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Abstract We prove optimal bounds for the discretization error of geodesic finite
elements for variational partial differential equations for functions that map into a
nonlinear space. For this, we first generalize the well-known Céa lemma to nonlinear
function spaces. In a second step, we prove optimal interpolation error estimates for
pointwise interpolation by geodesic finite elements of arbitrary order. These two results
are both of independent interest. Together they yield optimal a priori error estimates for
a large class of manifold-valued variational problems. We measure the discretization
error both intrinsically using an H1-type Finsler norm and with the H1-norm using
embeddings of the codomain in a linear space. Tomeasure the regularity of the solution,
we propose a nonstandard smoothness descriptor formanifold-valued functions,which
bounds additional terms not captured by Sobolev norms. As an application, we obtain
optimal a priori error estimates for discretizations of smooth harmonic maps using
geodesic finite elements, yielding the first high-order scheme for this problem.

Keywords Geodesic finite elements · A priori error estimates · Harmonic maps ·
High-order methods

Mathematics Subject Classification 65N15 · 65N30 · 53-XX

1 Introduction

This article investigates the numerical discretization of partial differential equations
(PDEs) in variational form for functions whose codomain is a nonlinear Riemannian
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manifold M . Such problems arise, for example, in Cosserat-type material models [44,
45,47,48,59,68], liquid crystal physics [2,32], and image processing [64,65]. Further,
we mention variational splines in manifolds [34], multi-body dynamics [35], and the
investigation of harmonic maps into manifolds [18]. In signal processing of manifold-
valued signals (see, e.g., [51]), any generalization of a linear variational method leads
to a variational problem with values in a manifold.

The numerical approximation of solutions to such PDEs is difficult, because the
relevant function spaces do not possess a linear structure. Therefore, standard dis-
cretization methods such as finite elements cannot be used. Instead, various ad hoc
methods have been proposed in the literature to discretize individual PDEs with par-
ticular codomains M . For example, to compute harmonic maps into the unit sphere
S2, Bartels and Prohl [7,9] embedded S2 intoR3 and used first-order Lagrangian finite
elements, constraining only the vertex values to be in S2. In [8], this method has been
generalized to compact subsurfaces of Euclidean space which excludes, for instance,
the important case of the projective space P

2. This latter case has been treated in
[10]. Other references on the numerical computation of harmonic maps, less related
to the present paper, include [2,40]. In the literature on geometrically exact shells, the
direction of the shell surface normal is frequently expressed as a set of angles, and
the angles are discretized separately using finite elements [70]. For Cosserat continua
(with values in R

3 × SO(3)), an alternative approach, used by Münch [43], Münch
et al. [44,45], and Müller [42], interpolates rotation vectors in so(3) instead of in the
group of rotations SO(3). Finally, Simo et al. [60,61] did not interpolate rotations at
all. Rather, they kept the orientation at each quadrature point as a history variable and
updated it with linear interpolants of the corrections coming from a Newton method.

All these approaches have their shortcomings. Bartels and Prohl rely on an isometric
embedding with corresponding projection. This is only an esthetic problem for spaces
such as the unit spheres. However, for others such as the symmetric positive definite
matrices (used, for example, in [22,66]) or the projective space P

2 (used to model
liquid crystals [10]), such a projection is not easily available. Also, it is unclearwhether
their method can achieve higher than first-order convergence. The approach used by
Münch and Müeller requires certain ad hoc reparametrizations to properly handle
large rotations [43, Sec. 2.5]. Also, the dependence on a fixed tangent space of the
codomain breaks objectivity. For the approach by Simo and coworkers [61], Crisfield
and Jelenić [15] showed that it introduces a spurious dependence of the solution on
the initial iterate and the parameters of the path-following mechanism.

With the notable exception of Bartels and Prohl and Bartels, who proved weak
convergence of their discrete solutions to weakly harmonic maps (see also Remark 7.3
below), no analytical investigations of any of the above discretization methods appear
in the literature. Hence, it is generally unknown whether these methods converge
and whether the nominal rate of the approximation spaces is actually achieved. For
the numerical approximation of explicitly given functions with values in a manifold,
several theoretical results have been achieved in the recent years [17,24,25,29,51,69,
71]. These methods are based on subdivision schemes, and it is unclear how they can
be used for solving PDEs.

Recently, geodesic finite elements (GFE) have been introduced for partial dif-
ferential equations with nonlinear codomains [54–56]. Based on the Karcher mean
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(or Riemannian center of mass), they form a natural generalization of Lagrangian
finite elements of arbitrary order to the case where the codomain M is a nonlinear Rie-
mannian manifold. Geodesic finite elements do not rely on an embedding of M into
a linear space and form a conforming discretization in the sense that geodesic finite
element functions are H1-functions [56, Thm.5.1]. Also, they are equivariant under
isometries of M . In mechanics, this leads to the desirable property that discretizations
of objective problems are again objective. Note that for interpolation of values on a
nonlinear manifold, the Karcher mean has already been used in [12,41,50].

In [54–56], numerical studies of the discretization error were performed. These
studies involved geodesic finite elements of order up to three for functions mapping
into the unit sphere S2 and the special orthogonal group SO(3). In all cases, optimal
convergence orders in the L2- and H1-norms were observed. However, no analytical
investigation of the discretization error was given at all. We make up for this with the
present article, providing a complete, intrinsic convergence theory for geodesic finite
elements for problems of variational type.

By “variational type,” we mean the following setting. For a domain � ⊂ R
d and

M a Riemannian manifold, we look at minimization problems

u : � → M, u = argmin
w∈H

J(w), (1)

with J : H → R a nonlinear functional. The domain H of J is a set of functions
� → M of H1 smoothness, which we discuss in detail in Sect. 2 (see Definition 2.1
for a definition of H1(�, M)). By construction, GFE functions are H1 functions,
and the set V h of GFE functions for a given grid is a subset of H . We can therefore
formulate a discrete problem by restricting J to V h . The discrete solution is

uh = argmin
wh∈V h

J(wh), (2)

i.e., we minimize the original energy functional over a finite-dimensional subset (in
the sense that every element can be described by a finite list of real numbers) of the
original set H .

As in the linear case, assessing the error of this numerical procedure is done in
two steps. First, under an ellipticity assumption on the energy J, we show that uh is
a quasioptimal solution in the approximation space V h , that is, the error between uh

and u is comparable to the approximation power of the space V h (inspired by the
linear theory we call such a result a Céa lemma). As it turns out, such a result can be
proved easily in general metric spaces, using only certain convexity properties of the
energy along geodesics, see Theorem 3.1. However, for the crucial H1-type distance,
this convexity is difficult to verify in practice. We therefore also give a more elaborate
result (Theorem 3.3), which allows to bound the H1 distance using variations of the
energy along geodesic homotopies. The results are independent of the construction of
geodesic finite elements and also cover other discretization methods.

Then, in a second step, the approximation power of the GFE spaces is assessed. In
Theorem 5.4, we find that, provided that the solution u has a certain smoothness, the
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best approximation error of u in V h decays like a power of themesh size h. 1 We obtain
the same orders as in the corresponding linear cases. All our arguments are completely
intrinsic, and the dependence of the approximation quality on the geometry of M is
given via iterated covariant derivatives of the logarithm mapping of M .

Combining these two results yields optimal convergence orders for the discretiza-
tion error of geodesic finite element discretizations of general nonlinear elliptic vari-
ational problems (1) in Theorems 6.1 and 6.2. Compared with known results in the
linear setting, the only important additional restriction of our results is that we require
the solution u to lie in a Sobolev space that is embedded in the space of continu-
ous functions—a common minimal assumption for manifold-valued problems. As an
application, we give optimal a priori error estimates for GFE discretizations of har-
monic maps in Theorem 7.1 under certain assumptions of the sectional curvature of
M .

We would like to emphasize that the two aforementioned results, viz. the nonlinear
Céa lemmas and the interpolation error estimate, are highly interesting in their own
right. For instance, the Céa lemmas apply to approximation spaces other than GFE
spaces, for example, the interpolation method used in [42,43] or projection-based
approximation spaces as in [7,28]. The interpolation error estimates are also useful in
the general context of approximating manifold-valued functions (see, e.g., [4,51]).

A delicate issue is the proper choice of error measures in a nonlinear function space.
In the classical theory of a priori bounds in linear spaces, a Sobolev-type half-norm
|u| of the solution u bounds the error ‖u − uh‖. Since there is no subtraction defined
on the set H , we need to replace ‖u −uh‖ by a suitable distance metric in the function
space H . We present two such metrics in Sect. 2.2, which reduce to ‖u − uh‖H1 if M
is a linear space.

To generalize the term |u|, the covariant Sobolev half-norm is an obvious choice.
However, in our expression for the interpolation error, terms appear that cannot be
controlled by a Sobolev half-norm alone. In Sect. 2.4, we therefore introduce a slightly
stronger concept, which we call the smoothness descriptor. We show that it provides
information that is comparable to the actual Sobolev (half-)norms, but it does differ
from them even in linear spaces. The question of whether our bounds also hold for
covariant Sobolev norms is open.

We have structured the article as follows. In Chapter 2, we discuss the nonlinear
spaces made up by functions � → M of Sobolev smoothness. We propose two
distance notions and introduce the smoothness descriptor. In Chapter 3, we prove
different forms of a nonlinear Céa lemma. Only then geodesic finite elements are
introduced in Chapter 4. The second important part of the proof, the interpolation
error bound, is shown in Chapter 5. This allows us to state a priori bounds for the
discretization error for the discrete problem (2) in Chapter 6. Finally, in Chapter 7,
we apply our results to harmonic maps and some of their generalizations. Under some
regularity and curvature assumptions, we obtain optimal error bounds for discrete
harmonic maps of all approximation orders.

1 Similar results are shown in previous work by [27] for univariate nonlinear interpolation functions and
the L∞ norm, albeit with different methods.
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2 Nonlinear Function Spaces

Describing regularity of functions with a nonlinear codomain is a much less unified
field than the corresponding linear theory. We introduce the notions that will be used
in this article.

2.1 Sobolev Spaces

The content of this subsection follows the standard definition of manifold-valued
Sobolev spaces, see, for instance, [11,39,49]. Let � ⊂ R

d be open and bounded
with Lipschitz boundary. On �, we use canonical coordinates x1, . . . , xd . We use the
notation ∂

�k for the (weak) partial derivative of a d-variate function with respect to the
multi-index �k = (k1, . . . , kd) ∈ N

d
0 , i.e.,

∂
�k = ∂ |�k|

(
∂xd

)kd . . .
(
∂x1

)k1
,

where we have written |�k| := k1 + · · · + kd . For a function v : � → R and an
integrability parameter p ∈ [1,∞), we define the usual Sobolev half norms and
norms

|v|p
W k,p :=

∫

�

∑

|�k|=k

|∂ �kv(x)|p dx, ‖v‖p
W k,p :=

k∑

j=0

|v|p
W j,p . (3)

We denote by W k,p(�,RN ) the set of measurable functions � → R
N for which this

quantity is finite componentwise. This set of functions forms a linear space. As an
extension, the space W k,∞(�,RN ) is defined as the set of all measurable functions
� → R

N for which
‖v‖W k,∞ :=

∑

|�k|≤k

sup
x∈�

|∂ �kv(x)| dx

is finite. For a simpler notation,wewill sometimeswrite Hk(�,RN ) forW k,2(�,RN ).
Let now (M, g) be an n-dimensional Riemannian manifold with scalar product

〈·, ·〉g and induced distance dist : M × M → R
+. The following definition of a

Sobolev space for functions with values in M is standard (see, e.g., [57]).

Definition 2.1 Let i : M → R
N be an isometric embedding (which always exists by

[46]), k ∈ N0 and p ∈ N ∪ {∞}. Define

W k,p(�, M) :=
{
v ∈ W k,p(�,RN ) : v(x) ∈ i(M), a.e.

}
.

Again we will write Hk(�, M) for W k,2(�, M). We shall also use the notation
C(�, M) to denote continuous functions from � to M .
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For nonlinear M , these spaces obviously do not form vector spaces. However, under
certain smoothness conditions, the manifold structure of M is inherited. The following
result is proved in [49].

Lemma 2.1 If k > d/p, the spaces W k,p(�, M) are Banach manifolds.

Unfortunately, this lemma excludes the important case of W 1,2(�, M) with d ≥ 2.
However, even when W k,p(�, M) is not a manifold, we can still consider vector fields
that are attached to a general continuous M-valued function.

Definition 2.2 Let u ∈ C(�, M). We say that W : � → T M is a vector field along
u if W (x) ∈ Tu(x)M for all x ∈ �. The set of all vector fields along u is denoted by
u−1T M .

For each continuous u : � → M , the set u−1T M forms a linear space which we
now equip with two norms. The first is of L p-type.

Definition 2.3 Let u ∈ C(�, M). For a vector field W ∈ u−1T M , and p ∈ [1,∞],
we set

|W |p
L p :=

∫

�

|W (x)|p
g(u(x))dx,

with the obvious modifications for p = ∞.

The second one is a W 1,2-type norm, involving derivatives with respect to x . With
D

dxα ,wedenote the covariant partial derivative alongu with respect to xα . In coordinates
on � and M , it reads

D

dxα
W l(x) := dW l

dxα
(x) + �l

i j (u(x))
dui

dxα
W j (x),

where we sum over repeated indices and denote with �l
i j the Christoffel symbols

associated with the metric of M .

Definition 2.4 Let u ∈ W 1,q(�, M) with q > max(2, d) and assume that the coordi-
nate functions associated with the vector field W ∈ u−1T M are in H1(�,R). We set

|W |2H1 := |W |2L2 +
∫

�

∣∣∇x W (x)
∣∣2
gdx := |W |2L2 +

d∑

α=1

∫

�

∣∣∣
∣

D

dxα
W (x)

∣∣∣
∣

2

g(u(x))

dx . (4)

Observe that by the smoothness assumption on u and the Sobolev embedding theorem
the H1-norm is indeed well defined by (4). For this norm, we can show the following
version of the Poincaré inequality.

