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Abstract. We present a new class of high-order variational integrators on Lie groups. We show that these
integrators are symplectic, momentum preserving, and can be constructed to be of arbitrarily high-order, or

can be made to converge geometrically. Furthermore, these methods are capable of taking very large time-
steps. We demonstrate the construction of one such variational integrator for the rigid body, and discuss how

this construction could be generalized to other related Lie group problems. We close with several numerical

examples which demonstrate our claims, and discuss further extensions of our work.

Communicated by Arieh Iserles

1. Introduction

There is a deep and elegant geometric structure underlying the dynamics of many mechanical systems.
Conserved quantities, such as the energy, momentum, and symplectic form offer insight into this structure,
and through this, we obtain an understanding of the behavior of these systems that goes beyond what is
conventionally available. Conservation laws reveal much about the stability and long term behavior of a
system, and can even characterize the entire dynamics of a system when a sufficient number of them exist.
Hence, there has been much recent interest in the field of geometric mechanics, which seeks to understand
this structure using differential geometric and symmetry techniques.

From this geometric mechanics framework, it is possible to formulate numerical methods which respect
much of the geometry of mechanical systems. There are a variety of approaches for constructing such
methods, often known as structure-preserving methods, including projection methods, splitting methods,
symplectic Runge–Kutta methods, B-series expansion methods, to name a few. An extensive introduction
can be found in Hairer et al. [12]. One of the powerful frameworks, discrete mechanics, approaches the
construction of numerical methods by developing much of the theory of geometric mechanics from a discrete
standpoint. This approach has proven highly effective for constructing methods for problems in Hamiltonian
and Lagrangian mechanics, specifically because these type of problems arise from a variational principle.
Methods that make use of a variational principle and the framework of discrete mechanics are referred to
as variational integrators, and they have many favorable geometric properties, including conservation of the
symplectic form and momentum. A comprehensive survey of discrete mechanics and variational integrators
can be found in Marsden and West [28].

A further advantage of variational integrators is that it is often straightforward to analyze the error of these
methods. This has led to the development of high-order variational integrators, which can be constructed
so that they converge very quickly. In Hall and Leok [13], such integrators for vector space problems were
presented and analyzed. It was shown that such integrators can be arbitrarily high-order or even exhibit
geometric convergence. Furthermore, these integrators are capable of taking extremely large time-steps, and
using them it is easy to reconstruct highly accurate continuous approximations to the dynamics of the system
of interest.

In this paper, we present an extension of that work to Lie group methods. Lie group methods are of
particular interest in science and engineering applications. It can be shown that many problems of interest,
from the dynamics of rigid bodies to the behavior of incompressible fluids, evolve in Lie groups. Furthermore,
if a traditional numerical method is applied to a problem with dynamics in a Lie group, the approximate
solution will typically depart from the Lie group, destroying a critical structural property of the solution.
Our work gives a general framework for constructing methods which will always evolve in the Lie group and
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which will share many of the desirable properties of the vector space type methods. Specifically, we will be
able to construct methods of arbitrarily high-order and with geometric convergence, and we will be able to
reconstruct high quality continuous approximations from these methods.

Lie group methods have a rich history and remain the subject of significant interest. An extensive
introduction can be found in Iserles et al. [14], which provides an excellent exposition of both the motivation
for Lie group methods and many of the techniques used on Lie groups. Likewise, Celledoni and Owren [8],
provide a very helpful general introduction to Lie group methods for the rigid body, which is a prototypical
example of an interesting Lie group problem. The free rigid body is an example of a Lie–Poisson system,
which is obtained by symmetry reduction. Lie–Poisson integrators were discussed in Zhong and Marsden
[40], and further developed in Channell and Scovel [9]. A more recent perspective can be found in McLachlan
et al. [34], and an approach based on equivariant constraints was developed in McLachlan and Scovel [33].
A discrete theory of reduction in the Euler–Poincaré and Lie–Poisson setting was introduced in Marsden
et al. [30, 31], and for the case of abelian Routh reduction in Jalnapurkar et al. [15]. Additionally, the free
rigid body is completely integrable, and the question of integrable discretizations was studied in Moser and
Veselov [35] and Bobenko and Suris [1].

In this paper, we provide a thorough example of the construction of our method for the rigid body, as this
approach can easily be extended to other interesting problems. Partitioned Runge–Kutta methods were used
by Jay [16, 17] to construct high-order structure preserving integrators that preserved holonomic constraints.
Bou-Rabee and Marsden [3] combined Lie group methods with the discrete Hamilton–Pontryagin principle
to obtain a class of high-order symplectic Lie group integrators, in particular, the variational Runge–Kutta–
Munthe-Kaas and variational Crouch–Grossman integrators, and Bogfjellmo and Marthinsen [2] developed
the order theory in the context of variational error analysis for these methods. Burnett et al. [7] introduced a
generalization of high-order Lie group discretizations to higher-order variational problems, and applied this
to interpolation in SO (3).

Galerkin variational integrators were proposed in Marsden and West [28], and expanded on by Leok [23,
Chapter 5]. The concept of a Galerkin Lie group integrator was proposed in Leok [23, Chapter 5] and
expanded in Leok and Shingel [24]. Our work expands upon this by generalizing both the diffeomorphisms
used to construct the natural charts and the approximation spaces used to construct the curve on the Lie
group, and establishing convergence results and properties of both the discrete solution and the continuous
approximation.

1.1. Discrete Mechanics. Since we are working from the perspective of discrete mechanics, we will take
a moment to review the fundamentals of the theory here. This will only be a brief summary, and extensive
exposition of the theory can be found in Marsden and West [28].

Consider a configuration manifold, Q, which describes the configuration of a mechanical system at a given
point in time. In discrete mechanics, the fundamental object is the discrete Lagrangian, Ld : Q×Q×R→ R.
The discrete Lagrangian can be viewed as an approximation to the exact discrete Lagrangian LEd , where the
LEd is defined to be the action of the Lagrangian on the solution of the Euler–Lagrange equations over a
short time interval:

Ld (q0, q1, h) ≈ LEd (q0, q1, h) = ext
q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0

L (q, q̇) dt.

The discrete Lagrangian gives rise to a discrete action sum, which can be viewed as an approximation to the
action over a long time interval:

S ({qk}nk=1) =

n−1∑
k=0

Ld (qk, qk+1, h) ≈
∫ tn

t0

L (q, q̇) dt,

and requiring stationarity of this discrete action sum subject to fixed endpoint conditions q0, qn, gives rise
to the discrete Euler–Lagrange equations:

D1Ld (qk, qk+1, h) +D2Ld (qk−1, qk, h) = 0,(1)

where Di denotes partial differentiation of a function with respect to the i-th argument. Given a point
(qk−1, qk), these equations implicitly define an update map FLd : (qk−1, qk)→ (qk, qk+1), which approximates
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the solution of the Euler–Lagrange equations for the continuous system. In particular, qk should be viewed
as an approximation of the continuous solution q of the Euler–Lagrange equation at time tk = kh, i.e.,
qk ≈ q(kh). A numerical method which uses the update map FLd to construct numerical solutions to ODEs
is referred to as a variational integrator.

Since variational integrators are examples of symplectic integrators, and symplectic integrators are often
used with fixed time-steps in order to achieve bounded energy errors for exponentially long times, we will
often suppress the third argument h in the discrete Lagrangian for notational simplicity, and consider it as
a function Ld : Q×Q→ R. Which of these we are referring to should be clear from the context.

The power of discrete mechanics is derived from the discrete variational structure. Since the update map
FLd is induced from a discrete analogue of the variational principle, much of the geometric structure from
continuous mechanics can be extended to discrete mechanics. The discrete Lagrangian gives rise to discrete
Legendre Transforms FL± : Q×Q→ T ∗Q:

FL+
d (qk, qk+1) = (qk+1, D2Ld (qk, qk+1)) ,

FL−d (qk, qk+1) = (qk,−D1Ld (qk, qk+1)) ,

which lead to the extension of other classical geometric structures. It is important to note that, while there
are two different discrete Legendre transforms, (1) guarantees that FL−d (qk, qk+1) = FL+

d (qk−1, qk), and
thus they can be used interchangeably when defining the discrete geometric structure. By their construc-
tion, variational integrators induce a discrete symplectic form by pullback, i.e., ΩLd = (F±Ld)

∗
Ω which is

conserved by the update map F ∗LdΩLd = ΩLd , and a discrete analogue of Noether’s Theorem, which states
that if a discrete Lagrangian is invariant under a diagonal group action on (qk, qk+1), it induces a discrete

momentum map JLd =
(
FL±d

)∗
J , which is preserved under the update map: F ∗LdJLd = JLd . The existence

of these discrete geometric conservation laws gives a systematic framework to construct powerful numerical
methods which preserve structure.

The discrete Legendre transforms also allow us to define an update map through phase space F̃Ld : T ∗Q→
T ∗Q,

F̃Ld (qk, pk) = (qk+1, pk+1) ,

which is given by

F̃Ld (qk, pk) = F+Ld

((
F−Ld

)−1
(qk, pk)

)
,

known as the Hamiltonian flow map. As long as the discrete Lagrangian is sufficiently smooth, the Hamil-
tonian flow map and the Lagrangian flow map are compatible, and the geometric structure of discrete flow
can be understood from either perspective, just as in the continuous theory.

The following commutative diagram illustrates the relationship between the discrete Legendre transforms,
the Lagrangian flow map, the Hamiltonian flow map, and the discrete Lagrangian.

(qk, pk)
F̃Ld // (qk+1, pk+1)

(qk−1, qk)

F+Ld

@@

FLd

// (qk, qk+1)
FLd

//

F+Ld

>>

F−Ld

^^

(qk+1, qk+2)

F−Ld

aa

A further consequence of the discrete mechanics framework is that it provides a natural mechanism for
analyzing the order of accuracy of a variational integrator. Specifically, it can be shown that the variational
integrator induced by the exact discrete Lagrangian produces an exact sampling of the true flow. Based on
this, we have the following theorem which is critical for the error analysis of variational integrators:

Theorem 1.1. Variational Order Analysis (Theorem 2.3.1 of Marsden and West [28]). If a discrete La-
grangian Ld approximates the exact discrete Lagrangian LEd to order p, i.e. Ld (q0, q1, h) = LEd (q0, q1, h) +
O
(
hp+1

)
, then the variational integrator induced by Ld is order p accurate.
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This theorem allows for greatly simplified a priori error estimates of variational integrators, and is a
fundamental tool for the development and analysis of high-order variational integrators. A refinement of
this result can found in Patrick and Cuell [37].

2. Construction

2.1. General Galerkin Variational Integrators. Lie group Galerkin variational integrators are an ex-
tension of Galerkin variational integrators to Lie groups. As such, we will briefly review the construction of
general Galerkin variational integrators.

The driving idea behind Galerkin variational integrators is to approach the construction of a discrete
Lagrangian as the approximation of a variational problem. We know from discrete mechanics that the exact
discrete Lagrangian LEd : Q×Q× R→ R,

LEd (q0, q1, h) = ext
q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0

L (q, q̇) dt,

induces a variational integrator that produces an exact sampling of the true flow, and the accuracy with
which a variational integrator approximates the true solution is the same as the accuracy to which the
discrete Lagrangian used to construct it approximates the exact discrete Lagrangian. Hence, to construct a
highly accurate discrete Lagrangian, we construct a discrete approximation

LGd (q0, q1, h) = ext
qn∈Mn([0,h],Q)

qn(0)=q0,qn(h)=q1

h

m∑
j=1

bjL (qn (cjh) , q̇n (cjh)) ≈ ext
q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0

L (q, q̇) dt

by replacing the function space C2 ([0, h] , Q) with a finite-dimensional subspace Mn ([0, h] , Q) ⊂ C2 ([0, h] , Q)

and the integral with a quadrature rule, h
∑m
j=1 bjf (cjh) ≈

∫ h
0
fdt (where qn (t) is a curve through the con-

figuration space Q that is also an element of the finite-dimensional approximation space). Finding the
extremizer of the discrete action is a tractable numerical problem, and by computing this extremizer we
can construct the variational integrator that results from the discrete Lagrangian. Because this approach of
replacing the function space C2 ([0, h] , Q) with a finite-dimensional subspace is inspired by Galerkin meth-
ods for partial differential equations, we refer to variational integrators constructed in this way as Galerkin
variational integrators.

In Hall and Leok [13], we studied Galerkin variational integrators on linear spaces. Specifically, we
obtained several significant results, including that Galerkin variational integrators for linear spaces can
be constructed to be of arbitrarily high-order, and that by enriching the function space Mn ([0, h] , Q), as
opposed to shortening the time-step h, we can construct variational integrators that converge geometrically.
Furthermore, we established that it is easy to recover a continuous approximation to the trajectory over
the time interval [0, h], and that the convergence of this continuous approximation is related to the rate
of convergence of the variational integrator. Finally, we established an error bound on Noether quantities
evaluated on this continuous approximation which is independent of the number of steps taken.

2.2. Lie Group Galerkin Variational Integrators. The construction and analysis in Hall and Leok [13]
relied on the linear structure of the spaces involved. At their heart, Galerkin variational integrators make
use of a Galerkin curve

q̃n (t) =

n∑
i=0

qiφi (t)

for some set of points
{
qi
}n
i=0
⊂ Q and basis functions {φi}ni=0 ⊂ C2 ([0, h] ,R). While for linear spaces,

q̃n (t) ∈ Q for any choice of t, in nonlinear spaces this will not be the case. However, when Q is a Lie group,
it is possible to extend this construction in a way that keeps the curve q̃n (t) in Q.
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2.2.1. Natural Charts. To generalize Galerkin variational integrators to Lie groups, we will make use of the
linear nature of the Lie algebra associated with the Lie group. Specifically, given a Lie group G and its
associated Lie algebra g, we choose a local diffeomorphism Φ : g→ G. Then, given a set of points in the Lie
group {gi}ni=1 ⊂ G and a set of associated interpolation times ti, we can construct an interpolating curve
g : Gn × R→ G such that g ({gi}ni=1 , ti) = gi, given by

g ({gi}ni=0 , t) = Lg0Φ

(
n∑
i=0

Φ−1
(
Lg−1

0
gi

)
φi (t)

)
,

where Lg is the left group action of g and φi (t) is the Lagrange interpolation polynomial for ti. This type
of curve is Lie group equivariant, that is, g

(
{Lĝgi}ni=1 , t

)
= Lĝg ({gi}n0=1 , t) for any ĝ ∈ G, as we shall show

in the following lemma.

Lemma 2.1. The curve g ({gi}ni=0 , t) is Lie group equivariant.

Proof. The proof is a direct calculation.

g ({Lĝgi} , t) = LLĝg0Φ

(
n∑
i=0

Φ−1
(
L(Lĝg0)−1Lĝgi

)
φi (t)

)

= LĝLg0Φ

(
n∑
i=0

Φ−1
(
Lg−1

0
Lĝ−1Lĝgi

)
φi (t)

)

= LĝLg0Φ

(
n∑
i=0

Φ−1
(
Lg−1

0
gi

)
φi (t)

)
= Lĝg ({gi}ni=0 , t) .

�

This property will be important for ensuring that the Lie group Galerkin discrete Lagrangian inherits the
symmetries of the continuous Lagrangian; these inherited symmetries give rise to the structure-preserving
properties of the resulting variational integrator.

Throughout this paper, we will consider the function spaces composed of curves of this form. We note

that Φ−1
(
Lg−1

0
gi

)
∈ g, and for any ξ ∈ g, Lg0Φ (ξ) ∈ G, so we can construct interpolation curves on the

group in terms of interpolation curves in the Lie algebra. In light of this, we define

GMn (g0 × [0, h] , G) :=

{
g
({
ξi
}n
i=0

, t
) ∣∣∣∣∣ g ({ξi}ni=1

, t
)

= Lg0Φ

(
n∑
i=1

ξiφi (t)

)
, ξi ∈ g

}

where {φi (t)}ni=0 forms the basis for a finite-dimensional approximation space in R, for example, Lagrange
interpolation polynomials, which is what we will use in our explicit construction in §4 and numerical examples
in §5. We refer to the space of finite-dimensional curves in the Lie algebra as

Mn ([0, h] , g) =

{
ξ (t)

∣∣∣∣∣ ξ (t) =

n∑
i=1

ξiφi (t) , ξi ∈ g, φi : [0, h]→ R

}
.

