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Abstract

One can associate to any bivariate polynomial P(X,Y) its Newton
polygon. This is the convex hull of the points (4, j) such that the monomial
X'YJ appears in P with a nonzero coefficient. We conjecture that when P
is expressed as a sum of products of sparse polynomials, the number of
edges of its Newton polygon is polynomially bounded in the size of such an

2

expression. We show that this “7-conjecture for Newton polygons,” even
in a weak form, implies that the permanent polynomial is not computable
by polynomial size arithmetic circuits. We make the same observation for
a weak version of an earlier “real 7-conjecture.” Finally, we make some
progress toward the 7-conjecture for Newton polygons using recent results
from combinatorial geometry.

1 Introduction

Let f € Z[X] be a univariate polynomial computed by an arithmetic circuit
(or equivalently, a straight-line program) of size s starting from the variable
X and the constant 1. According to Shub and Smale’s 7-conjecture [21], the
number of integer roots of f should be bounded by a fixed polynomial function
of s. It was shown in [21] that the 7-conjecture implies a P # NP result for the
Blum-Shub-Smale model of computation over the complex numbers [4, 3]. A
similar result was obtained by Biirgisser [7] for another algebraic version of P
versus NP put forward by Valiant [27) 28] at the end of the 1970’s. A succinct
way of stating this VP versus VNP problem goes as follows: can we compute
the permanent of a n X n matrix with a number of arithmetic operations which
is polynomial in n? This question can be formalized using the computation
model of arithmetic circuits. The permanent plays a special role here because
it is VNP-complete, and it can be replaced by any other VNP-complete family
of polynomials. We refer to Biirgisser’s book [6] for an introduction to this
topic and to two recent surveys on arithmetic circuit complexity by Shpilka
and Yehudayoff [20] and by Chen, Kayal and Wigderson [§].
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As a natural approach to the 7-conjecture, one can try to bound the number
of real roots instead of the number of integer roots. This fails miserably since
the number of real roots of a univariate polynomial can be exponential in its
arithmetic circuit size. Chebyshev polynomials provide such an example [22]
(a similar example was provided earlier by Borodin and Cook [5]). A real
version of the 7-conjecture was nevertheless proposed in [I7]. In order to avoid
the aforementioned counterexamples, the attention is restricted to arithmetic
circuits of a special form: the sums of products of sparse polynomials. In spite
of this restriction, the real T-conjecture still implies that the permanent is hard
to compute for general arithmetic circuits [17].

In this paper, we propose a T-conjecture for Newton polygons of bivari-
ate polynomials. Like the real 7-conjecture, it deals with sums of products of
sparse polynomials and implies that the permanent is hard for general arith-
metic circuits. A common idea to these three 7-conjecture is that “simple”
arithmetic circuits should compute only “simple” polynomials. In the original
T-conjecture, the simplicity of a polynomial is measured by the number of its
integer roots; in the real 7-conjecture it is measured by the number of its real
roots; and in our new conjecture by the number of edges of its Newton polygon.
These conjectures are independent in the sense that we know of no implication
between two of them.

Organization of the paper

In Section [2] we review some basic facts about Newton polygons and formulate
the corresponding 7-conjecture. We also state in Theorem [ the motivating
result for this paper: a proof of the conjecture, even in a very weak form,
implies a lower bound for the permanent. In Section B we give a proof of this
result and of a refinement: it suffices to work with sums of powers of sparse
polynomials rather than with sums of arbitrary products. We also point out
that this refinement applies to the real T-conjecture from [I7], and that (like in
Theorem [I]) a very weak form of this conjecture implies a lower bound for the
permanent. These observations improve the results stated in [I7]. In Section @
we use a recent result of convex geometry [9] to provide nontrivial upper bounds
on the number of edges of Newton polygons. Our results fall short of establising
the new 7-conjecture (even in the weak form required by Theorem [I]) but they
improve significantly on the naive bound obtained by brute-force expansion. For
instance, as a very special case of our results we have that the Newton polygon
of fg+ 1 has O(t*?3) edges if the bivariate polynomials f and g have at most
t monomials. The straightforward bound obtained by expanding the product
fg is only O(t?). We conclude the paper with a couple of open problems.
In particular, we ask whether this O(t4/ 3) upper bound is optimal. In the
appendix, we improve on this upper bound by giving a linear upper bound in
a special case.



