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Abstract

Exact non-reflecting boundary conditions for an incompletely parabolic sys-
tem have been studied. It is shown that well-posedness is a fundamental property
of the non-reflecting boundary conditions. By using summation by parts opera-
tors for the numerical approximation and a weak boundary implementation, en-
ergy stability follows automatically. The stability in combination with the high
order accuracy results in a reliable, efficient and accurate method. The theory is
supported by numerical simulations.

1 Introduction

In computational fluid dynamics applications one often encounters the problem of how
to limit the computational domain. For example, when simulating the flow field around
an aircraft it is impossible to include the entire atmosphere, since that would be too
computationally expensive. It is therefore necessary to truncate the domain at some
distance away from the area of interest and introduce artificial boundary conditions
(ABC). Such boundaries will generate non-physical disturbances, and in many applica-
tions it is essential that these disturbances are minimized.

If the errors produced at the boundary stay localized, the boundary conditions
have limited influence over the flow field and a simple boundary condition, e.g. the
Dirichlet boundary condition could be used. However, this assumption is seldom valid,
and when a wave encounters the boundary a significant portion will reflect back. This
is illustrated in Figure 1(a), where the Dirichlet boundary condition pollutes the whole
solution.

Apparently a better strategy is needed. In the classical paper [7], exact boundary
closures are constructed in transformed space for the wave equation. Their approach is
to express the solution as a superposition of waves, and eliminate the incoming waves at
the boundaries. Similar techniques for deriving the non-reflecting boundary conditions
(NRBC), for other types of equations, are used in [15, 11, 17]. Note that these conditions
are exact, but formulated in transformed space.

Exact NRBC’s are in most cases global in space and time, and can therefore be
cumbersome to implement numerically. For that reason it is common to approximate
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(a) Solution at t = 0.4
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(b) Solution at t = 0.4

Figure 1: The solution to equation (1), with initial condition given by (61). At x = 1
the pulse should pass out without reflections. At the right boundary either a Dirichlet
boundary condition or a zeroth order approximate NRBC is imposed.

or localize the NRBC’s in space or time. In [7], where the exact NRBC’s are made
local in space and time using expansions, it is shown that some approximations are
well-posed, and some ill-posed. To achieve boundary conditions that give sufficiently
small reflections, high order expansions are necessary, which typically yields an ill-posed
problem. For low order expansions, which result in a Dirichlet-to-Neumann map, it is
easier to obtain well-posedness, and the results are still clearly better than the results
obtained using the Dirichlet boundary condition, see Figure 1(b).

The main drawback with the approximative NRBC’s are that they ruin the in-
creased accuracy expected from mesh refinement of the interior scheme. From Table 1
it is evident that, although the solution obtained using the approximate NRBC’s looks
promising, it does not converge to the correct solution as we refine the mesh. There
will always be an order one error remaining in the solution.

N Error(u) ratio conv. rate
16 0.01385376
32 0.01407668 0.9842 -0.0230
64 0.01409021 0.9990 -0.0014
128 0.01409115 0.9999 -0.0001

Table 1: Results obtained using the approximative NRBC.

The area of ABC’s has been the subject of massive research, see for example [8,
12, 10, 16, 2], where the approach in [16, 2] yields local boundary conditions that
can be made arbitrarily accurate. When it comes to the implementation of exact
NRBC’s it is, for special geometries, possible to localize the boundary conditions in
time while still keeping them exact. This is exemplified in [9] where computations
are performed for the wave equation on a spherical domain, and in [29] where highly
accurate boundary conditions are used for a flow in a cylinder. See [15] for more details
on exact and approximate NRBC on special computational domains. These techniques
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are unfortunately not always feasible, and in [22] computations are performed for the
Schrödinger equation with the exact NRBC’s using convolution quadratures. For an
extensive review on ABC’s, see [32]. An alternative to the above mentioned methods is
to introduce buffer zones outside the artificial boundary, where the governing equations
are modified such that waves are damped. When these zones are constructed to be
exactly non-reflecting for the continuous problem, they are called perfectly matched
layers (PML), see [3, 18, 1].

In this paper we follow the work in [7] to some extent, but consider a slightly
different problem and most importantly; no approximations will be used. Our main
interest is the theoretical aspects of the problem, i.e. the well-posedness and stability
properties of exact NRBC’s. The exact boundary conditions are derived in the Laplace
transformed space, and thereafter transformed back for the numerical simulations. The
boundary conditions are hence global in time. We use high order accurate finite dif-
ference techniques, see [25, 4, 31, 27], such that the error originating from the interior
discretization is kept at a minimum.

The core of this paper is that we show that the exact NRBC’s result in a well-
posed problem, and that this leads to energy estimates both for the continuous and the
discrete formulation of the problem. We can thus, by a chain of arguments, guarantee a
stable numerical procedure. The stability in combination with the high order accuracy
results in a reliable, efficient and accurate method.

The paper is organized as follows. In section 2 we formulate the continuous problem.
In section 3 exact non-reflecting boundary conditions are derived. In section 4 we
show that the continuous problem is well-posed when using the non-reflecting boundary
conditions, and that this leads to an energy estimate. The corresponding semi-discrete
problem is presented in section 5. In section 6, two different approaches to choose the
boundary procedure are presented, both leading to energy stability. Then, in section
7, the boundary conditions which are derived in the Laplace transformed space are
transformed to physical space using convolution quadratures. In section 8 numerical
experiments are presented and conclusions are drawn in section 9.

2 The continuous problem formulation

Consider the linear 2× 2 system of partial differential equations

Ut + AUx −BUxx = F, x ∈ [xL, xR], t ≥ 0

U = f, x ∈ [xL, xR], t = 0

LL,RU = gL,R, x = xL,R, t ≥ 0,

(1)

where

U =

[
p
u

]
, A =

[
v c
c v

]
, B =

[
0 0
0 ε

]
, v > 0.

