)

Proof. The proof of Theorem 4 is essentially identical with the one of Theorem 3.4 and
Corollary 4.1 in [23]. One just has to keep in mind that the simple lower bound p∗ ≥ 1
appearing there has to be replaced by punr ≥ 1/β, see (24). ✷

13



3.2 Lower bounds for special classes of weights

3.2.1 Product and order-dependent weights

Recall that POD weights include as special cases product weights and finite product
weights. We now present a generalized version of [23, Lemma 3.8], which holds not only
for product and finite product weights, but for general POD weights.

Lemma 3 Let γ = (γu)u∈U be POD weights as in (14). Then

decayγ,1 = decayγ,σ for all σ ∈ N.

This holds still if we replace condition (3) by the weaker condition that the weights γ̂ are
bounded and have only 0 as accumulation point.

Proof. Let σ ∈ N. Since decayγ,1 ≥ decayγ,σ ≥ 0, it remains to show that decayγ,1 ≤
decayγ,σ. We can confine ourselves to the case decayγ,1 > 0. Let p ∈ (0, decayγ,1). This

implies
∑

j∈N γ
1/p
j < ∞. Thus we get

∑

j∈N

γ̂
1/p
uj(σ)

≤ max
ν∈[σ]

Γ1/p
ν

∑

j∈N

∏

j∈uj(σ)

(γjC0)
1/p ≤ max

ν∈[σ]
Γ1/p
ν

∏

j∈N

(
1 + (γjC0)

1/p
)

≤max
ν∈[σ]

Γ1/p
ν exp

(∑

j∈N

ln
(
1 + (γjC0)

1/p
))

≤ max
ν∈[σ]

Γ1/p
ν exp

(∑

j∈N

(γjC0)
1/p

)
< ∞,

where we used the estimate ln(1 + x) ≤ x, which holds for all non-negative x. Since
the sequence γ̂uj(σ), j ∈ N, is monotonically decreasing, this implies γ̂uj(σ) = o(j−p).
Hence p ≤ decayγ,σ. Since we may choose p arbitrarily close to decayγ,1, we obtain
decayγ,1 ≤ decayγ,σ. ✷

For POD weights with decayγ > 1 Lemma 3, and Theorem 3 and 4 imply strong
tractability and

pnest ≥ max

{
1

β
,

2s

decayγ,1−1

}
and punr ≥ max

{
1

β
,
2min{1, s}
decayγ,1−1

}
. (27)

For product weights the lower bound for pnest can be derived from [40, Thm. 4], and
the one for punr from [35, Thm. 3.3 & Sect. 5.6].

Notice that the lower bounds for pnest and punr for finite-product weights are not weaker
than for product weights.

3.2.2 Weights with finite algorithmic dimension

For the special case of finite-intersection weights of order ω it was observed in [23] that
if A(γ(σ)) = ∞, then t∗σ = 1 for all σ ∈ N. Hence for finite-intersection weights the lower
bounds (25) and (26) result in

pnest ≥ max

{
1

β
,

2s

decayγ,ω −1

}
and punr ≥ max

{
1

β
,
2min{1, s}
decayγ,ω −1

}
. (28)

For the Wiener kernel K(x, y) = min{x, y}, defined on [0, 1]2, the lower bound for punr

in (28) was already proved in [23, Sect. 3.1.1].
For general weights of finite algorithmic dimension it is however not necessarily true

that t∗σ = 1 for all σ ∈ N as the following two lemmas show.
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Lemma 4 Let d ∈ N. Then there exists a set of weights γ with algorithmic dimension d
such that for all k > d there exists a v ∈ U with |v| = k and

|{u ⊆ v : u ∈ A(γ(σ))}| ≥
(⌊ |v|

d

⌋)σ (
d

σ

)
>

( |v|
d

− 1

)σ

for all σ ∈ [d]. (29)

Proof. We construct a graph G̃ with vertex set N and chromatic number d in the following
way: color the vertex j ∈ N by the color c ∈ [d] given by c ≡ j (mod d). Now each pair

of vertices (i, j) ∈ N2 is an edge of the graph G̃ if and only if i 6≡ j (modd), i.e., if
the coloring of the vertices i and j differs. Let k > d and σ ∈ [d] be given. Let G be

the subgraph of G̃ with vertex set v := [k]. Thus for any set u ⊂ v that consists of σ
differently colored vertices, the corresponding subgraph is complete. We now provide a
lower bound for the number of ways a subset of v having σ differently colored vertices can
be chosen. Let r = ⌊k/d⌋. For each color c ∈ [d], there are at least r vertices in v with
color c. There are

(
d
σ

)
ways of choosing a set of σ different colors out of the d possible

colors and for each color c there are at least r possible choices of vertices with this color
c. Thus the number of possible choices is at least rσ

(
d
σ

)
. Hence G contains at least rσ

(
d
σ

)

cliques of size σ. We now may define γ, e.g., by γu =
∏

j∈u j
−2 if u is a clique in G̃ and

γu = 0 else. By construction the algorithmic dimension of γ is d, see Lemma 2, and in
addition (29) holds. ✷

Lemma 5 For each d ∈ N there exists a set of weights γ such that A(γ) has algorithmic
dimension d and such that for all σ ∈ N ∪ {∞} we have t∗σ = min{σ, d}.

Proof. For d ∈ N let γ be weights as in Lemma 4. Due to (29) we have for all σ ∈ N∪{∞}
that t∗σ ≥ min{σ, d}. Since the algorithmic dimension of γ is d, we have additionally that
t∗σ ≤ d. Since always t∗σ ≤ σ, the statement of the lemma is valid. ✷

For general weights with finite algorithmic dimension we just know that the values
decayγ,1, . . . , decayγ,ω satisfy the relation decayγ,1 ≥ . . . ≥ decayγ,ω. We can, e.g., easily
construct weights of finite algorithmic dimension whose set of active coordinate sets A(γ)
consists only of sets of size at least σ ∈ {2, . . . , ω}. Thus decayγ,1 = . . . = decayγ,σ−1 = ∞,
but decayγ,σ may be either finite or infinite. Together with Lemma 5 this argument shows
that for general weights with finite algorithmic dimension we should use the general form
of the bounds (25) and (26) to fully exploit the specific features of the weights we are
working with.

4 Upper bounds

Here we provide constructive upper bounds on the exponents of tractability in the nested
and in the unrestricted subspace sampling model. To this purpose we consider two types
of algorithms: multilevel algorithms, which perform well in the nested subspace sampling
model, and changing dimension algorithms, which are well suited for the unrestricted
subspace sampling model.
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4.1 Multilevel algorithms

Let us describe the general form of the algorithms we want to use more precisely:
Let L0 := 0, and let L1 < L2 < L3 < . . . be natural numbers, and let

v
(1)
k := ∪j∈[Lk]uj and v

(2)
k := [Lk] for k ∈ N. (30)

In the general case we will use the sets v
(1)
k , k = 1, . . . , m. In the special cases of POD

weights, it is more convenient to make use of the relatively simple ordering of the corre-
sponding set system uj, j ∈ N, and choose the sets v

(2)
k for k = 1, . . . , m. In all definitions

and results that hold for both choices of the v
(i)
k , i = 1, 2, we simply write vk, and we put

v0 := ∅. We will choose the numbers L1, L2, . . . in general such that |vk| = Θ(ak) for some
a ∈ (1,∞). (A default choice would be a = 2.) Let

Vk := {j ∈ N | uj ⊆ vk and uj 6⊆ vk−1} for k ≥ 1.

Let us furthermore define
U(m) := ∪m

k=1Vk ∪ {0}.
For u ∈ U we define the mapping Ψu : Hγ → Hγ by

(Ψuf)(x) = f(xu; c) for all x ∈ DN.

We put

Qvk(f) :=

nk∑

j=1

a
(k)
j f(t(j,k)vk

; c), and Q̂k(f) := Qvk(f −Ψvk−1
f), (31)

where the numbers n1 ≥ n2 ≥ . . . ≥ nm, the coefficients a
(k)
j , and the points t(1,k)vk

, . . . , t(nk ,k)
vk

∈
[0, 1]vk will be chosen later, depending on the weights γ.

