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Abstract We present a new approach for constructing polytope Lyapunov func-
tions for continuous-time linear switching systems (LSS). This allows us to decide
the stability of LSS and to compute the Lyapunov exponent with a good precision
in relatively high dimensions. The same technique is also extended for stabiliz-
ability of positive systems by evaluating a polytope concave Lyapunov function
(“antinorm”) in the cone. The method is based on a suitable discretization of the
underlying continuous system and provides both a lower and an upper bound for
the Lyapunov exponent. The absolute error in the Lyapunov exponent compu-
tation is estimated from above and proved to be linear in the dwell time. The
practical efficiency of the new method is demonstrated in several examples and in
the list of numerical experiments with randomly generated matrices of dimensions
up to 10 (for general linear systems) and up to 100 (for positive systems). The
development of the method is based on several theoretical results proved in the
paper: the existence of monotone invariant norms and antinorms for positively ir-
reducible systems, the equivalence of all contractive norms for stable systems and
the linear convergence theorem.
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1 Introduction

The stability of linear switching systems (LSS) has been studied in the literature in
great detail. We consider continuous-time LSS which is the following linear system
of ODE on the vector-valued function x : [0,+∞) → R

d:





ẋ(t) = A(t)x(t) ;
x(0) = x0 ;
A(t) ∈ A , t ≥ 0 .

(1)

Here A(·) is a control function, also called switching law which is a summable
function that takes values on a given compact set A of d × d matrices. Since the
range of the function A(·) is compact, the summability of A(·) is equivalent to
its measurability. The set of control functions on an interval [a, b] will be denoted
by U [a, b]. We use the short notation U [0,+∞) = U . The space of all summable
functions will be denoted as usual by L1.

The Lyapunov exponent σ(A) is the infimum of numbers α such that ‖x(t)‖ ≤
Ceαt for every trajectory of (1). The system, or the corresponding family of ma-
trices A, is stable if ‖x(t)‖ → 0 as t→ +∞ for every trajectory of (1). Obviously, if
σ < 0, then the system is stable, and, conversely, the stability implies that σ ≤ 0.
This small gap between the necessary and sufficient condition can be handled:
actually the system is stable if and only if σ < 0 (see, for instance, [3,42]).

It is well known that σ(A) = σ(co (A)), where co (·) denotes the convex hull.
In particular, the family co (A) is stable if so is the family A [3]. We call a general-
ized trajectory of system (1) a trajectory x(·) corresponding to a control function
A(·) with values from the convex hull co (A). So, any trajectory is a generalized
trajectory as well. If A is a convex set, then the converse is true, and the notions
of trajectory and of generalized trajectory coincide. Let I denote the d×d identity
matrix and A + sI = {A + sI | A ∈ A}, where s is a number. The following
equality is checked directly:

σ (A + s I) = σ (A) + s . (2)

This means that, by simple shift of the matrices, the comparison of the Lya-
punov exponent with a given number is equivalent to the comparison with zero,
i.e., to deciding the stability. Hence, the computation of the Lyapunov exponent
is reduced to the stability problem by means of the double division principle. The
most popular approach to prove the stability of LSS is by constructing a Lyapunov
function f(x), a positive homogeneous function on R

d that decreases along any tra-
jectory of the system. See [27,36,40] for the general theory of Lyapunov functions

for LSS. In most of applications, the quadratic function f(x) =
√
xTMx (CQLF –

common quadratic Lyapunov function) appears to be quite efficient. Here M is a
symmetric positive definite matrix, and the Lyapunov function property is equiva-
lent to the following system of matrix inequalities: ATM+MA ≺ 0 , A ∈ A. The
CQLF can be found by solving the corresponding SDP (semidefinite programming
problem), which can be efficiently done using standard computer software, mostly
in dimensions d ≤ 20 or slightly more. The main disadvantage of this approach
is that in some examples the precision of this method is not satisfactory. The
SDP system may have no solutions even if the system is very stable, say, when
σ(A) = −1. The reason is that quadratic functions are not dense (or, in other
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terms, not universal) in the set of all Lyapunov functions. The examples of sta-
ble LSS that have no CQLF are well known. Due to the compactness argument,
each of those systems have an irreducible error in the Lyapunov exponent com-
putation by CQLF. That is why, other classes of functions have been used in the
literature to construct Lyapunov functions: positive polynomials of higher degree,
SOS, piecewise-quadratic, piecewise-linear, etc. (see surveys [37,60]). In contrast
to quadratic functions, all those classes are dense which implies their universality,
i.e., every stable LSS has a Lyapunov function from those classes. However, in
many cases, this advantage is rather theoretical because the constructing of such
Lyapunov functions is hard, even in relatively small dimensions d.

The class of polytope functions (also referred to as polyhedral or piecewise-linear)
is the simplest one and it drew much attention in the literature. The first polytope
algorithms originated in late eighties with Molchanov and Pyatnitskii [40,41] and
Barabanov [5]. Then this method was developed in various directions by Amato,
Ambrosino, Ariola, Blanchini, Miani, Julian, Guivant, Desages, Polanski, Shorten,
Yfoulis and others (see [1,6,7,9,31,39,43,44,60]). The polytope function can be
easily defined by faces of the corresponding level polyhedron P (unit ball):

f(x) = max
i=1,...,N

(
v∗i , x

)
, (3)

where {v∗i }Ni=1 are given vectors (normals to the hyperfaces of P ). The Lyapunov
function property (to decrease along any trajectory) becomes the following prop-
erty of vertices: for each vertex v of P the vectors Av ,A ∈ A, starting at v are all
directed inside the polytope P [41,43]. For the function f given in the form (3),
this condition is hard to verify in high dimensions, because it requires finding all
vertices. On the other hand, if P is given in the dual form, merely by the list of
its vertices P = co {vj}kj=1, then this condition is checked easier, just by solv-
ing corresponding LP (linear programming) problems. In this case, however, the
function f loses its explicit form: the evaluation of f(x) at a given point x ∈ R

d

requires solving an LP problem. The main challenge in the design of the polytope
Lyapunov functions is to chose the location of vertices in a proper way. In [39,43,
59,60] this is done by placing all vertices on a given system of ray directions. First,
one construct a system of rays that actually form an ε-net on the unit sphere in R

d.
Then one selects a vertex in each ray in order to fulfill the Lyapunov property of
the polytope P . In [39,43] this is done by solving LP problems. In [59,60] the
authors introduce iterative ray-gridding approach and demonstrate its efficiency
in examples of dimensions d = 2 and d = 3. Unfortunately, in higher dimensions
the number of vertices grows dramatically, which makes those methods hardly
applicable. An ε-net on the unit sphere contains, roughly, C ε 1−d points (see,
for instance [11,38]). Therefore, already in R

4, asking for a precision ε = 0.01 to
approximate the Lyapunov exponent requires to deal with millions of vertices.

In this paper, we develop a new method to design the polytope Lyapunov
function. We use some ideas from our recent work [22] as well as [23,45,24,25],
where we analyse discrete-time LSS. For them, the stability depends on the joint
spectral radius of matrices, see §2.2 for a brief overview. In [23,45,22] we developed
a method of computation of the joint spectral radius. For the vast majority of
finite sets of matrices, it finds the exact value. The method works efficiently for
general finite sets of matrices of dimensions up to 20 although it can reach higher
dimension if one accepts a longer computation. For sets of nonnegative matrices, it
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works much faster and it is applicable for dimensions up to several hundreds. The
main idea is to construct iteratively a common polytope Lyapunov norm, see §2.3
for more details. Here we use this argument to analyze the continuous-time LSS.
First, we discretize the system with a properly chosen dwell time τ > 0. Then we
apply the algorithm from [22] to the matrices e τA =

{
e τA

∣∣ A ∈ A
}
and construct

a corresponding polytope P . Then we use the piecewise linear norm generated by
this polytope as a Lyapunov function for the continuous-time LSS obtaining both
a lower bound and an upper bound for the Lyapunov exponent.

The new method can be shortly summarized as follows:

1) the vertices of the polytope P are generated iteratively. The starting vertices
are chosen in a special way: they are leading eigenvectors of a chosen product Π
of matrices from e τ A, and of cyclic permutations of this product;

2) the iterations are realized not by the matrices of the family A but by shifted
matrices A + sI (formula (2)), where the parameter s is chosen by solving an
optimization problem.

As a result, we obtain a polytope P that defines a Lyapunov function and
localize the Lyapunov exponent σ in a segment [β, α]. The precision of this method
is estimated. In particular, we prove that the length of this segment γ = α −
β decreases linearly with τ and converges to zero as τ → 0. Then we consider
numerical examples in several dimensions. In dimension d = 5 (Example 6.1.2), to
compute the Lyapunov exponent with an absolute error γ ≤ 0.25 we need τ about
0.025 and a polytope with 10000 vertices; to compute it with an absolute error
γ ≤ 0.1 we need τ about 0.01 and a polytope with 20000 vertices.

In a separate section we consider positive systems, i.e., systems with all tra-
jectories inside a given cone K ⊂ R

d. Such systems have been intensively studied
in the literature [2,16,17,19,28,55]. We start with several theoretical results, the
main of which is the theorem on the existence of monotone invariant norm for a
positively irreducible system (Theorem 3). Then we modify the polytope algorithm
for positive systems and estimate its accuracy. The algorithm is written for finitely
many matrices in the case K = R

d
+ (i.e., all matrices are Metzler). In numerical

examples (Section 5), we see that it works much faster than in the general case
in dimensions up to 100. In dimension d = 25 (see Example 6.2.2), to compute
the Lyapunov exponent with an absolute error γ ≤ 0.02 we need τ about 0.02
and a polytope with only 210 vertices. In dimension d = 100 (see Section 6.3), to
compute the Lyapunov exponent with an absolute error γ ≤ 0.1 we need τ about
0.004 and a polytope with less than 300 vertices.

All numerical results are presented in Section 5 and compared with the CQLF
method. In small dimensions (up to 10) our algorithm is more expensive than
CQLF, but gives better accuracy. For positive systems, its complexity grows mod-
erately with the dimension, and for dimensions up to d = 100 it still gives good
results (with absolute error about γ = 0.1−0.3), while the CQLF method becomes
inapplicable.

The last part of the paper deals with stabilizability of positive systems. The
system is called stabilizable if there is at least one switching low with stable trajec-
tories. The largest possible exponent of growth is called lower Lyapunov exponent
of the system and is denoted as σ̌(A), see Section 4 for more details. Stabilizability
of positive systems was studied in [8,19,20,37,54,58]. An advantage of our method
is that it is easily extended to the stabilizability problem and to computing the
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lower Lyapunov exponent. To this end we have to consider concave Lyapunov func-
tions (“antinorms”) instead of convex ones and the so-called “infinite polytopes”
instead of usual ones. We begin with theoretical results and show the existence
of invariant antinorm for an arbitrary system with positively irreducible matrices
(Theorem 5). This allows us to estimate the accuracy of the polytope method
for computing the lower Lyapunov exponent, which also turns out to be linear
in the dwell time τ . In numerical examples presented in Section 5 the algorithm
decides stabilizability and computes the lower Lyapunov exponent in dimensions
up to 100.

The paper is organized as follows. In Section 2 we start with a short summary
of results on the joint spectral radius, extremal and invariant norms, and bounds
for the Lyapunov exponent. Then we prove the main theoretical result of that
section, Theorem 1 on the linear upper bound for the precision of the Lyapunov
exponent computation. Afterwards we present Algorithm (R) for computing the
Lyapunov exponent for general finite sets of matrices, estimate its convergence rate
and prove the conditions to terminate within finite time (Theorem 2). Section 3
deals with LSS that are positive with respect to a given cone K ⊂ R

d
+. We start

with the main theoretical result, Theorem 3 on monotone invariant norm in the
cone. We use it to prove Theorem 4 providing an upper bound for the Lyapunov
exponent. Then we describe Algorithm (P) for computing the Lyapunov exponent
of a positive system. Section 4 is concerned with the stabilizability of positive
systems and starts with introducing notions of antinorm and of infinite polytope.
Then we present Theorem 5 on the existence of a monotone invariant antinorm
in a cone. Finally we derive lower and upper bounds for the lower Lyapunov ex-
ponent σ̌(A), estimate their distance (Theorem 6) and present Algorithm (L) for
deciding the stabilizability and approximating σ(A). The criterion of convergence
of Algorithm (L) and estimates of its precision are proved in Theorem 7. In Sec-
tion 5 we present numerical examples and some statistics of the implementation
of our algorithms to randomly generated matrices of various dimensions.

Throughout the paper, unless we explicitly state differently, a norm of a vector
and of a matrix is Euclidean. For a matrix A and for a set of matrices A, we denote
eA =

∑∞
k=0

1
k!A

k , eA = {eA| A ∈ A} , Ak = {Ak . . . A1 | Ai ∈ A , i = 1, . . . , k}.

2 Stability of general linear switching systems

In this section we provide some general theoretical results concerning stability of
switching systems.

2.1 Extremal and invariant norms

The main approach to establish the stability of LSS is to compute a Lyapunov
function f(x), a positive homogeneous continuous function on R

d such that, for
every trajectory x(·) of the system, the function f(x(t)) strictly decreases in t.
Such a function is usually called (joint) Lyapunov function of the family A. The
existence of Lyapunov function implies the stability. A converse statement is also
true, even in the following strong sense: for an arbitrary stable LSS there exists a
convex symmetric Lyapunov function [42,40]. The symmetry means that f(−x) =
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f(x), x ∈ R
d. Since a symmetric convex positively homogeneous function on R

d

is a norm, one can say that there is a Lyapunov norm, i.e., a norm that possesses
property of Lyapunov function. If the family A generating the LSS is irreducible,
this result can be strengthened to the existence of extremal and invariant (Bara-
banov) norms.

Definition 1 A norm ‖ · ‖ is called extremal for a set A if for every trajectory
of (1) we have ‖x(t)‖ ≤ e σ t‖x(0)‖ , t ≥ 0.

An extremal norm is called invariant if for every x0 ∈ R
d there exists a gener-

alized trajectory x̄(t) such that x̄(0) = x0 and ‖x(t)‖ = e σ t ‖x0‖ , t ≥ 0.

Since every point x(τ) can be considered as a starting point of a new trajectory
(after the shift of the argument t′ = t−τ), it follows that for an extremal norm the
function e− σ t ‖x(t)‖ is non-increasing in t on every trajectory. For an invariant
norm, this function is identically constant on some generalized trajectory, and for
every point x0 ∈ R

d there is such a trajectory starting in it. In particular, for σ = 0
we have

Corollary 1 In case σ(A) = 0 a norm is extremal for A if and only if it is non-
increasing in t on every trajectory of (1). An extremal norm is invariant if and
only if for every x0 ∈ R

d there exists a generalized trajectory x̄(t) with x̄(0) = x0
on which this norm is identically constant.

If we take a unit ball B of that norm, we see that a norm is extremal if and
only if every trajectory starting on the unit sphere ∂ B never leaves the ball B.
This norm is invariant if for each point of the sphere there exists a generalized
trajectory starting at this point that eternally goes on the sphere.

A set of matrices A is called irreducible if these matrices do not share a
nontrivial common invariant subspace. The following theorem originated with
N.Barabanov in [3].
Theorem A. An irreducible set of matrices possesses an invariant norm.

The proof is in [3]. Clearly, if a family A is stable, i.e., σ = σ(A) < 0, then an
extremal norm of the family A− σI is a Lyapunov norm for A. Lyapunov norms
can be characterized geometrically in terms of the vector field on the unit sphere.
For each A ∈ A, we consider the following vector field on R

d: to every point x ∈ R
d

we associate a vector Ax starting at x. For a given convex set G, we say that the
vector Ax at the point x ∈ G is directed inside G, if there is a number η > 0
such that x + η Ax ∈ intG. It was shown in [42,40] that a norm f(·) with a unit
ball G ⊂ R

d is Lyapunov for a given LSS if and only if, at every point x ∈ ∂ G the
vector Ax is directed inside G, for each A ∈ A. The following result is corollary of
Theorem A, but it was derived much earlier, in works [40,42]:

Theorem B. A family of matrices A is stable if and only if there exists a
convex body G ⊂ R

d symmetric about the origin such that at every point x ∈ ∂ G,
the vector Ax is directed inside G, A ∈ A.

2.2 Discretization and the joint spectral radius

The idea is that of discretizing (1) and imposing that the switching instants are
multiple of a dwell time τ . This allows us to express the solution of the discretized
system as a product of matrices {B = eτA}, A ∈ A.
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A discrete linear switching system is the following system of difference equa-
tions on a sequence {xk}∞k=0 ⊂ R

d:





xk+1 = Bk+1 xk ;

x0 ∈ R
d is given ;

Bk ∈ B , k ∈ N ∪ {0} ,
(4)

where B is a given compact set of matrices. For an arbitrary sequence Bk ∈ B , k =
1, 2, . . . and an initial point x0, a unique solution {xk}∞k=0 is called trajectory of
the system. The system is stable if xk → 0, k → ∞, for every trajectory. The role
of Lyapunov exponent for discrete systems is played by the joint spectral radius
(JSR) of the set B (see e.g the monograph [32] for an extensive treatise on the
JSR).

Definition 2 For a given compact set of matrices B, the joint spectral radius ρ(B)
is

ρ(B) = lim
k→∞

max
Bi∈B , i=1,...,k

∥∥Bk . . . B1

∥∥ 1/k
.

