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Abstract. We prove that the height of any algebraic computation tree for

deciding membership in a semialgebraic set Σ ⊂ Rn is bounded from below by

c1 log(bm(Σ))

m+ 1
− c2n,

where bm(Σ) is the m-th Betti number of Σ with respect to “ordinary” (singu-
lar) homology, and c1, c2 are some (absolute) positive constants. This result

complements the well known lower bound by Yao [7] for locally closed semial-
gebraic sets in terms of the total Borel-Moore Betti number.

We also prove that if ρ : Rn → Rn−r is the projection map, then the height

of any tree deciding membership in Σ is bounded from below by

c1 log(bm(ρ(Σ)))

(m+ 1)2
−

c2n

m+ 1

for some positive constants c1, c2.

We illustrate these general results by examples of lower complexity bounds
for some specific computational problems.

1. Introduction

The algebraic computation tree is a standard sequential model of computation
for deciding membership problems for semialgebraic sets. Among various general
methods for obtaining lower complexity bounds for this model, one of the most
efficient uses homotopy invariants, Euler characteristic and Betti numbers, as ar-
guments for the bounding functions. The history of this approach started probably
in mid 70s with the work of Dobkin and Lipton [3], and features prominent results
such as Ben-Or’s [1] in 1983 and Yao’s [7] in 1997. The present paper is inspired
by the latter. We will discuss the results of [7] in some detail.

We assume that the reader is familiar with the concept of the algebraic compu-
tation tree, so we give here just a brief formal description, closely following [2].

Definition 1.1. An algebraic computation tree T with input variables X1, . . . , Xn

taking real values, is a tree having three types of vertices: computation (outdegree
1), branch (outdegree 3), and leaves (outdegree 0). To each vertex v of T a variable
Yv is assigned.

With each computation vertex v an expression Yv = a ∗ b is associated, where
∗ ∈ {+,−,×, /}, and a, b are either real constants, or input variables, or variables
associated with predecessor vertices of v, or a combination of these.
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At each branch vertex v, the variable Yv is assigned the value which is either
a real constant, or an input variable, or a variable associated with a predecessor
vertex. The three outgoing edges of v correspond to signs Yv > 0, Yv = 0, Yv < 0.

With each leaf w a basic semialgebraic set (called leaf set) is associated, defined
by equations of the kind either Yv > 0, or Yv = 0, or Yv < 0, for all variables Yv
associated with predecessor branch vertices v of w along the branch leading from
the root to w. The sign of each Yv is determined by the outgoing edge in the
branch vertex. In addition, each leaf carries a label “Yes” or “No”. The tree T
tests membership in the union of all Yes leaf sets.

The semantics of this model of computation is straightforward. On an input
x = (x1, . . . , xn) ∈ Rn, the input variables Xi get the corresponding values xi, the
arithmetic operations are executed in computation vertices v and the real values
are obtained by variables Yv. At branch vertices v the sign of the value of Yv is
determined, and the corresponding outgoing edge is chosen. As a result a certain
branch ending up in a leaf w is selected. The input x belongs to the semialgebraic
set assigned to w. If w is a Yes leaf, then x is said to be accepted by the tree T .

It can be assumed without loss of generality [2], that there are no divisions used
in a tree.

We will be interested in lower bounds on the heights of algebraic computation
trees testing membership in a given semialgebraic set Σ. A detailed outline of the
development of lower bounds that depend on topological characteristics of a set can
be found in [7] (see also [2]). We mention here just two highlights.

The first most important achievement was the proof by Ben-Or [1] of the bound
c1 log(b0(Σ)) − c2n, where b0(Σ) is the number of connected components of Σ,
and c1, c2 are some absolute positive constants. This general bound implies non-
trivial, and sometimes tight, lower bounds for specific computational problems,
such as Distinctness and Knapsack.

One of the most general results so far in this direction belongs to Yao [7]. Suppose
a semialgebraic set Σ is locally closed and bounded. Let bBM (Σ) be the total
Betti number (the sum of all Betti numbers) of Σ with respect to the Borel-Moore
homology HBM

∗ (Σ). Yao proved the lower bound

(1.1) c1 log(bBM (Σ))− c2n,

where c1, c2 are some absolute positive constants. From this he deduced a tight
lower bound for k-Distinctness problem, and other non-trivial lower bounds for
specific problems.