2 Newton Polygons

In the following we will consider a field K of characteristic 0. In fact, most of
the results of this paper are valid for a general field.

We first recall some standard background on Newton polygons. Much more
can be found in the survey [23]. Consider a bivariate polynomial f € K[X,Y].
To each monomial X*Y7 appearing in f with a nonzero coefficient we associate
the point with coordinates (7,7) in the Euclidean plane. We denote by Mon(f)
this finite set of points. If A is a set of points in the plane, we denote by conv(A)
the convex hull of A. By definition the Newton polygon of f, denoted Newt(f),
is the convex hull of Mon(f) (In particular, Newt(f) = conv(Mon(f))). Note
that Newt(f) has at most ¢ edges if f has ¢t monomials. It is well known [19]
that the Newton polygon of a product of polynomials is the Minkowski sum of
their Newton polygons, i.e.,

Newt(fg) = Newt(f) + Newt(g) = {p + ¢; p € Newt(f), ¢ € Newt(g)}.

A short proof of this fact can be found in [11]. As a result, if f has s monomials
and g has t monomials then Newt(fg) has at most s+ ¢ edges. More generally,
for a product f = g1g2 - - - gm, Newt(f) has at most >, t; edges where ¢; is the
number of monomials of g;; but f can of course have up to []", ¢; monomials.
The number of edges of a Newton polygon is therefore easy to control for a
product of polynomials. In contrast, the situation is not at all clear for a sum
of products. We propose the following conjecture.

Conjecture 1 (7-conjecture for Newton polygons). There is a polynomial p
such that the following property holds.
Consider any bivariate polynomial f € K[X,Y] of the form

kK m
f(X7Y):ZHfij(X7Y) (1)
i=1 j=1

where the f;; have at most t monomials. Then the Newton polygon of f has at
most p(kmt) edges.

Note that the bound only depends on k, m and ¢, and so does not depend
on the degrees and coefficients of the polynomials f; ;.

The “real 7-conjecture” [17] is a similar conjecture for real roots of sums of
products of SpaTSGEJ univariate polynomials, and it implies that the permanent
does not have polynomial-size arithmetic circuits. We are not able to compare
these two conjectures. However, as we shall see shortly, Conjecture [ also
implies that the permanent does not have polynomial-size arithmetic circuits.

One can also formulate a 7-conjecture for the multiplicities of (complex)
nonzero roots of univariate polynomials (see Corollary 2.4.1 in [14]). This con-

jecture again implies that the permanent is hard for arithmetic circuits.

'"Here and in [I7], the term “sparse” refers to the fact that we measure the size of a
polynomial f;; by the number of its monomials.



By expanding the products in (1) we see that f has at most k.t"* monomials,
and this is an upper bound on the number of edges of its Newton polygon. In
order to improve this very coarse bound, the main difficulty we have to face is
that the k-fold summation in the definition of f may lead to cancellations of
monomials. As a result, some of the vertices of Newt(f) might not be vertices
of the Newton polygons of any of the k& products H;nzl [i;(X,Y). We give two
examples of such cancellations below. If there are no cancellations (for instance,
if the f;; only have positive coefficients) then we indeed have a polynomial upper
bound. In this case, Newt(f) is the convex hull of the union of the Newton
polygons of the k products. Each of these £ Newton polygons has at most mt
vertices, so Newt(f) has at most kmt vertices and as many edges.

Example 1. We define A(X,Y) = XY +X?+ X?Y2+ X3Y +X5Y, B(X,Y) =
1+XY2 C(X,)Y)=-X - XY -X?>Y? and D(X,Y) =Y + X + X2V + X1Y.

