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Abstract
By the Riemann mapping theorem, one can bijectively map the interior of an n-gon P to that of
another n-gon Q conformally (i.e., in an angle preserving manner). However, when this map is
extended to the boundary it need not necessarily map the vertices of P to those of Q. For many
applications it is important to find the “best” vertex-preserving mapping between two polygons,
i.e., one that minimizes the maximum angle distortion (the so-called dilatation). Such maps exist,
are unique, and are known as extremal quasiconformal maps or Teichmüller maps.

There are many efficient ways to approximate conformal maps, and the recent breakthrough
result by Bishop computes a (1 + ε)-approximation of the Riemann map in linear time. However,
only heuristics have been studied in the case of Teichmüller maps.

We present two results in this paper. One studies the problem in the continuous setting and
another in the discrete setting.

In the continuous setting, we solve the problem of finding a finite time procedure for ap-
proximating Teichmüller maps. Our construction is via an iterative procedure that is proven
to converge in O(poly(1/ε)) iterations to a (1 + ε)-approximation of the Teichmüller map. Our
method uses a reduction of the polygon mapping problem to the marked sphere problem, thus
solving a more general problem.

In the discrete setting, we reduce the problem of finding an approximation algorithm for com-
puting Teichmüller maps to two basic subroutines, namely, computing discrete 1) compositions
and 2) inverses of discretely represented quasiconformal maps. Assuming finite-time solvers for
these subroutines we provide a (1 + ε)-approximation algorithm.
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1 Introduction

A foundational result in complex analysis, the Riemann mapping theorem, implies that the
interiors of two n-gons P and Q can be mapped bijectively and conformally (i.e., in an angle
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preserving way1) to one another. By a result of Caratheodory [4], such a map f : P → Q

extends continuously to the boundary of P (the edges). Generally the vertices of P do not
map to the vertices of Q under this extended mapping.

Consider the collection of functions f that map P to Q, and take the vertices of P to
the vertices of Q. In general such an f is bound to stretch angles, and a classical way to
measure this angle stretch by f at a point p ∈ P is by means of a complex-valued function
µf (p) called the Beltrami coefficient2 of f . The Beltrami coefficient satisfies ||µf ||∞ < 1. If
µf is identically zero, then f is conformal. The problem we consider is computing the “best”
such map f∗ in the above class, i.e., an f∗ such that the norm of its Beltrami coefficient
||µ∗||∞ is the smallest amongst all (uncountably many) maps satisfying the above conditions.
Bijective maps that stretch angles but by a bounded amount are called quasiconformal
homeomorphisms (q.c.h.), and the best q.c.h. f∗ is called the extremal q.c. map, or the
Teichmüller map.

As an example consider two rectangles Ri = [0, ai]× [0, bi](i = 1, 2) in the plane. Consider
the space of all q.c.h. f : R1 → R2 such that f takes the vertices to the vertices. It was
shown by Grötzsch [12] that the affine map f∗(x, y) = (a2x/a1, b2y/b1) with µ∗(x, y) =
(1 − r)/(1 + r), r = b2a1/a2b1 is the unique extremal q.c. map; any other map f would
stretch angles at some point p ∈ R1 more than g (i.e., ∃p ∈ R1 : |µf (p)| > |µ∗(p)|). For the
general n-gon case mentioned above, such a nice formula does not exist for the extremal
map. However, the extremal map exists and is unique. These are the famous theorems of
Teichmuller [22, 23], proven rigorously later by Ahlfors [1].

Algorithms for computing the Riemann map from a polygon to the disc [8, 7, 2] have
gathered a lot of attention and found many applications. However, no such algorithm that
approximates the extremal map is known. In contrast to the Riemann mapping theorem,
where a constructive proof is known, the proof by Teichmüller/Ahlfors is an existence result
only. In fact, to the authors’ knowledge there does not exist a method that, given a starting
f between P and Q, computes a g with ||µg||∞ < ||µf ||∞ if one exists. We are motivated by
the following question.

Question: Does there exist a finite-time approximation algorithm for computing the Teich-
müller map between two n-gons?

We give the first results for theoretically constructing and algorithmically computing
Teichmüller maps for the polygon problem above. Our procedure is iterative; we start with a
q.c.h. that sends the vertices of P to those of Q in the prescribed order, improve on it, and
then recurse on the improved map.

The need for an algorithm. Conformal geometry has found many applications in the fields
of computer graphics [14], computer vision [24] and medical imaging [25, 13]. Computing
Teichmüller maps generalizes almost all of these applications as q.c. maps allow boundary
values to be prescribed. In [26], it was concluded that extremal q.c. maps have almost all the
properties desired from an ideal surface registration algorithm, one of the biggest problems
in computer vision.

1 A homeomorphism f is angle preserving if it preserves oriented angles between curves: For any two
curves γ1 and γ2 through a point p and oriented angle θ between them, f(γ1) and f(γ2) intersect at
f(p) at angle θ.