The Borel-Moore homology is a very strong condition, which implies subaddi-
tivity of the total Betti number. Subadditivity is the property on which the whole
of the Yao’s argument depends. It is natural to ask whether an analogous bound
can be found for the usual, singular, homology theory, which is applicable to ar-
bitrary (not necessarily locally closed) semialgebraic sets. Of course, in this case
subadditivity is not necessarily true. Observe that for compact sets Borel-Moore
Betti numbers coincide with singular Betti numbers, while for non-compact locally
closed sets these two types of Betti numbers can be incomparable.

In this paper we prove two main theorems. Firstly, we prove the lower bound

c1 log(bm(Σ))

m+ 1
− c2n,



TOPOLOGICAL LOWER BOUNDS FOR COMPUTATION TREES 3

where bm(Σ) is the m-th Betti number of an arbitrary semialgebraic set Σ with
respect to singular homology, and c1, c2 are some absolute positive constants. Note
that this bound depends on an individual Betti number rather than on the sum
of Betti numbers. For Betti numbers of a small (fixed) index m the bound turns
into c1 log(bm(Σ)) − c2n which is similar to Yao’s bound. The proof is based on
a construction from [5] which transforms Σ into a compact semialgebraic set Σ′

having the same Betti numbers as Σ up to a given index m. We then prove that
for any algebraic computation tree T for Σ there is an algebraic computation tree
T ′ for Σ′ having the height not exceeding, up to a multiplicative constant, m times
the height of T . It remains to apply Yao’s bound to Σ′.

Our second main result is a lower bound in terms of Betti numbers of the pro-
jection ρ(Σ) of Σ to a subspace, rather than Betti numbers of Σ itself. Note that
the topology of the image under a projection may be much more complex than the
topology of the set being projected. We are not aware of previous lower bounds of
this sort. The bound is

c1 log(bm(ρ(Σ)))

(m+ 1)2
− c2n

m+ 1

for some positive constants c1, c2, which again should be applied for small (fixed)
values of m. The proof uses (implicitly) a spectral sequence associated with the
projection map, which allows to bound from above Betti numbers of the projection
of Σ in terms of Betti numbers of fiber products by itself of the compactification of
Σ [6].

We illustrate these general results by examples of lower complexity bounds for
some specific computational problems.

2. Topological tools

In this section we formulate the results from [4, 5, 6] which are used further in
this paper.

In what follows, for a topological space X, let bm(X) := rank Hm(X) be its m-th
Betti number with respect to the singular homology group Hm(X) with coefficients
in some fixed Abelian group. By b(X) we denote the total Betti number of X, i.e.,
the sum

∑
i≥0 bi(X).

2.1. Upper bounds on Betti numbers. Consider a semialgebraic set S = {x ∈
Rn|F(x)}, where F is a Boolean combination of polynomial equations and inequal-
ities of the kind h(x) = 0 or h(x) > 0, and h ∈ R[x1, . . . , xn]. Suppose that the
number of different polynomials h is s and that their degrees do not exceed d.

Proposition 2.1 ([5], Theorem 6.3). The m-th Betti number of S satisfies

(1) bm(S) = O(s2d)n;
(2) bm(S) = O((m+ 1)sd)n.

Remark 2.2. Unlike classical Petrovski-Oleinik-Thom-Milnor bound for basic semi-
algebraic sets, used in [7], the bounds in Proposition 2.1 are applicable to arbitrary
semialgebraic sets defined by a quantifier-free formulae. They are slightly weaker
than the classical bound O(sd)n by a multiplicative factor at the base of the expo-
nent, namely s in (1) and m+ 1 in (2).

Further, in the proof of Theorem 3.1, we will need the bound (1) from this
proposition. We won’t need bound (2) as such but we shall use in an essential
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way the constructions from [5] used for proving this bound. We now proceed to
describing this technique.

2.2. Approximation by monotone families.

Definition 2.3. Let G be a compact semialgebraic set. Consider a semialgebraic
family {Sδ}δ>0 of compact subsets of G, such that for all δ, δ′ ∈ (0, 1), if δ′ > δ,
then Sδ′ ⊂ Sδ. Denote S :=

⋃
δ>0 Sδ.