Define the multilevel algorithm QML
m via

QML
m (f) := f(c) +

m∑

k=1

Q̂k(f) = f(c) +

m∑

k=1

nk∑

j=1

a
(k)
j (f −Ψvk−1

f)(t(k,j)vk
; c). (32)

If we choose the nested sequence of coordinate sets v1 ⊂ v2 ⊂ v3 ⊂ . . . in the nested
subspace sampling model, then the cost of the multilevel algorithm QML

m satisfies

costnest(Q
ML
m ) ≤ $(0) + 2

m∑

k=1

nk$(|vk|), (33)

and the same cost bound is valid in the more generous unrestricted subspace sampling
model. From (8) we obtain

[e(QML
m ;Hγ)]

2 =
∑

j∈N0

γuj
[e((QML

m )uj
;Huj

)]2,

where (QML
m )uj

= QML
m ◦Puj

=
∑m

k=1(Q̂k)uj
. Note that e((QML

m )u0 ;Hu0) = e((QML
m )∅;H∅) =

0, since QML
m is exact on constant functions. Notice furthermore that we have (Q̂k)uj

(f) =

0 whenever j /∈ Vk, and (Q̂k)uj
(f) = (Qvk)uj

(f) = Qvk(fuj
) if j ∈ Vk. Thus we get

[e(QML
m ;Hγ)]

2 =
m∑

k=1

∑

j∈Vk

γuj
[e((Qvk)uj

;Huj
)]2 +

∑

j /∈U(m)

γ̂uj
. (34)
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Let us now for simplicity assume that vk = [max vk] for all k ∈ N, which is always
possible by simply renumbering the variables recursively. Helpful for the construction of
good multilevel algorithms for higher order convergence and general weights is a result of
the following kind:

There exists an α ≥ 1/2 such that for each k ∈ N and each nk ∈ N we find a quadrature
Qvk as in (31) which satisfies in the case α = 1/2 for τ = 1/2, and in the case α > 1/2
for τ ∈ [1/2,min{α, decayγ /2}), τ arbitrarily close to min{α, decayγ /2}, the bound

∑

ℓ∈u⊆[ℓ]

γu
[
e
(
(Qvk)u ;Hu

)]2 ≤ Ĉℓ,τ,γn
−2τ
k for all ℓ ∈ vk \ vk−1, (35)

where

Ĉℓ,τ,γ =


 ∑

ℓ∈u⊆[ℓ]

γ1/(2τ)
u C |u|

τ




2τ

for some Cτ independent of k. (36)

For many reproducing kernels K quadratures like this can be constructed as quasi-
Monte Carlo quadratures. Examples are (shifted) rank-1 lattice rules or polynomial lattice
rules constructed with the help of a component-by-component algorithm, see Section 5.4
or, e.g., [32, Theorem 8], [13, Corollary 5.4], [23, Prop. 3.9].

If we use algorithms Qvk that satisfy condition (35) to define Q̂k as in (31), then we
obtain from (34)

[e(QML
m ;Hγ)]

2 ≤
m∑

k=1

Ck,τ,γn
−2τ
k +

∑

j /∈U(m)

γ̂uj
, (37)

where
Ck,τ,γ =

∑

ℓ∈vk\vk−1

Ĉℓ,τ,γ. (38)

The aim is to minimize the right hand side of this error bound for given cost by choosing
τ , m, and n1, . . . , nm (nearly) optimal. To this purpose one needs a good estimate for
the constants Ck,τ,γ and for the tail

∑
j /∈U(m) γ̂uj

, i.e., more specific information about the
weights.

4.2 Changing dimension algorithms

For given weights γ let A0 be a finite subset of A(γ). A changing dimension algorithm
QCD is an algorithm of the form

QCD(f) =
∑

u∈A0

Qnu,u(fu), (39)

where the integrand f ∈ Hγ has the uniquely determined anchored decomposition

f(x) =
∑

u∈A

fu(x)

and Qnu,u is a quadrature rule for approximating Iu(fu). If the building blocks Qnu,u are
linear algorithms, then also QCD is linear; this follows from the explicit formula

fu(x) =
∑

v⊆u

(−1)|u\v|f(xv; c)
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for arbitrary u ∈ A, see [36]. Thus a function evaluation fu(x) can be done at cost
bounded by |{v ∈ A | v ⊆ u}|$(|u|) ≤ 2|u|$(|u|). Changing dimension algorithms for
infinite-dimensional integration were introduced in [35]. For POD weights we use a slight
modification of the changing dimension algorithms presented in [43] and for weights with
finite active dimension we employ the changing dimension algorithms from [35, Sect. 4].

4.3 Product and order-dependent weights

We consider now product and order-dependent weights (POD) weights, where for each
u ∈ U we have

γu = Γ|u|

∏

j∈u

γj,

where (Γ|u|)u∈U and (γj)j∈N are sequences of nonnegative real numbers as in (14). (Note
to distinguish between γu, where u ∈ U is a finite set of positive integers, and γd, γj, where
d, j ∈ N are positive integers. )

Before we present the concrete algorithms that we use to obtain upper bounds for the
exponents of tractability pnest and punr, we provide some useful results on POD weights.

Lemma 6 Let p∗ ≥ 2q∗ ≥ 2 such that p∗/(2q∗) ∈ N. For the POD weights determined by
γj = j−p∗ for j ∈ N, Γ0 = 1 = Γ1, and

Γk = (k!)p
∗

kp∗/2−q∗
(
(p∗/q∗) sin(q∗π/p∗)

π

)kp∗

for k ≥ 2,

we have
decayγ,∞ = q∗ and decayγ,σ = p∗ for all σ ∈ N.

A rigorous proof of Lemma 6 can be found in Section 6. We suspect that the condition
p∗/(2q∗) ∈ N in the above lemma is not necessary. If the condition q ≤ p∗/2 can be
replaced by q ≤ p∗ in Corollary 8 in Section 6, then the condition p∗ ≥ 2q∗ can be
replaced by p∗ ≥ q∗ in the above lemma.

Lemma 6 considers the boundary case where for given product weights γj, the Γk are
made as large as possible such that the POD weights still have finite decay. This allows
us to obtain cases where the decay of the POD weights differs from the decay of the
corresponding product weights, cf. also Lemma 3. In the following theorem we consider
POD weights where Γk is smaller such that the decay of the POD weights is always the
same as the decay of the corresponding product weights.

Theorem 5 Let γ = (γu)u∈U be POD weights with γu = Γ|u|

∏
j∈u γj. Let p

∗ := decayγ,1 >
1 and q ≤ p∗. Let there exist a constant Cq > 0 such that Γk ≤ Cq(k!)

q for all k ∈ N. In

the case where q = p∗, we additionally assume
∑∞

j=1 γ
1/p∗

j < 1. Then we get the following
results:

If p∗ = q, then ∑

d∈u⊆[d]

γ1/p∗

u = Θ(γ
1/p∗
d ).

If p∗ > q, then ∑

d∈u⊆[d]

γ1/p
u = Θ(γ

1/p
d ) for all p ∈ (q, p∗).
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The last identity holds also for p = p∗ if
∑∞

j=1 γ
1/p∗

j < ∞.
In particular, our assumptions lead for all q ≤ p∗ to decayγ,∞ = decayγ,1.

In the proof we use the multi-index notation, which we recall here: For ν = (νj)
d
j=1 ∈

Nd
0 we write |ν| := ν1 + · · ·+ νd and ν! :=

∏d
j=1 νj!.

Proof. Obviously, we always have

γ
1/p
d = Γ1γ

1/p
d ≤

∑

d∈u⊆[d]

γ1/p
u

and decayγ,∞ ≤ decayγ,1.

Now let us consider the case where q = p∗ and T :=
∑∞

j=1 γ
1/p∗

j < 1. Then
∑

d∈u⊆[d]

γ1/p∗

u =
∑

d∈u⊆[d]

Γ
1/p∗

|u|

∏

j∈u

γ
1/p∗

j ≤ C
1/p∗

p∗

∑

d∈u⊆[d]

(|u|!)
∏

j∈u

γ
1/p∗

j .

Similar as in [33, Lemma 6.2] we now employ the multinomial formula and the formula
for (finite) geometric series to obtain

∑

d∈u⊆[d]

γ1/p∗

u ≤ C
1/p∗

p∗

∑

ν∈Nd
0 ;νd 6=0

|ν|!
ν!

∏

j∈u

γ
νj/p∗

j

= C
1/p∗

p∗

∞∑

κ=0


 ∑

ν∈Nd
0 ;|ν|=κ

κ!

ν!

d∏

j=1

γ
νj/p

∗

j −
∑

ν∈Nd−1
0 ;|ν|=κ

κ!

ν!

d−1∏

j=1

γ
νj/p

∗

j




= C
1/p∗

p∗

∞∑

κ=0

[(
d∑

j=1

γ
1/p∗

j

)κ

−
(

d−1∑

j=1

γ
1/p∗

j

)κ]

≤ C
1/p∗

p∗ (1− T )−2γ
1/p∗

d .

In particular, we showed that
∑

u∈U γ
1/p∗
u < ∞, which implies that decayγ,∞ ≥ p∗.

Let now Γk ≤ Cq(k!)
q for some q < p∗, and let p ∈ (q, p∗] with

∑∞
j=1 γ

1/p
j < ∞. (Recall

that this sum is always finite if p < p∗.) Let S :=
(
2
∑∞

j=1 γ
1/p
j

)p
and set γ∗

j := γj/S.

Then
∑∞

j=1(γ
∗
j )

1/p = 1/2 < 1. Set Γ∗
k = SkΓk for all k ∈ N0. Then there is a constant

C∗ > 0 such that Γ∗
k = SkΓk ≤ SkCq(k!)

q ≤ C∗(k!)p. Thus, by the argument used in the
case p∗ = q, we get

∑

d∈u⊆[d]

γ1/p
u =

∑

d∈u⊆[d]

(
Γ∗
|u|

∏

j∈u

γ∗
j

)1/p

= O(γ
1/p
d ).

