
Nodal bases for the serendipity family of finite elements

Michael S. Floater · Andrew Gillette

Abstract Using the notion of multivariate lower set interpolation, we construct nodal basis
functions for the serendipity family of finite elements, of any order and any dimension.
For the purpose of computation, we also show how to express these functions as linear
combinations of tensor-product polynomials.

Keywords serendipity elements · multivariate interpolation · lower sets

Mathematics Subject Classification (2010) 41A05 · 41A10 · 65D05 · 65N30

1 Introduction

The serendipity family of C0 finite elements is commonly used on cubical and parallelepiped
meshes in two and three dimensions as a means to reduce the computational effort required
by tensor-product elements. The number of basis functions of a tensor-product element of
order r in n dimensions is (r+ 1)n, while for a serendipity element it is asymptotically ∼
rn/n! for large r, which represents a reduction of 50% in 2-D and 83% in 3-D. In this paper,
we construct basis functions for serendipity elements of any order r ≥ 1 in any number
of dimensions n ≥ 1, that are interpolatory at specified nodes and can be written as linear
combinations of tensor-product polynomials (see equation (21)). The benefits and novelty
of our approach are summarized as follows:

– Flexible node positioning. Our approach constructs nodal basis functions for any ar-
rangement of points on the n-cube that respects the requisite association of degrees of
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freedom with sub-faces. In particular, we allow a symmetric arrangement of points that
remains invariant under the symmetries of the n-cube.

– Tensor product decomposition. The basis functions we define are can be written as
linear combinations of standard tensor product basis functions, with coefficients pre-
scribed by a simple formula based on the geometry of a lower set of points associated to
superlinear monomials.

– Dimensional nesting. The restriction of our basis functions for a n-cube to one of its
s-dimensional faces coincides with the definition of our basis functions for an s-cube.

Serendipity elements have appeared in various mathematical and engineering texts, typ-
ically for small n such as n = 2 and n = 3, and for small r; see [2,4,9,10,14,18,17,12,20].
A common choice for the basis functions is a nodal (Lagrange) basis, which is an approach
that has also been studied in the approximation theory literature. For example, Delvos [6]
applied his ‘Boolean interpolation’ to construct a nodal basis for the case n = 3 and r = 4.
Other bases have been considered, such as products of univariate Legendre polynomials, as
in the work of Szabó and Babuška [18].

It was relatively recently that the serendipity spaces were chacterized precisely for arbi-
trary n and r, by Arnold and Awanou [1]. They derived the polynomial space and its dimen-
sion, and also constructed a unisolvent set of degrees of freedom to determine an element
uniquely. For the n-dimensional cube In, with I = [−1,1], they defined the serendipity space
Sr(In) as the linear space of n-variate polynomials whose superlinear degree is at most r.
The superlinear degree of a monomial is its total degree, less the number of variables ap-
pearing only linearly in the monomial. For a face f of In of dimension d ≥ 1, the degrees of
freedom proposed in [1] for a scalar function u are of the form

u 7−→
∫

f
uq, (1)

for q among some basis of Pr−2d( f ). Here, Ps( f ) is the space of restrictions to f of
Ps(In), the space of n-variate polynomials of degree ≤ s. These degrees of freedom were
shown to be unisolvent by a hierarchical approach through the n dimensions: the degrees
of freedom at the vertices of In are determined first (by evaluation); then the degrees of
freedom on the 1-dimensional faces (edges), then those on the 2-dimensional faces, etc.,
finishing with those in the interior of In.

The approach of [1] has the advantage that the degrees of freedom on any face f of
any dimension d can be chosen independently of those on another face, of the same or of
different dimension. Implementing a finite element method using these degrees of freedom,
however, requires a set of ‘local basis functions’ that are associated to the integral degrees
of freedom in some standardized fashion. The lack of simple nodal basis functions for this
purpose has limited the broader use and awareness of serendipity elements.

The purpose of this paper is to show that by applying the notion of lower set interpolation
in approximation theory and choosing an appropriate Cartesian grid in In, a nodal basis can
indeed be constructed for the serendipity space Sr(In) for any n and r. The interpolation
nodes are a subset of the points in the grid. The restrictions of the basis functions to any
d-dimensional face are themselves basis functions of the same type for a d-cube, yielding
C0 continuity between adjacent elements.