For each δ > 0, let {Sδ,ε} be a semialgebraic family of compact subsets of G such
that:

(i) for all ε, ε′ ∈ (0, 1), if ε′ > ε, then Sδ,ε ⊂ Sδ,ε′ ;
(ii) Sδ =

⋂
ε>0 Sδ,ε;

(iii) for all sufficiently small δ′ > 0 and for all ε′ > 0, there exists an open in G
set U ⊂ G such that Sδ ⊂ U ⊂ Sδ′,ε′ .

We say that S is represented by the families {Sδ} and {Sδ,ε} in G.

Consider the following two particular cases.

Case 1. Let a semialgebraic set S be given as a disjoint union of basic semialge-
braic sets (i.e., sets each defined by a conjunction of equations and strict inequali-
ties). (Note that an algebraic computation tree represents the corresponding set in
exactly this way.) Let δ and ε be some positive constants.

Suppose first that S is bounded in Rn, and take as G a closed ball of a sufficiently
large radius centered at 0. The set Sδ is the result of the replacement, independently
in each basic set in the union, of all inequalities h > 0 and h < 0 by h ≥ δ and
h ≤ −δ respectively. The set Sδ,ε is obtained by replacing, independently in each
basic set, all expressions h > 0, h < 0 and h = 0 by h ≥ δ, h ≤ −δ and h2 − ε ≤ 0,
respectively. One can easily verify (see [5]) that the set S, is represented by families
{Sδ} and {Sδ,ε} in G.

Now suppose that S is not necessarily bounded. In this case one can take the
semialgebraic one-point (Alexandrov) compactification of Rn as G. Define sets Sδ
and Sδ,ε as in the bounded case, replacing equations and inequalities independently
in each basic set, and then taking the conjunction of the resulting formula with
|x|2 ≤ 1/δ. Again, S is represented by {Sδ} and {Sδ,ε} in G.

Case 2. Let ρ : Rn+r → Rn be the projection map, and S ⊂ Rn+r be a semi-
algebraic set, given as a disjoint union of basic semialgebraic sets. The set S is
represented by families {Sδ}, {Sδ,ε} in the compactification of Rn+r as described in
Case 1. One can easily verify (see [5]), that the projection ρ(S) is represented by
families {ρ(Sδ)}, {ρ(Sδ,ε)} (in the Alexandrov compactification of Rn if necessary).

Returning to the general case, suppose that a semialgebraic set S is represented
by families {Sδ} and {Sδ,ε} in G.

For a sequence ε0, δ0, ε1, δ1, . . . , εm, δm, where m ≥ 0, introduce the compact set

Tm(S) := Sδ0,ε0 ∪ Sδ1,ε1 ∪ · · · ∪ Sδm,εm .
Observe that in Case 2, we have the equality

(2.1) Tm(ρ(S)) = ρ(Tm(S)).

In what follows, for two real numbers a and b we write a � b to mean “a is
sufficiently smaller than b” (see formal Definition 1.7 in [5]).
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Proposition 2.4 ([5], Theorem 1.5). For any m ≥ 0, and

0 < ε0 � δ0 � ε1 � δ1 � · · · � εm � δm � 1

we have

(i) for every 0 ≤ k ≤ m, there is an epimorphism ϕk : Hk(Tm(S)) → Hk(S),
in particular, bk(S) ≤ bk(Tm(S));

(ii) in Case 1, for every k ≤ m − 1, the epimorphism ϕk is an isomorphism,
in particular, bk(S) = bk(Tm(S)). Moreover, if m ≥ dim(S), then Tm(S)
is homotopy equivalent to S.

2.3. Betti numbers of projections.

Definition 2.5. For two maps f1 : X1 → Y and f2 : X2 → Y , the fibered product
of X1 and X2 is defined as

X1 ×Y X2 := {(x1,x2) ∈ X1 ×X2| f1(x1) = f2(x2)}.

Proposition 2.6 ([6], Theorem 1). Let f : X → Y be a closed surjective semialge-
braic map (in particular, f can be the projection map to a subspace, with a compact
X). Then

bm(Y ) ≤
∑

p+q=m

bq(Wp),

where

Wp := X ×Y · · · ×Y X︸ ︷︷ ︸
(p+1) times

.

