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Abstract

This paper concerns characterizations of approximation classes associated to adaptive finite element
methods with isotropic h-refinements. It is known from the seminal work of Binev, Dahmen,
DeVore and Petrushev that such classes are related to Besov spaces. The range of parameters
for which the inverse embedding results hold is rather limited, and recently, Gaspoz and Morin
have shown, among other things, that this limitation disappears if we replace Besov spaces by
suitable approximation spaces associated to finite element approximation from uniformly refined
triangulations. We call the latter spaces multievel approximation spaces, and argue that these spaces
are placed naturally halfway between adaptive approximation classes and Besov spaces, in the sense
that it is more natural to relate multilevel approximation spaces with either Besov spaces or adaptive
approximation classes, than to go directly from adaptive approximation classes to Besov spaces. In
particular, we prove embeddings of multilevel approximation spaces into adaptive approximation
classes, complementing the inverse embedding theorems of Gaspoz and Morin.

Furthermore, in the present paper, we initiate a theoretical study of adaptive approximation
classes that are defined using a modified notion of error, the so-called total error, which is the
energy error plus an oscillation term. Such approximation classes have recently been shown to
arise naturally in the analysis of adaptive algorithms. We first develop a sufficiently general ap-
proximation theory framework to handle such modifications, and then apply the abstract theory
to second order elliptic problems discretized by Lagrange finite elements, resulting in characteriza-
tions of modified approximation classes in terms of memberships of the problem solution and data
into certain approximation spaces, which are in turn related to Besov spaces. Finally, it should be
noted that throughout the paper we paid equal attention to both conforming and nonconforming
triangulations.
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1 Introduction

Among the most important achievements in theoretical numerical analysis during the last
decade was the development of mathematical techniques for analyzing the performance of
adaptive finite element methods. A crucial notion in this theory is that of approximation
classes, which we discuss here in a simple but very paradigmatic setting. Given a polygonal
domain Ω ∈ R2, a conforming triangulation P0 of Ω, and a number s > 0, we say that a
function u on Ω belongs to the approximation class A s if for each N , there is a conforming
triangulation P of Ω with at most N triangles, such that P is obtained by a sequence of
newest vertex bisections from P0, and that u can be approximated by a continuous piecewise
affine function subordinate to P with the error bounded by cN−s, where c = c(u, P0, s) ≥ 0
is a constant independent of N . In a typical setting, the error is measured in the H1-norm,
which is the natural energy norm for second order elliptic problems. To reiterate and to
remove any ambiguities, we say that u ∈ H1(Ω) belongs to A s if

min
{P∈P:#P≤N}

inf
v∈SP

‖u− v‖H1 ≤ cN−s, (1)

for all N ≥ #P0 and for some constant c, where P is the set of conforming triangulations
of Ω that are obtained by a sequence of newest vertex bisections from P0, and SP is the
space of continuous piecewise affine functions subordinate to the triangulation P .

Approximation classes can be used to reveal a theoretical barrier on any procedure that
is designed to approximate u by means of piecewise polynomials and a fixed refinement rule
such as the newest vertex bisection. Suppose that we start with the initial triangulation
P0, and generate a sequence of conforming triangulations by using newest vertex bisections.
Suppose also that we are trying to capture the function u by using continuous piecewise
linear functions subordinate to the generated triangulations. Finally, assume that u ∈ A s

but u 6∈ A σ for any σ > s. Then as far as the exponent σ in cN−σ is concerned, it is
obvious that the best asymptotic bound on the error we can hope for is cN−s, where N is
the number of triangles. Now supposing that u is given as the solution of a boundary value
problem, a natural question is if this convergence rate can be achieved by any practical
algorithm, and it was answered in the seminal works of Binev, Dahmen, and DeVore (2004)
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and Stevenson (2007): These papers established that the convergence rates of certain
adaptive finite element methods are optimal, in the sense that if u ∈ A s for some s > 0,
then the method converges with the rate not slower than s. One must mention the earlier
developments Dörfler (1996); Morin, Nochetto, and Siebert (2000); Cohen, Dahmen, and
DeVore (2001); Gantumur, Harbrecht, and Stevenson (2007), which paved the way for the
final achievement.

Having established that the smallest approximation class A s in which the solution
u belongs to essentially determines how fast adaptive finite element methods converge,
the next issue is to determine how large these classes are and if the solution to a typical
boundary value problem would belong to an A s with large s. In particular, one wants
to compare the performance of adaptive methods with that of non-adaptive ones. A first
step towards addressing this issue is to characterize the approximation classes in terms of
classical smoothness spaces, and the main work in this direction so far appeared is Binev,
Dahmen, DeVore, and Petrushev (2002), which, upon tailoring to our situation and a slight
simplification, tells that Bα

p,p ⊂ A s ⊂ Bσ
p,p for 2

p = σ < 1 + 1
p and σ < α < max{2, 1 + 1

p}
with s = α−1

2 . Here Bα
p,q are the standard Besov spaces defined on Ω. This result has

recently been generalized to higher order Lagrange finite elements by Gaspoz and Morin
(2013). In particular, they show that the direct embedding Bα

p,p ⊂ A s holds in the larger

range σ < α < m+max{1, 1
p}, where m is the polynomial degree of the finite element space,

see Figure 1(a). However, the restriction σ < 1 + 1
p on the inverse embedding A s ⊂ Bσ

p,p

cannot be removed, since for instance, any finite element function whose derivative is
discontinuous cannot be in Bσ

p,p if σ ≥ 1+ 1
p and p <∞. To get around this problem, Gaspoz

and Morin proposed to replace the Besov space Bσ
p,p by the approximation space Aσp,p

associated to uniform refinements1. We call the spaces Aσp,p multilevel approximation spaces,
and their definition will be given in Subsection 3.3. For the purposes of this introduction,
and roughly speaking, the space Aσp,p is the collection of functions u ∈ Lp for which

inf
v∈SPk

‖u− v‖Lp ≤ chσk , (2)

where {Pk} ⊂P is a sequence of triangulations such that Pk+1 is the uniform refinement
of Pk, and hk is the diameter of a typical triangle in Pk. Note for instance that finite
element functions are in every Aσp,p. With the multilevel approximation spaces at hand,

the inverse embedding A s ⊂ Aσp,p is recovered for all σ ≤ 2
p .

In this paper, we prove the direct embedding Aαp,p ⊂ A s, so that the existing situation
Bα
p,p ⊂ A s ⊂ Aσp,p is improved to Aαp,p ⊂ A s ⊂ Aσp,p. It is a genuine improvement, since

Aαp,p(Ω) ) Bα
p,p(Ω) for α ≥ 1 + 1

p . Moreover, as one stays entirely within an approximation
theory framework, one can argue that the link between A s and Aαp,p is more natural than
the link between A s and Bα

p,p. Once the link between A s and Aαp,p has been established,

1 This space is denoted by B̂σ
p,p in Gaspoz and Morin (2013). In the present paper we are adopting the

notation of Oswald (1994).



1 Introduction 4

one can then invoke the well known relationships between Aαp,p and Bα
p,p. It seems that this

two step process offers more insight into the underlying phenomenon. We also remark that
while the existing results are only for the newest vertex bisection procedure and conforming
triangulations, we deal with possibly nonconforming triangulations, and therefore are able
to handle the red refinement procedure, as well as newest vertex bisections without the
conformity requirement.

1

2

1
p

α

H1

1
2

Bα
p,p

m
+
1

1

(a) If the space Bαp,p is located strictly above
the solid line and below the dashed line,
then Bαp,p ⊂ A s with s = α−1

2 . The
inverse embeddings A s+ε ⊂ Bαp,p hold
on the solid line and below the (slanted)
dotted line.

1

2

1
p

α

H−1

L2

Bα
p,p

(b) If the space Bαp,p is located above or
on the solid line, and if u ∈ A s and
∆u ∈ Bαp,p with s = α+1

2 , then u ∈ A s
∗ .

It is as if the approximation of ∆u is tak-
ing place in H−1, with the proviso that
the shaded area is excluded from all con-
siderations.

Fig. 1: Illustration of various embeddings. The point (1
p , α) represents the space Bα

p,p.

The approximation classes A s defined by (1) are associated to measuring the error of
an approximation in the H1-norm. Of course, this can be generalized to other function
space norms, such as Lp and Bα

p,p, which we will consider in Section 3. However, we will
not stop there, and consider more general approximation classes corresponding to ways
of measuring the error between a general function u and a discrete function v ∈ SP by a
quantity ρ(u, v, P ) that may depend on the triangulation P and is required to make sense
merely for discrete functions v ∈ SP . An example of such an error measure is

ρ(u, v, P ) =

(
‖u− v‖2H1 +

∑
τ∈P

(diam τ)2‖f −Πτf‖2L2(τ)

) 1
2

, (3)

where f = ∆u, and Πτ : L2(τ)→ Pd is the L2(τ)-orthogonal projection onto Pd, the space
of polynomials of degree not exceeding d. It has been shown in Cascon, Kreuzer, Nochetto,
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and Siebert (2008) that if the solution u of the boundary value problem

∆u = f in Ω and u|Ω = 0, (4)

satisfies
min

{P∈P:#P≤N}
inf
v∈SP

ρ(u, v, P ) ≤ cN−s, (5)

for all N ≥ #P0 and for some constants c and s > 0, then a typical adaptive finite element
method for solving (4) converges with the rate not slower than s. Moreover, there are
good reasons to consider that the approximation classes A s

∗ defined by the condition (5)
are more attuned to certain practical adaptive finite element methods than the standard
approximation classes A s defined by (1), see Section 4. Obviously, we have A s

∗ ⊂ A s but
we cannot expect the inclusion A s ⊂ A s

∗ to hold in general. In Cascon et al. (2008), an
effective characterization of A s

∗ was announced as an important pending issue.
In the present paper, we establish a characterization of A s

∗ in terms of memberships
of u and f = ∆u into suitable approximation spaces, which in turn are related to Besov
spaces. For instance, we show that if u ∈ A s and f ∈ Bα

p,p with α
2 ≥ 1

p − 1
2 and s = α+1

2 ,

then u ∈ A s
∗ , see Figure 1(b). Note that the approximation rate s = α+1

2 is as if we were
approximating f in the H−1-norm, which is illustrated by the arrow downwards. However,
the parameters must satisfy α

2 ≥ 1
p− 1

2 (above or on the solid line), which is more restrictive

compared to α+1
2 > 1

p − 1
2 (above the dashed line), the latter being the condition we would

expect if the approximation was indeed taking place in H−1. This situation cannot be
improved in the sense that if α

2 <
1
p − 1

2 then Bα
p,p 6⊂ L2, hence the quantity (3) would be

infinite in general for f ∈ Bα
p,p.

At this point, the reader might be wondering if we can deduce f ∈ Bα
p,p from u ∈ A s. If

so, everything would follow from the single assumption u ∈ A s, which would then render
the theory more in line with the traditional results. However, u can be in a space slightly
smaller than H1, and in this case we cannot guarantee f ∈ L2, and hence the quantity (3)
would not be defined. On the other hand, there are standard examples where f is smooth
but u is barely in H1+ε for a small ε. Furthermore, since we are solving a PDE, and f is
“given”, there would generally be much more information available about f than about u,
and so it is not an urgent matter to deduce the regularity of f from that of u.

The results of Section 4 and some of the results of Section 3 are proved by invoking
abstract theorems that are established in Section 2. These theorems extend some of the
standard results from approximation theory to deal with generalized approximation classes
such as A s

∗ . We decided to consider a fairly general setting in the hope that the theorems
will be used for establishing characterizations of other approximation classes. For example,
adaptive boundary element methods and adaptive approximation in finite element exterior
calculus seem to be amenable to our abstract framework, although checking the details
poses some technical challenges.

This paper is organized as follows. In Section 2, we introduce an abstract framework
that is more general than usually considered in approximation theory of finite element
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methods, and collect some theorems that can be used to prove embedding theorems between
adaptive approximation classes and other function spaces. In Section 3, we recall some
standard results on multilevel approximation spaces and their relationships with Besov
spaces, and then prove direct embedding theorems between multilevel approximation spaces
and adaptive approximation classes. The main results of this section are Theorem 3.8,
Theorem 3.9, and Theorem 3.12. Finally, in Section 4, we investigate approximation classes
associated to certain adaptive finite element methods for variable coefficient second order
boundary value problems. We emphasize that the actual results in Section 4 are in terms
of the approximation spaces that are studied in Section 3, and in order to relate them to
Besov spaces, one has to appeal to Section 3.