This limit exists for every compact set o matrices B and does not depend on the
matrix norm [52]. For properties and for more references on numerous applications
of JSR see [22,26]. The discrete system is stable if and only if ρ(B) < 1 [4]. One
of the ways to analyse stability is to discretize the continuous system (1) with
dwell time τ > 0 to the form (4) by setting xk = x(kτ) , B = e τA A ∈ A. This
system represents only those trajectories of the continuous system corresponding
to piecewise-constant control functions A(·) with the step size τ . Hence, if there
exists τ > 0 for which the discrete system is unstable, i.e., ρ(e τA) ≥ 1, then the
continuous system is also unstable. We need several properties of JSR that are
formulated below. The first one was established in [52]:

Proposition C. Let B be a compact matrix family and λ be a positive number.
If there exists a symmetric convex body G such that B(G) ⊂ λG , B ∈ B, then
ρ(B) ≤ λ. If ρ(B) < λ, then such a convex body exists.

The following property of the joint spectral radius is a special case of [47,
Proposition 2]:
Proposition D. For every compact set of matrices B and for every point x0 ∈ R

d

that does not belong to their proper common invariant linear subspace, there is a
constant C = C(x0 B) > 0 such that max

Bi∈B , i=1,...,k
‖Bk · · · B1 x0‖ ≥ C ρk k ∈ N,

where ρ = ρ(B).

2.3 The polytope norm method for discrete-time systems

Our method of computing of the Lyapunov exponent with a polytope norm is
based on the corresponding method for discrete-time systems developed in [45,23,
22]. Below, we give a short summary of some results of that work needed in the
subsequent sections.

The main idea of the method of JSR computation with a polytope norm is
to find the spectrum maximizing product (s.m.p.), i.e., a product Π of matrices
from B for which the value [ρ(Π)] 1/n is maximal among all products of matrices
from B, where n = n(Π) is the length of Π. This is done as follows: first we fix
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some reasonably large l ∈ N and check all products of lengths n ≤ l finding a
product Π with the maximal value [ρ(Π)] 1/n. We denote this value by ρl. This
product is considered as a candidate for s.m.p. Then the algorithm iteratively
builds a polytope P for which B P ⊂ ρlP , B ∈ B. If it terminates within
finitely many iterations, then the polytope P is extremal, Π is an s.m.p., and
ρ(B) = ρl. A theoretic criterion for termination of the algorithm within finite time
is formulated in terms of dominant products. We consider the normalized family
B̃ = {B̃ = ρ−1

l B| B ∈ B}. By Π̃ we denote the product of matrices from B̃
corresponding to Π.

Definition 3 A product Π ∈ Bn is called dominant for the family B if there is
q < 1 such that the spectral radius of every product of operators of the normalized
family B̃, that is not a power of Π̃ nor a power of its cyclic permutations, is smaller
than q.

Thus, any dominant product is an s.m.p., but, in general, not vice versa. As is
shown in [22, theorem 4] the algorithm terminates within finite time if and only if
the product Π is dominant for B.

2.4 Lower and upper bounds for the Lyapunov exponent

Let A be a compact family of matrices. For a given number τ > 0, we define the
value β(A, τ) = β(τ) = τ−1 ln ρ(eτA), and for a given polytope P ⊂ R

d symmetric
about the origin, we define the value α(A, P ) = α(P ) as

α(P ) = inf
{
α ∈ R

∣∣∣ for each vertex v ∈ P and A ∈ A,

the vector (A− αI)v is directed insideP
}
. (5)

The following observation is simple, but crucial for the further results:

Proposition 1 For an arbitrary compact family A, for each number τ > 0 and
for a polytope P , we have

β(τ) ≤ σ ≤ α(P ) . (6)

Proof Take arbitrary ε > 0 and a vector x0 ∈ R
d that does not belong to a

common invariant subspace of A. Consider the set of trajectories with x(0) = x0
corresponding to piecewise-constant control functions A(t) with k steps of size τ .
By Proposition D, the maximal value of ‖x(kτ)‖ over such trajectories is

max
Ad1

,...,Adk
∈A

‖eτAk · · · eτA1x0‖ ≥ C1 [ρ(e
τA)]k, (7)

where the constant C1 does not depend on k. On the other hand, ‖x(kτ)‖ ≤
C2e

(σ+ε)kτ . Combining this with (7) and taking the limit as k → ∞, we get

e(σ+ε)τ ≥ ρ(eτA), which for ε → 0 yields σ ≥ ln ρ(eτA)
τ = β(τ). Take now

some α ∈ R. If for every A ∈ A and for each vertex v ∈ P , the vector (A−αI)v is
directed inside P , then there is η > 0 such that v + η(A − αI)v ∈ intP , A ∈ A,
for each vertex v ∈ P . Hence, the same is true for every convex combination x
of vertices: x + η(A − αI)x ∈ intP , and hence, for every x ∈ ∂ P , the vector
(A − αI)x is directed inside P . Consequently, σ(A − αI) < 0, and so σ(A) < α.
Taking infimum over all α, we arrive at the right hand side inequality of (6). ⊓⊔
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If, for a polytope P , we have e τ A P ⊂ λP , A ∈ A, then Proposition C yields
that λ ≥ ρ(eτA). If this inclusion holds true for λ = ρ(eτA), then the polytope P
is called extremal for the family eτA. Clearly, if we have an extremal polytope
available, then we know the value of JSR. This is the base of the algorithm exact
JSR computation from [23,22]. In many cases, however, the extremality property
is a too strong requirement, and one can use the following weaker version:

Definition 4 Given ε ≥ 0, a polytope P is called ε-extremal for a family eτA if

eτA P ⊂ eτε ρ(eτA)P , A ∈ A .

Since ρ(eτA) = eτβ(τ), we see that the ε-extremalily is equivalent to the inclusion

eτA P ⊂ eτ(β+ε) P , A ∈ A . (8)

Before we formulate the main results of this subsection, we need to clarify the
irreducibility assumption. The problem is the irreducibility of the set A does not a
priory imply the irreducibility of the set of exponents e τA. For some rare cases of
the parameter τ , the set e τA may obtain common invariant subspaces. To avoid
this difficulty, we introduce the notion of admissible numbers τ . Fix an arbitrary
small number δ > 0. For a given matrix A, we denote by sp (A) the set of its
eigenvalues. Consider the union of the two following sets:

{
2πn

|Im (λi − λj)|
, λi, λj ∈ sp (A) , Im (λi) 6= Im (λj) , n ∈ N

}

and {
πn

|Im (λi)|
, λi ∈ sp (A) , λi /∈ R , n ∈ N

}

and intersect this union with the segment [0, 2]. We obtain the set T0(A). Let
T0(δ, A) be some open subset of the segment [0, 2] of measure δ/2 that contains
T0(A). Finally, let T (δ, A) = ∪k≥02

−kT0(δ,A).
Thus, T (δ, A) is an open subset of the segment [0, 2] of measure δ. This measure

can be chosen arbitrarily small. If a matrix set A is irreducible, then it has a finite
irreducible subset Af . If A is finite, then we take Af = A, otherwise we take an
arbitrary finite irreducible subset Af ⊂ A. We fix Af and write T (δ,A) for the
finite union ∪A∈Af

T (δ, A). A number τ ∈ (0, 2] is called admissible for A if it
does not belong to the set T (δ,A). Thus, all numbers except for those from a set
T (δ,A) of arbitrarily small measure are admissible. So, a generic number τ > 0 is
admissible.

Lemma 1 If a set of matrices A is irreducible, then for any admissible number τ ∈
(0, 2], the set e τA is irreducible.

Proof If for every A ∈ A, the matrix e τA has the same invariant subspaces as A,
then the family e τA is irreducible. Otherwise, if some matrix A ∈ A gets a
new invariant subspace after taking its exponent, then either some of its com-
plex eigenvalues λi ∈ sp (A) becomes real, or two its different eigenvalues λi, λj ∈
sp (A) become equal. The former means that Im

(
e τλi

)
= sin

(
Im (τλi)

)
= 0 and

hence τ Im (λi) = πn , n ∈ Z; the latter means that e τλi = e τλj , and hence
τ Im (λi − λj) = 2πn, n ∈ Z. In both cases we have τ ∈ T (δ, A), and τ is not
admissible. ⊓⊔
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In what follows we always assume that the number τ is admissible, and hence
the set e τA is irreducible. The double inequality (6) localizes the Lyapunov expo-
nent to the segment [β(τ) , α(P )]. The following theorem estimates the length of
this segment in case the polytope P is ε-extremal.

Theorem 1 For every compact irreducible family A, there is a positive constant C =
C(A) such that for all ε ≥ 0 and admissible τ ∈ (0, 1), we have

α(P ) − β(τ) ≤ Cτ + ε ,

whenever P is ε-extremal for eτA.

Thus, by inequality (6), every dwell time τ > 0 gives the lower bound β(τ) for the
Lyapunov exponent, and that dwell time with an ε-extremal polytope P give the
lower bound α(P ). Theorem 1 ensures that the precision of these bounds is linear
in τ and ε, provided A is irreducible and τ is admissible. In particular, for ε = 0,
we have

Corollary 2 If the polytope P is extremal for eτA, then α(P )− β(τ) ≤ Cτ .

To prove Theorem 1 we begin with several auxiliary facts. First, for an arbitrary
compact set of matrices A there is a constants C such that

∥∥∥ e τ A −
(
I + τ A

) ∥∥∥ < C τ2 for every A ∈ A , τ ∈ (0, 1) . (9)

For the proof, it suffices to write the Taylor expansion of the matrix exponent and

to estimate the norm of the rest
∑∞

k=2
τk

k! A
k.

We make use of the following measure of irreducibility suggested by Kozyakin
and Pokrovsky in [34,33]. Denote O(x) = co

{
±Πkx

∣∣ Πk ∈ Ak , k = 0, . . . , d−1
}
.

This is the symmetrized convex hull of the orbit of point x by products of length ≤
k of matrices from A. Consider the value

h(A) = max
{
r ≥ 0

∣∣∣ ∀x ∈ R
d , ‖x‖ = 1 , B(0, r) ⊂ O(x)

}
. (10)

Thus, h(A) is the radius of the biggest Euclidean ball contained in the convex hull
of the set O(x), for each point x from the unit sphere. The following lemma was
proved in [33]:

Lemma 2 The family A is reducible if and only if h(A) = 0.

Proof If h(A) = 0, then by the compactness it follows that there exists a point
x , ‖x‖ = 1 for which the set O(x) has an empty interior. Consider a sequence
{Li}i∈N of subspaces of Rd defined recursively as follows: L1 = span (x) , Li+1 =
span

(
Li , ∪A∈A, ALi

)
, i ∈ N. Clearly, this is an embedded sequence, i.e., Li ⊂

Li+1. If this inclusion is strict for all i = 1, . . . , d − 1, then the dimensions of
subspaces strictly increase each time, and hence dimLd ≥ d. On the other hand,
Ld is a linear span of the set O(x), therefore, its dimension is smaller than d. Thus,
for some i ≤ d − 1 we have Li = Li+1, and hence the subspaces Ln coincide for
all n ≥ i. In particular, Ld = Ld+1. Consequently, ALd ⊂ Ld for all A ∈ A, and
so A is reducible.

Conversely, if A has a proper common invariant subspace L, then, for every x ∈
L the set O(x) lies in L, and hence, does not contain any ball. ⊓⊔
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For a given family A, we consider the class of contractive norms ‖ · ‖c in R
d

for which ‖A‖c ≤ 1 , A ∈ A. The following result shows that for an irreducible
family A, all contractive norms are equivalent.

Lemma 3 Let A be a compact family of matrices. If a norm ‖ · ‖c is contractive
for A, then, after a multiplication of this norm by a constant, we have

h(A) ‖x‖c ≤ ‖x‖ ≤ ‖x‖c , x ∈ R
d .

Proof Let the minimum of the norm ‖ · ‖c on the Euclidean sphere is attained at
a point z. Multiplying the norm ‖ · ‖c by a constant, we assume that ‖z‖c = 1.
Thus, ‖x‖c ≥ ‖x‖ for all x. Since the norm ‖ · ‖c is contractive, it follows that the
set O(z) is contained in the unit ball of the norm ‖ · ‖c. By Lemma 2, this set
contains the Euclidean ball of radius h(A). Whence, ‖x‖ ≥ h(A)‖x‖c, x ∈ R

d. ⊓⊔

Let us denote H(A) the minimum of the function h(e tA) taken over admissible
points t ∈ [1, 2] . This minimum is attained at some point t0 ∈ [1, 2], because
h(e tA) is a continuous function of t and the set of admissible points t ∈ [1, 2] is
compct. If A is irreducible, then so is e tA, and hence H(A) = h(e t0A) > 0. Thus,
H(A) is strictly positive for irreducible A.

For a given τ ∈ (0, 1), we consider the family eτA. By Lemma 3, all contractive
norms of this family are equivalent. We are going to prove that they are uniformly
equivalent for all admissible τ ∈ (0, 1).

Proposition 2 Let A be a compact irreducible family of matrices, then for each
admissible τ ∈ (0, 1) and for every contractive norm ‖ · ‖ τ of the family e τ A,
after a multiplication of this norm by a constant, we have

H(A) ‖x‖ τ ≤ ‖x‖ ≤ ‖x‖ τ , x ∈ R
d . (11)

Proof There is a natural number n such that 2nτ ∈ [1, 2]. By definition, the
number 2nτ is admissible, hence the set e 2nτA is irreducible. Since ‖e τA‖τ ≤ 1
for every A ∈ A, we have ‖e 2nτA‖τ = ‖(e τA) 2

n‖τ ≤ 1, hence the norm ‖ · ‖τ
is contractive for the family e 2nτA as well. Applying Lemma 3 to this family, we
obtain

h (e 2nτA) ‖x‖τ ≤ ‖x‖ ≤ ‖x‖τ .
It remains to note that h (e 2nτA) ≥ H(A), because 2nτ ∈ [1, 2]. ⊓⊔

Thus, all contractive norms of the families e τ A are equivalent, uniformly for
all admissible τ ∈ (0, 1), to the Euclidean norm.

Proof of Theorem 1.

Without loss of generality, passing from the family A to A−βI, it can be assumed
that β(τ) = 0. We estimate α(P ) from above by showing the existence of a con-
stant C depending only on the family A such that for every vertex v ∈ P and for
each A ∈ A, the vector (A − (Cτ + ε) I) v is directed inside P . This will imply
α ≤ Cτ + ε.

Denote A′ = A − εI and consider arbitrary A′ ∈ A′. By (9) the distance

between points e τA′

v and (I + τA′)v is smaller than Cτ2. This distance can be
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measured in the norm ‖ · ‖P , where it is smaller than Cτ2, with another constantC,
which depends neither on τ nor on P . Indeed, by the ε-extremality assumption,
the norm ‖ · ‖P is contractive for e τA′

, and hence, by Proposition 2, is equivalent
to the Euclidean norm, uniformly in τ ∈ (0, 1). Since for each vertex v ∈ P , we

have ‖ e τA′

v ‖P ≤ ‖v‖P = 1, from the triangle inequality it follows that

‖(I + τA′)v‖P < 1 + Cτ2.

Therefore, the point y = 1/(1 + Cτ2) (I + τA′) v belongs to intP , and hence
the vector from the point v to y is directed inside P . On the other hand, y− v =
τ/(1+Cτ2)

(
A′ − Cτ I

)
v, consequently the vector (A′−CτI)v = (A−(Cτ+ε)I)v

is directed inside the polytope, which concludes the proof. ⊓⊔

2.5 Algorithm (R) for computing the Lyapunov exponent and for constructing
the polytope Lyapunov function

Proposition 1 and Theorem 1 suggest the following method of approximate com-
putation of the Lyapunov exponent σ(A):

1) choose a dwell time τ >, and compute the joint spectral radius ρ(e τA);
2) choose ε > 0 and construct an ε-extremal polytope P for the family e τA.

Then we localize the Lyapunov exponent σ(A) on the segment [β,α], whose
length tends to zero with a linear rate in τ and ε as τ, ε→ 0.

For a given finite irreducible familyA = {A1, . . . , Am} or for a polytope family
of matrices co (A), the algorithm approximates the Lyapunov exponent σ(A) by
giving its lower and upper bounds, and produces the corresponding polytope Lya-
punov norm. The main idea is the iterative construction of an ε-extremal polytope
for a prescribed ε > 0. We begin with a brief description of the algorithm.

Initialization. We choose a small admissible number τ > 0, a small number ν ≥
0, and a reasonably large natural l. Among all products of length≤ l of the matrices
e τAj , j = 1, . . . ,m, we select a starting product Π = e τAdn · · · e τAd1 , n ≤
l for which the value [ρ(Π)]1/n (n is the length of Π) is as large is possible.
This can be done by mere exhaustion of the set of all products of lengths n =
1, . . . , l, or by Gripenberg’s algorithm [21], or by the recent algorithm [13]. We
denote ρl = [ρ(Π)]1/n, βl(τ) = τ−1 ln ρl. If we performed a complete exhaustion
and the value ρl = [ρ(Π)]1/n is maximal among all products of lengths at most Π,
then we call Π the maximal product. Observe that βl ≤ β and if we take only
maximal products, then βl → β as l → ∞. If the leading eigenvalue λmax of Π is
real, we assume it is positive, the case of a negative eigenvalue is considered in the
same way. In this case we denote by v1 the leading eigenvector of Π (if it is not
unique, we take any of them). If λmax /∈ R, then we set v1 = v+ v̄, where v is the
leading eigenvector. Then we normalize the family A as

Ã = A− (βl + ν)I (12)

where we recall that ν is a suitable small positive number.