3. General lower bounds

We start with a theorem which immediately follows from an upper bound on the
total Betti number of an arbitrary semialgebraic set in Proposition 2.1.

Theorem 3.1. Let k be the height of an algebraic computation tree T testing
membership in a semi-algebraic set Σ ⊂ Rn. Then

k = Ω

(
log(b(Σ))

n

)
,

where b(Σ) is the total Betti number of Σ.

Proof. Since in each computation vertex at most one multiplication can be per-
formed, every polynomial occurring in the disjunctive normal form defining Σ has
a degree at most 2k. The number of polynomials in the conjunction defining the
set attached to a Yes leaf is at most k, while the number of Yes leaves does not
exceed 3k. It follows that the total number of polynomials defining Σ is at most
k3k. Then, according to Proposition 2.1, (1), b(Σ) ≤ O(n((k3k)22k)n). Taking
logarithms we get the result. �

Remark 3.2. The bound in the theorem is significantly weaker than Yao’s bound
(1.1). However, as explained in the introduction, it is applicable to any semial-
gebraic set, not necessarily a locally closed one. The upper bound on the total
Betti number, used in the proof, is applicable to arbitrary semialgebraic set, unlike
classical Petrovski-Oleinik-Thom-Milnor bounds employed in [7].
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Theorem 3.3. Let k be the height of an algebraic computation tree T testing
membership in a semi-algebraic set Σ ⊂ Rn. Then

k ≥ c1 log(bm(Σ))

m+ 1
− c2n,

where bm(Σ) is the m-th Betti number of Σ, and c1, c2 are some positive constants.

Lemma 3.4. Let T1, T2 be algebraic computation trees testing membership in semi-
algebraic sets Σ1 and Σ2 respectively, and having heights k1 and k2 respectively.
Then there is a tree T∪ testing membership in Σ1 ∪Σ2, and a tree T∩ testing mem-
bership in Σ1 ∩ Σ2, both having heights at most O(k1 + k2).

Proof. To construct T∪, attach a copy of T2 to each No leaf of the tree T1. For T∩,
attach a copy of T2 to each Yes leaf of the tree T1. �

Lemma 3.5. Let T be a tree for Σ, having height k. Then for any ` ≥ 0 there
exists a tree T` for T`(Σ) whose height does not exceed k′ ≤ c((`+1)k+n) for some
positive constant c.

Proof. The plan of the proof is as follows. The construction of T` consists of two
stages. On the first stage we perform the construction for ` = 0 and arbitrary ε, δ,
and get the tree Tε,δ. The height of Tε,δ is not larger than c times the height of T
for a constant c > 0. On the second stage we construct T` for an arbitrary ` by
induction. On the base step, construct the tree T0 = Tε0,δ0 . Suppose we constructed
the tree T`−1. The tree T` is obtained from T`−1 by attaching to each No leaf of
the latter, a copy of the tree Tε`,δ` , considering the leaf as the root of Tε`,δ` .

< 0

= 0

> 0
f

f

f

f1

2

3

Figure 1. Tree S.

Now we proceed to a more detailed proof.
Let h := X2

1 + · · ·+X2
n. The root r of the tree Tε,δ is a branch vertex with the

polynomial h − 1/δ attached. The child of r, corresponding to > 0, is a No leaf.
Take the other two children as roots of two copies of the tree T . The construction
of Tε,δ now continues identically for both copies, by induction, as follows. In T , let
v be the closest branch vertex to its root, and let f be the polynomial attached to
v (if such branch vertex does not exist, then the construction of Tε,δ is completed).
Then the neighbourhood of v in T looks like the tree S on Figure 1. Here f1, f2 and
f3 are polynomials attached to children v1, v2, v3 of v. Replace this neighbourhood
by the tree S ′ on Figure 2. Notice that the leaves of S ′, are labelled again by
f1, f2, f3 while one of the leaves is a No leaf. Attach to each leaf of S ′, labelled by
fi, the subtree of T rooted at vi (unless vi is a leaf of T ). Denote the resulting tree
by T ′. This completes the base of the induction.
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< 0
= 0

> 0
f

f f

f

1

2
< 0 = 0

> 0

f f

2

f

2 - e

1

- e

- d

3

< 0
= 0

> 0

f f

3

No

- d- f

Figure 2. Tree S ′.