If we keep all the nodes distinct, it is not possible to arrange them in a completely
symmetric way for r ≥ 5. However, lower set interpolation also applies to derivative data,
and by collapsing interior grid coordinates to the midpoint of I, we obtain a Hermite-type
basis of functions that are determined purely by symmetric interpolation conditions for all n
and r.
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Lower set interpolation can also be expressed as a linear combination of tensor-product
interpolants on rectangular subsets of the nodes involved [7]. We derive an explicit formula
for the coefficients in the serendipity case, which could be used for evaluation of the basis
functions and their derivatives.

2 Interpolation on lower sets

A multi-index of n non-negative integers will be denoted by

α = (α1,α2, . . . ,αn) ∈ Nn
0.

For each j = 1, . . . ,n, choose grid coordinates x j,k ∈R for all k∈N0, not necessarily distinct.
These coordinates determine the grid points

xα := (x1,α1 ,x2,α2 , . . . ,xn,αn) ∈ Rn, α ∈ Nn
0. (2)

The left multiplicity of α ∈ Nn
0 with respect to the x j,k is defined to be the multi-index

ρ(α) := (ρ1(α), . . . ,ρn(α)) ∈ Nn
0,

where
ρ j(α) := #{k < α j : x j,k = x j,α j}. (3)

Thus ρ j(α) is the number of coordinates in the sequence x j,0,x j,1, . . . ,x j,α j−1 that are equal
to x j,α j . For each α ∈Nn

0, we associate a linear functional λα as follows. Given any u : Rn→
R, defined with sufficiently many derivatives in a neighborhood of xα , let

λα u := Dρ(α)u(xα).

We call a finite set L ⊂ Nn
0 a lower set if α ∈ L and µ ≤ α imply µ ∈ L. The partial or-

dering µ ≤ α means µ j ≤ α j for all j = 1, . . . ,d. We associate with L the linear space of
polynomials

P(L) = span{xα : α ∈ L}, (4)

where
xα := xα1

1 · · ·x
αn
n , (5)

for any point x = (x1, . . . ,xn) ∈ Rn.
Polynomial interpolation on lower sets has been studied in [3,5,6,7,8,11,13,15,16,19]

and the following theorem has been established in various special cases by several authors.

Theorem 1 For any lower set L⊂ Nn
0 and a sufficiently smooth function u : Rn→ R, there

is a unique polynomial p ∈ P(L) that interpolates u in the sense that

λα p = λα u, α ∈ L. (6)

The theorem leads to a basis of P(L) with the basis function φα ∈ P(L), α ∈ L, defined by

λα ′φα = δα,α ′ , α ∈ L, (7)

where δα,α ′ is 1 if α = α ′ and 0 otherwise. We can then express p as

p(x) = ∑
α∈L

φα(x)λα u.
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3 Serendipity spaces

The serendipity space Sr(In) can be described and partitioned using the language of lower
sets. The standard norm for a multi-index α ∈ Nn

0 is

|α| :=
n

∑
j=1

α j,

which is the degree of the monomial xα in (5). We will define the superlinear norm of α to
be

|α|′ :=
n

∑
j=1

α j≥2

α j,

which is the ‘superlinear’ degree of xα from [1]. Using this we define, for any r ≥ 1,

Sr := {α ∈ Nn
0 : |α|′ ≤ r}. (8)

Observe that Sr is a lower set since |α|′ ≤ |β |′ whenever α ≤ β . Recalling (4), we let Sr =
P(Sr), which coincides with the definition of Sr in [1].

We now partition Sr, and hence Sr(In), with respect to the faces of In. We can index
these faces using a multi-index β ∈ {0,1,2}n. For each such β we define the face

fβ = I1,β1 × I2,β2 ×·· ·× In,βn ,

where

I j,β j :=


−1, β j = 0;
1, β j = 1;
(−1,1), β j = 2.

(9)

Since I can be written as the disjoint union I = {−1}∪{1}∪ (−1,1), we see that In can be
written as the disjoint union

In =
⋃

β∈{0,1,2}n
fβ .

Hence, there are 3n faces of all dimensions. The dimension of the face fβ is

dim fβ = #{ j : β j = 2},

and the number of faces of dimension d is

#{ fβ ⊆ In : dim fβ = d}= 2n−d
(

n
d

)
. (10)

The 2n vertices of In correspond to β ∈ {0,1}n, the 2n−1n edges correspond to β with
exactly one entry equal to 2, and so forth, up to the single n-face, f(2,2,...,2), the interior of
In. To partition Sr according to these faces, write Sr as the disjoint union

Sr =
⋃

β∈{0,1,2}n
Sr,β , (11)

where
Sr,β = {α ∈ Sr : min(α j,2) = β j, for j = 1, . . . ,n}.
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Fig. 1 For n = 2, the geometry of the lower set Sr is shown for r = 2,3, . . . ,7. Treating each figure as a set
of unit squares with the lower left corner at the origin in R2, the corners of each square indicate the points of
N2

0 that belong to Sr .