In particular, we showed that
∑

u∈U γ
1/p
u < ∞ for all p < p∗, which implies that decayγ,∞ ≥

p∗. The same holds for p = p∗ if
∑∞

j=1 γ
1/p
j < ∞. ✷

Corollary 1 Let γ = (γu)u∈U be POD weights with γu = Γ|u|

∏
j∈u γj. Let p

∗ := decayγ,1 >
1 and q < p∗. Let there exist a constant Cq > 0 such that Γk ≤ Cq(k!)

q for all k ∈ N.
Then we have for every τ ∈ [1, p∗) and every constant C̃τ > 0 that

∑

d∈u⊆[d]

γ1/τ
u C̃ |u|

τ = Θ(γ
1/τ
d ).
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Proof. Let τ and C̃τ be given. Obviously,
∑

d∈u⊆[d] γ
1/τ
u C̃

|u|
τ = Ω(γ

1/τ
d ). Now let p ∈

(max{τ, q}, p∗). Define the POD weights γ̃ = Γ|u|

∏
j∈u γ̃j by γ̃j = γjC̃

τ
τ . Then p∗ =

decayγ̃,1 and, due to Jensen’s inequality and Theorem 5, we obtain

∑

d∈u⊆[d]

γ1/τ
u C̃ |u|

τ =
∑

d∈u⊆[d]

γ̃1/τ
u ≤


 ∑

d∈u⊆[d]

γ̃1/p
u




p/τ

= Θ((γ̃
1/p
d )p/τ ) = Θ(γ

1/τ
d ).

✷

From Corollary 1 we immediately get the following useful corollary.

Corollary 2 Let γ be POD weights that satisfy the assumptions of Corollary 1, and let
vk = v

(2)
k = [Lk] for all k ∈ N. Let τ ∈ [1/2, decayγ,1 /2). Then we have for Ck,τ,γ as in

(38)

Ck,τ,γ = Θ(σk), where σk :=

Lk∑

j=Lk−1+1

γj,

and furthermore
∑

j /∈U(m)

γ̂uj
= Θ

(
∞∑

j=Lm+1

γj

)
.

4.3.1 Nested subspace sampling

Let γ be POD weights that satisfy the assumptions of Corollary 1. Let Lk := L⌈ak−1⌉ for
k ∈ N, where L ∈ N and a ∈ (1,∞) are fixed. (A canonical choice would be L = 1 and
a = 2, but in some applications other choices may be more convenient.) Furthermore, let

vk = v
(2)
k = [Lk] for all k ∈ N. Let α ≥ 1/2. We use multilevel algorithms QML

m as in (32)
that employ quadratures Qvk fulfilling the estimate (35). In particular, these multilevel
algorithms satisfy the error estimate (37).

Theorem 6 Let $(k) = O(ks) for some s ≥ 0. Let γ = (γu)u∈U be POD weights that
satisfy the assumptions of Corollary 1. We assume that there exists an α ≥ 1/2 such that
for all k ∈ N and all nk ∈ N we find quadratures Qvk as in (31) that satisfy (35). Then
our multilevel algorithms QML

m , defined as in (32), establish the following result:
In the case where s ≥ (2α− 1)/2α we obtain

pnest ≤ max

{
1

α
,

2s

decayγ,1−1

}
. (40)

In the case where 0 ≤ s < (2α− 1)/2α, we obtain for

decayγ,1 ≥ 2α:

pnest ≤ 1

α
,

2α > decayγ,1 > 1/(1− s):

pnest ≤ 2

decayγ,1

,
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1/(1− s) ≥ decayγ,1 > 1:

pnest ≤ 2s

decayγ,1−1
.

If the assumptions of Theorem 6 hold and if additionally the nth minimal worst case
error of univariate integration satisfies e(n;H(K)) = Ω(n−α), then, due to the lower bound
on pnest in (27), we have a sharp upper bound on the exponent pnest if s ≥ (2α − 1)/2α,
and for decayγ,1 ≥ 2α and for 1/(1 − s) ≥ decayγ,1 > 1 if 0 ≤ s < (2α − 1)/2α.
Observe that the case s ≥ (2α − 1)/2α is more interesting and relevant than the case
0 ≤ s < (2α− 1)/2α, see, e.g., [19, 40, 43].

Notice further that Theorem 6 improves on the corresponding results in [23, 40] for
product weights. (Compare, e.g., Theorem 6 with [23, Thm. 4.2] and [40, Cor. 2], where
the Wiener kernel K(x, y) = min{x, y} is treated.)

Proof. Let p ∈ (1, decayγ,1) and let τ ∈ [1/2,min{α, p/2}) satisfy (35). (Here we treat in
detail only the case α > 1/2; in the easier case α = 1/2 one chooses always τ = 1/2.) Let
σk be as in Corollary 2. Then we get from (37) and Corollary 2 that

[e(QML
m ;Hγ)]

2 = O

(
m∑

k=1

σkn
−2τ
k +

∞∑

j=Lm+1

γj

)
.

Let m be given, and put M :=
∑m

k=1L
s
k. For given cost S ≥ M of order S = Θ(Ls

m) we
choose the number of sample points nk as nk := ⌈xk⌉, where

xk = Cσ
1

2τ+1

k L
− s

2τ+1

k , with C = S

(
m∑

k=1

σ
1

2τ+1

k L
2τs
2τ+1

k

)−1

.

The cost of the multilevel algorithm QML
m is then of order costnest(Q

ML
m ) = O(S). We get

m∑

k=1

σkn
−2τ
k ≤ S−2τ

(
m∑

k=1

σ
1

2τ+1

k L
2τs
2τ+1

k

)2τ+1

.

Since σk = O(L1−p
k−1) and

∑∞
j=Lm+1 γj = O(L1−p

m ), we obtain the error estimate

[e(QML
m ;Hγ)]

2 = O
(
S−2τ

(
1 + L1−p+2sτ

m

)
+ L1−p

m

)
= O

(
S−2τ + S− p−1

s

)
. (41)

Case 1 : s ≥ (2α− 1)/2α. Here we have two subcases.
Subcase 1a: p ≥ 1 + 2αs. This implies (p− 1)/s ≥ 2α and p ≥ 2α. Hence we obtain

[e(QML
m ;Hγ)]

2 = O
(
S−2τ

)
, (42)

and we may choose τ arbitrarily close to α.
Subcase 1b: 1 + 2αs > p > 1. Then it is not hard to verify that (p − 1)/s ∈

(0,min{2α, p}). Thus we may choose τ ≥ (p− 1)/2s and get

[e(QML
m ;Hγ)]

2 = O
(
S− p−1

s

)
. (43)
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If we let p tend to decayγ,1, we see that the estimates (42) and (43) imply (40).
Case 2 : (2α− 1)/2α > s ≥ 0. Here we have three subcases.
Subcase 2a: p ≥ 2α. Then (p−1)/s > 2α and we get (42), where we again can choose

τ arbitrarily close to α.
Subcase 2b: 2α > p > 1/(1 − s). Then (p − 1)/s > p. Hence we get (42) and may

choose τ arbitrarily close to p/2.
Subcase 2c: 1/(1 − s) ≥ p > 1. Then 2α > p ≥ (p− 1)/s. Choosing τ ≥ (p − 1)/2s,

we obtain (43).
Letting again p tend to decayγ , we have thus verified the theorem. ✷

4.3.2 Unrestricted subspace sampling

If the cost function satisfies $(k) = O(ks) for 0 ≤ s ≤ 1, we may again use multilevel
algorithms as done in the previous subsection. In the case where we have a cost function
$(k) = Ω(ks) for s ≥ 1 and product weights, changing dimension algorithms, as considered
in [35, 43], have proved to be the essentially optimal choice in the unrestricted subspace
sampling setting, see the analysis in [43]. We present here a slight modification of the
changing dimension algorithms from [43] which ensures that the results from [43] do not
only hold for product weights but for all POD weights that satisfy the conditions of
Corollary 1.

As in [43], we assume that there exist positive constants c, C, τ , a non-negative λ1,
and a λ2 ∈ [0, 1] such that for each u ∈ U \{∅} and n ∈ N there are algorithms Qn,u using
n function evaluations of functions fu ∈ Hu with

e(Qn,u;Hu)
2 ≤ cC |u|

(n+ 1)2τ

(
1 +

ln(n+ 1)

(|u| − 1)λ2

)λ1(|u|−1)λ2

, (44)

where by convention the last factor in (44) should be 1 for |u| = 1. We may assume that
c ≥ 1 and C ≥ C0, so that (44) holds also true for n = 0. With the help of the building
blocks Qn,u one can define changing dimension algorithms for a fixed λ0 ∈ (0, 1−1/ decayγ)
and any given ε > 0 in the following way: Let us put

Lr :=
∑

∅6=u∈U

γr
u (45)

for suitable r ≥ 0. Choose τ such that τ < λ0 · decayγ /2. For each u ∈ U satisfying

γλ0
u L1−λ0c C

|u| ≤ ε2 we choose nu = nu(ε, λ0) to be zero and Qnu,u to be the trivial zero
algorithm Qnu,ufu = 0 for all fu ∈ Hu. Otherwise, we put nu = ⌊(γλ0

u L1−λ0c C
|u|ε−2)1/2τ⌋

and choose Qnu,u as in (44). We define the changing dimension algorithm QCD
ε by

QCD
ε (f) = f(c) +

∑

∅6=u∈U

Qnu,u(fu). (46)

Observe that for any ε > 0 there are only finitely many u ∈ U with nu ≥ 1. For given
ε > 0 let

d(ε) := max
{
ℓ ∈ N | c CℓL1−λ0γ

λ0

[ℓ] > ε2
}
.

