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Abstract

The main concern of this paper is with the stable discretisation of linear
partial differential equations of evolution with time-varying coefficients. We
commence by demonstrating that an approximation of the first derivative by
a skew-symmetric matrix is fundamental in ensuring stability for many differen-
tial equations of evolution. This motivates our detailed study of skew-symmetric
differentiation matrices for univariate finite-difference methods.

We prove that, in order to sustain a skew-symmetric differentiation matrix
of order p ≥ 2, a grid must satisfy 2p− 3 polynomial conditions. Moreover, once
it satisfies these conditions, it supports a banded skew-symmetric differentiation
matrix of this order and of the bandwidth 2p − 1 which can be derived in a
constructive manner.

Some applications require not just skew-symmetry but also that the growth
in the elements of the differentiation matrix is at most linear in the number of
unknowns. This is always true for our tridiagonal matrices of order 2 but need
not be true otherwise, a subject which we explore further.

Another subject which we examine is the existence and practical construction
of grids that support skew-symmetric differentiation matrices of a given order.
We resolve this issue completely for order-two methods.

We conclude the paper with a list of open problems and their discussion.

0Communicated by Peter Olver
0AMS (MOC) Subject classification: 65M12, 65D25
0Keywords: Partial differential equations, finite difference methods, numerical stability, skew-

symmetric differentiation matrices, order conditions
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1 On the importance of being skew-symmetric

Classical stability theory for discretised time-dependent partial differential equations
(PDEs), since its origins in the work of John von Neumann and Richard Courant, is
fundamental to modern numerical analysis. The Lax Equivalence Theorem (Richtmyer
& Morton 1967) means that stability, far from being an optional extra for a numerical
method, is a necessary condition for the discretisation to converge to the exact solution
(subject to very generous side conditions) once the number of degrees of freedom
becomes infinite. Yet, it is clear that numerical stability theory is replete with lacunæ
and open problems. The main purpose of this paper is to address a major gap in
our understanding of this issue, namely numerical stability in the presence of variable
coefficients.

Standard treatment of numerical stability commences from the PDE

∂u

∂t
= Lu+ f, x ∈ Ω, t ≥ 0, (1.1)

where u = u(x, t), given with initial conditions for u(x, 0), x ∈ Ω ⊆ Rd, and suitable
boundary conditions on ∂Ω. Here L is a linear, time-independent differential operator,
while both the forcing term f and the initial and boundary conditions are suitably
smooth. We denote by K the degree of the highest spatial derivative present in L.

The work of this paper applies to all discretisation methods which are concerned
with nodal values – in other words, whose unknowns are approximate solution val-
ues at a given number of points in Rd. Hence, at least in principle they apply to
finite differences, finite elements, finite volumes and spectral collocation, but not to
spectral methods. For the sake of simplicity, we henceforth restrict the narrative to
finite difference methods. We also for the time being assume zero Dirichlet boundary
conditions but this restriction can be easily lifted.

Discretising the PDE (1.1), the outcome is the recurrence

un+1
N = ANunN + fnN , t ≥ 0, (1.2)

where unN = (unN,1, . . . , u
n
N,N ): for example, in the case of finite differences, unN,m ≈

u(xm, n∆t), where xm is a grid point (assuming for simplicity Dirichlet boundary
conditions, there are N such points in the interior of Ω) and ∆t > 0 is the time step.
Two conditions join to assure us that, as N →∞, unN converges pointwise to the exact
solution of (1.1): consistency (i.e., that locally (1.2) matches the original PDE up to
O
(
N−K−1

)
for some K ≥ 1, something that can be usually verified easily by Taylor

expansion) and stability: uniform well-posedness of the operators {AN} as N → ∞
in the time interval [0, T ] (Richtmyer & Morton 1967). In other words, letting ‖ · ‖N
be (without loss of generality) the `2 norm on RN , we require that, once NK∆t is
uniformly bounded as N →∞, we have

lim sup
N→∞

‖AnN‖N <∞, n∆t < T. (1.3)

We note for further reference that a very helpful sufficient condition for (1.3) is that

‖AN‖N ≤ 1 + c∆t, N � 1, (1.4)
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where c ≥ 0 is independent of N .
Once the coefficients of L are constant, two powerful techniques – eigenvalue anal-

ysis and Fourier analysis – can be used to investigate a wide range of numerical
methods (Iserles 2008). Although immensely useful, the two techniques are far from
comprehensive, and this has led to a wide range of further tools, e.g. the Kreiss matrix
theorem (Kreiss 1962), the GKS theory (Gustafsson, Kreiss & Sundström 1972, Tre-
fethen 1983) and pseudo-eigenvalues (Reddy & Trefethen 1992). Finally, if everything
else fails, one can always attempt the energy method (Richtmyer & Morton 1967) –
essentially, proving (1.4) from first principles.

Matters become considerably more complicated once the coefficients of L are al-
lowed to depend on x. Fourier analysis is no longer suitable, eigenvalue analysis has a
fairly limited scope and the main practical tool is the energy method – and the latter
is suitable only for fairly simple methods.

Consider the following differential equations:

The diffusion equation:
∂u

∂t
= ∇>a(x)∇u, min

x∈Ω
a(x) > 0,

The Liouville equation:
∂u

∂t
+ V (x) ·∇u = 0,

Convection–diffusion:
∂u

∂t
+ V (x) ·∇u = ε∆u, 0 < ε� 1,

The Fokker–Planck equation:
∂u

∂t
+

d∑
i=1

∂µi(x)u

∂xi
=

d∑
i=1

d∑
j=1

∂2Ri,j(x)u

∂xi∂xj

where the matrix R is positive semidefinite.
All these equations share several features. Firstly, they all feature in a long list of

practical applications and their numerical solution is more than a matter of purely in-
tellectual interest. Secondly, they all involve variable coefficients. Thirdly, the present
state of knowledge restricts their stability analysis to simple, low-order methods. In
this paper we demonstrate that they also share another feature: they all can be discre-
tised stably once first space derivatives are approximated by skew-symmetric matrices!

The aforementioned statement is trivial in the case of the diffusion equation. Thus,
given a grid {xm}N+1

m=0, let um(t) ≈ u(xm, t). Ordering grid points in any manner, we
denote the vector of approximate nodal values by u. Supposing that we approximate
∂w/∂x ≈ Dw: in one space dimension this leads to the semi-discretisation

u′ = DADu, (1.5)

where A is a diagonal matrix with the (positive!) diffusion coefficients along its
diagonal. Since A is positive definite, once D is skew-symmetric, it is trivial that DAD
is negative definite and the solution of (1.5) with any A-stable ODE method (Iserles
2008) produces a stable discretisation (1.2). Moreover, once the differentiation matrix
approximates the exact derivative to order p ≥ 1 and the semi-discretised equations
(1.5) are solved by an order-bp/2c ODE method, the outcome is a method of order
p. (The reason for the mismatch in the order of the differentiation matrix and the
ODE method is that N2(∆t) = O(1).) This argument can be easily extended to any
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number of space dimensions because a sum of negative-definite matrices is negative
definite.

We shift our gaze to equations involving the material derivative ∂/∂t+ V (x) ·∇,
e.g. the Liouville equation and the (linear) convection-diffusion equation.

Definition Let {AN} be an infinite family of matrices such that AN ∈ MN [C]. We
say that it is stable if there exists c > 0 such that lim supN→∞ ‖etAN ‖N ≤ 1 + ct for
sufficiently small t ≥ 0.

The above definition of stability, designed to fit into our narrative of PDE stability
in the sense of Lax, is of course norm dependent – here and throughout this paper,
unless otherwise stated, we use the `2 norm. We commence from the one-dimensional
case d = 1. Without loss of generality we may assume that Ω = [0, 1] and the grid is

0 = x
(N)
0 < x

(N)
1 < · · · < x

(N)
N < x

(N)
N+1 = 1. The following proof is a mild extension of

a result in (Iserles 2014).