Lemma 2.2 [Poincaré Inequality] Let u ∈ W 1,q(�, M) for q > max(2, d), and
assume that W ∈ u−1T M with W

∣∣
∂�

= 0. Then, we have

|W |2L2 ≤ C1(�)

d∑

α=1

∫

�

∣∣∣
∣

D

dxα
W (x)

∣∣∣
∣

2

g(u(x))

dx,

with C1(�) the Poincaré constant of the domain �.

123



Found Comput Math (2015) 15:1357–1411 1363

Proof By the Poincaré inequality for f : x �→ |W (x)|g(u(x)) ∈ R, we get

|W |2L2 =
∫

�

|W (x)|2g(u(x)) dx = ‖ f ‖2L2 ≤ C1

d∑

α=1

∥∥∥∥
d f

dxα

∥∥∥∥

2

L2
.

Using the Cauchy inequality for g, we may then calculate

∣∣∣∣
d f

dxα
(x)

∣∣∣∣ = 〈W (x), D
dxα W 〉g(u(x))

|W (x)|g(u(x))

≤
∣∣∣∣

D

dxα
W (x)

∣∣∣∣
g(u(x))

,

and the assertion follows. ��
We will frequently work with functions whose W 1,q -norms are bounded by a fixed
constant K > 0. We therefore introduce for q ∈ (d,∞) the notation

W 1,q
K =W 1,q

K (�, M) :=

⎧
⎪⎨

⎪⎩
v∈W 1,q(�, M) : max

α=1...,d

⎛

⎝
∫

�

∣∣∣∣
d

dxα
v(x)

∣∣∣∣

q

g(v(x))

dx

⎞

⎠

1/q

≤ K

⎫
⎪⎬

⎪⎭
,

(5)

with obvious modifications for q = ∞. The sets W 1,q
K are a manifold-valued analog

of K -balls in Sobolev spaces. Note that functions in W 1,q
K are necessarily continuous

for q > max(2, d).

2.2 Distance Measures in Nonlinear Function Spaces

To quantify the error between a function u ∈ W k,p(�, M) and an approximation
v of u in the same space, we need a distance measure on the nonlinear function
spaceW k,p(�, M). This subsection discusses different distancemeasures inmanifold-
valued Sobolev spaces and their relation to each other. We suspect that these results
are not new but were unable to find a reference for them.

There are several ways to construct such a distance. The simplest one uses the
embedding i used in Definition 2.1 to define the space W k,p(�, M).

Definition 2.5 For all u, v ∈ W k,p(�, M) define

distemb,Wk,p(u, v) := ‖i(u) − i(v)‖W k,p . (6)

Since i is an isometry, the definition yields a metric. Also, it equals the standard
Sobolev distance if M is a linear space.

This distance is convenient to evaluate and defined even for functions u, v of little
smoothness. However, esthetically, it is somewhat unpleasing, because it depends on
the embedding i . A purely intrinsic distance can be defined using minimizing paths.
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Definition 2.6 Let H be a set of functions � → M , and u, v ∈ H . Suppose there
is at least one continuously differentiable path γ from u to v in H . We denote by
γ̇ : � × [0, 1] → M the push-forward of d

dt along γ , i.e., the vector field defined by

γ̇ (x, t) := d

dt
γ (x, t) ∈ Tγ (x,t)M.

For each γ (t) ∈ H , let there be a norm |·|G on the space of vector fields along γ (t)
and define

distG(u, v) := inf
γ path from u to v

1∫

0

|γ̇ (t)|G dt.

For each norm |·|G , we obtain a corresponding distance.

Definition 2.7 For each u, v ∈ C(�, M) and p ∈ [1,∞) define

distL p (u, v) := inf
γ path from u to v

1∫

0

|γ̇ (t)|L p dt =
⎛

⎝
∫

�

dist(u(x), v(x))p dx

⎞

⎠

1/p

and

distL∞(u, v) := inf
γ path from u to v

1∫

0

|γ̇ (t)|L∞ dt = sup
x∈�

dist(u(x), v(x)).

Finally, for each u, v ∈ W 1,q(�, M), q > max(2, d), define

distW 1,2(u, v) := inf
γ path from u to v

1∫

0

|γ̇ (t)|H1 dt. (7)

The minimizing curves with respect to distL2 are called geodesic homotopies. They
have the following useful property.

Remark 2.1 Let γ : [0, 1] → C(�, M) be a geodesic homotopy. Then, for each
x ∈ �, the curve γ (x, ·) is a geodesic on M .

Two functions that can be connected by a geodesic homotopy are called geodesically
homotopic.

Defining distance using minimizing paths is a very elegant way of defining a dis-
tance, but it can be difficult toworkwith. Inside our proofs,wewill therefore frequently
use a third error measure. It has a lot less mathematical structure than the two distance
notions introduced above. However, we show below that it bounds both the embedded
and the path-induced distance from above.

For the definition, we need the exponential map exp(·, ·) of M , as well as its inverse
log(·, ·). For both maps, the first argument denotes the base point p ∈ M . That is,
exp(p, ·) : Tp M → M and log(p, ·) : M ⊃ U → Tp M .
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Definition 2.8 Let u, v ∈ W 1,q(�, M) for q > max(2, d). Define the quantity

D1,2(u, v)2 :=
∫

�

|log(u(x), v(x))|2g(u(x)) dx+
d∑

α=1

∫

�

∣∣∣∣
D

dxα
log(u(x), v(x))

∣∣∣∣

2

g(u(x))

dx .

(8)

In the linear case, this definition coincides with the usual H1 error. It is, however, not
a metric, since it is neither symmetric nor does it fulfill the triangle inequality.

The following lemma states that D1,2(u, v) provides an upper bound for ‖i(u) −
i(v)‖H1 for u, v ∈ W 1,q

K as defined in (5). In the following, we will write A � B to
say that a quantity A is bounded by a quantity B times a constant. If also the converse
estimate holds, we will sometimes write A ∼ B.

Lemma 2.3 For u, v ∈ W 1,q
K with q > max(2, d) and M isometrically embedded

into Euclidean space, we have the estimate

‖i(u) − i(v)‖H1 � D1,2(u, v),

with the implicit constant only depending on K , the embedding i , and the geometry
of M.

Proof For simplicity, we abuse notation and write i(u) = u, i(v) = v. Clearly, we
have

|u(x) − v(x)| ≤ dist(u(x), v(x)) = |log(u(x), v(x))|g(u(x)) for almost all x ∈ �,

which takes care of the first term in the definition of ‖ · ‖H1 . For the term associated
with the derivative, we put v(x) = exp(u(x), log(u(x), v(x))) and compute, using the
notation ∂1 exp(p, w) = d

dp exp(p, w), ∂2 exp(p, w) = d
dw

exp(p, w) that

d

dxα
v(x) = ∂1 exp

(
u(x), log(u(x), v(x))

) d

dxα
u(x)

+ ∂2 exp
(
u(x), log(u(x), v(x))

) D

dxα
log(u(x), v(x)).

Then, since ∂1 exp(p, 0)w = w for all p ∈ M, w ∈ Tp M , we have

d

dxα
u(x) = ∂1 exp(u(x), 0)

d

dxα
u(x).

Hence, we can write the difference d
dxα u(x) − d

dxα v(x) as a sum of the terms

I :=
[
∂1 exp(u(x), 0) − ∂1 exp

(
u(x), log(u(x), v(x))

)] d

dxα
u(x)
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and

II := ∂2 exp
(
u(x), log(u(x), v(x))

) D

dxα
log(u(x), v(x)).

The quantity II can be bounded in modulus by D
dxα log(u(x), v(x)), up to a constant.

By the Lipschitz continuity of ∂1 exp in its second argument and the fact that u ∈ W 1,q
K

with q > max(2, d) by assumption, we can use the Sobolev embedding theorem to
bound I up to a constant by ‖log(u(x), v(x))‖Lr for some r < 2d/(d − 2) (for d = 1
we can put r = ∞), which, again by the Sobolev embedding theorem, is bounded by
D1,2(u, v). This proves the statement. ��
Using a uniformity property of geodesic homotopies (which we prove in the follow-
ing section), we can show that D1,2 also bounds the distance distW 1,2 introduced in
Definition 2.7.

Lemma 2.4 For each u, v ∈ W 1,q
K with q > max(2, d), we have

distW 1,2(u, v) ≤ C2D1,2(u, v),

where C2 is the constant defined in (9).

Proof Let � a geodesic homotopy (L2-geodesic) from u to v. Then,

distW 1,2(u, v) ≤
1∫

0

|�̇(t)|H1 dt ≤ sup
t∈[0,1]

|�̇(t)|H1 ≤ C2 inf
t∈[0,1] |�̇(t)|H1 ,

where the last inequality is proved in Lemma 2.5. From this, we can conclude that

distW 1,2(u, v) ≤ C2 inf
t∈[0,1] |�̇(t)|H1 ≤ C2|�̇(0)|H1 = C2D1,2(u, v).

��

2.3 H1-Uniformity of Geodesic Homotopies

The curves that induce the distW 1,2 -distance are difficult to work with. The following
result shows that geodesic homotopies are in some sense similar to these curves,
provided the derivatives are bounded by a constant K in the W 1,q -sense. This will
allow us to work with geodesic homotopies, and still obtain bounds in the distW 1,2 -
distance.

Lemma 2.5 Assume that u, v ∈ W 1,q
K (�, M) for q > max(2, d) and that � is a

geodesic homotopy from u to v. Then, for all s >
qd

q−d , we have

sup
t∈[0,1]

∣
∣�̇(·, t)

∣
∣

H1 ≤ C2 inf
t∈[0,1]

∣
∣�̇(·, t)

∣
∣

H1
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with
C2 = √

2 + 2d/2+1C3‖Rm‖g K distLs (u, v), (9)

where ‖Rm‖g is the maximum norm of the Riemann curvature tensor Rm [16], and
C3 only depends on the geometry of M.

Proof Since t �→ �(x, t) is a geodesic, we have that

∣∣�̇(x, t)
∣∣2 = dist(u(x), v(x))2, for almost all x ∈ �,

independent of t . Hence,

∣∣�̇(·, t)
∣∣2

H1 = distL2(u, v)2 + U 2(t), (10)

where we have defined

U 2(t) :=
d∑

α=1

∫

�

∣∣
∣∣

D

dxα
�̇(x, t)

∣∣
∣∣

2

g(�(x,t))
dx .

We note that

D

dxα

d

dt
�(x, t) = D

dt

d

dxα
�(x, t),

as well as the fact that

Jα(x, t) := d

dxα
�(x, t)

satisfies the Jacobi differential equation

D2

dt2
Jα(x, t) = Rm

(
Jα(x, t), �̇(x, t)

)
�̇(x, t).

Using this, we can write for every α = 1, . . . , d

d

dt

〈
D

dxα
�̇(x, t),

D

dxα
�̇(x, t)

〉

g(�(x,t))
= 2

〈
D

dt

D

dxα
�̇(x, t),

D

dxα
�̇(x, t)

〉

g(�(x,t))

= 2

〈
D2

dt2
Jα(x, t),

D

dxα
�̇(x, t)

〉

g(�(x,t))

= 2

〈
Rm

(
Jα(x, t), �̇(x, t)

)
�̇(x, t),

D

dxα
�̇(x, t)

〉

g(�(x,t))

≤ 2‖Rm‖g
∣
∣Jα(x, t)

∣
∣
g(�(x,t))

∣∣
∣

D

dxα
�̇(x, t)

∣∣
∣
g(�(x,t))

∣
∣�̇(x, t)

∣
∣2
g(�(x,t)).
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For simplicity, we shall omit the subscript g(�(x, t)) from now on.
Since we can write Jα as

Jα(x, t) = d

dxα
exp

(
u(x), t log(u(x), v(x))

)
,

we see that there exists a uniform constant C3, only depending on the geometry of M
such that

|Jα(x, t)| ≤ C3 max
(∣∣∣

d

dxα
u(x)

∣∣∣,
∣∣∣

d

dxα
v(x)

∣∣∣
)
.

Wecan use the previous considerations to bound the time derivative ofU 2. For 1
d − 1

q >

ε > 0 arbitrary, define

1

r
:= 1

2
− 1

d
+ ε,

1

s
:= 1

d
− 1

q
− ε,

and observe that we have

1

q
+ 1

2
+ 1

r
+ 1

s
= 1.

Therefore, the Hölder inequality implies that

∣∣∣∣
d

dt
U 2(t)

∣∣∣∣ ≤ 2C3‖Rm‖g K distLs (u, v)

d∑

α=1

⎛

⎝
∫

�

∣∣∣∣
D

dxα
�̇(x, t)

∣∣∣∣

2

dx

⎞

⎠

1/2

distLr (u, v)

≤ 2(d+1)/2C3‖Rm‖g K distLs (u, v) distLr (u, v)U (t).

We divide by 2U (t) to get

∣∣∣
dU (t)

dt

∣∣∣ =
∣∣∣

d
dt U 2(t)

2U (t)

∣∣∣ ≤ 2(d−1)/2C3‖Rm‖g K distLs (u, v) distLr (u, v).

The results above imply that

|U (t2) − U (t1)| ≤ 2(d−1)/2C3‖Rm‖g K distLs (u, v) distLr (u, v) (11)

for any t1, t2 ∈ [0, 1].
In the other direction, we note that for all t ∈ [0, 1] we have by the Sobolev

embedding theorem that
|�̇(·, t1)|H1 ≥ distLr (u, v),

and therefore

|�̇(·, t1)|H1 ≥ 1

2
√
2

(distLr (u, v) + U (t)) for all t ∈ [0, 1]. (12)
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Now we can use (10) together with (11) and (12) to see that for t1, t2 ∈ [0, 1] we
have

|�̇(·, t1)|H1

|�̇(·, t2)|H1
≤ √

2
distL2(u, v) + U (t1)

distL2(u, v) + U (t2)

≤ 2
√
2

[
1 + |U (t2) − U (t1)|

distL2(u, v) + U (t2)

]

≤ √
2

[
1 + 2(d+1)/2C3‖Rm‖g K distLs (u, v) distLr (u, v)

distLr (u, v) + U (t2)

]

≤ √
2 + 2d/2+1C3‖Rm‖g K distLs (u, v),

which finally proves the desired estimate. ��

2.4 The Smoothness Descriptor

We have given one definition of Sobolev regularity of functions u : � → M in
Sect. 2.1. A natural alternative is the covariant Sobolev norm

|u|Hk
cov

:=
∑

dim �β=k

⎛

⎝
∫

�

∣∣D �βu(x)
∣∣2
g(u(x))

⎞

⎠

1/2

dx, ‖u‖Hk
cov

=
k∑

i=1

|u|Hi
cov

.