The first part. Construction of the polytope P . We start with the set V0 =
{v1, . . . , vn} and with the corresponding polytope (possibly, not full-dimensional)
P0 = cos(V0), where vi = e τAdi−1 · · · e τAd1 v1. At the kth step, k ≥ 1, we have a
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finite set of points Vk−1 and a polytope Pk−1 = cos(Vk−1). We take a point v ∈
Vk−1 added in the previous step, and for each j = 1, . . . ,m, check if eτÃjv ∈ Pk−1,
by solving the corresponding LP problem. If the answer is affirmative, then we go to

the next j; if j = m, we go to the next point from Vk−1. Otherwise, if eτÃjv /∈ Pk−1,
we update the set Vk−1 by adding the point v, update, respectively, the polytope
Pk−1 by adding two new vertices {v,−v}, and then go the next j and to the next
point v. After we exhaust all points of the initial set Vk−1, we start the (k + 1)st
step, and so on. This process terminates after some Nth step, when VN = VN−1,

i.e., no new vertices are added to the polytope PN−1. In this case, eτÃPN ⊂ PN

for all Ã ∈ A− (βl+ ν)I. This means that PN is ε-extremal for the family A with

ε = βl(τ) − β(τ) + ν . (13)

If the first part of the algorithm does not terminate within finite time, then we
either increase l or increase ν and go to the Initialization.

The second part. Deriving the lower and upper bounds for σ(A). Thus, the first
part of the algorithm produces an ε-extremal polytope PN . We compute α(PN)
by definition, as infimum of numbers α such that the vector (A−αI)w is directed
inside PN , for each vertex w ∈ PN and for every A ∈ A. This is done by taking a
small δ > 0 and solving the following LP problem:





α → inf
w + δ(A− αI)w ∈ PN ,
w ∈ PN , A ∈ A .

Proposition 1 yields
βl(τ) ≤ σ(A) ≤ α(PN ) . (14)

Thus, as a result of Algorithm (R), we obtain the lower bound βl(τ) and the
upper bound α(PN ) for the Lyapunov exponent. The polytope PN constitutes the
Lyapunov norm for the family A. If α(PN ) < 0, then we conclude that the system
is stable and its joint Lyapunov function is defined by the polytope PN .

Theorem 2 Algorithm (R) terminates within finite time if one of the following
conditions is satisfied:

1) ν > β(τ) − βl(τ);
2) ν = 0, the product Π is dominant for the family eτA and its leading eigen-

value λmax is unique and simple.
In case 1) the distance between the lower and upper bounds in (14) does not exceed
βl − β + ν + Cτ ; in case 2) it does not exceed Cτ , where C = C(A) is a constant
independent of τ .

Proof In the case 1) we have ρ(eτÃ) = e(β−βl−ν)τ < 1. Hence, products of matrices

from the family eτÃ tend to zero as their lengths tend to infinity. Therefore, for
each r > 0, there is k = k(r) such that all points v appearing in the kth step

of Algorithm (R) are inside the ball B(0, r). On the other hand, the family eτÃ

is irreducible, and hence, for every k ≥ d, the polytope Pk−1 has a nonempty
interior, i.e., contains some ball B(0, r). This means that all points v generated in
kth step (k = k(r)) are inside Pk−1, i.e., the first part of Algorithm (R) terminates
within finite time.
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Algorithm 1:Algorithm (R), part 1. Constructing an ε-extremal polytope P

Data: B = eτÃ (see (12))
The starting product Π (candidate s.m.p.) of length n ≤ l for which the value

[ρ(Π)]1/n is as large as possible for all products of length at most l.
Result: the polytope P
begin

1 Compute the leading eigenvector of Π and of n its cyclic permutations. We obtain
a system of vectors {v1, . . . , vn}

2 Set V0 := {vj}nj=1 and R0 = V0

3 Set i = 0
4 Set term = 0
5 while term 6= 1 do

6 Wi+1 = BRi

7 Set Si = ∅
8 Set mi = Cardinality(Wi+1)
9 Set ni = Cardinality(Vi)

for ℓ = 1, . . . ,mi do

10 Let z the ℓ-th element of Ri

11 Check whether z ∈ cos(Vi), Vi := {vj}
ni
j=1, i.e. solve the LP problem

min fℓ =
ni∑

j=1
(λj + µj)

subject to
ni∑

j=1
(λjvj + µi(−vj))=z

and λj ≥ 0, µj ≥ 0, j = 1, . . . , ni.

12 if fℓ > 1 then

13 Si = Si ∪ z

if Si = ∅ then

14 Set term = 1

else

15 Ri = Si

16 Vi+1 = Vi ∪Ri

17 Set i = i+ 1

18 Set N = i
19 Return P := PN = cos(VN ) (extremal polytope)

Algorithm 2: Algorithm (R), part 2. Computing the best upper bound α(P )

Data: A, PN ,VN (system of vertices of PN ), δ (small positive stepsize)
Result: α
begin

for i = 1, . . . ,m do

1 Solve the LP problems (w.r.t. {tv , sv}, αi)

min αi

s.t. w + δ(Ai − αiI)w ≤
∑

v∈VN

tv v − sv v ∀w ∈ VN

and
∑

v∈VN

tv + sv ≤ 1, tv , sv ≥ 0 ∀v ∈ VN

2 Return α(PN ) := max
1≤i≤m

αi



Polytope Lyapunov functions for stable and for stabilizable LSS 15

In case 2) we have ρ(eτÃ) = 1, the spectrum maximizing product Π is domi-
nant, and its leading eigenvalue λmax is unique and simple. By theorem 4 of [22]
Algorithm (R) terminates within finite time.

Since the polytope PN is ε-extremal for ε = βl − β + ν, the upper bound for
the difference α(PN )− βl(τ) follows from Theorem 1. ⊓⊔

Corollary 3 If the starting product Π is always maximal (i.e. for all τ), then the
distance between the lower and upper bounds in (14) tends to zero as l → ∞ and
ν → 0 , τ → 0.

Proof Since for maximal products, we have βl → β as l → ∞, the corollary follows
by applying Theorem 2. ⊓⊔

2.6 An illustrative example in dimension 2.

Let A = {A1, A2} with

A1 =

(
0.34657 . . . 0.78539 . . .

−0.78539 . . . 0.34657 . . .

)

A2 =

(
0.60459 . . . 1.20919 . . .

−1.20919 . . . −0.60459 . . .

)
.

For τ = 1 we set B̃ = {B̃1, B̃2} = {eA1 , eA2} with

B̃1 =

(
1 1

−1 1

)
, B̃2 =

(
1 1

−1 0

)

i.e. A1 = log(B̃1) and A2 = log(B̃2).
By means of Algorithm (R) we are able to prove that the product of degree

equal to 7, P = B̃2
1 B̃2 B̃

3
1 B̃2 is spectrum maximizing, so that ρ(B̃) = ρ(P )1/7 =

13.65685424 . . ., giving the lower bound β = 0.373463076 . . .. Then we set B =
eA−βI = {B1, B2} with B1 = B̃1/ρ(B̃), B2 = B̃2/ρ(B̃) and apply Algorithm (R),
part 1.

As a result we obtain the polytope norm in Figure 1 whose unit ball Pτ is a
polytope with 16 vertices.

Applying Algorithm (R), part 2, we obtain the optimal shift γ = 0.433445 . . .
so that we have the estimate

β = 0.373463076 . . . ≤ σ ≤ 0.80690807 . . . = α.

Figure 2 illustrates the fact that the computed polytope Pτ is positively invariant
for the shifted family A− αI.

As we expect α = 0.80690807 . . . cannot be improved since one of the vec-
torfields (A − αI)v is tangential to the boundary of the polytope (see Figure 2
(right)), according to the fact that we have solved the optimization problem in
Algorithm (R), part 2.

Note that we can easily increase the accuracy of the approximation. For exam-
ple, choosing the smaller dwell time τ = 1/8 we obtain a polytope with 80 vertices
which gives the following interval

β = 0.385225559 . . . ≤ σ ≤ 0.438159379 . . . = α.
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Fig. 1 Polytope norm for the illustrative example with τ = 1. In red the vectors B1v and in
blue the vectors B2v, for v ∈ Vτ , vertices of Pτ .
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Fig. 2 Left picture. In red the vectors (A1 − αI)v and in blue the vectors (A2 − αI)v, for
v ∈ Vτ , vertices of Pτ . Right picture: zoom of the vectorfield (in blue) tangent to the boundary
of the polytope

3 Stability of positive linear switching systems

In this section we analyze positive continuous-time LSS. Usually, they are defined
in the literature as systems with all trajectories x(t) in the positive orthant R

d
+,

provided x(0) ∈ R
d
+. This is equivalent to say that all matrices A ∈ A are Metzler,

i.e., all off-diagonal entries of A are nonnegative. Such LSS are applied, for example,
in the consensus problem of multiagent systems and in cooperative systems. Their
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properties have been thoroughly analyzed in the literature, see [2,16,20,55] and
references therein.

For the sake of generality, we consider LSS that are positive with respect to an
arbitrary cone K ⊂ R

d
+, rather than the special case K = R

d
+. For criteria on LSS

to be positive with respect to some cone and for special properties of such systems,
see [15,49,53,56,57]. To avoid confusions with the standard notation for positive
LSS (positive matrix, Metzler matrix, etc.) that are used in the literature in the
case K = R

d
+, in this section we deal with families of linear operators instead of

families of matrices. Only in the case K = R
d
+, we assume the basis in R

d to be
fixed, and deal with corresponding matrices A ∈ A. First of all, we formulate and
prove Theorem 3 on the existence of a monotone invariant norm for a positive
system. This result strengthens Theorem A for systems positive with respect to a
cone K: it relaxes the irreducibility assumption for operators from A and states
the monotonicity of the invariant norm. Then we use this fact to establish special
analogues of Theorem B and of Theorem 1 for positive systems. This enables us
to derive a modification of Algorithm (R) for positive LSS, which works more
efficiently and under weaker assumptions.

3.1 Invariant cones and K-Metzler operators

We begin with extending well-known notions and results on positive systems to
the case of arbitrary cone K, then we formulate the main result of this subsection,
Theorem 3.

Let K ⊂ R
d be a cone. In the sequel every cone is assumed to be convex,

closed, solid, pointed, and with an apex at the origin. The dual cone K∗ is defined
in a standard way:

K∗ =
{
y ∈ R

d
∣∣ inf

x∈K
(y, x) ≥ 0

}
. (15)

By ∂K M and intK M we denote the boundary and the interior respectively of a
set M ⊂ K in the topology of the cone K.

Definition 5 Let a cone K ⊂ R
d be given. A linear operator A in R

d is called
Metzler with respect to K ⊂ R

d (or, in short notation, K-Metzler) if there is h > 0
such that (I + hA)K ⊂ K.

A vector x isK-nonnegative (x ≥K 0) if it belongs to this cone, and an operator A
is K-nonnegative (A ≥K 0) if it leaves the coneK invariant. If I+hA ≥K 0, then
I+tA ≥K 0 for all t ∈ (0, h]. Indeed, I+tA = h−t

h I + t
h

(
I+hA

)
≥K 0, since the

both terms are K-nonnegative. In the sequel of this section we assume a cone K to
be fixed, and write “nonnegative” and “Metzler” instead of “K-nonnegative” and
“K-Metzler” respectively. We start with two simple lemmas that are well-known
for the case K = R

d
+.

Lemma 4 Let K be an arbitrary cone. If an operator A is Metzler, then the
operator e tA is nonnegative for every t > 0.

Proof We have e tA = lim
n→∞

(
I + t

n A
)n ≥K 0, because I + t

n A ≥K 0 for all

large n. ⊓⊔
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Lemma 5 Let K be an arbitrary cone. If a compact set A consists of Metzler
operators, then for every trajectory of (1) such that x0 ∈ K we have x(t) ∈ K , t ≥
0.

Proof Fix an arbitrary t > 0. Every control function can be approximated on
the segment [0, t] by piecewise-constant functions A(n)(·) with the nodes

{
kt
n , k =

1, . . . , n−1
}
so that ‖A(n)−A‖L1[0,t] → 0 as n→ ∞. Whence, ‖x(n)−x‖C[0,t] → 0

as n→ ∞. Since

x(n)(t) = e
t
n

A
(

t(n−1)

n

)
· · · e t

n
A
(

t
n

)
e

t
n

A
(
0
)
x0

and all the exponents in this product are K-nonnegative (Lemma 4), it follows
that x(n)(t) ∈ K. The limit passage as n→ ∞ concludes the proof. ⊓⊔

Corollary 4 If a compact set A consists of Metzler operators, then for every
control function A(·) inequality y0 ≥K x0 implies y(t) ≥K x(t) for every t ≥ 0.

Proof Is by applying Lemma 5 to the function y(t)− x(t). ⊓⊔

ForK-positive families, the irreducibility condition imposed in the main results
of Section 2 can be relaxed to K-irreducibility. Let us first introduce some further
notation. A face of a cone K is the intersection of K with a hyperplane passing
through the apex. The apex is a face of dimension 0, this is a trivial face, all others
are nontrivial. All generatrices are faces of dimension 1. A face plane is a linear
span of a face.

Definition 6 A K-Metzler operator is called irreducible with respect to K (in
short, K-irreducible, or positively irreducible, if the cone K) is fixed if it has no
invariant subspace among the nontrivial face planes of K. A family of K-Metzler
operators A is K-irreducible if there is no nontrivial face plane of K invariant for
all operators from A.

Thus, the K-irreducibility property is much weaker than just irreducibility. A K-
irreducible family of operators may have common invariant subspaces, but not
among the proper faces of K. In particular, in dimension d ≥ 3 there are no irre-
ducible operators, while K-irreducible ones, of course, exist. The K-irreducibility
may be verified by the following simple criterion.

Proposition 3 ( [56]) A Metzler operator is irreducible with respect to a given
cone K if and only if it does not have eigenvectors on the boundary of K.

Remark 1 In case K = R
d
+, the K-irreducibility, or positive irreducibility, means

that the operators have no common invariant coordinate subspaces (subspace
spanned by several vectors of the canonical basis), or, which is the same, the
matrices are not similar via a permutation to block upper triangular matrices
(with more than one block).

Definition 7 (monotone norm) A norm on a cone K is called monotone if for
every x, y ∈ K the inequality x ≥K y implies ‖x‖ ≥ ‖y‖.
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The aim of this subsection is to sharpen Barabanov’s theorem for Metzler
operators with a cone K. We prove that in this case there exists an invariant norm
that is monotone with respect to K. Moreover, the irreducibility assumption can
be now weakened to K-irreducibility. Thus, even if the operators share common
invariant subspaces, they have an invariant norm, unless one of those subspaces
is a face plane for K. The proof of the first assertion (monotonicity) is rather
simple, it can be derived from Barabanov’s theorem. The second part (relaxing
the irreducibility condition) is more delicate. To realize it we need actually to
derive an independent proof, not relying on Theorem A, although using some
ideas of its proof.

The extremal norm on a cone K forK-Metzler operators is defined in the same
way as in Definition 1. The only difference is that now we consider only those
trajectories starting in the cone K (and hence, entirely lying in K). The definition
of invariant norm on a cone K also stays the same, we only write x0 ∈ K instead
of x0 ∈ R

d.

Theorem 3 Every K-irreducible set of Metzler operators possesses an invariant
monotone norm on the cone K.

Remark 2 This fact, in comparison with Barabanov’s theorem (Theorem A) ap-
plied to positive operators, has two advantages: it ensures the existence of a K-
monotone invariant norm and, which is more important, it relaxes the assumptions
on the set of operators to K-irreducibilty.

The proof of Theorem 3 is fairly technical. It is placed in Appendix and split
into four steps. In the first two steps we construct an extremal norm on K, using
the compactness argument and involving the K-irreducibility assumption. In the
last two steps we use convex optimal control theory to show the existence of a
generalized trajectory on the unit sphere, which means that this extremal norm is
invariant.

Theorem 3 implies, in particular, an analogue of Theorem B for K-positive
systems. To formulate it we need to extend definitions of some notation from
Section 2 to this case.

A convex set G ⊂ K is called monotone with respect to K if x ∈ G, y ≤K

x ⇒ y ∈ G. For a given monotone convex set G ⊂ K, we say that the vector
Ax at the point x ∈ G is directed inside G, if there is a number η > 0 such that
x + η Ax ∈ intK G. The proof of the following fact is the same as the proof of
Theorem B (applying Theorem 3 instead of Theorem A), and we omit it

Proposition 4 A family of K-Metzler operators A is stable if and only if there
exists a convex monotone body G ⊂ R

d such that at every point x ∈ ∂K G the
vector Ax is directed inside G, A ∈ A.

3.2 Monotone polytopes and corresponding Lyapunov functions

Let K be a cone. For a given set M ⊂ K, we denote its monotone convex hull as

co−(M) =
(
co(M) − K

)
∩ K =

{
x ∈ K

∣∣ x = y − z , y ∈ co (M) , z ∈ K
}

(16)
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A monotone convex hull of a finitely many points is called a monotone polytope
or a K-polytope. Each of those points is a vertex of P , unless it is in a monotone
convex hull of the remaining points. Thus, a monotone polytope is a monotone
convex hull of its vertices. In contrast to usual polytopes, a monotone polytope
may have one vertex and be full-dimensional.