Then it is easily verified that |u| > d(ε) implies nu = 0. Thus the “ε-dimension” d(ε)
is the largest number of active variables used by the changing dimension algorithm QCD

ε .
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Due to Section 4.2 we obtain

costunr(Q
CD
ε ) ≤ $(0) +

∑

∅6=u∈U

2|u|$(|u|)nu ≤ $(0) + $(d(ε))

d(ε)∑

ℓ=1

2ℓ
∑

|u|=ℓ

nu.

The following theorem is a slight generalization of [43, Thm. 1].

Theorem 7 Let γ = (γu)u∈U be POD weights that satisfy the assumptions of Corollary
1. Let λ0 ∈ (0, 1− 1/ decayγ), and let τ < λ0 · decayγ /2 satisfy (44). Then the changing
dimension algorithm QCD

ε defined in (46) satisfies

e(QCD
ε ;Hγ) ≤ ε1−o(1) as ε → 0,

and its cost satisfies
costunr(Q

CD
ε ) = O

(
$(d(ε))ε−1/τ

)
,

where

d(ε) = O

(
ln(1/ε)

ln ln(1/ε)

)
= o(ln(1/ε)).

If the cost function $ satisfies $(d) = O(eℓd) for some ℓ ≥ 0, then the integration problem
is strongly tractable with exponent

punr ≤ max

{
1

τ
,

2

decayγ −1

}
.

Let us now additionally assume that $(d) = Ω(d) and that the nth minimal worst case error
of univariate integration satisfies e(n;H(K)) = Ω(n−α). If (44) holds for τ arbitrarily
close to α, then

punr = max

{
1

α
,

2

decayγ −1

}
.

In the case of product weights, the statement of Theorem 7 was proved in [43], see
Theorem 1 and 2 there.

In the case where we have general POD weights satisfying the assumptions of Corollary
1, we see that decayγ,∞ = decayγ,1, see Theorem 5, and these quantities do not change
if we multiply the γj, j ∈ N, by some constant. With the help of this observation one
can verify that for the upper bound on punr the analysis in [43] only needs to be slightly
modified to carry over to POD weights that satisfy the assumptions of Corollary 1. The
lower bound follows from (27).

4.4 Weights with finite algorithmic dimension

Let W ⊆ U with minimal algorithmic dimension d ∈ N, and let (γu)u∈U be weights with
γu = 0 for all u /∈ W (i.e., A = A(γ) ⊆ W). Assume furthermore, that there exist
non-negative constants c, C, β1, β2, an α > 0, and for any n ∈ N0 a quadrature Qn, given
by

Qn(f) =
n∑

i=1

a
(n)
i f(t(i,n)) with a

(n)
i ∈ R, t(i,n) ∈ Dd, (47)
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such that

e((Qn)u;Hu) ≤ cC |u| (n+ 1)−α (1 + ln(n+ 1))β1|u|+β2 for all u ⊆ [d]. (48)

With the help of the algorithms Qn and a mapping φ that satisfies (16), we can construct
for arbitrary v ∈ U algorithms QW

v on Hγ in the following way (cf. also [23, Prop. 3.11]):
First we formally consider infinite vectors

t(i,n)∞ ∈ DN, where the jth component is t
(i,n)
∞,j := t

(i,n)
φ(j) .

Then we define the quadrature QW
n,v by

QW
n,v(f) :=

n∑

i=1

a
(n)
i f(t(i,n)∞,v ; c) for all f ∈ Hγ . (49)

Note that for u ⊆ v, u ∈ W, we have |u| = |φ(u)| and e((QW
n,v)u;Hu) = e((Qn)φ(u);Hφ(u)).

By combining such algorithms in a suitable way, we get the following results for nested
and unrestricted subspace sampling.

4.4.1 Nested subspace sampling

In the nested and in the unrestricted subspace sampling regime we propose to use multi-
level algorithms QML

m that employ the quadratures Qvk = QW
n,vk

defined in (49). Here we

consider for the kth level the set of coordinates vk = v
(1)
k = ∪j∈[Lk]uj and Lk := L⌈ak−1⌉,

where L ∈ N and a ∈ (1,∞) are fixed. As in (31), the quadrature Q̂k on the kth level is
given by

Q̂k(f) := QW
nk,vk

(f −Ψvk−1
f).

Due to (34) and (48) we get for arbitrarily small δ > 0

[e(QML
m ;Hγ)]

2 =
m∑

k=1

∑

j∈Vk

γuj
[e((QW

nk ,vk
)uj

;Huj
)]2 +

∑

j /∈U(m)

γ̂uj

≤ C̃2
m∑

k=1




Lk∑

j=Lk−1+1

γuj


 (nk + 1)2(δ−α) + tailγ(Lm),

where the constant C̃ depends on d, α, δ, c, C, β1, and β2, but not onm or the specific values
nk, k = 1, . . . , m. Notice that in the last inequality we implicitly used n1 ≥ n2 ≥ · · · ≥ nm,
since it might happen for some Lk−1 < j ≤ Lk that uj ⊆ vl for an l < k.

This estimate is almost identical with estimate (45) in [23, Sect. 3.2.2]: there one just

has to replace nk by nk + 1 and δ − 1 by δ − α, and rename the constant Cη,ω,δ by C̃2.
Adapting the reasoning in [23] that follows after estimate (45), we obtain the following
theorem.

Theorem 8 Let $(k) = O(ks) for some s ≥ 0. Let the weights γ have finite algorithmic
dimension, and let decayγ > 1. Assume that there exist for α > 0 and all n ∈ N algorithms
Qn as in (47) that satisfy (48). For k = 1, 2, . . ., let Qvk = QW

n,vk
be as in (49). Then the
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multilevel algorithms QML
m , defined as in (32), establish the following result: The exponent

of strong tractability in the nested subspace sampling model satisfies

pnest ≤ max

{
1

α
,

2s

decayγ −1

}
. (50)

If the assumptions of Theorem 8 hold and if additionally the nth minimal worst case
error of univariate integration satisfies e(n;H(K)) = Ω(n−α), then, due to the lower bound
on pnest in (27), we see that our upper bound on pnest in (50) is sharp for finite-intersection
weights; cf. also Section 5.5.1.

4.4.2 Unrestricted subspace sampling

In the case where the cost function $ is of the form $(k) = Ω(ks) for some s > 1, we can
improve the bound on the exponent of tractability from Theorem 8 by changing from the
nested to the more generous unrestricted subspace sampling model. For general finite-
order weights γ of order ω appropriate changing dimension algorithms were provided
in [35]. These algorithms can in particular be used for weights with finite algorithmic
dimension d, which are finite-order weights of order ω = d. If decayγ,ω > 1 and if there
exist algorithms Qn as in (47) satisfying (48), then changing dimension algorithms lead
to an upper bound

punr ≤ max

{
1

α
,

2

decayγ −1

}
, (51)

see [35, Thm. 5(a) & Sect. 5.7]. Together with Theorem 8 this implies the following result.

Theorem 9 Let $(k) = O(ks) for some s ≥ 0. Let the weights γ have finite algorithmic
dimension, and let decayγ > 1. Assume that there exists for some α > 0 and all n ∈ N
algorithms Qn as in (47) that satisfy assumption (48). Then the exponent of tractability
in the unrestricted subspace sampling model satisfies

punr ≤ max

{
1

α
,
2min{1, s}
decayγ −1

}
. (52)

Our lower bound on punr in (28) shows that the upper bound (52) is sharp for the
sub-class of finite-intersection weights if e(n;H(K)) = Ω(n−α).

For finite-intersection weights and the Wiener kernel K(x, y) = min{x, y} the bound
(52) was proved in [23, Thm. 3.12].

5 Higher Order Convergence

In this section we confine ourselves to the domain D = [0, 1], endowed with the restricted
Lebesgue measure. We assume that α ≥ 1 is an integer.

5.1 Higher order polynomial lattice rules

Here we introduce polynomial lattice rules which can achieve arbitrary high convergence
rates of the integration error for suitably smooth functions, see [14].