2 For a function f between open sets in the complex plane C, µf = fz̄

fz
= fx+ify

fx−ify
, where fx and fy denote

partials w.r.t x and y, respectively.
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An algorithm for computing Teichmüller maps would be a step forward in examining
various questions in pure mathematics too. In [3] the author proposes how an algorithm
for our problem would help us attack one of the most famous conjectures in geometric
function theory – Brennan’s conjecture. Teichmüller theory is an active area of research
in mathematics, and it has connections to topology3, dynamics, algebraic geometry, and
number theory [15]. An algorithm for our problem helps one compute and visualize geodesics
in the so-called Teichmüller space (w.r.t. Teichmüller’s metric), which may be of independent
interest.

Related work. Almost all algorithms in computational q.c. geometry have appeared mainly
in graphics or vision venues. In many works (e.g. [19]) a q.c.h. is represented by its Beltrami
coefficient, and softwares implementing basic subroutines (e.g. solving the Beltrami equation)
in computational q.c. geometry have existed for some time.

The first paper addressing the problem of computing extremal q.c. maps was [26]. The
authors propose an interesting heuristic based on Teichmüller’s characterization; they for-
mulate an energy function and minimize it using an alternate-descent method. Simulations
showed that if the initial map is chosen correctly, the algorithm converges in many instances.
Unfortunately, the energy obtained is “highly nonlinear” and non-convex. Even in the absence
of numerical errors due to discretization, it is not known whether the minimization procedure
converges to an approximation of the extremal map.

In [17] another heuristic was proposed using the connection to the theory of harmonic
maps. This was simulated on a variety of examples and in many instances ended up with a
good answer. However, no convergence proofs (continuous or discrete settings) were provided.
Recently, in [18] it is argued that a procedure similar to that in [17] converges in the limit
if certain parameters are chosen carefully manually. However, there are no bounds on the
progress made in a step, and therefore it is not known if the procedure (even in the continuous
setting) ends with an approximation in finite time.

Results. In comparison to all the previous work, we take a theoretical approach to con-
structing an algorithm for Teichmüller maps. In the continuous setting we have a procedure
(Theorem 8) that converges in the limit to the exact extremal map and we also give bounds
on the progress made in each step. Using this we can show that our procedure always, no
matter what the starting map, gives an arbitrarily good approximation of the desired map
in a finite number of iterations. A salient feature of our analysis is that we do not use an
energy-based approach and work directly with the dilatation (the maximum angle stretch).

In the discrete setting, we state precisely all the subroutines needed for our algorithm and
provide approximation guarantees. We present a novel subroutine INF-EXT that produces a
type of Beltrami coefficient fundamental in the study of extremal maps, and prove (Theorem 9)
that it produces an arbitrarily good approximation. We give error bounds on the discrete
algorithm we propose, and show that (Theorem 10) modulo two basic subroutines4, our
algorithm produces a (1 + ε)-approximation of the extremal map.

3 It had been used by Lipman Bers to give a simpler proof of Thurston’s classification theorem for surface
homeomorphisms.

4 It is indeed surprising that tasks as basic as composing two q.c.h. (specified by their piecewise constant
Beltrami coefficient), or finding the inverse of one, cannot be accomplished correctly yet. These two
subroutines have been implemented in the past various times without error bounds, and as of now no
approximation algorithms exist for them.

SoCG’15
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Because of space constraints in this extended abstract, all of our complete proofs can be
found in the full version [11].

2 Informal discussion of results and techniques

As mentioned in the introduction, the aim is to compute the extremal q.c.h between two
polygons. Intuitively, if µf is the Beltrami coefficient of f , f maps an infinitesimally
small circle around p to something that roughly looks like a small ellipse at f(p), with
(1 + |µf (p)|)/(1− |µf (p)|) as the ratio between its major and minor axes.

Our strategy to tackle the polygon mapping problem is to first reduce it to the marked
sphere problem. The marked sphere problem is: Given a q.c.h. f0 from the sphere to itself
taking a collection of given points (zk) to another collection (wk), compute the unique
extremal q.c.h. f∗ that not only takes zk to wk (for all k) but is also isotopic to f0 (i.e. it
can be “continuously deformed” to f0 after pinning the values at zk). We first prove that
a solution to the marked sphere problem gives a solution to the polygon mapping problem
(Theorem 7). For future reference we also note that the complex plane can be thought of as
the sphere minus the north pole (the point at infinity).

Representation and complexity. In theory, a normalized q.c.h. f can be specified by
specifying µf . For computational purposes, unless a closed form expression for f∗ or µ∗ is
available, the best one can do is to evaluate f∗ or µ∗ on a dense mesh of points inside the
domain. Our goal can be stated as follows.

Goal: Given a δ > 0, compute the values of f∗ on a given set of points inside the base
polygon P , where the Beltrami coefficient µf of f satisfies ||µf ||∞ < ||µ∗||∞ + δ.

Even if the polygons P and Q have rational coordinates, there is no known way to
represent the extremal map with finite precision (for all we know, all representations may
consist of transcendental numbers). In fact, we have found examples where this is true even
for the Schwarz-Christoffel mapping 5. Thus, it is not known whether the problem is in NP
or not. We therefore straightaway aim towards an approximation algorithm. The model we
consider is a real RAM model, where we are allowed to do exact basic arithmetic operations
and take logarithms of complex numbers in constant time.