Every monotone polytope defines a monotone norm on K. We use this norm
as a joint Lyapunov function of operators from A on the cone K, which gives us
bounds for the Lyapunov exponent. Those bounds are similar to those defined
in subsection 2.2. We use the same lower bound β(τ) = τ−1 ln ρ(eτA). The upper
bound α(P ) is also defined in the same way, by formula (5), but only for a monotone
polytope P .

Proposition 5 For an arbitrary compact family A of K-Metzler operators, for
each number τ > 0 and a monotone polytope P , we have

β(τ) ≤ σ ≤ α(P ) . (17)

Proof The lower bound has already been proved in Proposition 1. The upper bound
needs a proof, because P is not a (usual) convex hull of its vertices any more.
Take an arbitrary α ∈ R. If for every A ∈ A and for each vertex v ∈ P , the vector
(A − αI)v is directed inside P , then there is η > 0 such that v + η(A − αI)v ∈
intK P , A ∈ A, for each vertex v ∈ P . Rewriting this inclusion in the form
η(A + (η−1 − α)I)v ∈ intK P , we see that the operator A + (η−1 − α)I is K-
positive, whenever η is small enough.

Hence, this inclusion holds for every convex combination x of vertices of P , and
for all points y ≤K x, i.e., for all y ∈ P . Thus, y+η(A−αI)y ∈ intP , and therefore,
the vector (A−αI)y is directed inside P , for every y ∈ ∂K P . Proposition 4 yields
σ(A− αI) < 0, and so σ(A) < α. ⊓⊔

The notions of extremal and ε-extremal polytope are extended to monotone
polytopes in a straightforward manner.

Theorem 4 For every compact irreducible family A of Metzler operators, there is
a constant C such that for all τ ∈ (0, 1) and ε > 0 we have

α(P ) − β(τ) ≤ Cτ + ε ,

whenever P is ε-extremal monotone polytope for the family eτA.

The proof is actually the same as for Theorem 1, but with the use of modified
parameter of irreducibility hK(A). This value is defined for an arbitrary family A
of K-positive operators as follows:

hK(A) = max
{
r ≥ 0

∣∣∣ ∀x ∈ K , ‖x‖ = 1 ,

BK(0, r) ⊂ co− {Πkx | Πk ∈ Ak , k = 0, . . . , d− 1}
}
. (18)

Lemma 6 A family A of K-positive operators is K-reducible if and only if hK(A) =
0.
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Proof If hK(A) = 0, then by compactness it follows that there exists a point
x ∈ K , ‖x‖ = 1 for which the set co− {Πkx , Πk ∈ Ak , k = 0, . . . , d − 1} has an
empty interior. Therefore, this set is contained in a proper face of K. Let L be a
minimal by inclusion face containing this set. As in the proof of Lemma 2 we show
that AL ⊂ L for all A ∈ A. Hence A is K-reducible. The proof of the converse is
straightforward. ⊓⊔

Lemma 3 is extended for monotone norms and for the parameter hK(A) with-
out any change. Then we need the following observation:

Lemma 7 If a family A of Metzler operators is K-irreducible, then so is the
family etA, for each t > 0.

Proof If A is K-irreducible, then so is the family A′ = hI +A, for every h > 0. If
h is large enough, then every operator A′ ∈ A′ is K-positive, and hence etA

′ ≥K

I + tA′ ≥K t A′. Therefore, the K-irreducibility of the family tA′ implies that of
the family etA

′

. Hence, the family etA = e−theτA
′

is K-irreducible. ⊓⊔

Thus, for positive systems we do not need admissible numbers and do not use
Lemma 1. Then, for a family A of Metzler operators, we denote

HK(A) = min
t∈[1,2]

hK(e tA).

This minimum is attained at some point t0 ∈ [1, 2], because hK(e tA) is a con-
tinuous function of t. If A is K-irreducible, then, by Lemma 7, so is the fam-
ily e t0A, and therefore HK(A) = hK(e t0A) > 0. Thus, HK(A) is strictly positive
for K-irreducible A. Then we establish a complete analogue of Proposition 2 for
K-primitive families and for the parameter HK(A). The rest of the proof of The-
orem 4 is literally the same as the proof of Theorem 1.

3.3 Algorithm (P) for computing Lyapunov exponents and constructing polytope
norms of positive systems

We are now ready to present an algorithm for computing the Lyapunov exponent
and constructing a polytope Lyapunov function specially for positive systems.
The corresponding algorithm will be referred to as Algorithm (P) (P stands for
positive).

For the sake of simplicity, we consider only the case K = R
d
+, i.e., we deal with

a set of Metzler matrices Ã, although the same construction is applicable for other
cones, for instance, for the positive semidefinite cone (with the corresponding
replacement of LP problems by semidefinite problems). Algorithm (P) is very
similar to Algorithm (R), we do not therefore give its detailed presentation, but
describe the differences from Algorithm (R) only.

1) Algorithm (R) is applicable for all irreducible sets of operators, while Algo-
rithm (P) is applicable for all K-irreducible sets of K-Metzler operators. In case
K = R

d
+, we obtain a positively irreducible set of Metzler matrices.

2) By the Krein–Rutman theorem [35], we have λmax > 0, and v1 ∈ K. So, we
do not have to consider cases when λmax is negative or complex.
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3) The main difference is that Algorithm (P) constructs amonotone polytope P .
Thus, in each step we have a monotone polytope Pi = co−(Vi). Everywhere we
replace the symmetrized convex hull cos(·) by the monotone convex hull co−(·)
(see (16)). In particular the LP problem at line 11 of Algorithm (P) is replaced
by:

11. Check whether z ∈ co−(Vi), Vi := {vj}ni

j=1, i.e. solve the LP problem

min fℓ =
ni∑
j=1

λj

subject to
ni∑
j=1

λjvj =z

and λj ≥ 0, j = 1, . . . , ni.

The rest of the algorithm is the same as for Algorithm (R). The corresponding
LP problems of Algorithm (P), are described in [22].

The whole procedure gives a monotone polytope Lyapunov norm in K gener-
ated by the monotone polytope PN = co−(VN ) and a lower bound and upper
bounds (14) for the Lyapunov exponent.

The upper bound is obtained by Algorithm 3, which is similar to the previously
described Algorithm 2.

Algorithm 3: Algorithm (P), part 2. Computing the best upper bound

Data: A, PN ,VN (system of vertices of PN )
Result: α
begin

for i = 1, . . . ,m do

1 Solve the LP problems (w.r.t. {tv}, αi)

min αi

s.t. w + δ(Ai − αiI)w ≤
∑

v∈VN

tv v ∀w ∈ VN

and
∑

v∈VN

tv ≤ 1, tv ≥ 0 ∀v ∈ VN

2 Return α(PN ) := max
1≤i≤m

αi

Theorem 2 and Corollary 3 hold true for Algorithm (P) without any change,
and their proofs stay the same for this case.

Remark 3 Numerical experiments (Section 5) show a very high efficiency of Algo-
rithm (P). While Algorithm (R) finds the Lyapunov exponent with a satisfactory
accuracy in dimensions d ≤ 10 on a standard laptop, Algorithm (P) does the same
for positive systems of dimensions up to 100 and higher. The number of vertices of
the polytopes constructed by Algorithm (P) is significantly smaller. The reason is
that the positive convex hull is regularly much larger than the usual convex hull,
and hence Algorithm (P) sorts out much more redundant vertices.
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4 Stabilizability of positive systems

The lower Lyapunov exponent σ̌(A) is the infimum of numbers α, for which there
exists a control function A(·) ∈ U such that every corresponding trajectory of (1)
satisfies ‖x(t)‖ ≤ C eαt. The system is stabilizable if there is a control function
A(·) ∈ U such that ‖x(t)‖ → 0 as t→ +∞ for every corresponding trajectory. The
stabilizability is equivalent to the condition σ̌ < 0 [37,54].

The following analogue of equality (2) is true for the lower Lyapunov exponent:

σ̌ (A + s I) = σ̌ (A) + s . (19)

Although the stabilizability issue is a very difficult problem, for positive sys-
tems it can often be efficiently solved. Therefore we restrict our attention to posi-
tive systems. Besides, the stabilizability of positive systems was the subject of an
extensive literature (see [20,37,54] and references therein).

Thus, we study stabilizability of K-positive systems, where K ⊂ R
d is an

arbitrary cone. In case of the positive orthantK = R
d
+, we obtain the stabilizability

of positive (in the usual sense) systems of Metzler matrices. For other cones K,
such as polyhedral cones, positive semidefinite cones, etc., this problem also makes
sense. We begin by introducing the concept of Lyapunov antinorm on cones, which
turns out to be natural for characterizing stabilizability. Some important properties
of those antinorms, in particular, an analogue of Theorems A and 3 (the existence
of invariant antinorm) and Theorem B (a geometric criterion of stabilizability) are
established in subsections 4.1 and 4.2. Then we derive lower and upper bounds for
σ̌(A) by means of infinite polytopes on cones, and estimate the distance between
them. Applying these results we present Algorithm (L) which estimates the lower
Lyapunov exponent and constructs the corresponding polytope antinorm on the
cone.

4.1 Antinorms on cones

It is not difficult to formulate analogues to the notions of extremal and invariant
norms for stabilizable systems. In case σ̌ = 0, it would be natural to define a norm
to be extremal, if it is non-decreasing in t on every trajectory x(t) of the system.
However, simple examples show that extremal norms may not exist, even for an
irreducible pair of positive 2× 2-matrices. It was first observed in [8] that stabiliz-
ability does not imply the existence of convex Lyapunov function. In the proof of
Theorems 3, an extremal norm is constructed as a pointwise supremum of some
convex functionals. This is natural, because the operation of taking supremum
respects the convexity. For the lower Lyapunov exponent, the supremum has to be
replaced by infimum, but this operation does not preserve convexity. Therefore,
one might suggest to consider concave functions rather than convex. However,
positive homogeneous concave functions on R

d do not exist. On the other hand,
such functions exist on any cone K ⊂ R

d, and this makes theoretically possible to
apply them for K-positive systems. We are going to show that stabilizable posi-
tive systems defined by Metzler operators on an arbitrary cone K do always have
concave Lyapunov functions.
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Definition 8 An antinorm on a cone K is a nontrivial nonnegative concave ho-
mogeneous functional on K. An antinorm is called positive if it is positive at all
points x ∈ K \ {0}.
The concept of antinorm originated in [48] to analyze random positive systems.
It was applied to discrete-time stabilizable positive systems in [22]. In contrast to
norms, an antinorm is always monotone on the cone.

Lemma 8 Any antinorm f on a cone K is monotone, i.e., x ≥K y ⇒ f(x) ≥
f(y).

Proof If x ≥K y, then y+ t(x−y) ∈ K for every t ≥ 0. Suppose f(x) < f(y); then
by concavity, for every t > 1, we have f(y+t(x−y)) ≤ f(y)+t(f(x)−f(y)), which
becomes negative for large positive t. This contradicts nonnegativity of f . ⊓⊔

Definition 9 Let all operators of A be Metzler for a cone K. An antinorm f(·)
on K is called extremal if for every trajectory of (1) starting in K we have
f(x(t)) ≥ e σ̌ tf(x(0)) , t ≥ 0.

An extremal antinorm is called invariant if for every x0 ∈ K there exists a
generalized trajectory x̄(t) with x̄(0) = x0 such that f(x(t)) = e σ̌ t f(x0) , t ≥ 0.

Thus, for an extremal antinorm the function e− σ̌ tf(x(t)) is non-decreasing
in t on every trajectory. For an invariant antinorm, this function is identically
constant on some trajectory, and for every point x0 ∈ K there is such a trajectory
starting in it. For σ̌ = 0, we have

Corollary 5 Let K be a given cone. In case σ̌(A) = 0 an antinorm is extremal
for A if and only if it is non-decreasing in t on every trajectory of (1) in the cone.
An extremal antinorm is invariant if and only if for every x0 ∈ K there exists a
generalized trajectory x̄(t) with x̄(0) = x0 on which this antinorm is identically
constant.

Consider the unit level set D = {x ∈ K| f(x) ≥ 1} of this antinorm. This is
a convex unbounded subset of K. The antinorm is extremal if and only if every
trajectory starting on the boundary ∂KD never leaves the set D. The antinorm
is invariant if for each point of the boundary there exists a trajectory starting at
this point that eternally remains on the boundary.

Theorem 5 Let K be a given cone. Every compact set A of K-Metzler operators
possesses an extremal antinorm on K. If, in addition, every operator from A is
K-irreducible, then there exists a positive invariant antinorm on K.

Remark 4 In Theorem 5, in contrast to Theorem 3, there is no irreducibility as-
sumption for the existence of an extremal antinorm. It always exists for a family
of Metzler operators. This antinorm, however, may vanish on the boundary of K
and may not be invariant. An invariant positive antinorm exists under a stronger
irreducibility assumption: each operator from A is K-irreducible.

The proof of Theorem 5 is in Appendix. That is somewhat similar to the proof
of Theorem 3, but with differences in several key points. The main one is the use
of concept of embedded cone.

Definition 10 A cone K ′ is embedded in a cone K if (K ′ \ {0}) ⊂ int (K).
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Proposition 6 If all operators from a compact family A are K-Metzler and each
of them is K-irreducible, then they are Metzler with respect to some cone K ′ em-
bedded in K.

The proof is in Appendix.

Remark 5 Thus, if all operators from a given compact set are Metzler and irre-
ducible for a given cone K, then K can be narrowed down to an embedded cone
so that all those operators stay Metzler. Note that an analogous statement for
nonnegative operators (i.e. leaving a cone invariant) does not hold. If a set of ir-
reducible operators leaves a cone invariant, then it may not leave invariant any
embedded cone. For example, the following pair of matrices

A1 =

(
0 2
1 0

)
; A2 =

(
0 1
1 0

)

leaves invariant the positive orthant K = R
2
+, however, no embedded cone of K is

invariant, because, for every positive vector x the direction of the vector (A1A2)
kx

converges to (1, 0)T as k → ∞.

Applying Lemmas 4 and 5 we obtain

Corollary 6 Under the assumptions of Proposition 6, every trajectory of (1)
starting in K ′ is contained in K ′. In particular, for every t > 0 the family e tA

leaves K ′ invariant.

4.2 Geometric conditions of stabilizability

The conditions of stabilizability can be formulated in terms of vector fields, simi-
larly to Theorem B and Proposition 4. To do this we need some more notation.

We are given a cone K. A monotone infinite body (in short, infinite body) is a
convex closed proper subset G ⊂ (K \ {0}) such that x ∈ G, y ≥K x ⇒ y ∈ G.
Each infinite body defines an antinorm on K by the formula f(x) = sup {λ >
0 |λ−1x ∈ G}. Conversely, for an arbitrary antinorm f , its unit ball, i.e., the level
set D = {x ∈ K | f(x) ≥ 1} is an infinite body. The antinorm is positive precisely
when its unit sphere ∂K D is bounded.

The infinite convex hull of a subset M ⊂ (K \ {0}) is the smallest by inclusion
infinite body that contains M . It can be defined by the formula

co+(M) = co(M) + K =
{
y + z

∣∣ y ∈ co (M) , z ∈ K
}

The infinite convex hull of a finite set of points is called infinite polytope. Some of
these points are vertices of this polytope, i.e., its extreme points.

Proposition 7 If there is an infinite body Q such that, for every point x ∈ ∂K Q,
all vectors Ax , A ∈ A, are directed inside Q, then σ̌(A) > 0, and A is not
stablilizable. If Q is an infinite polytope, then it suffices to check this condition
only for its vertices x.

Conversely, if σ̌(A) > 0, then there exists such an infinite body Q.
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Proof Let f be the antinorm generated by Q. If f is differentiable, then the condi-
tion thatAx is directed insideQmeans that (f ′

x, Ax) ≥ 0. Consequently, for almost
all t (in Lebesgue measure), we have f ′

t

(
x(t)

)
=

(
f ′
x(t), ẋ(t)

)
=

(
f ′
x(x), A(t)x

)
≥ 0,

hence f
(
x(t)

)
is non-decreasing in t, and the system is not stabilizable. This proof

is extended to nonsmooth f by the standard argument, as it is done for norms
(see, for instance [41,48]).

Let now Q be an infinite polytope. If for every its vertex v the vector Av is
directed inside Q, then there is η > 0 such that v + ηAv ∈ intQ. Rewriting this
inclusion in the form η(A+ η−1I)v ∈ intK Q, we see that the operators A+ η−1I
is K-positive, whenever η is small enough. Hence, this inclusion holds for every
convex combination x of vertices of Q and for all points y ≥K x, i.e., for all y ∈ Q.
Thus, the vector Ay is directed inside Q, for every y ∈ ∂K Q, and so σ̌(A) ≥ 0.

To prove the existence, we invoke Theorem 5 and consider an extremal anti-
norm f of the family A. Let us show that its level set Q = {x ∈ K | f(x) ≥ 1}
is what we need. Take an arbitrary α ∈ (0, σ̌). For any x0 ∈ ∂KQ, and for every
trajectory x(t) with x(0) = x0, we have f(x(t)) ≥ eαtf(x0) = eαt , t > 0. This
implies f ′

t(x(0)) ≥ α. Hence, for every element a∗ from the subdifferential of the
function f at the point x0, we have α ≤ (a∗, ẋ(0)) = (a,Ax0), A ∈ A. Therefore,
the vector Ax0 is directed inside Q. ⊓⊔

4.3 Stabilizability of discrete systems and the lower spectral radius

Similarly to previous cases we discretize (1) and are lead to a problem of so called
lower spectral radius, that is to determine the lowest rate of growth in the product
semigroup generated by a set of matrices.