Because we are identifying every point in a neighborhood of the Lie group with a point in the Lie
algebra, which is a vector space, it is natural to think of this construction as choosing a set of coordinates
for a neighborhood in the Lie group. Thus, we can consider this construction as choosing a chart for a
neighborhood of the Lie group, and because it makes use of the “natural” relationship between the Lie
group G, its Lie algebra g, and the tangent space of the Lie group TG, we call the function ϕg0 : G → g,

ϕg0 (·) = Φ−1
(
Lg−1

0
(·)
)

a “natural chart.”
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2.2.2. Discrete Lagrangian. Now that we have introduced a Lie group approximation space, we can define
a compatible discrete Lagrangian for Lie group problems. We take a similar approach to the construction
for vector spaces; we construct an approximation to the action of the Lagrangian over [0, h] by replacing
C2 ([0, h] , G) with a finite-dimensional approximation space and the integral with a quadrature rule, and then
compute its extremizer. Specifically, given a Lagrangian on the tangent space of a Lie group L : TG → R,
the associated Lie group Galerkin discrete Lagrangian is defined to be:

Ld (gk, gk+1, h) = ext
gn∈GMn(gk×[0,h],G)
gn(0)=gk,gn(h)=gk+1

h

m∑
j=1

bjL (gn (cjh) , ġn (cjh)) .

2.2.3. Internal Stage Discrete Euler–Poincaré Equations. This discrete Lagrangian involves solving an opti-
mization problem, namely: find g̃n (t) ∈ GMn (gk × [0, h] , G) such that g̃n (0) = gk, g̃n (h) = gk+1, and

h

m∑
j=1

bjL
(
g̃n (cjh) , ˙̃gn (cjh)

)
= ext

gn∈GMn(gk×[0,h],G)
gn(0)=gk,gn(h)=gk+1

h

m∑
j=1

bjL (gn (cjh) , ġn (cjh)) .(2)

While this problem can be solved using standard methods of numerical optimization, it is also possible to
reduce it to a root finding problem. Since each curve g̃n (t) ∈ GMn (g0 × [0, h] , G) is parametrized by a finite
number of Lie algebra points {ξi}ni=1, by taking discrete variations of the discrete Lagrangian with respect
to these points, we can derive stationarity conditions for the extremizer. Specifically, if we denote

ξ (t) =

n∑
i=1

ξiφi (t)

and take Dpf to denote the differential of a map f at the point p, with the short hand of

D1L (x, y) = DxL (x) , considering the Lagrangian as just a function of its first argument

D2L (x, y) = DyL (y) , considering the Lagrangian as just a function of its second argument

then a straightforward computation reveals the stationarity condition:

h

m∑
j=1

bj

(
D1L ◦DΦ(ξ(cjh))Lgk ◦Dξ(cjh)Φ ◦

(
n∑
i=1

Dξiξ (cjh) · δξi
)

+

D2L ◦D(
Φ◦ξ(cjh),Dξ̇(cjh)Φ◦ξ̇(cjh)

)DΦ◦ξ(cjh)Lgk ◦D(ξ(cjh),ξ̇(cjh))Φ ◦

(
n∑
i=1

Dξi ξ̇ (cjh) · δξi
))

= 0

for arbitrary
{
δξi
}n
i=1

. Using standard calculus of variations arguments, this reduces to

h

m∑
j=1

bj

(
D1L ◦DΦ(ξ(cjh))Lgk ◦Dξ(cjh)Φ ◦Dξiξ (cjh) · δξi +

D2L ◦D(
Φ◦ξ(cjh),Dξ̇(cjh)Φ◦ξ̇(cjh)

)DΦ◦ξ(cjh)Lgk ◦D(ξ(cjh),ξ̇(cjh))Φ ◦Dξi ξ̇ (cjh) · δξi
)

= 0

for i = 2, .., n− 1 (note that the sum of the Lie algebra elements has disappeared). Now using the linearity
of one-forms, we can collect terms to further simplify this expression to

h

m∑
j=1

bj

([
D1L ◦DΦ(ξ(cjh))Lgk ◦Dξ(cjh)Φ ◦Dξiξ (cjh) +

D2L ◦D(
Φ◦ξ(cjh),Dξ̇(cjh)Φ◦ξ̇(cjh)

)DΦ◦ξ(cjh)Lgk ◦D(ξ(cjh),ξ̇(cjh))Φ ◦Dξi ξ̇ (cjh)

]
· δξi

)
= 0

for i = 2, ..., n− 1. Since δξi is arbitrary, this implies that

h

m∑
j=1

bj

(
D1L ◦DΦ(ξ(cjh))Lgk ◦Dξ(cjh)Φ ◦Dξiξ (cjh) ·+(3)
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D2L ◦D(
Φ◦ξ(cjh),Dξ̇(cjh)Φ◦ξ̇(cjh)

)DΦ◦ξ(cjh)Lgk ◦D(ξ(cjh),ξ̇(cjh))Φ ◦Dξi ξ̇ (cjh)

)
= 0

for i = 2, ..., n − 1. These equations, which we shall refer to as the internal stage discrete Euler–Poincaré
equations, combined with the standard momentum matching condition,

D2Ld (gk−1, gk) +D1Ld (gk, gk+1) = 0,(4)

which we will discuss in more detail in the §2.2.4, can be easily solved with an iterative nonlinear equation
solver. The result is a curve g̃n (t) which satisfies condition (2). The next step of the one-step map is given
by g̃n (h) = gk+1, which gives the variational integrator.

It should be noted that while the internal stage discrete Euler–Poincaré equations can be computed by
deriving all of the various differentials in the chosen coordinates, it is often much simpler to form the discrete
action

Sd
({
ξi
}n
i=1

)
= h

m∑
j=1

bjL

(
LgkΦ

(
n∑
i=1

ξiφi (cjh)

)
,

d

dt

(
LgkΦ

(
n∑
i=1

ξiφi (cjh)

)))
explicitly and then compute the stationarity conditions directly in coordinates, rather than a step by step
computation of the different maps in (3). This is the approach we take when deriving the integrator for the
rigid body in §4, and it appears to be the much simpler approach in this case. However, the two approaches
are equivalent, so if done carefully either will suffice to give the internal stage Euler–Poincaré equations.

2.2.4. Momentum Matching Condition. A difficulty in the derivation of the discrete Euler–Poincaré equations
is the computation of the discrete momentum terms

p−k,k+1 = −D1Ld (gk, gk+1)

p+
k−1,k = D2Ld (gk−1, gk)

which are used in the discrete Euler–Poincaré equations (4),

D1Ld (gk, gk+1) +D2Ld (gk−1, gk) = 0

or

p+
k−1,k = p−k,k+1.

The difficulty arises because the discrete Lagrangian makes use of a local left trivialization. Through the local
charts, we reduce the discrete Lagrangian to a function of algebra elements, and because the corresponding
group elements are recovered through a complicated computation, working with the group elements directly
to compute the discrete Euler–Poincaré equations is difficult. Because of this, to compute the discrete Euler–
Poincaré equations, it is more natural to think of the discrete Lagrangian as a function of two Lie algebra
elements. If we define a discrete Lagrangian on the Lie algebra L̂d : g× g× h→ R as

L̂d (ξk, ξk+1, h) = ext
gn∈GMn(gk×[0,h],G)

Φ−1

(
L
g
−1
k
gn(0)

)
=ξk,Φ

−1

(
L
g
−1
k
gn(h)

)
=ξk+1

h

m∑
j=1

bjL (gn (cjh) , ġn (cjh))

and compare it to the discrete Lagrangian on the Lie group,

Ld (gk, gk+1, h) = ext
gn∈GMn(gk×[0,h],G)
gn(0)=gk,gn(h)=gk+1

h

m∑
j=1

bjL (gn (cjh) , ġn (cjh))

it can be seen that there is a simple one-to-one correspondence through the natural charts between points

in G×G and points in g× g, and that if
(

Φ−1
(
Lg−1

k
g0

)
,Φ−1

(
Lg−1

k
g1

))
= (ξ0, ξ1), then

L (g0, g1) = L̂d (ξ0, ξ1) .
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Hence, for every sequence {gk}Nk=1, there exists a unique sequence {ξk}Ni=1 such that

N−1∑
k=1

Ld (gk, gk+1) =

N−1∑
k=1

L̂d (ξk, ξk+1) ,(5)

and vice versa. Thus, we can find the sequence {gk}Nk=1 that makes the sum on the left hand side of (5)

stationary by finding the sequence {ξk}Nk=1 that makes the sum on the right hand side of (5) stationary.
It can easily be seen that the stationarity condition of the action sum on the right is

D2L̂d (ξk−1, ξk) +D1L̂d (ξk, ξk+1) = 0.(6)

However, from the definition of L̂d, this implicitly assumes that (ξk−1, ξk) and (ξk, ξk+1) are in the same
natural chart. Unfortunately, in our construction (ξk−1, ξk) and (ξk, ξk+1) are in different natural charts.
This is because the construction of the Lie group interpolating curve

g (t) = LgβΦ

(
n∑
i=1

ξikφi (t)

)
requires the choice of a base point for the natural chart gβ ∈ G. If a consistent choice of base point was
made for each time-step, then the above equations could be directly computed without difficulty. However,
because many natural chart functions contain coordinate singularities, our construction uses a different base
point, and thus a different natural chart, at each time-step. Specifically, on the interval [kh, (k + 1)h], we
choose gβ = gk and define

g (t) = LgkΦ

(
n∑
i=1

ξikφi (t)

)
.

Thus

g (t) = Lgk−1
Φ

 n∑
j=1

ξik−1φi (t)

 , t ∈ [(k − 1)h, kh]

g (t) = LgkΦ

 n∑
j=1

ξikφi (t)

 , t ∈ [kh, (k + 1)h] ,

where we now denote internal stage points ξik with the subscript k to denote in which interval they occur.
While the change in natural chart is expedient for the construction, it creates a difficulty for the computation
of the discrete Euler–Poincaré equations, in that now we are using discrete Lagrangians with different natural
charts for the different time-steps, and hence we cannot compute the discrete Euler–Poincaré equations using
(6). This problem can be resolved by expressing g (t), and hence (ξk−1, ξk) and (ξk, ξk+1), in the same natural
chart for t ∈ [(k − 1)h, (k + 1)h]. Rewriting

gn (t) = LgkΦ

(
n∑
i=1

ξikφi (t)

)
= Lgk−1

Φ

(
Φ−1

(
Lg−1

k−1
LgkΦ

(
n∑
i=1

ξikφi (t)

)))
, t ∈ [kh, (k + 1)h] ,

(note that gn (t) is still in GMn (gk × [0, h] , G)), and defining

λ (t) = Φ−1

(
Lg−1

k−1
LgkΦ

(
n∑
i=1

ξikφi (t)

))
= Φ−1

(
LΦ(ξk)Φ

(
n∑
i=1

ξikφi (t)

))
we can reexpress the discrete Lagrangian as

L̃d (λk, λk+1) = ext
gn∈GMn(gk×[0,h],G)

Φ−1

(
L
g
−1
k−1

gn(0)

)
=λk,Φ

−1

(
L
g
−1
k−1

gn(h)

)
=λk+1

h

m∑
j=1

bjL (gn (cjh) , ġn (cjh)) .

Note that if Lgk−1
Φ (λk) = LgkΦ (ξk) and Lgk−1

Φ (λk+1) = LgkΦ (ξk+1) that

L̂d (ξk, ξk+1) = L̃d (λk, λk+1) .
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Furthermore, (λk, λk+1) are in the same chart as (ξk−1, ξk), and hence the discrete Euler–Poincaré equations
are

D2L̂d (ξk−1, ξk) +D1L̃d (λk, λk+1) = 0.

It remains to compute λk as a function of ξk. If we consider the definition of λ (t), then

λk = λ (0) = Φ−1

(
LΦ(ξk)Φ

(
n∑
i=1

ξikφi (0)

))
and

ξk = Φ−1
(
Lg−1

k
gn (0)

)
= Φ−1

(
LΦ(ξk)−1Φ (λk)

)
.(7)

This is simply a change of coordinates, and hence computing the discrete Euler Lagrange equations amounts
to using the change of coordinates map to transform the algebra elements into the same chart. Thus,

D2L̂d (ξk−1, ξk) =
∂Ld
∂ξk

D1L̃d (λk, λk+1) =
∂Ld
∂ξk

∂ξk
∂λk

(8)

where (7) can be used to compute ∂ξk
∂λk

. An explicit example is presented in section §4.
There are several features of this computation that should be noted. First, since we are considering

specific choices of natural charts, we may think of ξk and λk as corresponding to a specific coordinate choice,
and hence it is natural to use standard partial derivatives as opposed to coordinate free notation. Second,
because λk is a function of ξk, which is in turn a function of ξik, this is still a root finding problem over ξik,
and hence may be solved concurrently with the internal stage Euler–Poincaré equations (3).

3. Convergence

Thus far, we have discussed the construction of Lie group Galerkin variational integrators — now we will
prove several theorems related to their convergence. Unlike traditional numerical methods for differential
equations, we will achieve convergence in two distinct ways.

(1) h-refinement: Shortening of the time-step h while holding the dimension of the function space
GMn (g0 × [0, h] , G) constant, which we refer to as h-refinement. In practice, we refer to methods
that achieve convergence through h-refinement as Lie group Galerkin variational integrators, after
the framework used to construct them.

(2) n-refinement: Increasing the dimension of the function space GMn (g0 × [0, h] , G) while holding
the time-step h constant. Because enriching GMn (g0 × [0, h] , G) involves increasing the number of
basis functions, and hence the value of n, we refer to this as n-refinement. Because this approach
of enriching the function space is inspired by classical spectral methods, as in Trefethen [38], when
we use n-refinement to achieve convergence we will refer to the the resulting method as a Lie group
spectral variational integrator.

3.1. Geometric and High-Order Convergence. Naturally, the goal of applying the spectral paradigm
to the construction of Galerkin variational integrators is to construct methods which achieve geometric con-
vergence. In this section, we will prove that under certain assumptions about the behavior of the Lagrangian
and the approximation space, Lie group spectral variational integrators achieve geometric convergence. Addi-
tionally, the argument that establishes geometric convergence can be easily modified to show that arbitrarily
high-order Lie group Galerkin integrators can be constructed.

The proof of the rate of convergence Galerkin Lie group variational integrators is superficially similar to
the proof of the rate of convergence of Galerkin variational integrators, which was established in [13]. The
specific major difference is the need to quantify the error between two different curves on the Lie group.
Unlike a normed vector space, where the error can be quantified by taking the difference between the exact
solution and the approximate solution, there may not be a simple method of quantifying the error of an
approximate solution that evolves in a Lie group. For the moment, we will avoid this difficulty by assuming
that the error between two curves that share a common point in a Lie group can be bounded by the error
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between curves in the Lie algebra. Since Lie algebras are vector spaces, the error between a curve through
the Lie algebra and an approximation to that curve can be measured by taking the difference between the
two curves and using a norm induced by an appropriate metric.

With this requirement in mind, we define the “natural chart conditioning” assumption. Given place-
holder functions (for practical applications, these functions should be chosen appropriately for the specific
problem):

(1) eg (·, ·), which measures the error between two curves through the Lie group,
(2) ea (·, ·), which measures the error between two curves through the tangent bundle of the Lie group,

we define the natural chart conditioning assumption as follows

eg (Lg0Φ (ξ (t)) , Lg0Φ (η (t))) ≤ CG 〈ξ (t)− η (t) , ξ (t)− η (t)〉
1
2(9)

ea

(
d

dt
Lg0Φ (ξ (t)) ,

d

dt
Lg0Φ (η (t))

)
≤ Cg

〈
ξ̇ (t)− η̇ (t) , ξ̇ (t)− η̇ (t)

〉 1
2

(10)

+ CGg 〈ξ (t)− η (t) , ξ (t)− η (t)〉
1
2

where 〈·, ·〉 is a Riemannian metric on the Lie algebra. This essentially states that the error between two
curves in the Lie group is bounded by the error of those curves when reduced to curves in the Lie algebra.