F (x, t) is the forcing function and f(x) is the initial data. The operators LL and LR
and the data gL and gR in the boundary conditions LL,RU = gL,R are at this stage
unknown. The Initial Boundary Value Problem (IBVP) (1) is incompletely parabolic
and hence it has most of the properties and difficulties associated with the compressible
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Navier-Stokes equations. Throughout the paper we assume v > 0. Exactly the same
analysis can be done for negative values of v.

The Laplace transformed version of (1) is

sÛ + AÛx −BÛxx = F̂ + f, x ∈ [xL, xR]

L̂L,RÛ = ĝL,R, x = xL,R,
(2)

where s = η + ξi is the dual variable to time, and where Û = [ p̂, û ]T is defined as

Û(x, s) = L{U(x, t)} =

∫ ∞
0

e−stU(x, t) dt, L{U ′(x, t)} = sÛ(x, s)− U(x, 0).

To simplify the analysis, we write (2) on first order form by introducing ŵ = ûx, which
yields

S̄Ū + ĀŪx = F̄ , x ∈ [xL, xR]

L̄L,RŪ = ĝL,R, x = xL,R,
(3)

where S̄ = diag(s, s, 1) and where

Ā =

 v c 0
c v −ε
0 −1 0

 , Ū =

 p̂
û
ŵ

 , F̄ =

 F̂1 + f1

F̂2 + f2

0

 . (4)

The solution to (3) consists of a homogenous and a particular part, such that Ū =
Ūh + Ūp. The particular solution Ūp (which depends on the data F̄ ) is assumed to be
known. The ansatz Ūh = eκxΨ leads to a generalized eigenvalue problem for κ(s) and
Ψ(s) on the form

(S̄ + κĀ)Ψ = 0. (5)

The eigenvalue problem (5) can only have non-trivial solutions Ψ 6= 0 if the determinant
|S̄ + κĀ| is zero. Written out explicitly the determinant is

|S̄ + κĀ| = q(κ, s), q(κ, s) = s2 + 2svκ+ (v2 − c2 − sε)κ2 − εvκ3. (6)

Solving q(κ, s) = 0 for the eigenvalues κ, and assuming that the three roots κj are
distinct, gives the general homogeneous solution

Ūh =
3∑
j=1

σje
κjxΨj. (7)

The coefficients σj can be determined using the boundary conditions. This procedure
is described in detail in [13, 26].

Remark: The solution Ūh can be written on the form given in (7) unless s = 0 at the
same time as v = c, see Appendix A. In the rest of the paper we assume v 6= c.

4



3 Derivation of the boundary conditions

Before the boundary conditions are constructed it is essential to know how many that
are needed at each boundary. It is shown in [30] that for each negative Re(κ) we need
one condition at the left boundary, and for each positive Re(κ) we need one condition
at the right boundary. The number of roots with negative and positive real parts,
respectively, is given by

Proposition 3.1. Consider the roots of q(κ, s) = 0 in (6). For v > 0 and s such that
Re(s) > 0, two of the κ’s have negative real part and one of the κ’s has positive real
part.

Proof. Assume that κ passes the imaginary axis, i.e. that κ = βi. Inserting this into
equation (6) and using that s = η + ξi yields

c2β2 + εηβ2 + η2 − (ξ + vβ)2 + (2η + εβ2)(ξ + vβ)i = 0. (8)

The imaginary part of (8) is zero if either ξ + vβ = 0 or 2η+ εβ2 = 0. In both of these
cases, it is required that either η < 0 or that η = ξ = 0 to cancel the real part. That
is, as long as the real part of s is positive (η > 0), no purely imaginary κ can exist and
hence the real part of the κ’s can not change sign. Dividing q(κ, s) in (6) by −εv yields

q̃(κ, s) = κ3 − (v2 − c2 − sε)
εv︸ ︷︷ ︸
r2

κ2 +
−2s

ε︸︷︷︸
r1

κ− s2

εv︸︷︷︸
r0

= (κ− κ1)(κ− κ2)(κ− κ3)

r2 = κ1 + κ2 + κ3, r1 = κ1κ2 + κ1κ3 + κ2κ3, r0 = κ1κ2κ3,

(9)

and by assuming s real and large, we get r0 > 0, r1 < 0 and r2 < 0. According to
Descartes’ rule of signs [28], the polynomial q̃(κ, s) has exactly one positive root for
these values of r0, r1 and r2.

Thus two boundary conditions are needed at the left boundary and one boundary
condition is needed at the right boundary. Without loss of generality, let Re(κ1) < 0,
Re(κ2) < 0 and Re(κ3) > 0. In addition, it holds that

Proposition 3.2. For v > 0 and s such that Re(s) > 0, it holds that Re(κ1/s) < 0,
Re(κ2/s) < 0 and Re(κ3/s) > 0.

The proof of Proposition 3.2 is given in Appendix B.

3.1 Non-reflecting boundary conditions

One approach when constructing non-reflecting boundary conditions is to prohibit the
solution outside the artificial boundary from growing, i.e. by demanding that Ūh(x)→ 0
as x → ±∞, see [32]. This is accomplished by canceling the coefficients σj in (7)
corresponding to the growing modes at each boundary.

Remark: Compare with the hyperbolic version of (1), where the characteristics of
U(x, t) travel with constant wave speed aj. In this case the eigenvalues of the Laplace
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transformed solution have the form κj = −s/aj and the eigenvectors Ψj are independent
of s, such that

U(x, t) =
∑
j

hj(t− x/aj)Ψj, Û(x, s) =
∑
j

ĥj(s)e
−xs/aj Ψj.