Before we formulate our results for stabilizability of continuous-time LSS, let
us recall some facts on discrete ones. Stabilizability of a discrete system is decided
in terms of its lower spectral radius (LSR).

Definition 11 For a given compact set of matrices B, the lower spectral ra-
dius ρ̌(B) is

ρ̌(B) = lim
k→∞

min
Bi∈B , i=1,...,k

∥∥Bk . . . B1

∥∥ 1/k
.

This limit exists for every compact set o matrices B and does not depend on
the matrix norm [27]. See also [46,22] for properties and for more applications of
LSR. The discrete system is stabilizable if and only if ρ̌(B) < 1. If one discretizes
the continuous system with dwell time τ > 0 to the form (4) by setting xk =
x(kτ) , B = e τA, A ∈ A, then we obtain only those trajectories corresponding
to piecewise-constant control functions A(·) with the step size τ . Hence, if there
is τ > 0 for which the discrete system is stabilizable, i.e., ρ̌(e τA) < 1, then the
continuous system is stabilizable as well.

In [22] we presented an algorithm for LSR computation that for most of fam-
ilies (also in high dimensions) gives the precise value of ρ̌(B). The main idea is
analogous to the JSR computation, but involving antinorms instead of norms. The
algorithm tries to find the spectrum minimizing (or lowest) product (s.l.p.), of ma-
trices from B for which the value [ρ(Π)] 1/n is minimal, where n = n(Π) is the
length ofΠ. To this end, we first fix some reasonably large l ∈ N and check all prod-
ucts of lengths n ≤ l finding a product Π with the minimal value [ρ(Π)] 1/n. We
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denote this value by ρ̌l and consider this product as a candidate for s.l.p. Then the
algorithm iteratively build an infinite polytope Q for which BQ ⊂ ρ̌lQ , B ∈ B.
If it terminates within finitely many iterations, then the infinite polytope Q is
extremal, Π is an s.l.p., and ρ̌(B) = ρ̌l. Let us denote B̃ = {B̃ = ρ−1

l B| B ∈ B}.
Definition 12 A product Π ∈ Bn is called under-dominant for the family B if
there is p > 1 such that the spectral radius of every product of operators of the
normalized family B̃, that is not a power of Π̃ nor a power of its cyclic permutation,
is greater than p.

It is shown in [22, theorem 4] that the algorithm terminates within finite time if
and only if the product Π is under dominant for B.

4.4 Bounds for the lower Lyapunov exponent

For a given τ > 0, we set β(τ) = τ−1 ln ρ̌(eτA). For a given infinite polytope Q ⊂
K, we define the value α̌(A, Q) = α̌(Q) as follows:

α̌(Q) = sup
{
α ∈ R

∣∣∣ for each vertex v ∈ Q and A ∈ A,

the vector (A− αI)v is directed insideQ
}
. (20)

Proposition 8 For an arbitrary compact family A of Metzler operators, for each
number τ > 0 and for an infinite polytope Q, we have

α̌(P ) ≤ σ̌ ≤ β̌(τ) . (21)

Proof Is realized in the same way as the proofs of Propositions 1 and 5. ⊓⊔

The notions of extremal and ε-extremal polytope are extended to infinite poly-
topes, replacing the joint spectral radius by lower spectral radius, and multiplying
by e−τε instead of e τε. Thus, an infinite polytope Q is ε-extremal for eτA if

eτAQ ⊂ e−τε ρ̌(A) Q , A ∈ A .

For ε = 0, we obtain an extremal infinite polytope. Since ρ(eτA) = eτβ̌(τ), the
ε-extremalily is equivalent to the inclusion

eτAQ ⊂ eτ(β̌−ε)Q , A ∈ A . (22)

According to Proposition 6, if all operators of a family A are K-Metzler and K-
irreducible, then they are all K ′-Metzler, for some cone K ′ embedded in K. The
following theorem shows that both the upper and lower bound from (21) are close
to each other, provided Q is ε-extremal and has all its vertices in K ′.

Theorem 6 For every compact family A of K-Metzler K-irreducible operators,
there is a constant C such that for all τ, ε > 0, we have

β̌(Q) − α̌(τ) ≤ Cτ + ε ,

whenever the infinite polytope Q is ε-extremal for the family eτA and has all its
vertices in the embedded cone K ′ from Proposition 6.
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The proof is realized in a similar way as for Theorem 1, applying antinorms
instead of norms. In this case, however, Proposition 2 on the equivalence of all con-
tractive norms, is inapplicable. In general, it does not hold for antinorms. Instead,
we involve embedded cones and use Proposition 6.

Proof Without loss of generality it can be assumed that τ is small enough (oth-
erwise we change the constant C) and that β̌(A) = 0 (otherwise, we replace the
family A by A − βI). Since all operators from A are K ′-Metzler, it follows that
K ′ is invariant for the family e τA, for all τ > 0, and is invariant for the fam-
ily I + τA, for all sufficiently small τ > 0. Since K ′ is embedded in K, there is a
constant C0 > 0 such that for every antinorm f on K we have

∣∣ f(a) − f(b)
∣∣ ≤ C0

∥∥ a− b
∥∥ , a, b ∈ K ′ . (23)

The proof can be easily derived or found in [22]. Let us show that there is a
constant C such that for every vertex v ∈ Q and for each A ∈ A the vector (A +
(Cτ + ε) I) v is directed inside Q. This will imply that α̌ ≥ −C τ − ε, which is
required. Let f be the antinorm on K generated by Q. We denote A′ = A + εI
and consider arbitrary A′ ∈ A′. By (9) the distance between points e τA′

v and
(I + τA′)v is smaller than Cτ2. Since both these points are in the embedded
cone K ′, inequality (23) yields

∣∣ f
(
e τA′

v
)
− f

(
(I + τA′)v

) ∣∣ < C0Cτ
2 .

Let us now denote the value C0C by a new constant C. Since β̌ = 0 and Q is

ε-extremal for the family eτA, we see that eτA
′

v = eετeτAv ∈ eετe(β̌−ε)τQ = Q.
Thus, f

(
eτA

′

v
)
≥ 1, and consequently f

(
(I + τA′)v

)
> 1 − C0Cτ

2. We assume

τ is small enough, and so 1 − C0Cτ
2 > 0. Therefore, the point y = 1/(1 −

C0Cτ
2) (I+ τA′) v belongs to intK Q, and hence, the vector from the point v to y

is directed inside Q. This vector is y − v = τ/(1−Cτ2)
(
A′ + Cτ I

)
v. Whence,

the vector (A′ + CτI)v = (A+ (Cτ + ε)I)v is directed inside Q. ⊓⊔

4.5 The case K = R
d
+. Nonnegative matrices

Let us recall that in the simplest case, when K = R
d
+, an operator A is Metzler

if it is written by a Metzler matrix, i.e., a matrix with nonnegative off-diagonal
elements. All the results of Sections 3 and 4 hold true for K = R

d
+ and for a

compact set A of Metzler matrices. In this case the K-irreducibility coincides
with the usual positive irreducibility of nonnegative matrices. A set of matrices is
positively irreducible if none of the coordinate planes (i.e., linear spans of several
basis vectors) is a common invariant subspace for those matrices. For positively
reducible set of matrices, there always exists a permutation of basis vectors, after
which they get a block upper triangular form.

4.6 Algorithm (L) for computing the lower Lyapunov exponent and constructing
the polytope antinorm

For a given finite family A = {A1, . . . , Am} of K-Metzler operators, or for the
corresponding polytope family co (A), Algorithm (L) approximates the lower Lya-
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punov exponent σ̌(A) by computing its lower and upper bonds, and finds a poly-
tope Lyapunov antinorm on K. We begin with a brief description of the algorithm.

Initialization. We choose a small number τ > 0 (dwell time), a small number
ν ≥ 0, and a reasonably large natural l. Among all products of length ≤ l of the op-
erators e τAj , j = 1, . . . ,m, we select a starting productΠ = e τAdn · · · e τAd1 , n ≤
l, for which the value [ρ(Π)]1/n (n is the length of Π) is as small as possible. This
is done by exhaustion of products of lengths at most l. If l is not too large, then we
are able to make a full exhaustion (this is preferable) and find the minimal prod-
uct Π that gives the minimal value of [ρ(Π)]1/n among all products of lengths
at most l. We denote ρ̌l = [ρ(Π)]1/n, β̌l(τ) = τ−1 ln ρ̌l and observe that β̌l ≥ β̌.
Moreover, for the minimal starting products, we have β̌l → β̌ as l → ∞. By the
Krein–Rutman theorem, the leading eigenvalue λmax of Π is positive. Let v1 be
the corresponding eigenvector. We normalize the family A as

Ã = A− (β̌l − ν)I.

The first part. Construction of the infinite polytope Q. We start with the finite
set V0 = {v1, . . . , vn} and the corresponding infinite polytope Q0 = co+(V0),
where vi = e τAdi−1 · · · e τAd1 v1. At the kth step, k ≥ 1, we have a finite set of
points Vk−1 and a polytope Qk−1 = co+(Vk−1). We take a point v ∈ Vk−1 added

in the previous step, and for each j = 1, . . . ,m check if eτÃjv ∈ Pk−1, by solving
the corresponding LP problem. If the answer is affirmative, then we go to the next

j; if j = m, we go to the next point from Vk−1. Otherwise, if eτÃjv /∈ Pk−1, we
update the set Vk−1 by adding the point v and update the polytope Qk−1 by
adding the vertex v, and then go the next j and to the next point v. After we
exhaust all points of the initial set Vk−1, we start the (k + 1)st step, and so on.
This process terminates after Nth step, when VN = VN−1, i.e., no new vertices

are added to the QN−1. In this case, eτÃQN ⊂ QN , Ã ∈ A − (β̌l − ν)I. This
means that QN is an ε-extremal infinite polytope for the family A with

ε = β̌(τ) − β̌l(τ) + ν . (24)

The second part. Deriving the lower and upper bounds for σ̌(A). The first part
produces the ε-extremal infinite polytope QN . We compute α̌(QN ) by definition,
as supremum of numbers α such that the vector (A−αI)w is directed inside QN ,
for each vertex w ∈ QN and for every A ∈ A. This is done by taking a small δ > 0
and solving the following LP problem:





α → sup
w + δ(A− αI)w ∈ QN ,
w ∈ QN , A ∈ A .

Proposition 8 implies
α̌(QN ) ≤ σ̌(A) ≤ β̌l(τ) . (25)

Thus, we obtain the lower and upper bounds α(QN ) and βl(τ) respectively for the
Lyapunov exponent. The infinite polytope QN constitutes the Lyapunov antinorm
for the family A. If β̌l(QN ) < 0, then we conclude that the system is stabilizable.
If α̌(QN ) ≥ 0, then it is not stabilizable and the joint Lyapunov function is defined
by the infinite polytope QN .
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If the first part of the algorithm does not terminate within finite time, then we
either increase l or increase ν and go to the Initialization.

Now we present Algorithm (L) in a structured form:

Algorithm 4: Algorithm (L), part 1. Constructing of the infinite polytope

Data: B = eτÃ (see (12))

The product Π (candidate s.l.p.) of length n such that [ρ(Π)]1/n is as small as
possible. among all products of length smaller or equal to l ≥ n
Result: the polytope Q
begin

1 Compute the leading eigenvector of Π and its cyclic permutation {v1, . . . , vn}
2 Set V0 := {vj}nj=1 and R0 = V0

3 Set i = 0
4 Set term = 0
5 while term 6= 1 do

6 Wi+1 = BRi

7 Set Si = ∅
8 Set mi = Cardinality(Wi+1)
9 Set ni = Cardinality(Vi)

for ℓ = 1, . . . ,mi do

10 Let z the ℓ-th element of Ri

11 Check whether z ∈ co+(Vi), Vi := {vj}
ni
j=1, i.e. solve the LP problem

min fℓ =
ni∑

j=1
λj

subject to
ni∑

j=1
λjvj =z

and λj ≥ 0, j = 1, . . . , ni.

12 if fℓ < 1 then

13 Si = Si ∪ z

if Si = ∅ then

14 Set term = 1

else

15 Ri = Si

16 Vi+1 = Vi ∪Ri

17 Set i = i+ 1

18 Set N = i
19 Return Q := QN (extremal polytope)

Theorem 7 Let all operators of A be K-irreducible. Then Algorithm (L) termi-
nates within finite time if one of the following conditions is satisfied:

1) ν > β̌l(τ) − β̌(τ);
2) ν = 0, the product Π is under-dominant for the family eτA and its leading

eigenvalue λmax is unique and simple.
In case 1) the distance between the lower and upper bounds in (14) does not

exceed β̌ − β̌l + ν + Cτ ; in case 2) it does not exceed Cτ , where C = C(A) is a
constant.

Proof By Proposition 6 all operators of A are K ′-Metzler with respect to an em-
bedded cone K ′ ⊂ K. Hence, by the Krein-Rutman theorem, the leading eigen-
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Algorithm 5: Algorithm to compute the best lower bound α(QN )

Data: A, QN ,VN (system of vertices of QN )
Result: α
begin

for i = 1, . . . ,m do

1 Solve the LP problems (w.r.t. {tv}, αi)

max αi

s.t. w + δ(Ai − αiI)w ≥
∑

v∈VN

tv v ∀w ∈ VN

and
∑

v∈VN

tv ≥ 1, tv ≥ 0 ∀v ∈ VN

2 Return α(QN ) := max
1≤i≤m

αi ;

vector v1 of Π belongs to K ′. Since all operators eτÃ, Ã ∈ Ã, are K ′-positive, all
vertices of the polytope QN generated by the algorithm lie in K ′.

In the case 1) we have ρ̌(eτÃ) = e(β̌−β̌l+ν)τ > 1. Since the vector v1 belongs to

the embedded cone K ′, its images by products of operators from eτÃ of length k
tend to infinity as k → ∞ (see, for instance, [46]). Therefore, for all k ≥ n, where
n is a large natural number, those images age greater (in the order of the cone K)
than v1, and hence, belong to Qn. So, all vertices v produced by the algorithm
after the nth step belong to Qn, which means that the first part of terminates
in nth step or earlier.

In case 2) we have ρ̌(eτÃ) = 1, the spectrum minimizing product Π is under-
dominant and its leading eigenvalue is unique and simple. By theorem 7 of [22]
Algorithm (L) terminates within finite time.

Since the polytope QN is ε-extremal for ε = β̌ − β̌l + ν, the upper bound for
the difference β̌l(τ)− α̌(PN ) follows from Theorem 6. ⊓⊔

Corollary 7 If all operators of the family A are K-irreducible and the starting
products Π are maximal, then the distance between the lower and upper bounds
in (14) tends to zero as l → ∞ and ν → 0 , τ → 0.

Proof Since β̌l → β̌ as l → ∞, the corollary follows by applying Theorem 7. ⊓⊔

4.7 An illustrative example in dimension 2.

Let A = {A1, A2} with

A1 =

(
1.94591 . . . 0
0.42364 . . . 1.09861 . . .

)

A2 =

(
0.69314 . . . 0.92419 . . .

0 2.07944 . . .

)
.

For τ = 1 we set B = {B̃1, B̃2} with

B̃1 =

(
7 0
2 3

)
, B̃2 =

(
2 4
0 8

)
.
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i.e. A1 = log(B̃1) and A2 = log(B̃2).
By means of the mentioned algorithm for computing the l.s.r. we are able to

prove that the product of degree equal to 8,

P = B̃1 B̃2 (B̃
2
1 B̃2)

2

is spectrum minimizing, so that ρ̌(B̃) = ρ(P )1/8 = 6.009313489 . . ., giving the
upper bound

β̌ = 1.793310513 . . . .

Then we set B = eA−β̌I = {B1, B2} with B1 = B̃1/ρ̌(B̃),B2 = B̃2/ρ̌(B̃) and apply
Algorithm (L), part 1. As a result we obtain the polytope antinorm in Figure 3,
whose unit ball is an infinite polytope Qτ with 9 vertices.

1.0 2.0.0

1.0

2.0

Fig. 3 Polytope antinorm for the illustrative example with τ = 1. In red the vectors B1v and
in blue the vectors B2v, for v ∈ Vτ , vertices of Qτ .

Applying Algorithm 5 we obtain the optimal shift γ̌ = 0.1323026 . . . so that
we have the estimate

α̌ = 1.661007914 . . . ≤ σ̌ ≤ 1.793310513 . . . = β̌.

If, however, we take τ = 1/16 we obtain a polytope with 28 vertices which gives
the following interval of length γ̌ = 0.0189 . . .,

α̌ = 1.755426316 . . . ≤ σ̌ ≤ 1.774326316 . . . = α̌.

Figure 4 illustrates the fact that the computed polytope Qτ is positively in-
variant for the shifted family A− αI.

It also shows (right picture) that one of the vectorfields (A − α̌I)v is tan-
gential to the boundary of the polytope, in agreement with the property that
α̌ = 1.661007914 . . . cannot be increased (or equivalently γ cannot be decreased).
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.5 1.5.5

1.5

.8 1.2.5

Fig. 4 In red the vectors (A1 − α̌I)v and in blue the vectors (A2 − α̌I)v, for v ∈ Vτ , vertices
of Qτ .

5 The phenomenon of fibrillation

A natural question involves the existence of an optimal piecewise continuous con-
trol function determining the upper/lower Lyapunov exponent. This is not always
true, as we are showing. We speak of fibrillation whenever as τ → 0 the spectrum
maximizing product, say Πτ , has bounded degree (independent of τ). This implies
that the extremal control function oscillates more and more rapidly as τ → 0.