Theorem 1 Let

1. The grid be dense in [0, 1] for N � 1: σN := maxm=0,...,N (xm+1 − xm) =
O
(
N−1

)
;

2. V : [0, 1]→ R be Lipschitz and VN ∈ MN [R] a diagonal matrix, Vm,m = V (xm),
m = 1, . . . , N ;

3. The differentiation matrix DN be skew-symmetric, banded (i.e., Dk,` = 0 for
|k − `| ≥ r + 1 for some r ≥ 1) and suppose that maxk,` |Dk,`| ≤ b?N , where
b? > 0 is independent of N .

Then the families of matrices {AN} = {VNDN} and {BN} = {DNVN} are stable.

Proof We suppress the subscript N in VN , DN , AN , BN , and we recall the
inequality

‖etA‖ ≤ etµ[A], t ≥ 0, (1.6)

where µ : MN [R] → R is the logarithmic norm: µ[A] = limε↓0 ε
−1(‖I + εA‖ − 1)

(Söderlind 2006). Since we are working in the `2 norm, it is well known that µ[A]
equals the rightmost eigenvalue (a.k.a. the spectral abscissa) of the symmetric matrix
C = 1

2 (A+A>).
Recalling that V is diagonal and D skew-symmetric and banded, letting A = VD

we have

Cm,k =

{
0, m = k or |m− k| ≥ r + 1,
1
2 (Vm,m − Vk,k)Dm,k, 1 ≤ |m− k| ≤ r.

Since the eigenvalues of a matrix are bounded by its infinity matrix norm we have

µ[VD] ≤ ‖C‖∞ = max
m=1,...,N

N∑
k=1

|Cm,k| = 1
2

∑
|m−k|≤r

|Vm,m − Vk,k||Dm,k|.
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Recall that Vm,m = V (x
(N)
m ), m = 1, . . . , N , that V is Lipschitz (i.e. |V (x)− V (y)| ≤

λ|x− y| for some λ ≥ 0) and that σN = O
(
N−1

)
. Therefore

µ[VD] ≤ 1
2

∑
|m−k|≤r

|V (x(N)
m )− V (x

(N)
k )||Dm,k| ≤

λb?N

2

∑
|m−k|≤r

|x(N)
m − x(N)

k |

≤ λb?NrσN .

Since σN = O
(
N−1

)
, it follows that there exists c1 ≥ 0 such that µ[VD] ≤ c1 and this,

by virtue of (1.6), proves stability for VD.
The proof for DV follows by an identical argument. 2

The condition of D being banded is not strictly necessary for the proof, it is enough
to assume that its coefficients decay sufficiently fast away from the diagonal. Yet, to
keep the focus of the proof on its essential ingredients, we leave this easy generalisation
to the reader. The requirement that the entries Dm,k are O(N) makes sense given
that we are approximating the first derivative in an N -dimensional space.

It is an immediate consequence from the definition of the logarithmic norm and
the triangle inequality that it is sub-additive,

µ[A1 + · · ·+Ad] ≤
d∑
`=1

µ[A`].

Therefore, once each ∂/∂x` is discretised by a skew-symmetric matrix, Theorem 1 im-
plies stability. Consequently, skew-symmetry of the differentiation matrix is sufficient
for the stability of finite-difference discretisation of the Liouville equation. Moreover,
as long as the Laplacian is discretised stably (e.g. with a skew-symmetric matrix!), it
is sufficient for the stability in the convection-diffusion case.

In the Fokker–Planck case the operator on the left,
∑d
i=1 ∂[µi(x)u]/∂xi, can be

discretised stably, in line with the theorem, with
∑d
i=1DiMiu, where Di, the dis-

cretisation of ∂/∂xi, is skew-symmetric and Mi, the discretisation of multiplication
by µi(x), is diagonal. Insofar as the right-hand side is concerned, let us assume for sim-
plicity that the diffusion tensor Ri,j is independent of (i, j) and x, Ri,j(x) ≡ ρ ≥ 0.
In that case the operator on the right-hand side is approximated by

ρ

d∑
i=1

d∑
j=1

DiDj = ρ

(
d∑
i=1

Di

)2

,

where Di is the differentiation matrix with respect to ∂/∂xi: once all the Dis are
skew-symmetric, the above expression is negative semi-definite and stability follows.

Remarkably, the same feature of the discretisation process, skew-symmetry of the
differentiation matrix, is sufficient for stability in a wide range of situations: the
examples above are far from exhaustive. Although the conditions of Theorem 1 are
‘just’ sufficient for stability and we cannot exclude a priori the possibility of non-skew-
symmetric differentiation matrices leading to stable schemes, this universality justifies
the focus of this paper on skew-symmetric differentiation matrices.
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Restricting henceforth our attention to univariate grids, the issue at hand is de-
ceptively simple: given a grid {x(N)}, find a skew-symmetric N × N differentiation
matrix D that approximates the first derivative to a given order p ≥ 1. Assuming zero
Dirichlet boundary conditions, order p is equivalent to the statement that

u′(xm) =

N∑
k=1

Dm,ku(xk), m = 1, . . . , N, (1.7)

for every pth-degree polynomial u that vanishes at the endpoints. In the case of
non-zero Dirichlet boundary conditions the relevant statement reads

u′(xm) = αmu(x0) +

N∑
k=1

Dm,ku(xk) + γmu(xN+1), m = 1, . . . , N, (1.8)

where again u is a polynomial, deg u ≤ p, while {αm} and {γm} are constants. The
coefficients Dm,k in (1.8) are the same as that in (1.7), and αm, γm are readily obtained
by letting u(x) = xN+1 − x and u(x) = x− x0, respectively.

Perhaps the most familiar differentiation matrix, the central difference scheme

D =



0 (N + 1)/2 0 · · · 0

−(N + 1)/2 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 0 (N + 1)/2
0 · · · 0 −(N + 1)/2 0


,

given on a uniform grid, xm = m/(N + 1), is of order p = 2 and skew-symmetric.
This example, though, is deceptive: it has been proven in (Iserles 2014) that this is
as good as it gets: the highest order of a skew-symmetric differentiation matrix on a
uniform grid is just two.1

An obvious remedy is to resort to a non-uniform grid. Mild perturbations of the
uniform grid have resulted in (Iserles 2014) in third and fourth-order skew-symmetric
differentiation matrices. In Section 2 we address this issue in considerably greater
generality and demonstrate that a skew-symmetric matrix of order p ≥ 2 can be
constructed on the grid {xm} if and only if 2p− 3 polynomial conditions of the form
Rk(x1, . . . , xN ) = 0, k = 1, . . . , 2p− 3, are satisfied by the grid points x1, . . . , xN .

The mere existence of an order-p skew-symmetric differentiation matrix on a given
grid is of interest, but we want more. Firstly, we want a banded skew-symmetric matrix
– not just so as to be in line with Theorem 1 but also because practical numerics are
considerably cheaper with banded matrices. Secondly, we wish for a constructive
algorithm that automatically produces a skew-symmetric matrix of given order once
the order conditions on x1, . . . , xN are satisfied. In Section 3 we address both problems
in unison. We seek there a pth-order skew-symmetric matrix with bandwidth 2p−1 (in

1Once we replace Dirichlet with periodic boundary conditions, the problem becomes trivial and
it is exceedingly easy to present explicitly skew-symmetric circulant matrices which approximate the
first derivative to any even order.
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the example above p = 2). A priori, our result that the conditions Rk(x1, . . . , xN ) = 0,
k = 1, . . . , 2p − 3 ensure the existence of a skew-symmetric pth-order differentiation
matrix need not imply that such a banded matrix is possible. Specifically, an explicit
construction of such matrix (hence fulfilling the second desideratum, a constructive
algorithm!) seems to require (p − 1)p/2 conditions. We prove that these conditions
are not independent and that they reduce to exactly the above 2p − 3 polynomial
identities Rk(x1, . . . , xN ) = 0, k = 1, 2, . . . , 2p− 3.