Here, the symbol D �βu means covariant partial differentiation along u with respect to
the multi-index �β in the sense that

D �βu := D

dxβk
. . .

D

dxβ2

d

dxβ1
u, �β ∈ {1, . . . , d}k, k ∈ N0. (13)

Additionally, we define D �βu := 1 (a constant function � → R) if dim �β = 0. For a
shorter notation, we introduce the symbol

[d] := {1, . . . , d}.

Note that (13) differs from the usual multi-index notation, which cannot be used
because covariant partial derivatives do not commute.

Clearly, for linear M , these definitions coincide with the usual Sobolev half norms
and norms (3). However, they cannot control all terms appearing in the nonlinear
Bramble–Hilbert lemma in Sect. 5 (details are given in Remark 5.1). Therefore, we
define the following alternative.
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Definition 2.9 (Smoothness Descriptor) For a function u : � → M , k ≥ 1 and
p ∈ [1,∞], define the homogeneous k-th-order smoothness descriptor

	̇p,k,�(u) :=
∑

�β j ∈[d]m j , j=1,...,k
∑k

j=1 m j =k

⎛

⎝
∫

�

k∏

j=1

∣∣∣∣D
�β j u(x)

∣∣∣∣

p

g(u(x))

dx

⎞

⎠

1/p

,

with the usual modifications for p = ∞. Further, we define the L p part

	̇p,0,�(u) := min
q∈M

⎛

⎝
∫

�

|dist(u(x), q)|p dx

⎞

⎠

1/p

,

and the corresponding inhomogeneous smoothness descriptor

	p,k,�(u) :=
k∑

i=0

	̇p,i,�(u).

We will be mostly dealing with the case p = 2, for which we will omit the parameter
p in the notation, i.e.,

	̇k,� := 	̇2,k,� and 	k,� := 	2,k,�.

Note that we use a superposed dot to denote homogeneous quantities.

Remark 2.2 A function u with 	k,�(u) < ∞ must be uniformly continuous if
k > d/2. Furthermore, in that case, we have

diam(u) := sup
x,y∈�

dist(u(x), u(y)) � 	k,�(u).

Both these assertions are direct consequences of the Sobolev embedding theorem.

To better present the smoothness descriptors 	, we discuss their relationships to
other measures of regularity. For simplicity, we restrict our analysis to the case p = 2.
First, it follows directly from the definition that the smoothness descriptor 	 is a
stronger notion than the covariant Sobolev norm.

Lemma 2.6 ‖u‖Hk
cov(�,M) ≤ 	k,�(u).

Proof The proof follows immediately by noting that all terms that occur in the defin-
ition of ‖u‖Hk

cov(�,M) also occur in the definition of 	k,�(u). ��
In the other direction, we show that the Sobolev normwith respect to an embedding

also bounds 	 from above, if k is sufficiently large.
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Lemma 2.7 Let i be an isometric embedding of M into a Euclidean space. For k > d
2 ,

we have 	k,�(u) � ‖i ◦ u‖k
Hk .

Note that the smoothness descriptor is bounded by the k-th power of the corresponding
norm.

Proof Identify u with i ◦ u for simplicity. We need to estimate terms of the form

⎛

⎝
∫

�

k∏

j=1

∣∣∣D �β j u(x)

∣∣∣
2

g(u(x))
dx

⎞

⎠

1
2

(14)

with �β j ∈ [d]m j , j = 1, . . . , k, and
∑k

j=1 m j ≤ k. It will be no loss of generality

to assume the most difficult case
∑k

j=1 m j = k. First, we deduce from the definition
of the covariant derivative that any term of the form (14) can be estimated by a finite
linear combination of terms of the form

⎛

⎝
∫

�

k∏

j=1

∣∣∣∂
�k j u(x)

∣∣∣
2

g(u(x))
dx

⎞

⎠

1
2

, (15)

with
∑k

j=1 |�k j | = k.

Now, for any values p j , j ∈ 1, . . . , k with
∑k

j=1
1
p j

≤ 1
2 , by Hölder’s inequality,

we can bound (15) by

⎛

⎝
∫

�

k∏

j=1

∣∣
∣∂

�k j u(x)

∣∣
∣
2

g(u(x))
dx

⎞

⎠

1
2

≤
k∏

j=1

⎛

⎝
∫

�

∣∣
∣∂

�k j u(x)

∣∣
∣

p j

g(u(x))
dx

⎞

⎠

1
p j

≤
k∏

j=1

‖u‖
W |�k j |,p j

.

We make the specific choice

1

p j
= 1

2
− k − |�k j |

d
+ (k − 1)(k − d/2)

kd
.

With this choice and |�k| = k, we have that

k∑

j=1

1

p j
= k

2
− k(k − 1)

d
+ (k − d/2)(k − 1)

d
= 1

2
.

We shall now use the Sobolev embedding theorem that states that

‖u‖Wl,p � ‖u‖W k,2 ,

whenever

1

2
− k − l

d
<

1

p
.

123



1372 Found Comput Math (2015) 15:1357–1411

Setting l = |�k j | and p = p j for each j = 1, . . . , k, we arrive at the desired statement.
��

A result similar to Lemma 2.7 can also be established for p �= 2. In summary, our
smoothness descriptor is an appropriate covariant way to measure smoothness of an
M-valued function.

We finally show that the smoothness descriptor has a particular homogeneity prop-
erty, also enjoyed by conventional Sobolev seminorms in linear spaces.

Definition 2.10 Let T1, T2 be two domains in R
d , and F : T1 → T2 a C∞-

diffeomorphism. For l ∈ N0, we say that F scales with h of order l if we have

sup
x∈T2

∣∣∂ �kF−1(x)
∣∣ � h|�k| for all �k ∈ N

d
0 , |�k| = 0, . . . , l, (16a)

|det (∇F(x))| ∼ h−d for all x ∈ T1 (where∇F is the Jacobian ofF), (16b)

sup
x∈T1

∣∣
∣

d

dxα
F(x)

∣∣
∣ � h−1for all α = 1, . . . , d. (16c)

Such an F will be used to move finite element functions to the reference element and
back, without losing approximation orders, see Sect. 5 below.

Lemma 2.8 Let T1, T2 be two domains in R
d , and F : T1 → T2 a map that scales

with h of order l. Then, for any u : T1 → M, k ≤ l and p ∈ [1,∞], we have

	̇p,k,T2(u ◦ F−1) � h−d/phk	p,k,T1(u).

Note that we bound the homogeneous smoothness descriptor by the inhomogeneous
one.

Proof It follows directly from the chain rule and the product rule that for any m ∈ N0

and �β ∈ [d]m the expression D �β (
u ◦ F−1

)
can be written as a linear combination of

terms of the form

D�τ u(F−1(x))

l∏

i=1

∂
�ki
(
F−1

) ji
(x)

with �τ ∈ [d]n ,

l∑

i=1

|�ki | = m, n ≤ m, l ≤ m,

and
(F−1

) ji denoting the ji -th coordinate ofF−1. Using the scaling assumption (16a),
we can therefore estimate the quantity

∣∣D �β (
u ◦ F−1

) ∣∣
g(u(F−1(x)))
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by terms of the form

∣∣∣D�τ u(F−1(x))

l∏

i=1

∂
�ki
(
F−1

) ji
(x)

∣∣∣
g(u(F−1(x)))

� hm
∣∣∣D�τ u(F−1(x))

∣∣∣
g(u(F−1(x)))

.

Therefore, every integrand

k∏

j=1

∣∣D �β j
(

u ◦ F−1
)

(x)
∣∣p
g(u(F−1(x)))

in the definition of the homogeneous smoothness descriptor 	̇p,k,T2(u ◦F−1) can be
estimated pointwise by terms of the form

h pk
k∏

j=1

∣∣∣D�τ j u
(
F−1(x)

)∣∣∣
p

g(u(F−1(x)))
(17)

with

�τ j ∈ [d]n j , n j ∈ N0,

k∑

j=1

n j ≤ k.

Now, integrating (17) over T2, and using the substitution y = F−1(x), introduces an
additional factor h−d/p. Together with the scaling assumption (16b), we obtain the
desired estimate. ��
Remark 2.3 The attentive reader will have noticed that only properties (16a) and (16b)
have been used for the proof of Lemma 2.8.We will require the third assumption (16c)
later, when we use scaling to derive local elementwise interpolation error estimates in
Theorem 5.3 below.

3 Ellipticity and Céa’s Lemma

Recall that we are trying to approximate the solution u of the variational problem

u = argmin
w∈H

J(w) (18)

by a minimizer v on a set V ⊂ H

v = argmin
w∈V

J(w), (19)

where H is a suitable set of functions, possibly fulfilling Dirichlet conditions. The
classical linear Céa lemma assumes that H is a Hilbert space, and gives an estimate for
the error between v and u in terms of the optimal approximation error infw∈V ‖u−w‖H

123



1374 Found Comput Math (2015) 15:1357–1411

of the approximation space V [13]. In this section, we show analogous results when
H consists of manifold-valued functions.

We proceed in two steps. Céa-type lemmas can be formulated and proved elegantly
in general metric spaces.We show this in Sect. 3.1 and also give a reformulation for the
case that H has a smooth structurewith a Finsler norm [6]. These results require certain
convexity or ellipticity properties of the energy along distance-realizing curves. They
are of independent interest, but they also illustrate some of the ideas of the subsequent
section. There we allow variations over certain nonminimizing curves. The resulting
Céa lemma is the basis of the discretization error bounds for geodesic finite elements
in Chapter 6.

3.1 Céa’s Lemma Based on Variations Along Curves

We start in an abstract setting. Suppose H is a metric space with distance function
dist(·, ·), and u and v are solutions of theminimization problems (18) and (19), respec-
tively. We will refer to v as a quasioptimal solution if

dist(u, v) ≤ C inf
w∈V

dist(u, w)

for a constant C > 0. In other words, v is quasioptimal if its distance to u can be
bounded by a constant C times the best approximation infw∈V dist(u, w).

The main assumption leading to quasioptimality is a notion of strong convexity
along curves. The following definition is taken from [3].

Definition 3.1 A functional J : H → R is called λ-convex along the curve γ :
[0, 1] → H if there is a λ > 0 such that

J(γ (t)) ≤ (1 − t) J(γ (0)) + t J(γ (1)) − 1

2
λt (1 − t) dist(γ (0), γ (1))2

for all t ∈ [0, 1].
With this assumption, a metric version of the Céa lemma follows almost immediately.

Theorem 3.1 Assume that H is a metric space, and let J : H → R. Suppose that
u ∈ H is a minimizer of J and let V be a subset of H for which the minimization
problem

v := argmin
w∈V

J(w)

has a solution. Assume that there exists a curve γ with γ (0) = u and γ (1) = v, along
which the energy J is λ-convex. Further, assume that J is quadratically bounded
around u in the sense that there is a constant � > 0 such that

J(w) − J(u) ≤ �

2
dist(u, w)2 (20)
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for all w ∈ V . Then,

dist(u, v) ≤ √
2

√
�

λ
inf
w∈V

dist(u, w).

Proof Inserting t = 1
2 into the definition of λ-convexity yields that

dist(u, v)2 ≤ 4

λ
(J(v) − J(u)) .

Since v is a minimizer on V , we can write

dist(u, v)2 ≤ 4

λ
inf
w∈V

(J(w) − J(u)) .

By (20), the right-hand side can be bounded as desired. ��
A slightly more involved argument allows to get rid of the factor

√
2.

We now consider the case that H has a differentiable structure, which implies
that we can have curves γ : [0, 1] → H with well-defined tangent vectors γ̇ . We
also assume that there is a norm |·| defined on these tangent vectors. The following
alternative condition on J is frequently convenient.

Definition 3.2 We say that J is elliptic along a differentiable curve γ : [0, 1] → H
if it is twice continuously differentiable along γ , and if there exist positive constants
λ,� such that

λ|γ̇ (t)|2 ≤ d2

dt2
J(γ (t)) ≤ �|γ̇ (t)|2 (21)

for all t ∈ [0, 1].
This concept is related to convexity in the following way. Assume that for each pair
w1, w2 ∈ H there is a differentiable path from w1 to w2, parametrized by arc length,
that realizes the distance dist(w1, w2). We call such paths (constant speed) geodesics.

Lemma 3.1 Let J be elliptic in the sense of Definition 3.2 along a given constant
speed geodesic γ : [0, 1] → H. Then, J is λ-convex along that curve. If additionally
γ (0) is a minimizer of J, then γ is quadratically bounded in the sense of (20) along
γ , with constant �.

In particular, we see that the requirements of Theorem 3.1 are strictly weaker, because
they are implied by ellipticity, but require no smoothness.

Proof Set f := J(γ ) : [0, 1] → R. By the ellipticity assumption, f is twice con-
tinuously differentiable. We first show that the lower bound on f ′′ implies that J is
λ-convex along γ . Pick 0 ≤ t ≤ 1 and apply Taylor’s formula to f at t . This gives

f (0) ≥ f (t) + f ′(t)(0 − t) + 1

2
λ|γ̇ (s1)|2(0 − t)2
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and

f (1) ≥ f (t) + f ′(t)(1 − t) + 1

2
λ|γ̇ (s2)|2(1 − t)2,

where 0 ≤ s1 ≤ t and t ≤ s2 ≤ 1. Since γ is a constant speed geodesic, we have
|γ̇ (s1)|2 = |γ̇ (s2)|2 = dist(γ (0), γ (1))2. Multiply the first inequality by t , the second
one by 1 − t , and add them to obtain the assertion.