While the length of the geodesic curve that connects LgkΦ (ξ) and LgkΦ (η) is an obvious choice for the
error function eg (·, ·), it is important to note that there are other valid choices. This will greatly simplify
error calculations; for example, in §4 we choose the error function to be the matrix two-norm, ‖·‖2, which is
quickly and easily computed and will obey this inequality for the Riemannian metric we use.

3.1.1. Arbitrarily High-Order Convergence. We will begin by proving that Lie group Galerkin variational
integrators can be constructed that are of arbitrarily high-order. The proof that follows is involved and
may be daunting at first glance, so we provide a general qualitative outline of it here to guide the interested
reader.

We begin by making several key assumptions about the properties of the Lagrangian, approximation
space, and choice of error functions. Specifically, we assume

(1) Sufficiently short evolution: the exact solution over the given time interval is contained within
the range of the natural chart function,

(2) High quality approximation space: there exists a high-order approximation to the true solution
in the approximation space (we may not be able to compute it explicitly — it just must exist
theoretically),

(3) Regular Lagrangian: the Lagrangian is sufficiently smooth,
(4) Well-conditioned natural chart: the natural chart is well-conditioned, as discussed in (9) and

(10),
(5) Quadrature accuracy: the quadrature rule we choose to construct the integrator is sufficiently

accurate,
(6) Minimizing stationary points: the stationary points of both the discrete action (used to con-

struct the variational integrator) and the exact action (used to define the equations of motion), are
minimizers.

Using these assumptions we establish convergence by computing the error between the discrete Galerkin
discrete Lagrangian used to construct our methods and the exact discrete Lagrangian. We do this by

(1) Bounding the difference between the exact action evaluated on the theoretical high-
order approximation and the exact solution: Using our assumption about the regularity of
the Lagrangian to bound the difference between the value of the exact action evaluated on the exact
solution and the value of the exact action evaluated on the theoretical high-order solution in the
approximation space,

(2) Bounding the difference between the approximate action on the theoretical high-order
approximation and the computable Galerkin approximation: Using our assumption that
the stationary point of the approximate action is a minimizer to bound the difference between the
value of the approximate action on the Galerkin approximation and the value of the approximate
action on the theoretical high-order approximation,
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(3) Bounding the difference between the approximate action and exact action on the the-
oretical high-order approximation: Using our assumption on the accuracy of the quadrature
rule to bound the difference between the exact action and the approximate action on the theoretical
high-order approximation,

(4) Combining the bounds: Using the three bounds to bound the difference between the Galerkin
discrete Lagrangian and the exact discrete Lagrangian.

Since Theorem 1.1 establishes a bound on the error of the one-step map from the error of the discrete
Lagrangian, the error between the discrete Galerkin Lagrangian and the exact discrete Lagrangian can be
used to establish error bounds for the resulting numerical method.

The careful reader will note that we have made a slight abuse of notation; in §2, we used n to denote
the number of basis points used to construct our interpolation functions, while in the proofs that follow, we
use n as a parameter to bound the error of approximations in the chosen approximation space. While these
two values are not necessarily the same, in practice the bound on the error of the approximations in the
approximation space is related to the number of basis points used to construct the approximation space. We
will be careful to point out where they are different in our numerical examples.

Theorem 3.1. Given an interval [0, h], and a Lagrangian L : TG→ R, suppose that ḡ (t) solves the Euler–
Lagrange equations on that interval exactly. Furthermore, suppose that the exact solution ḡ (t) falls within
the range of the natural chart (sufficiently short evolution), that is:

ḡ (t) = LgkΦ (η̄ (t))

for some η̄ (t) ∈ C2 ([0, h] , g). For the function space GMn (g0 × [0, h] , G) and the quadrature rule G, define
the Galerkin discrete Lagrangian LGd (g0, g1)→ R as

LGd (g0, g1, h) = ext
gn∈GMn(g0×[0,h],G)
gn(0)=g0,gn(h)=g1

h

m∑
j=1

bjL (gn (cjh) , ġn (cjh)) = h

m∑
h=1

bjL
(
g̃n (cjh) , ˙̃gn (cjh)

)
(11)

where g̃n (t) is the extremizing curve in GMn (g0 × [0, h] , G). If:

(1) (High quality approximation space) there exists an approximation η̂n ∈Mn ([0, h] , g) such that,

〈η̄ (t)− η̂n (t) , η̄ (t)− η̂n (t)〉
1
2 ≤ CAhn〈

˙̄η (t)− ˙̂ηn (t) , ˙̄η (t)− ˙̂ηn (t)
〉 1

2 ≤ CAh
n,

for some constants CA ≥ 0 and CA ≥ 0 independent of h,
(2) (Regular Lagrangian) the Lagrangian L is Lipschitz in the chosen norms in both its arguments,

that is:

|L (g1, ġ1)− L (g2, ġ2)| ≤ Lα (eg (g1, g2) + ea (ġ1, ġ2)) ,

(3) (Well-conditioned natural chart) the chart function Φ is well-conditioned in eg (·, ·) and ea (·, ·),
that is (9) and (10) hold,

(4) (Quadrature accuracy) for the quadrature rule G (f) = h
∑m
j=1 bjf (cjh) ≈

∫ h
0
f (t) dt, there exists

a constant Cg ≥ 0 such that,∣∣∣∣∣∣
∫ h

0

L (gn (t) , ġn (t)) dt− h
m∑
j=1

bjL (gn (cjh) , ġn (cjh))

∣∣∣∣∣∣ ≤ Cghn+1

for any gn (t) = Lg0Φ (ξ (t)) where ξ ∈Mn ([0, h] , g),
(5) (Minimizing stationary points) the stationary points of the discrete action and the continuous

action are minimizers,

then the variational integrator induced by LGd (g0, g1) has error O
(
hn+1

)
.
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Proof. We begin by rewriting the exact discrete Lagrangian and the Galerkin discrete Lagrangian:

∣∣LEd (g0, g1, h)− LGd (g0, g1, h)
∣∣ =

∣∣∣∣∣∣
∫ h

0

L (ḡ, ˙̄g) dt− h
m∑
j=1

bjL
(
g̃n (cjh) , ˙̃gn (cjh)

)∣∣∣∣∣∣ ,
where we have introduced g̃n (t), which is the stationary point of the local Galerkin action (11). We begin
by bounding the difference between the action evaluated on the exact solution, which is another expression
of the exact discrete Lagrangian, and the action evaluated on the theoretical high-order approximation to
the exact solution, step 1 of our qualitative outline. We introduce the theoretical high-order solution in the
approximation space, which takes the form ĝn (t) = LgkΦ (η̂n (t)), and compare the action evaluated on the
exact solution to the action evaluated on this solution:∣∣∣∣∣

∫ h

0

L (ḡ, ˙̄g) dt−
∫ h

0

L
(
ĝn, ˙̂gn

)
dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ h

0

L (ḡ, ˙̄g)− L
(
ĝn, ˙̂gn

)
dt

∣∣∣∣∣
≤
∫ h

0

∣∣∣L (ḡ, ˙̄g)− L
(
ĝn, ˙̂gn

)∣∣∣dt.
Now, we use the Lipschitz assumption (assumption 2) to establish the bound∫ h

0

∣∣∣L (ḡ, ˙̄g)− L
(
ĝn, ˙̂gn

)∣∣∣dt ≤ ∫ h

0

Lα

(
eg (ḡ, ĝn) + ea

(
˙̄g, ˙̂gn

))
dt

=

∫ h

0

Lα (eg (LgkΦ (η̄) , LgkΦ (η̂n)) +

ea

(
DΦ(η̄)Lg0Dη̄Φ ( ˙̄η) , DΦ(η̂n)Lg0Dη̂nΦ

(
˙̂ηn

)))
dt.

Next, we use the chart conditioning assumptions (assumption 3) to establish the bound∫ h

0

∣∣∣L (ḡ, ˙̄g)− L
(
ĝn, ˙̂gn

)∣∣∣ dt ≤ ∫ h

0

Lα

(
CG 〈η̄ − η̂n, η̄ − η̂n〉

1
2 + Cg

〈
˙̄η − ˙̂ηn, ˙̄η − ˙̂ηn

〉 1
2

+

CGg 〈η̄ − η̂, η̄ − η̂〉
1
2

)
dt

≤
∫ h

0

Lα
(
CGCAh

n + CgCAh
n + CGg CAh

n
)

dt

= Lα
((
CG + CGg

)
CA + CgCA

)
hn+1.

This establishes a bound between the exact action evaluated on the true solution (which yields the exact
discrete Lagrangian) and the theoretical high-order approximation in the approximation space, ĝn. Next,
we move on to step 2, step 3, and step 4 of our proof, establishing a bound between the approximate action
evaluated on our computable Galerkin approximation and the high-order approximation, computing a bound
on the difference between the approximate action and the exact action evaluated on the theoretical high-order
approximation, and then using these bounds to compute a bound on the error of the discrete Lagrangian.
Considering the Galerkin discrete action,

h

m∑
j=1

bjL (g̃n, g̃n) ≤ h
m∑
j=1

bjL
(
ĝn, ˙̂gn

)
≤
∫ h

0

L
(
ĝn, ˙̂gn

)
dt+ Cgh

n+1

≤
∫ h

0

L (ḡ, ˙̄g) dt+ Cgh
n+1 + Lα

((
CG + CGg

)
CA + CgCA

)
hn+1(12)

where we have used the assumption that the Galerkin approximation g̃n minimizes the Galerkin discrete
action (assumption 5) and the assumption on the accuracy of the quadrature (assumption 4). Now, using
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the fact that ḡ (t) minimizes the action and that GMn (g0 × [0, h] , G) ⊂ C2 ([0, h] , G) (assumption 5 again),

h

m∑
j=1

bjL
(
g̃n, ˙̃gn

)
≥
∫ h

0

L
(
g̃n, ˙̃gn

)
dt− Cghn+1

≥
∫ h

0

L (ḡ, ḡ) dt− Cghn+1(13)

Combining inequalities (12) and (13), we see that,∫ h

0

L (ḡ, ˙̄g) dt− Cghn+1 ≤ h
m∑
j=1

bjL
(
g̃n, ˙̃gn

)
≤
∫ h

0

L (ḡ, ˙̄g) dt+ Cgh
n+1 + Lα

((
CG + CGg

)
CA + CgCA

)
hn+1

which implies ∣∣∣∣∣∣
∫ h

0

L (ḡ, ˙̄g) dt− h
m∑
j=1

L
(
g̃n, ˙̃gn

)∣∣∣∣∣∣ ≤ (Cg + Lα
((
CG + CGg

)
CA + CgCA

))
hn+1.(14)

The left hand side of (14) is exactly
∣∣LEd (g0, g1, h)− LGd (g0, g1, h)

∣∣, and thus∣∣LEd (g0, g1, h)− LGd (g0, g1, h)
∣∣ ≤ Cophn+1

where

Cop = Cg + Lα
((
CG + CGg

)
CA + CgCA

)
.

This states that the Galerkin discrete Lagrangian approximates the exact discrete Lagrangian with error
O
(
hn+1

)
, and by Theorem (1.1) this further implies that the Lagrangian update map, and hence the Lie

group Galerkin variational integrator has error O
(
hn+1

)
. �

3.1.2. Geometric Convergence. Under similar assumptions, we can demonstrate that Lie group spectral
variational integrators will converge geometrically with n-refinement, that is, enrichment of the function
space GMn (g0 × [0, h] , G) as opposed to the shortening of the time-step h. The fundamental assumptions
and technique of the proof is essentially the same as the proof of arbitrarily high-order convergence: assuming
the Lagrangian is sufficiently regular, that the approximation space and the quadrature rule are sufficiently
accurate, that the natural chart is well-conditioned and that the exact solution of the system does not exceed
the range of the natural chart, the curve that results from solving the discrete Euler–Poincaré equations will
converge geometrically as the dimension of the approximation space is increased. A notable difference
between the statement of the previous theorem and this one is that the order of the quadrature rule must
be increased along with the dimension of the approximation space in order to achieve convergence — this is
because once the approximation space becomes sufficiently accurate, it is the order of the quadrature rule
that introduces the most significant source of error, and only by increasing the order of the quadrature rule
can one achieve the desired rate of convergence.

Theorem 3.2. Given an interval [0, h], and a Lagrangian L : TG→ R, suppose that ḡ (t) solves the Euler–
Lagrange equations on that interval exactly. Furthermore, suppose that the exact solution ḡ (t) falls within
the range of the natural chart (sufficiently short evolution), that is:

ḡ (t) = LgkΦ (η̄ (t))

for some η̄ ∈ C2 ([0, h] , g). For the function space Mn ([0, h] , g) and the quadrature rule G, define the
Galerkin discrete Lagrangian LGd (g0, g1)→ R as

LGd (g0, g1, h) = ext
gn∈GMn(g0×[0,h],G)
gn(0)=g0,gn(h)=g1

h

m∑
j=1

bjL (gn (cjh) , ġn (cjh)) = h

m∑
h=1

bjL
(
g̃n (cjh) , ˙̃gn (cjh)

)
(15)

where g̃n (t) is the extremizing curve in GMn (g0 × [0, h] , G). If:
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(1) (High quality approximation space) there exists an approximation η̂n ∈Mn ([0, h] , g) such that,

〈η̄ − η̂n, η̄ − η̂n〉
1
2 ≤ CAKn

A〈
˙̄η − ˙̂ηn, ˙̄η − ˙̂ηn

〉 1
2 ≤ CAK

n
A,

for some constants CA ≥ 0 and CA ≥ 0, 0 < KA < 1 independent of n,
(2) (Regular Lagrangian) the Lagrangian L is Lipschitz in the chosen error norm in both its argu-

ments, that is:

|L (g1, ġ1)− L (g2, ġ2)| ≤ Lα (eg (g1, g2) + ea (ġ1, ġ2))

(3) (Well-conditioned natural chart) the chart function Φ is well-conditioned in eg (·, ·) and ea (·, ·),
that is (9) and (10) hold,

(4) (Quadrature accuracy)there exists a sequence of quadrature rules {Gn}∞n=1, Gn (f) = h
∑mn
j=1 bnjf

(
cnjh

)
≈∫ h

0
f (t) dt, and there exists a constant 0 < Kg < 1 independent of n such that,∣∣∣∣∣∣

∫ h

0

L (gn (t) , ġn (t)) dt− h
m∑
j=1

bjL (gn (cjh) , ġn (cjh))

∣∣∣∣∣∣ ≤ CgKn
g

for any gn (t) = Lg0Φ (ξ (t)) where ξ ∈Mn ([0, h] , g),
(5) (Minimizing stationary points) the stationary points of the discrete action and the continuous

action are minimizers,

then the variational integrator induced by LGd (g0, g1) has error O (Kn).

The proof for this theorem is very similar to that for Theorem 3.1, using the modified assumptions in the
obvious way. It would be tedious to repeat it here, but it has been included in the appendix for completeness.

These proofs may seem quite strong in their assumptions. However, many of the assumptions can be viewed
as design guidelines for constructing an integrator: in order to achieve high-order or geometric convergence
with a Lie group Galerkin variational integrator, one must be careful when selecting the approximation
space, quadrature rule, and natural chart used in its construction. As we shall see in §4, there are many
reasonable choices of function spaces, natural chart functions, quadrature rules and error norms such that the
assumptions are satisfied. The more difficult assumption is the minimizers assumption, that the stationary
points of both the discrete and exact actions are minimizers. While this may not hold in general, we will
show here that for a large class of Lagrangians of interest, this assumption holds. We will specifically examine
Lagrangians over SO (3) of the form:

L
(
R, Ṙ

)
= tr

(
ṘTRJdR

T Ṙ
)
− V (R) ,(16)

where R ∈ SO (3), which is the rigid body under the influence of a potential. We will show that for Lie
group Galerkin variational integrators, stationary points of the discrete action are minimizers under a certain
time-step restriction. In addition, in §4 we will give a specific construction of a Lie group Galerkin variational
integrator for this type of problem, and demonstrate the expected convergence on several example problems.