Sections 2 and 3 address two of the conditions on the differentiation matrix D
in Theorem 1: skew-symmetry and bandedness. In Section 4 we consider the re-
maining condition, size: is it true for the skew-symmetric matrices of Section 3 that
maxk,` |Dk,`| ≤ b?N? The answer is positive for tridiagonal matrices, otherwise rather
more tentative. Within the methodology underlying the proof of Theorem 1, quindiag-
onal differentiation matrices are ‘unstable’, or at least their logarithmic norm becomes
unbounded for N � 1. Computer experiments, however, show that everything de-
pends on the function V : the norm of the exponential is sometimes bounded (hence
the method stable), for other functions V it is unbounded and further research is
required.

In Section 5 we explore the conditions for the existence of grids consistent with
order-p conditions on skew-symmetric differentiation matrices. We derive a set of 2p−3

necessary conditions on a ‘grid function’ g, such that x
(N)
m is an O

(
N−2

)
perturbation

of g(m/(N +1)), m = 0, . . . , N +1 and prove that in the simplest possible case, p = 2,
these conditions are also sufficient. In the latter case we also present an efficient

algorithm for the computation of the x
(N)
m s.

This paper addresses an issue in PDE stability theory which, at this level of gener-
ality, has somehow escaped the attention of computational mathematicians in the last
half-century. Needless to say, it is but an initial foray into a large and important area
and our results, while solving some long-standing problems, pose many new questions.
These questions and further thoughts on the interplay of skew-symmetry and stability
are addressed in Section 6.

Skew-symmetry of a differentiation matrix is important not just in ensuring that a
numerical method is stable but also in geometric numerical integration (Hairer, Lubich
& Wanner 2006), specifically in numerical discretisation of differential equations which
respects their first integrals (Kitson, McLachlan & Robidoux 2003) or unitarity (Bader,
Iserles, Kropielnicka & Singh 2014). Note that in both these publications boundary
conditions are presumed to be periodic and this makes the design of skew-symmetric
differentiation matrices of an arbitrary order significantly easier. Indeed, the initial
motivation for the work of this paper and for (Iserles 2014) is an attempt to design
high-order unitarity-preserving methods for the semiclassical Schrödinger equation á
la (Bader et al. 2014) while imposing zero Dirichlet boundary conditions.

2 Necessary conditions on non-uniform grids

Without loss of generality we consider a grid 0 = x0 < x1 < · · · < xN < xN+1 = 1 on
the interval [0, 1], and assume zero Dirichlet boundary conditions. We recall that an
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N ×N matrix D is a pth-order differentiation matrix on this grid if

u′(xm) =

N∑
k=1

Dm,ku(xk), m = 1, . . . , N, (2.1)

for every pth-degree polynomial u that vanishes at the endpoints.

Theorem 2 (necessary condition) Consider a differentiation matrix D of order p
corresponding to a grid 0 = x0 < x1 < · · · < xN < xN+1 = 1. A necessary condition
for D to be skew-symmetric is that

N∑
k=1

f ′(xk) = 0 for f(x) = x2(1− x)2g(x) (2.2)

and for all polynomials g(x) of degree 2p− 4.

Proof We multiply (2.1) by u(xm) and sum up for m = 1, . . . , N : since D is
skew-symmetric, the outcome is

N∑
m=1

u′(xm)u(xm) =

N∑
m=1

N∑
k=1

u(xm)Dm,ku(xk) = 0 (2.3)

for an arbitrary polynomial u(x) of degree ≤ p which vanishes at the endpoints.
This proves the necessity of (2.2) for a square function f(x) = u2(x). For general
f(x) = x2(1 − x)2g(x) the statement follows from the fact that every polynomial
g(x) of degree 2p − 4 can be written as a linear combination of squares v2(x) with
deg v ≤ p− 2. This is a consequence of 2x = (x+ 1)2 − x2 − 12. 2

The polynomial g(x) of degree 2p−4 in (2.2) lives in the (2p−3)-dimensional linear
space spanned by xs−1, s = 1, 2, . . . , 2p − 3. The necessary condition of Theorem 2
can be written in this basis as

R1 = R2 = · · · = R2p−3 = 0, (2.4)

where

Rs =

N∑
k=1

xsk(1− xk)
[
(s+ 1)− (s+ 3)xk

]
, s ∈ N. (2.5)

For order 2 the conditions (2.4) reduce to
∑N
k=1 xk(1−xk)(1−2xk) = 0, and this is

satisfied, for example, by any symmetric grid (i.e., xN+1−m = 1−xm, m = 1, . . . , N).
Hence the stability of the simplest, second-order central-difference differentiation ma-
trix. For p = 3 we may let N = 2M , xm = ρm, x2M+1−m = 1 − xm = 1 − ρm,
m = 1, . . . ,M , then, by virtue of symmetry, R1 = 0 while R2 = R3 = 0 reduce to a
single condition. Here ρ = O

(
N−1

)
is a real zero of a certain cubic equation which

has been already derived in (Iserles 2014) by a different argument. We will return to
this example with greater detail in Section 4.

The fact that we need just R2 = 0 in the above example is not a matter of
serendipity.
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Theorem 3 Supposing that the grid is symmetric, xm + xN+1−m = 1 for m =
1, . . . , N , the order conditions (2.2) (or equivalently (2.4)) reduce to

R2 = R4 = · · · = R2p−4 = 0. (2.6)

Proof Reversing the order of summation, symmetry implies the condition (2.2)
of Theorem 2 for polynomials satisfying g(1 − x) = g(x) and, in particular, for poly-
nomials of the form (x− 1/2)2l. Considering the basis

{x2l−1; l = 1, . . . , p− 2} ∪ {(x− 1/2)2l; l = 0, . . . , p− 2}

for the linear space of polynomials of degree 2p − 4, it follows from Theorem 2 that
we need impose order conditions only for even s and (2.6) follows. 2

3 Sufficient conditions and banded matrices

In Theorem 2 we have established necessary order conditions for an existence of a
pth-order skew-symmetric differentiation matrix on a given grid. Three issues arise
and their analysis forms the body of this section. Firstly, are the conditions (2.2)
sufficient? Secondly, bearing in mind Theorem 1, can they be realised by a banded
matrix? Thirdly, assuming an affirmative answer to the first two questions, can we
devise a constructive algorithm to derive a skew-symmetric band differentiation matrix
of requisite order?

Theorem 4 (sufficient condition) Consider a differentiation matrix D of order p
corresponding to a grid 0 = x0 < x1 < · · · < xN < xN+1 = 1, and assume that
Dj,k +Dk,j = 0 for all 1 ≤ min{j, k} ≤ N − p+ 1. A sufficient condition for D to be
skew-symmetric is the condition (2.2) of Theorem 2.

Proof Let ũ be a polynomial of degree ≤ p − 2 and set u(x) = x(1 − x)ũ(x). We
then have

0 =

N∑
m=1

u(xm)u′(xm) =

N∑
m=1

N∑
k=1

u(xm)Dm,ku(xk)

=

N∑
m=N−p+2

N∑
k=N−p+2

u(xm)Dm,ku(xk). (3.1)

The first equality follows from (2.2) with f(x) = u2(x), the second from the definition
of order for a differentiation matrix, and the last because the first N − p+ 1 rows and
columns of D are consistent with skew-symmetry.

Choose any s ∈ {N − p+ 2, . . . , N} and set

ũ(x) = `s(x) =

N∏
j=N−p+2

j 6=s

x− xj
xs − xj

,
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the cardinal polynomial of Lagrangian interpolation at xN−p+2, . . . , xN such that
ũ(xs) = 1. Note that deg ũ = p− 2. Then

N∑
m=N−p+2

N∑
k=N−p+2

u(xm)Dm,ku(xk) = x2
s(1− xs)2Ds,s

and we deduce from (3.1) that Dk,k = 0 for k = N − p + 2, . . . , N . Next we choose
ũ(x) = `q(x) + `s(x) for distinct q and s in {N − p+ 2, . . . , N}: again deg ũ = p− 2.
It follows at once that

N∑
m=N−p+2

N∑
k=N−p+2

u(xm)Dm,ku(xk) = xq(1− xq)xs(1− xs)(Dq,s +Ds,q)

and we deduce from (3.1) that Dq,s +Ds,q = 0 for all q, s in {N − p+ 2, . . . , N}. This
demonstrates that the bottom (p− 2)× (p− 2) minor of D is skew symmetric. Since
the remainder of D is consistent with skew-symmetry, the statement follows. 2

Algorithm We present an algorithmic description for the construction of pth-order
skew-symmetric differentiation matrices:

1. We commence the construction from the first row and set D1,1 = 0. We have
N−1 remaining parameters D1,k, k = 2, . . . , N , and p−1 order conditions (2.1).
Choose arbitrarily the N − p entries D1,p+1, . . . ,D1,N and treat the remaining
ones, D1,2, . . . ,D1,p, as unknowns. The outcome is the Vandermonde linear
algebraic system

p∑
k=2

D1,kx
s
k(1−xk) = sxs−1

1 −(s+1)xs1−
N∑

k=p+1

D1,kx
s
k(1−xk), s = 1, . . . , p−1.