Next, we show that f ′′(t) ≤ �|γ̇ (t)|2 implies J(γ (1)) − J(γ (0)) ≤ �
2 dist(γ (0),

γ (1))2. Using that f ′(0) = 0 by assumption, we can directly compute

J(γ (1)) − J(γ (0)) =
1∫

0

f ′(t) dt −
1∫

0

f ′(0) dt =
1∫

0

t∫

0

f ′′(s) ds dt

=
1∫

0

(1 − t) f ′′(t) dt ≤
1∫

0

(1 − t)�|γ̇ (t)|2 dt

= �

2
dist(γ (0), γ (1))2.

��
As an immediate consequence of Theorem 3.1 together with Lemma 3.1, we get

the following result.

Theorem 3.2 Let H be a Banach manifold with norm |·|, andJ : H → R a functional.
Assume that u ∈ H is a minimizer of J, and that J is elliptic along constant speed
geodesics, with constants λ,�. For a V ⊂ H set

v := argmin
w∈V

J(w),

assuming that this is well defined. Then, we have that

dist(u, v) ≤ √
2

√
�

λ
inf
w∈V

dist(u, w).

Using this theorem for the space W 1,2(�, M) together with the norm | · |H1 defined in
Definition 2.4 yields the following corollary, provided that W 1,2(�, M) is a Banach
manifold. Unfortunately, the latter only holds for d = 1.

Corollary 3.1 Assume that W 1,2(�, M) is a Banach manifold, and let J :
W 1,2(�, M) → R. Assume that u ∈ W 1,2(�, M) is a minimizer of J, and that
J is elliptic along constant speed geodesics in W 1,2(�, M), starting in u. Let
V ⊂ W 1,2(�, M) and

v = argmin
w∈V

J(w) (the “discrete” solution).
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Then, we have that

distW 1,2(u, v) ≤ √
2

√
�

λ
inf
w∈V

distW 1,2(u, w).

This corollary is the natural extension of the standard Céa lemma to nonlinear
function spaces.

3.2 Céa’s Lemma Using Geodesic Homotopies

When trying to apply the results of the previous section, we encounter two problems.
First, for the energies J and domains� of our interest, we consider variational problem
formulations in W 1,2(�, M), and in general, this space does not possess the structure
of aBanachmanifold [20,30,31].Hence, the results based onBanachmanifolds cannot
be used. Secondly, even if the space W 1,2(�, M) turns out to be a Banach manifold,
it is difficult to work with constant speed geodesics in these spaces. In particular, it is
not easy to verify ellipticity properties along these curves for important energies, such
as the harmonic energy.

To overcome these issues, we generalize the approach somewhat. Instead of geodes-
ics in W 1,2, we now consider geodesic homotopies. However, we still obtain bounds
in terms of a W 1,2-like measure, namely the quantity D1,2 introduced in (8). While
this quantity is of little interest in itself, the result will allow to bound the discretization
error of geodesic finite elements in terms of the embedded distance (6) and the geodesic
distance (7). The proof is based on the H1-uniformity of geodesic homotopies shown
in Sect. 2.3. The price we pay is that we additionally have to assume the existence of
a constant K > 0 such that u ∈ W 1,q

K and V ⊂ W 1,q
K with some q > max(2, d) (this

simply implies the existence of an embedding into the space of continuous functions
and is a natural restriction for manifold-valued functions).

Theorem 3.3 Let H ⊂ W 1,2(�, M), J : H → R and K > 0. Assume that u ∈
H ∩ W 1,q

K (�, M), q > max(2, d) is a stationary point of J w.r.t. variations along

geodesic homotopies in H ∩ W 1,q
K (�, M) starting in u.

For a second constant, L > 0 and s >
qd

q−d arbitrary denote

Hu
L := {

v : distLs (u, v) ≤ L
}
,

and assume that J : W 1,q
K ∩ Hu

L ∩ H → R is elliptic along geodesic homotopies that

start in u. Let V ⊂ W 1,q
K ∩ Hu

L ∩ H and

v := argmin
w∈V

J(w).

Then, we have that

D1,2(u, v) ≤ C2
2

√
�

λ
inf
w∈V

D1,2(u, w),
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with C2 the uniformity constant (9), only depending on d, the product K L and the
curvature of M.

Proof For w ∈ V define

fw(t) := J(�(t))

with � : [0, 1] → W 1,q
K ∩ Hu

L ∩ H a geodesic homotopy from u to w. We have

J(w) − J(u) =
1∫

0

f ′
w(t) dt −

1∫

0

f ′
w(0) dt =

1∫

0

t∫

0

f ′′
w(s) ds dt =

1∫

0

(1− t) f ′′
w(t) dt.

By the ellipticity assumption (21), we have

λ

1∫

0

(1 − t)|�̇(t)|2H1 dt ≤ J(w) − J(u) ≤ �

1∫

0

(1 − t)|�̇(t)|2H1 dt.

Now, we use Lemma 2.5 that shows that

λ

C2
2

|�̇(0)|2H1 ≤ J(w) − J(u) ≤ �C2
2 |�̇(0)|2H1,

where the constantC2 depends only on d, K , L , and the curvature of M . Noting further
that

D1,2(u, w)2 = |�̇(0)|2H1

immediately yields that

D1,2(u, v)2 ≤ C2
2

λ

[
J(v) − J(u)

] ≤ C2
2

λ

[
J(w) − J(u)

]

for all w ∈ V . Furthermore, we have

J(w) − J(u) ≤ C2
2�D2

1,2(u, w).

Together, we obtain that

D1,2(u, v) ≤ C2
2

√
�

λ
inf
w∈V

D1,2(u, w).

��
Replacing |�̇(0)|2

H1 by |�̇(1)|2
H1 in the arguments above shows the following corollary.
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Corollary 3.2 With the notation of the previous theorem, we also have the estimate

D1,2(v, u) ≤ C2
2

√
�

λ
inf
w∈V

D1,2(w, u).

The restriction that u ∈ W 1,q
K does not appear in the linear theory. The question

whether Theorem 3.3 can be shown without it is open.

Remark 3.1 Requiring that the approximation space V consists only of functions with
derivatives bounded by K in the W 1,q -sensemay lead to a restrictionwhen considering
families of approximation spaces V h associated with a mesh width h > 0. If V h are
chosen as GFE spaces as introduced in Sect. 4, the quantity K could in general grow
as h−1 with h denoting the meshwidth (as it is the case with standard Lagrangian
finite elements with values in R). As a remedy, we show in Theorem 6.2 that the
condition V h ⊂ W 1,q

K can be dispensed with, provided that u is sufficiently regular,
more precisely if u ∈ Hd/2+1(�, M).

4 Geodesic Finite Elements

In Chapter 3, very little has been required from the approximation spaces V . For the
theory based on distance-realizing curves in Sect. 3.1, only the existence of aminimizer
of J in V was asked. In Sect. 3.2, we additionally needed that the approximating
functions that make up V have their derivatives bounded by a constant K .

In this section, we present geodesic finite elements (GFE) as one particular example
of a suitable space V . They have originally been introduced in [55,56], but for com-
pleteness we give a brief review. The definition consists of two parts. First, nonlinear
interpolation functions are constructed that interpolate values given on a reference
element. Then, for a given grid, these interpolation functions are pieced together to
form global finite element functions.

4.1 Geodesic Interpolation

LetTref be anopenbounded subset ofRd ,whichwewill call reference element. Particu-
lar instances are the reference simplex

{
x ∈ R

d | xα ≥ 0, α = 1, . . . , d,
∑d

α=1 xα ≤
1
}
, and the reference cube [0, 1]d . On Tref, we assume the existence of a set of

Lagrangian interpolation polynomials, i.e., a set of Lagrange nodes ai ∈ Tref,
i = 1, . . . , m, and corresponding polynomial functions λi : Tref → R of order p
such that

λi (a j ) = δi j for all 1 ≤ i, j ≤ m,

and
m∑

i=1

λi ≡ 1. (22)

We now generalize Lagrange interpolation to values in a manifold. Let vi ∈ M ,
i = 1, . . . , m be given values at the Lagrange nodes ai ∈ Tref. We want to construct
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a function ϒv : Tref → M such that ϒv(ai ) = vi for all i = 1, . . . , m. The following
definition was given and motivated in [56].

Definition 4.1 Let {λi , i = 1, . . . , m} be a set of p-th-order scalar Lagrangian shape
functions, and let vi ∈ M , i = 1, . . . , m be values at the corresponding Lagrange
nodes. We call

ϒ : Mm × Tref → M

ϒ(v1, . . . , vm; x) = argmin
q∈M

m∑

i=1

λi (x) dist(vi , q)2 (23)

p-th-order geodesic interpolation on M .

For fixed coefficients v1, . . . , vm , we set ϒv(·) := ϒ(v1, . . . , vm; ·) and obtain the
desired function.

Remark 4.1 Formulas similar to (23) have been used in the literature to interpolate
manifold-valued data [12,41,50]. The idea to use them to construct finite element
spaces was first proposed in [27,55,56].

It is easy to verify that this definition reduces to p-th-order Lagrangian interpolation
if M is a linear space and dist(·, ·) the standard distance. For the nonlinear case and
p = 1, well posedness of the definition under certain restrictions on the vi is a classic
result by [38]. For p ≥ 2, where the λi can become negative, well posedness has
been proved in [56]. The interpolation function ϒ is infinitely differentiable both as a
function of the vi and of the local coordinates x . This and several other features are
discussed in [55,56].

Since the values of ϒv are defined as solutions of a minimization problem, we can
also characterize them by the corresponding first-order optimality condition (see, for
instance, [38]).Wewill make use of this representation in the interpolation error bound
in Chapter 5.

Lemma 4.1 For any q ∈ M denote by log(q, ·) : M ⊃ U → Tq M the inverse of
the exponential map of M at q. Then, q∗ := ϒ(v1, . . . , vm; x) is (locally uniquely)
characterized by the first-order condition

m∑

i=1

λi (x) log(q∗, vi ) = 0 ∈ Tq∗ M. (24)

Interpolation error bounds for geodesic finite elements are based on the fact that
the shape functions λi are exact on polynomials of degree no greater than p, meaning
that

m∑

i=1

λi (x)q(ai ) = q(x) (25)

for all polynomials q : Tref → R of degree less than or equal to p. Using this, we can
prove the following technical property.
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Lemma 4.2 For all multi-indices �l with |�l| ≤ p and all functions f : Tref → R, we
have

m∑

i=1

λi (x) (ai − x)
�l f (x) = 0.

Proof We start by fixing some arbitrary x∗ ∈ Tref. Then, we can write

m∑

i=1

λi (x) (ai − x∗)
�l f (x∗) =

m∑

i=1

λi (x)px∗(ai )

where

px∗(y) := (y − x∗)
�l f (x∗)

is a polynomial of degree |�l|. By (25), we get

m∑

i=1

λi (x) (ai − x∗)
�l f (x∗) = px∗(x).

Since by definition px∗(x∗) = 0, this implies

m∑

i=1

λi (x∗) (ai − x∗)
�l f (x∗) = 0,

which, by the arbitrariness of x∗, implies the statement. ��

4.2 Geodesic Finite Element Functions

Let now � be a domain in R
d . Suppose we have a conforming grid G for � with

elements not necessarily restricted to simplices. Let ni ∈ �, i = 1, . . . , |n| be a set of
Lagrange nodes such that for each element T of G there are m nodes aT,i contained
in T and such that the p-th-order interpolation problem on T is well posed.

Definition 4.2 (Geodesic Finite Elements) Let G be a conforming grid on �, and let
M be a Riemannian manifold.We call vh : � → M a geodesic finite element function
for M if it is continuous, and for each element T ∈ G, the restriction vh |T is a geodesic
interpolation in the sense that

vh |T (x) = ϒ
(
vT,1, . . . , vT,m;FT (x)

)
,

where the FT : T → Tref are element mappings (typically affine or multilinear), and
the vT,i are values in M corresponding to the Lagrange nodes aT,i . The space of all
such functions vh will be denoted by V M

p,G .
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This definition reduces to standard (vector-valued) Lagrangian finite elements if M is
a linear space with the usual Euclidean distance.

The following property is crucial for our analysis, because we always assume that
the approximation space V is a subset of the solution space. The proof is given in [55]
and [56].

Theorem 4.1 V M
p,G(�) ⊂ H1(�, M) for all p ≥ 1.

While this holds for all grids G and all polynomial orders p, we note that geodesic
finite element spaces are generally not nested. This means that in general V M

p,G �⊂
V M

p+1,G and V M
p,G �⊂ V M

p,G′ if G′ is a uniform refinement of G. See [56, Chap.4] for a
brief discussion.

Remark 4.2 In numerical algorithms, one uses the algebraic representation of V M
p,G ,

that is, a function vh ∈ V M
p,G is identified with a set of nodal coefficients v̄ ∈ M |n|.

However, note that V M
p,G is not globally homeomorphic to M |n|; in fact, it is not even

globally a manifold. This is so because for certain sets of coefficients there is more
than one interpolation function (see [54] for a simple example). On the other hand, it
is shown in [56] that for many v̄ ∈ M |n| there is only a single interpolating function
vh , and then, there is a diffeomorphism mapping a neighborhood of v̄ in M |n| to
a neighborhood of vh in V M

p,G . In this sense, the space V M
p,G contains many small

“manifold patches.” Its global structure, however, remains unclear.

To prove quasioptimality in Theorem 3.3, we had to make the assumption that the
discrete space V contains only functions with first derivatives bounded by a global
constant K . While it is obvious that each GFE function has bounded first derivatives,
a global bound for all functions of a space V M

p,G exists only if M has finite diameter.
This global bound depends on the grid size h. The specific nature of this dependence
will allow us in Theorem 6.2 to circumvent the restriction V ⊂ W 1,q

K and obtain
discretization error bounds without constraints on the ansatz space. For later use,
there we therefore state the following simple result, which holds for all orders p and
for M with bounded or unbounded diameter.