25



Classical polynomial lattices were introduced in [37] (see also [38, Section 4.4]) by
Niederreiter. These lattices are obtained from rational functions over finite fields. For a
prime b let Fb((x

−1)) be the field of formal Laurent series over Fb. Elements of Fb((x
−1))

are formal Laurent series,

L =

∞∑

l=w

tlx
−l,

where w is an arbitrary integer and all tl ∈ Fb. Note that Fb((x
−1)) contains the field of

rational functions over Fb as a subfield. Further let Fb[x] be the set of all polynomials
over Fb.

The following definition is a slight generalization of the definition from [37], see also
[38], which first appeared in [14]; see also [15, Chapter 15.7].

Definition 6 Let b be prime and 1 ≤ m ≤ n. Let ϑn be the map from Fb((x
−1)) to the

interval [0, 1) defined by

ϑn

(
∞∑

l=w

tlx
−l

)
=

n∑

l=max(1,w)

tlb
−l.

For a given dimension s ≥ 1, choose an irreducible polynomial p ∈ Fb[x] with deg(p) =
n ≥ 1 and let q = (q1, . . . , qs) ∈ (Fb[x])

s. For 0 ≤ h < bm let h = h0+h1b+ · · ·+hm−1b
m−1

be the b-adic expansion of h. With each such h we associate the polynomial

h(x) =
m−1∑

r=0

hrx
r ∈ Fb[x].

Then Sp,m,n(q) is the point set consisting of the bm points

xh =

(
ϑn

(
h(x)q1(x)

p(x)

)
, . . . , ϑn

(
h(x)qs(x)

p(x)

))
∈ [0, 1)s,

for 0 ≤ h < bm. An equal quadrature rule 1
N

∑N−1
h=0 f(xh) using the point set Sp,m,n(q) =

{x0,x1, . . . ,xbm−1} is called a polynomial lattice rule.

We call q the generating vector of the polynomial lattice rule and p the modulus. For
more information on (higher order) polynomial lattice rules see [14, 15].

Let x =
∑∞

i=1
xi

bi
∈ [0, 1) and let σ =

∑∞
i=1

σi

bi
∈ [0, 1), where xi, σi ∈ {0, . . . , b − 1}.

We define the digital b-adic shifted point y by

y = x⊕ σ =
∞∑

i=1

yi
bi
,

where yi = xi + σi ∈ Zb. For points x ∈ [0, 1)s and σ ∈ [0, 1)s the digital b-adic shift
x⊕ σ is defined component wise.

Definition 7 A polynomial lattice rule Qq,p for which the underlying quadrature points
are digitally shifted by the same σ ∈ [0, 1)s is called a digitally shifted polynomial lattice
rule or simply a shifted polynomial lattice rule Qq,p(σ).
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5.2 Reproducing kernel of smoothness α

Let c ∈ [0, 1] and let α ≥ 1 be an integer. We consider the anchored reproducing kernel
for smooth functions anchored at c given by (see [36, Example 4.2])

Kα,c(x, y) =





∑α−1
r=1

(x−c)r

r!
(y−c)r

r!
+
∫ 1

c

(x−t)α−1
+

(α−1)!

(y−t)α−1
+

(α−1)!
dt, if x, y > c,

∑α−1
r=1

(x−c)r

r!
(y−c)r

r!
+
∫ c

0

(t−x)α−1
+

(α−1)!

(t−y)α−1
+

(α−1)!
dt, if x, y < c,

0 otherwise,

where (x− t)+ = max(x− t, 0) and (x− t)0+ := 1x>t and for α = 1 the empty sum
∑α−1

r=1

is defined as 0. The inner product of the corresponding reproducing kernel Hilbert space
H(Kα,c) is given by

〈f, g〉H(Kα,c) =
α−1∑

r=1

f (r)(c)g(r)(c) +

∫ 1

0

f (α)(x)g(α)(x) dx,

with corresponding norm ‖ · ‖H(Kα,c) =
√

〈·, ·〉H(Kα,c). Note that for every f ∈ H(Kα,c) we
have f(c) = 0.

It is well known that the nth minimal error of univariate integration on H(Kα,c) is of
order

e(n;H(Kα,c)) = Ω(n−α). (53)

5.3 Embedding theorem

We now investigate the decay of the Walsh coefficients for functions in H(Kα,c). To
do so, we briefly introduce Walsh functions in base b [9, 18, 47]. Let b ≥ 2 be an
integer and let ωb = e2πi/b be the b-th root of unity. For a nonnegative integer k let
k = κ0 + κ1b + · · · + κa−1b

a−1 denote the b-adic representation of k and for x ∈ [0, 1)
let x = ξ1b

−1 + ξ2b
−2 + · · · denote the b-adic representation of x, where we assume that

infinitely many ξi are different from b− 1. Then the kth Walsh function in base b is given
by

walk(x) = ω
κ0ξ1+κ1ξ2+···+κa−1ξa
b .

For a function f defined on [0, 1] we define the kth Walsh coefficient by

f̂(k) =

∫ 1

0

f(x)walk(x) dx.

See also [15, Chapter 14, Appendix A] for more information on Walsh functions in the
context of numerical integration.

Let k = κ1b
a1−1+ · · ·+κνb

aν−1 with a1 > · · · > aν > 0 and κ1, . . . , κν ∈ {1, . . . , b−1}.
Set

µα(k) =

{
0 if k = 0,
a1 + · · ·+ amin(α,ν) if k > 0.

For α ≥ 2 let Wα denote the space of all Walsh series f : [0, 1) → R given by

f(x) =

∞∑

k=1

f̂(k)walk(x),
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with
‖f‖Wα := sup

k∈N
|f̂(k)|bµα(k) < ∞.

It was shown in [12, Lemma 3] that there is a constant C1,r > 0 such that

∣∣∣∣
∫ 1

0

xr

r!
walk(x) dx

∣∣∣∣ ≤
{

0 if ν > r,
C1,rb

−µr(k) if 0 ≤ ν ≤ r

}
≤ C1,rb

−µα(k).

The constant C1,r can be chosen as

C1,r = r!

(
3

2 sin π/b

)r (
1 +

1

b
+

1

b(b+ 1)

)r−1

. (54)

Thus, there is a constant C2,α > 0 such that

∣∣∣∣∣

α−1∑

r=1

∫ 1

0

(x− c)r

r!
walk(x) dx

∫ 1

0

(y − c)r

r!
wall(y) dy

∣∣∣∣∣ ≤ C2,αb
−µα(k)−µα(l).

We can choose

C2,α =

α−1∑

r=1

C2
1,r.

For k ∈ N0 let Jk(x) =
∫ x

0
walk(t) dt. Note that for k > 0 we have Jk(0) = Jk(1) = 0.

The following result goes back to Fine [18] (see also [12, Lemma 1]). The function Jk(x)
can be represented by a Walsh series

Jk(x) =
∞∑

m=0

rk(m)walk(x),

where for k ∈ N with k = κ1b
a1−1 + · · ·+ κνb

aν−1 and k′ = k − κ1b
a1−1 we have

rk(m) =





b−µ1(k)(1− ω−κ1
b )−1 if m = k′,

b−µ1(k)(1/2 + (ω−κ1
b − 1)−1) if m = k,

b−µ1(m)(ωθ
b − 1)−1 if m = θba1+a+1 + k,

0 otherwise.

For k = 0 we have

r0(m) =

{
b−µ1(m)(ωθ

b − 1)−1 if m = θba+1,
0 otherwise.

For k ∈ N0 and α = 1 let χ1(k) =
∫ 1

0
1[t,1](x)walk(x) dx and for α > 1 let

χ(+)
α (k) =

∫ 1

0

(x− t)α−1
+ walk(x) dx

and

χ(−)
α (k) =

∫ 1

0

(t− x)α−1
+ walk(x) dx.
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Lemma 7 For α ∈ N and t ∈ [0, 1] we have
∣∣χ(+)

α (k)
∣∣ ,
∣∣χ(−)

α (k)
∣∣ ≤ Cb−µα(k) for all k ∈ N0.

Proof. We show the result by induction. Let α = 1. Then (x − t)0+ = 1[t,1](x) and
(t− x)0+ = 1[0,t](x) and therefore the result follows from [12, Lemma 1]. Assume now the
result holds for some α ∈ N. Let k ∈ N, k = κ1b

a1−1 + · · ·+ κνb
aν−1 and k′ = k − κ1b

a1−1

with κ1, . . . , κν ∈ {1, . . . , b− 1}, a1 > a2 > · · · > aν > 0 and 0 ≤ k′ < ba1−1. Then

χ
(+)
α+1(k) =

∫ 1

0

(x− t)α+walk(x) dx

= Jk(x)(x− t)α+ |1x=0 −α

∫ 1

0

(x− t)α−1
+ Jk(x) dx

= −α

∫ 1

0

(x− t)α−1
+ Jk(x) dx

= −α
∞∑

m=0

rk(m)

∫ 1

0

(x− t)α−1
+ walm(x) dx

= −α
∞∑

m=0

rk(m)χ(+)
α (m).

Thus there is some constant C > 0 such that

|χ(+)
α+1(k)| ≤ Cα

(
b−µ1(k)−µα(k′) + b−µ1(k)−µα(k) + b−µ1(k)−µα(k)

∞∑

a=1

b−a

)
≤ C ′

αb
−µα+1(k).