We use this partition to compute the dimension of Sr and confirm that it agrees with
the dimension of Sr given in [1]. Fix β ∈ {0,1,2}n and let d = dim fβ . Letting N2 denote
natural numbers ≥ 2, we see that

#Sr,β = #{α ∈ Nd
2 : |α| ≤ r}= #{α ∈ Nd

0 : |α| ≤ r−2d}.

Therefore,

#Sr,β =

{(r−d
d

)
, r ≥ 2d;

0, otherwise.
(12)

Using (10), we thus find

#Sr =
n

∑
d=0

2n−d
(

n
d

)
#Sr,β =

min(n,br/2c)

∑
d=0

2n−d
(

n
d

)(
r−d

d

)
,

which is the formula for dimSr in [1, Equation (2.1)]. A table of values of dimSr for small
values of n and r is given in [1]. Figures 1 and 2 show the set Sr for r = 2,3, . . . ,7 in 2-D
and 3-D respectively.

4 Basis functions

We now apply Theorem 1 to the lower set L = Sr to construct a nodal basis for Sr(In) for
arbitrary r,n ≥ 1. To do this, we choose the grid coordinates x j,k, j = 1, . . . ,n, k = 0, . . . ,r,
in a manner that respects the indexing of the faces of In. Suppose that for j = 1, . . . ,n,

x j,0 =−1 and x j,1 = 1,

and
x j,k ∈ (−1,1), k = 2, . . . ,r,

(not-necessarily distinct). Then for each β ∈ {0,1,2}n, xα ∈ fβ if and only if α ∈ Sr,β .
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Fig. 2 For n = 3, the geometry of the lower set Sr is shown for r = 2,3, . . . ,7. Treating each figure as a set of
unit cubes based at the origin and viewed from first octant in R3, the corners of each cube indicate the points
of N3

0 that belong to Sr .

Suppose further that the grid coordinates x j,k, k = 2, . . . ,r, are distinct. In this case the
interpolation conditions of Theorem 1 are of Lagrange type:

p(xα) = u(xα), α ∈ Sr, (13)

giving the basis {φα : α ∈ Sr} for Sr(In) defined by

φα(xα ′) = δα,α ′ , α,α ′ ∈ Sr.

We consider two choices of such distinct coordinates. The first choice is to distribute
them uniformly in I in increasing order:

x j,k =−1+
2(k−1)

r
, k = 2, . . . ,r, (14)

as illustrated in Figure 3a. This configuration of nodes is, however, only symmetric for r≤ 3.
Next, to obtain a more symmetric configuration, we re-order the interior grid coordinates in
such a way that they are closer to the middle of I:

x j,r−2s = 1− 2(s+1)
r

, s = 0,1,2, . . . ,b(r−2)/2c,

x j,r−2s−1 =−1+
2(s+1)

r
, s = 0,1,2, . . . ,b(r−3)/2c. (15)

as illustrated in Figure 3b. This yields a symmetric configuration for r≤ 4, but not for r≥ 5.
This lack of symmetry motivates the third choice of letting all interior grid coordinates
coalesce to the midpoint of I, i.e.,

x j,k = 0, k = 2, . . . ,r, (16)

as indicated in Figure 3c. This gives interpolation conditions that are symmetric for all n and
r, but the trade-off is that these conditions are now of Hermite type rather than Lagrange. In
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(a) (b) (c)

Fig. 3 Three choices of x j,k , 2 ≤ k ≤ 5, for n = 2, r = 5. The first two choices are Lagrange-like while the
third is Hermite-like.

this Hermite case, all the points xα in the face fβ are equal to the mipoint of that face, which
we denote by yβ . The interpolation conditions of Theorem 1 then become

Dρ p(yβ ) = Dρ u(yβ ), β ∈ {0,1,2}n, ρ ∈ Kr,β , (17)

where
Kr,β := {ρ ∈ Nn

0 : |ρ| ≤ r−2d with ρ j = 0 if β j < 2}. (18)

Thus p can be expressed as

p(x) = ∑
β∈{0,1,2}n

∑
ρ∈Kr,β

Dρ u(yβ )φβ ,ρ(x),

where
{φβ ,ρ : β ∈ {0,1,2}n,ρ ∈ Kr,β}

is a basis for Sr defined by

Dρ ′
φβ ,ρ(yβ ′) = δβ ,β ′δρ,ρ ′ , for any β

′ ∈ {0,1,2}n, ρ
′ ∈ Kr,β .