Lemma 4.3 Let G be such that FT scales with h of order p for each element T of G.
Then, for each function vh ∈ V M

p,G , we have

	∞,1,�(vh) � h−1,

where the constant depends on the values of vh at the Lagrange nodes.

In order to assess the approximation properties of the spaces V M
p,G , we finally

construct the pointwise interpolation operator mapping continuous functions with
values in M to elements in V M

p,G . As in the classical linear case, we first define the
interpolant on a reference element. We start by fixing the reference element Tref with
Lagrangian interpolation nodes ai and corresponding local basis functions λi , i =
1, . . . , m. Given a function u : Tref → M , its local Lagrangian interpolant on Tref is
defined by

ITrefu(x) := ϒ (u(a1), . . . , u(am); x) .
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Likewise, for a general element T with associated mapping FT : T → Tref, the local
Lagrangian interpolant is given by

IT u(x) = ITref

(
u ◦ F−1

T

)
(FT (x)) , x ∈ T .

With these notions at hand, we can define the geodesic Lagrange interpolant of a
continuous function u : � → M .

Definition 4.3 For each continuous function u : � → M , define the geodesic
Lagrange interpolant IGu ∈ V M

p,G by

IGu(x) = IT u(x), x ∈ T, T ∈ G.

Note that unlike in the linear case, this interpolant is not always unique.

5 Interpolation Error Estimates

The goal of this section is to derive estimates of optimal order for the interpolation
error between a function u : � → M and its interpolant IGu. To motivate our proof,
we briefly review how interpolation error estimates can be obtained in the linear case
M = R. There, we start with an error bound on the reference element.

Theorem 5.1 Let u : Tref → R satisfy u ∈ Hk(Tref) with k > d/2. Then, we have

‖u − ITref u‖H1(Tref)
� |u|Hk (Tref)

.

In order to turn Theorem 5.1 into an estimate for a small element T , say, T = hTref
with FT (x) := h−1x and a function u : T → R, we use the fact that the Sobolev
seminorm satisfies the subhomogeneity property

|u ◦ F−1
T |Hk (Tref) � hkh−d/2|u|Hk(T ). (26)

We obtain the factor hk from the k-fold application of the chain rule to u ◦F−1
T (x) =

u(hx) and the factor h−d/2 from the integral transformation formula.
Then, denoting v := u ◦ F−1

T : Tref → R and using d
dxα FT = h−1 for all

α = 1, . . . , d, we get

|u − IT u|2H1(T )
= h−2

d∑

α=1

∫

T

∣∣∣∣

(
d

dxα
v − d

dxα
ITrefv

)∣∣∣∣

2

◦ FT (x) dx

= h−2hd |v − ITrefv|2H1(Tref)
.

We can now invoke Theorem 5.1 and get the estimate

|u − IT u|2H1(T )
� h−2hd |u ◦ F−1

T |2Hk(Tref)
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which, together with (26), yields the classical estimate

‖u − IT u‖H1(T ) � hk−1|u|Hk (T ).

To obtain a similar result for nonlinear codomains M , we first need a generalization
of Theorem5.1.We prove such a result in Sect. 5.1, where the normon the left becomes
the quantity D1,2 and the norm on the right becomes the smoothness descriptor 	.
Then, in Sect. 5.2, we assemble these local estimates to establish optimal approx-
imation rates for the geodesic finite element spaces V M

p,G . This works because the
smoothness descriptor 	 also has the subhomogeneity property (26) (Lemma 2.8).

5.1 Nonlinear Elementwise Estimates

In this section, we prove a nonlinear generalization of the linear elementwise approx-
imation result of Theorem 5.1. Note that the definition (23) is implicit which com-
plicates the analysis. We cope with this difficulty by a clever use of the equilibrium
condition (24).

Let log(p, ·) : M → Tp M be the inverse of the exponential map at p. Denote by
∇1, ∇2, the covariant derivative of a bivariate function with respect to the first and
second argument, respectively. In particular, for l ∈ N, we will require the derivatives

∇l
2 log(p, q) : (Tq M)l → Tp M

and

∇l
2∇1 log(p, q) : Tp M ⊗ (Tq M)l → Tp M;

more precisely their norms

‖∇l
2 log(p, q)‖ = sup

v1,...,vl∈Tq M

∣
∣∇l

2 log(p, q) (v1, . . . , vl)
∣
∣
g(p)

∏l
i=1 |vi |g(q)

and

‖∇l
2∇1 log(p, q)‖ = sup

v1,...,vl∈Tq M
w∈Tp M

∣
∣∇l

2∇1 log(p, q) (w, v1, . . . , vl)
∣
∣
g(p)

|w|g(p)

∏l
i=1 |vi |g(q)

.

Now, we can state and prove a nonlinear elementwise approximation result.

Theorem 5.2 Let u ∈ W k,2(Tref, M), and ITref u its p-th-order geodesic interpolation.
For k > d/2 and p ≥ k − 1, we have

∫

Tref

∣∣log(ITref u(x), u(x))
∣∣2
g(ITref u(x))

dx � C21,u(Tref)	̇k,Tref(u)2, (27)
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and for any α = 1, . . . , d

∫

Tref

∣∣∣
∣

D

dxα
log(ITref u(x), u(x))

∣∣∣
∣

2

g(ITref u(x))

dx �
(
C21,u(Tref) + C22,u(Tref)

)
	̇k,Tref(u)2,

(28)
where

C1,u(Tref) := sup
1≤l≤k

sup
p∈ITref u(Tref)

q∈u(Tref)

∥∥∥∇l
2 log (p, q)

∥∥∥

and

C2,u(Tref) := sup
1≤l≤k

sup
p∈ITref u(Tref)

q∈u(Tref)

∥∥
∥∇l

2∇1 log (p, q)

∥∥
∥ .

The implicit constants are independent of u and M and only depend on the basis
functions λi .

Note that the left-hand sides of (27) and (28) make up the quantity D1,2(ITrefu, u).

Proof We split the proof into eight steps.
Step 1We first prove (27). Using the balance law (24), we obtain for any x ∈ Tref that

m∑

i=1

λi (x) log
(
ITrefu(x), u(ai )

) = 0.

Adding a zero, we rewrite this as

log(ITrefu(x), u(x)) = log(ITrefu(x), u(x)) −
m∑

i=1

λi (x) log
(
ITrefu(x), u(ai )

)
,

and call the right-hand side ε(x) ∈ TITrefu(x)M . To obtain (27), we need to control the

L2-norm of the function ε.
Step 2 Next, we define the auxiliary function

G(x, y) := log (I�u(x), u(y)) ,

and perform a Taylor expansion of G in its second argument around y = x (note that
for fixed x , the function G takes its values in a vector space).

In what follows, we shall use the notation ∂
�k
y G(x, y) for the partial derivatives of

G with respect to its second argument and the multi-index �k. The Taylor expansion
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then reads

G(x, y) =
∑

|�l|<k

(y − x)
�l

�l! ∂
�l
yG(x, x) +

∑

|�k|=k

R�k(x, y)(y − x)
�k, (29)

where

R�k(x, y) = |�k|
�k!

1∫

0

(1 − t)|�k|−1∂
�k
y G(x, x + t (y − x)) dt.

We can express the terms log
(
ITrefu(x), u(ai )

)
occurring in the definition of ε in the

form (29) and get

ε(x)=G(x, x)−
m∑

i=1

λi (x)

⎛

⎝
∑

|�l|<k

(ai − x)
�l

�l! ∂
�l
yG(x, x) +

∑

|�k|=k

R�k(x, ai )(ai −x)
�k
⎞

⎠.

Using that the weight functions λi form a partition of unity on Tref (22), we get

− ε(x)=
∑

0<|�l|<k

m∑

i=1

λi (x)
(ai − x)

�l
�l! ∂

�l
yG(x, x) +

m∑

i=1

λi (x)
∑

|�k|=k

R�k(x, ai )(ai − x)
�k,

(30)
where the zeroth-order derivative cancels with G(x, x).
Step 3By the assumption p ≥ k−1, we can apply Lemma 4.2with f (x) = ∂

�l
yG(x, x)

to each sum
∑m

i=1 λi (x)
(ai −x)

�l
�l! ∂

�l
yG(x, x) in (30) and see that the first addend in (30)

is zero. Hence, we can write ε(x) as the sum

ε(x) =
m∑

i=1

εi (x) with εi (x) := −λi (x)
∑

|�k|=k

R�k(x, ai )(ai − x)
�k .

We now treat each term εi separately. For simplicity, we may assume, after a suitable
translation (depending on the index i), that ai = 0, and thus, we arrive at the pointwise
estimate

|εi (x)|g(ITrefu(x)) �
∑

|�k|=k

∣∣
∣∣
|�k|
�k!

1∫

0

t |�k|−1∂
�k
y G(x, t x)x

�k dt

∣∣
∣∣
g(ITrefu(x))

≤
∑

|�k|=k

|�k|
�k!

1∫

0

t |�k|−1
∣∣∣∂

�k
y G(x, t x)

∣∣∣
g(ITrefu(x))

x
�k dt, (31)

where we have used that the λi are bounded on Tref.
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Step 4 In order to untangle the derivatives of log and u in the expression ∂
�k
y G(x, y),

we use the chain rule which yields

∣∣∣∂
�k
y G(x, y)

∣∣∣
g(ITrefu(x))

�
∑

1≤l≤k, �β j ∈[d]m j
∑l

j=1 m j =k

∇l
2 log

(
ITrefu(x), u(y)

)

×
(
D �β1u(y), . . . ,D �βl u(y)

)
. (32)

We repeat that we use the notation

∇l
2 log(p, q) : (Tq M

)l → Tp M

to denote the l-th-order covariant derivative of the function q �→ log(p, q), which is
an l-multilinear form. ��
Remark 5.1 We record here that this is the point where the smoothness descriptor 	̇

(defined in Sect. 2.4) becomes necessary. Indeed, (32) already indicates that control
over products of covariant derivatives of lower order is required whenever∇l

2 log �= 0.
Note also that in the linear case we have ∇l

2 log = 0 for all l > 1 and therefore the
usual Sobolev seminorm | · |Hk is sufficient to obtain the desired control over terms
of the form (32). Keeping this in mind, it is easy to see that in the linear case our
proof yields exactly the expected bounds for the interpolation error in the Sobolev
seminorm.

By (31), we get

∫

Tref

|εi (x)|2g(ITrefu(x)) dx

�
∫

Tref

⎛

⎝
1∫

0

t |�k|−1
∣∣
∣∂

�k
y G(x, t x)

∣∣
∣
g(ITrefu(x))

x
�k dt

⎞

⎠

2

dx

�
∑

1≤l≤k, �β j ∈[d]m j
∑l

j=1 m j =k

∫

Tref

⎛

⎝
1∫

0

t |�k|−1
∣∣∣∇l

2 log
(
ITrefu(x), u(t x)

)

×
(
D �β1u(t x), . . . ,D �βk u(t x)

)∣∣∣
g(ITrefu(x))

x
�k dt

⎞

⎠

2

dx

≤
∑

1≤l≤k, �β j ∈[d]m j
∑l

j=1 m j =k

∫

Tref

⎛

⎝
1∫

0

t |�k|−1H
�β1,..., �βl (x, t x)x

�β dt

⎞

⎠

2

dx,
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where we have put

H
�β1,..., �βl (x, y) :=

∥∥∥∇l
2 log

(
ITrefu(x), u(y)

)∥∥∥
l∏

j=1

∣∣∣D �β j u(y)

∣∣∣
g(u(y))

.

Step 5 In the appendix, we have collected a few estimates for remainder terms of
Taylor series. We can use Lemma 8.1 for the functions H �β1,..., �βl , which gives us
the bound

∫

Tref

|εi (x)|2g(ITrefu(x)) dx �
∑

1≤l≤k, �β j ∈[d]m j
∑l

j=1 m j =k

∫

Tref

sup
x∈Tref

|H �β1,..., �βl (x, y)|2g(u(y)) dy

≤ sup
1≤l≤k

sup
p∈ITrefu(Tref)

q∈u(Tref)

∥∥∥∇l
2 log (p, q)

∥∥∥
2

×
∑

1≤l≤k, �β j ∈[d]m j
∑l

j=1 m j =k

∫

Tref

l∏

j=1

∣∣∣D �β j u(x)

∣∣∣
2

g(u(x))
dx

= C21,u(Tref)	̇k,Tref(u)2.

This concludes the first part of the proof.
Step 6 We now turn to the estimate for the first derivatives. To that end, we need
to bound the L2-norm of D

dxα ε(x). Since the functions λi have uniformly bounded
first derivatives on Tref, by the product rule, we can further reduce the problem to
bounding the L2-norm of

D

dxα

∑

|�k|=k

|�k|
�k!

1∫

0

t |�k|−1∂
�k
y G(x, t x)x

�k dt

for α = 1, . . . , d.
Using the chain rule, we get

D

dxα

∑

|�k|=k

|�k|
�k!

1∫

0

t |�k|−1∂
�k
y G(x, t x)x

�k dt = I(x, x) + II(x),

with

I(z, x) :=
∑

|�k|=k

d

dxα

|�k|
�k!

1∫

0

t |�k|−1∂
�k
y G(z, t x)x

�k dt, z ∈ Tref
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and

II(x) :=
∑

|�k|=k

|�k|
�k!

1∫

0

t |�k|−1∂
�k
y

D

dxα
G(x, z)

∣∣
∣∣
z=t x

x
�k dt.