2 General theorems

2.1 The setup

Let M be an n-dimensional topological manifold, equipped with a compatible measure, in
the sense that all Borel sets are measurable. What we have in mind here is M = Rn with the
Lebesgue measure on it, or a piecewise smooth surfaceM ⊂ RN with its canonical Hausdorff
measure. With Ω ⊂M a bounded domain, we consider a class of partitions (triangulations)
of Ω, and finite element type functions defined over those partitions. Ultimately, we are
interested in characterizing those functions on Ω that can be well approximated by such
finite element type functions. In order to make these concepts precise, we will use in
this section a fairly abstract setting, which we believe to be a good compromise between
generality and readability.

By a partition of Ω we understand a collection P of finitely many disjoint open subsets
of Ω, satisfying Ω =

⋃
τ∈P τ . We assume that a set P of partitions of Ω is given, which

we call the set of admissible partitions. For simplicity, we will assume that for any k ∈ N
the set {P ∈ P : #P ≤ k} is finite. In practice, P would be, for instance, the set
of all conforming triangulations obtained from a fixed initial triangulation P0 by repeated
applications of the newest vertex bisection procedure. Another class of important examples
arises when we want to allow partitions with hanging nodes. In this case, an admissibility
criterion on a partition has been discussed in Bonito and Nochetto (2010). Here and in
the following, we often write triangles and edges et cetera to mean n-simplices and (n−1)-
dimensional faces et cetera, which seems to improve readability. Hence note that the use
of a two dimensional language does not mean that the results we discuss are valid only in
two dimensions.

We will assume the existence of a refinement procedure satisfying certain requirements.
Given a partition P ∈ P and a set R ⊂ P of its elements, the refinement procedure
produces P ′ ∈ P, such that P \ P ′ ⊃ R, i.e., the elements in R are refined at least
once. Let us denote it by P ′ = refine(P,R). In practice, this is implemented by a usual
naive refinement possibly producing a non-admissible partition, followed by a so-called
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completion procedure. We assume the existence of a constant λ > 1 such that |τ | ≤ λ−n|σ|
for all τ ∈ P ′ and σ ∈ R with τ ∩ σ 6= ∅. Note that we have λ = 2 for red refinements,
and λ = n

√
2 for the newest vertex bisection. Moreover, we assume the following on the

efficiency of the refinement procedure: If {Pk} ⊂ P and {Rk} are sequences such that
Pk+1 = refine(Pk, Rk) and Rk ⊂ Pk for k = 0, 1, . . ., then

#Pk −#P0 .
k−1∑
m=0

#Rm, k = 1, 2, . . . . (6)

Here and in what follows, we shall often dispense with giving explicit names to constants,
and use the Vinogradov-style notation X . Y , which means that X ≤ C · Y with some
constant C that is allowed to depend only on P and (the geometry of) the domain Ω.
Assumption (6) is justified for newest vertex bisection algorithm in Binev et al. (2004);
Stevenson (2008), and the red refinement rule is treated in Bonito and Nochetto (2010).

Next, we shall introduce an abstraction of finite element spaces. To this end, we assume
that there is a quasi-Banach space X0, and for each P ∈ P, there is a nontrivial, finite
dimensional subspace SP ⊂ X0. The space X0 models the function space over Ω in which
the approximation takes place, such as X0 = Ht(Ω) and X0 = Lp(Ω). The spaces SP
are, as the reader might have guessed, models of finite element spaces, from which we
approximate general functions in X0. Obviously, a natural notion of error between an
element u ∈ X0 and its approximation v ∈ SP is the quasi-norm ‖u − v‖X0 . However, we
need a bit more flexibility in how to measure such errors, and so we suppose that there
is a function ρ(u, v, P ) ∈ [0,∞] defined for u ∈ X0, v ∈ SP , and P ∈ P. Note that this
error measure, which we call a distance function, can depend on the partition P , and it is
only required to make sense for functions v ∈ SP . We allow the value ρ =∞ to leave open
the possibility that for some u ∈ X0 we have ρ(u, ·, ·) =∞. The most important distance
function is still ρ(u, v, P ) = ‖u− v‖X0 , but other examples will appear later in the paper,
see e.g., Example 2.7, Subsection 3.5 and Section 4.

Given u ∈ X0 and P ∈P, we let

E(u, SP )ρ = inf
v∈SP

ρ(u, v, P ), (7)

which is the error of a best approximation of u from SP . Furthermore, we introduce

Ek(u)ρ = inf
{P∈P:#P≤2kN}

E(u, SP )ρ, (8)

for u ∈ X0 and k ∈ N, with the constant N chosen sufficiently large in order to ensure
that the set {P ∈ P : #P ≤ 2N} is nonempty. In a certain sense, Ek(u)ρ is the best
approximation error when one tries to approximate u within the budget of 2kN triangles.
Finally, we define the main object of our study, the (adaptive) approximation class

A s
q (ρ) = A s

q (ρ,P, {SP }) = {u ∈ X0 : |u|A s
q (ρ) <∞}, (9)
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where s > 0 and 0 < q ≤ ∞ are parameters, and

|u|A s
q (ρ) = ‖(2ksEk(u)ρ)k∈N‖`q , u ∈ X0. (10)

In the following, we will use the abbreviation A s(ρ) = A s
∞(ρ). Note that u ∈ A s

q (ρ)

implies Ek(u)ρ ≤ c2−ks for all k and for some constant c, and these two conditions are
equivalent if q = ∞. We have A s

q (ρ) ⊂ A s
r (ρ) for q ≤ r, and A s

q (ρ) ⊂ A α
r (ρ) for s > α

and for any 0 < q, r ≤ ∞. The set A s
q (ρ) is not a linear space without further assumptions

on ρ and P. However, in a typical situation, it is indeed a vector space equipped with the
quasi-norm ‖ · ‖A s

q (ρ) = ‖ · ‖X0 + | · |A s
q (ρ).

Remark 2.1. Suppose that ρ satisfies

• ρ(αu, αv, P ) = |α|ρ(u, v, P ) for α ∈ R, and

• ρ(u+ u′, v + v′, P ) . ρ(u, v, P ) + ρ(u′, v′, P ).

Then | · |A s
q (ρ) is a quasi-seminorm, in the sense that it is positive homogeneous and satisfies

the generalized triangle inequality. Moreover, A s
q (ρ) is a quasi-normed vector space. If

only the second condition holds, then A s
q (ρ) would be a quasi-normed abelian group, in

the sense of Bergh and Löfström (1976). Even though we will not use this fact, it is worth
noting that ρ has the aforementioned properties for all applications we have in mind.

We call the approximation classes associated to ρ(u, v, ·) = ‖u− v‖X0 standard approx-
imation classes, and write A s

q (X0) ≡ A s
q (ρ) and A s(X0) ≡ A s(ρ). These standard spaces

are within the scope of the general theory of approximation spaces, cf., Pietsch (1981); De-
Vore and Lorentz (1993). However, to treat the more general spaces A s(ρ), the standard
theory needs to be reworked, which is the aim of this section.

We want to characterize A s(ρ) in terms of an auxiliary quasi-Banach space X ↪→ X0.
The main examples to keep in mind are X0 = Lp and X = Bα

q,q, with α
n >

1
q− 1

p . We assume
that the space X has the following local structure: There exist a constant 0 < q <∞, and
a function | · |X(G) : X → R+ associated to each open set G ⊂ Ω, such that∑

k

|u|qX(τk) . ‖u‖
q
X (u ∈ X), (11)

for any finite sequence {τk} ⊂ P of non-overlapping elements taken from any P ∈ P.
Finally, for any τ ∈ P with P ∈ P, we let τ̂ ⊂ Ω be a domain containing τ , which
will, in a typical situation, be the union of elements of P surrounding τ . We express the
dependence of τ̂ on P as τ̂ = P (τ). Then as an extension of the above sub-additivity
property, we assume that ∑

k

|u|qX(Pk(τk)) . ‖u‖
q
X (u ∈ X), (12)
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for any finite sequences {Pk} ⊂ P and {τk}, with τk ∈ Pk and {τk} non-overlapping. A
trivial example of such a structure is X = Lq(Ω) with | · |X(G) = ‖ · ‖Lq(G). Here the sub-

additivity (12) can be guaranteed if the underlying triangulations satisfy a certain local
finiteness property.

2.2 Direct embeddings for standard approximation classes

The following theorem shows that the inclusion X ⊂ A s(ρ) can be proved by exhibiting a
direct estimate. A direct application of this criterion is mainly useful for deriving embed-
dings of the form X ⊂ A s(X0). In the next subsection, it will be generalized to a criterion
that is valid in a more complex situations.

Theorem 2.2. Let 0 < p ≤ ∞ and let δ > 0. Assume (6) on the complexity of completion,
and assume (12) on the local structure of X. Then for any k ∈ N sufficiently large there
exists a partition P ∈P with #P ≤ k satisfying(∑

τ∈P
|τ |pδ|u|pX(τ̂)

) 1
p

. k−s‖u‖X , (13)

with s = δ+ 1
q− 1

p > 0, where τ̂ = P (τ) is as in (12), and the case p =∞ must be interpreted
in the usual way (with a maximum replacing the discrete p-norm). In particular, if u ∈ X
satisfies

E(u, SP )ρ .

(∑
τ∈P
|τ |pδ|u|pX(τ̂)

) 1
p

, (14)

for all P ∈P, then we have u ∈ A s(ρ) with |u|A s(ρ) . ‖u‖X .

Proof. What follows is a slight abstraction of the proof of Proposition 5.2 in Binev et al.
(2002); we include it here for completeness. We first deal with the case 0 < p <∞. Let

e(τ, P ) = |τ |pδ|u|pX(τ̂), (15)

for τ ∈ P and P ∈ P. Then for any given ε > 0, and any P0 ∈ P, below we will specify
a procedure to generate a partition P ∈P satisfying∑

τ∈P

e(τ, P ) ≤ c′(#P )ε, (16)

and
#P −#P0 ≤ cε−1/(1+ps)‖u‖p/(1+ps)

X , (17)

where c′ depends only on the implicit constant of (14), and c depends only on |Ω|, λ, and
the implicit constants of (6), and (12). Then, for any given k > 0, by choosing

ε = (c/k)1+ps‖u‖pX , (18)
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we would be able to guarantee a partition P ∈P satisfying #P ≤ #P0 + k and∑
τ∈P

e(τ, P ) . k−sp‖u‖pX . (19)

This would imply the lemma, as k−s can be replaced by (#P0 + k)−s for, e.g., k ≥ #P0.
Let ε > 0 and let P0 ∈ P. We then recursively define Rk = {τ ∈ Pk : e(τ, Pk) > ε}

and Pk+1 = refine(Pk, Rk) for k = 0, 1, . . .. For all sufficiently large k we will have Rk = ∅
since |u|X(τ̂) . ‖u‖X by (12), and |τ | is reduced by a constant factor µ = λ−n < 1 at each
refinement. Let P = Pk, where k marks the first occurrence of Rk = ∅. Then recalling
(15), and taking into account that e(τ, Pk) ≤ ε for τ ∈ Pk, we obtain (16).

In order to get a bound on #P , we estimate the cardinality of R = R0∪R1∪ . . .∪Rk−1,
and use (6). Let Λj = {τ ∈ R : µj+1 ≤ |τ | < µj} for j ∈ Z, and let mj = #Λj . Note that
the elements of Λj (for any fixed j) are disjoint, since if any two elements intersect, then
they must come from different Rk’s as each Rk consists of disjoint elements, and hence
by assumption on the refinement procedure, the ratio between the measures of the two
elements must lie outside (µ, µ−1). This gives the trivial bound

mj ≤ µ−j−1|Ω|. (20)

On the other hand, we have e(τ, Pk) > ε for τ ∈ Λj with some k, which gives

ε < |τ |pδ|u|pX(τ̂) < µjpδ|u|pX(τ̂), (21)

where τ̂ is defined with respect to Pk, and k may depend on τ . Summing over τ ∈ Λj , we
get

mjε
q/p ≤ µjqδ

∑
τ∈Λj

|u|qX(τ̂) . µjqδ‖u‖qX , (22)

where we have used (12). Finally, summing for j, we obtain

#R ≤
∞∑

j=−∞
mj .