Thus a positive wave speed aj, which means that the eigensolution Ψj is right-going,
implies that Re(κj) = −Re(s)/aj is negative. Likewise, if Re(κj) > 0, the eigenfunction
Ψj is left-going. For a hyperbolic problem, providing zero data directly to the ingoing
variables means that the outgoing waves can pass through the boundary freely, without
reflections. Analogously, in (7) we should at each boundary cancel the modes that are
growing outwards.

Recall that the real parts of κ1 and κ2 are negative and the real part of κ3 is positive
for Re(s) > 0. Our aim is to construct boundary conditions for the left boundary that
force σ1 and σ2 to zero, or a boundary condition for the right boundary that forces
σ3 to zero. With access to the eigenvalues κi we compute the eigenvectors Ψi and the
corresponding orthogonal vectors Φi

Ψi =

 −c
(s+ vκi)/κi
s+ vki

 , Φi =

 ε(vκj + s)(vκk + s)/sc
εvκjκk/s

ε

 . (10)

The vector Φj is orthogonal to Ψi for i 6= j, such that

ΦT
i Ψi = εv(κi − κj)(κi − κk)/κi, ΦT

j Ψi = 0. (11)

Using (7) and (11) we see that the boundary condition ΦT
i Ūh = 0 is equivalent to

σie
κixΦT

i Ψi = 0, which forces σi to zero. This gives the exact non-reflecting boundary
conditions

x = xL :

{
ΦT

1 Ūh = 0
ΦT

2 Ūh = 0
, x = xR : ΦT

3 Ūh = 0. (12)

The boundary conditions (12) are L̄LŪh = 0 and L̄RŪh = 0, where

L̄L = [Φ1, Φ2]
T , L̄R = ΦT

3 . (13)

Thus we can identify

L̄L,RŪ = L̄L,R(Ūh + Ūp) = L̄L,RŪp =⇒ ĝL,R = L̄L,RŪp.

Finding the data ĝL,R can be difficult. Common choices are to assume that Ūp is
constant or zero. To take the possibility of non-exact data into account, assume that
the boundary data has been chosen such that ĝL,R = L̄L,RŪp + g′L,R. Then, in practice,
the boundary conditions imposed are

x = xL : L̄LŪh = g′L, x = xR : L̄RŪh = g′R, (14)

where g′L,R should be some perturbation close to (or preferably equal to) zero.

Remark: The particular solution Ūp depends on F̄ , which in turn depends on the
forcing function F and the initial function f in (1). Often these functions are defined
so that they have compact support, which implies that Ūp = 0 at the boundaries and
that ĝL,R = 0. One reasonable exception is a constant non-zero background flow.
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4 Well-posedness of the IBVP in the GKS sense

The problem (1) is well-posed in the GKS1 sense if no solutions U(x, t) that grow
exponentially in time exist, see [24, 6, 13, 14, 26]. (A more generous definition of well-
posedness, that opens up for a wider range of problems, is to accept bounded growth
of the solution. In this paper we limit ourselves to zero growth.)

Remark: A problem is well-posed (Hadamard’s well-posedness) if: i) A solution exists,
ii) The solution is unique, iii) The solution depends continuously on provided data. We
will assume that a unique solution of the problem (1) exists, and focus on the third
requirement, which is equivalent to limit the growth of the solution, see [13].

Consider the homogeneous solution (7). By defining

Ψ = [Ψ1,Ψ2,Ψ3], K(x) = diag(eκ1x, eκ2x, eκ3x), σ = [σ1, σ2, σ3]
T ,

we can write Ūh = ΨKσ. Next, the boundary conditions in (14) are applied, yielding

E(s)σ = g′, E(s) =

[
L̄LΨK(xL)
L̄RΨK(xR)

]
=

 eκ1xLΦT
1 Ψ1 eκ2xLΦT

1 Ψ2 eκ3xLΦT
1 Ψ3

eκ1xLΦT
2 Ψ1 eκ2xLΦT

2 Ψ2 eκ3xLΦT
2 Ψ3

eκ1xRΦT
3 Ψ1 eκ2xRΦT

3 Ψ2 eκ3xRΦT
3 Ψ3

 ,
where g′ = [(g′L)T , (g′R)T ]T . Each row of the system above corresponds to one boundary
condition, and for general boundary conditions the matrix E(s) is full. If E(s) is
non-singular we can solve for σ and obtain a unique solution Ū = Ūp + ΨKE(s)−1g′.

Recalling that the first two entries of Ū are denoted Û , we can formally transform back
to the time domain, as

U(x, t) = L−1{Û} = eη0t
(

1

2π

∫ +∞

−∞
Û(x, η0 + iξ)eiξtdξ

)
where E(s) must be non-singular for η > η0. The problem is well-posed in our restrictive
GKS sense if η0 ≤ 0, (for convergence to steady-state η0 < 0 is necessary).

Proposition 4.1. Consider the ordinary differential equation (3) with boundary opera-
tors (13). The corresponding matrix E(s) is non-singular for Re(s) ≥ 0 (if 0 < v 6= c),
and hence the problem (1) is well-posed.

Proof. Using that ΦT
j Ψi = 0 for i 6= j leads to

E(s) =

 eκ1xLΦT
1 Ψ1 0 0

0 eκ2xLΦT
2 Ψ2 0

0 0 eκ3xRΦT
3 Ψ3

 .
From (11) we know that ΦT

i Ψi = εv(κi−κj)(κi−κk)/κi and thereby the three entries of
E(s) are non-zero if the roots κ are distinct. In Appendix A it is shown that there are
no multiple roots for Re(s) ≥ 0, unless s = 0. This special case is treated separately in
Appendix A.1, where it is shown that lims→0 ΦT

j Ψj 6= 0 as long as v 6= c. Consequently
|E(s)| 6= 0 for all Re(s) ≥ 0 when v 6= c.