It is nonsingular because the {xk} are distinct, hence it determines the rest of
the first row of D uniquely. We let Dk,1 = −D1,k, k = 2, . . . , N , so that the
leading row and column are consistent with skew-symmetry.

2. We proceed next to the second row. D2,1 is already known, we let D2,2 = 0 and
choose arbitrarily the N − 2 entries D2,p+2, . . . ,D2,N . This leaves us with p− 1
entries which are uniquely determined by solving a non-singular Vandermonde
system and which are subsequently extended to the second column of D by
skew-symmetry.

3. In a similar manner, we sweep the first N − p + 1 rows of D in progression.
For every row s we already know Ds,i for i ≤ s − 1, let Ds,s = 0 and choose
arbitrarily Ds,p+s, . . . ,Ds,N . This leaves us with a nonsingular Vandermonde
system for the remaining p− 1 elements of Ds,k. We then define the sth column
consistently with skew-symmetry.

4. We determine the remaining (p − 1)2 entries Dj,k, j, k = N − p + 2, . . . , N
by applying the order conditions (2.1): we have exactly the right number of
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equations and, in each row, a nonsingular Vandermonde system. Note that
these entries range both to the right and to the left of the main diagonal. By
virtue of Theorem 4, we are assured that the outcome, a pth-order differentiation
matrix D, is skew symmetric.

Note that instead of prescribing arbitrarily Ds,p+s, . . . ,Ds,N in the sth row, one can
prescribe any N − p− s+ 1 entries of the sth row lying right of the diagonal element.
This construction principle therefore gives all skew-symmetric order-p differentiation
matrices.

Corollary 1 (banded matrices) For every p ≥ 2 it is possible, subject to the condi-
tions (2.2), to construct a skew-symmetric order-p differentiation matrix of bandwidth
2p− 1, i.e. such that Dj,k = 0 for |j − k| ≥ p.

Proof If in the above algorithm those entries of D which can be arbitrarily chosen,
are all put to zero, we obtain a banded matrix of bandwidth 2p− 1. 2

It is possible to construct explicitly banded matrices for orders 2 and 3. To this
end, let

Rs,m =

m∑
k=1

xsk(1− xk)
[
(s+ 1)− (s+ 3)xk

]
, s ∈ N, m = 1, . . . , N,

noting that, according to (2.5), Rs = Rs,N . The tridiagonal skew-symmetric matrix
of order 2 has the form

Dm,m+1 =
R1,m

2xm(1− xm)xm+1(1− xm+1)
, Dm+1,m = −Dm,m+1 (3.2)

for m = 1, . . . , N − 1, with the remaining entries nil. This, of course, must be accom-
panied by the condition R1 = 0.

Likewise, stipulating R1 = R2 = R3 = 0, the quindiagonal skew-symmetric matrix
of order 3 has the form

Dm,m+1 =
R3,m − 2xm+1R2,m + xm+1xm+2R1,m

xm(1− xm)xm+1(1− xm+1)(xm+1 − xm)(xm+2 − xm+1)
, (3.3)

Dm,m+2 =
R3,m − 2xmR2,m + xm−1xmR1,m

xm(1− xm)xm+1(1− xm+1)(xm − xm−1)(xm+1 − xm)

for m = 1, . . . , N − 1 and m = 1, . . . , N − 2 respectively, with the rest of the upper
triangle filled with zeros and the lower triangle completed by skew-symmetry.

4 Size (sometimes) matters

To fit into the conditions of Theorem 1, a matrix D needs be skew-symmetric, banded
and sufficiently small, consistently with the inequality

|Dk,`| = |D[N ]
k,` | ≤ b

?N, k, ` = 1, . . . , N, (4.1)

11



where D[N ] is N ×N and we need to consider all N � 1 over grids consistent with the
first condition of that theorem. Theorem 1 is relevant to equations like convection–
diffusion and Fokker–Planck, while size does not matter to stability in the solution
of the diffusion equation. At turns out in the case of banded matrices from the last
section, we can be assured of (4.1) only for r = 1 (tridiagonal differentiation matrices).
Already for r = 2 the elements of D may increase too fast. Therefore we can be certain
of stability, within the context of Theorem 1, only for order-2 tridiagonal differentiation
matrices. However, further discussion makes it clear that the general picture is more
complicated and stability of banded differentiation matrices of orders ≥ 3 requires
further work.

To establish a connection between different grids, we assume the presence of a

strictly-monotone function g ∈ C[0, 1] such that g(0) = 0, g(1) = 1 and x
(N)
m = g(ξ

(N)
m )

with ξ
(N)
m = m/(N + 1), m = 0, . . . , N + 1. Note that for a differentiable g condition 1

of Theorem 1 is satisfied with σN ≡ ‖g′‖∞/N .

Second-order tridiagonal matrices. We commence from tridiagonal matrices of
order 2 with entries given by (3.2): it follows at once from the definition of the Riemann
integral that

R1,m ≈ 2(N + 1)

∫ m/(N+1)

0

g(τ)[1− g(τ)][1− 2g(τ)] dτ

and (3.2) implies

Dm,m+1 ≈ (N + 1)

∫ ξ(N)
m

0
g(τ)[1− g(τ)][1− 2g(τ)] dτ

g(ξ
(N)
m )g(ξ

(N)
m+1)

[
1− g(ξ

(N)
m )

] [
1− g(ξ

(N)
m+1)

] .
Suppose that ξ

(N)
n = m/(N + 1) → ξ ∈ [0, 1

2 ] as N → ∞. (If ξ ∈ ( 1
2 , 1] then all we

need is to swap the role of m and N + 1−m.) Then

Dm,m+1 ≈ (N + 1)

∫ ξ
0
g(τ)[1− g(τ)][1− 2g(τ)] dτ

g2(ξ)[1− g(ξ)]2
= h(ξ)(N + 1).

If g(ξ) = g1ξ + O
(
ξ2
)
, g1 > 0, then h(ξ) = 1/(2g1) + O(ξ) is bounded at the origin.

Since h is clearly bounded in (0, 1
2 ), it follows that |Dm,m+1| can be bounded by a

multiple of N , uniformly in m and N , as required.

Third-order quindiagonal matrices. Similarly, we obtain (omitting the upper

index N in x
(N)
m and ξ

(N)
n )

R3,m − 2xm+1R2,m + xm+1xm+2R1,m

≈ (N+1)

[∫ ξm

0

g3(τ)[1−g(τ)][4−6g(τ)] dτ − 2g(ξm)

∫ ξm

0

g2(τ)[1−g(τ)][3−5g(τ)] dτ

+ g2(ξm)

∫ ξm

0

g(τ)[1− g(τ)][2− 4g(τ)] dτ

]

12



while

xm(1−xm)xm+1(1−xm+1)(xm+1−xm)(xm+2−xm+1) ≈ g2(ξm)[1− g(ξm)]2g′
2
(ξm)

(N + 1)2
.

Therefore, by (3.3),

Dm,m+1 ≈
(N + 1)3

g2(ξm)[1− g(ξm)]2g′2(ξm)

[∫ ξm

0

g3(τ)[1− g(τ)][4− 6g(τ)] dτ

− 2g(ξm)

∫ ξm

0

g2(τ)[1− g(τ)][3− 5g(τ)] dτ

+ g2(ξm)

∫ ξm

0

g(τ)[1− g(τ)][2− 4g(τ)] dτ

]
.