On the next induction step perform the same replacement operation, as on the
base step, for each subtree of T ′ rooted at a leaf of S ′ which is not a No leaf. If for
a leaf of S ′ no such subtree exists, i.e., vertex vi is a leaf of T , then this vertex is
taken as a leaf of Tε,δ, it is a Yes leaf if and only if vi is a Yes leaf in T . Denote the
results of replacements again by S ′, and the resulting tree again by T ′.

Further induction steps are performed in the same fashion, by applying the
replacement operation, described at the base step, to subtrees of T ′ rooted at
leaves of the trees S ′ obtained on the previous induction step. The construction of
Tε,δ is completed when all leaves of trees S ′ become leaves of Tε,δ.

Note that the height of Tε,δ is not larger than c times the height of T for a
constant c > 0.

Now we prove by induction on the construction that Tε,δ is a tree testing mem-
bership in Σε,δ (recall the notation from Case 1, Section 2.2). Observe that either
h− 1/δ = 0 or h− 1/δ < 0 is present in the definition of any Yes leaf set. Assume,
as before, that in T the vertex v is the closest branch vertex to the root, and f is
the polynomial attached to v. Observe that each leaf set of T , in particular each
Yes leaf set, is of the kind either {f = 0, . . .}, or {f > 0, . . .}, or {f < 0, . . .}. In
the tree T ′, on the base step of the construction of Tε,δ, the leaf {f = 0, . . .} will be
replaced by two leaves, {f2 − ε = 0, . . .} and {f2 − ε < 0, . . .}, the leaf {f > 0, . . .}
– by two leaves, {f−δ = 0, . . .} and {f−δ > 0, . . .}, while the leaf {f < 0, . . .} – by
two leaves, {−f −δ = 0, . . .} and {−f −δ > 0, . . .}. It follows that {f = 0, . . .} ⊂ Σ
if and only if {f2 − ε ≤ 0, . . .} is a subset of the set tested by T ′, and similar for
sets {f > 0, . . .} and {f < 0, . . .}. Proceeding by induction, we conclude that Σε,δ
is the set tested by Tε,δ.

Now construct T` for arbitrary ` by induction. On the base step, start with
the path of O(n) computation vertices at the end of which the polynomial h =
X2

1 + · · ·+X2
n is computed. Continue with the tree Tε0,δ0 . The result of these two

steps is the tree T0. Suppose we constructed the tree T`−1 for ` ≥ 1. The tree T`
is obtained from T`−1 by attaching to each No leaf of the latter, the tree Tε`,δ` ,
considering the leaf as the root of Tε`,δ` . By Lemma 3.4, the result is indeed T`.
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Obviously the height of T` does not exceed k′ ≤ c((` + 1)k + n) for a constant
c > 0. �

Proof of Theorem 3.3. By Lemma 3.5, k′ ≤ c((m + 1)k + n) for a constant c > 0.
By (1.1), since Tm(Σ) is compact,

c((m+ 1)k + n) ≥ c1 log(b((Tm(Σ))))− c2n

for some positive constants c1, c2. Hence, for the m-th Betti number,

c((m+ 1)k + n) ≥ c1 log(bm((Tm(Σ))))− c2n.

It follows, by Proposition 2.4, that

c((m+ 1)k + n) ≥ c1 log(bm(Σ))− c2n.

Hence, the theorem. �

4. Projections

Theorem 4.1. Let k be the height of an algebraic computation tree T testing
membership in a semi-algebraic set Σ ⊂ Rn. Let ρ : Rn → Rn−r be the projection
map. Then

(4.1) k ≥ c1 log(bm(ρ(Σ)))

(m+ 1)2
− c2n

m+ 1

for some positive constants c1, c2.

Let

Wp := Tm(Σ)×ρ(Tm(Σ)) · · · ×ρ(Tm(Σ)) Tm(Σ)︸ ︷︷ ︸
(p+1) times

.

Lemma 4.2. Let T be a tree for Σ, having height k. Then there exists a tree
T Wm for Wp whose height does not exceed c(p+ 1)((m+ 1)k + n) for some positive
constant c.