I
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Then,
AB+CD =(XY + X? + X?Y? + X3y + X°Y + X?Y3 + X3Y? + Xx3v*
+ X3 + XOV?) — (XY + X% + X3Y + X°Y + XY?
+ X%y +2X3Y? + XOV2 4+ X2Y3 4+ X4y + X6Y3)
=X?Y? 4+ X37* - XY? - X%y - X3v? - X°y?
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The two rectangle points lie on the convex hull of Mon(AB + CD), but do not
lie on the convex hulls of Mon(AB) or Mon(CD).

Example 2. We define f(X,Y) =1+ X2Y +Y2X, g(X,Y) = 1+ XY + XV*
and we consider Mon(fg —1).
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e me point of Mon(fg)
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The two rectangle points lie on the convexr hull of Mon(fg — 1), but do not lie
on the convex hull of Mon(fg).

Conjecture [l implies that the permanent is hard for arithmetic circuits. In
fact, a significantly weaker bound on the number of edges would be sufficient:

Theorem 1. Assume that for some universal constant ¢ < 2, the upper bound
2(mtlogkt)® oy the number of edges of Newt(f) holds true for polynomials of the
form (1) whenever the product kmt is sufficiently large. Then the permanent is
not computable by polynomial size arithmetic circuits.

For instance, an upper bound of the form QO(m)(k:t)O(l) would be sufficient.
Note that the parameter m plays a very different role than the parameters &
and t.

Remark 1. Theorem /[ holds true even in the case of a field of positive charac-
teristic different from two. In characteristic two, the permanent is equal to the
determinant and is therefore easy for arithmetic circuits. However, the conclu-
sion of Theorem [l remains true in characteristic two if we replace the perma-
nent by the Hamiltonian polynomial (or any other polynomial family which is
VNP-complete in characteristic two).

3 Proof of Theorem 1, and a Refinement

Consider the polynomial

2m—1

fXY) =3 XY (2)
=0

The Newton polygon of f,, has exactly 2" edges.

Our proof of Theorem [ is by contradiction. Assuming that the permanent
is computable by polynomial size arithmetic circuits we will show that f,, can
be put under form (@) with k = nOWnrleen) ¢ — pOWnlogn) and m = O(/n).
Note that the upper bound on m is much smaller than those on k and ¢. Then,
from the assumption in Theorem [Il we conclude that Newt(f,) has at most
2(m+logkt)® oqges. This is a contradiction since for large enough n, this upper
bound is smaller than the actual number of edges of Newt( f,,), namely, 2" (here,
we use the fact that the constant ¢ in Theorem [I] is smaller than 2).



Reduction of arithmetic circuits to depth 4 is an important ingredient in
the proof of Theorem [0 This phenomenon was discovered by Agrawal and
Vinay [I]. We will use it under the following form [I8] (recall that a depth 4
circuit is a sum of products of sums of products of inputs; sum and product
gates may have arbitrary fan-in).

Theorem 2. Let C be an arithmetic circuit of size t computing a polynomial
of degree d. There is an equivalent depth four circuit I' of size tOWdlogd) yyitp,
multiplication gates of fan-in O(\/d).

Note that Theorem 3 of [I8] provides this bound for the case where d is the
so-called “formal degree” of C rather than the degree of the polynomial com-
puted by C. Theorem 2] as stated above can then be derived by an application
of the standard homogenization trick (see e.g. Proposition 5 and Theorem 5
in [18]). It was recently shown [25] that the size bound for I' can be reduced
from ¢OWVdlogd) o tOVd) when d is polynomially bounded in ¢; this improve-
ment preserves the O(\/E) bound on the fan-in of multiplication gates.

We can now complete the proof of Theorem [II The idea of this proof is
based on the one of Proposition 2 in [I7], but is simpler since it doesn’t use
the counting hierarchy. A similar simplification can be done for the real 7-
conjecture [26].