Hence, since the three integrals cannot vanish for all ξm, the size of |Dm,m+1| increases
like O

(
N3
)
, much too fast!

The above calculation is not an artefact of rough estimates: this unwelcome growth
of |Dm,m+1| (and of |Dm,m+2|) occurs in specific examples. Let us commence from the
uniform grid xm = m/(N + 1), i.e. from g(x) = x: although it obeys (2.2) with just
p = 2, this is a convenient point of departure because everything can be computed
explicitly,

Dm,m+1 =
(N + 1)(6N2m− 12Nm2 + 6m3 + 6N2 − 8Nm+m2 + 2N − 5m− 2)

6(N −m)(N −m+ 1)
,

Dm,m+2 = − (N + 1)(6N2m− 12Nm2 + 6m3 + 8Nm− 7m2 − 2N + 3m− 2)

6(N −m)(N −m+ 1)
.

In particular, DN−1,N ≈ − 1
12N

3, DN−2,N ≈ − 1
36N

3.
As we have just mentioned, the uniform grid g(x) = x is compatible with order 2,

as generically is the symmetric grid generated by g(x) = ax+ 3(1− a)x2 − 2(1− a)x3

for any a ∈ (0, 3] – it is trivial to verify that g obeys all the necessary conditions. Of
course, a = 1 corresponds to a uniform grid. However, simple calculation confirms
that

a = aN ∼ 1− 35

3

1

N2
+

70

3

1

N3
+

1820

27

1

N4
− 9800

27

1

N5
− 1600235

2673

1

N6
+

6600790

891

1

N7

− 393855490

352741

1

N8
+O

(
N−9

)
, N � 1,

results in R1 = R2 = R3 = 0, hence order-3 conditions. Although this renders g de-
pendent on N , this does not change the essence of our analysis or its main conclusions.
Originating in an O

(
N−2

)
perturbation of the uniform grid, the order of increase of

|Dj,k| is somewhat improved to O
(
N2
)
: this can be seen in a straightforward Matlab

computation and confirmed by an exact calculation for aN = 1 − 35
3 N

−2 in Maple.
Inasmuch as O

(
N2
)

is better than O
(
N3
)
, it falls short of the linear growth required

in Theorem 1.
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Figure 4.1: The logarithmic norm µ[VD] as a function of N for three different functions
V . On the left the results for a second-order tridiagonal differentiation matrix and on
the right for a third-order quindiagonal one.

In Fig. 4.1 we display the logarithmic norm µ[VD] for values of N between 10 and
200 and three functions V : x2(1−x) (crosses), ex (pentagons) and cosπx (ovals). All
the results were computed with the above symmetric, third-order grid. Recall that
the entire point of the proof of Theorem 1 was in demonstrating that, for N � 1,
µ[VD] can be uniformly bounded. The results on the left correspond to tridiagonal
matrices with p = 2, and we note that, indeed, logarithmic norms remain bounded –
as a matter of fact, they rapidly tend to a limit. On the other hand, once we consider
quindiagonal matrices with p = 3 the right, logarithmic norms grow linearly with N .

It is legitimate to query, however, how tight is (1.6), in other words how well
does the exponential of the logarithmic norm bound from above the norm of a matrix
exponential. The picture here is more mixed (and much more interesting!).

Thus, in Fig. 4.2 we have plotted the true norm of eVD under the same ground rules
as in Fig. 4.1. The left plot, corresponding to a tridiagonal matrix, is unsurprising:
the norms are uniformly bounded, tend to limits and everything is bounded fairly
tightly by the logarithmic norm estimate (1.6). The surprise is on the right-hand
side. For V (x) = cosπx the norm increases at an exponential speed (for N = 10
it equals 9.44 × 105, for N = 100 it is 8.14 × 1017 and for N = 200 the norm is
2.21× 1033) and has not been displayed in the figure. For V (x) = x2(1− x) the norm
increases, albeit slowly, and it is premature even to guess its asymptotic behaviour.
For V (x) = ex, however, the norm evidently tends to a bounded, fairly small limit,
in the same ballpark as in the tridiagonal case. In other words, different functions V

14



Figure 4.2: ‖ exp(VD)‖ as a function of N for three different functions V . On the left
the results for a second-order tridiagonal differentiation matrix and on the right for a
third-order quindiagonal one.

result in different asymptotic behaviour of ‖etVD‖, the logarithmic norm is a crude
instrument and this entire issue calls for much more substantive investigation.

However, in place of the above grid we might use the construction from (Iserles
2014), with a discontinuous, N -dependent function g with a single O

(
N−1

)
jump at

1
2 . Specifically (and correcting a misprint in (Iserles 2014)) we let N = 2M , set

xm = ρm, xN+1−m = 1− ρm, m = 0, . . . ,M,

and

Dm,m+1 =
1

6

[1− (2m+ 1)ρ][3− (2m+ 1)ρ]

ρ(1−mρ)[1− (m+ 1)ρ]
, m = 1, . . . ,M − 2,

DM−1,M =
1

12ρ
· 6− (26M − 10)ρ+ (35M − 31)Mρ2 − (14M2 − 19M + 3)Mρ3

[(1− (M − 1)ρ](1−Mρ)(1− 2Mρ)
,

DM,M+1 =
M + 1

6Mρ
· 3− 3(4M+1)ρ+ (15M2+7M+2)ρ2 − (6M2+5M+1)Mρ3

(1−Mρ)2(1− 2Mρ)
,

Dm,m+2 =
m+ 1

12
· 2− (m+ 1)ρ

(1−mρ)[1− (m+ 2)ρ]
, m = 1, . . . ,M − 2,

DM−1,M+1 =
1

12

(M + 1)ρ(2−Mρ)

[1− (M − 1)ρ](1−Mρ)(1− 2Mρ)
,
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with the remaining coefficients reflected by symmetry,

D2M−m,2M−m+1 = Dm,m+1, m = 1, . . . ,M,

D2M−m−1,2M−m+1 = Dm,m+2, m = 1, . . . ,M − 1.

The choice of ρ consistent with order 3 is

ρ ≈ 1

2M
− 1

4M2
− 5

24M3
+O

(
M−4

)
,

the unique real zero of the cubic

(2M + 1)(3M2 + 3M − 1)ρ3 − 15M(M + 1)ρ2 + 6(2M + 1)ρ− 3.

Therefore

Dm,m+1 −Dm+1,m+2 =
1

3

1− ρ2

(1−mρ)[1− (m+ 1)ρ][1− (m+ 2)ρ]
> 0,

Dm+1,m+3 −Dm,m+2 =
1

12

(1− ρ2)[2− (2m+ 3)ρ]

(1−mρ)[1− (m+ 1)ρ][1− (m+ 2)ρ][1− (m+ 3)ρ]
> 0

for m = 1, . . . ,M − 3. It follows at once that all the Dm,m+is, i = 1, 2, are positive,
the Dm,m+1s decrease monotonically and the Dm,m+2 increase monotonically in the
first half of the range. Note that

D1,2 ≈
N

2
, DM−2,M−1 ≈

16

3
, DM−1,M ≈

35

12
, DM,M+1 ≈

11

6

and

D1,3 =
1

3

1

1− 3ρ
, DM−2,M ≈

N

4
− 7

4
, DM−1,M+1 ≈

N

4
− 13

2
.

We deduce that the individual terms of the matrix are at most O(N) and all the
conditions of Theorem 1 are satisfied. As a matter of record, the logarithmic norm
µ[VD] and the exponential ‖ exp(VD)‖ are virtually indistinguishable from the left-
hand side of Figs 4.1 and 4.2.

5 Grids and order conditions

It bears spelling out again the order-p conditions,

R1 = R2 = · · · = R2p−3 = 0 (5.1)

where

Rs =

N∑
k=1

ϕ′s(xk) with ϕs(x) = xs+1(1− x)2. (5.2)

This is a system of 2p − 3 polynomial, separable equations in N variables: Since
our interest is in stability for all sufficiently large N , we may assume N � p. Each
ϕs(x) is strictly convex in (0, 1), vanishes at the endpoints and ϕ′s(x

?) = 0 for x? =
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(s + 1)/(s + 3). In other words, ϕ′s(xk) > 0 for xk < x? and ϕ′s(xk) < 0 for xk > x?