2.1 Continuous construction
One of our main results is constructing a sequence of q.c.h. fi (which can all be continuously
deformed to the starting map f0) that converge to the desired extremal q.c.h. quickly (to get
within ε of the extremal one we need O(1/ε4) iterations). The map fi+1 is obtained from the
previous one fi by a composition fi+1 = fi ◦ hi+1 where hi+1 fixes all the zk and is obtained
from fi by convex optimization and solving (partial and ordinary) differential equations.

The main innovation in our approach is to “search” for the “best” map indirectly in a sense.
One important result [1] in Teichmüller theory is the following : Given a complex-valued
function µf (p) such that ‖µf‖∞ < 1 there is an essentially unique q.c.h. f such that µf (p) is
its “angle-stretch”. In other words, the q.c.h. are “indexed” by their Beltrami coefficients.

5 The Schwarz-Christoffel mapping is the “explicit” formula for the conformal map from the upper half
plane H to a polygon, and, by composition, a formula for the conformal map between two polygons
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Figure 1 Construction of the self map hi. Left: The map gtα moves zi to a point z
′
i within O(t2).

Right: The disk of radius r = O(t2) enlarged, showing the bump function p and the direction of the
flow of the vector field.

One recovers f from µf by solving a partial differential equation called the Beltrami equation,
fz̄/fz = µ.

Given the Beltrami coefficient µi of fi, we search for the best (least L∞ norm) Beltrami
coefficient υi satisfying a certain technical condition called “infinitesimal equivalence” (Defin-
ition 3). This essentially boils down to a convex optimization problem. For a small t > 0,
the q.c.h. gi corresponding to the Beltrami coefficient t(µi − υi) almost fixes the (zk). It
moves them only slightly (Figure 1 left). Then we correct for this motion by flowing the
images z′k = gi(zk) back to (zk) by solving a system of ordinary differential equations using
a vector field, shown in the right side of Figure 1. We then compose these two maps.

This way, we get a map hi+1 which fixes the points (zk). Moreover, we can prove that
fi+1 = fi ◦ hi+1 has a smaller maximum angle-stretch (i.e., smaller dilatation) than fi. We
iterate this process to converge to an arbitrarily good approximation of the desired extremal
q.c.h. relatively quickly.

2.2 Approximation algorithm

We discretize the continuous construction given above in order to come up with an approx-
imation algorithm EXTREMAL modulo two basic subroutines. Along the way we come up
with a subroutine (which we call INF-EXT) that finds the best piecewise constant Beltrami
coefficient υ that is infinitesimally equivalent to a given one µ. We believe that this is an
interesting technical result in its own right.

Our input is a mesh of sample points on the sphere, a triangulation of the sphere, a
piecewise constant Beltrami coefficient (corresponding to the starting map f0), and an error
tolerance δ. The desired output is the collection of images of these sample points under the
extremal q.c.h. within the error tolerance.

We follow the same steps as in the continuous construction. There is a small technicality
in that we need a special kind of triangulation, and might need to make this triangulation
smaller each time we use any of our subroutines to control the errors. To this end, we use a
subroutine TRIANG which is constructed using the Delaunay refinement algorithm. We take
the piecewise constant Beltrami coefficient µi, feed it into INF-EXT and obtain a piecewise
constant Beltrami υi. Just as in the continuous construction, we choose an appropriate t > 0
and find the q.c.h. gi corresponding to the Beltrami coefficient t(µi − υi). To obtain gi we
solve the Beltrami equation using a subroutine BELTRAMI.

SoCG’15
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The q.c.h. gi moves the points (zk) a bit. We remedy this by using the vector field
method through a subroutine VECT-FIELD. The subroutines BELTRAMI and VECT-FIELD are
standard. Then we compose the maps akin to the continuous construction. Here is where
we need to assume the existence of two technical, basic subroutines PIECEWISE-COMP and
PIECEWISE-INV. Once this composition is performed, we obtain a map fi+1 which has a
smaller dilatation than fi. We set fi+1 as the starting map and iterate; the algorithm
terminates by producing an approximation of the desired extremal map f∗.

The issue with the two subroutines PIECEWISE-COMP and PIECEWISE-INV is as follows:
Given piecewise constant Beltrami coefficients α and β (whose corresponding q.c.h. are F
and G respectively) we want to compute a good piecewise constant approximation of the
Beltrami coefficient corresponding to F−1 and to F ◦G. Any algorithm in computational
q.c. geometry may require these subroutines. There are good candidates for such subroutines
but the problem is to prove their correctness. We did not perform any complexity analysis of
our algorithm simply because we do not know the complexity of the conjectural subroutines
PIECEWISE-COMP and PIECEWISE-INV. But we expect our algorithm EXTREMAL (including
the assumed subroutines) to run in polynomial time.

3 Preliminaries

In this section we present the main players from q.c. theory involved in our construction.
Various eminent mathematicians (Teichmüller, Ahlfors, Bers, Reich, Strebel, Krushkal,
Hamilton, etc.) have contributed to Teichmüller theory. We refer the reader to [10] and [15]
for some excellent introductions to Teichmüller theory.