Figure 4 illustrates these interpolation conditions for r = 2 through r = 5 in the case n = 3.

5 Tensor-product formula

In this last section we explain how the interpolant can be expressed as a linear combination
of tensor-product interpolants over various rectangular subgrids of the overall grid. This
applies also to the basis functions and so gives a simple method of evaluating these functions
and their derivatives. To do this we apply the formula recently obtained in [7]. Suppose again
that L⊂Nn

0 is any lower set as in Section 2 and consider the interpolant p to u in Theorem 1.
For any α ∈ L define the rectangular block

Bα = {µ ∈ Nn
0 : µ ≤ α}

and let pα ∈ P(Bα) denote the tensor-product interpolant to u satisfying the interpolation
conditions (6) for µ ∈ Bα . Further, let χ(L) : Nn

0 → {0,1} be the characteristic function
defined by

χ(L)(α) =

{
1 if α ∈ L;
0 otherwise.
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Fig. 4 Hermite-like interpolation conditions in 3-D for r = 2,3,4,5. A dot indicates that a basis function
will interpolate the value of the function at that location. A dot on an edge enclosed by ` sets of parentheses
indicates that basis functions will interpolate each partial derivative along the edge at the location of the dot,
up to order `. A dot in the interior enclosed by ` circles indicates that basis functions will interpolate all partial
derivatives at the location of dot, up to total order `.

It was shown in [7] that
p = ∑

α∈L
cα pα , (19)

where
cα = ∑

ε∈{0,1}n
(−1)|ε|χ(L)(α + ε), α ∈ L. (20)

This in turn gives a formula for each basis function φβ ∈ P(L), i.e.,

φβ (x) = ∑
α∈L
α≥β

cα φβ ,α , (21)

where φβ ,α ∈ P(Bα) denotes the tensor-product basis function associated with the index β ,
defined by

λβ ′φβ ,α = δβ ,β ′ , β ∈ Bα .

For a general lower set L, many of the integer coefficients cα are zero, and so in order to
apply (19) to evaluate p we need to determine which of the cα are non-zero, and to find
their values. With L = Sr we could do this in practice by implementing the formula (20).
However, we will derive a specific formula for the cα . We call α ∈ L a boundary point of L
if α +1n 6∈ L, where 1n = (1,1, . . . ,1) ∈ Nn

0. Let ∂L denote the set of boundary points of L.
As observed in [7], if α is not a boundary point then cα = 0.

Consider now the formula (19) when L = Sr. Note that |α|′ is a symmetric function of
α: it is unchanged if we swap α j and αi for i 6= j. It follows that χ(Sr)(α) is also symmetric
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in α , and therefore cα is also symmetric in α . We can thus determine the boundary points
α ∈ ∂Sr and their coefficients cα according to how many zeros and ones α contains. For
any α ∈ Nn

0 let mi(α) denote the multiplicity of the integer i≥ 0 in (α1, . . . ,αn), i.e.,

mi(α) = #{α j = i}.

Lemma 1 If α ∈ ∂Sr and m0(α)≥ 1 then cα = 0.

Proof By the symmetry of cα we may assume that α1 = 0, and from (20) we can express
cα as

cα = ∑
ε∈{0}×{0,1}n−1

(−1)|ε|
(
χ(Sr)(α + ε)−χ(Sr)(α + e1 + ε)

)
,

where e1 = (1,0, . . . ,0) ∈ Nn
0. Since α1 = 0, both

(α + ε)1 ≤ 1 and (α + e1 + ε)1 ≤ 1,

and so
|α + ε|′ = |α + e1 + ε|′,

and therefore
χ(Sr)(α + ε) = χ(Sr)(α + e1 + ε),

and so cα = 0.

In view of Lemma 1, we need only consider points α ∈ ∂Sr ∩Nn
1.

Lemma 2 Let α ∈ Sr ∩Nn
1 and m1 = m1(α). Then α ∈ ∂Sr if and only if

|α|′ > r− (n+m1).

Proof By the definition of Sr, α ∈ ∂Sr if and only if |α +1n|′ > r. Since α ∈ Nn
1,

#{α j ≥ 2}= n−m1,

and we find
|α +1n|′ = 2m1 + |α|′+(n−m1) = |α|′+n+m1,

which proves the result.

In view of Lemma 2, we need only consider points α ∈ Nn
1 such that

|α|′ = r− k, k = 0,1, . . . ,n+m−1, (22)

where m = m1(α).