Step 7 To bound the L2-norm of II, we may again use Lemma 8.1 and proceed
exactly in the same fashion as for the proof of (27) in Step 5 above.More precisely,
by the chain rule, we can bound

∣∣
∣∂

�k
y

D

dxα
G(x, z)

∣∣
z=y

∣∣
∣
g(ITrefu(x))

�
∑

1≤l≤k, �β j ∈[d]m j
∑l

j=1 m j =k

∣∣
∣∇l

2∇1 log
(
ITrefu(x), u(y)

)

×
(

d

dxα
ITrefu(x),D �β1u(y), . . . ,D �βl u(y)

)∣∣∣
∣
g(ITrefu(x))

,

where we recall that ∇1 denotes the covariant derivative of the vector field p �→
log(p, q). Using that ITrefu has uniformly bounded derivatives, and arguing exactly
as in Step 4 and Step 5, we obtain

∫

Tref

|II(x)|2g(ITrefu(x)) dx � sup
1≤l≤k

sup
p∈ITrefu(Tref)

q∈u(Tref)

×
∥∥
∥∇l

2∇1 log (p, q)

∥∥
∥
2
	̇k,Tref(u)2 = C22,u(Tref)	̇k,Tref(u)2.

Step 8 The bound for I(z, x) is more subtle. At first sight, it looks as if a bound
for I(z, x) would require derivatives of order k + 1 of u, which may not be avail-
able. However, by Lemma 8.2 applied to the function U (·) := G(z, ·) : Tref →
TITrefu(z)M for every fixed z ∈ Tref, we can write

I(z, x) =
∑

|�l|=k−1

(−1)k−1

�l! x
�l∂�l+�eα

y G(z, x),

which contains only derivatives of the desired order k.Here, for anyα ∈ {1, . . . , d},
we use the notation �eα ∈ N

d
0 for the unit vector which is 1 in its α-th digit and 0

everywhere else.

Now, we can proceed as above in Step 3 (using Lemma 8.1) to show that
∫

Tref

|I(x, x)|2g(ITrefu(x)) dx � sup
1≤l≤k

sup
p∈ITrefu(Tref)

q∈u(Tref)

∥∥∥∇l
2 log (p, q)

∥∥∥
2
	̇k,Tref(u)2

which proves (28).
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The previous theorem has bounded the interpolation error on the reference element.
We now derive an estimate on a general element T .

Theorem 5.3 Let T be a domain in R
d , u ∈ W k,2(T, M), IT u its p-th-order geodesic

interpolation, andFT : T → Tref a map that scales with h of order l ≥ k. For k > d/2
and p ≥ k − 1, we have the estimate

D1,2(IT u, u) � hk−1CM,T 	k,T (u),

with
CM,T (u) := C1,u(T ) + C2,u(T ). (33)

The implicit constant is independent of M and only depends on the basis functions λi .

Proof We use the representation

IT u = ITref

(
u ◦ F−1

T

)
◦ FT .

As a first step, we prove the desired estimate for the L2-part. Putting v := u ◦ F−1
T :

Tref → M , y = FT (x), and using (16b), we get

∫

T

|log(IT u(x), u(x))|2g(IT u(x)) dx =
∫

Tref

∣∣log(ITrefv(y), v(y))
∣∣2
g(ITrefv(y))

|det

× (∇FT (·))|−1 ◦ F−1
T (y) dy

≤ hd
∫

Tref

∣∣log(ITrefv(y), v(y))
∣∣2
g(ITrefv(y))

dy.

By Theorem 5.2, we can further estimate

hd
∫

Tref

∣∣log(ITrefv(y), v(y))
∣∣2
g(ITrefv(y))

dy � hdC1,u(T )2	̇k,Tref(v)2.

Finally, we use Lemma 2.8 and the definition of v to arrive at

hdC1,u(T )2	̇k,Tref(v)2 � h2kC1,u(T )2	k,T (u)2.

Hence, we have shown the L2-part of the assertion.
We go on to estimate the quantity

∫

T

∣∣∣
D

dxα
log(IT u(x), u(x))

∣∣∣
2

g(IT u(x))
dx
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for an α ∈ {1, . . . , d}. The chain rule yields that

∫

T

∣∣∣∣
D

dxα
log(IT u(x), u(x))

∣∣∣∣

2

g(IT u(x))

dx

≤
∫

T

[ ∣∣
∣∣

D

dxα
log(ITrefv(·), v(·))

∣∣
∣∣

2

g(ITrefv(·))
◦ FT (x)

]
·
∣∣
∣∣

d

dxα
FT (x)

∣∣
∣∣

2

dx .

Now, we use the scaling assumption (16c) for the term
∣∣ d

dxα FT (x)
∣∣ to bound the

previous quantity by

h−2
∫

T

∣∣
∣∣

D

dxα
log(ITrefv(·), v(·))

∣∣
∣∣

2

g(ITrefv(·))
◦ FT (x) dx .

We can now again use the substitution y = FT (x) and, using (16b), get the bound

h−2
∫

T

∣
∣∣∣

D

dxα
log(ITrefv(·), v(·))

∣
∣∣∣

2

g(ITrefv(·))
◦ FT (x) dx

≤ hd−2
∫

Tref

∣∣∣
∣

D

dxα
log(ITrefv(y), v(y))

∣∣∣
∣

2

g(ITrefv(y))

dy.

Now, we can again invoke Theorem 5.2 to deduce the estimate

hd−2
∫

Tref

∣∣∣∣
D

dxα
log(ITrefv(y), v(y))

∣∣∣∣

2

g(ITrefv(y))

dy � hd−2C2,u(T )2	̇k,Tref(v)2.

Finally, applying Lemma 2.8 to 	̇k,Tref(v) yields the desired bound. ��

5.2 Global Interpolation Error Bounds

We now use Theorem 5.3 to obtain a global approximation result. The necessary grid
regularity is formalized in the following definition.

Definition 5.1 We say that a grid G is of width h if for each element T of G the map
FT from T to its reference element scales with h (of order p, where p is the order of
the Lagrange shape functions used in the construction of the GFE spaces).

A particular instance of such grids is shape regular triangulations with element
diameters of the order of h. However, the definition also covers more general cases,
such as grids where the FT are polynomials.
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Theorem 5.4 Let � be a domain with a conforming grid G of width h, and let IG
be the pointwise interpolation operator onto the space of p-th-order geodesic finite
elements on G. If k > d/2 and p ≥ k − 1, we have the estimate

D1,2(IGu, u) � hk−1CM,G(u)	k,�(u) (34)

with

CM,G(u) := sup
T ∈G

CM,T (u),

and CM,T (u) as defined in (33). The implicit constants are independent of M and only
depend on the shape functions λi . For h → 0, the constant CM,G(u) approaches the
limit

lim
h→0

CM,G(u) = sup
1≤l≤k

sup
q∈u(�)

∥∥∥∇l
2 log (q, q)

∥∥∥ + sup
1≤l≤k

sup
q∈u(�)

∥∥∥∇l
2∇1 log(q, q)

∥∥∥ .

(35)

Proof The bound (34) follows from applying Theorem 5.3 elementwise and summing
up. To show (35), note that u is uniformly continuous, because k > d/2. Therefore,
the sets u(T ), IT u(T ) converge to single points as h goes to zero. ��

The error estimates of Theorem 5.4 assess the error between a function and its
Lagrange interpolant whenever the given function is of smoothness k > d/2. In par-
ticular, in three dimensions, our results require that u ∈ W k,2(�, M) with k > 3/2.
The same requirement is needed for the linear theory, since as a minimal requirement
to define the Lagrange interpolant an embedding into continuous functions is needed.

However, numerical experiments in Fig. 1 indicate nevertheless optimal approxi-
mation properties of both linear and geodesic finite element spaces even for k ≤ d/2.

In the linear setting, this stronger result is proved using the Clément interpolation
operator [14]. A generalization of this technique to nonlinear finite element spaces
would be interesting.

Remark 5.2 For the linear case M = R, we have log(q1, q2) = q2 − q1,

∇l
2 log(q1, q2) =

{
1 if l = 1

0 if l > 1,
and ∇l

2∇1 log(q1, q2) = 0 l ≥ 1.

Therefore,

CM,G = 1

for any grid G of size h.
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Fig. 1 GFE approximation rates for the functions uα which map (x1, x2, x3) ∈ [0, 1]3 to(
.5 · xα

1 , .5 · xα
2 , .5 · xα

3 ,
(
1 − .25 · x2α1 − .25 · x2α2 − .25 · x2α3

)1/2) ∈ S
3. It is classical that uα ∈ Hβ

for all β < α + .5, see, for instance, [53]. Even though for α < 1 the functions uα are not in Hd/2, the
best GFE approximation with order p = 1 converges with the optimal rate nevertheless, as the above figure
suggests

We also remark that the same argument as the one in Theorem 5.4 also allows to obtain
error estimates in terms of

D1,q(v,w) :=
⎛

⎝distLq (v,w) +
d∑

α=1

∫

�

∣∣∣∣
D

dxα
log(v(x), w(x))

∣∣∣∣

q
⎞

⎠

1/q

,

and 	q,k,� for q ∈ [1,∞) and with obvious modifications for q = ∞. In this case,
we require k > d/q so that pointwise interpolation is defined in W k,q(�, M). The
proof proceeds as the one for Theorem 5.4, except that the remainder terms occurring
in the proof of Theorem 5.2 (e.g., in Step 2) have to be estimated in the q-norm (which
is done similar to the L2 norm bounds).

Theorem 5.5 Let � be a domain with a conforming gridG of width h and let p ≥ k−1.
Then, for q ∈ [1,∞], we have the estimates

D1,q(IGu, u) � hk−1CM,G(u)	q,k,�(u)
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and

distLq (IGu, u) � hkCM,G(u)	q,k,�(u).

The implicit constants are independent of M and only depend on the shape functions
λi .

Additionally, we obtain the following stability of the pointwise interpolation operator.

Corollary 5.1 There exists a constant C4 which only depends on M and the shape
functions λi (but not on h) such that for q > max(2, d) we have

	q,1,�
(
IGu

) ≤ C4	q,1,� (u) .

Proof For simplicity, we only show the case q = ∞, the general case being similar.
We assume that our manifold M is smoothly embedded into RN . With the ansatz and
notation of the proof of Lemma 2.3, we obtain

d

dxα
u(x) = ∂1 exp

(
IGu(x), log(IGu(x), u(x))

) d

dxα
IGu(x)

+ ∂2 exp
(
IGu(x), log(IGu(x), u(x))

) D

dxα
log(IGu(x), u(x))

for all α ∈ {1, . . . , d}, which implies that

∣
∣∣∂1 exp

(
IGu(x), log(IGu(x), u(x))

) d

dxα
IGu(x)

∣
∣∣

�
∣
∣∣

d

dxα
u(x)

∣
∣∣ +

∣
∣∣

D

dxα
log(IGu(x), u(x))

∣
∣∣ (36)

for all α ∈ {1, . . . , d}. Now, we use the fact that

∂1 exp
(
IGu(x), 0

) d

dxα
IGu(x) = d

dxα
IGu(x),

together with the Lipschitz continuity of ∂1 exp(p, w) inw to get that, up to a constant
C independent of h,

∣∣
∣∂1 exp

(
IGu(x), log(IGu(x), u(x))

) d

dxα
IGu(x) − d

dxα
IGu(x)

∣∣
∣

≤ C
∣∣log(IGu(x), u(x))

∣∣
∣∣
∣

d

dxα
IGu(x)

∣∣
∣.

By Theorem 5.5, we can further bound

∣∣log(IGu(x), u(x))
∣∣ ≤ distL∞(u, IGu) ≤ Dh	̇∞,1,�(u)
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with another constant D > 0 independent of h. Putting these estimates together, we
obtain that
∣∣∣∣∂1 exp

(
IGu(x), log(IGu(x), u(x))

) d

dxα
IGu(x)− d

dxα
IGu(x)

∣∣∣∣�hC D

∣∣∣∣
d

dxα
IGu(x)

∣∣∣∣
(37)

for all α ∈ {1, . . . , d}. Putting together (36) and (37), we obtain

(1 − hC D)

∣∣∣∣
d

dxα
IGu(x)

∣∣∣∣ �
∣∣∣∣

d

dxα
u(x)

∣∣∣∣ +
∣∣∣∣

D

dxα
log(IGu(x), u(x))

∣∣∣∣ ,

which by Theorem 5.5 implies the desired result. ��
Remark 5.3 One can generalize these results in terms of the shape functions which are
used in the construction for the GFE spaces. Indeed, all approximation error estimates
in the present section only use the property that the Lagrange shape functions λi are
exact on polynomials (25). Therefore, the same proofs can be used for any such set of
shape functions.

5.3 Retraction Pairs

In certain cases, it is computationally expensive to compute the exponential or log-
arithm function of a given manifold. Then, alternative functions can sometimes be
used. This idea is formalized by the concept of retraction pairs.

Definition 5.2 ([26], see also [1,23]) A pair (P, Q) of smooth functions

P : T M → M, Q : M × M → T M

is called a retraction pair if

P (x, Q (x, y)) = y, for all x, y ∈ M,

and

P (x, 0) = x,
d

dv
P(x, v)

∣∣∣
v=0

= Id for all x ∈ M.

In general, P may only be defined locally around M , and Q around the diagonal
of M × M . Certainly, the pair (exp, log) satisfies the above assumptions [16] and
therefore forms a retraction pair. We refer to [1] for examples of retraction pairs for
several manifolds of practical interest. To better illustrate the concept of retraction
pairs, Fig. 2 shows different pairs for the circle S1.

Given a retraction pair (P, Q), we can construct generalized geodesic finite ele-
ments by using interpolants ϒ(P,Q) based on the first-order condition (24)

m∑

i=1

λ
p
i (x) Q

(
ϒ(P,Q)(v1, . . . , vm; x), vi

)
= 0 ∈ Tϒ(P,Q)(v1,...,vm ;x)M. (38)
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M

TM

(a)

M

TM

(b)

M

TM

(c)

Fig. 2 Different retraction pairs for the circle. a Retraction pair based on exponential map. b Retraction
pair based on closest point projection. c Retraction pair based on vertical projection

The results in [26] show that this expression is locally well defined.
We state the following theorem whose correctness can be easily verified by going

through the proofs of the results in Sect. 5.

Theorem 5.6 All approximation results shown in Sect. 5 remain valid if we replace
the definition of the interpolant ϒ by (38) with (P, Q) an arbitrary retraction pair,
provided that the function u to be approximated is in W 1,q(�, M) for some q >

max(2, d).