3.2. Stationary Points are Minimizers. A major assumption in both Theorem 3.1 and Theorem 3.2 is
that the stationary point of the discrete action is a minimizer. While in general this may not hold, we can
show that given a time-step restriction on h, that this condition holds for problems on SO (3) for Lagrangians
of the form

L
(
R, Ṙ

)
= tr

(
ṘTRJdR

T Ṙ
)
− V (R) .

This includes a broad range of problems. Furthermore, we establish a similar result for problems in vector
space in Hall and Leok [13], and it may be possible to combine these two results to include a large class of
problems, including those that evolve on the special Euclidean group SE (3) = R3 n SO (3).

Again, the proof of the following lemma may seem daunting at first glance. This is due the to fact that
the Lagrangian maps curves in the tangent bundle of the Lie group to the real numbers, and hence in order
to exploit the vector space structure of the Lie algebra, we must apply a mapping from the Lie algebra into
the Lie group. This mapping adds necessary complication, however, behind this complication is a relatively
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straightforward idea: when the time-step is sufficiently short, the action of the Lagrangian (16) can be
approximated by the difference of between the integral of a quadratic form on a curve through R3 and the
integral of a quadratic form on its derivative. Since both quadratic forms are positive-definite, we can make
use of the Poincaré inequality to show that the integral of the quadratic form on the derivative dominates
the integral quadratic form on the curve itself, and this results in their difference being strictly increasing
around the stationary point, which implies the stationary point is a minimizer.

Furthermore, since we are examining the stationary points on functionals that map sufficiently smooth
curves to the reals, we must appeal to functional analysis to provide the machinery to complete the proof.
This means that where finite-dimensional analysis might use the standard gradient or Hessian, we make use
of the first and second Fréchet derivative in order to extend the arguments about minimization. However,
the overall idea remains the same — in a broad sense, we are simply demonstrating that the integral of one
quadratic form dominates another.

Lemma 3.1. Consider a Lagrangian on SO (3) of the form

L
(
R, Ṙ

)
= tr

(
ṘTRJdR

T Ṙ
)
− V (R) ,

where R ∈ SO (3) and Jd is a diagonal matrix with jii > 0 for all i, and V is a smooth function on SO (3).
If a Lie group Galerkin variational integrator is constructed with {φi}ni=1 forming the basis for polynomials
of degree n+ 1 and the quadrature rule is of order at least 2n+ 2, then the stationary points of the discrete
action are minimizers.

Proof. We begin by noting that we can identify every element of so (3), the Lie algebra associated with
SO (3), with an element of R3 using the hat map ·̂ : R3 → so (3),̂ a

b
c

 =

 0 −c b
c 0 −a
−b a 0

 .(17)

Hence, it is natural to consider the discrete action as a function on H1
(
[0, h] ,R3

)
,

Sd
(
ξ (t) , ξ̇ (t)

)
= h

m∑
j=1

bjL

(
LgkΦ

(
ξ̂ (cjh)

)
,
d

dt
LgkΦ

(
ξ̂ (cjh)

))
,

where ξ (t) ∈ H1
(
[0, h] ,R3

)
. Let ξ̌ (t) be the stationary point of Sd in the space{
ξ (t) |ξ (t) ∈ H1

(
[0, h] ,R3

)
, ξ (0) = ξ0, ξ (h) = ξh

}
,

which is exactly the type of space we seek to extremize the action over when constructing our discrete
Lagrangian. Now, consider a perturbation to ξ̌ (t) in this space, ξ̌ (t) + δξ (t). Since ξ̌ (t) is the extremizer
over curves ξ (t) subject to the constraints ξ (0) = ξ0, ξ (h) = ξ1, we know δξ (0) = 0 and δξ (h) = 0, but it
is otherwise arbitrary. Hence, we consider an arbitrary perturbation δξ (t) ∈ H1

0

(
[0, h] ,R3

)
. Since Sd is a

function on H1
(
[0, h] ,R3

)
, we can Taylor expand around the stationary point:

Sd
(
ξ̌ + δξ, ˙̌ξ + δξ̇

)
= Sd

(
ξ̌, ˙̌ξ
)

+DSd
(
ξ̌, ˙̌ξ
) [(

δξ, δξ̇
)]

+
1

2
D2Sd (η, η̇)

[(
δξ, δξ̇

)] [(
δξ, δξ̇

)]
where η (t) = λ (t) ξ0 (t) + (1− λ (t)) δξ (t) for some λ (t) : [0, h] → [0, 1] and DSd, D2Sd are the first and
second Frechet derivative of Sd, respectively. One can think of the curve η (t) as being the infinite-dimensional
analog to the intermediate point in the remainder of the familiar finite-dimensional Taylor theorem. Thus

Sd
(
ξ̌ + δξ, ˙̌ξ + δξ̇

)
− Sd

(
ξ̌, ˙̌ξ
)

= DSd
(
ξ̌, ˙̌ξ
) [(

δξ, δξ̇
)]

+
1

2
D2Sd (η, η̇)

[(
δξ, δξ̇

)] [(
δξ, δξ̇

)]
.

Now, note that

DSd
(
ξ̌, ˙̌ξ
) [(

δξ, δξ̇
)]

= 0

for arbitrary δξ (t) is exactly the stationarity conditions for the internal stage discrete Euler–Poincaré equa-
tions, and thus the first Frechet derivative vanishes at the stationary point. Therefore,

Sd
(
ξ̌ + δξ, ˙̌ξ + δξ̇

)
− Sd

(
ξ̌, ˙̌ξ
)

=
1

2
D2Sd (η, η̇)

[(
δξ, δξ̇

)] [(
δξ, δξ̇

)]
.
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We will examine D2Sd. The second Frechet derivative of the discrete action is given by

D2Sd
(
ξ, ξ̇
) [(

δξa, δξ̇a

)] [(
δξb, δξ̇b

)]
= h

m∑
j=1

bj∇2L
(
ξ, ξ̇
) [(

δξa (cjh) , δξ̇a (cjh)
)] [(

δξb (cjh) , δξ̇b (cjh)
)]
.

In order to examine the second Frechet derivative, we must examine the Hessian of the Lagrangian. We will
do this term-wise. The Lagrangian has the form

L
(
ξ, ξ̇
)

= K
(
ξ, ξ̇
)
− V (ξ)

where

K
(
ξ (t) , ξ̇ (t)

)
= Ṙ (ξ (t))

T
R (ξ (t)) JdR (ξ (t))

T
Ṙ (ξ (t)) .

is the kinetic energy and V is the potential energy, and from this it follows that

∇2L
(
ξ, ξ̇
)

[·, ·] = ∇2K
(
ξ, ξ̇
)

[·, ·]−∇2V
(
ξ, ξ̇
)

[·, ·] .

With careful analysis, the following bound can be established on ∇2K,

∇2K (η (t) , η̇ (t))
[(
δξ, δξ̇

)] [(
δξ, δξ̇

)]
≥ Cξ̇δξ̇ (t)

T
δξ̇ (t)− Cξδξ (t)

T
δξ (t) ,(18)

for some constants Cξ̇ > 0 and Cξ > 0. The computation of this bound is involved, and including it here
introduces a tremendous amount of complexity which may muddle the proof of the lemma at first pass.
However, it is also not trivial to conclude, and hence its detailed derivation can be found in the appendix.

We now turn our attention to the potential term, V (R (ξ (t))). Since V and R (·) are both smooth we

know that the second partial derivatives of V (R (·)) are bounded, and since V does not depend on ξ̇ (t),

∇2V (R (η (t)))
[(
δξ (t) , δξ̇ (t)

)] [(
δξ (t) , δξ̇ (t)

)]
≤ CV δξ (t)

T
δξ (t)(19)

for a constant CV . Thus, combining (18) and (19), we can bound ∇2Sd,

∇2Sd (η (t) , η̇ (t))
[(
δξ (t) , δξ̇ (t)

)] [(
δξ (t) , δξ̇ (t)

)]
≥

h

m∑
j=1

bjCξ̇δξ̇ (cjh)
T
δξ̇ (cjh)− (Cξ + CV ) δξ (cjh)

T
δξ (cjh) .

Since, by assumption, δξ (t) and δξ̇ (t) are polynomials of degree at most n+1, δξ (t)
T
δξ (t) and δξ̇ (t)

T
δξ̇ (t)

is a polynomial of degree at most 2n+ 2, so the quadrature rule is exact, and thus

h

m∑
j=1

bjCξ̇δξ̇ (cjh)
T
δξ̇ (cjh)− (Cξ + CV ) δξ (cjh)

T
δξ (cjh) =(20)

Cξ̇

∫ h

0

δξ̇ (t)
T
δξ̇ (t) dt− (Cξ + CV )

∫ h

0

δξ (t)
T
δξ (t) dt.

δξ (t) ∈ H1
0

(
[0, h] ,R3

)
, so we can apply the Poincaré inequality to see

Cξ̇

∫ h

0

δξ̇ (t)
T
δξ̇ (t) dt− (Cξ + CV )

∫ h

0

δξ (t)
T
δξ (t) dt

≥
Cξ̇π

h2

∫ h

0

δξ (t)
T
δξ (t) dt− (Cξ + CV )

∫ h

0

δξ (t)
T
δξ (t) dt

=

(
Cξ̇π

h2
− (Cξ + CV )

)∫ h

0

ξ (t)
T
ξ (t) dt

which is positive so long as h <
√

Cξ̇π

Cξ+CV
. Thus, given that h <

√
Cξ̇π

Cξ+CV
, for arbitrary

(
δξ (t) , δξ̇ (t)

)
Sd
(
ξ̌ (t) + δξ (t) , ˙̌ξ (t) + δξ̇ (t)

)
− Sd

(
ξ̌ (t) , ˙̌ξ (t)

)
> 0

which demonstrates that
(
ξ̌ (t) , ˙̌ξ (t)

)
minimizes the action. �
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It should be noted that the only use of the assumption that the approximation space is polynomials of
order at least n is when we use the order of the quadrature rule to change the quadrature to the exact integral
(20). Thus, this proof can easily be generalized to other approximation spaces, so long as the quadrature
rule used is exact for the product of any two elements of the approximation space and the product of any
two derivatives of the elements of the approximation space.

3.3. Convergence of Galerkin Curves. Lie group Galerkin variational integrators require the construc-
tion of a curve

g̃n (t) ∈ GMn (gk × [0, h] , G)

such that

g̃n (t) = argext
gn∈GMn(gk×[0,h],G)
gn(0)=gk,gn(h)=gk+1

m∑
j=1

bjL (gn (cjh) , ġn (cjh)) .

This curve, which we shall refer to as the Galerkin curve, is a finite-dimension approximation to the true
solution of the Euler–Poincaré equations over the interval [0, h]. For the one-step map, we are only concerned
with the right endpoint of the Galerkin curve, as

gk+1 = gn (h) .

However, the curve itself has excellent approximation properties as a continuous approximation to the so-
lution of the Euler–Poincaré equations over the interior of the interval [0, h]. Because Lie group Galerkin
variational integrators are capable of taking very large time-steps, the dynamics during the interior of these
time-steps may be of interest, and hence the quality of the approximation by these Galerkin curves is also of
particular interest. For example, see the numerical simulation of the 3 dimensional pendulum in §5, where
the dynamics of the pendulum on the interior of the time-step are sophisticated and interesting in their own
right.

Ideally, these curves would have the same order of error as the one-step map. Unfortunately, we can only
establish error estimates with lower orders of approximation. We established similar results in the vector
space case, see Hall and Leok [13], and observed that at high enough accuracy, there is indeed greater error
in the Galerkin curve than the one-step map. However, when comparing these curves to the true solution,
typically the error introduced by the inaccuracies in (gk, gk+1) dominates the error from the Galerkin curve,
and thus this lower rate of convergence was not observed in practice.

Before we formally establish the rates of convergence for the Galerkin curves, we will briefly review the
norms we will use in our theorems and proofs. First, recall the Lp norm for functions over the interval [0, h]
given by

‖f‖Lp([0,h]) =

(∫ h

0

|f |p dt

) 1
p

and next, the Sobolev norm ‖·‖W 1,p([0,h]) for functions on the interval [0, h], given by:

‖f‖W 1,p([0,h]) =

(
‖f‖pLp([0,h]) +

∥∥∥ḟ∥∥∥p
Lp([0,h])

) 1
p

.

Also, note that for curves ξ (t) ∈ g, |ξ (t)| = 〈ξ (t) , ξ (t)〉
1
2 . We will make extensive use of these definitions in

the next three theorems.
We first present an error theorem which bounds the error in the Galerkin curve, subject to conditions on

the action. Again, while the notation for the theorem may be slightly cumbersome, the idea is relatively
straightforward: if the action is sufficiently well behaved (we will define this more precisely in the statement
of the theorem), then

(1) the bound on the difference between the exact discrete Lagrangian and the Lie group Galerkin
discrete Lagrangian can be used to bound the difference of the value of the action evaluated on the
true solution and the value of the action evaluated on the Galerkin curve, which in turn

(2) can be used to bound the error of the Galerkin curve.
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In this way, we use the error of the one-step map to bound the error of the Galerkin curve.

Theorem 3.3. Under the same assumptions as Theorem 3.2, consider the action as a function of the local
left trivialization of the Lie group curve and its derivative,

Sg (η̄ (t) , ˙̄η (t)) =

∫ h

0

L

(
LgΦ (η̄ (t)) ,

d

dt
LgΦ (η̄ (t))

)
dt,

where LgΦ (η̄ (t)) satisfies the Euler–Poincaré equations exactly. If at (η̄ (t) , ˙̄η (t)) the action Sg (·, ·) is twice
Frechet differentiable and the second Frechet derivative is coercive in variations of the Lie algebra, that is,∣∣∣D2Sg ((η̄ (t) , ˙̄η (t)))

[(
δξ (t) , δξ̇ (t)

)] [(
δξ (t) , δξ̇ (t)

)]∣∣∣ ≥ Cf ‖δξ (t)‖2W 1,1([0,h])

for all δξ (t) ∈ H1
0 ([0, h] , g), then if the one-step map has error O (Kn), the Galerkin curves have error

O
(√

K
n
)

in Sobolev norm ‖·‖W 1,1([0,h]).

Proof. We start with the bound (33), given at the end of the proof of Theorem 3.2 in the appendix,∣∣LEd (gk, gk+1, h)− LGd (gk, gk+1, n)
∣∣ ≤ CsKn

s ,

expand using the definitions of LEd (gk, gk+1, h) and LGd (gk, gk+1, n), and using the assumption on the accu-
racy of the quadrature rule

CsK
n
s ≥

∣∣LEd (gk, gk+1, h)− LGd (gk, gk+1, n)
∣∣

≥

∣∣∣∣∣∣
∫ h

0

L

(
LgkΦ (η̄ (t)) ,

d

dt
LgkΦ (η̄ (t))

)
dt−

m∑
j=1

bjL

(
LgkΦ (η̃ (t)) ,

d

dt
LgkΦ (η̃ (t))

)∣∣∣∣∣∣
≥

∣∣∣∣∣
∫ h

0

L

(
LgkΦ (η̄ (t)) ,

d

dt
LgkΦ (η̄ (t))

)
dt−

∫ h

0

L

(
LgkΦ (η̃ (t)) ,

d

dt
LgkΦ (η̃ (t))

)
dt

∣∣∣∣∣− CgKn
g

=
∣∣Sg (η̄ (t) , ˙̄η (t))−Sg

(
η̃ (t) , ˙̃η (t)

)∣∣− CgKn
g .