∞∑
j=−∞

min
{
µ−j , ε−q/pµjqδ‖u‖qX

}
. ε−q/(p+pqδ)‖u‖q/(1+qδ)

X , (23)

which, in view of (6) and q/(1 + qδ) = p/(1 + ps), establishes the bound (17).
We only sketch the case p =∞ since the proof is essentially the same. We use

e(τ, P ) = |τ |δ|u|X(τ̂), (24)

instead of (15), and run the same algorithm. This guarantees that the resulting partition
P satisfies

max
τ∈P

e(τ, P ) ≤ ε. (25)
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We bound the cardinality of P in the same way, which formally amounts to putting p = 1
into (21) and proceeding. The final result is

#P −#P0 ≤ cε−q/(1+qδ)‖u‖q/(1+qδ)
X = cε−1/s‖u‖1/sX , (26)

where s = δ + 1
q . The proof is complete.

Example 2.3. The main argument of the preceding proof can be traced back to Birman
and Solomyak (1967). Recently, in Binev et al. (2002), this argument was applied to obtain
an embedding of a Besov space into A s(X0), i.e., the case where the distance function ρ
is given by ρ(u, v, ·) = ‖u − v‖X0 . We want to include here one such application. Let
Ω ⊂ Rn be a bounded polyhedral domain with Lipschitz boundary, and take P to be the
set of conforming triangulations of Ω obtained from a fixed conforming triangulation P0

by means of newest vertex bisections. For P ∈ P, let SP be the Lagrange finite element
space of continuous piecewise polynomials of degree not exceeding m. Thus, for instance,
the piecewise linear finite elements would correspond to m = 1. Moreover, for P ∈ P
and τ ∈ P , let τ̂ = P (τ) be the interior of

⋃{σ : σ ∈ P, σ ∩ τ 6= ∅}. Finally, let us put
X0 = Lp(Ω), X = Bα

q,q(Ω), and ρ(u, v, ·) = ‖u− v‖Lp(Ω). Then in this setting, the estimate

(14) holds with the parameters p and δ = α
n + 1

p − 1
q , as long as 0 < α < m + max{1, 1

q}
and δ > 0, cf. Binev et al. (2002); Gaspoz and Morin (2013). Hence the preceding lemma
immediately implies that Bα

q,q(Ω) ↪→ A s(Lp(Ω)) with s = α
n .

In the rest of this subsection, we want to record some results involving interpolation
spaces. For u ∈ X0 and t > 0, the K-functional is

K(u, t;X0, X) = inf
v∈X

(‖u− v‖X0 + t‖v‖X) , (27)

and for 0 < θ < 1 and 0 < γ ≤ ∞, we define the (real) interpolation space (X0, X)θ,γ as
the space of functions u ∈ X0 for which the quantity

|u|(X0,X)θ,γ =
∥∥∥[λθmK(u, λ−m;X0, X)]m≥0

∥∥∥
`γ
, (28)

is finite. These are quasi-Banach spaces with the quasi-norms ‖ · ‖X0 + | · |(X0,X)θ,γ . The
parameter λ > 1 can be chosen at one’s convenience, because the resulting quasi-norms
are all pairwise equivalent.

Corollary 2.4. Let 0 < p ≤ ∞, δ > 0 and let s = δ + 1
q − 1

p > 0. Assume

E(u, SP )X0 .

(∑
τ∈P
|τ |pδ|u|pX(τ̂)

) 1
p

, (29)

for all u ∈ X and P ∈ P. Then we have (X0, X)α/s,γ ⊂ A α
γ (X0) for 0 < α < s and

0 < γ ≤ ∞.



2 General theorems 12

Proof. For u ∈ (X0, X)α/s,γ and v ∈ X, we have

Ek(u)X0 . ‖u− v‖X0 + Ek(v)X0 , (30)

Theorem 2.2 yields Ek(v)X0 . 2−ks‖v‖X , leading to

Ek(u)X0 . ‖u− v‖X0 + 2−ks‖v‖X . (31)

After minimizing over v ∈ X, the right hand side gives the K-functional K(u, 2−ks;X0, X),
and (28) implies that u ∈ A α

γ (X0).

2.3 Direct embeddings for general approximation classes

As mentioned in the introduction, our study is motivated by algorithms for approximating
the solution of the operator equation Tu = f . Hence it should not come as a surprise that
we assume the existence of a continuous operator T : X0 → Y0, with Y0 a quasi-Banach
space. An example to keep in mind is the Laplace operator sending H1

0 onto H−1. In this
subsection we do not assume linearity, although all examples of T we have in this paper are
linear. We also need an auxiliary quasi-Banach space Y ↪→ Y0, satisfying the properties
analogous to that of X, in particular, (12) with some 0 < r < ∞ replacing q there. If
Y0 = H−1, a typical example of Y would be Bσ−1

r,r with σ
n >

1
r − 1

2 .
It is obvious that A s(ρ) ⊂ A s(X0), provided we have ‖u−v‖X0 . ρ(u, v, ·). The latter

condition is satisfied for all practical applications we have in mind. We will shortly present a
theorem providing a criterion for affirming embeddings such as A s(X0)∩T−1(Y ) ⊂ A s(ρ).

Before stating the theorem, we need to introduce a bit more structure on the set P.
The structure we need is that of overlay of partitions: We assume that there is an operation
⊕ : P ×P →P satisfying

SP + SQ ⊂ SP⊕Q, and #(P ⊕Q) . #P + #Q, (32)

for P,Q ∈P. In addition, we will assume that

ρ(u, v, P ⊕Q) . ρ(u, v, P ). (33)

In the conforming world, P ⊕Q can be taken to be the smallest and common conforming
refinement of P and Q, for which (32) is demonstrated in Stevenson (2007), see also Cascon
et al. (2008). The same argument works for nonconforming partitions satisfying a certain
admissibility criterion, cf. Bonito and Nochetto (2010).

Theorem 2.5. Let 0 < p ≤ ∞, δ > 0, and let s = δ + 1
r − 1

p > 0. Assume (6) on the
complexity of completion, as well as (12) on the local structure of Y , with r replacing q
there. There are no additional assumptions at this point on ρ, except (33) and the obvious
conditions we have imposed in §2.1. Suppose that u ∈ A s(X0) ∩ T−1(Y ) satisfies

E(u, SP )ρ . E(u, SP )X0 +

(∑
τ∈P
|τ |pδ|Tu|pY (τ̂)

) 1
p

, (34)
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for all P ∈P (in particular E(u, ·)ρ is always finite). Suppose also that ∑
τ∈P⊕Q

|τ |pδ|Tu|pY (τ̂)

 1
p

.

(∑
τ∈P
|τ |pδ|Tu|pY (τ̂)

) 1
p

, (35)

for any P,Q ∈P. Then we have u ∈ A s(ρ) with |u|A s(ρ) . |u|A s(X0) + ‖Tu‖Y .

Proof. Let k ∈ N be an arbitrary number. Then by definition of A s(X0), there exists a
partition P ′ ∈P such that

E(u, SP ′)X0 ≤ 2−ks|u|A s(X0), and #P ′ ≤ 2kN. (36)

Similarly, by applying Theorem 2.2 with Y in place of X, and with Tu in place u, we can
generate a partition P ′′ ∈P such that(∑

τ∈P ′′
|τ |pδ|Tu|pY (τ̂)

) 1
p

. 2−ks‖Tu‖Y , and #P ′′ ≤ 2kN. (37)

Then for P = P ′⊕P ′′ we have #P . 2k by (32). Moreover, (35) together with the obvious
monotonicity

E(u, SP )X0 ≤ E(u, SP ′)X0 , (38)

guarantee that the right hand side of (34) is bounded by a multiple of 2−ks(|u|A s(X0) +
‖Tu‖Y ), which completes the proof.

Remark 2.6. Suppose that we replace the condition (34) in the statement of the preceding
theorem by the new condition

E(u, SP )ρ . E(u, SP )X0 + E(u, SP )ρ1 +

(∑
τ∈P
|τ |pδ|Tu|pY (τ̂)

) 1
p

, (39)

where ρ1 is some distance function. Then by the same argument, we would be able to
conclude that u ∈ A s(ρ) with |u|A s(ρ) . |u|A s(X0) + |u|A s(ρ1) +‖Tu‖Y . We will use similar
strtaightforward extensions of the preceding theorem later in the paper, for instance, in
the proof of Theorem 4.1.

Example 2.7. We would like to illustrate the usefulness of Theorem 2.5 by sketching a
simple application. For full details, we refer to Section 4, as the current example is a
special case of the results derived there. We take Ω and P as in Example 2.3, and for
P ∈P, let SP be the Lagrange finite element space of continuous piecewise polynomials of
degree not exceeding m, with the homogeneous Dirichlet boundary condition. Moreover,
we set T = ∆ the Laplace operator, sending X0 = H1

0 (Ω) onto Y0 = H−1(Ω). Then in this
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context, it is proved in Cascon et al. (2008) that certain adaptive finite element methods
converge optimally with respect to the approximation classes A s(ρ), with the distance
function ρ given by

ρ(u, v, P ) =

(
‖u− v‖2H1 +

∑
τ∈P
|τ |2/n‖f −Πτf‖2L2(τ)

) 1
2

, (40)

where f = ∆u, and Πτ : L2(τ) → Pd is the L2(τ)-orthogonal projection onto Pd, with
d ≥ m− 2 fixed. The sum involving f −Πτf is known as the oscillation term.

Let 0 < r, α < ∞ satisfy δ = α
n − 1

r + 1
2 ≥ 0 and α < d + max{1, 1

r}. Then we claim
that for each u ∈ H1

0 (Ω) with ∆u ∈ Bα
r,r(Ω), there exists uP ∈ SP such that

ρ(u, uP , P ) . inf
v∈SP

‖u− v‖H1 +

(∑
τ∈P
|τ |2(δ+1/n)|∆u|2Bαr,r(τ)

) 1
2

, (41)

for all P ∈ P. In light of the preceding theorem, this would imply that each function
u ∈ A s(H1

0 (Ω)) with ∆u ∈ Bα
r,r(Ω), satisfies u ∈ A s(ρ), cf. Figure 1(b). Note that since

we can choose d at will, the restriction α < d+ max{1, 1
r} is immaterial.

To prove the claim, we take uP to be the Scott-Zhang interpolator of u, preserving the
Dirichlet boundary condition. Then we have

‖u− uP ‖H1 . inf
v∈SP

‖u− v‖H1 , (42)

for all P ∈P. The oscillation term in (40) can be estimated as

‖f −Πτf‖L2(τ) ≤ ‖f − g‖L2(τ) . |τ |δ‖f − g‖Lr(τ) + |τ |δ|f |Bαr,r(τ), (43)

for any g ∈ Pd, where we have used continuity of the embedding Bα
r,r(τ) ⊂ L2(τ) and the

fact that |g|Bαr,r(τ) = 0 when the Besov seminorm is defined using ωd+1. Furthermore, if g

is a best approximation of f in the Lr(τ) sense, the Whitney estimate gives

‖f − g‖Lr(τ) . ωd+1(f, τ)r . |f |Bαr,r(τ), (44)

which yields the desired result. In closing the example, we note that for this argument to
work, the constants in the Whitney estimates and in the embeddings Bα

r,r(τ) ⊂ L2(τ) must
be uniformly bounded independently of τ . While such investigations on Whitney estimates
can be found in Dekel and Leviatan (2004); Gaspoz and Morin (2013), it seems difficult to
locate similar studies on Besov space embeddings. To remove any doubt, the arguments in
the following sections are arranged so that we do not use Besov space embeddings. Instead,
we use embeddings between approximation spaces, and give a self contained proof that the
embedding constants are suitably controlled.
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3 Lagrange finite elements

3.1 Preliminaries

Let Ω ⊂ Rn be a bounded domain. Then for 0 < p ≤ ∞, we define the r-th order
Lp-modulus of smoothness

ωr(u, t,Ω)p = sup
|h|≤t
‖∆r

hu‖Lp(Ωrh) (45)

where Ωrh = {x ∈ Ω : [x, x+rh] ⊂ Ω}, and ∆r
h is the r-th order forward difference operator

defined recursively by [∆1
hu](x) = u(x+ h)− u(x) and ∆k

hu = ∆1
h(∆k−1

h )u, i.e.,

∆r
hu(x) =

r∑
k=0

(−1)r+k
(
r

k

)
u(x+ kh). (46)

Furthermore, for 0 < p, q ≤ ∞, α ≥ 0, and r ∈ N, the Besov space Bα
p,q;r(Ω) consists of

those u ∈ Lp(Ω) for which

|u|Bαp,q;r(Ω) = ‖t 7→ t−α−1/qωr(u, t,Ω)p‖Lq((0,∞)), (47)

is finite. Since Ω is bounded, being in a Besov space is a statement about the size of
ωr(u, t,Ω)p only for small t. From this it is easy to derive the useful equivalence

|u|Bαp,q;r(Ω) h
∥∥(λjαωr(u, λ

−j ,Ω)p)j≥0

∥∥
`q
, (48)

for any constant λ > 1. The mapping ‖ · ‖Bαp,q;r(Ω) = ‖ · ‖Lp(Ω) + | · |Bαp,q;r(Ω) defines a norm

when p, q ≥ 1 and a quasi-norm in general. If α > r+max{0, 1
p−1} then the space Bα

p,q;r is

trivial in the sense that Bα
p,q;r = Pr−1. On the other hand, so long as r > α−max{0, 1

p−1},
different choices of r will result in quasi-norms that are equivalent to each other, and
in this case we have the classical Besov spaces Bα

p,q(Ω) = Bα
p,q;r(Ω). In the borderline

case, the situation depends on the index q. If 0 < q < ∞ and α = r + max{0, 1
p − 1},

then Bα
p,q;r = Pr−1. The case q = ∞ gives nontrivial spaces: For instance, we have

Br
p,∞;r(Ω) = W r,p(Ω) for p > 1. A proof can be found in (DeVore and Lorentz, 1993, page

53) for the one dimensional case, and the same proof works in multi-dimensions.
The following result, often called the discrete Hardy inequality, will be used many times

in the subsequent sections. We include the statement here for convenience. A proof can
be found in (DeVore and Lorentz, 1993, page 27).