The details are left to the reader.

6 A Priori Error Estimates for Geodesic Finite Elements

We are now in a position to combine the nonlinear Céa lemma (Theorem 3.3) with the
approximation result (Theorem 5.4) to arrive at an a priori error bound for variational
problems. For later use, we include Dirichlet boundary conditions and define

H� :=
{
v ∈ W 1,2(�, M) : u|∂� = �

}

for a given function � : ∂� → M . Note, however, that all results in this chapter also
hold without Dirichlet conditions if the functional J has the appropriate ellipticity
properties.

We also put for a fixed q > max(2, d)

Hu
K ,L ,q(�, M) := W 1,q

K (�, M) ∩ Hu
L (�, M),

where W 1,q
K , Hu

L are defined as in Theorem 3.3 for u ∈ C(�, M), and K , L > 0.
We first show a direct consequence of Theorems 3.3 and 5.4. Then, we give an

alternative proof showing the same optimal error bounds under weaker assumptions
on the approximation space.

Theorem 6.1 Let u be a stationary point of the energy J : H� → R w.r.t. variations
along geodesic homotopies starting in u, and assume that
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u ∈ Hk(�, M)

for some k > d/2.
Let q > max(2, d) be such that Hk(�, M) embeds into W 1,q(�, M). Let C4 be

the constant from Corollary 5.1, and pick a second constant

K ≥ C4	q,1,�(u). (39)

With this constant K , and L > 0 arbitrary, assume that J is elliptic on Hu
K ,L ,q ∩ H�

along geodesic homotopies that start in u.
Let G be a grid for � of width h and order p, V M

p,G a p-th-order GFE space as
defined in Sect. 4, and set

V h := V M
p,G ∩ Hu

K ,L ,q ∩ H�.

Assume that � is such that this space is not empty. Finally, denote

uh := argmin
vh∈V h

J(vh).

Then, whenever p ≥ k − 1, we have the a priori estimates

‖u − uh‖W 1,2(�,M) � hk−1CM,G(u)	k,�(u)

(with respect to some embedding) and

distW 1,2(u, uh) � hk−1CM,G(u)	k,�(u).

In these estimates, the implicit constants only depend on d, the ellipticity constants of
J on Hu

K ,L ∩ H�, the interpolation functions λi , i = 1, . . . , m, and the geometry of
M.

Proof Consider the p-th-order interpolant IGu ∈ V M
p,G of u. By the choice (39),

Corollary 5.1, and the assumption on the boundary data, we obtain that IGu ∈ Hu
K ,L ∩

H�. We can therefore apply the Céa lemma (Theorem 3.3) to get

D1,2(u, uh) ≤ C2
2

√
�

λ
D1,2(u, IGu),

withλ,� the ellipticity constants, andC2 depending only on d, the product K L and the
curvature of M . By Theorem 5.4, the term D1,2(u, IGu) is less than hk−1CM,G	k,�(u)

times another constant depending only on the λi . On the other hand, Lemmas 2.3
and 2.4 bound D1,2(u, uh) from below by ‖u − uh‖W 1,2(�,M) and distW 1,2(u, uh),
respectively. Together the assertion follows. ��
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Theorem 6.1 requires that the discrete solution uh is obtained by minimizing the
energy J over the approximation space V M

p,G ∩ Hu
K ,L ,q ∩ H�. The restriction to Hu

K ,L ,q
(i.e., the requirement that the Lq -norm of the first derivatives of all functions in the
approximation space are uniformly bounded by K ) is not usually encountered in the
geometrically linear theory. It is problematic because the first derivatives of GFE
functions deteriorate with decreasing mesh size (Lemma 4.3). In the next theorem,
we will show that we can dispense with K provided that u ∈ Hk with k sufficiently
large, more precisely whenever u possesses bounded first derivatives. We conjecture
that this result also holds without the additional restriction on k.

Theorem 6.2 Let u be a stationary point of the energy J : H� → R w.r.t. variations
along geodesic homotopies starting in u, and assume that

u ∈ Hk(�, M), k > max
(
2,

d

2
+ 1

)
.

Suppose that J is elliptic along geodesic homotopies starting in u, with ellipticity
constants λ,�, where, for a geodesic homotopy from u to v, the upper bound � may
depend on max

(
	1,∞,�(u),	1,∞,�(v)

)
.

Let G be a grid of width h, and V M
p,G a p-th-order GFE space. Denote V h :=

V M
p,G ∩ Hu

L ∩ H� (assuming again that � is such that V h is not empty) with L > 0
arbitrary (for M compact set L = ∞). Define the discrete minimizer

uh := argmin
vh∈V h

J(vh).

Then, whenever p ≥ k − 1, we have the a priori estimates

‖u − uh‖W 1,2(�,M) � hk−1CM,G(u)	k,�(u)

(with respect to some embedding) and

distW 1,2(u, uh) � hk−1CM,G(u)	k,�(u).

Proof For simplicity, we will tacitly assume that the manifold M is embedded into
R

N . We proceed in several steps.

Step 1 Using the argument from the proof of Theorem 3.3, we can show that

D1,2(u, uh)2 ≤ C2
2

λ

(
J(uh) − J(u)

)
≤ C2

2

λ

(
J(IGu) − J(u)

)

≤ C2
2�(u, IGu)

λ
D1,2(u, IGu)2.

The constantC2 is the one given in (9), and the K appearing there has to be interpreted
as an upper bound on 	∞,1,� on the geodesic homotopy from u to uh .
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By Lemma 4.3, we can pick the K such that 	∞,1,�(wh) � K � h−1 for any
wh ∈ V h , where the implicit constant depends on the nodal values ofwh .We therefore
obtain

D1,2(u, uh)2 � h−2�(u, IGu)

λ
D1,2(u, IGu)2

for h small.
Now, we use that by our smoothness assumptions	∞,1,�(u) is finite. Then, by Corol-
lary 5.1, we get

	∞,1,�(IGu) � 	∞,1,�(u),

and the constant is independent of h. Therefore, also the quantity �(u, IGu) is uni-
formly bounded, independent of h. Using additionally Theorem 5.4, this gives

D1,2(u, uh) � h−1D1,2(u, IGu) � hk−2CM,G	k,�(u), (40)

where we have omitted the dependence on the ellipticity constants.
Using Lemma 2.3, we see that (40) implies that in our embedding we have

‖u − uh‖H1 � hk−2CM,G	k,�(u). (41)

We need to improve this estimate to the desired order k − 1.
Step 2 We will improve the suboptimal order of hk−2 to the desired order in the
remainder of this proof. First, we assume d ≥ 3 and let d∗ := 2d

d−2 so that we have an
embedding of H1(�,RN ) into Ld∗(�,RN ). By (41), we get that

‖u − uh‖Ld∗ � hk−2CM,G	k,�(u). (42)

Step 3 Now, we assume that d∗ ≤ d and use a standard argument to gain an upper
bound for the error of u − uh measured in the Ls-norm for s > d arbitrary:

‖u − uh‖s
Ls =

∫

�

|u(x) − uh(x)|sdx

=
∫

�

|u(x) − uh(x)|d∗ |u(x) − uh(x)|s−d∗dx

≤ max
x∈�

|u(x) − uh(x)|s−d∗‖u − uh‖d∗
Ld∗

� hd∗(k−2)Cd∗
M,G	k,�(u)d∗ ,

the last inequality following from (42). For k > d
2 + 1, we can therefore deduce that

we can find s > d such that

d∗
s

(k − 2) ≥ 1,

123



1400 Found Comput Math (2015) 15:1357–1411

and consequently
‖u − uh‖Ls � h for some s > d. (43)

Step 4 Put q = ∞. Then, Lemma 3.3 states that with

C2 = √
2 + 2d/2+1C3‖Rm‖g K distLs (u, v)

and

K = 	q,1,�(uh) � h−1

we have the inequality

D1,2(u, uh)2 � C2
2 D1,2(u, IGu)2 � C2

2h2(k−1)C2
M,G	k,�(u)2.

Note that, due to (43),C2 is now bounded independently of h, which yields the desired
bound for the error D1,2(u, uh). Finally, Lemmas 2.3 and 2.4 bound D1,2(u, uh) from
belowby‖u−uh‖W 1,2(�,M) anddistW 1,2(u, uh), respectively,which proves the desired
result for d∗ ≤ d.
Step 5 The condition d∗ ≤ d always holds if d ≥ 4. For d = 3, we can directly use
the fact that

‖u − uh‖Ld ≤ ‖u − uh‖Ld∗ � hk−2CM,G	k,�(u)

by (41) whenever k ≥ 3, which yields the bound

‖u − uh‖Ld � h.

Now, we can proceed as in Step 4 to gain the optimal order for d = 3, whenever
k ≥ 3. For d = 3, this again implies the desired asymptotic approximation rate hk−1

whenever k > d
2 + 1.

In the case d = 2, we note that H1 embeds into Ls for every s < ∞, and therefore,
we have

‖u − uh‖Ls � hk−2 for any s < ∞.

It follows that for k ≥ 3 and s < ∞ arbitrary, we have

distLs (u, uh) � h,

which allows us to use the same arguments as in Step 4 to deduce the desired approx-
imation rate. The case d = 1 follows with the same argumentation. ��

To summarize, Theorems 6.1 and 6.2 both present extensions of linear a priori
error estimates for finite elements. In Theorem 6.1, we require that the approximation
spaces and the solution u possess uniformly bounded derivatives. In contrast, Theo-
rem 6.2 does not impose restrictions on the approximation spaces, but poses stronger
assumptions on the smoothness of u instead.
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7 Examples

To illustrate our results, we apply them to a few specific examples. We focus on the
harmonic energy and related functionals and leave the study of more general energies
to future work.

Let � be a domain and (M, g) a Riemannian manifold. As previously, we consider
Dirichlet problems only. Boundary values are given in form of a function � : ∂� →
M of sufficient regularity. For such a �, we write H� for the set of all functions
v : � → M for which v|∂� = � holds.

Studying the assumptions of Theorems 6.1 and 6.2, we recall that we can give
optimal a priori discretization error bounds for discrete minimizers of an energy func-
tional J if J is elliptic, and if the minimizer of J has sufficient smoothness.

7.1 Harmonic Maps

The prototypical elliptic functional is the harmonic energy

Jharm(v) =
∫

�

|∇v(x)|2g(v(x)) dx .

The stationary points of this functional are called harmonicmaps and have beenwidely
studied in the literature (see, e.g., [19]).

There are different approaches to showing ellipticity of the harmonic energy. We
first use bounds on the second derivatives along geodesic homotopies. Let K be a
positive constant, and HK := W 1,q

K as defined in (5) for some q > max(2, d).

Lemma 7.1 The energy Jharm is elliptic along geodesic homotopies in HK ∩ H� in
the sense of Definition 3.2 if either

1. M has nonpositive sectional curvature, or
2. we have 1 − K 2‖Rm‖gC1(�) > 0,

where C1(�) is the Poincaré constant of � from Lemma 2.2.

Proof Let � be a geodesic homotopy in HK ∩ H�, and set f (t) := Jharm(�(t)).
Lemma X.3.2(ii) in [58] tells us that

d2

dt2
f (t) = 2

∫

�

〈∇�̇(x, t),∇�̇(x, t)
〉
g(�(x,t)) dx

− 2
∫

�

〈
Rm

(∇�(x, t), �̇(x, t)
)
�̇(x, t),∇�(x, t)

〉
g(�(x,t)) dx .

Now, the assertion follows as a direct consequence of the Poincaré inequality in
Lemma 2.2. ��
Remark 7.1 For positive curvature, this ellipticity result is fairly weak. The results in
[36] may allow improvements.
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Alternatively, one can also directly show the λ-convexity of the harmonic energy
functional along geodesic homotopies.

Lemma 7.2 Let M be simply connected and have nonpositive sectional curvatures.
Then, the harmonic energy is λ-convex along geodesic homotopies in H�, with λ

equal to 1/2 times the Poincaré constant of �.

Proof Let u, v be functions in H�, and let � be a geodesic homotopy from u to v.
Since M is simply connected and has nonpositive curvature, it is an NPC space is the
sense of [58, Sec.X.2.1]. For this setting, it is shown in the proof for [58, Thm.X.2.2]
that

Jharm(�(t)) ≤ (1 − t) Jharm(u) + t Jharm(v) − t (1 − t)
∫

�

|∇ dist(u(x), v(x)|2 dx .

Since u and v fulfill the same Dirichlet boundary conditions, we have dist(u(x), v(x))

= 0 on ∂�. The assertion then follows with the standard Poincaré inequality. ��
Regularity of harmonic maps is a well-studied subject. The following results are

derived in [19,33,36,37].

Lemma 7.3 A harmonic map u : � → M with continuous boundary data is in C∞,
if one of the following conditions is satisfied:

1. M has nonpositive sectional curvature,
2. d ∈ {1, 2}, or
3. the image of u is contained in a convex geodesic ball.

We remark that in other cases singularities may develop [52].
Using the preliminaries above and Theorem 6.2, we are able to prove the following

convergence theorem for harmonic maps.

Theorem 7.1 Let u be a local minimizer of Jharm on HK ∩ H� for a constant K > 0
and continuous boundary data �. Also, let uh be the corresponding minimizer in a
p-th-order GFE space generated by a grid of width h and order p, and resolving
the boundary conditions. If M has positive sectional curvature suppose that 1 −
K 2‖Rm‖gC1(�) > 0 and that either d ∈ {1, 2} or that the image of u is contained in a
convex geodesic ball of M (for M with nonpositive sectional curvature no assumptions
are needed). Then

‖u − uh‖W 1,2(�,M) � h p‖u‖p+1
H p+1

(in an embedding), and

dist(u, uh)W 1,2 � h p‖u‖p+1
H p+1 .