– the condition (5.1) for each s means that the xks need be distributed so that the
increase of ϕs in (0, x?) is somehow balanced by its decrease in (x?, 1).

Our present concern is with the setting of the last section: We are given a strictly
monotonically increasing, sufficiently smooth function g that maps [0, 1] to itself and
let xm = g(m/(N +1)), m = 0, . . . , N . In general, we can harbour little hope that the
order conditions (5.1) hold since, in practical situation, the nature of the grid function
g is determined by considerations like the variation of V , variation of the solution or
presence of boundary and internal layers. Thus, we wish to explore the possibility
of the existence of a perturbed grid {x̃m}N+1

m=0 such that R̃s = 0, s = 1, . . . , 2p − 3,
where the xms are replaced by x̃ms in R̃s, and such that x̃m = xm + O(N−α) for
m = 1, . . . , N and some α ≥ 1.

Lemma 5 Consider a grid {xm}N+1
m=0 given by xm = g(m/(N + 1)), and let

Is[g] =

∫ 1

0

gs(τ)[1− g(τ)][(s+ 1)− (s+ 3)g(τ)] dτ, s ∈ N. (5.3)

A necessary condition for the existence of a perturbed grid x̃m = xm +O(N−α) with
α ≥ 1 to satisfy the order-p conditions is

I1[g] = · · · = I2p−3[g] = 0. (5.4)

Proof Using the Euler–Maclaurin formula

N∑
k=0

f(k) =

∫ N

0

f(τ) dτ + 1
2 [f(0) + f(N)]− 1

12 [f ′(0)− f ′(N)] + · · ·

(Abramowitz & Stegun 1964, p. 806), where f ∈ C2[0, N ], we have

Rs =

N∑
m=0

gs( m
N+1 )

[
1− g( m

N+1 )
] [

(s+ 1)− (s+ 3)g( m
N+1 )

]
= (N + 1)Is[g]− 1

12

1

N + 1
[g′(1)Js[g](1)− g′(0)Js[g](0)] +O

(
N−2

)
,

where

J [g](x) := s(s+ 1)gs−1(x)− 2(s+ 1)(s+ 2)gs(x) + (s+ 2)(s+ 3)gs+1(x)

– the absence of the O(1) term is due to g(0) = 0, g(1) = 1. Suppose now that
x̃m = xm + cm/N

α where the cms are all O(1) in N – we can add higher order terms
except that this renders the proof messier, yet conceptually identical. Therefore

R̃s =

N∑
m=1

[
g( m
N+1 )+

cm
Nα

]s[
1−g( m

N+1 )− cm
Nα

][
(s+1)− (s+3)g( m

N+1 )− (s+3)
cm
Nα

]
= Rs +

N∑
m=1

{ cm
Nα

Js[g]( m
N+1 ) +O

(
N−2α

)}
= (N + 1)Is[g] +O

(
N−min{1,α−1}

)
.
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In other words, and regardless of the choice of the perturbation {cm}, we cannot force
R̃s = 0 in the case Is[g] 6= 0. 2

How restrictive is the condition Is[g] = 0? It is obeyed for every s ∈ N for

g(x) = x, the uniform grid, because Is[x] =
∫ 1

0
d

dxx
s+1(1 − x)2 dx = 0. Moreover,

trivially, I1[g] = 0 whenever g is odd with respect to x = 1
2 , the case corresponding to

a symmetric grid.

Lemma 6 The identity (5.4) holds if and only if the inverse function h = g−1 is
orthogonal to P̃2, P̃3, . . . , P̃2p−2, where P̃n is the nth degree Legendre polynomial shifted

to the interval [0, 1], P̃n(t) = Pn(2t− 1).

Proof Changing the variable η = g(τ), we have

Is[g] =

∫ 1

0

ηs(1− η)[(s+ 1)− (s+ 3)η]h′(η) dη

and integration by parts confirms that

Is[g] = 0 ⇔
∫ 1

0

φs(η)h(η) dη = 0, (5.5)

where

φs(η) = s(s+ 1)ηs−1 − 2(s+ 1)(s+ 2)ηs + (s+ 2)(s+ 3)ηs+1, s ∈ N.

Each φs is a polynomial of degree s + 1, hence it is spanned by P̃0, P̃1, . . . , P̃s+1.
Moreover, it can be trivially checked that∫ 1

0

φs(η) dη =

∫ 1

0

ηφs(η) dη = 0,

hence φs is orthogonal to P̃0 and P̃1. Consequently, the linear space spanned by
{φ1, . . . , φ2p−3} is the same as that spanned by {P̃2, . . . , P̃2p−2}. This implies that,
by (5.5), the identity (5.4) is equivalent to the property that h is orthogonal to
P̃2, . . . , P̃2p−2. 2

We have already shown that the uniform grid g(x) = x yields Is[x] = 0 for all
s ∈ N. Interestingly, it follows from the method of proof of Lemma 6 that it is the
only smooth grid function with this feature. Specifically, suppose that Is[g] = 0 for
all s ∈ N. Then h must be spanned by just P̃0 and P̃1 and the only linear function
consistent with h(0) = 1 and h(1) = 1 is h(x) = x, hence g(x) = x.

Lemma 5 presents a necessary condition, Is[g] = 0, s = 1, . . . , 2p − 3, for the
existence of a perturbed grid. Is it sufficient? We cannot answer this question in its
full generality and restrict our discussion to p = 2.

Theorem 7 Let I1[g] = 0 and xm = g(m/(N + 1)), m = 1, . . . , N . Then there exists
a grid 0 < x̃1 < x̃2 < · · · < x̃N < 1 such that R̃1 = 0 and x̃m = xm +O

(
N−2

)
.
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Proof We present an algorithm that constructs the grid {x̃m}. Recall from the
proof of Lemma 5 that I1[g] = 0 implies that R1 = O

(
N−1

)
. Let

F (x) =

∫ x

0

g(ξ)[1− 6g(ξ) + 6g2(ξ)] dξ, ξ ∈ [0, 1].

Noting that F 6≡ 0, choose any x? ∈ (0, 1) such that F (x?) 6= 0 and set K = b(N +
1)x?c. We define

x̃m =

{
(1− α)xm, m = 1, . . . ,K,
xm, m = K + 1, . . . , N,

therefore

R̃1 = R1 − 2α

K∑
m=1

xm(1− 6xm + 6x2
m)− 6α2

K∑
m=1

x2
m(1− xm)− 4α3

K∑
m=1

x3
m.

Any solution of this cubic renders R̃1 equal to zero. Using Euler–Maclaurin,

R̃1 = R1 − 2α[KF (x?) +O(1)]− 6α2

[
K

∫ x?

0

g2(ξ)[1− g(ξ)] dξ +O(1)

]

− 4α3

[
K

∫ x?

0

g3(ξ) dξ +O(1)

]

and, bearing in mind that R1 = O
(
N−1

)
, K is proportional to N , and F (x?) 6= 0, we

deduce that the cubic equation has a solution

α =
R1

2KF (x?)
+O

(
N−3

)
= O

(
N−2

)
. (5.6)

The theorem follows because

x̃m − xm =

{
−αxm = O

(
N−2

)
, m = 1, . . . ,K,

0, m = K + 1, . . . , N.

2

The proof of the theorem reads like a constructive means to compute the grid in
question but, to make it into a practical algorithm, we need to specify the optimal
choice of x?. Clearly, the idea should be to maximise the size of the denominator in
(5.6), to render |α| as small as possible. The function g being strictly monotone and
g′(0) > 0, it follows at once that F ′ vanishes as the origin (where F ′′(0) > 0) and

at two additional points in (0, 1), specifically at h( 1
2 ±

√
3

6 ), where h is the inverse
function of g: the first a maximum and the second a minimum. Ideally, we should
choose one of these points, where |F | is larger.