5.1 An illuminating case

We consider families of two matrices. The following result is important to clarify
the phenomenon.

Lemma 9 Let B = {B1, B2} with B1 = BT
2 , then it holds ρ(B) =

√
ρ(B1B2)

Proof By well-known inequalities [14] we have

√
ρ (B1B2) ≤ ρ(B) ≤ ‖B‖2 = max{‖B1‖2, ‖B2‖2}.

Using the assumption, the result follows from the equality ρ (B1B2) = ρ
(
BT

1 B1

)
=

‖B1‖22 = ‖B2‖22. ⊓⊔

Corollary 1 Every d × d family of matrices A = {A1, A2} with A2 = AT
1 shows

the phenomenon of fibrillation.

Proof It is sufficient to observe that the family {eτA1 , eτA2} fulfils assumptions of
Lemma 9 so that the s.m.p. has length 2 independently of τ . ⊓⊔
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Illustrative example.

We consider (1) with d = 2, m = 2 and

A1 =

(
0 1
0 0

)
, A2 =

(
0 0
1 0

)
,

with the aim to approximate σ(A). If we consider any τ we get for the family

Bτ = {B1,τ , B2,τ} := {eA1τ , eA2τ}, B1,τ =

(
1 τ
0 1

)
, B2,τ =

(
1 0
τ 1

)
,

that - due to the fact that B2,τ = BT
1,τ -

ρ(Bτ ) =
√
ρ(B1,τB2,τ ) =

√
τ2 +

√
τ2 + 4τ + 2√
2

.

It follows that

1

τ
log (ρ(Bτ )) =

1

2
− 1

48
τ2 +O(τ4) ր 1

2
as τ → 0+,

yielding σ(A) = 1
2 . To interpret this result we make use of the following Lemma,

which follows frome the well-known Lie Trotter product formula.

Lemma 10 Let A(θ) = θA1 + (1− θ)A2. Then

lim
k→∞

(
e

θ
k
A1 e

1−θ

k
A2

)k
= eA(θ).

Choosing τ =
1

2k
we have from the lemma,

(B1,τB2,τ )
k = (B1,τB2,τ )

1
2τ ≈ e

A1+A2
2 .

which gives σ(A) = σ (A(1/2)) = 1
2 , where σ(C) denotes the spectral abscissa

of a matrix C, that is the largest real part of eigenvalues of C. We can interpret
fibrillation as the fact that at every instant the maximal growth would be obtained
by taking both matrices, that is a multivalued control function, which in turn is
equivalent to consider a convex combination of the vector fields.

A natural open issue concerns the search of conditions which determine fibril-
lation and understanding its possible non genericity.

Remark 6 Finally we observe that fibrillation cannot occur if we consider general-
ized trajectories (obtained replacing A by co(A) (convex hull of A)) as it follows
from Theorem A of N.Barabanov. In the given example in fact, the critical control
function would be constant with A(u(t)) = A1+A2

2 for all t.

6 Illustrative cases and numerical examples.

6.1 Illustrative test problems

We provide some illustrative examples and compare the obtained results by those
achieved by looking for a common quadratic Lyapunov function (CQLF). We have
made use of the Yalmip Matlab package to compute an optimal CQLF.
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6.1.1 Example 1: (dimension 3).

We consider the following example proposed by Jungers and Protasov [50]. Let
A = {A1, A2} with

A1 =




−0.0822 0.0349 −0.1182
0.0953 −0.0897 −0.1719
0.0787 0.0223 −0.2781


 , A2 =




0.1391 0.1397 −0.0916
0.0338 −0.1769 −0.0707
0.7417 0.3028 −0.4621


 .

Looking for a starting product P of length ℓ ≤ 100 we obtain the results shown
in Table 1. The first columns reports τ , the second and third columns denote the
computed lower and upper bounds, the fourth columns the amplitude γ of the
interval containing the exact value, the fifth column provides the starting product,
the sixth column the used ε-value and the seventh column the number of vertices
of the computed ε-extremal polytope.

Table 1 Approximation of the Lyapunov exponent

τ β α γ Π ε #V

1/2 −0.0470 0.0074 0.0545 B27
1 B29

2 0.05 163

1/2 −0.0470 −0.0148 0.0322 B27
1 B29

2 0.025 332

1/4 −0.0410 0.0089 0.0550 B55
1 B58

2 0.0125 423

1/4 −0.0410 −0.0243 0.0227 B55
1 B58

2 0.005 1655

Applying the algorithm for the search of a CQLF, we obtain α = 7 · 10−5 > 0
(which does not guarantee uniform stability); referring to the value β = −0.0410,
this would correspond to the value γ = 0.0480.

Example 6.1.1 puts in evidence that through the CQLF approach it is not
possible to decide stability of the system since the lower bound for the Lyapunov
exponent is negative while the upper bound is positive. This is due to the fact the
extremal norm for A is (in general) non quadratic.

6.1.2 Example 2: (dimension 5).

Let A = {A1, A2} with

A1 =




−0.9 −1.0 −1.0 −1.0 0
0 −0.9 −1.0 −1.0 0

−1.0 −1.0 −0.9 0 0
0 0 −1.0 −1.9 −1.0
0 0 −1.0 0 −1.9



, A2 =




−0.9 −1.0 0 0 0
0 −1.9 −1.0 −1.0 −1.0
0 0 −0.9 0 0

−1.0 0 0 −1.9 0
0 −1.0 0 −1.0 −0.9



.

Applying the algorithm for the search of a CQLF we do not find a positive
semidefinite matrix M such that

AT
i M +MAi � 0

which means we cannot state the uniform stability of the associated switched
system by means of an ellipsoid norm.
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Nevertheless we can prove stability by means of Algorithm (R), but this is
obtained only for a small τ and at a high computational cost (the overall procedure
employed several hours of computation).

Table 2 Approximation of the Lyapunov exponent

τ β α γ Π ε #V

1/10 −0.1372 0.3927 0.530 B90
1 B39

2 0.02 772

1/20 −0.1372 0.1927 0.320 B180
1 B78

2 0.01 2666

1/40 −0.1372 0.1030 0.243 B359
1 B156

2 0.005 9351

1/100 −0.1372 −0.0422 0.095 B898
1 B390

2 0.0025 23885

Example 6.1.2 emphasizes that in order to achieve a high accuracy in the
approximation of the Lyapunov exponent it is necessary to accept a significant
computational cost. However, since the CQLF method does not provide a negative
upper bound for the Lyapunov exponent such a computational effort is necessary
to obtain the stability result.

6.1.3 Example 3: positive system (dimension 3).

We consider the following well-known example proposed by Margallot et al [17],
which for convenience we shift by the identity. Let A = {A1, A2} with

A1 =




−2 0 0
10 −2 0
0 0 −11


 , A2 =




−11 0 10
0 −11 0
0 10 −2


 .

In Table 3 we report the results obtained by applying Algorithms (P), part 1
and 2 (note that in all cases the s.m.p. is found to be of the form Bk

1B
n−k
2 ).

Table 3 Approximation of the Lyapunov exponent

τ β α γ Π ε #V

1/16 −0.0462 0.7168 0.763 B8
1B

5
2 0 13

1/32 −0.0442 0.2548 0.299 B16
1 B9

2 0 34

1/64 −0.0428 0.1302 0.173 B31
1 B19

2 0 83

1/128 −0.0427 0.0425 0.085 B62
1 B37

2 0 165

1/256 −0.0426 −0.0006 0.042 B125
1 B75

2 0 587

1/512 −0.0426 −0.0175 0.025 B249
1 B149

2 0 2228

Table 3 shows that the system A is stable (this is seen already for τ = 1/256).
Applying the algorithm for the search of a CQLF, we obtain referring to β =

−0.0426 a value α = 0.2894 which implies γ = 0.332. So, already for τ = 1/32, the
polytope with 34 vertices constructed by Algorithm (P) gives a better estimate
than CQLF. The value γ associated to the CQLF method is quite large here
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and the polytope method outperforms the quadratic one since it allows to assess
stability of the system computing a polytope with a moderate number of vertices
and thus quite efficiently.

6.2 Example 4: positive system (dimension 3).

This example is inspired by [2]. Let A = {A1, A2} with

A1 =




−1 1/10 1/10
1/10 −1 1/10
1/6 1/6 −1/3


 , A2 =




−1/2 1/10 9/8
1/6 −1/3 7/8

1/10 1/10 −1


 .

In Table 4 we report the results obtained by applying Algorithms (P), part 1 and
part 2 (note that in all cases the s.m.p. is found to be B2.

Lyapunov exponent.

Table 4 shows that the system is stable (this is seen already for τ = 1/2).

Table 4 Approximation of the Lyapunov exponent

τ β α γ Π ε #V

1 −0.061107 0.07500 0.136 B2 0 3

1/2 −0.061107 −0.003891 0.0571 B2 0 4

1/8 −0.061107 −0.047604 0.0134 B2 0 13

1/16 −0.061110 −0.054375 0.0067 B2 0 26

1/32 −0.061107 −0.057489 0.0033 B2 0 50

1/64 −0.061107 −0.058563 0.0025 B2 0 100

It is interesting to observe that several stability criteria, based on suitable
sufficient conditions, are shown in [2] not to be effective for this problem. In fact
Theorem 4, Theorem 6 and Theorem 7 in [2] do not apply so that uniform stability
cannot be inferred. Nevertheless, the results of our algorithm, reported in Table 1
show that the associated system of ODEs is uniformly asymptotically stable.

We also notice that in this case the CQLF method, referring to β = −0.061107,
provides a value γ of the same order of that obtained with τ = 1/64.

Lower Lyapunov exponent

Table 5 provides the results obtained by applying Algorithms 4 and 5.

The Lower Lyapunov exponent is estimated from below by α̌ = −0.29869.
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Table 5 Approximation of the lower Lyapunov exponent

τ β̌ α̌ γ̌ Π ε #V

1/4 −0.29023 −0.33453 0.0443 B5
1B2 0.01 24

1/8 −0.29073 −0.30843 0.0177 B5
1B2 0.001 37

1/16 −0.29086 −0.30076 0.0099 B5
1B2 0.0003 134

1/32 −0.29087 −0.29869 0.0079 B5
1B2B2 0.0003 252

6.2.1 Example 5: positive system (dimension 8).

Consider the randomly generated family A = {A1, A2} with

A1 =




−15 1 1 0 3 2 0 0
2 −9 3 2 3 1 2 1
1 3 −13 2 1 1 0 3
2 0 1 −7 1 0 0 1
1 0 1 1 −8 0 1 0
1 3 1 2 3 −11 2 2
1 3 1 3 1 1 −10 1
2 1 3 2 3 2 3 −11




A2 =




−10 2 2 0 1 3 2 0
0 −16 2 1 2 3 1 2
2 2 −14 3 1 2 3 1
0 3 3 −13 3 2 0 0
3 2 1 2 −9 0 1 3
1 3 0 0 1 −7 0 0
0 2 3 2 2 3 −17 2
2 2 2 2 2 3 2 −17




with spectral abscissæ σ(A1) = −0.89470735 . . ., σ(A2) = −1.22136422 . . ..

Lyapunov exponent.

Table 6 reports the obtained computational results.

Table 6 Approximation of the Lyapunov exponent

τ β α γ Π ε #V

1/32 −0.76212368 −0.33813367 0.4239900 B4
1B

2
2 0.001 46

1/64 −0.76207385 −0.56012765 0.2019462 B6
1B

3
2 0.001 194

1/128 −0.76207385 −0.56776133 0.1943125 B8
1B

4
2 0.001 256

Note that in the last three cases ε-extremal polytopes have been computed
(with ε = 0.001).
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For the case τ = 1/32 we also compute the optimal value α by using the stan-
dard tetrahedron defining the unit ball of the one-norm and compare it to the poly-
tope Pτ obtained applying Algorithm (P). In this case we get α∗ = 11.171105 . . .
(which would not allow to infer stability of the system) to be compared to the
much smaller value ατ = 0.42399 . . . computed by Algorithm 3.

We can conclude asserting that the system is (uniformly) stable and that the
(upper) Lyapunov exponent is smaller than γ1/32 = −0.56012765 . . . .

Applying the algorithm for the search of a CQLF, we obtain referring to
β = −0.7620 a value α = −0.7590 which implies γ = 0.003, that is an excel-
lent value, outperforming the one obtained by our algorithm subject to the choice
of parameters in Table 6.

Lower Lyapunov exponent

We also compute bounds for the lower Lyapunov exponent by computing a poly-
tope antinorm with Algorithm (L).

Table 7 provides the results obtained by applying Algorithms 4 and 5 applied
to Example 6.2.1.

The accuracy of the approximations of the classical and the lower Lyapunov
exponents appear to be comparable. The number of vertices is smaller for the lower
Lyapunov exponent also because of the shorter length of the s.l.p. with respect to
the s.m.p. for the considered values of τ .

We may conjecture that the lower Lyapunov exponent of the system is the
spectral abscissa σ(A2).

Table 7 Approximation of the lower Lyapunov exponent

τ β̌ α̌ γ̌ Π ε #V

1/32 −1.22136 −1.68279 0.4614 B2 0.001 16

1/64 −1.22136 −1.58316 0.3618 B2 0.0001 26

1/128 −1.22136 −1.38686 0.1655 B2 0.00001 73

6.2.2 Example 6: positive system (dimension 25).

We consider the randomly generated family of sign matrices (where each diagonal
element is chosen uniformly and independently from the set {−1, 0, 1} and each
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off-diagonal element is chosen from the set {0, 1}), A = {A1, A2} with

A1 =




0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

0 −1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1

1 1 −1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1

1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0

1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1

1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1

1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 −1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1

0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1

1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 0 1

1 1 0 1 0 1 0 1 0 1 −1 1 0 0 1 0 1 0 0 0 0 0 0 1 1

0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1

1 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0 0

1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0

1 1 1 1 0 0 0 0 0 0 0 1 1 1 −1 1 1 1 0 0 1 1 0 1 1

1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 −1 0 0 1 1 1 1 1 0

1 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0

1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1

1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0

0 1 0 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0

1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1

1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 −1 0

0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0




A2 =




−1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0

1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1

1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1

1 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1

0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 0

1 1 1 1 1 −1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1

0 0 0 1 0 1 −1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 1 1 1 0 −1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0

0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0

1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1

1 1 1 0 1 1 1 0 0 0 −1 1 1 1 1 1 0 1 1 0 0 0 1 0 1

0 1 1 1 0 0 0 1 1 1 0 −1 0 0 1 1 1 0 1 0 0 1 0 0 0

0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0

1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1

1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0

0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 −1 1 0 1 1 1 0 0

0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0

0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1

0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0

0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1

0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 −1 1 1

1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1

0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1




Joint Lyapunov exponent

We consider a dwell time τ = 1/16,1/32,1/64 and 1/128 respectively. The ob-
tained results are reported in Table 8.

Lower Lyapunov exponent

Similarly we compute bounds for the lower Lyapunov exponent using the same
dwell times. The results are reported in Table 9.
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Table 8 Approximation of the Lyapunov exponent

τ β α γ Π ε #V

1/16 11.983 12.541 0.557 B1B2
2 0.001 30

1/16 11.983 12.541 0.557 B1B2
2 0.0001 30

1/16 11.983 12.532 0.549 B1B2
2 0.00001 164

1/32 11.985 12.284 0.300 B1B2
2 0.001 103

1/32 11.985 12.274 0.290 B1B2
2 0.0001 728

1/64 11.985 12.143 0.158 B1B2
2 0.001 210

1/128 11.985 12.078 0.093 B1B2 0.0003 1470

Table 9 Approximation of the lower Lyapunov exponent

τ β̌ α̌ γ̌ Π ε #V

1/16 11.943 11.453 0.490 B1 0.001 28

1/16 11.943 11.454 0.489 B1 0.0001 33

1/32 11.943 11.681 0.262 B1 0.001 86

1/64 11.943 11.777 0.166 B1 0.001 187

1/128 11.943 11.838 0.105 B1 0.0003 598

Note that in both cases we achieve a good approximation of the classical and
lower Lyapunov exponents (an interval of length about 0.1) at a moderate cost
(the ε-extremal polytopes have a few hundreds of vertices).

Discussion

We have proposed some examples to analyze how our methods work in different
cases. Statistically, we can see that when τ is smaller, the applied algorithms take
more time to compute the spectral maximizing or minimizing product. We note
that we need more time to compute a spectrum product when his degree is higher.
In addition, when τ decreases to 0, number of vertices of the extremal polytope
norm (or antinorm) increases, and the algorithm takes a longer time to compute it.
However, thanks to the proposed approach, we are able to get an approximation for
the joint Lyapunov exponent, and respectively for the lower Lyapunov exponent,
the accuracy of which depends on τ . The smaller τ is, the closer the bounds are,
so that the estimation is better. Finally, applying the just introduced algorithms
to the matrices associated with a switched system, we are able to say if the latter
is stable (respectively stabilizable) or not.

6.3 Numerical results and statistics

We summarize here the numerical results obtained on a set of test problems. We
remark that we are able to deal with problems with dimension equal to some
tens. The computational complexity is that of repeatedly solving a sequence of LP
problems.
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6.3.1 Computation of the Lyapunov exponent

We consider Metzler matrices of different dimensions, D = 25, 50 and 100. More-
over we consider both the cases where the matrices are sign-matrices (i.e. whose
entries belong to {−1, 0, 1} and also the case where the entries are normally dis-
tributed in [−1, 1]).