Quasiconformal maps and Beltrami coefficients/differentials. For a function f between
two open sets in the complex plane, define partials fz = fx − ify and fz̄ = fx + ify,
where fx and fy are the partials with respect to (Euclidean coordinates) x and y. Let Ĉ
denote the Riemann sphere (C union the point at infinity). A homeomorphism f : Ĉ→ Ĉ
is quasiconformal provided that it satisfies the Beltrami equation fz̄ = µ(z)fz for some
complex-valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami coefficient, and
is a measure of the non-conformality of f . In particular, the map f is conformal if µ is
identically 0. The following theorem makes the notion of the Beltrami coefficients indexing
the corresponding q.c.h. precise.

I Theorem 1. The Beltrami equation gives a one to one correspondence between the set of
quasiconformal homeomorphisms of Ĉ that fix the points 0, 1 and ∞ and the set of measurable
complex-valued functions µ on Ĉ for which ||µ||∞ < 1. Furthermore, the normalized solution
fµ of the Beltrami equation of µ depends holomorphically on µ and for any r > 0 there exists
δ > 0 and C(r) > 0 such that

|f tµ(z)− z − tV (z)| ≤ C(r)t2 for |z| < r and |t| < δ, (1)

where V (z) = − z(z−1)
π

∫ ∫
C

µ(ζ)dξdη
ζ(ζ−1)(ζ−z) , and ζ = ξ + iη.

We need some more definitions and concepts. They are summarized here:

Composition formula. Let µ, σ and τ be the Beltrami coefficients of quasiconformal maps
fµ, fσ and fτ with fτ = fσ ◦ (fµ)−1. Then

τ =
(
σ − µ
1− µ̄σ

1
θ

)
◦ (fµ)−1, where p = ∂

∂z
fµ(z) and θ = p̄

p
. (2)
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Quadratic differentials. For R = Ĉ{0,1,∞,z1,...zn−3} (the Riemann sphere with n marked
points, three of which are normalized to be 0, 1 and ∞), the complex vector space formed by
the linear span of the n− 3 functions

φk(z) = 1
z(z − 1)(z − zk) , 1 ≤ k ≤ n− 3, (3)

is called the space of holomorphic quadratic differentials on R, denoted by A(R).

Equivalence relations on Beltrami coefficients. Let B(R) denote the set of all complex-
valued measurable functions on R. Let B1(R) = {µ ∈ B(R) : ||µ||∞ < 1}. Given two
coefficients µ and υ in B1(R), denote the solution to their respective normalized6 Beltrami
equations as fµ and fυ. Let R0 and R1 denote two marked spheres. The following definition
concerns maps from R0 to R1.

I Definition 2 (Global equivalence). µ and υ are called globally equivalent (µ ∼g υ) if:
1. fµ(zi) = fυ(zi) ∀i.
2. The identity map from R1 to R1 is homotopic to fυ ◦ (fµ)−1 via a homotopy consisting

of quasiconformal homeomorphisms.
A Beltrami coefficient υ is called trivial if it is globally equivalent to 0. A Beltrami coefficient
with the least L∞ norm in its global class is called globally extremal. In other words, the
marked sphere problem specifies as input a Beltrami coefficient µ, and asks to output the
extremal Beltrami coefficient µ∗ that is globally equivalent to µ.

I Definition 3 (Infinitesimal equivalence). µ and υ are infinitesimally equivalent (written
µ ∼i υ) if

∫
R
µφ =

∫
R
υφ for all φ ∈ A(R), with ||φ|| = 1. A Beltrami coefficient υ is called

infinitesimally trivial if it is infinitesimally equivalent to 0.

I Definition 4 (Infinitesimally extremal). A Beltrami coefficient υ is called infinitesimally
extremal if ||υ||∞ ≤ ||µ||∞ for all µ ∼i υ.

Optimality condition. The importance of the infinitesimally extremal Beltrami coefficients
is conveyed by the celebrated Hamilton-Krushkal, Reich-Strebel, necessary and sufficient
condition for optimality. Informally, this theorem states that a Beltrami coefficient µ∗ is
globally extremal if and only if it is infinitesimally extremal and the corresponding q.c.h. takes
the domain to the desired target. See [10] for a precise statement.

Another important fact is that for all the cases we are interested in, any globally extremal
Beltrami coefficient is of Teichmüller form – it can be written as µ∗ = k∗φ̄/|φ|, for a unique
constant k∗ < 1 and a unique quadratic differential φ ∈ A(R).

An important remark on the optimality condition. Note that given a starting µ, the ν
that is extremal in the infinitesimal class of µ will be of Teichmüller form. However, it will
generally not be globally equivalent to µ. This is why we have an iterative procedure – if ν
was also globally equivalent to µ we would be done in one step. We use ν and µ to obtain µ1,
and inductively ν1 to obtain µ2 and so on, to get to the globally extremal µ∗ which is in the
same global class as µ and is infinitesimally extremal in its class, and hence is of Teichmüller
form.

6 Fixing the points 0,1 and ∞. Hence the freedom of Möbius transformation is accounted for.

SoCG’15
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Figure 2 An example of a Teichmüller map between pentagons. If φ1 and φ2 are a basis of the
space of quadratic differentials, the above map corresponds to the solution to the Beltrami equation
of µ = φ̄

8φ , where φ = 1
3φ1 + 2

3φ2. On the right is the same map when pulled to the unit disks via
the Riemann mapping.