We can expand the exponents i and i2 of (2)) in base 2. This leads to the
equality

FaX,Y) = hp(X2 X2 XYY YT (3)
where hy, (2o, %1, ..., Tn-1,Y0,- - -,Y2n—1) is the multilinear polynomial
> a(n, o, B)agoas a0 Ty b

ae{0,1},8e{0,1}2"

Here the exponents «j, 3; denote the coordinates of the vectors a, 3. The
coefficient a(n, «, ) equals 1 if the vector 8 corresponds to the square of the
vector a and 0 otherwise. Note that h, is a polynomial in 3n variables. The
coefficients a(n, a, 8) can be computed in time polynomial in n. By Valiant’s
criterion [6], this implies that the polynomial family (h,) belongs to the com-
plexity class VNP. Since the permanent is VNP-complete and is assumed to
have polynomial-size circuits, (h,) also has polynomial-size circuits. By Theo-
rem [2, it follows that the polynomials h, are computable by depth 4 circuits of
size nO(V11ogn) with multiplication gates of fan-in O(/n). Using (3], we can
plug in powers of X, Y and powers of 2 into those circuits to express f, as
a sum of products like in (). The resulting parameters k and t are of order
nOWnlogn) “and m = O(y/n). As explained at the beginning of this section,
this leads to a contradiction with the assumption in Theorem [l [J

In the remainder of this section we give a refinement of Theorem [I We
show that it suffices to bound the number of edges of the Newton polygons of
sums of powers of sparse polynomials in order to obtain a lower bound for the
permanent.



Theorem 3. Fiz a universal constant ¢ < 2, and assume that we have the
upper bound 28k o the number of edges of Newt(f) for polynomials of
the form

k
FXLY) =D aify(X, V)" (4)
i=1

where a; € K and the f; have at most t monomials (as in Theorem[l, we require
this upper bound to hold only if kmt is sufficiently large). Then the permanent
18 not computable by polynomial size arithmetic circuits.

Clearly, we can assume that all the coefficients a; are equal to 1 (multiply
fi by a m-th root of a; if necessary).

Theorem [3]is an easy consequence of Theorem [I] and Fischer’s formula [10].
This formula shows that any monomial z12s - - - 2, can be expressed as a linear

combination of 2*~! powers of linear forms.

Lemma 1. For any m, we have

m

m
2 iz zg -+ 2 = Z (H ri)(z1 + Z rizi)"
=2

r=(r2,erm)E{—1, 1} i=2

Note that the exponential blowup entailed by Fischer’s formula is acceptable
because we will apply it with a value of m which is small compared to the main
complexity parameter n, i.e., with m = O(y/n). The idea of using Fischer’s
formula to turn a product into sums of powers comes from [12, [15].

Proof of Theorem[3. We show that the assumption in Theorem Bl implies that
of Theorem [l Consider therefore a polynomial f of the form (). We rewrite
it as a sum of powers by applying Lemma [I] to each of the k products in ().
This yields an identity of the form

k,/
f(X7Y) = Zalfz(va)m
i=1

where a; € K, the f; have at most mt¢ monomials, and k' = 2~ 'k. We are now
in position to apply Theorem [It Newt(f) has at most 2(mtlog k1) edges. For

any constant ¢ > ¢, this is less than 2(m 18k if kit is sufficiently large. We
have therefore derived the hypothesis of Theorem [ from that of Theorem [3],
and we can conclude that the permanent is hard for arithmetic circuits. ]

Remark 2. For Theorem[3, the fact that K has characteristic 0 is important.
Indeed, in positive characteristic Lemmalll does not allow to rewrite a monomial
212+ Zm as a linear combination of powers of linear forms.