Lemma 3.1. Let (aj)j∈Z and (bk)k∈Z be two sequences satisfying either

|aj | ≤ C

 ∞∑
k=j

|bk|µ
1/µ

, j ∈ Z, (49)
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for some µ > 0 and C > 0, or

|aj | ≤ C2−θj
(

j∑
k=−∞

|2θkbk|µ
)1/µ

, j ∈ Z. (50)

for some positive θ, µ, and C. Then we have

‖(2αjaj)j‖`q . C‖(2αkbk)k‖`q , (51)

for all 0 < q ≤ ∞ and 0 < α < θ, with the convention that θ =∞ if (49) holds, and with
the implicit constant depending only on q and α.

3.2 Quasi-interpolation operators

Let Ω ⊂ Rn be a bounded polyhedral domain with Lipschitz boundary, and fix a conforming
partition P0 of Ω. We also fix a refinement rule, which is either the newest vertex bisection
or the red refinement. This ensures that all partitions are shape regular. The set P can be
chosen to be, in case of the newest vertex bisection, the set of all conforming triangulations
arising from P0. More generally, we want to deal with possibly nonconforming partitions,
and we require that P satisfy the finite support condition (53) stated below. We remark
that the results in this paper are insensitive to the exact definition of P, so long as the
family P satisfies (53). We note that for nonconforming partitions, the degrees of freedom
will be so arranged that they give rise to H1-conforming finite element spaces. In this
regard, the terminology “nonconforming partition” may be a bit confusing.

We define the Lagrange finite element spaces

SP = SmP = {u ∈ C(Ω) : u|τ ∈ Pm ∀τ ∈ P} , P ∈P, (52)

where Pm is the space of polynomials of degree not exceeding m. Thus, for instance, the
piecewise linear finite elements would correspond to m = 1.

Following Gaspoz and Morin (2013), we will now construct a quasi-interpolation oper-
ator Q̃P : Lp0

(Ω) → SP for p0 > 0 small. Their construction works almost verbatim here
but we need to be a bit careful since we want to include partitions with hanging nodes into
the analysis. Let τ0 = {x ∈ Rn : x1 + . . . + xn < m} ∩ (0,m)n be the standard simplex.
Then an n-simplex τ ⊂ Rn is the image of τ0 under an invertible affine mapping. To each
n-simplex τ , we associate its nodal set Nτ = F (τ̄0∩Zn), where F : τ0 → τ is any invertible
affine mapping. The nodal set NP of a possibly nonconforming partition P ∈P is defined
by the requirement that z ∈ ⋃τ∈P Nτ is in NP if and only if z ∈ Nτ for all τ satisfying
τ̄ 3 z, see Figure 2. Furthermore, we define the nodal basis {φz : z ∈ NP } ⊂ SP of SP by
φz(z

′) = δz,z′ for z, z′ ∈ NP .
The aforementioned finite support condition is as follows. We require that there is a

constant C > 0 independent of P ∈P and z ∈ NP , such that

#{τ ∈ P : τ ⊂ suppφz} ≤ C, (53)
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for all P ∈ P and z ∈ NP . It is obvious that conforming triangulations satisfy this
requirement. For partitions with hanging nodes, we refer to Bonito and Nochetto (2010).

Given τ ∈ P and σ ∈ P , let us write τ ∼ σ if (and only if) there is z ∈ NP such that
τ ∪ σ ⊂ suppψz. Then, taking into account the refinement rule and the definition of the
nodal basis, one can show that the finite support condition is equivalent to the strong local
finiteness condition:

sup
P∈P

sup
τ∈P

#{σ ∈ P : σ ∼ τ} <∞, (54)

which in turn is equivalent to the strong gradedness condition:

sup
P∈P

{diamσ

diam τ
: τ, σ ∈ P, σ ∼ τ

}
<∞. (55)

By defining the support extension τ̂ = P (τ) of τ ∈ P as the interior of⋃
{σ ∈ P : σ ∼ τ}, (56)

we can also write the strong gradedness condition as

sup
P∈P

sup
τ∈P

diam τ̂

diam τ
<∞. (57)

In what follows, the implicit constant in any of the aforementioned conditions will be
referred to as an admissibility constant.

(a) Quadratic elements (m = 2). (b) Cubic elements (m = 3).

Fig. 2: Examples of nodal sets.

Next, we introduce a basis dual to {φz}. For each τ ∈ P , we let

NP,τ = {z ∈ NP : τ ⊂ suppφz}, (58)

and define ητ,z ∈ Pm, z ∈ NP,τ , by the condition∫
τ
ητ,zξτ,z′ = δz,z′ , z, z′ ∈ NP,τ . (59)
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Note that #NP,τ = #Nτ = dimPm, so that the set {ητ,z : z ∈ NP,τ} is uniquely determined.
Then for z ∈ NP , we let

φ̃z =
1

nz

∑
{τ∈P : τ⊂suppφz}

χτητ,z, (60)

where nz = #{τ ∈ P : τ ⊂ suppφz}, and χτ is the characteristic function of τ . By
construction, supp φ̃z = suppφz for z ∈ NP , and we have the biorthogonality

〈φ̃z, φz′〉 =

∫
Ω
φ̃zφz′ = δz,z′ , z, z′ ∈ NP . (61)

Now we define the quasi-interpolation operator QP : L1(Ω)→ SP by

QPu = Q
(Ω)
P u =

∑
z∈NP

〈u, φ̃z〉φz. (62)

It is clear that QP is linear and that QP v = v for v ∈ SP .

Lemma 3.2. For 1 ≤ p ≤ ∞, we have

‖u−QPu‖Lp(Ω) . inf
v∈SP

‖u− v‖Lp(Ω), u ∈ Lp(Ω), (63)

with the implicit constant depending only on the shape regularity and admissibility constants
of P. Furthermore, for 0 < p ≤ ∞ and τ ∈ P , we have

‖QP v‖Lp(τ) . ‖v‖Lp(τ̂), v ∈ S̄mP , (64)

where
S̄mP = {w ∈ L∞(Ω) : w|τ ∈ Pm ∀τ ∈ P}, (65)

and τ̂ = P (τ) is the support extension of τ as defined in (56).

Proof. For 1 ≤ p ≤ ∞ and u ∈ Lp(Ω), we have

‖QPu‖Lp(τ) ≤
∑

z∈NP,τ
|〈u, φ̃z〉| ‖φz‖Lp ≤ ‖u‖Lp(τ̂)

∑
z∈NP,τ

‖φ̃z‖Lq‖φz‖Lp , (66)

where 1
p + 1

q = 1. It is clear that ‖φz‖Lp ≤ |suppφz|1/p and by a scaling argument one

can deduce that ‖φ̃z‖Lq . |supp φ̃z|1/q−1, with the implicit constant depending only on the
shape regularity and admissibility constants of P. Consequently, for 1 ≤ p <∞, we infer

‖QPu‖pLp(Ω) =
∑
τ∈P
‖QPu‖pLp(τ) .

∑
τ∈P
‖u‖pLp(τ̂) . ‖u‖

p
Lp(Ω), (67)

by the strong local finiteness of the mesh. The case p = ∞ can be handled similarly, and
we have ‖QPu‖Lp(Ω) . ‖u‖Lp(Ω) for 1 ≤ p ≤ ∞. Then a standard argument yields (63).

For 1 ≤ p ≤ ∞, (66) implies (64). The proof for 0 < p < 1 follows exactly the same
lines as those in the proof of (Gaspoz and Morin, 2013, Lemma 3.2).
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In the following, we fix p0 > 0, and for τ ⊂ Rn a domain, let Πp0,τ : Lp0
(τ) → Pm be

the local polynomial approximation operator given in Definition 3.7 of Gaspoz and Morin
(2013). We recall the following important properties of this operator, cf. (Gaspoz and
Morin, 2013, Theorem 3.8).

(i) There is a constant Cm,p0 depending only on m and p0, such that

‖u−Πp0,τu‖Lp0 (τ) ≤ Cm,p0 inf
v∈Pm

‖u− v‖Lp0 (τ), u ∈ Lp0
(τ). (68)

In other words, Πp0,τu is a near-best approximation of u from Pm in Lp0
(τ).

(ii) We have
‖Πp0,τu‖Lp0 (τ) . ‖u‖Lp0 (τ), u ∈ Lp0

(τ), (69)

i.e., the operator Πp0,τ : Lp0
(τ)→ Lp0

(τ) is bounded.

(iii) For any u ∈ Lp0
(τ) and v ∈ Pm, we have

Πp0,τ (u+ v) = Πp0,τu+ v. (70)

In particular, Πp0,τv = v for v ∈ Pm.

Finally, we let

ΠPu =
∑
τ∈P

χτΠp0,τu, (71)

and define the operator Q̃P : Lp0
(Ω)→ SP by

Q̃Pu = QPΠPu =
∑
z∈NP

〈ΠPu, φ̃z〉φz. (72)

It is easy to see that Q̃P v = v for v ∈ SP , and that (Q̃Pu)|τ depends only on u|τ̂ , where
τ̂ = P (τ) is the support extension of τ , as defined in (56). Furthermore, as a consequence
of the linearity property (70), we have

(Q̃P (u+ v))|τ = (Q̃Pu)|τ + v|τ , u, v ∈ Lp0
(τ), v|τ̂ ∈ SP , (73)

for τ ∈ P .

Lemma 3.3. Let p0 ≤ p ≤ ∞ and P ∈P. Then for τ ∈ P we have

‖Q̃Pu‖Lp(τ) . ‖u‖Lp(τ̂), u ∈ Lp(Ω). (74)

As a consequence, we have

‖u− Q̃Pu‖Lp(τ) . inf
v∈SP

‖u− v‖Lp(τ̂), u ∈ Lp(Ω), (75)

and
‖u− Q̃Pu‖Lp(Ω) . inf

v∈SP
‖u− v‖Lp(Ω), u ∈ Lp(Ω). (76)
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Proof. An application of (64) gives

‖Q̃Pu‖Lp(τ) = ‖QPΠPu‖Lp(τ) . ‖ΠPu‖Lp(τ̂). (77)

On the other hand, for σ ∈ P , we have

‖Πp0,σu‖Lp(σ) . |σ|
1
p
− 1
p0 ‖Πp0,σu‖Lp0 (σ) . |σ|

1
p
− 1
p0 ‖u‖Lp0 (σ) ≤ ‖u‖Lp(σ), (78)

where we have used scaling properties of polynomials in the first step, the boundedness
(69) of Πp0,σ in the second step, and the Hölder inequality in the final step. Using this,
with the usual modifications for p =∞, we infer

‖ΠPu‖Lp(τ̂) =

 ∑
{σ∈P :σ⊂τ̂}

‖Πp0,σu‖pLp(σ)

 1
p

.