Proof. Lemma 3.5 implies that there is a tree Tm for Tm(Σ) having the height not
exceeding c((m+ 1)k + n). The problem of membership in Wp has input variables

X1, . . . , Xn−r, Y1,n−r+1, . . . , Y1,n, . . . , Yp,n−r+1, . . . , Yp,n.

Construct the tree T Wm inductively, starting with a copy of Tm with input vari-
ables X1, . . . , Xn−r, Y1,n−r+1, . . . , Y1,n. Then, using Lemma 3.4, attach to each Yes
leaf another copy of Tm with input variables X1, . . . , Xn−r, Y2,n−r+1, . . . , Y2,n, and
so on. The height of the resulting tree T Wm is at most p+ 1 times the height of the
tree Tm, as required. �

Proof of Theorem 4.1. According to Proposition 2.6,

(4.2) bm(ρ(Tm(Σ))) ≤
∑

p+q=m

bq(Wp).

Let b(Wν) := max0≤p≤m b(Wp), and k′ be the height of a tree for Wν .
Since Wν is compact, by (1.1), we have

k′ ≥ c′1 log(b(Wν))− c′2(n+ νr)
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for some positive constants c′1, c
′
2, thus, replacing k′ by a larger number according

to Lemma 4.2, and using m ≥ ν, we get

(m+ 1)2k + (m+ 1)n ≥ c′′1 log(b(Wν))− c′′2(n+ (m+ 1)r)

for some positive constants c′′1 , c
′′
2 . But∑

p+q=m

bq(Wp) ≤ m b(Wν),

so using (4.2) we have

(m+ 1)2k + (m+ 1)n ≥ c′′1(log(bm(ρ(Tm(Σ)))− logm)− c′′2(n+ (m+ 1)r).

Hence,

k ≥ c1 log(bm(ρ(Tm(Σ)))

(m+ 1)2
− c2n

m+ 1

for some positive constants c1, c2.
According to (2.1), ρ(Tm(Σ)) = Tm(ρ(Σ)), while, by Proposition 2.4,

bm(Tm(ρ(Σ))) ≥ bm(ρ(Σ)).

It follows that

k ≥ c1 log(bm(ρ(Σ)))

(m+ 1)2
− c2n

m+ 1
.

�

5. Applications

In this section we apply the general bounds from Theorems 3.3 and 4.1 to exam-
ples of specific computational problems. These problems admit obvious variations.

“Parity of integers”. This is the following computational problem.

Let m be a positive integer. For given n real numbers x1, . . . , xn such that 1 ≤
xi ≤ m for all i, decide whether the following property is true: either all xi are
integer or exactly two of them are not integer.

Observe that complexity of this problem has an upper bound O(n logm): the
computation tree for each xi checks whether it coincides with one of the numbers
1, . . . ,m using binary search.

To obtain a lower bound, consider the integer lattice {1, . . . ,m}n in Rn and let Σ
be the union of all open 2-dimensional squares and all vertices. Then the problem is
equivalent to deciding membership in Σ. Observe that Σ is not locally closed. It is
homotopy equivalent to a 2-plane with Ω(mn) punctured points, so b1(Σ) = Ω(mn).
By Theorem 3.3, the height of any algebraic computation tree testing membership
in Σ is Ω(n logm).

“Crossing number”. Let Σ be a smooth connected bounded semialgebraic curve
in Rn. Then Σ is a (smooth) embedding of either the circle S1 or the interval (0, 1)
into Rn (for n = 3 and a circle this is a knot). The total Betti number of Σ is at
most 2.

Observe that the image under the projection of Σ onto a generic 2-dimensional
linear subspace has only double points as singular points.

The crossing number C(Σ) of Σ is the maximal number of singular points of the
image of the projection over all generic 2-dimensional linear subspaces.
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Theorem 5.1. The complexity of membership in Σ is at least c1 logC(Σ)−c2n for
some positive constants c1, c2.

Proof. Let ρ(Σ) be the image of Σ under the projection to the plane on which the
crossing number is realized. Then C(Σ) is less by 2 (if Σ is an embedding of S1),
or otherwise by 1, than the number of connected components of the complement
to ρ(Σ) in the plane. By Alexander duality, the number of connected components
is the same as b1(ρ(Σ)), hence the lower bound follows from Theorem 4.1. �
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