Actually, we can do even better: the entire construction is equally valid once we
swap the endpoints, let x? ∈ (0, 1) be such that

F (x?) =

∫ 1

x?

[1− g(ξ)][1− 6g(ξ) + 6g2(ξ)] dξ 6= 0,
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let K = d(N + 1)x?e,

x̃m =

{
xm, m = 1, . . . ,K − 1,
(1− α)xm + α, m = K, . . . , N

and seek a zero of

R̃1 = R1 − 2α

N∑
m=K

(1− xm)(1− 6xm + x2
m)− 6α2

N∑
m=K

(1− xm)2(1− 2xm)

− 6α3
N∑

m=K

(1− xm)3.

Again, F has two critical points in (0, 1) – at exactly the same x?s as before! Hence, in
principle, we can seek to minimise α out of a set of four possibilities. Note, incidentally,
that an optimal α might well be negative and that, in general, the cubic seems to have
three real solutions, two of which (needless to say) are not O

(
N−2

)
.

Figure 5.1: The functions g based upon h̃(η) = η4 (on the left) and h̃(η) = η6.

To flesh out numbers, we start from a strictly monotone function h̃ ∈ C2[0, 1],
h̃(0) = 0, h̃(1) = 1, and, in the spirit of the proof of Lemma 6, orthogonalise it with
respect to P̃2,

h(η) = h̃(η)−[P̃2(η)−1]

∫ 1

0
h̃(κ)P̃2(κ) dκ∫ 1

0
P̃2

2(κ) dκ
= h̃(η)+30η(1−η)

∫ 1

0

h̃(κ)(1−6κ+6κ2) dκ.

Of course, there is absolutely no guarantee that this h is monotone and this need be
checked on a case-by-case basis. Moreover (and consistently with our former remark),
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unless h̃ contains an even, non-constant component in its shifted Legendre expansion,
the resulting h is symmetric. For example, letting h̃(η) = η3 yields

h(η) = 3
2η −

3
2η

2 + η3 = 1
2 P̃0(η) + 9

20 P̃1(η) + 1
20 P̃3(η)

– a monotone function with h(η) + h(1− η) ≡ 1, hence already associated with order
p ≥ 2. Moreover, h̃(η) = η4 becomes

h(η) = 12
7 η −

12
7 η

2 + η4 = 17
35 P̃0(η) + 2

5 P̃1(η) + 1
10 P̃3(η) + 1

70 P̃4(η),

which is monotone and fulfils all our conditions. (So does, say, h̃(η) = η6, resulting in
h(η) = 25

14η −
25
14η

2 + η6, but not h̃(η) = η8, which produces a non-monotone h.) All
that remains now is to invert h and the outcome is a non-symmetric function g such
that I1[g] = 0. Although, by no stretch of imagination, this is a viable computational
approach, at least it results in an existence proof of such a function g. Fig. 5.1 displays
two such functions g.

To present a more detailed example, we commence from h̃(η) = ηe3(η−1), hence

h(η) = ηe−3(e3η − 30η + 30),

a strictly monotone function. Both h and its inverse function g are displayed in
Fig. 5.2.

Figure 5.2: The functions h and g ‘seeded’ by h̃(η) = ηe(3η−1).

The two candidates for x? are

x?1 = h( 1
2 −

√
6

3 ) ≈ 0.268768817, x?2 = h( 1
2 +

√
6

3 ) ≈ 0.667310687.

For each x?j we consider two options: summation on the left, denoted by Lj , and
summation on the right, denoted by Rj . For N = 200 we have
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Option α ‖x̃− x‖∞
L1 −6.22333× 10−5 1.29× 10−5

R1 −9.78111× 10−6 7.71× 10−6

L2 +9.96161× 10−6 7.80× 10−6

R2 +5.07442× 10−5 1.08× 10−5

The differences, at least for this example, are fairly minor – indeed, taking the not-
very-random x? = 1

2 and the ‘rightwise option’ results in ‖x̃ − x‖∞ = 3.67 × 10−5,
which is not significantly larger. Thus, for all intents and purposes, the simplest option
might well be to choose x? at random, but the veracity of this statement would require
further numerical experimentation.

The method of proof (and the algorithm) of Theorem 7 does not extend to p = 3.
It might be seductive to take a symmetric grid g (hence, automatically, I1[g] = 0)
such that I3[g] = 0 and repeat the same ‘shift to one side’ as in the proof to render
R3 = 0. This is certainly possible, except that the outcome is no longer a symmetric
grid, hence for order p = 3 we require also R2 = 0 and there is absolutely no reason
why this should be the case – indeed, the procedure is likely to make R1 nonzero.

6 Conclusions and pointers for future work

We have commenced in (Iserles 2014) the investigation of stability in the presence of
variable coefficients. The work therein has been restricted to the convection-diffusion
equation and symmetric grids. In the current paper we have ventured far beyond this
narrow focus. Our current framework encompasses a much wider range of important
linear partial differential equations of parabolic, hyperbolic and mixed type and, within
the setting of finite-difference methods in one space dimension, it applies to all grids.

We have demonstrated in Theorem 1 that skew-symmetry, occasionally with ad-
ditional conditions, implies stability, and this has motivated a detailed study of the
relationship between order and grid for skew-symmetric differentiation matrices. The
centrepiece of this investigation was the derivation of the order conditions (2.2). We
have also proved that the very same order conditions suffice to ensure the existence
of an pth-order method with the bandwidth 2p− 1, p ≥ 2, except that the coefficients
of such matrices might exhibit super-linear growth, thereby defying one of the side
conditions of Theorem 1. Finally, we have discussed necessary and sufficient condi-
tions for the existence of (possibly perturbed) grids consistent with skew-symmetric
differentiation matrices of order p ≥ 2.

In the remainder of this section we address a range of open problems following
upon our work.

6.1 Order conditions on the grid

Open Problem 1 Given p ≥ 3 and a grid {xold
m }Nm=0 in the interval [0, 1], does

there exist another grid, {xnew
m }Nm=0, sufficiently near to the old grid (e.g., such that

xnew
m = xold

m +O
(
N−2

)
, m = 1, . . . , N) which obeys the order conditions (5.1)?

We already know from Theorem 7 the answer for p = 2 and, by virtue of Lemma 5,
know that the necessary condition for all p ≥ 2 is Is[g] = 0, s = 1, . . . , 2p − 3. An
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important aspect of Open Problem 1 is how well can we approximate any given grid
using grid functions from the manifold

{g ∈ C2 : g(0) = 0, g(1) = 1, g′(x) > 0 for x ∈ [0, 1], I1[g] = · · · = I2p−3[g]}.

As a matter of fact, it is entirely possible that the answer to Open Problem 1
is superfluous. Suppose that we are given a grid function g such that Is[g] = 0,
s = 1, . . . , 2p−3, and we generate on the grid xm = g(m/(N+1)) (e.g. by generalising
the approach of Section 3) an order-p differentiation matrix D. Such a matrix need
no longer be skew-symmetric but, because Rs = O

(
N−1

)
, perhaps the very small

departure from skew-symmetry might be forgivable in the context of Theorem 1 or in
problems like the diffusion equation.

Open Problem 2 Given a grid function g such that Is[g] = 0, s = 1, . . . , 2p−3, and
letting xm = g(m/(N + 1)), m = 0, . . . , N , does there exist a differentiation matrix D
of order p such that D+D> = O

(
N−1

)
? Is it stable, e.g. in the sense of Theorem 1?

The rationale underlying these two open problems is that, in general, the dis-
tribution of points on a grid may depend on a number of extraneous factors, e.g.
the diffusion coefficient a in the diffusion equation, the potential V in the Liouville
equation or the presence of boundary and internal layers in the convection-diffusion
equation. In other words, we cannot choose the grid just for the convenience of de-
signing a skew-symmetric differentiation matrix of requisite order. However, we may
perturb an existing grid a little bit without distorting its essential shape, so as to obey
the order conditions (5.1).