4 Problem statement and main theorems

In this section we first describe the polygon mapping and the marked sphere problems, and
prove that the marked sphere problem is more general. We will then proceed to state our
main results.

4.1 Problem statements and reduction
Let P and Q be two n-gons7 in the plane. Let {vi}ni=1 and {v′i}ni=1 be an ordering of the
vertices of P and Q, respectively. The fact that the polygons are conformally equivalent
to the upper half plane H, and that composition by conformal maps does not change the
dilatation imply that an n-gon is essentially the same as H with n marked points on the
boundary ∂H = R.

I Problem 5 (Polygon mapping problem). Given {z1, ...zn, w1, ...wn} ∈ ∂H, find f̃∗ : H→ H
(with Beltrami coefficient µ∗̃) satisfying:
1. f̃∗ is a quasiconformal homeomorphism of H to itself.
2. f̃∗(zi) = wi, i ∈ {1, ...n}
3. ||µ̃∗||∞ ≤ ||µf ||∞ for all f satisfying (1) and (2) above.

Note that by Teichmüller’s theorems the above f̃∗ exists and is unique. We state the marked
sphere problem next, and show that it is in fact a generalization of the polygon mapping
problem.

I Problem 6 (Marked sphere problem). Given {z1, ...zn−3, zn−2 = 0, zn−1 = 1, zn = ∞},
{w1, ...wn−3, wn−2 = 0, wn−1 = 1, wn = ∞}, and f0 : Ĉ → Ĉ such that f0(zi) = wi, find
f∗ : Ĉ→ Ĉ satisfying:
1. f∗ is a quasiconformal homeomorphism of Ĉ to itself.
2. f∗ is isotopic to f0 relative to the points {0, 1,∞, z1, ..zn−3}, i.e. f∗(zi) = wi.
3. ||µ∗||∞ ≤ ||µf ||∞ for all f satisfying (1) and (2) above.

We call the base zi-marked sphere R and the target wi-marked sphere S from now on.
The reason why the marked sphere problem requires a starting map f0 as input is that by
Teichmüller’s theorem, the extremal map exists and is unique within each isotopy class. The
following theorem shows that Problem 6 is indeed general.

7 We allow for ∞ to be a vertex of the polygon.
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I Theorem 7 (Reduction). An algorithm for Problem 6 can be used to give a solution to
Problem 5.

Proof sketch. Consider an instance of the polygon mapping problem, and map the polygons
conformally in linear time using [2] to the upper-half plane such that the vertices go to points
on the real line. Then, using a piecewise affine function f0 map the corresponding upper
half-planes to one another taking the vertices to the vertices. Since f0 is real on R, we extend
it by symmetry to the entire Riemann sphere. Call this extended map f . This then provides
us a special instance of the marked sphere problem, where all the marked points are on the
real line. We then prove that the extremal map f∗ homotopic to f is symmetric, and that
the restriction of f∗ to the upper half plane solves the original polygon mapping problem.
Full proof in [11]. J

4.2 Results
Denote the Beltrami coefficient of f0 by µ0. We want to obtain µ∗ that is globally equivalent
(Definition 2) to µ0 and has the smallest L∞ norm in this global class. We will obtain a
sequence of q.c.h. fi (and their Beltrami coefficients µi) that in the limit converge to the
unique extremal map f∗ (and the dilatations of µi will converge to the dilatation of µ∗). All
the µi lie in the same global class – that of µ0. The main difficulty we overcome is that
since the global class of µ0 does not have a “nice” structure (e.g. it is not convex in the
generic case; in fact the only way to know whether two Beltrami coefficients µ1 and µ2 are
in the same global class is to solve their Beltrami equations). To overcome this, we break
up this minimization over the global class of µ0 into a sequence of minimizations over the
infinitesimal classes (Definition 3) of µi (that are convex domains) and solutions of differential
equations.

We will first present our main theorem in the continuous setting. By the “continuous
setting” we mean that we assume the existence of black boxes that solve all the sub-problems
involved exactly; e.g. given a Beltrami coefficient µ, we can get fµ(z) for any z exactly.

I Theorem 8 (Limiting procedure for Marked Sphere Problem). There exists a sequence of
q.c.h. fi s.t.:
1. Isotopic: fi is isotopic to f0, and fi(zj) = wj, for all i and j.
2. “Explicit” construction: Let υi be the extremal coefficient in the infinitesimal class of µi.

Then µi+1 is an “explicit function" of µi and υi in that it can be obtained by solving two
differential equations depending only on µi and υi.

3. Uniform Convergence: fi → f∗ uniformly and ‖µi‖∞ → ‖µ∗‖∞ as i→∞.
4. Fast convergence: There exist constants C > 0 and δ0 > 0 such that for all δ < δ0 and

for all i ≥ C/(δ4(1− ||µ0||∞)2) we have ||µi||∞ − k∗ < δ.

Basically, getting υi from µi is the convex optimization part, and getting µi+1 from µi
and υi requires solving differential equations.