We used the following notation:

(ia) Lmin denotes the minimal length of s.m.p.;
(ib) Lmax denotes the maximal length of s.m.p.;
(iia) #Vmin indicates the minimal number of vertices of the computed polytope;
(iib) #Vmax indicates the maximal number of vertices of the computed polytope;
(iic) < #V > indicates the average number of vertices of the computed polytope;
(iiia) γmin indicates the minimal amplitude of the computed interval containing the

Lyapunov exponent;
(iiib) γmax indicates the maximal amplitude of the computed interval containing the

Lyapunov exponent;
(iiic) < γ > indicates the mean amplitude of the computed interval containing the

Lyapunov exponent.

We first consider Metzler matrices of dimension d = 25, with randomly chosen
entries in {−1, 0, 1}. We report the results obtained on a set of 10 examples, making
use of ε = 1

250 when τ = 1
4 , ε = 1

500 when τ = 1
16 and ε = 1

1000 when τ = 1
64 .

In Table 10 we report the obtained results. Similarly, in Table 11 we consider
Metzler matrices still of dimension d = 25 with randomly selected real entries in
the interval [−1, 1]. We report the results obtained on 10 examples with ε = 1

250
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when τ = 1
4 , ε = 1

500 when τ = 1
16 , ε = 1

1000 when τ = 1
64 and ε = 1

2000 when
τ = 1

128 .

Table 10 Statistics on LE computation for Metzler problems of dimension d = 25 with integer
entries in {−1, 0, 1}

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/4 1 3 2 4 3 0.801 1.435 1.2195
1/16 1 11 9 26 17 0.253 0.555 0.4197
1/64 1 15 58 172 106 0.098 0.162 0.1371

Table 11 Statistics on LE computation for Metzler problems of dimension d = 25 with entries
in [−1, 1]

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/4 1 3 2 4 3 0.339 0.918 0.5124
1/16 1 8 9 15 12 0.116 0.307 0.1829
1/64 1 19 16 82 48 0.077 0.115 0.0941
1/128 1 11 32 194 109 0.064 0.092 0.0809

Next we consider Metzler matrices of dimension d = 50 and entries randomly
chosen in {−1, 0, 1}. We have analyzed 10 examples with ε = 1

250 when τ = 1
4 ,

ε = 1
500 when τ = 1

16 , ε = 1
1000 when τ = 1

64 and ε = 1
2000 when τ = 1

128 . The
results are reported in Table 12. Then we consider Metzler matrices of dimension
d = 50 and entries randomly chosen in [−1, 1]. The results are reported in Table
13.

Table 12 Statistics on Metzler problems of dimension d = 50 with entries in {−1, 0, 1}

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/4 1 2 2 2 2 1.312 2.229 1.6485
1/16 1 7 5 10 8 0.595 1.1195 0.8891
1/64 1 11 21 71 51 0.178 0.387 0.2958

Finally we consider Metzler matrices of dimension d = 100 and entries ran-
domly chosen in {−1, 0, 1}. We have analyzed 10 examples with ε = 1

1000 when
τ = 1

32 , ε = 1
2000 when τ = 1

64 , ε = 1
4000 when τ = 1

128 and ε = 1
8000 when

τ = 1
256 . The results are reported in Table 14. To conclude we consider Metzler

matrices of dimension d = 100 and entries randomly chosen in [−1, 1]. The results
are reported in Table 15.
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Table 13 Statistics on LE computation for Metzler problems of dimension d = 50 with entries
in [−1, 1]

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/4 1 2 2 2 2 0.321 0.624 0.5115
1/16 1 3 4 7 5 0.1798 0.334 0.2775
1/64 1 15 11 28 22 0.094 0.126 0.1143
1/128 1 15 23 74 55 0.079 0.097 0.0894

Table 14 Statistics on LE computation for Metzler problems of dimension d = 100 with
entries in {−1, 0, 1}

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/32 1 14 16 86 42 0.9640 1.729 1.3485
1/64 1 15 34 290 181 0.4951 0.9505 0.6910
1/128 1 31 101 771 451 0.2628 0.4606 0.3402
1/256 1 44 288 1490 944 0.1366 0.2880 0.2125

Table 15 Statistics on LE computation for Metzler problems of dimension d = 100 with
entries in [−1, 1]

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/32 1 3 2 2 5 1.312 2.2290 1.6490
1/64 1 6 5 14 18 0.595 1.1195 0.8890
1/128 1 12 28 114 66 0.218 0.3927 0.2758
1/256 1 23 120 370 258 0.0842 0.1730 0.1158

6.3.2 Computation of the Lower Lyapunov exponent

The parameters in the Tables are the same as those considered in the computation
of the Lyapunov exponent. The only difference is that Lmin denotes here the
minimal length of the candidate l.m.p. andLmax denotes the maximal length of
the candidate l.m.p..

We first consider Metzler matrices of dimension d = 25, with randomly chosen
entries in {−1, 0, 1}. We report the results obtained on a set of 10 examples, making
use of ε = 1

250 when τ = 1
4 , ε = 1

500 when τ = 1
16 and ε = 1

1000 when τ = 1
64 .

Similarly, in Table 17 we consider Metzler matrices still of dimension d = 25 with
randomly selected real entries in the interval [−1, 1]. Again we have analyzed 10
examples with the same dwell times τ and ε.

Next we consider Metzler matrices of dimension d = 50 and entries randomly
chosen in {−1, 0, 1}. We have considered 10 examples, using ǫ = 1

250 for τ = 1
4 ,

ǫ = 1
500 for τ = 1

16 , ǫ = 1
1000 for τ = 1

64 and ǫ = 1
2000 for τ = 1

128 . The results
are reported in Table 18. Afterwards we considered Metzler pairs of dimension
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Table 16 Statistics on LLE computation for Metzler problems of dimension d = 25 with
entries in {−1, 0, 1}

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/4 1 2 2 4 3 0.847 1.522 1.1767
1/16 1 7 8 30 18 0.321 0.606 0.4514
1/64 1 15 25 198 116 0.096 0.181 0.1409

Table 17 Statistics on LLE computation for Metzler problems of dimension d = 25 with
entries in [−1, 1]

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/4 1 3 2 4 3 0.285 0.824 0.53829
1/16 1 5 7 18 11 0.131 0.2792 0.20368
1/64 1 11 22 90 44 0.078 0.1210 0.0955
1/128 1 11 45 215 102 0.066 0.0970 0.081

Table 18 Statistics on LLE computation for Metzler problems of dimension d = 50 with
entries in {−1, 0, 1}

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/4 1 2 2 2 2 1.293 2.217 1.63201
1/16 1 4 4 9 7 0.728 1.346 0.93261
1/64 1 10 26 69 51 0.234 0.375 0.30608
1/128 1 13 72 264 171 0.186 0.359 0.25354

Table 19 Statistics on LLE computation for Metzler problems of dimension d = 50 with
entries in [−1, 1]

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/4 1 2 2 2 2 0.408 0.826 0.5343
1/16 1 4 5 7 6 0.231 0.348 0.28757
1/64 1 8 18 29 23 0.084 0.132 0.1187
1/128 1 15 36 68 55 0.077 0.115 0.0921

50, with random entries in [−1, 1] using the same dwell times τ and ε as in the
previous experiments. The results are showin in Table 19.

Finally we consider Metzler matrices of dimension d = 100 and entries ran-
domly chosen in [−1, 1]. We have analyzed 10 examples with ε = 1

1000 when τ = 1
32 ,

ε = 1
2000 when τ = 1

64 , ε = 1
4000 when τ = 1

128 and ε = 1
8000 when τ = 1

256 . The
results are reported in Table 20.

Conclusion

We have illustrated a large variety of examples in order to support the efficiency of
our method. For sufficiently small τ we have obtained quite good approximation
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Table 20 Statistics on LLE computation for Metzler problems of dimension d = 100 with
entries in [−1, 1]

τ Lmin Lmax #Vmin #Vmax < #V > γmin γmax < γ >

1/32 1 6 5 10 7 1.048 1.690 1.3412
1/64 1 11 11 28 18 0.441 0.983 0.7733
1/128 1 10 36 166 90 0.181 0.272 0.2240
1/256 1 18 121 672 358 0.033 0.1230 0.0658

results. Indeed, for sets of matrices with randomly chosen real entries in the interval
[-1,1], for the smallest considered τ , the mean amplitude of the computed interval
containing the Lyapunov exponent is smaller than 0.1 and the results are obtained
in a reasonable short time. On the other side, when we consider sets of matrices
with randomly chosen entries in {−1, 0, 1}, the average amplitude of the computed
interval is larger (it is usually smaller than 0.3). Also in this case the results are
obtained in a relatively short time (few minutes).

Appendix

Proof of Theorem 3

It is split into four steps. First we construct a special positively-homogeneous
monotone convex functional ϕ and prove (step 1) that it is actually a norm. Then,
in step 2, we establish the extremality property of ϕ, i.e., that it is non-increasing
on each trajectory. Thus, we have an extremal norm. In steps 3 and 4 we show the
existence of a generalized trajectory on the unit sphere starting at an arbitrary
point. This is done by considering a special convex optimal control problem and
applying the Banach–Alaoglu compactness theorem.

In view of (2) it suffices to consider the case σ(A) = 0. We take an ar-
bitrary norm monotone with respect to K, for example, ‖x‖ = (b, x), where
b ∈ intK∗, where K∗ is a dual cone (15). For t ≥ 0 and z ∈ K, denote l(z, t) =
sup {‖x(t)‖ , A ∈ U [0, t] , x(0) = z}. For every fixed t, the function l(·, t) is a
seminorm on K, i.e., it is positively homogeneous and convex, as a supremum
of homogeneous convex functions. Moreover, Corollary 4 implies that l is non-
decreasing in z, i.e., if z1 ≥K z2, then l(z1, t) ≥ l(z2, t) for each t. The function
ϕ(x) = sup

t∈R+

l(x, t) is, therefore, also a monotone seminorm on K as the supremum

of monotone seminorms. Moreover, ϕ(x) ≥ l(x, 0) = ‖x‖, hence ϕ is positive.

Step 1. Let us show that ϕ(x) < ∞ for all x, i.e., ϕ is a norm on K. Denote
by L the set of points x ∈ K such that ϕ(x) <∞. Since ϕ is convex, homogeneous,
and monotone on K, it follows that either L = K or L is a face of K. Writing L̃
for the linear span of L, we are going to show that AL̃ ⊂ L̃ for each A ∈ A. If this
is not the case, then A0z /∈ L̃ for some z ∈ L and A0 ∈ A, hence (I + tA0)z /∈ L̃
for all t ∈ (0, τ ], and therefore e tA0z /∈ L̃ for all t ∈ (0, τ ], where τ > 0 is small
enough. Hence, for the control function A(t) ≡ A0, t ∈ [0, τ ] and for x(0) = z we
have x(τ) /∈ L̃, and consequently, ϕ(z) ≥ ϕ(x(τ)) = +∞, which is a contradiction.
Thus, unless L = K, the set L̃ is a face plane invariant for all operators from A.
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From the K-irreducibility it follows that either L = K (in which case the proof is
completed) or L = {0}. It remains to show that the latter is impossible.

If L = {0}, then ϕ(z) = +∞ for all z ∈ K \ {0}. Let K1 = {z ∈ K, ‖z‖ = 1}.
For every natural n, denote by Hn the set of points z ∈ K1, for which there exists
a number τ = τ(z) ≤ n and a trajectory starting at z such that ‖x(τ)‖ > 2.
Since Hn is open and ∪∞

n=1Hn = K1, from the compactness we conclude that
∪N
n=1Un = K1 for some natural N . Thus, τ(z) ≤ N for all z ∈ K1. Whence,

starting from an arbitrary point x0 ∈ K1 one can consequently build a trajectory
x(t) and sequences {xn}, {tn} an {τn} such that t0 = 0, tn =

∑n−1
k=0 τ(xk), xk =

x(tk). For this trajectory, ‖x(tn)‖ > 2n and tn ≤ nN , hence ‖x(tn)‖ > etn ln 2/N .
Therefore, σ(A) ≥ ln 2

N > 0, which contradicts the assumption. Thus, the case
L = {0} is impossible, hence ϕ is a norm.

Step 2. By definition, for any trajectory x(t) the function ϕ(x(t)) is non-
increasing in t. Indeed, suppose t1 < t2; then ϕ(x(t1)) is the supremum of ‖y(t)‖ , t ∈
[t1,+∞) over all possible trajectories y(·) on the half-line [t1,+∞) with the initial
condition y(t1) = x(t1). This set of trajectories includes x(·). Hence this supre-
mum is not smaller than ϕ(t2), which is the supremum over a narrower set of
trajectories y(·) on the half-line [t2,+∞) with the initial condition y(t2) = x(t2).

Step 3. Thus, we have found a norm ‖x‖ = ϕ(x) which is non-increasing in t
on every trajectory x(t). In this norm the function l(z, t) is non-increasing in t for
each z ∈ K. Hence, the limit F (z) = lim

t→+∞
l(z, t) exists for every z ∈ K. Let us

show that F is a norm we are looking for. First of all, this is a monotone seminorm
on K as a limit of monotone seminorms. Second, F (x(t)) is non-increasing in t on
every trajectory x(t). Finally, by definition of l(z, t), we have

sup
A(·)∈U [0,τ ] , x0 = z

F (x(τ)) = F (z) , t > 0 . (26)

For every τ > 0, we denote by Q τ the set of control functions A(·) ∈ U [0, τ ], for
which the supremum in the left hand side of (26) is attained. To show that Qτ

is nonempty, we consider, for an arbitrary a ∈ K∗, the following optimal control
problem: 




(
a, x(τ)

)
→ max

ẋ = Ax
x(0) = z
A(t) ∈ co (A) , t ∈ [0, τ ]

(27)

Since this problem is linear in the control function A(·), the set co (A) is con-
vex and compact, and the objective function

(
a, x(τ)

)
is linear, it possesses the

optimal solution (Ā, x̄) ∈ L1[0, τ ] ×W 1
1 [0, τ ] (see, for instance, [18,30]). Now we

take a maximizing sequence {xi(·)}∞i=1, for which F (xi(τ)) → F (z) in (26) as
i → ∞. By the compactness, without loss of generality it can be assumed that
the sequence xi(z) converges to some point y ∈ K as i → ∞. Taking a ∈ ∂ F (y)
(the subdifferential of F at the point y), and solving problem (27) for that a, we
obtain

(
a, x̄(τ)

)
= F (z), and hence F (x̄(τ)) = F (z). Thus, Q τ 6= ∅ for each

τ > 0. Note that this set is compact in the weak-* topology of the space L1[0, τ ]
due to Banach–Alaoglu theorem. Furthermore, the family {Q τ}τ>0 is embedded:
Q τ2 ⊂ Q τ1 if τ2 > τ1. Indeed, if x̄ ∈ Q τ2 , then F (x̄(τ2)) = F (z), and hence
F (x̄(t)) equals identically to F (z) on the segment [0, τ2]. Therefore, it equals iden-
tically to F (z) on a smaller segment [0, τ1], and so x̄ ∈ Q τ1 . Since an embedded
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system of nonempty compact sets has a nonempty intersection, it follows that
there exists a control function Ā, whose trajectory x̄ with x̄(0) = z possesses the
property F (x̄(t)) ≡ F (x̄(0)) , t ∈ [0,+∞).

Step 4. Thus, we have proved that the seminorm F is invariant: it is non-
increasing in t on any trajectory x(t), and for every starting point there is a
trajectory, on which F is identically constant. It remains to show that F is a
norm, i.e., F (z) is finite and positive for every z ∈ K \ {0}. Since F (z) is defined
as a limit of a non-increasing function as t → +∞, we have F (z) < ∞. The
positivity is proved by contradiction. Let M = {z ∈ K, F (z) = 0}. Since F is a
seminorm, it follows that M is either entire K or a face of K. If this is a face of K,
then as in Step 1 we conclude that its linear span is a common invariant face plane
for A, which by the irreducibility implies M = {0}, and the proof is completed. If
M = K, then l(z, t) → 0 as t→ ∞ for every z ∈ K. Take an arbitrary x0 ∈ intK.
There exists a constant c > 0 such that for every x ∈ K inequality ‖x‖ ≤ c
implies x ≤K

1
2 x0. Let n be such that l(x0, n) < c. Hence, x(n) ≤K

1
2 x(0)

for every trajectory x(t) with x(0) = x0. Applying now Corollary 4 and iterating
k times, we get x(kn) ≤K 2−k x0. Since the norm is monotone, it follows that
‖x(kn)‖ ≤ 2−k‖x0‖ , k ∈ N. On the other hand, since the norm is non-increasing

in t on every trajectory, we see that ‖x(t)‖ ≤ 2−
[

t

n

]
‖x0‖, where the brackets

denote the integer part. Since for every y0 ∈ K there is a constant C such that

y0 ≤K Cx0, it follows that for every trajectory y(t) one has ‖y(t)‖ ≤ C2−
[

t
n

]
‖y0‖.

Therefore, σ(A) ≤ − ln 2
n < 0. The contradiction concludes the proof. ⊓⊔

Proof of Proposition 6.