The result for χ
(−)
α+1 can be shown by the same arguments. ✷

By keeping track of the constant in Lemma 7 one can show that the constant can be
chosen as C1,α given by (54).

We now prove the following continuous embedding.

Theorem 10 Let α ∈ N with α ≥ 2. There is a constant C > 0 such that for all
f ∈ H(Kα,c) we have

‖f‖Wα ≤ C‖f‖H(Kα,c).

Thus we have the continuous embedding

H(Kα,c) →֒ Wα.

Proof. Let f ∈ H(Kα,c). Then for x ∈ [c, 1] we have the Taylor series expansion with
integral remainder

f(x) = 〈f,Kα,c(·, x)〉H(Kα,c) =

α−1∑

r=1

f (r)(c)(x− c)r +

∫ 1

c

f (α)(t)
(x− t)α−1

+

(α− 1)!
dt

and for x ∈ [0, c] we have the Taylor series expansion with integral remainder

f(x) = 〈f,Kα,c(·, x)〉H(Kα,c) =

α−1∑

r=1

f (r)(c)(x− c)r +

∫ c

0

f (α)(t)
(t− x)α−1

+

(α− 1)!
dt.
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Therefore

f̂(k) =

∫ 1

0

f(x)walk(x) dx

=
α−1∑

r=1

f (r)(c)

∫ 1

0

(x− c)rwalk(x) dx+

∫ 1

0

∫ 1

0

1[c,1](t)f
(α)(t)

(x− t)α−1
+

(α− 1)!
walk(x) dt dx

+

∫ 1

0

∫ 1

0

1[0,c](t)f
(α)(t)

(t− x)α−1
+

(α− 1)!
walk(x) dt dx

=

α−1∑

r=1

f (r)(c)

∫ 1

0

(x− c)rwalk(x) dx+

∫ 1

0

1[c,1](t)f
(α)(t)χ(+)

α (k) dt

+

∫ 1

0

1[0,c](t)f
(α)(t)χ(−)

α (k) dt.

Thus, using [12, Lemma 3] and Lemma 7 there is some constant C > 0 such that

|f̂(k)| ≤
α−1∑

r=1

|f (r)(c)|
∣∣∣∣
∫ 1

0

(x− c)rwalk(x) dx

∣∣∣∣

+

∫ 1

0

|f (α)(t)|
[
1[c,1](t)|χ(+)

α (k)|+ 1[0,c](t)|χ(−)
α (k)|

]
dt

≤ Cb−µα(k)

(
α−1∑

r=1

|f (r)(c)|2 +
∫ 1

0

|f (α)(t)|2 dt
)1/2

= Cb−µα(k)‖f‖H(Kα,c),

where the constant C > 0 is independent of k and f . ✷

One can show that the constant in Theorem 10 can be chosen as C3,α :=
√
αC1,α,

where C1,α is given by (54).
The result can be generalized for tensor product spaces. Let u ⊂ N be a finite set.

For xu = (xi)i∈u,yu = (yi)i∈u ∈ [0, 1]|u| let

Kα,c,u(xu,yu) =
∏

i∈u

Kα,c(xi, yi).

This reproducing kernel defines a reproducing kernel Hilbert space H(Kα,c,u) with inner
product 〈·, ·〉α,c,u and corresponding norm ‖ · ‖α,c,u.

For ku = (ki)i∈u ∈ N|u|
0 let

µα(ku) =
∑

i∈u

µα(ki).

We define the Walsh functions

walku(xu) =
∏

i∈u

walki(xi).

For α ≥ 2 we define the Walsh space Wα,u as the space of all Walsh series

f(xu) =
∑

ku∈N
|u|
0

f̂(ku)walku(xu)
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with
‖f‖Wα,u = sup

ku∈N
|u|
0

|f̂(ku)|bµα(ku) < ∞.

Using the representation f(x) = 〈f,Kα,c,u(·,x)〉H(Kα,c,u) one obtains a multidimen-
sional Taylor series with integral remainder. The kith Walsh coefficients of products of
(xi − c)ri, (xi − ti)

α−1
+ and (ti − xi)

α−1
+ can all be estimated by Cb−µα(ki). Thus we obtain

the following corollary.

Corollary 3 Let u ⊂ N be a finite set. For α ≥ 2 the tensor product space H(Kα,c,u) is
continuously embedded in Wα,u. That is, there is a constant C4,α,|u| > 0 such that for all
f ∈ H(Kα,c,u) we have

‖f‖Wα,u ≤ C4,α,|u|‖f‖H(Kα,c,u).

The constant C4,α,|u| can be chosen as C4,α,|u| = (C3,α)
|u| = α|u|/2(C1,α)

|u|.
Consider now a reproducing kernel of the form

Kα,γ(x,y) =
∑

u⊆[s]

γuKα,c,u(xu,yu), (55)

which defines the reproducing kernel Hilbert spaceH(Kα,γ) with inner product 〈·, ·〉H(Kα,γ)

and corresponding norm ‖ · ‖H(Kα,γ). Further we define the Walsh space Wα,γ , γ =
(γu)u⊆[s], as the space of all Walsh series

f(x) =
∑

k∈Ns
0

f̂(k)walk(x),

with finite norm
‖f‖Wα,γ̃

= max
u⊆[s]

γ̃−1
u ‖fu‖Wα,u

where fu = 〈f,Kα,c,u〉H(Kα,γ) is the projection of f onto H(Kα,c,u). Then we have

‖f‖Wα,γ̃
≤


∑

u⊆[s]

γ−1
u ‖fu‖2H(Kα,c,u)




1/2

= ‖f‖H(Kα,γ),

where γ̃ = (γ̃u)u⊆[s] and γ̃u = C4,α,|u|
√
γu.

5.4 Numerical integration

Let α > 1 be an integer. The worst-case integration error inH(Kα,c,u) using a quasi-Monte
Carlo algorithm QP (f) = 1

|P |

∑
x∈P f(x) based on the point set P = {x0, . . . ,xN−1} ⊂

[0, 1]u is given by

e(Q;H(Kα,c,u)) = sup
f∈H(Kα,c,u),‖f‖H(Kα,c,u)≤1

∣∣∣∣∣

∫

[0,1]u
f(xu) dxu −

1

N

N−1∑

n=0

f(xn)

∣∣∣∣∣ .

Since the reproducing kernel Hilbert space H(Kα,c,u) is continuously embedded in
Wα,u, the results on numerical integration of [6] in Wα,u apply. From [6, Theorem 3.1] we
obtain the following result which will be used in the changing dimension algorithm.
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Proposition 1 Let b be a prime number, m ≥ 1 and α ≥ 2 be integers. Then a higher
order polynomial lattice point set Sp,m,α(q) with modulus p of degree αm constructed

over the finite field Zb of order b and generating vector g ∈ Z|u|
b can be constructed

component-by-component such that the quasi-Monte Carlo rule Qg,p using the quadrature
points Sp,m,αm(q) satisfies

e(Qg,p;H(Kα,c,u)) ≤
1

bτm
C

|u|τ
b,α,1/τ for all 1 ≤ τ < α. (56)

The constant here is given by

Cb,α,1/τ := 1 + C3,α

(
C̃b,α,1/τ +

(b− 1)α

bα/τ − b

α−1∏

j=1

1

bj/τ − 1

)
,

where C3,α is as in Section 5.3 and

C̃b,α,1/τ :=

{
α− 1 if τ = 1,
(b−1)((b−1)α−1−(b1/τ−1)α−1)

(b−b1/τ )(b1/τ−1)α−1 if τ > 1.

Note that one does not require a random digital shift of the polynomial lattice point
set in Proposition 1 due to the embedding of the function space H(Kα,c,u) in the Walsh
space. This random digital shift is however required for α = 1 to get a corresponding
result (which is not covered in Proposition 1).

The construction cost of the component-by-component algorithm is ofO(|u|Nαα logN)
operations using O(Nα) memory (where N = bm is the number of points), see [5].