 ∑
{σ∈P :σ⊂τ̂}

‖u‖pLp(σ)

 1
p

= ‖u‖Lp(τ̂), (79)

establishing (74). Then (75) follows from the linearity property (73).
The estimate (76) is proved by first deriving the stability

‖Q̃Pu‖Lp(Ω) =

(∑
τ∈P
‖Q̃Pu‖pLp(τ)

) 1
p

.

(∑
τ∈P
‖u‖pLp(τ̂)

) 1
p

. ‖u‖Lp(Ω), (80)

and then invoking the linearity property (73).

An important tool in approximation theory is the Whitney estimate

inf
v∈Pm

‖u− v‖Lp(G) . ωm+1(u,diamG,G)p, u ∈ Lp(G), (81)

that holds for any convex domain G ⊂ Rn, with the implicit constant depending only on n,
m, and 0 < p ≤ ∞, see Dekel and Leviatan (2004). The same estimate is also true when G
is the star around τ ∈ P for some partition P ∈P, with the implicit constant additionally
depending on the shape regularity constant of P, see Gaspoz and Morin (2013).

Lemma 3.4. Let p0 ≤ p ≤ ∞ and let P ∈P be conforming. Then we have

‖u− Q̃Pu‖Lp(Ω) .

(
maxτ∈P diam τ

minτ∈P diam τ

)n
p

ωm+1(u,max
τ∈P

diam τ,Ω)p, u ∈ Lp(Ω). (82)

Proof. We start with the special case p =∞. Note that since P is conforming, the support
extension τ̂ of τ coincides with the star around τ . It is immediate from (75) and the
Whitney estimate (81) that

‖u− Q̃Pu‖L∞(Ω) . max
τ∈P
‖u− Q̃Pu‖L∞(τ) . max

τ∈P
inf
v∈SP

‖u− v‖L∞(τ̂)

. max
τ∈P

ωm+1(u,diam τ̂ , τ̂)∞ . max
τ∈P

ωm+1(u, µ−1diam τ̂ , τ̂)∞,
(83)
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with µ > 0 sufficiently large, where in the last line we have used the property

ωr(u, µt,G)p ≤ (µ+ 1)rωr(u, t,G)p, (84)

cf. (DeVore and Lorentz, 1993, §2.7). With t = µ−1 max
τ∈P

diam τ̂ , we proceed as

‖u− Q̃Pu‖L∞(Ω) . max
τ∈P

ωm+1(u, t, τ̂)∞ = max
τ∈P

sup
|h|≤t
‖∆m+1

h u‖L∞(τ̂rh)

= sup
|h|≤t

max
τ∈P
‖∆m+1

h u‖L∞(τ̂rh) ≤ sup
|h|≤t
‖∆m+1

h u‖L∞(Ωrh),
(85)

which establishes (82) for p =∞.
To handle the case 0 < p <∞ we introduce the averaged Lp-modulus of smoothness

wr(u, t,G)p =

(
1

tn

∫
[0,t]n
‖∆r

hu‖pLp(Grh)dh

)1/p

, (86)

for any domain G ⊂ Rn. When G is Lipschitz, the averaged modulus is equivalent to the
original one:

wr(u, t,G)p ∼ ωr(u, t,G)p, for t . 1. (87)

This equivalence is also true when G = τ or G = τ̂ for τ ∈ P with P ∈ P, in the range
t . diamG, cf. Corollary 4.3 of Gaspoz and Morin (2013). In the latter case, the implicit
constants depend only on p, r, the shape regularity constant of P, and the geometry of
the underlying domain Ω.

Let us get back to the proof of (82) for 0 < p <∞. As in the case p =∞, we have

‖u− Q̃Pu‖pLp(Ω) .
∑
τ∈P
‖u− Q̃Pu‖pLp(τ) .

∑
τ∈P

inf
v∈SP

‖u− v‖pLp(τ̂)

.
∑
τ∈P

ωm+1(u,diam τ̂ , τ̂)pp .
∑
τ∈P

ωm+1(u, µ−1diam τ̂ , τ̂)pp,
(88)

with µ > 0 sufficiently large. Now we employ (87), to get

‖u− Q̃Pu‖pLp(Ω) .
∑
τ∈P

wm+1(u, µ−1diam τ̂ , τ̂)pp

=
∑
τ∈P

1

t(τ)n

∫
[0,t(τ)]n

∫
τ̂rh

|∆r
hu(x)|pdx dh,

(89)

where t(τ) = µ−1diam τ̂ and r = m+1. With t0 = µ−1 min
τ∈P

diam τ̂ and t1 = µ−1 max
τ∈P

diam τ̂ ,
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we can switch the sum with the outer integration as follows.

‖u− Q̃Pu‖pLp(Ω) .
1

tn0

∫
[0,t1]n

∑
τ∈P

∫
τ̂rh

|∆r
hu(x)|pdx dh

.
1

tn0

∫
[0,t1]n

∫
Ωrh

|∆r
hu(x)|pdx dh

=
tn1
tn0
wr(u, t1,Ω)pp.

(90)

The proof is completed upon using the equivalence (87) for G = Ω.

3.3 Multilevel approximation spaces

In this subsection, we study approximation from uniformly refined Lagrange finite element
spaces. We keep the setting of the preceding subsection intact, and define the partitions Pj
for j = 1, 2, . . . recursively as Pj+1 is the uniform refinement of Pj . Let G ⊂ Ω be a domain
consisting of elements from some Pj . More precisely, let G be the interior of

⋃
τ∈Q τ̄ for

some Q ⊂ Pj and j. Then with Sj = SPj , and 0 < p ≤ ∞, we let

E(u, Sj)Lp(G) = inf
v∈Sj
‖u− v‖Lp(G), u ∈ Lp(G). (91)

Note that the infimum is achieved since Sj is a finite dimensional space. We define the
multilevel approximation spaces

Aαp,q({Sj}, G) =

{
u ∈ Lp(G) : |u|Aαp,q(G) :=

∥∥∥∥(λjαE(u, Sj)Lp(G)

)
j≥0

∥∥∥∥
`q

<∞
}
, (92)

for 0 < p, q ≤ ∞, and α > 0, where λ = 2 for red refinements and λ = n
√

2 for newest
vertex bisections. We will also use the shorthand notations

Aαp,q(G) = Aαp,q;m(G) = Aαp,q({Sj}, G). (93)

These spaces are quasi-Banach spaces with the quasi-norms ‖ · ‖Lp(G) + | · |Aαp,q(G). Since Ω

is bounded, it is clear that Aαp,q(Ω) ↪→ Aαp′,q(Ω) for any α ≥ 0, 0 < q ≤ ∞ and ∞ ≥ p >

p′ > 0. We also have the lexicographical ordering: Aαp,q(Ω) ↪→ Aα
′
p,q′(Ω) for α > α′ with any

0 < q, q′ ≤ ∞, and Aαp,q(Ω) ↪→ Aαp,q′(Ω) for 0 < q < q′ ≤ ∞.
It is no coincidence that the aforementioned embedding relations are identical to those

among Besov spaces. When reading the following theorem, keep in mind that Bα
p,q;m+1(Ω)

is the classical Besov space Bα
p,q(Ω) for α < m+ max{1, 1

p}.

Theorem 3.5. We have Bα
p,q;m+1(Ω) ↪→ Aαp,q;m(Ω) for 0 < p, q ≤ ∞, and α > 0. In the

other direction, we have Aαp,q;m(Ω) ↪→ Bα
p,q;m+1(Ω) for 0 < p, q ≤ ∞, and 0 < α < 1 + 1

p .
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Proof. We follow the standard approach. The inclusion Bα
p,q;m+1(Ω) ↪→ Aαp,q;m(Ω) is a

direct consequence of (82) with p0 ≤ p and the norm equivalence (48).
For the second part, we start with the estimate

ωm+1(φz, t)p . λ−jn/p min{1, (λjt)1+1/p}, (94)

which holds for all nodal basis functions φz of Sj and for all j ≥ 0. This is Proposition 4.7
in Gaspoz and Morin (2013), which also holds for p =∞. Hence for 0 < p <∞ and for all
uj =

∑
z bzφz ∈ SPj , we infer

ωm+1(uj , t)
p
p .

∑
z

|bz|pωm+1(φz, t)
p
p .

∑
z

|bz|p λ−jn min{1, (λjt)p+1}

. min{1, (λjt)p+1}‖uj‖pLp(Ω),
(95)

where we have used the finite overlap property of the nodal basis functions, the Lp stability

of finite elements and the estimate ‖φz‖Lp h λ−jn/p. The same ingredients are used to
perform the corresponding computation for p =∞, as

ωm+1(uj , t)∞ . max
z
|bz|ωm+1(φz, t)∞ . max

z
|bz|min{1, λjt}

. min{1, λjt}‖uj‖L∞(Ω).
(96)

Now we write u =
∑

j≥0(uj − uj−1) with uj ∈ Sj a best approximation to u from Sj
for j ≥ 0 and u−1 = 0. Note that the series converges in Lp by (82). With p∗ = min{1, p},
we have

ωm+1(u, λ−k)p
∗
p .

∑
j≥0

ωm+1(uj − uj−1, λ
−k)p

∗
p

.
k∑
j=0

λ(j−k)(1+1/p)p∗‖uj − uj−1‖p
∗

Lp(Ω) +

∞∑
j=k+1

‖uj − uj−1‖p
∗

Lp(Ω),

(97)

and an application of the discrete Hardy inequality (Lemma 3.1) gives

|u|Bαp,q;m+1
.

∥∥∥∥(λjα‖uj − uj−1‖Lp(Ω)

)
j

∥∥∥∥
`q

, (98)

for 0 < p, q ≤ ∞, and 0 < α < 1 + 1
p . Finally, to go from uj − uj−1 to u− uj in the right

hand side, we can apply the triangle inequality to uj − uj−1 = (u− uj−1)− (u− uj).

Notice the gap between the two inclusions: While Bα
p,q;m+1(Ω) ↪→ Aαp,q;m(Ω) holds for

all α > 0, the reverse inclusion is proved only for 0 < α < 1 + 1
p . In fact, if α ≥ 1 + 1

p
and p < ∞, the forward inclusion is strict: Any function from Sj would be an element
of all Aαp,q;m(Ω), but there are functions in Sj that are not in Bα

p,q;m+1(Ω), because the
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1
p

α

m+ 1

1

L1

Fig. 3: The inverse embedding Aαp,q;m ↪→ Bα
p,q;m+1 holds below the dashed line. The direct

embedding Bα
p,q;m+1 ↪→ Aαp,q;m holds without restriction, but the spaces Bα

p,q;m+1

are nontrivial (and coincide with the classical Besov spaces Bα
p,q) only below the

solid line.

estimate (94) is saturated for small t. This leads to the expectation that for large α,
the difference Aαp,q;m(Ω) \ Bα

p,q;m+1(Ω) should be “skewed” considerably depending on the
initial mesh P0. We will not pursue this issue here, but we conjecture that the Besov space
Bα
p,q;m+1(Ω) coincides with the intersection of all Aαp,q;m(Ω) as one considers all possible

initial triangulations P0.
We quote the following standard result, in order to assure the reader of the fact that

the multilevel approximation spaces Aαp,q(Ω) coincide with the spaces B̂α
p,q(Ω) considered

in Gaspoz and Morin (2013), cf. Definition 7.1 and Corollary 4.14 therein.

Theorem 3.6. Let p0 ≤ p ≤ ∞, 0 < q ≤ ∞ and α > 0. Then we have

|u|Aαp,q(Ω) ∼
∥∥∥∥(λjα‖u− Q̃ju‖Lp(Ω)

)
j≥0

∥∥∥∥
`q

∼
∥∥∥∥(λjα‖Q̃j+1u− Q̃ju‖Lp(Ω)

)
j≥0

∥∥∥∥
`q

,

(99)

for u ∈ Lp(Ω), where we have used the abbreviation Q̃j = Q̃Pj for all j.

Proof. The first equivalence is immediate from (76). The generalized triangle inequality

‖Q̃j+1u− Q̃ju‖Lp(Ω) . ‖u− Q̃ju‖Lp(Ω) + ‖u− Q̃j+1u‖Lp(Ω), (100)

implies one of the directions of the second equivalence, while the other direction follows
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from applying the discrete Hardy inequality (Lemma 3.1) to

‖u− Q̃ju‖Lp(Ω) ≤

 ∞∑
k=j

‖Q̃k+1u− Q̃ku‖p
∗

Lp(Ω)

 1
p∗

, (101)

where p∗ = min{1, p}.