1GKS refers to the classical paper [14] by Gustafsson, Kreiss and Sundström.
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4.1 Well-posedness in the GKS sense leads to energy stability

Proposition 4.1 above shows that the exact non-reflecting boundary conditions yield
well-posedness (in the GKS sense). Next we show that the non-reflecting boundary
conditions also leads to an energy estimate.

Equation (2) is multiplied by the conjugate transpose of Û (denoted Û∗) from the
left and integrated with respect to x. Adding the complex conjugate of the resulting
relation to itself, and using that s = η + ξi, we get

2η

∫ xR

xL

Û∗Ûdx+ 2

∫ xR

xL

Û∗xBÛxdx = BTL +BTR (15)

where

BTL = Û∗AÛ − Û∗BÛx − Û∗xBÛ
∣∣∣
xL

, BTR = − Û∗AÛ + Û∗BÛx + Û∗xBÛ
∣∣∣
xR

. (16)

Note that the forcing term F̂ + f is omitted since it does not affect well-posedness [13].
We know from the previous analysis of E(s) that the operators in (13) give a well-posed
problem. However, if the boundary conditions can be imposed such that the boundary
terms BTL and BTR are non-positive we obtain an energy estimate, which will lead
directly to stability for the discrete problem.

Since we have derived the boundary conditions for the first order form in (3) we
rewrite (16) on the equivalent form

BTL = Ū∗ÃŪ
∣∣∣
xL

, BTR = − Ū∗ÃŪ
∣∣∣
xR

, Ã =

 v c 0
c v −ε
0 −ε 0

 . (17)

Remark: Well-posedness in the GKS sense considers the homogenous solution, Ūh =∑
j σje

κjxΨj. Computing the energy estimate for the homogenous solution instead of
the total solution only affects the forcing term (which is disregarded) and hence the
boundary terms in (17) holds for Ūh as well as for Ū .

Proposition 4.2. The left boundary term in (17) is non-positive, i.e. BTL ≤ 0.

Proof. The left boundary conditions in (12) force σ1 and σ2 to zero which yields the
solution Ūh = σ3e

κ3xΨ3. Inserting this into BTL in (17) we obtain

BTL = |σ3e
κ3xL|2AL

where

AL = Ψ∗3ÃΨ3 = −Re

(
s

κ3

)(
c2 +

∣∣∣∣s+ vκ3

κ3

∣∣∣∣2
)
− εRe (κ3)

∣∣∣∣s+ vκ3

κ3

∣∣∣∣2 ≤ 0. (18)

In the last inequality we used that Re(κ3/s) > 0 and Re(κ3) > 0 for Re(s) > 0, see
Proposition 3.1 and Proposition 3.2.

Proposition 4.3. The right boundary term in (17) is non-positive, i.e. BTR ≤ 0.
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The proof of Proposition 4.3 is given in Appendix C.1 and results in

BTR = −
[
σ1e

κ1xR

σ2e
κ2xR

]∗
AR
[
σ1e

κ1xR

σ2e
κ2xR

]
,

where

AR =

[
Ψ∗1ÃΨ1 Ψ∗1ÃΨ2

Ψ∗2ÃΨ1 Ψ∗2ÃΨ2

]
≥ 0. (19)

Since the boundary terms BTL and BTR are negative the right hand side of (15) is
bounded, which leads to an energy estimate.

In the proofs of Proposition 4.2 and Proposition 4.3 we have assumed that the
provided data is exact, such that σ1,2 = 0 at the left boundary or σ3 = 0 at the right
boundary. Later in Section 6 we will also include the possibility of having non-zero
(uncorrect) boundary data and show that the problem is in fact strongly well-posed.

5 The semi-discrete problem formulation

The boundary operators in (13) can be written

L̄L =

[
α1 β1 ε
α2 β2 ε

]
, ĝL =

[
ĝ1

ĝ2

]
, L̄R =

[
α3 β3 ε

]
, ĝR =

[
ĝ3

]
, (20)

where αj, βj depend on s and κj(s). The structure of the complementing vectors in
(10) and the relations in (9) gives

αi =
−sc

s+ vκi
, βi =

s

κi
. (21)

The boundary conditions can also be rewritten such that they are appropriate for the
problem (2), as

L̂LÛ = HLÛ +GLÛx = ĝL ⇐⇒
[
α1 β1

α2 β2

] [
p̂
û

]
+

[
0 ε
0 ε

] [
p̂x
ûx

]
=

[
ĝ1

ĝ2

]
L̂RÛ = HRÛ +GRÛx = ĝR ⇐⇒

[
α3 β3

] [ p̂
û

]
+
[

0 ε
] [ p̂x

ûx

]
=
[
ĝ3

]
.

(22)

5.1 The numerical scheme

The domain x ∈ [xL, xR] is discretized in space using N + 1 equidistant grid points, as
xi = xL + (xR − xL)i/N , where i = 0, 1, . . . , N . The solution U is represented by the
discrete solution vector V such that

V = [V T
0 , V

T
1 , . . . , V

T
N ]T , Vi(t) ≈ U(xi, t).

The semi-discrete scheme representing the IBVP in (1) is written

Vt + (D ⊗ A)V − (D2 ⊗B)V = F + ((Σ0 ∗ V )(t)− Γ0) + ((ΣN ∗ V )(t)− ΓN) ,

V (0) = f,
(23)

9



where the symbol ⊗ refers to the Kronecker product. The boundary conditions are
imposed weakly using the Simultaneous Approximation Term (SAT) technique, by the
penalty terms ((Σ0,N ∗ V )(t)− Γ0,N(t)) which are yet unknown but will be derived in
the Laplace transformed domain. Further, the difference operator D (which mimics
∂/∂x ) is on so called Summation-By-Parts (SBP) form, and hence the following holds

D = P−1Q, Q+QT = eNe
T
N − e0eT0 , P = P T > 0, (24)

where e0 = [1, 0, . . . , 0]T and eN = [0, . . . , 0, 1]T . The second derivative ∂2/∂x2 is
approximated by the wide operator D2. For a read-up on SBP and SAT, see [23, 5] and
references therein. Note that we use the same notation for F, f both in the continuous
and the discrete setting.