Remark 3. As pointed out in the introduction, we gave in [17] similar re-
sults for real roots of univariate polynomials rather than for Newton polygons
of bivariate polynomials. More precisely, let us measure the size of a sum of
products of sparse polynomials by s = kmt. This definition of “size” applies to



bivariate polynomials of the form () as well as to their univariate analogues.
We showed that for any constant ¢ < 2, a 20°85)° ypper bound on the number
of real roots implies that the permanent is hard for arithmetic circuit (see Con-
jecture 3 in [17] and the remarks following it). In fact, the same proof shows
than an upper bound of the form 2mHe ) 4g in Theoremd is sufficient. This
1s clearly a better way of stating our result since it allows for a much worse
dependency of the number of real roots with respect to m. Moreover, as in The-
orem [3 it is sufficient to establish this bound for sums of powers. As in the
proof of Theorem[3, this follows from a straightforward application of Fischer’s
formula.

4 Upper Bounds from Convexity Arguments

In this section we improve the coarse upper bound k.t upper bound on the
number of edges of Newton polygons of polynomials of the form (Il). These
results apply to fields of arbitrary characteristic. Our main tool is a result of
convex geometry [9].

Theorem 4. Let P and Q be two planar point sets with |P| = s and |Q| =t. Let
S be a subset of the Minkowski sum P+Q. If S is convexly independent (i.e., its
elements are the vertices of a convex polygon) we have |S| = O(s*/3t?/3 + s41).

It is known that this upper bound is optimal up to constant factors [2]
(a non-optimal lower bound was also given in [24]). A linear upper bound is
known [13] for the case where P and @ are convexly independent.

We first consider sums of products of two polynomials.

Theorem 5. Consider a bivariate polynomial f € K[X,Y] of the form

k

FXY) = figi(X,Y) (5)

=1

where the f; have at most r monomials and the g; have at most s monomials.
The Newton polygon of f has O(k(r?/3s*/3 +r + 5)) edges.

Proof. Let S; be the set of points in the plane corresponding to the monomials
of fi;g; which appear in f with a nonzero coefficient. Since Newt(f) is the
convex hull of Ule conv(S;), it is enough to bound the number of vertices of
conv(S;). Those vertices form a convexly independent subset of the Minkowski
sum Mon( f;)4+Mon(g;). By Theorem it follows that conv(S;) has O(r%/3s%/3 4
r + s) vertices. Multiplying this estimate by k yields an upper bound on the
number of vertices and edges of Newt(f). O

From this result it is easy to derive an upper bound for the general case,
where we have products of m > 2 polynomials. We just divide the m factors
into two groups of approximately m/2 factors, and in each group we expand
the product by brute force.



Theorem 6. Consider any bivariate polynomial f € K[ X, Y] of the form

kK m
f(X7Y):ZHfij(X7Y) (6)
i=1 j=1

where m > 2 and the f;; have at most t monomials. The Newton polygon of f
has O(k.t>™/3) edges.

Proof. As suggested above, we write each of the k products as a product of
two polynomials F; = HZ@I/ 2 fi and G; = thznl/ 2l fi. We can now apply
Theorem [l to f = Zle F;G;, with » = tI™/2] and s = ¢["/2]. In the re-
sulting O(k(r?/3s%/3 + 1 + 5)) upper bound the term kr?/3s%/3 dominates since
r2/352/3 — p2(lm/2]+[m/21)/3 — 2m/3 4nd m > 9. 0

In order to avoid the brute force expansion in the proof of this theorem
it is natural to consider for each i a convexly independent subset .S; of the
Minkowski sum of the m sets Mon(f;1),...,Mon(f;,). This is exactly the
open problem at the end of [2]: determine the maximal cardinality M,,(t) of a
convexly independent subset of the Minkowski sum of m sets Fy,..., P,_1 of
t points in the Euclidean plane. For instance, the lower bound of [2] combined
with the upper bound of [9] shows that My(t) = ©(t*/3). Unfortunately, we
shall see that M,,(t) = t*(™) so that brute force expansion is not very far from
the optimum.

Example 3. Fiz an integer b > 2. Let Py, be the b x b grid made of the integer
points (x,y) such that:

- all the digits in base b*> of = are equal to zero, except possibly the digit of
weight b2 ;

- all the digits in base b of y are equal to zero, except possibly the digit of
weight bF.