The following technical result will be used later.

Theorem 3.7. Let 0 < α1 < α2 <∞ and 0 < p, q, q1, q2 ≤ ∞. Then we have

[Aα1
p,q1(G), Aα2

p,q2(G)]θ,q = Aαp,q(G), (102)

for α = (1 − θ)α1 + θα2 and 0 < θ < 1, with the equivalence constants of quasi-norms
depending only on the parameters α, α1, α2, p, q, q1 and q2.

Proof. The equivalence (102) is standard, but we want to keep track of the equivalence
constants. So we sketch a proof here. First, for v ∈ Sm, we observe the inverse inequality

|v|q2
A
α2
p,q2

(G)
=

m−1∑
j=0

λα2q2jE(v, Sj , G)q2p ≤ ‖v‖q2Lp(G)

m−1∑
j=0

λα2q2j ≤ λα2q2m

λα2q2 − 1
‖v‖q2Lp(G). (103)

It is also true for q2 =∞:

|v|Aα2
p,∞(G) = max

0≤j<m
λα2jE(v, Sj , G)p ≤ λα2m‖v‖Lp(G). (104)

Another fact we will need is the following. We have the generalized triangle inequality

|u+ v|Aα2
p,q2

(G) ≤ c|u|Aα2
p,q2

(G) + c|v|Aα2
p,q2

(G), (105)

with c ≥ 1 depening only on p and q2. Then the Aoki-Rolewicz theorem (Bergh and
Löfström, 1976, page 59) implies that

|v1 + . . .+ vk|µAα2
p,q2

(G)
≤ 2|v1|µAα2

p,q2
(G)

+ . . .+ 2|vk|µAα2
p,q2

(G)
, (106)

for any v1, . . . , vk ∈ Aα2
p,q2(G), with µ given by (2c)µ = 2.

With the abbreviation K(u, t) = K(u, t;Aα1
p,q1(G), Aα2

p,q2(G)), for u ∈ Aα1
p,q1(G), we have

K(u, λ−(α2−α1)m) ≤ |u− um|Aα1
p,q1

(G) + λ−(α2−α1)m|um|Aα2
p,q2

(G), (107)
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where um ∈ Sm is an approximation satisfying ‖u−um‖Lp(G) = E(u, Sm, G)p. We estimate
the first term in the right hand side as

|u− um|q1Aα1
p,q1

(G)
=

m∑
j=0

λα1q1j‖u− um‖q1Lp(G) +
∞∑

j=m+1

λα1q1j‖u− uj‖q1Lp(G)

.
∞∑
j=m

λα1q1j‖u− uj‖q1Lp(G),

(108)

with the implicit constant depending only on λα1q1 , and the second term as

|um|µAα2
p,q2

(G)
≤ 2

m∑
j=1

|uj − uj−1|µAα2
p,q2

(G)
.

m∑
j=1

λα2µj‖uj − uj−1‖µLp(G)

.
m∑
j=0

λα2µj‖u− uj‖µLp(G),

(109)

where we have used the µ-triangle inequality (106) in the first step, the inverse estimate
(103) in the second step, and the (generalized) triangle inequality for the Lp-quasi-norm in
the third step. Note that the implicit constants depend only on λα2q2 , λα2µ, and p. Putting
everything together, we have

K(u, λ−(α2−α1)m) .

 ∞∑
j=m

λα1q1j‖u− uj‖q1Lp(G)

 1
q1

+ λ−(α2−α1)m

 m∑
j=0

λα2µj‖u− uj‖µLp(G)

 1
µ

,

(110)

and then the discrete Hardy inequalities (Lemma 3.1) give∥∥∥[λγmK(u, λ−(α2−α1)m)]m≥0

∥∥∥
`q

.
∥∥∥[λ(α1+γ)m‖u− uj‖Lp(G)]m≥0

∥∥∥
`q
, (111)

for 0 < γ < α2 − α1. The left hand side of this inequality is the (quasi) norm for
[Aα1

p,q1(G), Aα2
p,q2(G)]γ/(α2−α1),q, while the right hand side is the (quasi) norm for Aα1+γ

p,q (G).
For the other direction, we start with

‖u− uj‖Lp(G) ≤ ‖u− wj − vj‖Lp(G) . ‖u− v − wj‖Lp(G) + ‖v − vj‖Lp(G), (112)

where u ∈ Aα1
p,q1(G) and uj ∈ Sj are as before, and v ∈ Aα2

p,q2(G), vj , wj ∈ Sj are arbitrary.
Note that the implicit constant depends only on p. Optimizing over vj and wj gives

min
wj∈Sj

‖u− v − wj‖Lp(G) ≤ λ−α1j |u− v|Aα1
p,q1

(G), (113)
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and
min
vj∈Sj

‖v − vj‖Lp(G) ≤ λ−α2j |v|Aα2
p,q2

(G), (114)

and substituting these back, we get

‖u− uj‖Lp(G) . inf
v∈Aα2

p,q2
(G)

(
λ−α1j |u− v|Aα1

p,q1
(G) + λ−α2j |v|Aα2

p,q2
(G)

)
= λ−α1jK(u, λ−(α2−α1)j).

(115)

The proof is completed upon recalling the definition of | · |Aαp,q(G).

3.4 Adaptive approximation

In this subsection, we consider the approximation problem from adaptively generated La-
grange finite element spaces. We study various approximation classes associated to the
finite element spaces SP , cf. (52). In Binev et al. (2002); Gaspoz and Morin (2013),
among other things, it is proved that Bα

q,q(Ω) ↪→ A s
∞(Lp(Ω)) with s = α

n , as long as
α
n + 1

p − 1
q > 0 and 0 < α < m + max{1, 1

q}. In the other direction, the same references

give A s
q (Lp(Ω)) ↪→ Aαq,q(Ω) for s = α

n = 1
q − 1

p > 0 and 0 < p, q <∞.
Below we complement these results by establishing direct embeddings of the form

Aαq,q(Ω) ↪→ A s
∞(Lp(Ω)). This is a genuine improvement, since Aαq,q(Ω) ) Bα

q,q(Ω) for

α ≥ 1 + 1
q . Moreover, it seems natural to relate adaptive approximation to multilevel

approximation first, and then bring in the relationships between multilevel approximation
and Besov spaces. We also remark that while the existing results are only for the newest
vertex bisection procedure and conforming triangulations, we deal with possibly noncon-
forming triangulations, and therefore are able to handle the red refinement procedure, as
well as newest vertex bisections without the conformity requirement.

Theorem 3.8. Let 0 < q ≤ p ≤ ∞ and α > 0 satisfy α
n + 1

p − 1
q > 0 and q <∞. Then for

any 0 < p0 < q (Recall that Q̃P depends on p0), we have

‖u− Q̃Pu‖Lp(Ω) .

(∑
τ∈P
|τ |pδ|u|pAαq,q(τ̂)

) 1
p

, u ∈ Aαq,q(Ω), P ∈P, (116)

where δ = α
n + 1

p − 1
q . In particular, we have Aαq,q(Ω) ↪→ A s(Lp(Ω)) with s = α

n .

Proof. We have the sub-additivity property∑
k

‖u‖qAαq,q(Pk(τk)) . ‖u‖
q
Aαq,q(Ω), (117)

for 0 < q < ∞ and for any finite sequences {Pk} ⊂ P and {τk}, with τk ∈ Pk and {τk}
non-overlapping. Recall that τ̂ = P (τ) is the support extension of τ , as defined in (56).
Therefore the estimate (116) would imply the second statement by Theorem 2.2.
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We shall prove (116). Every element τ ∈ P of any partition P ∈ P is an element
of a unique Pj , with the number j counting how many refinements one needs in order to
arrive at τ . We call j the generation or the level of τ , and write j = [τ ]. We will also need
j(τ) = min{[σ] : σ ∈ P, σ ⊂ τ̂}. Note that |τ | ∼ λ−n[τ ] ∼ λ−nj(τ) and Sj(τ)|τ̂ ⊂ SP |τ̂ . By
invoking (75), we infer

‖u− Q̃Pu‖pLp(Ω) =
∑
τ∈P
‖u− Q̃Pu‖pLp(τ) .

∑
τ∈P

inf
v∈SP

‖u− v‖pLp(τ̂)

≤
∑
τ∈P
‖u− uj(τ)‖pLp(τ̂),

(118)

where uj ∈ Sj (j ≥ 0) is an approximation (that may depend on τ) satisfying

‖u− uj‖Lq(τ̂) ≤ cE(u, Sj)Lq(τ̂), (119)

with some constant c ≥ 1. The same is true for p =∞ with obvious modifications. For an
individual term in the right hand side, with p∗ = min{1, p}, we have

‖u− uj(τ)‖p
∗

Lp(τ̂) ≤
∞∑

j=j(τ)

‖uj+1 − uj‖p
∗

Lp(τ̂) .
∞∑

j=j(τ)

λ
( 1
q
− 1
p

)jnp∗‖uj+1 − uj‖p
∗

Lq(τ̂)

.
∞∑

j=j(τ)

λ
( 1
q
− 1
p

)jnp∗‖u− uj‖p
∗

Lq(τ̂),

(120)

where we have estimated u − uj(τ) as a telescoping sum in the first step, and used the

estimate λjn/p‖v‖Lp(τ̂) ∼ λjn/q‖v‖Lq(τ̂) for v ∈ Sj+1 in the second step. We continue by

noting the relation 1
q − 1

p = α
n − δ, which yields

‖u− uj(τ)‖p
∗

Lp(τ̂) .
∞∑

j=j(τ)

λ−jδnp
∗
λjαp

∗‖u− uj‖p
∗

Lq(τ̂)

≤ λ−j(τ)δnp∗
∞∑

j=j(τ)

λjαp
∗‖u− uj‖p

∗

Lq(τ̂)

. |τ |δp∗ |u|p∗Aα
q,p∗ (τ̂),

(121)

by (119). This establishes the theorem for q ≤ 1, in which case we have Aαq,q(τ̂) ↪→ Aαq,p∗(τ̂).

If q > 1, choose 0 < α1 < α < α2 satisfying α = α1+α2
2 and δi = αi

n + 1
p − 1

q > 0 for

i = 1, 2. Moreover, we put uj = Q
(τ̂)
Pj
u, where Q

(τ̂)
Pj

: L1(τ̂)→ Sj |τ̂ is the quasi-interpolation

operator defined in (62), with τ̂ playing the role of Ω. Then Lemma 3.2 guarantees the
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property (119) with c depending only on global geometric properties of P. In particular,
c is bounded independently of τ . Thus (121) gives

‖u− uj(τ)‖Lp(τ̂) . |τ |δi |u|Aαiq,1(τ̂), (122)

for i = 1, 2. Since the operators Q
(τ̂)
Pj

are linear, so is the map u 7→ u − uj(τ), and hence
interpolation and Theorem 3.7 yield

‖u− uj(τ)‖Lp(τ̂) . |τ |(δ1+δ2)/2|u|[Aα1
q,1(τ̂),A

α2
q,1(τ̂)]1/2,p

. |τ |δ|u|Aαq,p(τ̂) . |τ |δ|u|Aαq,q(τ̂), (123)

with the implicit constants depending only on global geometric properties of P and on the
indices of the spaces involved. This completes the proof.

1

n

1
q

α

Lp

1
p

Aαq,q

(a) If the space Aαq,q is located above the
solid line, we have Aαq,q ⊂ A s(Lp) with
s = α

n .

1

n

1
q

α

Aσp,p
σ

1
p

Aαq,q

(b) If the space Aαq,q is located above the
solid line, we have Aαq,q ⊂ A s(Aσp,p) with

s = α−σ
n .

Fig. 4: Illustration of Theorem 3.8 and Theorem 3.9.

Now we look at adaptive approximation in the space Aσp,p(Ω). Recall from Gaspoz and

Morin (2013) that A s
q (Aσp,p(Ω)) ↪→ Aαq,q(Ω) for s = α−σ

n = 1
q − 1

p > 0 and 0 < p, q <∞.

Theorem 3.9. Let 0 < q ≤ p ≤ ∞, and α, σ > 0 satisfy α−σ
n + 1

p − 1
q > 0 and q < ∞.