By Laplace transforming (23) the discrete representation of (2) is obtained, as

sV̂ + (D ⊗ A)V̂ − (D2 ⊗B)V̂ = F̂ + f +
(

Σ̂0V̂ − Γ̂0

)
+
(

Σ̂N V̂ − Γ̂N

)
, (25)

where V̂ (s) = L{V (t)} and where Σ̂0,N , Γ̂0,N remains to be determined. As in the

continuous case we simplify by omitting the forcing function F̂ + f . We multiply (25)
by V̂ ∗P̄ from the left, where P̄ = P⊗I2, and add the conjugate transpose of the equation
to itself. Thereafter using the SBP-properties in (24) yields the energy estimate

2ηV̂ ∗P̄ V̂ + 2(D̄V̂ )∗(P ⊗B)D̄V̂ = BTDL +BTDR , (26)

where D̄ = D ⊗ I2 and where

BTDL = V̂ ∗0 AV̂0 − V̂ ∗0 B(D̄V̂ )0 − (D̄V̂ )∗0BV̂0 + V̂ ∗P̄ (Σ̂0V̂ − Γ̂0) + (Σ̂0V̂ − Γ̂0)
∗P̄ V̂

BTDR = −V̂ ∗NAV̂N + V̂ ∗NB(D̄V̂ )N + (D̄V̂ )∗NBV̂N + V̂ ∗P̄ (Σ̂N V̂ − Γ̂N) + (Σ̂N V̂ − Γ̂N)∗P̄ V̂ .
(27)

Note the similarity between the semi-discrete energy estimate (26) and the continuous
one in (15).

The matrices Σ̂0,N and the vectors Γ̂0,N depend on how the boundary conditions
are imposed. We use the following ansätze for the penalty terms

Σ̂0V̂ − Γ̂0 = (P−1e0 ⊗ τ0 + P−1DT e0 ⊗ σ0 )(HLV̂0 + GL(D̄V̂ )0 − ĝL)

Σ̂N V̂ − Γ̂N = (P−1eN ⊗ τN + P−1DT eN ⊗ σN)(HRV̂N +GR(D̄V̂ )N − ĝR),
(28)

where all dependence of boundary data sits in Γ̂0,N , such that Γ̂0,N = 0 if ĝL,R = 0.
The boundary operators HL,R, GL,R are given in (22) and the penalty parameters τ0
and σ0 are 2×2 matrices and τN and σN are 2×1 vectors. The relations in (28) lead to

V̂ ∗P̄ (Σ̂0 V̂ − Γ̂0) = (V̂ ∗0 τ0 + (D̄V̂ )∗0σ0 )(HLV̂0 + GL(D̄V̂ )0 − ĝL)

V̂ ∗P̄ (Σ̂N V̂ − Γ̂N) = (V̂ ∗NτN + (D̄V̂ )∗NσN)(HRV̂N +GR(D̄V̂ )N − ĝR).
(29)

Inserting the expressions (29) into (27), the boundary terms can be written as

BTDL =

[
V̂0

(D̄V̂ )0

]∗ [
A+ τ0HL + (τ0HL)∗ −B + τ0GL + (σ0HL)∗

−B + σ0HL + (τ0GL)∗ σ0GL + (σ0GL)∗

] [
V̂0

(D̄V̂ )0

]
−
[

V̂0

(D̄V̂ )0

]∗ [
τ0
σ0

]
ĝL −

([
V̂0

(D̄V̂ )0

]∗ [
τ0
σ0

]
ĝL

)∗ (30)

10



and

BTDR =

[
V̂N

(D̄V̂ )N

]∗ [
−A+ τNHR + (τNHR)∗ B + τNGR + (σNHR)∗

B + σNHR + (τNGR)∗ σNGR + (σNGR)∗

] [
V̂N

(D̄V̂ )N

]
−
[

V̂N
(D̄V̂ )N

]∗ [
τN
σN

]
ĝR −

([
V̂N

(D̄V̂ )N

]∗ [
τN
σN

]
ĝR

)∗
,

(31)

respectively.
Similarly to the definition of well-posedness for the continuous problem, a numerical

scheme is energy stable if the growth of the solution is bounded. As in the continuous
case we limit ourselves to zero growth, which means that V̂ ∗P̄ V̂ ≤ 0 in (26) is needed.
Hence, to prove stability, we must show that the boundary terms in (30) and (31) are
non-positive for zero data. In the next section, we present two distinctly different ways
of choosing the penalty parameters τ0,N and σ0,N to achieve BTDL,R ≤ 0.

6 Energy estimates in Laplace space

The stability requirements alone do not determine the penalty parameters τ0,N and
σ0,N in (28) uniquely. We will here present two different possible choices (here referred
to as ”replacing the indefinite terms” and ”replacing the ingoing variables”), both
guaranteeing a stable numerical scheme. In both cases the strategy is to first reformulate
the continuous boundary terms BTL,R using the boundary conditions, and then to
choose the penalty parameters such that the discrete boundary terms BTDL,R mimic the
continuous ones.