Proof ByLemma 7.3, u is smooth enough for the smoothness descriptor	p+1,�(u) to
be finite, and by Lemma 7.1, the harmonic energy Jharm is elliptic. Hence, Theorem 6.2
yields bounds in terms of the smoothness descriptor 	p+1,�(u), which we bound in
turn with Lemma 2.7. ��
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Remark 7.2 In Theorem 7.1, we have assumed that the boundary data can be repre-
sented exactly in the GFE approximation space. This may not always be the case, but a
simple approximation argument shows that the same result holds if uh is interpolating
smooth boundary data.

Theorem7.1 is confirmedby numerical studies in [56] for M = S2. In [55], the same
optimal orders were observed for p = 1, even though the assumptions of Lemma 7.3
did not hold there.

Remark 7.3 In [7], harmonic maps into spheres S2 ∈ R
3 are approximated by min-

imizing the harmonic energy over piecewise affine finite elements with nodal values
on the sphere. It is shown that for h → 0 there exists a subsequence of discrete solu-
tions (more precisely stationary points of the discrete optimization problems) which
converges weakly to a harmonic map. This holds even for nonregular solutions and
without any ellipticity assumption, which is in contrast to our own results. The latter
always assume a certain smoothness of the solution, but, on the other hand, allow to
obtain not just weak convergence of a subsequence but strong convergence with opti-
mal rates. We consider it an interesting question whether we can use the approach of
[7] to prove weak convergence of sequences of GFE approximations when the solution
is not smooth and/or the harmonic energy is not elliptic.

7.2 Generalizations

We can generalize the discretization error bounds for harmonic maps in a few simple
ways.We showonly the ellipticity of the different functionals. Togetherwith regularity
results available from the literature, optimal discretization error bounds then follow
by Theorem 6.2.

7.2.1 F-Harmonic Maps

F-harmonic maps are stationary points of the energy

JF (v) :=
∫

�

F
(

x, |∇v(x)|2g(v(x))

)
dx,

with a function F : � × R
+ → R. Such energies generalize harmonic maps and

include, e.g., p-harmonic maps and exponentially harmonic maps [5]. For notational
simplicity, we will suppress the dependence of F on x in the following results. The
proofs for this case easily carry over to the x-dependent case.

The following result follows from direct calculations.

Lemma 7.4 Denote

f (t) := JF (�(t)),
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where � is a geodesic homotopy. Then, we have

d2

dt2
f (t) = 2

∫

�

F ′ (|∇�(x, t)|2g(�(x,t))

) 〈∇�̇(x, t), ∇�̇(x, t)
〉
g(�(x,t)) dx

− 2
∫

�

F ′ (|∇�(x, t)|2g(�(x,t))

) 〈
Rm

(∇�(x, t), �̇(x, t)
)
�̇(x, t), ∇�(x, t)

〉
g(�(x,t)) dx

+ 4
∫

�

F ′′ (|∇�(x, t)|2g(�(x,t))

) 〈∇�̇(x, t), ∇�(x, t)
〉2
g(�(x,t)) dx .

Based on this, we can prove the following ellipticity result.

Lemma 7.5 Assume that there are constants w2, w′
2, w′

3 such that

w′
2 ≥ F ′(y) ≥ w2 > 0, w′

3 ≥ F ′′(y) ≥ 0 ∀y ∈ R
+,

and either

1. M has nonpositive sectional curvature, or
2. w2 − w′

2K 2‖Rm‖gC1(�) > 0,

where C1(�) is the Poincaré constant of � from Lemma 2.2. Then, the energy JF is
elliptic along geodesic homotopies in HK ∩ H� in the sense of Definition 3.2.

Proof Let M have nonpositive sectional curvature. Then, using Lemma 7.4, we have

d2

dt2
f (t) ≥ 2

∫

�

F ′ (|∇�(x, t)|2g(�(x,t))

) 〈∇�̇(x, t),∇�̇(x, t)
〉
g(�(x,t)) dx

≥ 2w2

∫

�

〈∇�̇(x, t),∇�̇(x, t)
〉
g(�(x,t)) dx

≥ 2w2

1 + C1(�)
|�̇(t)|H1,

where C1(�) is the Poincaré constant of� from Lemma 2.2. On the other hand, again
by Lemma 7.4, we have

d2

dt2
f (t) ≤ 2w′

2

∫

�

(∣∣∇�̇(x, t)
∣∣2
g(�(x,t)) + K 2‖Rm‖g

∣∣�̇(x, t)
∣∣2
g(�(x,t))

)
dx

+ 4w′
3K 2

∫

�

∣∣∇�̇(x, t)
∣∣2
g(�(x,t))dx .
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In summary, we have ellipticity with λ = 2w2
1+C1(�)

and� = max
(
2w′

2 +4w′
3K 2, 2w′

2

K 2‖Rm‖g
)
. This proves 1. For the proof of the result under Assumption 2, we estimate

d2

dt2
f (t) ≥ 2

∫

�

(
w2

∣∣∇�̇(x, t)
∣∣2
g(�(x,t)) − w′

2K 2‖Rm‖g
∣∣�̇(x, t)

∣∣2
g(�(x,t))

)
dx

≥ 2(w2 − w′
2K 2‖Rm‖gC1(�))

∫

�

∣∣∇�̇(x, t)
∣∣2
g(�(x,t))dx

≥ 2
w2 − w′

2K 2‖Rm‖gC1(�)

1 + C1(�)
|�̇(t)|2H1 .

We get ellipticity with λ = 2
w2−w′

2K 2‖Rm‖gC1(�)

1+C1(�)
and � = max

(
2w′

2 + 4w′
3K 2, 2w′

2

K 2‖Rm‖g
)
. ��

7.2.2 Harmonic Maps with Potential

We can also generalize the harmonic energy by adding a source term with potential
G : � × M → R. We arrive at

Jharm,G(v) = Jharm(v) +
∫

�

G(x, v(x)) dx,

see [21].
Again, for simplicity, in the following we will suppress the dependence of G on its

first variable x and assume that G : M → R. The second derivative of Jharm,G along a
geodesic homotopy � splits in the same terms as above for the harmonic energy, plus
theHessian of G. Note that for a point q ∈ M , theHessianHessG : Tq M×Tq M → R
is

Hess(G)(v,w) :=
〈

D

dt
grad G(γ (s))

∣∣∣
s=0

, w

〉

g(q)

, ∀v,w ∈ Tq M.

where γ : {−ε, ε} → M is a differentiable path such that γ (0) = q and γ̇ (0) = v.

Lemma 7.6 With � a geodesic homotopy and f (t) := Jharm,G(�(t)) with G : M →
R, we have

d2

dt2
f (t) = 2

∫

�

〈∇�̇,∇�̇
〉2

dx − 2
∫

�

〈
Rm(∇�, �̇)�̇,∇�

〉
dx +

∫

�

Hess(G)(�̇, �̇) dx .

The potential G influences the ellipticity of Jharm,G in the following way.

Corollary 7.1 The energy Jharm,G : HK ∩ H� → R is elliptic along geodesic homo-
topies if either

123



1406 Found Comput Math (2015) 15:1357–1411

1. M has nonpositive sectional curvature, and HessG is positive semidefinite, or
2. we have

1 − K 2‖Rm‖gC1(�) + inf
v∈T M

Hess(G)(v, v)

|v|2g
> 0.

Hence, Jharm,G can be elliptic even if Jharm by itself is not, provided that HessG
is sufficiently positive definite.

For various results related to the smoothness of harmonic maps with potential, we
refer to [21].

7.2.3 Tikhonov Regularization

As a special case of the above, we can choose the source term to be the distance from
a given function w : � → M

Jw(v) := Jharm(v) +
∫

�

dist(v(x), w(x))2μ(dx).

It is useful for applications to allow the source term to be integrated with respect to a
general positivemeasureμ, whichmay be discrete.Minimizing such an energy Jw can
be useful in smoothing, denoising or motion planning [67]. For d = 1 (by defining μ

to be a discrete measure and using boundedness of point evaluations in H1 for d = 1),
the framework includes a point-fitting energy

Jharm(v) +
N∑

i=1

dist(v(xi ), pi )
2

for interpolation points xi ∈ � and point values pi ∈ M .
In the case of nonpositive curvature, ellipticity can be established easily.

Lemma 7.7 Assume that M has nonpositive sectional curvature. Then, the energy
Jw : HK ∩ H� → R is elliptic along geodesic homotopies.

Proof This is a simple consequence of the ellipticity of Jharm, together with the fact
that for a geodesic γ (t) in M , we have that

d2

dt2
dist(γ (t), p)2 ≥ 0

for all points p ∈ M if M has nonpositive curvature [63]. Therefore, the functional
Jw is coercive for any choice of w. ��
Observe that the ellipticity of the functional Jw holds even without Dirichlet boundary
conditions. If M has positive curvature, additional restrictions regarding the diameter
of the image u(�) apply.
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8 Conclusion

We have established optimal a priori discretization error bounds for the discretization
of manifold-valued problems by geodesic finite elements (GFE). This was achieved by
establishing appropriate manifold-valued generalizations of the classical Céa lemma
and interpolation error bounds for geodesic finite element spaces. Along the way
we have introduced a number of new technical tools for dealing with the analysis
of manifold-valued functions which we expect to be useful beyond this paper. One
example application of our theory is high-order numerical schemes for the computation
of harmonic maps into manifolds.

Many issues remain for future work. Aside from natural issues such as for instance
the investigation of the effects of variational crimes in the spirit of [62], we mention a
more thorough study of ellipticity properties for several geometric energies of inter-
est, among them a finer study of the harmonic energy with positively curved target
spaces, or the Cosserat energies studied in [48,54]. Additionally, convexity properties
of the energies on the approximation spaces are of interest, because they influence the
convergence speed of numerical solvers. Further, it will be interesting to study weak
convergence properties of GFE discretizations for nonelliptic energies and/or non-
smooth solutions, generalizing results of [7]. Finally, we mention further extensions
of linear finite element-based methods, e.g., nonconforming variants of geodesic finite
elements and temporal discretizations for nonstationary problems.

Acknowledgments The work of Philipp Grohs was supported by the Swiss National Fund (SNF) under
grant number 140635. He would like to thank Christian Lubich, Markus Sprecher and Max Wardetzky for
useful discussions. Special thanks go to Markus Hansen and Anton Schiela whose insightful comments on
an earlier version of this paper lead to significant improvements of the results.

Appendix: Taylor Series Remainder Estimates

In this appendix, we prove two technical results about certain remainder terms in
Taylor series expansions. They are used in the proof of the interpolation error bound
in Sect. 5.1.

Lemma 8.1 For a function H(x, y) : Tref × Tref → R and a multi-index �k with
|�k| > d/2, we have the inequality

∥∥∥∥∥
∥

1∫

0

t |�k|−1x
�k H(x, t x) dt

∥∥∥∥∥
∥

L2(Tref)

�
∥∥∥ sup

z∈Tref

|H(z, x)|
∥∥∥

L2(Tref)
,

where the integration in the L2-norms above occurs in the variable x. The implicit
constant only depends on the diameter of Tref.

Proof Weonly treat the case d = 2, the general case being similar. Also, for simplicity,
we assume that Tref is contained in the unit ball. Using polar coordinates (x1, x2) =
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rsϕ := r(cos(ϕ), sin(ϕ)) and the substitution τ = r t , we can write

1∫

0

t |�k|−1x
�k H(x, t x) dt =

1∫

0

t |�k|−1r |�k|s �k
ϕ H(x, trsϕ) dt =

r∫

0

τ |�k|−1s
�k
ϕ H(x, τ sϕ) dτ.

We need to estimate the L2-norm of this expression. Since Tref is contained in the unit
ball, we get

∥∥∥∥∥
∥

1∫

0

t |�k|−1x
�k H(x, t x) dt

∥∥∥∥∥
∥

2

L2(Tref)

≤
1∫

0

2π∫

0

⎛

⎝
r∫

0

τ |�k|−1s
�k
ϕ H(x, τ sϕ) dτ

⎞

⎠

2

r dr dϕ.

Using the Cauchy–Schwarz inequality, we can bound this expression by

1∫

0

2π∫

0

r∫

0

H(x, τ sϕ)2τ dτ dϕ

r∫

0

τ 2|�k|−4τ dτ r dr

which can in turn be bounded by

1∫

0

2π∫

0

1∫

0

sup
x∈Tref

H(x, τ sϕ)2τ dτ dϕ

1∫

0

τ 2|�k|−3 dτ r dr

≤
∥∥∥ sup

x∈Tref
|H(x, ·)|

∥∥∥
2

L2(Tref)

1∫

0

1∫

0

τ 2|�k|−3 dτ r dr.

Since the double integral on the right is no greater than 1, we get the desired expression.
��

Lemma 8.2 For a function U defined on Tref and a multi-index �e with |�e| = 1, we
have

∑

|�k|=k

|�k|
�k! ∂ �e

1∫

0

t |�k|−1x
�k∂ �kU (t x) dt =

∑

|�l|=k−1

(−1)k−1

�l! x
�l∂�l+�eU (x). (44)

Proof The term on the left-hand side of (44) is the derivative of the residual term

R(x) := U (0) −
∑

|�l|<k

(−1)|�l| x�l
�l! ∂

�lU (x)

in the Taylor expansion of U around x and evaluated at zero. Using this interpretation,
one can check the statement by direct computation. Indeed, applying the operator ∂ �e

123



Found Comput Math (2015) 15:1357–1411 1409

to R and using the product rule, we get

∂ �e R(x) = −∂ �e ∑

|�l|<k

(−1)|�l| x�l
�l! ∂

�lU (x)

=
∑

|�l|<k

(−1)|�l| x�l−�e

(�l − �e)!∂
�lU (x) + (−1)|�l| x�l

�l! ∂
�l+�eU (x)

= −
∑

|�l|<k−1

(−1)|�l| x�l
�l! ∂

�l+�eU (x) +
∑

|�l|<k

(−1)|�l| x�l
�l! ∂

�l+�eU (x)

=
∑

|�l|=k−1

(−1)|�l| x�l
�l! ∂

�l+�eU (x).

In the second line, we have used the convention x�l−�e ≡ 0 whenever �l − �e ∈ Z
d has a

negative entry. ��
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