We know from the proof of Theorem 3.2 that Kg ≤ Ks, and this implies

(Cs + Cg)K
n
s ≥

∣∣Sg (η̄ (t) , ˙̄η (t))−Sg

(
η̃ (t) , ˙̃ηn (t)

)∣∣ .(21)

We now Taylor expand around the exact solution (η̄ (t) , ˙̄η (t))

Sg

(
η̃ (t) , ˙̃η (t)

)
=Sg (η̄ (t) , ˙̄η (t)) +DSg (η̄ (t) , ˙̄η (t))

[
η̄ (t)− η̃ (t) , ˙̄η (t)− ˙̃η (t)

]
(22)

+
1

2
D2Sg (ν (t) , ν̇ (t))

[(
η̄ (t)− η̃ (t) , ˙̄η (t)− ˙̃η (t)

)] [(
η̄ (t)− η̃ (t) , ˙̄η (t)− ˙̃η (t)

)]
,

where ν (t) is a curve in g. Now, note that DSg (η̄ (t) , ˙̄η (t)) = 0 is exactly the stationarity condition of the
Euler–Poincaré equations. Thus, inserting (22) into (21) yields

(Cs + Cg)K
n
s ≥

1

2

∣∣D2Sg (ν (t) , ν̇ (t))
[(
η̄ (t)− η̃ (t) , ˙̄η (t)− ˙̃η (t)

)] [(
η̄ (t)− η̃ (t) , ˙̄η (t)− ˙̃η (t)

)]∣∣
≥ Cf

2
‖η̄ (t)− η̃ (t)‖2W 1,1([0,h])(23)

where we have made use of the coercivity of the second derivative of the action. Simplifying (23) yields√
2 (Cs + Cg)

Cf

√
Ks

n
≥ ‖η̄ (t)− η̃ (t)‖W 1,1([0,h]) ,

which establishes convergence in the Sobolev norm. �

Just as we proved a theorem about arbitrarily high-order convergence, Theorem 3.1, that was analogous
to the geometric convergence theorem, Theorem 3.2, we can establish an analogous convergence theorem for
Galerkin curves with h-refinement.
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Theorem 3.4. Under the same assumptions as Theorem 3.1, consider the action as a function of the local
left trivialization of the Lie group curve and its derivative,

Sg (η̄, ˙̄η) =

∫ h

0

L

(
LgΦ (η̄) ,

d

dt
LgΦ (η̄)

)
dt.

If at (η̄, ˙̄η) the action Sg (·, ·) is twice Frechet differentiable and the second Frechet derivative is coercive
in variations of the Lie algebra as in Theorem 3.3, then if the one-step map has error O

(
hn+1

)
, then the

Galerkin curves have error O
(
h
n+1
2

)
in the Sobolev norm ‖·‖W 1,1([0,h]).

The proof Theorem 3.4 is nearly identical to that of Theorem 3.3, the only difference being that the
bounds containing Kn

s are replaced with bounds containing hn+1 in the obvious way.
Like the assumption that the stationary point of the discrete action is a minimizer in Theorems 3.2 and

3.1, the assumption that the second Frechet derivative of the action is coercive might seem quite strong.
However, we can show that for Lagrangians on SO (3) of the form

L
(
R, Ṙ

)
= tr

(
ṘTRJdR

T Ṙ
)
− V (R) ,

the second Frechet derivative of the action is coercive, subject to a time-step restriction on h.

Lemma 3.2. For Lagrangians on SO (3) of the form

L
(
R, Ṙ

)
= tr

(
ṘTRJdR

T Ṙ
)
− V (R) ,

there exists a C > 0 such that for h < C, the second Frechet derivative of Sg (·, ·) at (η̄ (t) , ˙̄η (t)) is coercive
on the interval [0, h].

The proof of this theorem is similar in spirit to the proof that the stationary points of the actions are
minimizers, Lemma 3.1, with the caveat that we now need to prove a slightly stronger result. This is achieved
by leveraging much of the work of Lemma 3.1, and then carefully extending that analysis to achieve the
stronger result, although at the cost of a stronger restriction on h. Again, the proof of the theorem is involved
and can be daunting at first pass, and since it is conceptually similar to the proof of Lemma 3.1, we will not
present it here. However, it is sufficiently distinct from the proof of Lemma 3.1 that it may be of interest in
its own right, and hence it is included in the appendix.

4. Cayley Transform Based Method on SO (3)

Because the construction of a Lie group Galerkin variational integrator can be involved, we will provide an
example of an integrator based on the Cayley transform for the rigid body on SO (3) and related problems.
We will first construct the method and then verify that it satisfies the hypotheses of Theorems 3.1 and 3.2,
and in §5 we will demonstrate numerically that it exhibits the expected convergence.

Additionally, discretizing the rigid body amounts to discretizing a kinetic energy term that can be used
in many different applications. It appears that discretizing the kinetic energy term of the rigid body is more
painstaking than the potential term, so we provide a detailed description so that others will not have to
repeat the derivation of this discretization for future applications.

4.1. Rigid Body on SO (3). The Lagrangian:

L
(
R, Ṙ

)
= tr

(
ṘTRJdR

T Ṙ
)

(24)

Jd =
1

2
tr [J ] I3×3 − J

J = tr [Jd] I3×3 − Jd,(25)

where R ∈ SO (3) and J are the moments of inertia in the reference coordinate frame, gives rise to the
equations of motion for the rigid body. The rigid body has a rich geometric structure, which is discussed in
Lee et al. [20, 21], Celledoni and Owren [8], and Marsden and Ratiu [27]. In addition to being an interesting
example of a non-canonical Lagrangian system, it is a standard model problem for discretization for numerical
methods on Lie groups, and an overview of integrators applied to the rigid body can be found in Hairer et al.
[12].

19



4.2. Construction. To construct the Lie group Galerkin variational integrator, we will have to choose:

(1) a map Φ (·) : so (3)→ SO (3),
(2) a finite-dimensional function space Mn ([0, h] , g), and
(3) a quadrature rule,

and to complete the error analysis, we must also choose

(1) a metric on so (3) 〈·, ·〉,
(2) error functions eg (·, ·) and ea (·, ·).

For our construction, we will make use of the Cayley transform for our map Φ (·), Lagrange interpolation
polynomials through so (3) for the finite-dimensional function space Mn ([0, h] , g), that is,

Mn ([0, h] , g) =

{
ξ (t)

∣∣∣∣∣ ξ (t) =

n∑
i=1

q̂iφi (t), qi ∈ R3, φi (t) is the Lagrange interpolation polynomial for ti

}
,

where ·̂ is that hat map described by (17), and high-order Gauss–Legendre quadrature for our quadrature
rule. For the error analysis we will choose:

〈η̂, ν̂〉 = ηT ν,

eg (G1, G2) = ‖G1 −G2‖2
ea (η̂, ν̂) = ‖η̂ − ν̂‖2 ,

for arbitrary G1, G2 ∈ SO (3) and η, ν ∈ R3, where the ‖·‖2 norm is understood as arising from the ‖·‖2 from
the embedding space R3×3. We will discuss these below, and elaborate on the motivation for these choices
in our construction.

4.2.1. The Cayley Transform. To construct our Lie group Galerkin variational Integrator, we will make use
of the Cayley transform, Φ (·) : so (3)→ SO (3) which is given by:

Φ (q) = (I −Q) (I +Q)
−1
.

The reader should note that we are using an unscaled version of the Cayley transform, but for the purposes of
constructing the natural chart, different versions of the Cayley transform should result in equivalent methods.
Furthermore, utilizing the Cayley transform to construct the integrator is certainly not the only valid option;
different choices of maps, such as the exponential map, would result in equally valid methods. We make
use of the Cayley transform simply because it is easy to manipulate and compute, is its own inverse, and
because it satisfies our chart conditioning assumptions, as we will establish shortly.

Lemma 4.1. For η, ν ∈ so (3), so long as

2 ‖η‖2 + ‖ν‖2 < 1,(26)

the natural chart constructed by the Cayley transform locally satisfies chart conditioning assumption, that is:

‖Φ (η)− Φ (ν)‖2 ≤ CG 〈η − ν, η − ν〉
1
2

‖DηΦ (η̇)−DνΦ (ν̇)‖2 ≤ Cg 〈η − ν, η − ν〉
1
2 + CGg 〈η̇ − ν̇, η̇ − ν̇〉

1
2 .

If ‖η − ν‖2 < ε, assumption (40) can be relaxed to

‖η‖2 + ε < 1.

The proof of this lemma amounts to a very long sequence of matrix inequalities, and again for brevity and
clarity’s sake we shall not include it here; it can be found in the appendix. It should be noted that as ‖ν‖2
or ‖η‖2 approaches 1, CG, Cg and CGg increase without bound. This amounts to a time-step restriction for
the method; if the configuration changes too dramatically during the time-step, the chart will become poorly
conditioned and the numerical solution will degrade. However, as long as ‖ν‖2 < Ccon and ‖η‖2 < Ccon on
each time-step for some Ccon < 1 which is independent of the number of the time-step, these constants will
remain bounded and the natural chart will be well-conditioned.
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4.2.2. Choice of Basis Functions. The second feature of the construction of our Cayley transform Lie group
Galerkin variational integrator is the choice of function space Mn ([0, h] , g) for approximation of curves in
the Lie algebra. Since the curves in the Lie algebra so (3) that we use have a natural correspondence with
curves in R3 through the hat map, constructing these curves reduces to choosing an approximation space
for curves in R3.

We make the choice of polynomials of degree at most n for Mn ([0, h] , g). We choose polynomials because
approximation theory and particularly the theory of spectral numerical methods, see Trefethen [38], tells
us that polynomials have excellent convergence under both h and n refinement to smooth curves, and
in particular, analytic curves. For the basis functions {φi (t)}ni=1, we choose φi (t) to be the Lagrange
interpolation polynomial for the i-th of n Chebyshev points rescaled to the interval [0, h], that is

φi (t) =

∏n
j=1,j 6=i (t− tj)∏n
j=1,j 6=i (ti − tj)

for ti = h
2 cos

(
iπ
n

)
+ h

2 . While our convergence theory does not depend on the choice of polynomial basis,
there are two major benefits for this choice of basis functions. The first is that these polynomials interpolate
0 and h, which greatly simplifies the computation of the discrete Legendre transforms D1Ld (Rk, Rk+1) and
D2Ld (Rk−1, Rk). The second is that this choice of basis function results in methods which have internal
stage equations that are more numerically stable in practice than other choices of interpolation points, most
likely because of the excellent stability properties of the interpolation polynomials that are constructed from
them. The interested reader is referred to Trefethen [38] and Boyd [6] and the references therein for more
details on spectral numerical methods.

4.2.3. Choice of Quadrature Rule. The final selection we must make when constructing the integrator is
a choice of quadrature rule. We choose to use Gaussian quadrature, mostly because this quadrature rule
is optimally accurate in the number of points and because it is simple to compute higher-order Gaussian
quadrature points and weights by solving a small eigenvalue problem. However, it is possible to use other
rules, and we make no claim that our choice is the best for our choice of parameters.

4.3. Discrete Euler–Poincaré Equations. While in §2.2.3 we presented a general form of the internal
stage discrete Euler–Poincaré equations in coordinate-free notation, direct construction of these equations is
probably not the easiest way to formulate a numerical method. This is because it requires the computation
and composition of many different functions, some of which may be complicated (for example, working
out Dα,α̇DαΦ (Dqiα,Dqi α̇) for the Cayley transform is straightforward, but also slightly obnoxious). An
alternative approach, to which we alluded in §2.2.3, is to compute the discrete action in coordinates, and
then explicitly compute the stationarity conditions for this discrete action. We do this here for the rigid
body equations.

For the construction of the Lie group Galerkin variational integrator for the rigid body, we make use of
the following functions:

Rn

({
ξi
}n
i=1

, t
)

= RkΦ

(
n∑
i=1

ξ̂iφi (t)

)
L
(
R (t) , Ṙ (t)

)
= tr

(
Ṙ (t)

T
R (t) JdR (t)

T
Ṙ (t)

)
Ld (Rk, Rk+1) = ext

Rn∈GMn(Rk×[0,h],G)
Rn(0)=Rk,Rn(h)=Rk+1

h

m∑
j=1

bjL
(
Rn (cjh) , Ṙn (cjh)

)
(27)

where ξi ∈ R3. Since the curve Rn (t) is a function on n points in R3, denoting ξi =
(
ξia, ξ

i
b, ξ

i
c

)
, we can write

(27) as

Ld (Rk, Rk+1) = ext
ξ0=0,ξ̂n=Φ−1(RTkRk+1)

h

m∑
j=1

bj
2(

1 + ‖ξ (cjh)‖22
)2

(
I1ϕ (ξc, ξa, ξb)

2
+

I2ϕ (ξb, ξc, ξa)
2

+ I3ϕ (ξa, ξb, ξc)
2
)
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where

ϕ (ξa, ξb, ξc) = ξ̇a (cjh) + ξb (cjh) ξ̇c (cjh)− ξc (cjh) ξ̇b (cjh) ,

ϕ (ξc, ξa, ξb) and ϕ (ξb, ξc, ξa) are defined analogously, and

Ii =
∑
j 6=i

(Jd)jj

ξx (t) =

n∑
i

ξixφi (t)

ξ (t) = (ξa (t) , ξb (t) , ξc (t)) .

Forming the action sum as a function of the ξi,

Sd
({
ξi
}n
i=1

)
= h

m∑
j=1

bj
2(

1 + ‖ξ (cjh)‖22
)2

(
I1ϕ (ξc, ξa, ξb)

2
+ I2ϕ (ξb, ξc, ξa)

2
+ I3ϕ (ξa, ξb, ξc)

2
)

computing its variational derivative from ξi directly and setting it equal to 0,

d

dε
Sd
({
ξi + εδξi

}n
i=1

)∣∣∣∣
ε=0

= 0,

gives the internal stage discrete Euler–Poincaré equations,

h

m∑
j=1

bj4
(

1 + ‖ξ‖22
)−2

[
(I3ϕ (ξc, ξa, ξb))

(
−2
(

1 + ‖ξ‖22
)−1

ϕ (ξc, ξa, ξb) ξaφi + ξ̇bφi − ξbφ̇i
)

+(28a)

(I2ϕ (ξb, ξc, ξa))

(
−2
(

1 + ‖ξ‖22
)−1

ϕ (ξb, ξc, ξa) ξaφi + ξcφ̇i − ξ̇cφi
)

+

(I1ϕ (ξa, ξb, ξc))

(
−2
(

1 + ‖ξ‖22
)−1

ϕ (ξa, ξb, ξc) ξaφi + φ̇i

)]
= 0

h

m∑
j=1

bj4
(

1 + ‖ξ‖22
)−2

[
(I3ϕ (ξc, ξa, ξb))

(
−2
(

1 + ‖ξ‖22
)−1

ϕ (ξc, ξa, ξb) ξbφi + ξaφ̇i − ξ̇aφi
)

+(28b)

(I2ϕ (ξb, ξc, ξa))

(
−2
(

1 + ‖ξ‖22
)−1

ϕ (ξb, ξc, ξa) ξbφi + φ̇i

)
+

(I1ϕ (ξa, ξb, ξc))

(
−2
(

1 + ‖ξ‖22
)−1

ϕ (ξa, ξb, ξc) ξbφi + ξ̇cφi − ξcφ̇i
)]

= 0

h

m∑
j=1

bj4
(

1 + ‖ξ‖22
)−2

[
(I3ϕ (ξc, ξa, ξb))

(
−2
(

1 + ‖ξ‖22
)−1

ϕ (ξc, ξa, ξb) ξcφi + φ̇i

)
+(28c)

(I2ϕ (ξb, ξc, ξa))

(
−2
(

1 + ‖ξ‖22
)−1

ϕ (ξb, ξc, ξa) ξcφi + ξ̇aφi − ξaφ̇i
)

+

(I1ϕ (ξa, ξb, ξc))

(
−2
(

1 + ‖ξ‖22
)−1

ϕ (ξa, ξb, ξc) ξcφi + ξbφ̇i − ξ̇bφi
)]

= 0,

for i = 2, ..., n − 1, and where we have suppressed the t argument on all of our functions. Solving these
equations, along with the condition ξ1 = 0 and the discrete Euler–Poincaré equations

D1Ld (Rk, Rk+1) +D2Ld (Rk−1, Rk) = 0,(29)

which we will discuss in §4.3.1, yields R̃ (t), the stationary point of the discrete action. Using this stationary

point, computing R̃ (h) = Rk+1 gives us the next step of our one-step map.
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4.3.1. Momentum Matching. As we mentioned in our general derivation of the discrete Euler–Poincaré equa-
tions, (29) must be treated with care. We described in §2 an expedient method for computingD1Ld (Rk, Rk+1)
so that the result is compatible with our change of natural charts. We will provide an explicit example below.