6.1 Replacing the indefinite terms

6.1.1 The continuous formulation

When inserting the boundary conditions (22) into (16), a more convenient form of the
boundary conditions would be

H̃LÛ +BÛx = g̃L, x = xL

H̃RÛ +BÛx = g̃R, x = xR.
(32)

To achieve this form, we construct two scaling matrices SL and SR such that B = SLGL

and B = SRGR. The scaling matrices are

SL =

[
a −a
b 1− b

]
, SR =

[
0
1

]
, (33)

where a 6= 0 and b are arbitrary since GL is singular. Multiplying the original boundary
conditions (22) by the scaling matrices yields (32) where H̃L = SLHL, g̃L = SLĝL and

11



H̃R = SRHR, g̃R = SRĝR. Written out explicitly, the boundary conditions in (32) are[
a∆α a∆β

b∆α + α2 b∆β + β2

]
︸ ︷︷ ︸eHL

[
p̂
û

]
+

[
0 0
0 ε

]
︸ ︷︷ ︸

B

[
p̂x
ûx

]
=

[
a(ĝ1 − ĝ2)

b(ĝ1 − ĝ2) + ĝ2

]
︸ ︷︷ ︸

g̃L[
0 0
α3 β3

]
︸ ︷︷ ︸eHR

[
p̂
û

]
+

[
0 0
0 ε

]
︸ ︷︷ ︸

B

[
p̂x
ûx

]
=

[
0
ĝ3

]
︸ ︷︷ ︸

g̃R

,

where we have defined ∆β = β1 − β2 and ∆α = α1 − α2. When replacing the terms

containing BÛx in (16) by the ones in (32) the boundary terms become

BTL = Û∗ (A+ H̃L + H̃∗L )︸ ︷︷ ︸
ML

Û − Û∗g̃L − g̃∗LÛ
∣∣∣
xL

BTR = −Û∗ (A+ H̃R + H̃∗R)︸ ︷︷ ︸
MR

Û + Û∗g̃R + g̃∗RÛ
∣∣∣
xR

.
(34)

For an energy estimate we need ML = A+ H̃L+ H̃∗L in (34) to be negative semi-definite

and MR = A+ H̃R + H̃∗R to be positive semi-definite.

Proposition 6.1. If the constants a 6= 0 and b in SL in (33) satisfy

Re(a∆α + b∆β) ≤
|∆α|2 + |∆β|2

2r|∆α|2
(
|a∆∗β − b∆∗α + µ∗|2 − v2 − 2vRe(β2) + |c+ α2|2 − |µ|2

)
, (35)

where

µ =
−2Re(β2)∆α∆β + (c+ α2)∆

2
β − (c+ α2)

∗∆2
α

|∆α|2 + |∆β|2

r = v + 2Re

(
β2 − (c+ α2)

∆β

∆α

)
+ v

∣∣∣∣∆β

∆α

∣∣∣∣2 , (36)

then ML = A+ H̃L + H̃∗L in (34) is negative semi-definite.

The proof of Proposition 6.1 is given in Appendix C.2.

Remark: At the left boundary we have three variables and two boundary conditions,
hence it is possible to write the boundary term expressed in one variable only. Using
the ML form in (34) this is disregarded and the boundary term is expressed as a
combination of two variables, p̂ and û, even though these variables have an interrelation.
So, although the choice of a and b has no impact on the well-posedness of the continuous
problem, the definiteness of ML is crucial if we consider a solution that does not fulfill
the boundary conditions exactly (i.e. a numerical solution). We will come back to this
in the numerical sections.

Proposition 6.2. The matrix MR = A+ H̃R + H̃∗R in (34) is positive semi-definite.
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Proof. Written out explicitly, we have

MR =

[
v c+ α∗3

c+ α3 v + β3 + β∗3

]
,

and it is possible to show that MR = Z∗ARZ, where

Z =

[
−c −c

s/κ1 + v s/κ2 + v

]−1

.

According to Sylvester’s law of inertia, MR ≥ 0, since AR ≥ 0 in (19).

Remark: By showing that ML ≤ 0 and MR ≥ 0 we do not only achieve an energy
estimate for the assumption ĝL,R = 0, but actually the solution is bounded also if using
arbitrary data. The equations in (34) can easily be rewritten as

BTL = (Û −M−1
L g̃L)∗ML(Û −M−1

L g̃L)− g̃∗LM−1
L g̃L

∣∣∣
xL

BTR = −(Û −M−1
R g̃R)∗MR(Û −M−1

R g̃R) + g̃∗RM
−1
R g̃R

∣∣∣
xR

.

6.1.2 Choice of penalty parameters for the discrete formulation

Let the penalty parameters be τ0 = τ̃0SL, τN = τ̃NSR and σ0,N = 0. Inserting this into
(30) and (31) yields

BTDL =

[
V̂0

(D̄V̂ )0

]∗ [
A+ τ̃0H̃L + (τ̃0H̃L)∗ (τ̃0 − I)B

(τ̃ ∗0 − I)B 02

] [
V̂0

(D̄V̂ )0

]
− V̂ ∗0 τ̃0g̃L −

(
V̂ ∗0 τ̃0g̃L

)∗ (37)

and

BTDR =

[
V̂N

(D̄V̂ )N

]∗ [
−A+ τ̃NH̃R + (τ̃NH̃R)∗ (τ̃N + I)B

(τ̃ ∗N + I)B 02

] [
V̂N

(D̄V̂ )N

]
− V̂ ∗N τ̃N g̃R −

(
V̂ ∗N τ̃N g̃R

)∗
,

(38)

respectively.

Proposition 6.3. Choosing the left penalty parameters as τ0 = SL (i.e. τ̃0 = I), where
SL is given in (33), and σ0 = 02, yields a stable numerical scheme, given that Proposi-
tion 6.1 holds and under the assumption that the right boundary terms are bounded as
well.

Proof. Inserting τ̃0 = I into (37), the left discrete boundary term becomes

BTDL = V̂ ∗0 (A+ H̃L + H̃∗L)V̂0 − V̂ ∗0 g̃L − g̃∗LV̂0, (39)

and according to Proposition 6.1 ML = A + H̃L + H̃∗L can be designed to be negative
semi-definite.
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Remark: As previously discussed, the choice of a and b in SL is irrelevant for the
continuous problem, while a valid choice is crucial for numerical stability.