Consider now a reproducing kernel of the form (55). For functions f ∈ H(Kα,γ) with

anchored decomposition f =
∑

u⊆[s] fu =
∑

u⊆[s]

∑
ku∈N

|u|
0
f̂u(ku)walku we have

∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

bm

bm−1∑

n=0

f(xn)

∣∣∣∣∣ ≤‖f‖Wα,γ̃

∑

∅6=u⊆[s]

γ̃u
1

bm

bm−1∑

n=0

∑

ku∈N
|u|
0 \{0}

b−µα(ku)walku(xn,u)

≤‖f‖Wα,γ̃

∑

∅6=u⊆[s]

1

bm

bm−1∑

n=0

γ̃′
u

∑

ku∈N|u|

b−µα(ku)walku(xn,u)

≤‖f‖H(Kα,γ)

∑

∅6=u⊆[s]

1

bm

bm−1∑

n=0

γ̃′
u

∑

ku∈N|u|

b−µα(ku)walku(xn,u),

where γ̃u = C
|u|
3,α

√
γu and γ̃′

u =
∑

u⊆v⊆[s] γ̃v (note that 1
bm

∑bm−1
n=0 walku(xn,u) only takes on

the values 0 or 1). Let γ′
u =

∑
v⊇u γv. Using a slight generalization of [6, Theorem 3.1]

we obtain that a higher order polynomial lattice point set Sp,m,αm(q) with modulus p of
degree αm and generating vector g can be constructed component-by-component such
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that the quasi-Monte Carlo rule Qg,p using the quadrature points Sp,m,αm(q) satisfies

e(Qg,p;H(Kα,γ)) ≤
1

bτm


∑

u⊆[s]

(γ̃′
u)

1/(τ)(2Cb,α,1/τ )
|u|




τ

≤ 1

bτm


 ∑

u⊆v⊆[s]

γ1/(2τ)
v C

|v|/τ
3,α (2Cb,α,1/τ )

|u|




τ

=
1

bτm


∑

v⊆[s]

γ1/(2τ)
v C

|v|/τ
3,α (1 + 2Cb,α,1/τ )

|v|




τ

for all 1 ≤ τ < α.

Note that the construction above is explicit, however, the range of τ is restricted to
1 ≤ τ < α. In the following we therefore consider the range 1/2 ≤ τ < 1. If one chooses
1/2 ≤ τ < 1, then one can use the construction of polynomial lattice rules from [13] to
obtain the result that there exists a digital shift σ ∈ [0, 1)s such that

e(Qg,p(σ);H(K1,γ)) ≤
1

bτm


∑

u⊆[s]

γ1/(2τ)
u (C ′

τ )
|u|




τ

for all 1/2 ≤ τ < 1, (57)

for some suitable constant C ′
τ > 0 independent of s and m. Note that the space H(Kα,γ)

is continuously embedded in the space H(Kα−1,γ′), where γ ′ = (2|u|γu)u⊆[s]. This follows
from the tensor product structure of the reproducing kernel Hilbert spaces H(Kα,c,u) and

1

2

∫ 1

0

|f (α−1)(x)|2 dx ≤ |f (α−1)(c)|2 +
∫ 1

0

|f (α)(x)|2 dx,

which in turn follows from

f (α−1)(x) = f (α−1)(c) +

∫ x

c

f (α)(t) dt,

for x ≥ c and an analogous expression for x < c. Thus functions in H(Kα,γ) are also in
H(K1,γ′′), where γ ′′ = (2(α−1)|u|γu)u⊆[s]. Therefore (57) applies for functions in H(Kα,γ)

where one replaces the constant C ′
τ with 2

α−1
2τ C ′

τ .
Note that we have

[e(Qg,p(σ);H(Kα,γ))]
2

=
∑

u⊆[s−1]

γu
[
e
(
(Qg,p(σ))u ;H(Kα,c,u)

)]2
+
∑

s∈u⊆[s]

γu
[
e
(
(Qg,p(σ))u ;H(Kα,c,u)

)]2
.

In the component-by-component algorithm one updates the components gj of g induc-
tively. The first sum over all subsets u ⊆ [s− 1] does not depend on the last component
and is therefore fixed when updating gs. The component-by-component algorithm then
minimizes the second sum over all subsets s ∈ u ⊆ [s] and this sum is then shown to
satisfy the bound

∑

s∈u⊆[s]

γu
[
e
(
(Qg,p(σ))u ;H(Kα,c,u)

)]2 ≤ 1

b2τm


 ∑

s∈u⊆[s]

γ1/(2τ)
u (C ′

τ )
|u|




2τ

. (58)
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This implies that for any 1/2 ≤ τ < α there is a polynomial lattice rule together with a
digital shift σ such that (58) holds. For τ ≥ 1 one can choose the digital shift σ = 0.

Such polynomial lattice rules can be constructed using a component-by-component
algorithm as shown in [13] for 1/2 ≤ τ < α = 1 and in [6] for 1 ≤ τ < α.

5.5 Results for product and order-dependent weights

5.5.1 Nested subspace sampling

Let $(k) = O(ks) for some s ≥ 0. Let γ = (γu)u∈U be POD weights that satisfy the

assumptions of Corollary 1 and have decayγ,1 > 1. For k ∈ N and the set vk = v
(2)
k = [Lk],

see Section 4.1, we may apply estimate (58) to see that our assumption (35) holds.4 Thus
the estimates from Theorem 6 for pnest can be established by multilevel algorithms using
as building blocks the polynomial lattice rules explained above. Due to the fact that
e(n;H(Kα,c)) = Ω(n−α) and our lower bound (27) we get, in particular, the following
result.

Corollary 4 Let $(k) = Θ(ks) for some s ≥ 0. Let γ = (γu)u∈U be POD weights that
satisfy the assumptions of Corollary 1. Let α ≥ 1 be an integer. Then our quasi-Monte
Carlo multilevel algorithms QML

m , defined as in (32) with polynomial lattice rules as in Sec-
tion 5.4 as quadrature rules Qvk , establish the following result: The infinite-dimensional
integration problem is strongly tractable in the nested subspace sampling model.

In the case where s ≥ (2α− 1)/2α we obtain

pnest = max

{
1

α
,

2s

decayγ,1−1

}
. (59)

In the case where 0 ≤ s < (2α− 1)/2α, we obtain for

decayγ,1 ≥ 2α:

pnest =
1

α
,

2α > decayγ,1 > 1/(1− s):

max

{
1

α
,

2s

decayγ,1−1

}
≤ pnest ≤ 2

decayγ,1
,

1/(1− s) ≥ decayγ,1 > 1:

pnest =
2s

decayγ,1−1
.

4Recall that polynomial lattice rules consist of n points, where n is a power of a prime b. If required to
construct a quadrature rule consisting of n points, n ∈ N arbitrary, we generate a polynomial lattice rules
consisting of bm points, bm ≤ n < bm+1, and set the quadrature weights corresponding to the “missing”
n− bm points simply to zero.
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5.5.2 Unrestricted subspace sampling

If the cost function satisfies $(k) = O(ks) for 0 ≤ s ≤ 1, we can use the quasi-Monte Carlo
multilevel algorithms from Section 5.5.1 and achieve the same result as in Corollary 4.
If $(k) = Ω(ks) for s ≥ 1, we can use changing dimension algorithms as in (46) with
polynomial lattices rules as in Proposition 1. Due to Corollary 4 and Theorem 7 these
QMC multilevel and changing dimension algorithms lead to the following result.

Corollary 5 Let $(k) = Θ(ks) for some s ≥ 0. Let γ = (γu)u∈U be POD weights that
satisfy the assumptions of Corollary 1. Let α > 1 be an integer.

If s ≥ (2α − 1)/2α, then the infinite-dimensional integration problem is strongly
tractable with exponent

punr = max

{
1

α
,
2min{1, s}
decayγ,1−1

}
.

If s < (2α − 1)/2α, then the infinite-dimensional integration problem is strongly
tractable and punr satisfies the same relations as pnest in Corollary 4.

5.6 Results for weights with finite algorithmic dimension

Let us briefly mention the results that our quasi-Monte Carlo multilevel and changing
dimension algorithms achieve in the case of weights with finite algorithmic dimension.

We now show how quadrature rules which satisfy (48) can be constructed explicitly.
Choose t(i,n) in (47) to be the first n points of a (t, α, d)-sequence as constructed in [11].

The weights a
(n)
i can be chosen in the following way: Let m be an integer such that

bm ≤ n < bm+1. Then set a
(n)
i = b−m for 1 ≤ i ≤ bm and 0 for bm < i ≤ n. Then [11,

Theorem 5.4] together with Corollary 3 implies that this quadrature rule satisfies (48).
In the following two theorems let Qn denote the higher order quasi-Monte Carlo rule as
described in this paragraph.

5.6.1 Nested subspace sampling

Due to Theorem 8 we obtain the following corollary.

Corollary 6 Let $(k) = O(ks) for some s ≥ 0. Let the weights γ have finite algorithmic
dimension, and let decayγ > 1. Let α ≥ 1 be an integer. Then for all n ∈ N the higher
order quasi-Monte Carlo rules Qn satisfies (48). For k = 1, 2, . . ., let Qvk = QW

n,vk
be as

in (49). Then the multilevel algorithms QML
m , defined as in (32), establish the following

result: The exponent of strong tractability in the nested subspace sampling model satisfies

pnest ≤ max

{
1

α
,

2s

decayγ −1

}
.

The lower bound (28) on pnest shows that the upper bound in Corollary 6 is sharp for
finite-intersection weights.
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5.6.2 Unrestricted subspace sampling

In the unrestricted subspace sampling setting we use for $(k) = O(ks) and s ≤ 1 multilevel
algorithms QML

m as in Corollary 6, and for s > 1 changing dimension algorithms, see
Section 4.4.2, that rely on the higher order quasi-Monte Carlo rules Qn described above.
This results in the following corollary.