Then for any 0 < p0 < q, we have

‖u− Q̃Pu‖Aσp,p(Ω) .

(∑
τ∈P
|τ |pδ|u|pAαq,q(τ̂)

) 1
p

, u ∈ Aαq,q(Ω), P ∈P, (124)

with δ = α−σ
n + 1

p − 1
q . In particular, we have Aαq,q(Ω) ↪→ A s(Aσp,p(Ω)) with s = α−σ

n .
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Proof. With v = u− Q̃Pu and Q̃j = Q̃Pj , we have

‖v‖Aσp,p(Ω) ≤

∑
j≥0

λjσp‖v − Q̃jv‖pLp(Ω)

 1
p

=

∑
τ∈P

∑
j≥0

λjσp‖v − Q̃jv‖pLp(τ)

 1
p

, (125)

with the usual modification for p = ∞. Let j(τ) = max{[σ] : σ ∈ P, σ ⊂ τ} for τ ∈ P , as
in the preceding proof, with [σ] denoting the generation number (or the level) of σ. Then
for τ ∈ P and j ≥ j(τ) we have SP |τ̂ ⊂ Sj |τ̂ , and hence

Q̃j(u− Q̃Pu) = Q̃ju− Q̃Pu on τ, (126)

by the linearity property (73). This implies that v− Q̃jv = u− Q̃ju on τ , for all j ≥ j(τ).
Now, proceeding exactly as in the preceding proof, with p∗ = min{1, p}, we infer

‖u− Q̃ju‖p
∗

Lp(τ) ≤
∞∑
k=j

‖Q̃k+1u− Q̃ku‖p
∗

Lp(τ) .
∞∑
k=j

λ
( 1
q
− 1
p

)knp∗‖Q̃k+1u− Q̃ku‖p
∗

Lq(τ)

.
∞∑
k=j

λ
( 1
q
− 1
p

)knp∗‖u− Q̃ku‖p
∗

Lq(τ).

(127)

Then the discrete Hardy inequality yields∑
j≥j(τ)

λjσq‖u− Q̃ju‖qLp(τ) .
∑
k≥j(τ)

λkσqλ
( 1
q
− 1
p

)knq‖u− Q̃ku‖qLq(τ)

≤ λ−δnqj(τ)
∞∑

k=j(τ)

λkαq‖u− Q̃ku‖qLq(τ)

. |τ |δq|u|qAαq,q(τ),

(128)

where we have taken into account the relation σ
n + 1

q − 1
p = α

n − δ. Notice that the
discrete Hardy inequality made the use of interpolation unnecessary, to compare the present
arguments with the proof of the preceding theorem. This takes care of one of the sums (or
maximums) when we split the sum in the right hand side of (125) into two sums according
to j < j(τ) or j ≥ j(τ). We rewrite the other sum (or maximum) as∑

τ∈P

∑
{j<j(τ)}

λjσp‖v − Q̃jv‖pLp(τ)

 1
p

=

∑
j≥0

∑
{τ∈P :j(τ)>j}

λjσp‖v − Q̃jv‖pLp(τ)

 1
p

=

∑
j≥0

λjσp‖v − Q̃jv‖pLp(Ωj)

 1
p

,

(129)
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where Ωj =
⋃{τ ∈ P : j(τ) > j}. Note that Ωj ⊃ Ω0

j with Ω0
j =

⋃{τ ∈ P : [τ ] > j},
and that Ω0

j consists of triangles from Pj , in the sense that there is R0
j ⊂ Pj such that

Ω0
j =

⋃{τ ∈ R0
j} up to a zero measure set. The triangles τ ∈ P with τ 6⊂ Ω0

j are at the
level j or less, and hence there is Rj ⊂ Pj such that Ωj =

⋃{τ ∈ Rj} up to a zero measure
set. Now, by the stability property (74), we get

‖v − Q̃jv‖Lp(Ωj) . ‖v‖Lp(Ωj) + ‖Q̃jv‖Lp(Ωj) . ‖v‖Lp(Ω̂j)
, (130)

where Ω̂j =
⋃{τ ∈ Pj : τ̄ ∩Ωj 6= ∅}. Obviously, Ω̂j is a subset of Ω̂′j =

⋃{τ ∈ P : τ̄ ∩Ωj 6=
∅}, that can also be described as Ω̂′j =

⋃{τ ∈ P : j2(τ) > j}, with j2(τ) = max{j(σ) :
σ ∈ P, σ̄ ∩ τ̄ 6= ∅} for τ ∈ P . All this yields∑

τ∈P

∑
{j<j(τ)}

λjσp‖v − Q̃jv‖pLp(τ)

 1
p

.

∑
τ∈P

∑
{j<j2(τ)}

λjσp‖u− Q̃Pu‖pLp(τ)

 1
p

.

(∑
τ∈P
|τ |σp/n‖u− Q̃Pu‖pLp(τ)

) 1
p

,

(131)

where we have taken into account the geometric growth of λjσp in j, and the fact that
λj

2(τ) ∼ |τ |1/n. Then once we recall from the proof of the preceding theorem that

‖u− Q̃Pu‖Lp(τ) . |τ |δ
′ |u|Aαq,q(τ̂) (132)

with δ′ = α
n + 1

p − 1
q = δ − σ

n , the proof is complete.

3.5 Discontinuous piecewise polynomials

All that has been said on multilevel and adaptive approximation for continuous Lagrange
finite elements have analogues in the world of discontinuous polynomials subordinate to
triangulations. The theory is in fact much simpler due to the absence of the continuity
requirement across elements. Thus we will state here the relevant results and only sketch
or omit the proofs.

The notations P, {Pj}, etc., will mean the same things as before. For P ∈P, let

S̄P = S̄dP = {v ∈ L∞(Ω) : v|τ ∈ Pd ∀τ ∈ P}, (133)

where d is a nonnegative integer, and let S̄j = S̄Pj for all j. Then with G ⊂ Ω a do-
main consisting of elements from some Pj , we define the multilevel approximation spaces
Aαp,q({S̄j}, G) by (92), with the sequence {S̄j} replacing {Sj}. We will also use the short-
hand notations

Āαp,q(G) = Āαp,q;d(G) = Aαp,q({S̄j}, G). (134)

The analogue of Theorem 3.5 is the following.
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Theorem 3.10. We have Bα
p,q;d+1(Ω) ↪→ Āαp,q;d(Ω) for 0 < p, q ≤ ∞, and α > 0. In the

other direction, we have Āαp,q;d(Ω) ↪→ Bα
p,q;d+1(Ω) for 0 < p, q ≤ ∞, and 0 < α < 1

p .

Note that due to the lack of continuity the inverse inclusion holds in a very small range
of indices. We also have the analogue of Theorem 3.7.

Theorem 3.11. Let 0 < α1 < α2 <∞ and 0 < p, q, q1, q2 ≤ ∞. Then we have

[Āα1
p,q1(G), Āα2

p,q2(G)]θ,q = Āαp,q(G), (135)

for α = (1 − θ)α1 + θα2 and 0 < θ < 1, with the equivalence constants of quasi-norms
depending only on the parameters α, α1, α2, p, q, q1 and q2.

Finally, we want to record some results on adaptive approximation by discontinuous
polynomials subordinate to the partitions in P. Given 0 < p ≤ ∞, θ ∈ R, and P ∈P, we
define the norm

‖u‖Lθp(Ω) =

(∑
τ∈P
|τ | θpn ‖u‖pLp(τ)

) 1
p

, for u ∈ Lp(Ω), (136)

with the obvious modification for p =∞, and denote by Lθp(Ω) the space Lp(Ω) equipped

with this norm. Then we define the approximation class Ā s
q;d(L

θ
p(Ω)) exactly as A s

q (Lp(Ω)),

by replacing SmP with S̄dP , and by using the distance function

ρ(u, v, P ) = ‖u− v‖Lθp(Ω). (137)

More precisely, recalling the definition (9), let

Ā s
q;d(L

θ
p(Ω)) = A s

q (ρ,P, {S̄dP }), (138)

with ρ given by (137). It is for later reference that we have introduced the mesh dependent
weight in the distance function. We write Ā s

q;d(Lp(Ω)) = Ā s
q;d(L

0
p(Ω)).

We have the following direct embedding result.

Theorem 3.12. Let 0 < q ≤ p ≤ ∞, α > 0 and θ ≥ 0 satisfy α
n + 1

p − 1
q > 0 and q < ∞,

with α
n + 1

p− 1
q = 0 allowed if θ > 0. Then we have Āαq,q;d(Ω) ↪→ Ā s

∞;d(L
θ
p(Ω)) with s = α+θ

n .

Proof. Let u ∈ Lp(Ω) and let P ∈ P. Then with ΠP the projection operator defined in
(71) with m := d, we have

‖u−ΠPu‖Lθp(Ω) =

(∑
τ∈P
|τ | θpn ‖u−ΠPu‖pLp(τ)

) 1
p

.

(∑
τ∈P
|τ | θpn inf

v∈S̄P
‖u− v‖pLp(τ)

) 1
p

. (139)
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Now proceeding exactly as in the proof of Theorem 3.8, we get

‖u−ΠPu‖Lθp(Ω) .

(∑
τ∈P
|τ | θpn |τ |δp|u|Āαq,q;d(τ)

) 1
p

, (140)

with δ = α
n + 1

p − 1
q . Then an application of Theorem 2.2 finishes the proof.

1

n

1
q

α

−θ

1
p

Āαq,q

Fig. 5: Illustration of Theorem 3.12 and Theorem 3.13. If the space Āαq,q is located above

or on the solid line, then Āαq,q ⊂ Ā s(Lθp) with s = α+θ
n . It is as if the approximation

is taking place in a space such as B−θp,p , but instead of α+θ
n > 1

q − 1
p (dashed line)

we have the condition α
n ≥ 1

q − 1
p (solid line). On the other hand, the inverse

embedding takes the form Ā s
q (Lθp) ∩ Lp ⊂ Āαq,q, which holds on the part of the

dashed line with α > 0.

We close this section by stating an inverse embedding theorem (A proof can be found
in arXiv version 1 of the current paper).

Theorem 3.13. Let 0 < q ≤ p < ∞, α, θ > 0, and let s = α+θ
n = 1

q − 1
p . Then we have

Ā s
q;d(L

θ
p(Ω)) ∩ Lp(Ω) ⊂ Āαq,q;d(Ω).

4 Second order elliptic problems

4.1 Introduction

In this section, we will apply the abstract theory of Section 2 to second order elliptic
boundary value problems. As far as the domain Ω and the family of triangulations P are
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concerned, we will keep the setting of the previous section intact. In particular, we fix
a refinement rule, which is either the newest vertex bisection or the red refinement, and
assume that the family P satisfies the admissibility criterion (53).

Let Γ ⊂ ∂Ω be an open piece (or the whole) of the boundary, consisting of faces of
the initial triangulation P0. For P ∈P, the space SP will be the Lagrange finite element
space of continuous piecewise polynomials of degree not exceedingm, with the homogeneous
Dirichlet condition on Γ. We also define H1

Γ(Rn) as the closure of D(Rn\Γ) in H1(Rn), and
H1

Γ = H1
Γ(Ω) as the restriction of functions from H1

Γ(Rn) to Ω. Note that SP = H1
Γ ∩ SmP .

The operator T is given as

Tu = −aij∂i∂ju+ bk∂ku+ cu, (141)

where the repeated indices are summed over. The coefficients aij are Lipschitz continuous,
and bk, c ∈ L∞(Ω). The problem we consider is to find u ∈ H1

Γ satisfying

〈Tu, v〉 = 〈f, v〉, for all v ∈ H1
Γ. (142)

Here 〈·, ·〉 is the duality pairing between (H1
Γ)′ and H1

Γ, and f ∈ L2(Ω) ↪→ (H1
Γ)′ is given.