Theorem 2 Let α ∈ Nn
1 be as in (22). If m < n then

cα = cm,k :=
m

∑
i=0

(−1)k+i
(

m
i

)(
n−m−1

k−2i

)
, (23)

with the convention that
(l

j

)
= 0 if j < 0 or j > l.
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Proof Let ε ∈ {0,1}n, and let

i1 = #{ j : ε j = 1 and α j = 1},

i2 = #{ j : ε j = 1 and α j ≥ 2}.

Then
|α + ε|′ = |α|′+2i1 + i2,

and so α + ε ∈ Sr if and only if
|α|′+2i1 + i2 ≤ r,

or, equivalently,
2i1 + i2 ≤ k.

Since the number of ways of choosing i1 elements among m is
(m

i1

)
, and the number of ways

of choosing i2 elements among n−m is
(n−m

i2

)
the sum in (20) reduces to

cα =
m

∑
i1=0

k−2i1

∑
i2=0

(−1)i1+i2

(
m
i1

)(
n−m

i2

)
.

Since
k−2i1

∑
i2=0

(−1)i2

(
n−m

i2

)
= (−1)k−2i1

(
n−m−1

k−2i1

)
,

we obtain (23).

Table 1 shows the values of the coefficients cm,k for n = 1,2,3,4. Finally, we need to

k
n m 0 1 2 3 4 5 6

1 0 1

2 0 1 -1
1 1 0 -1

3 0 1 -2 1
1 1 -1 -1 1
2 1 0 -2 0 1

4 0 1 -3 3 -1
1 1 -2 0 2 -1
2 1 -1 -2 2 1 -1
3 1 0 -3 0 3 0 -1

Table 1 Coefficients cm,k for n = 1,2,3,4.

consider the possibility that m = n in (22), in which case the formula (23) is no longer valid,
and we must treat this situation separately. In this case α = 1n and we can again find cα

from (20). Since
|1n +1n|′ = |2n|′ = 2n,

we see that 1n ∈ ∂Sr if and only if r < 2n.
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Fig. 5 The geometry of S5 for n = 2 is shown (see Figure 1) with an indication of which blocks within the
set contribute to the representation of the serendipity interpolant p5 as a linear combination of tensor product
interpolants. A block with a filled dot in the upper right corner contributes with coefficient +1 while a block
with an empty dot in the upper right corner contributes with coefficient −1.

Theorem 3 Suppose that r < 2n. Then

c1n = (−1)br/2c
(

n−1
br/2c

)
. (24)

Proof For any ε ∈ {0,1}n,

|1n + ε|′ = 2|ε|,

and so (20) gives

c1n = ∑
ε∈{0,1}n

2|ε|≤r

(−1)|ε| =
br/2c

∑
i=0

(
n
i

)
(−1)i

which gives (24).

We now consider examples of the use of Theorems 2 and 3, and let pr denote the inter-
polant p in Theorem 1 when L = Sr.

5.1 2-D case

For n = 2, Theorems 2 and 3 give

p1 = p11,

p2 = p21 + p12− p11,

p3 = p31 + p13− p11,

p4 = p41 + p14 + p22− (p21 + p12),

p5 = p51 + p15 + p32 + p23− (p31 + p31 + p22).

Figure 5 shows the polynomials in S5 in the formula for p5, with black if cα = 1 and white
if cα = −1. Figure 6 depicts the polynomials in the same formula, based on the Hermite
interpolation conditions (16).
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+ + +

− − − =

Fig. 6 A visual depiction of the the formula for p5 in the Hermite case.

5.2 3-D case

For n = 3, to simplify the formulas let

qα := ∑
α ′∈π(α)

pα ′ ,

with π(α) denoting all permutations of α = (α1,α2,α3), so that, for example,

q111 := p111,

q112 := p112 + p121 + p211,

q123 := p123 + p132 + p213 + p231 + p312 + p323,

etc. Then Theorems 2 and 3 give

p1 = q111,

p2 = q112−2q111,

p3 = q113−2q111,

p4 = q122 +(q114−2q112)+q111,

p5 = (q123−q122)+(q115−2q113)+q111.

We note that Delvos [6] found a nodal basis for p4, n = 3, using his method of ‘Boolean
interpolation.’ That method is not, however, general enough to give the formulas for pr
with r ≥ 5, n = 3. Now that we have provided a generalized approach to defining nodal
bases for serendipity elements, it remains to be studied whether certain arrangements of
the grid coordinates x j,k provide advantages in specific application contexts. Suitable pre-
conditioners associated to these bases may also be needed.
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