We already know the expression for D1Ld (Rk, Rk+1) for the coordinates in the current natural chart, the

vector of the form (28a) – (28c), with i = 1. This is the map ∂Ld
∂ξk

described in §2.2.4. Now, we need to

compute an expression for λk and ∂ξk
∂λk

. Given ξ0 =
(
ξ0
a, ξ

0
b , ξ

0
c

)
and ξk = (ξa, ξb, ξc), we compute λ by

λ̂ = Φ−1
(

Φ
(
ξ̂0

)
Φ
(
ξ̂k

))
which gives in coordinates λ = (λa, λb, λc),

λa =
−ξa − ξ0

a + ξcξ
0
b − ξbξ0

c

−1 + ξ0
aξa + ξ0

b ξb + ξ0
c ξc

λb =
−ξb − ξ0

b + ξaξ
0
c − ξcξ0

a

−1 + ξ0
aξa + ξ0

b ξb + ξ0
c ξc

λc =
−ξc − ξ0

c + ξbξ
0
a − ξaξ0

b

−1 + ξ0
aξa + ξ0

b ξb + ξ0
c ξc

.

Now, we recompute ξk in terms of λ,

ξ̂k = Φ−1

((
Φ
(
ξ̂0

))−1

Φ
(
λ̂
))

which, when expressed in coordinates ξk = (ξa, ξb, ξc), gives

ξa =
λa − ξ0

a + λcξ
0
b − λbξ0

c

1 + λaξ0
a + λbξ0

b + λcξ0
c

ξb =
λb − ξ0

b + λaξ
0
c − λcξ0

a

1 + λaξ0
a + λbξ0

b + λcξ0
c

ξc =
λc − ξ0

c + λbξ
0
a − λaξ0

b

1 + λaξ0
a + λbξ0

b + λcξ0
c

.

So, to compute D1Ld (Rk, Rk+1) =
(
∂Ld
∂λa

, ∂Ld∂λa
, ∂Ld∂λa

)
, we can take the easily computed expression ∂Ld

∂ξk
and

apply a change of coordinates computation,

∂Ld
∂λa

=
∂Ld
∂ξa

∂ξa
∂λa

+
∂Ld
∂ξb

∂ξb
∂λa

+
∂Ld
∂ξc

∂ξc
∂λa

∂Ld
∂λb

=
∂Ld
∂ξa

∂ξa
∂λb

+
∂Ld
∂ξb

∂ξb
∂λb

+
∂Ld
∂ξc

∂ξc
∂λb

∂Ld
∂λc

=
∂Ld
∂ξa

∂ξa
∂λc

+
∂Ld
∂ξb

∂ξb
∂λc

+
∂Ld
∂ξc

∂ξc
∂λc

,

which is the momentum matching condition expressed so that it is compatible with the change of natural
charts.

5. Numerical Experiments

Thus far, we have discussed the construction of Lie group Galerkin variational integrators, and established
bounds on their rate of convergence. We will now turn to several numerical examples to demonstrate that
our methods behave in practice as our theory predicts.

5.1. Cayley Transform Method for the Rigid Body. In §4, we discussed in great detail a specific
construction of a Lie group Galerkin variational integrators for the free rigid body based on the Cayley
transform and polynomial basis functions. Based on the convergence results from Theorems 3.1 and 3.2, we
would expect our construction to converge geometrically with n-refinement and with high-order based on
the number of basis functions used with h-refinement.
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Using MATLAB, we implemented the Lie group Galerkin variational integrator described in §4, using a
finite-difference Newton method as a root finder. We used the parameters

Jd = diag (1.3, 2.1, 1.2)

R (0) = I

RT (0) Ṙ (0) = ̂(2.0,−1.9, 1.0)
T
.

To establish convergence, we first computed a numerical solution using a low-order splitting method with a
very small time-step, and once we established that the Lie group Galerkin variational integrator’s solution
and the splitting method’s numerical solutions agreed, we used a Lie group Galerkin variational integrator
solution with n = 25 and h = 0.5 as a high-order approximation to the exact solution, and established
convergence to this solution. We made this choice of parameters for our approximate exact solution because
it appeared that for this choice of parameters, the residual from the nonlinear solver was the dominant source
of error, and neither h nor n refinement improved our numerical solution. For all convergence experiments,
we integrate to a final time of t = 50 and measure the absolute error at the final time.

The reader should note that, in the figures which follow, we use N to denote the number of basis functions
used to create the polynomial approximation space. Thus, when interpreting the results, it is important to
recall that n = N − 1, as the maximum degree of the polynomial in the approximation space is one less than
the number of basis functions for that space. Hence, when observing convergence, our theory predicts that
an integrator based on N = 3 basis functions, and hence n = 2 degree polynomials, would exhibit O

(
h2
)

convergence in the error.
The results, which are summarized in Figures 1 – 4, establish the rates of convergence predicted in

Theorems 3.1 and 3.2. With n-refinement, we see that our methods did indeed achieve geometric convergence,
as can be seen in Figure 1. However, unlike the vector space method (see Hall and Leok [13]), we did not
observe the difference in convergence rates of the continuous approximation and the one-step map. We
suspect that this is because until very high accuracy is achieved, the inaccurate boundary conditions due
to the one-step map error dominates the continuous approximation error, and the threshold at which the
continuous approximation error is greater than the one-step error is related to the time-step. While we
can take extremely large time-steps with our vector space constructions, when working in Lie groups the
time-step length is limited by the natural chart, and hence we never observe the lower convergence rate of
the continuous approximation.

We also examined convergence with h-refinement, as can be seen in Figure 2. We observed the predicted
rate of convergence for our constructions (recalling that n = N − 1), and for even N (and hence odd n), we
even observed a higher than expected rate of convergence of n+ 1.

Considering the geometric invariants related to the rigid body, we see that the Cayley transform based
method has excellent conservation properties. In Figure 4, we recreate one of the classic depictions of
geometric invariants for the rigid body using a Galerkin variational integrator. This figure depicts the
intersection of the two hypersurfaces in momentum space given by the two geometric invariants C (y) =
1
2

∑3
i=1 y

2
i and H (y) = 1

2

∑3
i=1 I

−1
i y2

i where y is the angular momentum of the rigid body. These invariants
correspond to the norm of the body fixed angular momentum and the energy, respectively. Discussions of
these invariants, and comparable behavior of other methods can be found in Marsden and Ratiu [27] and
Hairer et al. [12] (specifically, see Hairer et al. [12] for a comparison to other numerical methods).The black
lines, which represent the evolution of the numeric trajectory of our method in momentum space from a
variety of different initial conditions, remain constrained to the surface — just as they would in the true
solution.

Additionally, while it is not perfectly conserved, the energy behavior of our method is oscillatory and
remains bounded even for very long integration times, as can be seen in Figure 3. This type of behavior is
typical for variational integrators.

5.2. Cayley Transform Method for the 3D Pendulum. For a second numerical experiment, we examine
the 3D pendulum. The 3D pendulum is the rigid body with one point fixed and under the influence of gravity,
and its Lagrangian is:

L
(
R, Ṙ

)
=

1

2
tr
(
ṘTRJdR

T Ṙ
)

+mgeT3 Rρ
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Figure 1. Geometric convergence of the Lie group spectral variational integrator based
on the Cayley transform for the rigid body. We use a constant time-step h = 0.5. Note
that the Galerkin curves have the same error as the one-step map, even though they have a
theoretical lower rate of convergence.
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Figure 2. Arbitrarily high-order convergence of the Lie group Galerkin variational inte-
grator based on the Cayley transform for the rigid body. Recall that N is the number of
basis functions (or Chebyshev points — these are the same) used in the construction, and
hence the maximum degree of the polynomials in the approximation space is n = N − 1.
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Figure 3. Energy behavior of the Lie group Galerkin variational integrator based on the
Cayley transform for the rigid body. This is from a simulation starting at t0 = 0.0, and
using the parameters n = 12, h = 0.5 for the integrator.

Jd = diag (1, 2.8, 2)

ρ = (0, 0, 1)
T

where ρ is center of mass for R = I, m is the mass of the pendulum and g is the gravitational constant. We
consider two sets of initial conditions, the first,

R (0) = I

R (0)
T
Ṙ (0) =

̂
(0.5,−0.5, 0.4)

T
,

which is a slight perturbation from stable equilibrium, and the second

R (0) = diag (−1, 1,−1)

R (0)
T
Ṙ (0) =

̂
(0.5,−0.5, 0.4)

T

which is the pendulum slightly perturbed from its unstable equilibrium.
We construct the variational integrator for this system using the Cayley transform. This involves adding

the term V (ξ (t)) = mgeT3 LgkΦ (ξ (t)) ρ to the discrete action in equations (27), and finding the stationarity
conditions of this new discrete action, which gives us the new internal stage discrete Euler–Poincaré equations.
These have the same form as equations (28a) – (28c), with added terms for the potential.

For the first set of initial data, which are near the stable equilibrium, we see exactly the expected con-
vergence with both h and n refinement, as is illustrated in Figures 5 and 6. Furthermore, we see bounded
oscillatory energy behavior over the length of the integration, as in Figure 7. Again, we integrate to a final
time of t = 50 and measure the absolute error at the final time.

For the second set of initial data, this system evolves chaotically, so convergence of individual trajectories
is not of great interest. What is more important is the conservation of geometric invariants as the system
evolves. As can be seen from Figures 8 and 9, the energy of the system is nearly conserved, even with very
aggressive time-stepping. Of particular note is that even though there are many steps where the solution
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Figure 4. Conserved quantities for the Lie group Galerkin variational integrator based
on the Cayley transform for the rigid body. This is from a series of computations using
the parameters n = 8, and h = 0.5, from a variety of initial conditions. Note that the
trajectories computed by the Lie group Galerkin variational integrators, which are the black
curves, lie on the intersections of

∑3
i=1 y

2
i = 1,

∑3
i=1 I

−1
i y2

i = 2, which are the norm of
angular momentum and energy, respectively.

undergoes a change that approaches the limit on the conditioning of the natural chart, the energy error
remains small.

6. Conclusions and Future Work

In this paper, we have presented a new numerical method for Lagrangian problems on Lie groups. Specifi-
cally, we used a Galerkin construction to create variational integrators of arbitrarily high-order, and also Lie
group spectral variational integrators, which converge geometrically. We demonstrated that in addition to
inheriting the excellent geometric properties common to all variational integrators, which include conserva-
tion of the symplectic form, and conservation of momentum, that such integrators also are extremely stable
even for large time-steps, can be adapted for a large class of problems, and yield highly accurate continuous
approximations to the true trajectory of the system.

We also gave an explicit example of a Lie group Galerkin variational integrator constructed using the
Cayley transform. Using this construction, we demonstrated the expected rates of convergence on two
different example problems, the rigid body and the 3D pendulum. We also showed that these methods both
have excellent energy and momentum conservation properties. Additionally, we provided explicit expressions
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Figure 5. Geometric convergence of the Lie group spectral variational integrator based
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Figure 6. High-order convergence of Lie group Galerkin variational integrator based on the
Cayley transform for the 3D pendulum for a small perturbation from the stable equilibrium.
Recalling that N−1 = n, note that in this case, our integrators outperform our lower bound,
as they exhibit O

(
hn+1

)
convergence.
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Figure 7. Energy behavior of the Lie group Galerkin variational integrator based on the
Cayley transform for the 3D pendulum for a small perturbation from the stable equilibrium.
This is the behavior of an integrator constructed with parameters n = 8, time-step h = 1.5.
Note that the error is both small and oscillatory, but not increasing.
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Figure 8. Dynamics of the numerical simulation of the 3D pendulum constructed from
a Lie group Galerkin variational integrator. These dynamics were constructed from an
integrator with n = 20, h = 0.6. The black dots each represent a single step of the one-step
map, and the solid lines are the Galerkin curves. Note that some of the steps are almost
through an angle of length π, which is the limit of the conditioning of the natural chart.
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Figure 9. Energy error of the dynamics depicted in Figure 8. The large jumps in error are
associated with time-steps that almost violate the conditioning limits of the natural chart.

for the internal stage discrete Euler–Poincaré equations for the free rigid body, which form the foundation
of a numerical method for a variety of problems.

6.1. Future Work. Symplectic integrators continue to be an area of interest, and there has been consider-
able success in developing high-order structure-preserving methods and applying such methods to relevant
problems. While we have developed a significant amount of the theory of Lie group Galerkin variational
integrators, there is considerable future work to be done.

6.1.1. Choice of Natural Charts. In our construction, we chose the Cayley transform to construct our natural
chart. While this choice made the derivation of the resulting integrator simpler, it also introduced a limitation
on the conditioning of the natural chart. A possible extension of our framework would be constructions based
on natural charts constructed from other functions. An obvious choice is the exponential map, which was the
choice of chart function used in earlier works that proposed this construction. A comparison of the behavior
of integrators constructed from other choices of natural chart functions would be interesting further work.

6.1.2. Novel Variational Integrators: One of the attractive features of our work is that we establish an
optimality result for arbitrary approximation spaces. Because of this, our results hold for a variety of
different possible constructions of variational integrators. It would be interesting to investigate the behavior
of variational integrators constructed from novel approximation spaces, such as wavelets, or for variational
integrators that make use of specialized function spaces, such as spaces that include both high and low
frequency functions for problems with components that evolve on different time scales.

6.1.3. Larger classes of Problems. In this paper, we have focused most of our attention on the rigid body
and problems that evolve on SO (3). However, there are many examples of Lie group problems that evolve
on other spaces. Our analysis suggests that the Galerkin approach would be effective for these problems.
It would be interesting to examine Galerkin variational integrators for problems that evolve on other Lie
groups, and apply our methods to other interesting applications.

We established the necessary estimates for convergence of a Lie group Galerkin variational integrator
for Lagrangians of the form (16) and with the Cayley map. However, neither of these results rely on the
fact that we are on the Lie group SO (3). In particular, Lemma 3.2 for the Lagrangian will generalize to
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any separable Lagrangian on a matrix Lie group with a kinetic energy that is left or right invariant, and
Lemma 4.1 for the Cayley map extends to any quadratic matrix group. This includes important Lie groups
such as the Euclidean group SE(3), the special unitary group SU(n), the Lorentz group O(1, 3), and the
symplectic group Sp(2n). Additionally, by adopting the approach described in Section 4.2 of Lee et al. [22],
Lie group Galerkin variational integrators for such matrix Lie groups could be generalized to their associated
homogeneous spaces, such as the n-sphere Sn, the Stiefel manifold Vk(Rn), and the Grassmannian Gr(r, n).

The connection between discrete variational mechanics and discrete optimal control is described in Oh-
sawa et al. [36], so optimal control problems on quadratic matrix groups and their associated homogenous
spaces can also be studied. These include trajectory generation problems for robotics, autonomous vehi-
cles, variational interpolation of camera pose in computer animation problems, and optimal pulse design for
approximating a desired unitary operator in quantum computing.

Other possible directions include generalizing the results of this paper to the setting of discrete Hamiltonian
variational integrators, as introduced in Lall and West [19], and Leok and Zhang [25], or extensions to
problems with nonholonomic constraints, as discussed in Cortés and Mart́ınez [10], Fedorov and Zenkov [11],
McLachlan and Perlmutter [32], and Kobilarov et al. [18]. Additionally, stochastic variational integrators
have been studied in Bou-Rabee and Owhadi [4, 5], and it would be natural to consider the synthesis of such
methods with Lie group variational integrators.

6.1.4. Parallel Implementation and Computational Efficiency. Perhaps our method’s greatest flaw is that it
requires the solution of a large number of nonlinear equations at every time-step. This problem is further ex-
asperated by the fact that assembling the Newton matrix at every time-step requires the repeated application
of a high-order quadrature rule. While the fact that our method is capable of taking very large time-steps
helps to overcome this computational difficulty, it would be interesting to see how much our method could
be accelerated by assembling our Newton matrix in parallel.