Now we proceed to the discrete implementation of our procedure. We represent all
Beltrami coefficients as piecewise constant coefficients8 on a fine mesh. Every step of the
continuous procedure mentioned above is shown to have a discrete analogue. The mesh we

8 In fact, the existence of the solution to the Beltrami equation of an arbitrary µ ∈ L∞ with ||µ||∞ < 1
was shown by 1) first showing the existence of the solution to a piecewise constant µ

′
, 2) sewing the

individual piecewise q.c. maps along the boundary, and 3) taking a limit of such piecewise constant
coefficients µ

′

n → µ and showing that the maps converge.

SoCG’15



624 Computing Teichmüller Maps between Polygons

will be working on depends on the error tolerance δ required. The first theorem tells us how
to discretise the convex optimization part.

I Theorem 9 (Discrete infinitesimally extremal). Given an error tolerance 0 < δ < 1, a
collection of n marked points z1, z2, . . . zn, a triangulation ∆ε and a piecewise constant
Beltrami coefficient µ (where |µ| < 1 on every triangle), there exists an algorithm INF-EXT
that computes a piecewise constant Beltrami coefficient υ̂ such that |υ̂|−||υ||∞ < δ everywhere.

Now we proceed towards the other steps. Computational quasiconformal theory is a field
still in its infancy, and very few error estimates on these widely-used discretizations are
known. We introduce two subroutines PIECEWISE-COMP and PIECEWISE-INV (their precise
definitions are in section 6) that concern the discretization of compositions and inverses
of quasiconformal maps. Assuming the existence of the subroutines PIECEWISE-COMP and
PIECEWISE-INV we construct an approximation algorithm for the Teichmüller map.

I Theorem 10 (Teichmüller Map Algorithm). Assume the existence of the aforementioned
subroutines. Given a triangulation T0 that includes n marked points z1, . . . zn, a mesh of
sample points S, an error tolerance δ, and a piecewise constant Beltrami coefficient µ0
whose corresponding q.c.h. f0 satisfies f0(zj) = wj, there exists an algorithm EXTREMAL that
computes ∆ε, and the images of S up to an error of δ under a q.c.h. F having a piece-wise
constant (in the computed triangulation) Beltrami coefficient µF such that
1. ‖µF ‖∞ − ‖µ∗‖∞ < δ where µ∗ is the Beltrami coefficient of the extremal quasiconformal

map on the marked sphere in the isotopy class of f0.
2. |F (zi)− wi| = O(δ).

Thus our main result in the discrete case is a reduction of this approximation problem to
two basic subroutines. We do not address the complexity of our approximation algorithm and
expect that (along with the two conjectural subroutines) our algorithm runs in polynomial
time.

5 The continuous construction

We first summarize our construction of the sequence {fi} of q.c.h. that converge to the
extremal map. At step i, given the q.c.h. fi with Beltrami coefficient µi, let υi denote the
infinitesimally extremal Beltrami coefficient in the infinitesimal class of µi. Let ki = ||µi||∞
and k0

i = ||υi||∞. Observe that µi − υi is infinitesimally trivial (Definition 3).

1. Choose t such that

t = min
(

3
4 , C1,

ε

4 ,
√

ε

2C2
,

(ki − k0
i )2(1− k2

i )
1− k2

i + C2

)
, (4)

where ε ≤ min(1/2, (ki − k0
i )/8), and C1 and C2 are two explicit constants derived in the

full version[11].
2. Use Subsection 5.1 to construct a quasiconformal self-homeomorphism hi of the base

zk-marked sphere such that
µh is globally trivial (hence hi(zk) = zk for all k).
||µh − t(µi − υi)||∞ < C2t

2, where C2 is the same constant as in (4).
3. Form fi+1 = fi ◦ (hi)−1. It turns out that fi+1 has smaller dilatation than fi (by

Lemma 11).
4. Reiterate with fi+1 as the starting map.
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The second to last step i.e., calculating the composition fi+1 = fi ◦ (hi)−1 is the main
point of the construction. To our knowledge, this is the first “constructive” way to produce
a map having a smaller dilatation than a given one. The heart of this step is the following
crucial lemma (proof in [11]):

I Lemma 11 (Decreasing dilatation). Let υf be the infinitesimally extremal Beltrami coeffi-
cient in the infinitesimal class of µf . Let µh(t) be a curve of Beltrami coefficients with the
following properties:
1. µh(t) is globally trivial.
2. µh(t) = t(µf − υf ) +O(t2).
Denote the solution to the Beltrami equation of µh(t) by ht. Then ∃δ > 0 such that ∀t < δ,
the map ft = f ◦ (ht)−1 has smaller dilatation than f .

Proof sketch of Theorem 8. Assume for now that the map hi produced in each step satisfies
the conditions of Lemma 11. Let ki = ||µi||∞ be the L∞ norm of the Beltrami coefficient
of fi(the starting map at step i), and k0

i = ||υi||∞ where υi is infinitesimally extremal. We
lower bound the decrease d = ki − ki+1 in the dilatation in step 3 in terms of ki − k0

i . This
is bounded below further by an expression which is in terms of ki − k∗ (the distance from
the extremal map). This is accomplished using Teichmüller’s contraction principle, which
gives a quantitative version of the following fact: If a Beltrami coefficient µ is close to the
infinitesimally extremal coefficient υ, then it is also close to the globally extremal coefficient
µ∗. Once we have d in terms of ki− k∗, a standard geometric series argument coupled with a
theorem on uniform convergence of sequences of q.c.h. on the sphere completes the proof. J

5.1 Constructing the self homeomorphisms
Starting at the ith step with a q.c.h. fi, we now show how to construct the self homeomorphism
hi required by Lemma 11. We simplify notation by suppressing the index i, keeping in mind
that this is the ith step of the procedure. Thus µ and µh will denote the Beltrami coefficients
of fi and hi, respectively. Also, υ is the infinitesimally extremal Beltrami coefficient in the
infinitesimal class of µ.