Of course, sheer existence of a grid consistent with the open problem falls short of
the requirements of numerical mathematics: we need to compute it. Hence

Open Problem 3 Provided that a grid sought in Open Problem 1 exists, compute it
rapidly, i.e. at a computational cost significantly smaller than the cost of time-stepping
the underlying PDE algorithm.

We have described an easy-to-implement and cheap algorithm for p = 2 in Sec-
tion 5, but the case p ≥ 3 is open.

6.2 Size of the exponential

How large is the matrix exponential? This question admits a multitude of answers.
Some, e.g. (Benzi & Razouk 2007/08, Iserles 2000), are concerned with the size of
individual coefficients, hence are irrelevant to our narrative. Our concern is with
uniform bounds of ‖etAN ‖N in the Euclidean norm for an infinite family of N × N
matrices, N →∞. This subject has already received a great deal of attention and is
replete with beautiful and insightful results: from the Kreiss Matrix Theorem, namely
that ‖etAN ‖N ≤ c if and only if ‖(λIN − AN )−1‖N ≤ c1/(|λ| − 1) for all λ ∈ C,
|λ| > 1, where IN is the N × N identity (Kreiss 1962, Strikwerda & Wade 1997) to
the theory of ε-pseudospectra (Reddy & Trefethen 1992, Trefethen & Embree 2005),
to estimates using the logarithmic norm á la (1.6). Yet, all said and done, it is clear
that all these upper bounds, useful as they might be, are often much too conservative.
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Although this excludes many bad and unsuitable methods (and it is always better to
err on the side of caution), it is bound to exclude some good methods as well – we
refer here to the discussion in Section 4 for an example. Approximating the operator
V (x) ·∂/∂x by the matrix product VD to given order p, it is entirely possible that the
first third-order, quindiagonal method from Section 3, say, might be stable for one V ,
unstable for another. In other words, the potential V ∈ C1[0, 1] might influence the
choice of the grid not just according to a rough rule of a thumb of making the grid
finer when |V ′| is larger, e.g.

(xm+1 − xm)|V ′( 1
2 (xm + xm+1))| ≈ const,

but also so as to produce a bounded exponential. This, of course, is by this stage no
more than pure speculation.

Open Problem 4 Explore further the norm of the matrix exponential, in particular
in cases when current upper bounds are clearly excessive.

Of course, it might be entirely possible to derive ‘good’ (i.e. growing not faster that
O(N)) skew-symmetric differentiation matrices like the second third-order method
from Section 4 for p ≥ 4: such methods can be applied stably, consistently with
Theorem 1, with arbitrary potentials.

6.3 Skew-symmetry and time-stepping algorithms

The central assertion of this paper is that a single feature of a differentiation matrix, its
skew-symmetry, is fundamental to its stability in a wide range of different linear PDEs
of evolution with variable coefficients. The list is clearly non-exhaustive and it is of
interest to investigate other linear PDEs with this feature. Even more important is to
look into nonlinear PDEs of evolution which can be discretised in this manner. In that
case it makes sense to couple the ideas of this paper with the use of different versions
of operatorial splitting, e.g. the Strang splitting (Iserles 2008), exponential integrators
(Hochbruck & Ostermann 2010) or IMEX-type methods (Kassam & Trefethen 2005).
Consider, for example, the reaction–diffusion equation

∂u

∂t
= ∇>a(x)∇u+ f(u), (6.1)

with suitable initial and (for simplicity) zero Dirichlet boundary conditions. While we
can use skew-symmetric matrices to discretise the Laplace–Beltrami operator L1 =
∇>a(x)∇, the nonlinear function L2 = f is outside the scope of our theory. However,

u( · , t) = et(L1+L2)u( · , 0) = e
1
2 tL1etL2e

1
2 tL1u( · , 0) +O

(
t3
)

(the Strang splitting), where etL is formally the evolution operator of the equation
∂u/∂t = L(u). This gives rise to a second-order (in ∆t) time-stepping method that
separates the solutions of ∂u/∂t = ∇>a∇u and of ∂u/∂t = f(u) – the first can be
dealt with by our approach and the second is an ODE. Many other equations fit into
the same pattern as (6.1).
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Potential relevance of splitting methods to our narrative is actually much greater:
we can split, for example, inside the Laplace–Beltrami operator

∇>a(x)∇ =

d∑
i=1

∂

∂xi
a(x)

∂u

∂xi
=

d∑
i=1

L[i]u

(dimensional splitting) and follow with a multivariate version of Strang,

et(L
[1]+···+L[d]) = e

1
2 tL

[1]

· · · e 1
2 tL

[d−1]

etL
[d]

e
1
2 tL

[d−1]

· · · e 1
2 tL

[1]

+O
(
t3
)
.

The main advantage of this approach is that each single one-dimensional evolution
operator can be computed very cheaply and the cost increases linearly with the number
of grid points.

Once (operatorial, dimensional or both) Strang splitting is used with the equation
(6.1), the outcome is a second-order method. As long as we are allowed to use a
uniform grid, there is no need for the work of this paper. However, once it becomes
advantageous to use a nonuniform grid, it must satisfy the appropriate order conditions
R1 = 0.

The situation is, actually, more vexing, because approximating L1 by DAD, where
D is skew symmetric, is bound to double the bandwidth of D and introduce numer-
ous zeros inside the band. This makes the methods more expensive and, even more
importantly, introduces spurious oscillations in matrix exponentials. This unwelcome
effect can be overcome by the use of staggered grids, resulting in the approximation
EAD, where E +DT = O, but this belongs to another paper.

Within the context of parabolic operators like Laplace–Beltrami, no splittings of
order ≥ 2 can coexist with stability (Sheng 1989). However, dimensional splitting is
equally valuable in the context of hyperbolic operators, e.g. −V (x) ·∇, a situation
when it is possible to design splittings of arbitrarily high order (McLachlan & Quispel
2002). In that case further investigation of the order conditions (2.2), implicit in Open
Problems 1 and 2, becomes imperative.

Another approach, the symmetric Zassenhaus splitting , using commutators of dif-
ferential operators, has been pioneered in (Bader et al. 2014) in the context of the
semiclassical Schrödinger equation. In principle, similar approach might be relevant
to many other hyperbolic PDEs. This is an alternative avenue leading towards sta-
ble splittings of high order, further underscoring the importance of these two open
problems.

This brings us to the last major issue for further investigation. We have started this
paper with full generality, considering all kinds of time-stepping methods for PDEs
of evolution. After a while, we have restricted the field to ‘nodal methods’, whose
unknowns are function values (and possibly derivatives) at the vertices of a grid.
This excludes, for example, spectral methods, where the unknowns are expansion
coefficients in an orthogonal basis of the underlying function space. Subsequently, we
have lost even more generality, confining our attention just to finite difference methods
in cubes, with tensor-product grids, a straightforward generalisation of the univariate
case.

Open Problem 5 Generalise the work of this paper to other time-stepping methods.
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The phrase “other time-stepping methods” refers to a wide range of different al-
gorithms, each with its own complexities. Thus, the innocent phrase ‘finite elements’
hides a great deal of additional issues: different tessellations, conformal vs non-
conformal elements, discontinuous Galerkin, spectral elements, unstructured meshes,
hp-elements, . . . The interplay between space and time discretisation, inclusive of the
role of skew-symmetry in bringing about numerical stability, is likely to require a great
deal of further specialised research.

It seems that for most of its history numerical analysis of PDEs has advanced
along parallel tracks. Most of the community was concerned with the discretisation
of the ‘steady-state’ part of the equation, and this has led to impressive advances,
e.g. in finite element theory and in spectral methods. Another part of the community
has been concerned with the time evolution, often adopting ideas from the theory of
numerical ordinary differential equations (ODEs). It is clear, however, that space and
time should not be discretised in isolation. We must fashion time-stepping methods
not just by adopting known ODE solvers but by developing bespoke methods to cope
with specific PDEs, like in (Hochbruck & Ostermann 2010) and (Shu & Osher 1988).
Likewise – and this is the main message of this paper and, indeed, of the entire
history of numerical stability – we need often to rethink our space discretisation to
render time-stepping stable.
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