6.1.5. Multisymplectic Variational Integrators. Multisymplectic geometry, as described in Marsden et al. [29],
has become an increasingly popular framework for extending much of the geometric theory from classical
Lagrangian mechanics to Lagrangian PDEs. The foundations for a discrete theory have been laid in Lew et al.
[26] and Vankerschaver et al. [39], and there have been significant results achieved in geometric techniques
for structured problems such as elasticity, fluid mechanics, non-linear wave equations, and computational
electromagnetism. However, there is still significant work to be done in the areas of construction of numerical
methods, analysis of discrete geometric structure, and especially error analysis. Galerkin type methods have
become a standard in classical numerical PDE methods, popular examples include Finite-Element, Spectral,
and Pseudospectral methods. The variational Galerkin framework could provide a natural framework for
extending these classical methods to structure-preserving geometric methods for PDEs.
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7. Appendix

7.1. Proof of Theorem 3.2. In §3.1.2, we stated Theorem 3.2 but did not provide a proof. This is because
the proof is essentially the same as that for optimal convergence, with slight and obvious modifications. For
completeness, we will provide the proof here.

Theorem 7.1. Given an interval [0, h], and a Lagrangian L : TG→ R, suppose that ḡ (t) solves the Euler–
Lagrange equations on that interval exactly. Furthermore, suppose that the exact solution ḡ (t) falls within
the range of the natural chart, that is:

ḡ (t) = LgkΦ (η̄ (t))
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for some η̄ ∈ C2 ([0, h] , g). For the function space Mn ([0, h] , g) and the quadrature rule G, define the
Galerkin discrete Lagrangian LGd (g0, g1)→ R as

LGd (g0, g1, n) = ext
gn∈GMn(g0×[0,h],G)
gn(0)=g0,gn(h)=g1

h

m∑
j=1

bjL (gn (cjh) , ġn (cjh)) = h

m∑
h=1

bjL
(
g̃n (cjh) , ˙̃gn (cjh)

)
(30)

where g̃n (t) is the extremizing curve in GMn (g0 × [0, h] , G). If:

(1) there exists an approximation η̂ ∈Mn ([0, h] , g) such that,

〈η̄ − η̂, η̄ − η̂〉
1
2 ≤ CAKn

A〈
˙̄η − ˙̂η, ˙̄η − ˙̂η

〉 1
2 ≤ CAK

n
A,

for some constants CA ≥ 0 and CA ≥ 0, 0 < KA < 1 independent of n,
(2) the Lagrangian L is Lipschitz in the chosen error norm in both its arguments, that is:

|L (g1, ġ1)− L (g2, ġ2)| ≤ Lα (eg (g1, g2) + ea (ġ1, ġ2))

(3) the chart function Φ is well-conditioned in eg (·, ·) and ea (·, ·), that is (9) and (10) hold,

(4) there exists a sequence of quadrature rules {Gn}∞n=1, Gn (f) = h
∑mn
j=1 bnjf

(
cnjh

)
≈
∫ h

0
f (t) dt, and

there exists a constant 0 < Kg < 1 independent of n such that,∣∣∣∣∣∣
∫ h

0

L (gn (t) , ġn (t)) dt− h
mn∑
j=1

bnjL
(
gn
(
cnjh

)
, ġn

(
cnjh

))∣∣∣∣∣∣ ≤ CgKn
g

for any gn (t) = Lg0Φ (ξ (t)) where ξ ∈Mn ([0, h] , g).
(5) the stationary points of the discrete action and the continuous action are minimizers,

then the variational integrator induced by LGd (g0, g1, n) has error O (Kn
s ) for some constant Ks independent

of n, 0 < Ks < 1.

Proof. We begin by rewriting the exact discrete Lagrangian and the Galerkin discrete Lagrangian:

∣∣LEd (g0, g1, n)− LGd (g0, g1, h)
∣∣ =

∣∣∣∣∣∣
∫ h

0

L (ḡ, ˙̄g) dt− h
mn∑
j=1

bnjL
(
g̃n
(
cnjh

)
, ˙̃gn

(
cnjh

))∣∣∣∣∣∣ ,
where we have introduced g̃n, which is the stationary point of the local Galerkin action (30). We introduce
the solution in the approximation space which takes the form ĝn (t) = LgkΦ (η̂ (t)), and compare the action
on the exact solution to the action on this solution:∣∣∣∣∣

∫ h

0

L (ḡ, ˙̄g) dt−
∫ h

0

L
(
ĝn, ˙̂gn

)
dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ h

0

L (ḡ, ˙̄g)− L
(
ĝn, ˙̂gn

)
dt

∣∣∣∣∣
≤
∫ h

0

∣∣∣L (ḡ, ˙̄g)− L
(
ĝn, ˙̂gn

)∣∣∣dt.
Now, we use the Lipschitz assumption to establish the bound∫ h

0

∣∣∣L (ḡ, ˙̄g)− L
(
ĝn, ˙̂gn

)∣∣∣ dt ≤ ∫ h

0

Lα

(
eg (ḡ, ĝn) + ea

(
˙̄g, ˙̂gn

))
dt

=

∫ h

0

Lα (eg (LgkΦ (η̄) , LgkΦ (η̂)) +

ea

(
DΦ(η̄)Lg0Dη̄Φ ( ˙̄η) , DΦ(η̂)Lg0Dη̂Φ

(
˙̂η
)))

dt,

and the chart conditioning assumptions to see∫ h

0

∣∣∣L (ḡ, ˙̄g)− L
(
ĝn, ˙̂gn

)∣∣∣ dt ≤ ∫ h

0

Lα

(
CG 〈η̄ − η̂, η̄ − η̂〉

1
2 + Cg

〈
˙̄η − ˙̂η, ˙̄η − ˙̂η

〉 1
2

+
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CGg 〈η̄ − η̂, η̄ − η̂〉
1
2

)
dt

≤
∫ h

0

Lα
(
CGCAK

n
A + CgCAK

n
A + CGg CAK

n
A

)
dt

= Lα
((
CG + CGg

)
CA + CgCA

)
Kn
A.

This establishes a bound between the action evaluated on the exact discrete Lagrangian and the optimal
solution in the approximation space. Considering the Galerkin discrete action,

h

mn∑
j=1

bnjL (g̃n, g̃n) ≤ h
mn∑
j=1

bnjL
(
ĝn, ˙̂gn

)
≤
∫ h

0

L
(
ĝn, ˙̂gn

)
dt+ CgK

n
g

≤
∫ h

0

L (ḡ, ˙̄g) dt+ CgK
n
g + Lα

((
CG + CGg

)
CA + CgCA

)
Kn
A(31)

where we have used the assumption that the Galerkin approximation minimizes the Galerkin discrete action
and the assumption on the accuracy of the quadrature. Now, using the fact that ḡ (t) minimizes the action
and that GMn (g0 × [0, h] , G) ⊂ C2 ([0, h] , G),

h

mn∑
j=1

bnjL
(
g̃n, ˙̃qn

)
≥
∫ h

0

L
(
g̃n, ˙̃gn

)
dt− CgKn

g

≥
∫ h

0

L (ḡ, ḡ) dt− CgKn
g .(32)

Combining inequalities (31) and (32), we see that,∫ h

0

L (ḡ, ˙̄g) dt− CgKn
g ≤ h

mn∑
j=1

bnjL
(
g̃n, ˙̃gn

)
≤
∫ h

0

L (ḡ, ˙̄g) dt+ CgK
n
g + Lα

((
CG + CGg

)
CA + CgCA

)
Kn
A

which implies ∣∣∣∣∣∣
∫ h

0

L (ḡ, ˙̄g) dt− h
mn∑
j=1

bnjL
(
g̃n, ˙̃gn

)∣∣∣∣∣∣ ≤ (Cg + Lα
((
CG + CGg

)
CA + CgCA

))
Kn
s(33)

where Ks = max (KA,Kg). The left hand side of (33) is exactly
∣∣LEd (g0, g1, h)− LGd (g0, g1, n)

∣∣, and thus∣∣LEd (g0, g1, h)− LGd (g0, g1, n)
∣∣ ≤ (Cg + Lα

((
CG + CGg

)
CA + CgCA

))
Kn
s .

This states that the Galerkin discrete Lagrangian approximates the exact discrete Lagrangian with error
O (Kn

s ), and by Theorem (1.1) this further implies that the Lagrangian update map has error O (Kn
s ). �

7.2. Proof of bound from Lemma 3.1. In the proof of Lemma 3.1, we stated but did prove the bound
(18)

∇2K (η (t) , η̇ (t))
[(
δξ, δξ̇

)] [(
δξ, δξ̇

)]
≥ Cξ̇δξ̇ (t)

T
δξ̇ (t)− Cξδξ (t)

T
δξ (t) .

We provide the proof of bound below.

Proof. Considering K, note that

R (ξ (t))
T
Ṙ (ξ (t)) = Φ (ξ (t))

T ∇Φ (ξ (t)) ξ̇ (t)

and hence as a function of ξ̇ (t),

K
(
ξ̇ (t)

)
= ξ̇ (t)

T ∇Φ (ξ (t))
T

Φ (ξ (t)) JdΦ (ξ (t))
T ∇Φ (ξ (t)) ξ̇ (t) .
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Jd is a diagonal matrix with (J1, J2, J3) on the diagonal, and because Φ (ξ (t)) is an orthogonal matrix,

Φ (ξ (t)) JdΦ (ξ (t))
T

has the eigenvalues (J1, J2, J3). Furthermore, Φ (·) is a diffeomorphism, which implies
∇Φ (·) is non-singular, so

ξ̇ (t)
T ∇Φ (ξ (t))

T
Φ (ξ (t)) JdΦ (ξ (t))

T ∇Φ (ξ (t)) ξ̇ (t) ≥ Jmin

∥∥∥∇Φ (ξ (t)) ξ̇ (t)
∥∥∥2

2
≥ Jmin |σmin (t)|

∥∥∥ξ̇ (t)
∥∥∥2

2

where Jmin = min ({J1, J2, J3}) and σmin (t) is the value of ∇Φ
(
ξ̇ (t)

)
with smallest magnitude. Since

|σmin (t)| is a continuous function of t and |σmin (t)| > 0 for all t over the compact interval [0, h], there exists
a constant Cσ > 0 such that |σmin (t)| > Cσ for all t ∈ [0, h]. Finally, we note

∂2K

∂ξ̇2
(η (t) , η̇ (t))

[
δξ̇a

] [
δξ̇b

]
= 2δξ̇Ta∇Φ (η (t))

T
Φ (η (t)) JdΦ (η (t))

T ∇Φ (η (t)) δξ̇b,

and hence

∂2K

∂ξ̇2
(η (t) , η̇ (t))

[
δξ̇
] [
δξ̇
]
≥ 2JminCσδξ̇

T δξ̇.(34)

Now, considering the full term ∇2K (η (t) , η̇ (t))
[(
δξ, δξ̇

)] [(
δξ, δξ̇

)]
, we see that:

∇2K (η (t) , η̇ (t))
[(
δξ, δξ̇

)] [(
δξ, δξ̇

)]
=
∂2K

∂ξ2
(η (t) , η̇ (t)) [δξ] [δξ] + 2

∂2K

∂ξ∂ξ̇
(η (t) , η̇ (t)) [δξ]

[
δξ̇
]

(35)

+
∂2K

∂ξ̇2
(η (t) , η̇ (t))

[
δξ̇
] [
δξ̇
]
,

where we have made use of the symmetry of mixed second derivatives. K is smooth in all of its components,
and hence there exists Cm > 0, Cd > 0 such that

∂2K

∂ξ∂ξ̇
(η (t) , η̇ (t)) [δξ]

[
δξ̇
]
≥ −CmδξT δξ̇(36)

∂2K

∂ξ2
(η (t) , η̇ (t)) [δξ] [δξ] ≥ −CdδξT δξ.(37)

Defining Cp = 2JminCσ, inserting (34), (36), and (37) into (35) gives

∇2K (η (t) , η̇ (t))
[(
δξ, δξ̇

)] [(
δξ, δξ̇

)]
≥ Cpδξ̇ (t)

T
δξ̇ (t)− Cmδξ̇ (t)

T
δξ (t)− Cdδξ (t)

T
δξ (t)

=
Cp
2
δξ̇ (t)

T
δξ̇ (t) +

Cp
2
δξ̇ (t)

T
δξ̇ (t)− Cmδξ̇ (t)

T
δξ (t)

− Cdδξ (t)
T
δξ (t) .

Completing the square, we see that

Cp
2
δξ̇ (t)

T
δξ̇ (t) +

Cp
2
δξ̇ (t)

T
δξ̇ (t)− Cmδξ̇ (t)

T
δξ (t)− Cdδξ (t)

T
δξ (t)

=
Cp
2
δξ̇ (t)

T
δξ̇ (t) +

(√
Cp√
2
δξ̇ (t)−

√
2Cm

2
√
Cp

δξ (t)

)T (√
Cp√
2
δξ̇ (t)−

√
2Cm

2
√
Cp

δξ (t)

)

−
(
Cd +

C2
m

2Cp

)
δξ (t)

T
δξ (t)

=
Cp
2

∥∥∥δξ̇ (t)
∥∥∥2

2
+

∥∥∥∥∥
√
Cp√
2
δξ̇ (t)−

√
2Cm

2
√
Cp

δξ (t)

∥∥∥∥∥
2

2

−
(
Cd +

C2
m

2Cp

)
‖δξ (t)‖22 .

Making use of the trivial bound that for any a, b ∈ R3, ‖a− b‖22 ≥ 0, we see

Cp
2

∥∥∥δξ̇ (t)
∥∥∥2

2
+

∥∥∥∥∥
√
Cp√
2
δξ̇ (t)−

√
2Cm

2
√
Cp

δξ (t)

∥∥∥∥∥
2

2

−
(
Cd +

C2
m

2Cp

)
‖δξ (t)‖22
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≥Cp
2

∥∥∥δξ̇ (t)
∥∥∥2

2
−
(
Cd +

C2
m

2Cp

)
‖δξ (t)‖22

=Cξ̇δξ̇ (t)
T
δξ̇ (t)− Cξδξ (t)

T
δξ (t)

for constants Cξ̇ > 0, Cξ > 0, where

Cξ̇ =
Cp
2

Cξ = Cd +
C2
m

2Cp
.

This bound allows us to conclude

∇2K (η (t) , η̇ (t))
[(
δξ, δξ̇

)] [(
δξ, δξ̇

)]
≥ Cξ̇ ξ̇ (t)

T
ξ̇ (t)− Cξξ (t)

T
ξ (t) .

�

7.3. Proof of Lemma 3.2. In §3.3, we stated Lemma 3.2 but did not prove it. We provide the proof below.

Lemma 7.1. For Lagrangians on SO (3) of the form

L
(
R, Ṙ

)
= tr

(
ṘTRJdR

T Ṙ
)
− V (R) ,

there exists a C > 0 such that for h < C, the second Frechet derivative of Sg (·, ·) at (η̄ (t) , ˙̄η (t)) is coercive
on the interval [0, h].