Proposition 6.4. Choosing the right penalty parameters as τN = −SR (i.e. τ̃N = −I),
where SR is given in (33), and σN = [0, 0]T , yields a stable numerical scheme, under
the assumption that the left boundary terms are bounded as well.

Proof. Inserting τ̃N = −I into (38), the right discrete boundary term becomes

BTDR = −V̂ ∗N(A+ H̃R + H̃∗R)V̂N + V̂ ∗N g̃R + g̃∗RV̂N (40)

and according to Proposition 6.2 MR = A+ H̃R + H̃∗R is positive semi-definite.

Remark: Note that when using the penalty parameters as specified in Proposition 6.3
and 6.4, the discrete boundary terms (39) and (40) mimics the continuous ones perfectly,
c.f. equation (34), and that stability of the numerical scheme is guaranteed.

6.2 Replacing the ingoing variables

6.2.1 The continuous formulation

Consider the matrix Ã in (17), and assume that we have found a rotation such that

Ã = XΛXT , where Λ is diagonal. Note that the elements of Λ are not necessarily the
eigenvalues of Ã, and that the vectors in X may then not be orthogonal. According
to Sylvester’s law of inertia, the matrices Ã and Λ will always have the same number
of positive/negative eigenvalues for a non-singular X. The matrix Λ has two positive
entries and one negative entry for v > 0, and is sorted as Λ = diag(Λ+,Λ−). The
vectors are divided correspondingly, X = [x+, x−], and the boundary terms in (17) are
rewritten as

BTL = (XT Ū)∗ΛXT Ū = (xT+Ū)∗Λ+x
T
+Ū + (xT−Ū)∗Λ−x

T
−Ū

BTR = −(XT Ū)∗ΛXT Ū = −(xT+Ū)∗Λ+x
T
+Ū − (xT−Ū)∗Λ−x

T
−Ū .

(41)

xT+Ū represents two right-going variables (ingoing at the left boundary), and xT−Ū rep-
resents one left-going variable (ingoing at the right boundary). The ingoing variables
are given data in terms of known functions and outgoing variables, as

x = xL : xT+Ū +RLx
T
−Ū = g̃L, x = xR : xT−Ū +RRx

T
+Ū = g̃R, (42)

where the matrices RL,R must be sufficiently small. Since we want to impose the non-
reflecting boundary conditions L̄LŪ = ĝL and L̄RŪ = ĝR, given in (3), we relate them
to the general ones in (42) using scaling matrices. Denoting the scaling matrices JL,R,
we obtain

L̄L = JL(xT+ +RLx
T
−), L̄R = JR(xT− +RRx

T
+), (43)

and identify g̃L = J−1
L ĝL and g̃R = J−1

R ĝR. The matrices JL,R and RL,R can be computed
from x±, which is assumed known, and L̄L,R, which are given in (20). Inserting the
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relations xT+Ū = g̃L − RLx
T
−Ū and xT−Ū = g̃R − RRx

T
+Ū from (42), into the boundary

terms BTL and BTR in (41), respectively, yields

BTL =
(
xT−Ū − C−1

L R∗LΛ+g̃L
)∗ CL (xT−Ū − C−1

L R∗LΛ+g̃L
)

+ g̃∗L
(
Λ+ − Λ+RLC−1

L R∗LΛ+

)
g̃L

BTR = −
(
xT+Ū − C−1

R R∗RΛ−g̃R
)∗ CR (xT+Ū − C−1

R R∗RΛ−g̃R
)

− g̃∗R(Λ− − Λ−RRC−1
R R∗RΛ−)g̃R

(44)

where CL = R∗LΛ+RL + Λ− and CR = Λ+ + R∗RΛ−RR. For an energy estimate of the
continuous problem CL ≤ 0 and CR ≥ 0 are necessary.

Proposition 6.5. The scalar CL in (44) is non-positive, and hence the non-reflecting
boundary condition (14) at the left boundary leads to an energy estimate.

Proof. Recall that Ã = x+Λ+x
T
+ + x−Λ−x

T
−. Starting from AL in (18), we have

AL = Ψ∗3ÃΨ3

= Ψ∗3
(
x−Λ−x

T
− + x−R

∗
LΛ+RLx

T
−
)

Ψ3 + Ψ∗3
(
x+Λ+x

T
+ − x−R∗LΛ+RLx

T
−
)

Ψ3

= Ψ∗3x−CLxT−Ψ3 + Ψ∗3
(
x+Λ+x

T
+ − x−R∗LΛ+RLx

T
−
)

Ψ3︸ ︷︷ ︸
NL

.

Inserting the relation xT+ +RLx
T
− = J−1

L L̄L from (43) into NL we get

NL = Ψ∗3
(
x+Λ+x

T
+ − x−R∗LΛ+RLx

T
−
)

Ψ3

=
1

2
Ψ∗3
(
(xT+ +RLx

T
−)∗Λ+(xT+ −RLx

T
−) + (xT+ −RLx

T
−)∗Λ+(xT+ +RLx

T
−)
)

Ψ3

[use (43)] =
1

2
Ψ∗3
(
(J−1
L L̄L)∗Λ+(xT+ −RLx

T
−) + (xT+ −RLx

T
−)∗Λ+J

−1
L L̄L

)
Ψ3

= (L̄LΨ3)
∗ (J

−1
L )∗Λ+(xT+ −RLx

T
−)Ψ3

2
+

Ψ∗3(x
T
+ −RLx

T
−)∗Λ+J

−1
L

2
L̄LΨ3.

Recall that L̄L = [Φ1, Φ2]
T and ΦT

j Ψi = 0 such that L̄LΨ3 = 0. This leads to NL = 0
and finally the relation AL = (xT−Ψ3)

∗CLxT−Ψ3, where xT−Ψ3 6= 0. Since AL ≤ 0 from
Proposition 4.2, we know that CL ≤ 0 as well.