This is of course the variational formulation of the mixed Dirichlet-Neumann problem with
the homogenous Dirichlet data on Γ. We will also denote by T : H1

Γ → (H1
Γ)′ the operator

defined in (142).
Given an n-simplex τ , let us denote by Eτ the union of the (n − 1)-dimensional open

faces of τ . In other words, Eτ is the boundary of τ with all but the (n − 1)-dimensional
faces removed. Then for P ∈P, let

EP = {Eτ ∩ Eσ ∩ (Ω̄ \ Γ) : τ, σ ∈ P}, (143)

be the set of faces not intersecting the Dirichlet piece Γ. Note that if P is nonconforming,
then only the faces of the “smaller” simplices go into EP . Given P ∈P, u ∈ T−1(L2(Ω)),
and v ∈ SP , define the element residual rτ = (Tu− Tv)|τ for τ ∈ P , and the edge residual
re ∈ L2(e) for e ∈ EP as the jump of the normal component of the vector field aij∂jv across
the edge e. Finally, we define the a posteriori error estimator

(η(u, v, P ))2 =
∑
τ∈P

h2
τ‖rτ‖2L2(τ) +

∑
e∈EP

he‖re‖2L2(e). (144)

A typical adaptive finite element method that uses (144) as its error indicator converges
optimally with respect to the approximation classes A s(η), in the sense that if the solution
u of the problem (142) satisfies u ∈ A s(η) for some s > 0, then the adaptive method
reduces the quantity η(u, uP , P ) with the rate s, where uP is the Galerkin approximation
of u from SP , cf. Feischl, Führer, and Praetorius (2014). Moreover, it is well known that
the estimator (144) is equivalent to the total error

(ρd(u, v, P ))2 = ‖u− v‖2H1 + (oscd(u, v, P ))2, (145)
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when v = uP and for any fixed d ≥ m− 2, where the oscillation is defined as

(oscd(u, v, P ))2 =
∑
τ∈P

h2
τ‖(1−Πτ )rτ‖2L2(τ) +

∑
e∈EP

he‖(1−Πe)re‖2L2(e), (146)

with Πτ : L2(τ) → Pd and Πe : L2(e) → Pd+1 being L2-orthogonal projections onto
polynomial spaces, see e.g., Nochetto, Siebert, and Veeser (2009). Optimality of adaptive
finite element methods with respect to the approximation classes A s(ρd) has also been
proved, cf. Cascon et al. (2008). Ideally, one would like to have optimality with respect
to the classes A s(H1

Γ) that correspond to the energy error. In particular, it is conceivable
that for certain functions u, the energy error ‖u−uP ‖H1 decays faster than the oscillation
oscd(u, uP , P ), so that the class A s(H1

Γ) is strictly larger than both A s(ρd) and A s(η).
However, if the error estimator (144) is the only source of information used by the algorithm
in its stopping criterion (or in the marking of triangles for refinement), then it is clear that
one has to reduce the oscillation anyway. It appears therefore that the approximation
classes A s(ρd) and A s(η) are completely natural from the perspective of adaptive finite
element methods.

4.2 A characterization of adaptive approximation classes

In this subsection, we give necessary and sufficient conditions for u ∈ H1
Γ to be in A s(ρd).

These conditions will be in terms of memberships of u and Tu into suitable approximation
classes, which, in light of the preceding section, are related to Besov spaces. The coefficients
of T are required to satisfy conditions of the form g ∈ Ā s

∞;d(L
θ
∞(Ω)), where the latter space

is defined in (138), and again these spaces can be cast in terms of Besov spaces with the
help of Theorem 3.12 and Theorem 3.10.

Theorem 4.1. Let s > 0 and let d ≥ m − 2. Assume that aij ∈ Ā s
∞;d+2−m(L∞(Ω)),

bi ∈ Ā s
∞;d+1−m(L1

∞(Ω)), and c ∈ Ā s
∞;d−m(L2

∞(Ω)). Then we have

A s(ρd) = A s(H1
Γ) ∩ T−1(Ā s

∞;d(L
1
2(Ω))). (147)

The proof of this theorem will be given below in Lemma 4.3 and Lemma 4.5. Before
proving those lemmata, let us make a few points on the conditions of the theorem.

First, recall from Theorem 3.12 that Āσq,q;d(Ω) ⊂ Ā s
∞;d(L

1
2(Ω)) for σ = sn − 1 and

0 ≤ 1
q − 1

2 ≤ σ
n , and from Theorem 3.10 that Bσ

q,q(Ω) ⊂ Āσq,q;d(Ω) for σ < d+ max{1, 1
q}.

Second, while the approximation classes A s(H1
Γ) are associated to the finite element

spaces SP = H1
Γ∩SmP , the approximation classes we considered in the preceding section are

associated to the spaces SmP with no boundary conditions. In view of applying Theorem 3.9
and Theorem 3.5, we need the latter type of approximation classes. The following lemma
provides a link between the two types.
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Lemma 4.2. For s > 0 we have

A s(H1
Γ) ≡ A s(H1,P, {H1

Γ ∩ SmP }) = H1
Γ ∩A s(A1

2,2(Ω),P, {SmP }). (148)

In particular, we have H1
Γ ∩Aαp,p(Ω) ⊂ A s(H1

Γ) for α = sn+ 1 and 1
p < s+ 1

2 .

Proof. Let u ∈ H1
Γ, and let uP ∈ H1

Γ ∩ SmP be the Scott-Zhang interpolator of u adapted
to the Dirichlet boundary condition on Γ, cf. Scott and Zhang (1990). We have

inf
v∈H1

Γ∩SmP
‖u− v‖H1(Ω) ≤ ‖u− uP ‖H1(Ω) . inf

v∈SmP
‖u− v‖H1(Ω), (149)

by standard properties of the Scott-Zhang interpolator. Since H1 = B1
2,2 = A1

2,2 by Theo-
rem 3.5, this implies (148). Then the second assertion of the theorem follows from a direct
application of Theorem 3.9.

The inclusion A s(H1
Γ)∩T−1(Ā s

∞;d(L
1
2(Ω))) ⊂ A s(ρd) of Theorem 4.1 is a consequence

of the following lemma.

Lemma 4.3. For u ∈ H1
Γ and P ∈P, there exists v ∈ SP such that

ρd(u, v, P )2 . E(u, SP )2
H1(Ω) + E(Tu, S̄dP )2

L1
2(Ω)

+
(
E(aij , S̄

d+2−m
P )2

L∞(Ω) + E(bi, S̄
d+1−m
P )2

L1
∞(Ω) + E(c, S̄d−mP )2

L2
∞(Ω)

)
|u|2H1(Ω).

(150)

Proof. We take v to be the Scott-Zhang interpolator of u adapted to the Dirichlet boundary
condition on Γ, cf. Scott and Zhang (1990). We have

‖u− v‖H1 . inf
w∈SP

‖u− w‖H1 , (151)

for all P ∈P. It remains to bound the oscillation term.
First, let us consider the special case where the coefficients of T are piecewise poly-

nomials subordinate to P . More specifically, assume that aij |τ ∈ Pd+2−m, bi|τ ∈ Pd+1−m,
and c|τ ∈ Pd−m for each τ ∈ P . In this case, the oscillations associated to edges vanish,
because the edge residuals re are polynomials of degree not exceeding d+1. For the element
residuals, with the shorthand f = Tu, we have

‖(1−Πτ )(f − Tv)‖L2(τ) ≤ ‖(1−Πτ )f‖L2(τ) + ‖(1−Πτ )Tv‖L2(τ), (152)

and the last term is zero because Tv ∈ Pd. The remaining term gives rise to∑
τ∈P

h2
τ‖(1−Πτ )f‖2L2(τ) = E(f, S̄dP )2

L1
2(Ω), (153)

which yields the desired result.
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In the general case, the edge residuals and the terms Tv|τ can be nonpolynomial. Let
us treat Tv|τ = −aij∂i∂jv + bk∂kv + cv term by term. We have

(1−Πτ )aij∂i∂jv = (1−Πτ )(aij − āij)∂i∂jv, āij ∈ Pd+2−m, (154)

which implies

‖(1−Πτ )aij∂i∂jv‖L2(τ) = ‖(aij − āij)∂i∂jv‖L2(τ) ≤ ‖aij − āij‖L∞(τ)‖∂i∂jv‖L2(τ), (155)

for any āij ∈ Pd+2−m. Now we think of āij as a function in S̄d+2−m
P that approximates aij

in each element τ ∈ P with the best L∞(τ)-error. As a result, we get∑
τ∈P

h2
τ‖(1−Πτ )aij∂i∂jv‖2L2(τ) ≤

∑
τ∈P

h2
τ‖aij − āij‖2L∞(τ)‖∂i∂jv‖2L2(τ)

≤ E(aij , S̄
d+2−m
P )2

L∞(Ω)

∑
τ∈P

h2
τ‖∂i∂jv‖2L2(τ)

. E(aij , S̄
d+2−m
P )2

L∞(Ω)‖∇v‖2L2(Ω),

(156)

where we have used an inverse inequality in the last step. In light of the H1-stability of
the Scott-Zhang projector, this is one of the terms in the right hand side of (150).

Similarly, let c̄ be a function in S̄d−mP that approximates c in each element τ ∈ P with
the best L∞(τ)-error. Then we have

(1−Πτ )cv = (1−Πτ )(c− c̄)v = (1−Πτ )(c− c̄)(v − v̄), (157)

in each τ ∈ P , where v̄ is the average of v over τ . This yields∑
τ∈P

h2
τ‖(1−Πτ )cv‖2L2(τ) ≤

∑
τ∈P

h2
τ‖c− c̄‖2L∞(τ)‖v − v̄‖2L2(τ)

.
∑
τ∈P

h4
τ‖c− c̄‖2L∞(τ)‖∇v‖2L2(τ)

≤ E(c, S̄d−mP )2
L2
∞(Ω)‖∇v‖2L2(Ω),

(158)

where we have used the Poincaré inequality in the second line. Estimation of the term
involving bi∂iv is more straightforward, which we omit.

As for the edge oscillations, let τ ∈ P , and let e be an edge of τ . Then we have

‖(1−Πe)aij∂jv‖L2(e) = ‖(1−Πe)(aij − āij)∂jv‖L2(e)

≤ ‖(aij − āij)∂jv‖L2(e)

≤ ‖aij − āij‖L∞(e)‖∂jv‖L2(e)

. h
− 1

2
e ‖aij − āij‖L∞(τ)‖∇v‖L2(τ),

(159)

for any āij ∈ Pd+2−m, which shows that the contribution of the edge oscillations to the
final estimate (150) is identical to that of (156).
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Remark 4.4. By using the fact that the Scott-Zhang projector is bounded in Ht(Ω) for
t < 3

2 , we could have introduced extra powers of hτ or he into the estimates (156), (157),
and (159). This means that the regularity conditions on the coefficients aij , bk, and c in
Theorem 4.1 can be relaxed slightly, if the conclusion of the theorem is to be changed to
A s(H1

Γ) ∩Ht(Ω) ∩ T−1(Ā s
∞;d(L

1
2(Ω))) ⊂ A s(ρd) with 1 < t < 3

2 .

Lemma 4.5. For any u ∈ H1
Γ, P ∈P and v ∈ SP , we have

E(Tu, S̄dP )2
L1

2(Ω) + ‖u− v‖2H1(Ω) . ρd(u, v, P )2

+
(
E(aij , S̄

d+2−m
P )2

L∞(Ω) + E(bi, S̄
d+1−m
P )2

L1
∞(Ω) + E(c, S̄d−mP )2

L2
∞(Ω)

)
|v|2H1(Ω).

(160)

In particular, under the hypotheses of Theorem 4.1, we have the inclusion A s(ρd) ⊂
A s(H1

Γ) ∩ T−1(Ā s
∞;d(L

1
2(Ω))).

Proof. All the ingredients for establishing the estimate (160) is already given in the proof
of the preceding lemma. Namely, we start with the bound

(oscd(u, v, P ))2 .
∑
τ∈P

h2
τ‖(1−Πτ )Tu‖2L2(τ) +

∑
τ∈P

h2
τ‖(1−Πτ )Tv‖2L2(τ)

+
∑
e∈EP

he‖(1−Πe)re‖2L2(e),
(161)

and use the estimates (156), (157), and (159), etc., on the last two terms to get (160).
As for the second assertion, let {Pk} ⊂ P and {vk} be two sequences with vk ∈ SPk

such that #Pk . 2k and ρd(u, vk, Pk) . 2−ks. Then since ‖u − vk‖H1 ≤ ρd(u, vk, Pk),
we have ‖vk‖H1 . ‖u‖H1 . Hence, by employing overlay of partitions, without loss of
generality, we can suppose that the right hand side of (160) with P = Pk and v = vk is
bounded by a constant multiple of 2−ks. Looking at the left hand side then reveals that
Tu ∈ A s

∞;d(L
1
2(Ω)) and u ∈ A s(H1

Γ).
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