Proof. First, we note that for this Lagrangian

D2Sg (η̄ (t) , ˙̄η (t))
[(
δξ (t) , δξ̇ (t)

)] [(
δξ (t) , δξ̇ (t)

)]
=

∫ h

0

∇2L

(
LgkΦ (η̄ (t)) ,

d

dt
LgkΦ (η̄ (t))

)[(
δξ (t) , δξ̇ (t)

)] [(
δξ (t) , δξ̇ (t)

)]
dt

From the proof of Lemma 3.1, we know that

∇2L

(
LgkΦ (η̄ (t)) ,

d

dt
LgkΦ (η̄ (t))

)[(
δξ (t) , δξ̇ (t)

)] [(
δξ (t) , δξ̇ (t)

)]
≥ Cξ̇δξ̇ (t)

T
δξ̇ (t)− (Cξ + CV ) δξ (t)

T
δξ (t)

=
Cξ̇
2
δξ̇ (t)

T
δξ̇ (t) +

Cξ̇
2
δξ̇ (t)

T
δξ̇ (t)− (Cξ + CV ) δξ (t)

T
δξ (t) ,

and hence

D2Sg (η̄ (t) , ˙̄η (t))
[(
δξ (t) , δξ̇ (t)

)] [(
δξ (t) , δξ̇ (t)

)]
≥
∫ h

0

Cξ̇
2
δξ̇ (t)

T
δξ̇ (t) dt+

∫ h

0

Cξ̇
2
δξ̇ (t)

T
δξ̇ (t)− (Cξ + CV ) δξ (t)

T
δξ (t) dt.(38)

Applying Poincaré’s inequality, we see that∫ h

0

Cξ̇
2
δξ̇ (t)

T
δξ̇ (t) dt−

∫ h

0

(Cξ + CV ) δξ (t)
T
δξ (t) dt

≥
Cξ̇π

2

2h2

∫ h

0

δξ (t)
T
δξ (t) dt− (Cξ + CV )

∫ h

0

δξ (t)
T
δξ (t) dt

=

(
Cξ̇π

2

2h2
− (Cξ + CV )

)∫ h

0

δξ (t)
T
δξ (t) dt.(39)

Replacing the last two terms in (38) with (39), we see

D2Sg ((η̄, ˙̄η))
[(
δξ (t) , δξ̇ (t)

)] [(
δξ (t) , δξ̇ (t)

)]
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≥
Cξ̇
2

∫ h

0

δξ̇ (t)
T
δξ̇ (t) dt+

(
Cξ̇π

2

2h2
− (Cξ + CV )

)∫ h

0

δξ (t)
T
δξ (t) dt

=
Cξ̇
2

∥∥∥δξ̇ (t)
∥∥∥2

L2([0,h])
+

(
Cξ̇π

2

2h2
− (Cξ + CV )

)
‖δξ (t)‖2L2([0,h]) .

We now apply Hölder’s inequality

‖fg‖L1([0,h]) ≤ ‖f‖L2([0,h]) ‖g‖L2([0,h])

to derive the bounds ∥∥∥δξ̇ (t)
∥∥∥
L1([0,h])

≤
√
h
∥∥∥δξ̇ (t)

∥∥∥
L2([0,h])

‖δξ (t)‖L1([0,h]) ≤
√
h ‖δξ (t)‖L2([0,h]) ,

and hence,

D2Sg ((η̄, ˙̄η))
[(
δξ (t) , δξ̇ (t)

)] [(
δξ (t) , δξ̇ (t)

)]
≥
Cξ̇
2h

∥∥∥δξ̇ (t)
∥∥∥2

L1([0,h])
+

1

h

(
Cξ̇π

2

2h2
− (Cξ + CV )

)
‖δξ (t)‖2L1([0,h])

≥ min

(
Cξ̇
2h
,

1

h

(
Cξ̇π

2

2h2
− (Cξ + CV )

))(
‖δξ (t)‖2L1([0,h]) +

∥∥∥δξ̇ (t)
∥∥∥2

L1([0,h])

)

≥ min

(
Cξ̇
2h
,

1

h

(
Cξ̇π

2

2h2
− (Cξ + CV )

))(
1

2

)(
‖δξ (t)‖L1([0,h]) +

∥∥∥δξ̇ (t)
∥∥∥
L1([0,h])

)2

≥ min

(
Cξ̇
4h
,

1

2h

(
Cξ̇π

2

2h2
− (Cξ + CV )

))
‖δξ (t)‖2W 1,1([0,h])

which establishes the required coercivity result so long as 0 < h <
√

Cξ̇π
2

2(Cξ+CV ) . �

7.4. Proof of Lemma 4.1. Finally, in §4.2.1, we establish Lemma 4.1, which shows that the natural chart
based on the Cayley transform is well-conditioned. We provide the proof of this below.

Lemma 7.2. For η, ν ∈ so (3), so long as

2 ‖η‖2 + ‖ν‖2 < 1,(40)

the natural chart constructed by the Cayley transform locally satisfies chart conditioning assumption, that is:

‖Φ (η)− Φ (ν)‖2 ≤ CG 〈η − ν, η − ν〉
1
2

‖DηΦ (η̇)−DνΦ (ν̇)‖2 ≤ Cg 〈η − ν, η − ν〉
1
2 + CGg 〈η̇ − ν̇, η̇ − ν̇〉

1
2 .

If ‖η − ν‖2 < ε, assumption (40) can be relaxed to

‖η‖2 + ε < 1.

Proof. Throughout the proof of this lemma, we will make extensive use of two inequalities. The first is the
bound: ∥∥∥(I + E)

−1
∥∥∥
p
≤
(

1− ‖E‖p
)−1

,(41)

if ‖E‖p < 1, and the second is the bound:∥∥∥(A+ E)
−1 −A−1

∥∥∥
p
≤ ‖E‖p

∥∥A−1
∥∥2

p

(
1−

∥∥A−1E
∥∥
p

)−1

(42)

which generalizes (41). We begin with

‖Φ (η)− Φ (ν)‖2 =
∥∥∥(I − η) (I + η)

−1 − (I − ν) (I + ν)
−1
∥∥∥

2
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=
∥∥∥(I − η) (I + η)

−1 − (I − η) (I + ν)
−1

+ (I − η) (I + ν)
−1 − (I − ν) (I + ν)

−1
∥∥∥

2

=
∥∥∥(I − η)

[
(I + η)

−1 − (I + ν)
−1
]

+ [(I − η)− (I − ν)] (I + ν)
−1
∥∥∥

2

=
∥∥∥(I − η)

[
(I + η)

−1 − (I + ν)
−1
]

+ [ν − η] (I + ν)
−1
∥∥∥

2

≤
∥∥∥(I − η)

[
(I + η)

−1 − (I + ν)
−1
]∥∥∥

2
+
∥∥∥[ν − η] (I + ν)

−1
∥∥∥

2
.(43)

Considering the term [ν − η] (I + ν)
−1

, we make use of (41) to see∥∥∥[ν − η] (I + ν)
−1
∥∥∥

2
≤ ‖ν − η‖2

∥∥∥(I + ν)
−1
∥∥∥

2

≤ (1− ‖ν‖2)
−1 ‖η − ν‖2 .(44)

Next, considering the term
∥∥∥(I − η)

[
(I + η)

−1 − (I + ν)
−1
]∥∥∥

2
,∥∥∥(I − η)

[
(I + η)

−1 − (I + ν)
−1
]∥∥∥

2
≤ ‖I − η‖2

∥∥∥(I + η)
−1 − (I + ν)

−1
∥∥∥

2

= ‖I − η‖2
∥∥∥(I + ν + (η − ν))

−1 − (I + ν)
−1
∥∥∥

2
.(45)

Applying (42), with E = η − ν and A = I + ν,∥∥∥(I + ν + (η − ν))
−1 − (I + ν)

−1
∥∥∥

2
≤ ‖η − ν‖2

∥∥∥(I + ν)
−1
∥∥∥2

2

(
1−

∥∥∥(I + ν)
−1

(η − ν)
∥∥∥

2

)−1

.(46)

But

1−
∥∥∥(I + ν)

−1
(η − ν)

∥∥∥
2
≥ 1−

∥∥∥(I + ν)
−1
∥∥∥

2
‖(η − ν)‖2

≥ 1− (1− ‖ν‖2)
−1 ‖(η − ν)‖2

which implies (
1−

∥∥∥(I + ν)
−1

(η − ν)
∥∥∥

2

)−1

≤
(

1− (1− ‖ν‖2)
−1 ‖(η − ν)‖2

)−1

and ∥∥∥(I + ν)
−1
∥∥∥2

2
≤ (1− ‖ν‖2)

−2
,

so ∥∥∥(I + ν)
−1
∥∥∥2

2

(
1−

∥∥∥(I + ν)
−1

(η − ν)
∥∥∥

2

)−1

≤ (1− ‖ν‖2)
−2
(

1− (1− ‖ν‖2)
−1 ‖(η − ν)‖2

)−1

≤ (1− ‖ν‖2)
−1

((1− ‖ν‖2)− ‖η − ν‖2)
−1

= (1− ‖ν‖2)
−1

(1− ‖ν‖2 − ‖η − ν‖2)
−1
.(47)

The triangle inequality gives

‖η − ν‖2 ≤ ‖η‖2 + ‖ν‖2
and thus

1− ‖η‖2 − ‖η − ν‖2 ≥ 1− 2 ‖η‖2 − ‖ν‖2
(1− ‖η‖2 − ‖η − ν‖2)

−1 ≤ (1− 2 ‖η‖2 − ‖ν‖2)
−1
.(48)

So applying (48) to (47) gives,∥∥∥(I + ν)
−1
∥∥∥2

2

(
1−

∥∥∥(I + ν)
−1

(η − ν)
∥∥∥

2

)−1

≤ (1− ‖ν‖2)
−1

(1− 2 ‖η‖2 − ‖ν‖2)
−1
,(49)

then applying (49) to (46) gives,∥∥∥(I + ν + (η − ν))
−1 − (I + ν)

−1
∥∥∥

2
≤ ‖η − ν‖2 (1− ‖ν‖2)

−1
(1− 2 ‖η‖2 − ‖ν‖2)

−1
,(50)
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and finally applying (50) to (45) yields∥∥∥(I − η)
[
(I + η)

−1 − (I + ν)
−1
]∥∥∥

2
≤ ‖I − η‖2 (1− ‖ν‖2)

−1
(1− 2 ‖η‖2 − ‖ν‖2)

−1 ‖η − ν‖2

≤ (1− ‖η‖2)
−1

(1− ‖ν‖2)
−1

(1− 2 ‖η‖2 − ‖ν‖2)
−1 ‖η − ν‖2 .(51)

Substituting (44) and (51) into (43), we see

‖Φ (η)− Φ (ν)‖2 ≤
[
(1− ‖ν‖2)

−1
+ (1− ‖η‖2)

−1
(1− ‖ν‖2)

−1
(1− 2 ‖η‖2 − ‖ν‖2)

−1
]
‖η − ν‖2 .

Hence, so as long as 2 ‖η‖+ ‖ν‖ < Ccon < 1

‖Φ (η)− Φ (ν)‖2 ≤ CG ‖η − ν‖2
where

CG =
[
(1− ‖ν‖2)

−1
+ (1− ‖η‖2)

−1
(1− ‖ν‖2)

−1
(1− 2 ‖η‖2 − ‖ν‖2)

−1
]
.

If we make the stronger assumption that ‖η − ν‖2 < ε, we can weaken the assumption to simply ‖η‖2 + ε <
Ccon < 1 and ‖ν‖2 + ε < Ccon < 1. As we expect the error between the two curves in the Lie algebra to be
orders of magnitude smaller than the magnitude of the Lie algebra elements, this is a reasonable assumption
to make.

Next, to examine ‖DηΦ (η̇)−DνΦ (ν̇)‖2, we consider the definition

DXΦ (Y ) = −Y (I +X)
−1 − (I −X) (I +X)

−1
Y (I +X)

−1
.

Using this definition,

‖DηΦ (η̇)−DνΦ (ν̇)‖2 =
∥∥∥−η̇ (I + η)

−1 − (I − η) (I + η)
−1
η̇ (I + η)

−1
+

ν̇ (I + ν)
−1

+ (I − ν) (I + ν)
−1
ν̇ (I + ν)

−1
∥∥∥

2

≤
∥∥∥ν̇ (I + ν)

−1 − η̇ (I + η)
−1
∥∥∥

2
+∥∥∥(I − ν) (I + ν)

−1
ν̇ (I + ν)

−1 − (I − η) (I + η)
−1
η̇ (I + η)

−1
∥∥∥

2
.

Considering∥∥∥ν̇ (I + ν)
−1 − η̇ (I + η)

−1
∥∥∥

2
=
∥∥∥ν̇ (I + ν)

−1 − η̇ (I + ν)
−1

+ η̇ (I + ν)
−1 − η̇ (I + η)

−1
∥∥∥

2

=
∥∥∥(ν̇ − η̇) (I + ν)

−1
+ η̇

[
(I + ν)

−1 − (I + η)
−1
]∥∥∥

2

≤
∥∥∥(I + ν)

−1
∥∥∥

2
‖η̇ − ν̇‖2 + ‖η̇‖2

∥∥∥(I + ν)
−1 − (I + η)

−1
∥∥∥

2

≤ (1− ‖ν‖2)
−1 ‖η̇ − ν̇‖2 + ‖η̇‖2 ((1− ‖ν‖2) (1− ‖ν‖2 − ‖ν − η‖2))

−1 ‖η − ν‖2 ,

where we have made use of (50) to bound
∥∥∥(I + ν)

−1 − (I + η)
−1
∥∥∥

2
. Now, considering the second term, we

first note,∥∥∥(I − ν) (I + ν)
−1
ν̇ (I + ν)

−1 − (I − η) (I + η)
−1
η̇ (I + η)

−1
∥∥∥

2
=
∥∥∥Φ (ν) ν̇ (I + ν)

−1 − Φ (η) η̇ (I + η)
−1
∥∥∥

2
.

Using this, we see∥∥∥Φ (ν) ν̇ (I + ν)
−1 − Φ (η) η̇ (I + η)

−1
∥∥∥

2
=
∥∥∥Φ (ν) ν̇ (I + ν)

−1 − Φ (ν) ν̇ (I + η)
−1

+ Φ (ν) ν̇ (I + η)
−1 − Φ (η) η̇ (I + η)

−1
∥∥∥

2

≤
∥∥∥Φ (ν) ν̇ (I + ν)

−1 − Φ (ν) ν̇ (I + η)
−1
∥∥∥

2

+
∥∥∥Φ (ν) ν̇ (I + η)

−1 − Φ (η) η̇ (I + η)
−1
∥∥∥

2
.(52)

38



For the first term in (52),∥∥∥Φ (ν) ν̇ (I + ν)
−1 − Φ (ν) ν̇ (I + η)

−1
∥∥∥

2
=
∥∥∥Φ (ν) ν̇

[
(I + ν)

−1 − (I + η)
−1
]∥∥∥

2

≤ ‖Φ (ν)‖2 ‖ν̇‖2
∥∥∥(I + ν)

−1 − (I + η)
−1
∥∥∥

2

≤ ‖ν̇‖2 ((1− ‖ν‖2) (1− ‖ν‖2 − ‖ν − η‖2))
−1 ‖η − ν‖2 ,(53)

where we once again have made use of (50) to bound
∥∥∥(I + ν)

−1 − (I + η)
−1
∥∥∥

2
and the fact that Φ (ν) is

orthogonal to set ‖Φ (ν)‖2 = 1. Now, considering the second term in (52),∥∥∥Φ (ν) ν̇ (I + η)
−1 − Φ (η) η̇ (I + η)

−1
∥∥∥

2
=
∥∥∥(Φ (ν) ν̇ − Φ (η) η̇) (I + η)

−1
∥∥∥

2

≤ ‖Φ (ν) ν̇ − Φ (η) η̇‖2
∥∥∥(I + η)

−1
∥∥∥

2
(54)

and additionally,

‖Φ (ν) ν̇ − Φ (η) η̇‖2 = ‖Φ (ν) ν̇ − Φ (η) ν̇ + Φ (η) ν̇ − Φ (η) η̇‖2
≤ ‖Φ (ν)− Φ (η)‖2 ‖ν̇‖2 + ‖Φ (η)‖2 ‖ν̇ − η̇‖2
≤ CG ‖ν̇‖2 ‖η − ν‖2 + ‖η̇ − ν̇‖2 .(55)

Combining (53), (54), (55) in (52) yields

‖DηΦ (η̇)−DνΦ (ν̇)‖2 ≤ Cg ‖η − ν‖2 + CGg ‖η̇ − ν̇‖2
with constants

Cg = (1− ‖ν‖2 − ‖ν − η‖2)
−1
(
‖η̇‖2 (1− ‖η‖2)

−1
+ ‖ν̇‖2 (1− ‖ν‖2)

−1
)

+ CG ‖ν̇‖2
CGg = 1 + (1− ‖ν‖2)

−1
.

To complete the proof of the lemma, we need to establish a bound on the matrix two norm from the metric
on the Lie algebra. For arbitrary algebra element ξ, standard vector and matrix norm equivalences yield∥∥∥ξ̂∥∥∥

2
≤
√

3
∥∥∥ξ̂∥∥∥

1
≤
√

3 ‖ξ‖1 ≤ 3 ‖ξ‖2 = 3
〈
ξ̂, ξ̂
〉 1

2

which completes the proof. �
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