More explicitly,
P ={(0™.,b"j); 0<i<b—1and0<j<b—1}

Clearly, the Minkowksi sum Py + ... + Pp,_1 is the grid {0,...,0%™ — 1} x
{0,...,b™ — 1} of size b*™ x b™.

The next lemma (which is certainly not optimal) shows how to find a fairly
large set of convexly independent points in a grid.

Lemma 2. Ifn(n —1)/2 < M and n < N it is possible to find n convezly
independent points in the grid M x N.

Proof. We start from the origin and build a sequence of n — 1 line segments.
The i-th segment has horizontal length i and slope 1/i. We can keep going
as long as we do not go out of the grid, i.e., as long as n(n —1)/2 < M and
n < N. Altogether, the n — 1 segments have n endpoints and they are convexly
independent. O



Proposition 1. For all m and infinitely many values of t we have:
My (t) > ¢™3 — 1.

Proof. From Example Bl and Lemma 2 (choosing M = b*™ and N = b™) we
have M,,(b3) > n if n(n — 1) < 2™ and n < b™. Hence M,,(b%) > b™ — 1.
The result follows by setting t = b3. O

This result shows that other ingredients than Theorem [4] will be needed to
answer Conjecture [Tl positively. A similar argument can be made for the case
where the sets Py, Py, ..., Py—1 in the Minkowski sum are all equal (this is a
natural case to look at in light of Theorem [B] which shows that it suffices to
deal with sums of powers in order to obtain a lower bound for the permanent).
More precisely, let M/ (t) be the maximal cardinality of a convexly independent
subset of an m-fold Minkoski sum P+ P+ ---+ P where P is a set of at most
m points. By definition we have M/ (t) < M,,(t). In the other direction we
have M/ (t) > M, (|t/m]): just replace the m sets of size |t/m | by their union.
Hence we have M/ (t) > [t/m]™/? — 1.

5 Final Remarks

In this paper we have proposed a conjecture on the number of edges of the
Newton polygon of a sum of products of sparse polynomials; and we have shown
in Theorem [Il that even a weak version of this conjecture implies a lower bound
for the permanent. We conclude with a couple of additional open problems.

1. Consider two polynomials f, g € K[X, Y] with at most ¢ monomials each.
What is the maximum number of edges on the Newton polygon of fg +
1?7 The difficult case appears when the constant term of fg equals —1.
Theorem [ provides a O(t*/3) upper bound, but as far as we know the
“true” bound could be linear in ¢. In the appendix we prove a linear upper
bound under the assumption that f and g have the same supports (i.e.,
Mon(f) = Mon(g)) and that the square of any nonconstant monomial
appearing in f and g does not appear in fg.

2. More generally, what is the maximum number of edges on the Newton
polygon of fi... f, + 1, where the f; again have at most ¢ monomials?
Theorem [6] provides a O(tQm/ 3) upper bound, but the true bound could
be of the form 2°00™¢OM). it could even be polynomial in m and ¢, as
implied by Conjecture [II
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Appendix: the Newton polygon of fg+ 1

In this section we denote by 0 the point in the plane with coordinates (0, 0).
We give here (in Theorem [1]) a linear upper bound assuming the following two
properties:

(i) The polynomials f and g have the same support, i.e., Mon(f) = Mon(g). We
denote by {po,...,pt—1} this common support.

(ii) If f and g have a constant term we assume without loss of generality that
po = 0 and we add the following requirement: if p; is an extremal point of
conv(pi,p2,...,pt—1) then 2p; is not in the support of f and g.

We do not know how to prove a linear upper bound assuming only (i). Condition (ii) is
satisfied in particular when the points in Mon(f) = Mon(g) are convexly independent.

The interesting case, which we consider first, is when f and g have a constant term
but fg+ 1 has no constant term. As explained above we assume that pg corresponds
to the constant terms of f and g, i.e., pg = 0. Under these hypotheses we have the
following result.