Let α = µ − υ, t be as in Equation (4), and let gtα be the normalized solution to the
Beltrami equation for tα. Denote gtα(zk) by z′k. As a consequence of the mapping theorem
Theorem 1 that z′k is not very far from zk (the “error" is O(t2)).

We will first construct another homeomorphism Kv from Ĉ to itself which satisfies
Kv(z′k) = zk. We then define the required self homeomorphism h = Kv ◦ gtα. The
construction of Kv will be via a vector field method. A summary of this vector field method
is as follows.

Let {D1, · · · , Dn−3} denote disjoint open disks centered at zk. Choosing the radius of
each disk to be r = d/4, where d = max

1≤k,l≤n−3
|zk − zl| ensures disjointness. We will fix these

disks once and for all.
We first construct a self homeomorphism Kk

v of Ĉ which is the identity map outside Dk,
and maps z′k to zk. By means of a rotation we can assume that z′k is real and greater than
zk. Consider the vector field

X(z) = p(z)(z
′

k − zk) ∂
∂x
,

where p(z) is a C∞ function identically zero outside Dk, and identically 1 inside the disk of
radius r/2 around zk, denoted as D′k. Let γ be the one parameter family of diffeomorphisms
associated with this vector field (i.e. the flow of this field). We denote the time parameter
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626 Computing Teichmüller Maps between Polygons

by s and note that the diffeomorphism γ1 sends z′k to zk. We denote this diffeomorphism
γ at s = 1 by Kk

v . Now define Kv = Kn−3
v ◦Kn−2

v · · · ◦K1
v, and h = Kv ◦ gtα. This is the

desired “correction" that ensures that the q.c.h. h is indeed a self map.
Using PDE theory of the Beltrami equation, we then prove that the Beltrami coefficient

of hi so obtained does satisfy the hypothesis of Lemma 11. This completes all the details of
our continuous construction.

6 The approximation algorithm

Here we present details of our approximation algorithm. Near the marked points the mesh is
made up of (triangulated) regular polygons, whose number of vertices and radii depend on
δ. The mesh is a triangulation with edge lengths bounded above by an appropriate ε that
depends on δ. We call this triangulation a canonical triangulation ∆ε of size ε. Its precise
definition can be found in the full version [11]. We describe the convex optimization part of
our algorithm next.

6.1 INF-EXT

We want to discretize the operator P(µ) which returns υ with the least L∞ norm satisfying∫
R
υφi =

∫
R
µφi for all φi in Equation (3). Note that the starting µ is piecewise constant at

the start of every iteration.

I Observation 12. The integral of φi over any triangle tj can be computed analytically. We
note that this formula involves taking the logarithm of a complex number.

We approximate υ by piecewise constant Beltrami coefficients. The constraints for infin-
itesimal equivalence become linear constraints of the form Ax = b, where A(i, j)th equals∫
tj
φi, x is the vector of unknown values of the piecewise constant υ on a triangle, and b is

the vector of
∫
tj
µjφi, where µj is the value of µ on triangle tj . If A, x and b are real, an

L∞ minimization can be formulated as a linear program. In our case, we break the vectors
and matrices into their real and complex parts, and then we can formulate the program as a
quadratically constrained quadratic program. Although in general they are NP-hard to solve,
in the the full version [11] we show that our program involves positive semi-definite matrices,
and it is known that such instances can be solved in polynomial time using interior-point
methods [20].

I Lemma 13 (INF-EXT). There exists an algorithm INF-EXT that, given a piecewise constant
µ on ∆ε returns a piecewise constant υ̂ such that maxtj υ̂(tj) ≤ maxtj β(tj), where β is any
piecewise constant (on ∆ε) Beltrami coefficient that is infinitesimally equivalent to µ.

With this, we are now in a position to prove Theorem 9, which says that this piecewise
approximation υ̂ is not very far from the true infinitesimally extremal υ. The full proof is
relegated to the journal version [11].

6.2 Description of EXTREMAL

Apart from the subroutine INF-EXT we require a few more subroutines to discretize our
procedure.