Replacing the family A by A + hI, where h > 0 is large enough, it may
be assumed that A ≥K I for all A ∈ A. In this case the family B = {B =
A − I | A ∈ A} consists of K-irreducible operators that leave K invariant. Take
arbitrary vectors x ∈ K , x∗ ∈ K∗ , ‖x‖ = ‖x∗‖ = 1. For every B ∈ B, we
denote pB(x∗, x) = max

n=0,...,d−1
(x∗, Bnx). If pB(x∗, x) = 0, then x is contained

in a face of K invariant with respect to B. This contradicts irreducibility of B.
Thus, the function p is strictly positive. Hence, by the compactness, there is a > 0
such that pB(x∗, x) ≥ a for all B ∈ B and all x ∈ K,x∗ ∈ K∗ , ‖x‖ = ‖x∗‖ =
1. Assume for the moment that the family A is finite: A = {A1, . . . , Am} and
Ak = I + Bk. Every product P =

∏md
k=1Ak of md operators contains at least

d equal terms, say, Ai. Then P =
∏md

k=1(I + Bk) ≥ ∑d−1
n=0B

n
i , and therefore,

(x∗, Px) ≥ pBi
(x∗, x) ≥ a. In case of general compact set A we take its ε-net

Aε = {Ai}m(ε)
i=1 , and to every A ∈ A we associate the closets element from A ε

(if there are several closest elements, we take any of them). There is a function
c(ε) such that c(ε) → 0, ε → 0, and for every product Π of length at most d
of operators from A, we have ‖Π − Π′‖ ≤ c(ε), where Π′ is the corresponding
product of operators from Aε. Hence, for every product P of length dm(ε), we
have (x∗, Px) ≥ a − c(ε). Taking ε small enough, so that c(ε) < a/2, we see
that (x∗, Px) ≥ a/2, for every product P of length dm(ε) of operators from A.
Since this holds for all x∗ ∈ K∗ , ‖x∗‖ = 1, it follows that Px ∈ int(K) for
every x ∈ K , ‖x‖ = 1. Consequently, the cone PK is embedded in K. Let K ′ be
the convex hull of all cones PK taken over all products P ∈ A dm(ε). The cone K ′

is embedded inK and AK ′ ⊂ K ′ , A ∈ A, hence A isK ′-Metzler, which completes
the prof. ⊓⊔
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Proof of Theorem 5.

In view of (2) it suffices to consider the case σ̌(A) = 0. Take a positive antinorm
on K, for example, g(x) = (b, x), where b ∈ intK∗. For t ≥ 0 and z ∈ K, denote
r(z, t) = inf {g(x(t)) , A ∈ U [0, t] , x(0) = z}.

Step 1. For every fixed t, the function r(·, t) is an antinorm on K. Corollary 4
implies that r is non-decreasing in z. The function ψ(x) = inf

t∈R+

r(x, t) is, there-

fore, also an antinorm on K as the infimum of antinorms. This antinorm is non-
decreasing in t for every trajectory x(t) (the proof is the same as in Theorem 3).
It remains to show that ψ is not identically zero. For an arbitrary x0 ∈ intK,
there is a constant c > 0 such that inequality g(x) ≤ c implies x ≤K

1
2 x0. If

ψ(x0) = 0, then there is n > 0 such that r(x0, n) < c. Hence, there is a con-
trol function Ā(·) on the segment [0, n] and the corresponding trajectory x̄ with
x̄(0) = x0 and x̄(n) ≤K

1
2 x̄(0). If now A(·) is the periodic extension of the control

function Ā(·) to R+ with period n, then the corresponding trajectory x(·) satisfies
x(kn) ≤K 2−k x̄(0). Since the antinorm g is monotone on K (Lemma 8), we have
g(x(kn)) ≤ 2−kg(x0) , k ∈ N. Moreover, g is positive, hence it is equivalent to any
norm on K. Therefore, ‖x(kn)‖ ≤ C 2−k , k ∈ N, and hence σ̌ ≤ − ln 2

n , which
contradicts the assumption. Thus, ψ is an extremal antinorm, which concludes the
proof of the first part.

Step 2. Now let us show that if all operators of A are K-irreducible, then there
is a positive invariant antinorm. Take the extremal antinorm ψ on K constructed
in the previous step and consider the function f(z) = lim

t→+∞
r(z, t), where we

now denote r(z, t) = inf {ψ(x(t)) , A ∈ U [0, t] , x(0) = z}. Since ψ(x(t)) is non-
decreasing in t, so is r(z, t). Hence, this limit exists for every z ∈ K, maybe it
becomes +∞. If f(x) = +∞ for some x ∈ K, then f is equal to +∞ in the whole
interior of K, since for every z ∈ int(K) there is a constant c such that cz >K x.

Now we invoke Corollary 6: there exists a cone K ′ embedded in K such that
every trajectory x(t) starting in K ′ remains in K ′. We see that if f(x) = +∞
for some x ∈ K, then f(x0) = +∞ for every point x0 ∈ K ′ \ {0}. Take an
arbitrary x0 ∈ K ′\{0}. As we saw, f(x) = +∞ for some x ∈ K, then f(x0) = +∞.
Since ψ is positive and continuous on K ′, there exists a constant C > 0 such that
for every x ∈ K ′ inequality ψ(x) ≥ C implies x ≥K 2x0. If f(x0) = +∞,
then there is q > 0 such that r(x0, q) > C. Hence, x(q) ≥K 2x(0) for every
trajectory x(t) with x(0) = x0. Applying Corollary 4 and iterating k times, we
get x(kq) ≥K 2 k x0. Since ψ is monotone, it follows that ψ(x(kq)) ≥ 2 kψ(x0).
On the other hand, ψ is non-decreasing in t on every trajectory, consequently

ψ(x(t)) ≥ 2

[
t
q

]
ψ(x0). Since ψ is equivalent to any norm on K ′, it follows that

σ̌(A) ≥ ln 2
n > 0. The contradiction shows that f(x) < +∞ for every x ∈ K, i.e., f

is an antinorm on K.

Consider now the optimization problem (27), where the maximum is replaced
by minimum. It always has a solution (x̄, Ā) ∈ W 1

1 ×L1[0, τ ] for which f(x̄(τ)) =
F (z). Therefore, the set P τ of control functions A ∈ U [0, τ ] for which f(x(t))
is equal identically to f(z) on the segment [0, τ ] is nonempty. Since the sets
{P τ} τ∈R+

form an embedded system of nonempty compact sets, they have a com-
mon point Ā(·) ∈ U [0,+∞), for which f(x̄(t)) = f(z) , t ∈ [0,+∞). Whence, f is
an invariant antinorm. ⊓⊔



50 Nicola Guglielmi et al.

Acknowledgments

Part of this work was developed during the stay of the third author at the Univer-
sity of L’Aquila under the financial support of INdAM GNCS (Istituto Nazionale
di Alta Matematica, Gruppo Nazionale di Calcolo Scientifico) and GSSI (Gran
Sasso Science Institute).

References

1. F.Amato, R.Ambrosino, M.Ariola, Robust stability via polyhedral lyapunov functions,
2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June
10-12, 2009

2. H.Alonso, P. Rocha, A general stability test for switched positive systems based on a

multidimensional system analysis, IEEE Trans. Automat. Control, 55 (2010), no 11,
2660–2664.

3. N.E.Barabanov, Absolute characteristic exponent of a class of linear nonstationary

systems of differential equations, Siberian Math. J., 29 (1988), 521–530.

4. N.E.Barabanov, Lyapunov indicator for discrete inclusions, I–III, Autom. Remote
Control, 49 (1988), no 2, 152–157.

5. N.E.Barabanov, Method for the computation of the Lyapunov exponent of a differential
inclusion, Autom. Remote Control, 4 (1989), 53–58.

6. F.Blanchini, S.Miani, Piecewise-linear functions in robust control, Robust control via
variable structure and Lyapunov techniques (Benevento, 1994), 213–243, Lecture Notes
in Control and Inform. Sci., 217, Springer, London, 1996.

7. F.Blanchini, S.Miani, A new class of universal Lyapunov functions for the control of

uncertain linear systems, IEEE Trans. Automat. Control, 44 (1999), no 3, 641–647.

8. F.Blanchini, C. Savorgnanb, Stabilizability of switched linear systems does not imply

the existence of convex Lyapunov functions, Automatica, 44 (2008), no 4, 1166–1170.

9. O.N.Bobyleva, Piecewise-linear Lyapunov functions for linear stationary systems, Au-
tomation and remote control, 4 (2002), 26–35.

10. R.K.Brayton and C.H.Tong, Constructive stability and asymptotic stability of dynam-

ical systems, IEEE Trans. on Circuits and Systems, 27 (1980), 1121–1130.

11. L.Chen, New analysis of the sphere covering problems and optimal polytope approxi-

mation of convex bodies, J. Approx. Theory, 133 (2005), no 1, 134–145.

12. A. Cicone, N. Guglielmi, S. Serra-Capizzano, and M. Zennaro, Finiteness property of

pairs of 2 × 2 sign-matrices via real extremal polytope norms, Linear Algebra Appl.,
432 (2010), 796–816.

13. A.Cicone and V.Yu.Protasov. Fast computation of tight bounds for the joint spectral

radius, 2013.

14. I.Daubechies, J.C. Lagarias, Sets of matrices all infinite products of which converge.

Linear Algebra Appl., 161 (1992), 227–263.

15. R.Edwards, J.J.McDonald, and M.J. Tsatsomeros On matrices with common invari-
ant cones with applications in neural and gene networks, Linear Alg. Appl., 398 (2005),
37–67.

16. L. Fainshil and M.Margaliot, A maximum principle for the stability analysis of positive
bilinear control systems with applications to positive linear switched systems, SIAM J.
Control Optim. 50 (2012), no. 4, 2193–2215.

17. L. Fainshil, M.Margaliot, and P. Chigansky, On the stability of positive linear switched

systems under arbitrary switching laws, IEEE Trans. Automat. Control 54 (2009), no.
4, 897–899.

18. A.F. Filippov, On certain questions in the theory of optimal control, J. SIAM Control
Ser. A, 1 (1962), 76–84.



Polytope Lyapunov functions for stable and for stabilizable LSS 51

19. E. Fornasini, M.E.Valcher, Asymptotic stability and stabilizability of special classes of

discrete-time positive switched systems Linear Alg. Appl. 438 (2013), no 4, 1814-1831.

20. E. Fornasini, M.E.Valcher, Stability and stabilizability criteria for discrete-time positive

switched systems IEEE Trans. Automat. Control 57 (2012), no 5, 1208–1221.

21. G.Gripenberg, Computing the joint spectral radius, Linear Algebra Appl., 234 (1996),
43–60.

22. N.Guglielmi, V.Yu.Protasov, Exact computation of joint spectral characteristics of

matrices, Found. Comput. Math., 13(1) (2013), 37–97.

23. N.Guglielmi, F.Wirth, and M.Zennaro, Complex polytope extremality results for fam-

ilies of matrices, SIAM J. Matrix Anal. Appl., 27 (2005), no 3, 721–743.

24. N. Guglielmi and M. Zennaro, An algorithm for finding extremal polytope norms of

matrix families, Linear Alg. Appl. 428 (2008), No 10, 2265–2282.

25. N. Guglielmi and M. Zennaro, Finding extremal complex polytope norms for families

of real matrices, SIAM J. Matrix Anal. Appl., 31 (2009), No 2, 602–620.

26. N. Guglielmi and M. Zennaro, Stability of linear problems: joint spectral radius of sets

of matrices, in L. Dieci and N. Guglielmi Eds., Current Challenges in Stability Issues
for Numerical Differential Equations. Lecture Notes in Mathematics, Springer, vol.
2082 (2014), 265–313, 2014.

27. L.Gurvits, Stability of discrete linear inclusions, Linear Algebra Appl., 231 (1995),
47–85.

28. L.Gurvits, R. Shorten, O.Mason, On the stability of switched positive linear systems,
IEEE Trans. Automat. Control, 52 (2007), no 6, 1099–1103.

29. R.A.Horn, C.R. Johnson, Matrix analysis, Cambridge University Press, 1990.

30. A.D. Ioffe and V.M.Tihomirov, Theory of extremal problems, Translated from the
Russian by Karol Makowski. Studies in Mathematics and its Applications, 6. North-
Holland Publishing Co., Amsterdam-New York, 1979.

31. P. Julian, J. Guivant, and A.Desages, A parametrization of piecewise linear Lyapunov

functions via linear programming, Intern. Journal of Control 72, (1999), no. 7–8, 702–
715.

32. R.M. Jungers, The Joint Spectral Radius: Theory and Applications, Vol. 385 in
Lecture Notes in Control and Information Sciences, Springer-Verlag. Berlin Heidelberg,
2009.

33. V.S.Kozyakin, Irreducibility measures in explicit estimation of the joint spectral radius,
Diff. Equations and Dyn. Syst., 18 (2010), nos. 1-2, 91–103.

34. V.S.Kozyakin and A.V.Pokrovsky, The role of controllability-type properties in the
study of the stability of desynchronized dynamical systems, Soviet Phys. Dokl., 37
(1992), no 5, 213–215.

35. M.G.Krein and M.A.Rutman, Linear operators leaving invariant a cone in a Banach

space, Amer. Math. Soc. Transl. 26 (1950), and Ser. 1, 10 (1962), 199–325 [translated
from Uspekhi Mat. Nauk 3 (1948), 3–95].

36. D. Liberzon, Switching in systems and control, Birkhauser, Boston, MA, Jun 2003.

37. H. Lin and P.J.Antsaklis, Stability and stabilizability of switched linear systems: a

survey of recent results, IEEE Trans. Autom. Contr., 54 (2009), no 2, 308–322.

38. M.Ludwig, C. Schütt, and E.Werner, Approximation of the Euclidean ball by polytopes,
Studia Math., 173 (2006), no 1, 1–18.

39. S.Marinosson, Lyapunov function construction for ordinary differential equations with

linear programming, Dyn. Syst. 17 (2002), no. 2, 137–150.

40. A.P.Molchanov and E.S. Pyatnitskii, Lyapunov functions, defining necessary and suf-

ficient conditions for the absolute stability of nonlinear nonstationary control systems,

Avtomat. Telemekh., no. 3, 63–73; no. 4, 5-15; no. 5, 38–49 (1986).

41. A.P.Molchanov and E.S. Pyatnitskii, Criteria of asymptotic stability of differential

and difference inclusions encountered in control theory, Systems and Control Letters
13 (1989), 59–64.



52 Nicola Guglielmi et al.

42. V.I.Opoitsev, Equilibrium and stability in models of collective behaviour, Nauka,
Moscow (1977).

43. A.Polanski, Lyapunov function construction by linear programming, IEEE Transac-
tions on Automatic Control 42 (1997), no 7, 1013–1016.

44. A.Polanski, On absolute stability analysis by polyhedral Lyapunov functions, Auto-
matica, 36 (2000), 573–578.

45. V.Yu. Protasov, The joint spectral radius and invariant sets of linear operators, Fun-
damentalnaya i prikladnaya matematika, 2 (1996), No 1, 205–231.

46. V.Yu.Protasov, Asymptotic behaviour of the partition function, Sb. Math., 191 (2000),
no 3–4, 381–414

47. V.Yu.Protasov, Extremal Lp-norms of linear operators and self-similar functions,
Linear Alg. Appl., 428 (2008), 2339–2356.

48. V.Yu.Protasov, Invariant functionals for random matrices, Functional Anal. Appl.,
44 (2010), no 3, 230–233.

49. V.Yu.Protasov, When do several linear operators share an invariant cone ?, Linear
Alg. Appl., 433 (2010), 781–789.

50. V.Yu.Protasov and R. Jungers, Is switching systems stability harder for continuous

time systems?, Proc. of 2013 IEEE 52nd Annual Conference on Decision and Control
(CDC2013), Firenza (Italy), December 10-13, 2013.

51. E.S. Pyatnitskiy and L.B.Rapoport, Criteria of asymptotic stability of differential in-

clusions and periodic motions of time-varying nonlinear control systems. IEEE Trans-
actions on Circuits and Systems 43 (1996), no 3, 219–229.

52. G.C.Rota and G. Strang, A note on the joint spectral radius, Kon. Nederl. Acad. Wet.
Proc. Vol. 63 (1960), 379–381.

53. L.Rodman, H. Seyalioglu, and I. Spitkovsky, When do several linear operators share

an invariant cone ?, Linear Alg. Appl., 432 (2010), 911–926.

54. E.De Santis, M.D.Di Benedetto, G.Pola, Stabilizability of linear switching systems,
Nonlinear Analysis: Hybrid Systems, 2 (2008), no 3, 750–764.

55. J. Shen, J.Hu, Stability of discrete-time switched homogeneous systems on cones and

conewise homogeneous inclusions, SIAM J. Control Optim., 50 (2012), no 4, 2216–
2253.

56. J. S. Vandergraft, Spectral properties of matrices which have invariant cones, SIAM J.
Appl. Math. 16 (1968), 1208–1222.

57. H.Wieland, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642–648, and
Malbematische WerlcelMalbematical Works, vol. 2. 100–106 de Gruyter, Berlin, 1996.

58. G.Xie and L.Wang, Controllability and stabilizability of switched linear-systems, Sys-
tems and Control Letters, 48 (2003), no 2, 135–155.

59. C.A.Yfoulis, Stabilisation of nonlinear systems: the piecewise linear approach, Re-
search Studies, Press Limited, Hertfordshire, England., 2001.

60. C.A.Yfoulis, R.A. Shorten, A numerical technique for the stability analysis of linear

switched systems, Internat. J. Control 77 (2004), no. 11, 1019–1039.



.5 1.5.5

1.5


	1 Introduction
	2 Stability of general linear switching systems
	3 Stability of positive linear switching systems
	4 Stabilizability of positive systems
	5 The phenomenon of fibrillation
	6 Illustrative cases and numerical examples.