Corollary 7 Let $(k) = O(ks) for some s ≥ 0. Let the weights γ have finite algorithmic
dimension, and let decayγ > 1. Let α ≥ 1 be an integer. Then the exponent of strong
tractability in the unrestricted subspace sampling model satisfies

punr ≤ max

{
1

α
,
2min{1, s}
decayγ −1

}
.

The lower bound (28) on punr shows that the upper bound in Corollary 7 is sharp for
finite-intersection weights.

6 Appendix

Here we provide a detailed proof of Lemma 6.

Lemma 8 Let r > 1 be a real number and define the POD weights γu = Γ|u|

∏
j∈u j

−r for
u ∈ U . Then there is a constant cr > 0 such that

∑

u∈U

γu ≥ Γ0 + cr

∞∑

k=1

Γk

(k!)2⌈r/2⌉
k−⌈r/2⌉

(
π

2⌈r/2⌉ sin π/(2⌈r/2⌉)

)rk

. (60)

If r ≥ 2, then there is a constant Cr > 0 such that

∑

u∈U

γu ≤ Γ0 + Cr

∞∑

k=1

Γk

(k!)r
k−r/2

(
π

2⌊r/2⌋ sinπ/(2⌊r/2⌋)

)rk

. (61)

Note that sin x < x for x > 0, thus sin π/r < π/r, which implies

1 <
π

r sin π/r
.

Proof. We have

∑

u∈U

γu =

∞∑

k=0

Γk

∑

u∈U
|u|=k

∏

j∈u

j−r = Γ0 +

∞∑

k=1

Γk

∑

1≤j1<j2<···<jk

k∏

i=1

j−r
i = Γ0 +

∞∑

k=1

Γkζ(r, . . . , r︸ ︷︷ ︸
k times

),

where ζ(r, . . . , r︸ ︷︷ ︸
k times

) is the multiple Hurwitz zeta function.

The general behavior of the multiple Hurwitz zeta function is given in [8, Eq. (48)].
From [8, p. 8] it is known that if r ≥ 2 is an even integer, then

ζ(r, . . . , r︸ ︷︷ ︸
k times

) =
r(2π)rk

(rk + r/2)!

(
1

2 sinπ/r

)rk+r/2
(
1 +

Nr∑

j=2

R
rk+r/2
r,j

)
,
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where Rr,j are some numbers with |Rr,j| < 1 and Nr is a positive integer satisfying
Nr < 2r/2/r. From Stirling’s formula we obtain

(k!)r

(rk)!
≍k

√
2π

e

kkre−rk

(rk)rke−rk
=

√
2π

e
r−rk,

where f(k) ≍k g(k) means that there are constants C, c > 0 independent of k such that
cg(k) ≤ f(k) ≤ Cg(k). Thus

(k!)rζ(r, . . . , r︸ ︷︷ ︸
k times

) =
(k!)rr(2π)rk

(rk + r/2)!

(
1

2 sin π/r

)rk+r/2
(
1 +

Nr∑

j=2

R
rk+r/2
r,j

)

≍k

√
2πr

e

(
1

2 sin π/r

)r/2
1

(rk + r/2)r/2

(
π

r sin π/r

)rk
(
1 +

Nr∑

j=2

R
rk+r/2
r,j

)

≍k
1

kr/2

(
π

r sin π/r

)rk

.

Thus, for any fixed positive even integer r we have

∞∑

k=1

Γkζ(r, . . . , r︸ ︷︷ ︸
k times

) =

∞∑

k=1

Γk

(k!)r
(k!)rζ(r, . . . , r︸ ︷︷ ︸

k times

) ≍
∞∑

k=1

Γk

(k!)r
k−r/2

(
π

r sin π/r

)rk

.

Therefore (60) follows since decreasing r only increases the sum
∑

u∈U γu and the result
holds for all even integers r ≥ 2 as shown above.

Now assume that r ≥ 2. For 1/r < λ ≤ 1 we have by Jensen’s inequality that

[ζ(r, . . . , r)]λ =

[
∑

1≤j1<···<jk

k∏

i=1

j−r
i

]λ
≤

∑

1≤j1<···<jk

k∏

i=1

j−rλ
i = ζ(rλ, . . . , rλ).

Choose 1/r < λ ≤ 1 such that λr is the largest even integer smaller or equal than r. Then

(k!)rζ(r, . . . , r) ≤
[
(k!)λrζ(rλ, . . . , rλ)

]1/λ ≤ Cr
1

kr/2

(
π

λr sin π/(λr)

)rk

,

for some constant Cr > 0. Thus

∑

u∈U

γu ≤ Γ0 + Cr

∞∑

k=1

Γk

(k!)r
k−r/2

(
π

λr sin π/(λr)

)rk

,

from which (61) follows. ✷

Corollary 8 Let γ = (γu)u∈U be POD weights with γu = Γ|u|

∏
j∈u γj. Let p

∗ := decayγ,1 <
∞. Further let c, c0 > 0 be constants such that

c0j
−p∗ ≤ γj ≤ cj−p∗ for all j ≥ 1.
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If for some q ≤ p∗/2 we have

∞∑

k=1

ck/qΓ
1/q
k

(k!)p∗/q
k−p∗/(2q)

(
π

2⌊p∗/(2q)⌋ sin π/(2⌊p∗/(2q)⌋

)kp∗/q

< ∞, (62)

then decayγ,∞ ≥ q.
On the other hand, if for q < p∗ we have

∞∑

k=1

c
k/q
0 Γ

1/q
k

(k!)2⌈p∗/(2q)⌉
k−⌈p∗/(2q)⌉

(
π

2⌈p∗/(2q)⌉ sin π/(2⌈p∗/(2q)⌉)

)kp∗/q

= ∞, (63)

then decayγ,∞ ≤ q.

Proof. We have

decayγ,∞ = sup

{
q ∈ R :

∑

u∈U

γ1/q
u < ∞

}
.

Thus we have for some q ≤ p∗/2

∑

u∈U

γ1/q
u ≤ Γ

1/q
0 + Cp∗/q

∞∑

k=1

ck/qΓ
1/q
k

(k!)p∗/q
k−p∗/(2q)

(
π

2⌊p∗/(2q)⌋ sinπ/(2⌊p∗/(2q)⌋

)kp∗/q

that the right hand side is finite, then decayγ,∞ ≥ q.
On the other hand, for q < p∗ we have

∑

u∈U

γ1/q
u ≥ Γ

1/q
0 + cp∗/q

∞∑

k=1

c
k/q
0 Γ

1/q
k

(k!)2⌈p∗/(2q)⌉
k−⌈p∗/(2q)⌉

(
π

2⌈p∗/(2q)⌉ sinπ/(2⌈p∗/(2q)⌉)

)p∗k/q

.

If the right hand side is infinite for some q < p∗, then decayγ,∞ ≤ q. ✷

We suspect that the condition q ≤ p∗/2 in the above corollary can be replaced by
q ≤ p∗.

The corollary above allows us to construct an example of POD weights where

1 ≤ decayγ,∞ < decayγ,1.

For instance, let γj = j−p∗. Thus decayγ,1 = p∗ and c0 = c = 1 in the above corollary.
Let q∗ be such that p∗/(2q∗) ∈ N. For k ∈ N0 let

Γk = (k!)p
∗

kp∗/2−q∗
(
(p∗/q∗) sin(q∗π/p∗)

π

)kp∗

.

Then we have for q = q∗ that (63) is of the same form as (62), which is

∞∑

k=1

Γ
1/q
k

(k!)p∗/q
k−p∗/(2q)

(
π

2⌊p∗/(2q)⌋ sinπ/(2⌊p∗/(2q)⌋)

)kp∗/q

=
∞∑

k=1

k−1 = ∞. (64)

Due to (63) we have decayγ,∞ ≤ q∗.
Let now q < q∗ such that ⌊p∗/2q⌋ = p∗/2q∗. For this q the left hand side of (62) is

∞∑

k=1

Γ
1/q
k

(k!)p∗/q
k−p∗/2q

(
π

(p∗/q∗) sin(q∗π/p∗)

)kp∗/q

=

∞∑

k=1

k−q∗/q < ∞.

Thus (62) gives us decayγ,∞ ≥ q.
Together with Lemma 3 this establishes Lemma 6.

38



Acknowledgment

Both authors want to thank Michael Griebel for suggesting them to study algorithms
for infinite-dimensional integration of higher order convergence. We are grateful for the
opportunity to work at the Hausdorff Institute in Bonn where the work on this paper was
initiated.

Josef Dick is supported by an ARC Queen Elizabeth II Fellowship.
Michael Gnewuch was supported by the German Science Foundation DFG under grant

GN 91/3-1 and by the Australian Research Council ARC.

References

[1] K. Appel, W. Haken, Every planar map is four colorable, I. Discharging. Illinois J.
Math. 21 (1977), 429–490.

[2] K. Appel, W. Haken, Every planar map is four colorable, II. Reducibility. Illinois J.
Math. 21 (1977), 491–567.

[3] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950),
337–404.

[4] J. Baldeaux, Scrambled polynomial lattice rules for infinite-dimensional integration,
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