TRIANG. The input is a set of points S, a size M , and a triangulation ∆ε. The output
of TRIANG is a triangulation ∆ε′ of the given size M containing S such that ∆ε′ is a
refinement of ∆ε.
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BELTRAMI. The input is a triangulation ∆ε of the plane, a piecewise constant Beltrami
coefficient µ, and error tolerance δ. The output of BELTRAMI is a triangulation ∆′ε
that is a refinement of ∆ε, and the images f̂(vi) of the vertices vi ∈ ∆′ε such that
|fµ(vi)− f̂(vi)| < δ.
VECT-FIELD. The input is a Ck (k sufficiently large, e.g. k > 10) vector field X (written
as a formula in terms of elementary functions), a triangulation ∆ε, and an error tolerance
δ. The output is a triangulation ∆′ε that is a refinement of ∆ε, the images of vi ∈ ∆ε

up to error δ under a Ck diffeomorphism γx corresponding to the flow along X, and a
piecewise smooth Beltrami coefficient that approximates µγx

up to error δ.
PIECEWISE-COMP. The input is a triangulation ∆ε, two piece-wise constant Beltrami
coefficients µ1 and µ2 (corresponding to q.c.h. f1 and f2 respectively), and error tolerances
δ1 and δ2. The output is a triangulation ∆ε′ that is a refinement of ∆ε, a piecewise
constant Beltrami coefficient µcomp that approximates the Beltrami coefficient of the
composition f3 = f1 ◦ f2 within error δ1 in the L∞ topology, and the images f3(va) of
the vertices va of ∆ε′ up to an error of δ2.
PIECEWISE-INV. The input is a triangulation ∆ε, a piecewise constant Beltrami coefficient
µ (corresponding to q.c.h. f), and error tolerances δ1 and δ2. The output is a triangulation
∆ε′ that is a refinement of ∆ε, a piecewise constant Beltrami coefficient µinv that
approximates the Beltrami coefficient of f−1 within error δ1 in the L∞ topology, and the
images f−1(va) of the vertices of ∆ε′ up to an error of δ2.

EXTREMAL The algorithm summarized below is based on Section 5.
Use TRIANG to produce a triangulation of size required by INF-EXT to run within an error
of δ10.
Loop i = 1 to N where N is the number of iterations in Theorem 8 to produce the result
within an error of δ/2.
1. Use INF-EXT to produce υi from µi within an error of δ10. If υi = µi then stop.
2. Find ti by Equation (4), using k0 as ‖υi‖∞.
3. Invoke BELTRAMI for the coefficient ti(µi − υi) to find the images of the marked points

within an accuracy of t3i .
4. Define the vector field X as in the continuous construction using a piecewise polynomial

version of the bump function (that is C10 for instance). Then call VECT-FIELD to find
a piecewise constant Beltrami coefficient up to an error of t3i .

5. Use PIECEWISE-COMP to compose the Beltrami coefficients of step 3 and step 4 within
an error (‖µi‖ − ‖υi‖)5 for the Beltrami coefficient and δ/i2 for the q.c.h.

6. Use PIECEWISE-INV to find the Beltrami coefficient of the inverse of the q.c.h. of step
5, up to the same error as that in step 5.

7. Call PIECEWISE-COMP to compose µi and the Beltrami coefficient of step 6 to form
µi+1 (up to the same error as that in step 5).

Implementing TRIANG, BELTRAMI and VECT-FIELD

1. TRIANG. Given a set of n points, we can obtain the Delaunay triangulation in O(n logn)
time. While implementing TRIANG we first compute the Delaunay triangulation of all the
points falling inside a triangle of the given triangulation. The we connect the vertices on
the convex hull of such a set of points to one of the three vertices of the triangle they lie
in. If this complete triangulation is not yet size M , we make the mesh denser by adding
points as in [21] (points are added to either the circumcenters of triangles or mid-points
of edges), until we reach the desired size.
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628 Computing Teichmüller Maps between Polygons

2. BELTRAMI. The solution to the Beltrami equation for µ can be expressed as a series of singu-
lar operators applied to µ. There are many efficient algorithms and implementations[6],[9]
existing for BELTRAMI. Most of them can bound the Lp norm of the error, but the methods
in [6] can be used to bound the L∞ error too[5].

3. VECT-FIELD. The idea of deforming a surface by a vector field has been applied extensively
in computer graphics. We refer the reader to [16] for an implementation of VECT-FIELD.

I Remarks. Using the composition formula for Beltrami coefficients (Equation (2)), we see
that in principle one may attempt to compute a piecewise constant approximation of the
Beltrami coefficient of the composition f ◦ g of two q.c.h. f and g, and of g−1 (by setting
σ = 0). However, this requires the derivative of g to be well-approximated in a piecewise
constant manner. Therein lies the difficulty. Basically, one needs a good way of “discretising”
the definition of the Beltrami coefficient of a q.c.h. The algorithm terminates by producing
µN . The proof of Theorem 10 is similar to that of Theorem 8 and is omitted.

7 Discussions and future work

Our algorithm for the marked sphere problem also solves as a special case what is known as
the “landmark constrained” Teichmüller map problem, where the points zi and wi are in the
interior of the polygons, and a starting map is provided that sends zi to wi. A reduction
similar to Theorem 7 works.

Open problems abound. In addition to studying the two conjectural subroutines the
extremal map problem can be further explored in many directions.
1. Most of the ideas presented here (notably Lemma 11) may be used to envision an

algorithm for computing Teichmüller maps between other Riemann surfaces. The problem
is challenging for multiple reasons – for instance, an explicit basis of holomorphic quadratic
differentials may not be available.

2. The authors feel that building a discrete version of Teichmüller theory would be an
important achievement. Given a triangulated Riemann surface, defining a discrete analog
of dilatation that gives nice results (e.g. existence and uniqueness) about the extremal
map would be the next step in this direction.
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