Proposition 2. Under assumptions (i) and (ii),

Newt(fg + 1) = COHV(2p1, ey 2pt_1, (pi)iel)

where (p;)icr s the subset of those monomials in Mon(f) which appear in fg+ 1 with
a nonzero coefficient.

Proof. We first prove the inclusion from left to right. Since fg + 1 has no constant
term, all monomials of fg + 1 are of the form p; + p; where ¢ > 1 or j > 1. Consider
first the case where ¢ and j are both nonzero. If i = j this monomial appears in the
right-hand side, and if ¢ # j it is the middle point of two points (namely, 2p; and 2p,)
appearing in the right-hand side. The remaining case is when ¢ = 0 or j = 0. If e.g.
j = 0 we have p; +p; = p; and we see from the definition of I that this monomial also
appears in the right-hand side.

Now we prove the inclusion from right to left. Again by definition of I, all the p;
with ¢ € I are monomials of fg + 1. Hence it remains to show that

conv(2py,...,2pi—1) C Newt(fg + 1).

The left-hand side can be written as conv((2p;);ecs) where the (p;);es form a convexly
independent subset of {p1,...,pi—1}. Any monomial of the form 2p; with j € J
appears in fg + 1 with a nonzero coefficient because it can be obtained in a unique
way by expansion of the product fg. Assume indeed that 2p; = p; + pr with ¢ # k.
Then p; is the middle point of p; and pr. If ¢ > 1 and k > 1, this is impossible by
construction of J. If ¢ = 0 or k = 0, this is also impossible by hypothesis (ii). We thus
have conv((2p;);jes) € Newt(fg + 1), and the proof is complete. O

We note that this proposition does not hold without assumption (ii), as shown
by the following example: take f = 1 + X?Y 4+ XY?2 4 (1/2)X2Y* + (1/2)X*Y? and
g=—-1+X*Y+XY2—(1/2)X?Y*—(1/2)X*Y?. Then fg+1=2X3Y3—(1/2)X°Y°¢—
(1/4)X4Y® — (1/4)X8Y*. The monomial X3Y? is a vertex of Newt(fg+ 1) but is not
of the form p; or 2p; prescribed by Proposition

Theorem 7. Under the same assumptions (i) and (i) as above, Newt(fg+ 1) has at
most t + 1 edges where t denotes the number of monomials of f and g.
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Proof. We continue to denote the common support of f and g by {po,...,pi—1}. If
0 does not belong to this support then Newt(fg + 1) is the convex hull of {0} and
Newt(fg). Moreover, Newt(fg) = Newt(f) + Newt(g) = conv(2po, . .., 2pt—1)-

If 0 is in the support and fg+1 has a constant term then Newt(fg+1) = Newt(fg)
has at most ¢ edges (¢ and not 2t since f and g have the same support).

In the remaining case (0 is in the support but fg + 1 has no constant term) we
need to use hypothesis (ii). This case is treated in Proposition2l At first sight it seems
that Newt(fg 4+ 1) can have up to 2(t — 1) vertices, but the list of possible vertices can
be shortened by picking a convexly independent subsequence. More precisely, write
conv(2p1, ..., 2pi—1, (pi)ier) = conv((2p;)jes, (Pr)ker) where J C {1,...,t — 1} and
K C I are chosen so that the points in this sequence are convexly independent. By
the lemma below, |J N K| < 2. As a result, the number of points in the sequence is
[J|+ | K|=|JUK|+|JNK|<(t—1)+2=t+1. O

Lemma 3. If p, q, r are 8 distinct nonzero points in the plane then the 6 points p, q,
r, 2p, 2q, 2r are not converly independent.

This is clear from a picture and can be proved for instance by considering the 4
points 0, p, q, r. There are two cases.

1. If these 4 points are convexly independent, assume for instance that pq is a
diagonal of the quadrangle Oprq. Then the line pq separates 0 from r. As a
result, r € conv(p, ¢, 2r).

2. If the 4 points are not convexly independent, assume for instance that r €
conv(0, p, q). In this case, 2r € conv(2p, 2q,r). O
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