Proposition 6.6. The matrix CR in (44) is non-negative, and hence the non-reflecting
boundary condition (14) at the right boundary leads to an energy estimate.

The proof of Proposition 6.6 is similar to that of Proposition 6.5, and is given in
Appendix C.3.

6.2.2 Choice of penalty parameters for the discrete formulation

The continuous boundary terms in (41) depend on Ū = [p̂, û, ûx]
T , while the discrete

boundary terms in (30) and (31) depend on V̂j = [p̂j, ûj]
T and (D̄V̂ )j = [(Dp̂)j, (Dû)j]

T ,
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(j being 0 or N). The additional dependence on (Dp̂)0 and (Dp̂)N will be removed.
The penalty parameters are

τ0 =

[
τ 11
0 τ 12

0

τ 21
0 τ 22

0

]
, σ0 =

[
σ11

0 σ12
0

σ21
0 σ22

0

]
, τN =

[
τ 11
N

τ 21
N

]
, σN =

[
σ11
N

σ21
N

]
. (45)

Zeroing out the first row of σ0,N such that σ11
0 = σ12

0 = 0 and σ11
N = 0, the boundary

terms in (30) and (31) become independent on (Dp̂)0 and (Dp̂)N , respectively. Denoting
the remaining rows σ̃0 = [σ21

0 , σ
22
0 ] and σ̃N = [σ21

N ], the boundary terms in (30) and (31)
can be written

BTDL = V̄ ∗0

[
Ã+

[
τ0
σ̃0

]
L̄L +

([
τ0
σ̃0

]
L̄L

)∗]
V̄0

− V̄ ∗0
[
τ0
σ̃0

]
ĝL −

(
V̄ ∗0

[
τ0
σ̃0

]
ĝL

)∗ (46)

and

BTDR = V̄ ∗N

[
−Ã+

[
τN
σ̃N

]
L̄R +

([
τN
σ̃N

]
L̄R

)∗]
V̄N

− V̄ ∗N
[
τN
σ̃N

]
ĝR −

(
V̄ ∗N

[
τN
σ̃N

]
ĝR

)∗
,

(47)

respectively, where V̄0 = [p̂0, û0, (Dû)0]
T and V̄N = [p̂N , ûN , (Dû)N ]T .

Proposition 6.7. Choosing the penalty parameter elements τ ij0 and σij0 in (45) as

σ11
0 = σ12

0 = 0,

 τ 11
0 τ 12

0

τ 21
0 τ 22

0

σ21
0 σ22

0

 = −x+Λ+J
−1
L

results in a strongly stable numerical scheme.

Proof. Inserting the specific choice [τT0 , σ̃
T
0 ]T = −x+Λ+J̄

−1
L into (46) yields

BTDL =
(
xT−V̄0 − C−1

L R∗LΛ+g̃L
)∗ CL (xT−V̄0 − C−1

L R∗LΛ+g̃L
)

+ g̃∗L
(
Λ+ − Λ+RLC−1

L R∗LΛ+

)
g̃L (48)

− (L̄LV̄0 − ĝL)∗J−∗L Λ+J
−1
L (L̄LV̄0 − ĝL)

where, according to Proposition 6.5, CL ≤ 0.

Proposition 6.8. Choosing the penalty parameter elements τ ijN and σijN in (45) as

σ11
N = 0,

 τ 11
N

τ 21
N

σ21
N

 = x−Λ−J
−1
R

results in a strongly stable numerical scheme.
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Proof. Inserting the penalty parameters [τTN , σ̃
T
N ]T = x−Λ−J̄

−1
R into (47), yields

BTDR = −
(
xT+V̄N − C−1

R R∗RΛ−g̃R
)∗ CR (xT+V̄N − C−1

R R∗RΛ−g̃R
)

− g̃∗R
(
Λ− − Λ−RRC−1

R R∗RΛ−
)
g̃R (49)

+ (L̄RV̄N − ĝR)∗J−∗R Λ−J
−1
R (L̄RV̄N − ĝR)

where CR ≥ 0 according to Proposition 6.6.

Remark: Note that when using the penalty parameters as specified in Proposition 6.7
and 6.8, the discrete boundary terms BTDL,R in (48) and (49) correspond exactly to
the continuous boundary terms BTL,R in (44), except for a small damping term. The
damping term is a function of the deviation from the boundary data, and goes to zero
as the mesh is refined.

7 Implementation details

Here we describe the numerical procedure, including how the Laplace transform is
inverted. As an example, we consider imposing the Dirichlet boundary conditions at
the left boundary, and using the exact NRBC at the right boundary. Hence the term
(Σ0 ∗ V )(t) = L−1{Σ̂0(s)V̂ (s)} in (23) will be replaced by

(P−1e0 ⊗ τDir.0 + P−1DT e0 ⊗ σDir.0 )(LLV0 − gL). (50)

Giving Dirichlet boundary conditions such that p = g1 and u = g2 at the left bound-
ary, implies that LL = I2. The penalty matrices in (50) are chosen as specified in
Appendix D.1.

7.1 Inverting the Laplace transform

At the right boundary we impose the non-reflecting boundary conditions. The convo-
lution (ΣN ∗ V )(t) = L−1{Σ̂N(s)V̂ (s)} in (23) is defined as

L−1{Σ̂N(s)V̂ (s)} =

∫ t

0

ΣN(τ)V (t− τ)dτ. (51)

We follow the work in [20, 21], and approximate the integral (51) at time tn = nh by
the convolution quadrature

n∑
j=0

ωj(h)V (tn−j), (52)

where h is the time step, and where ωj(h) ≈ hΣN(tj) for jh away from zero. The
coefficients ωj(h) in (52) are approximated by

ω̂j(h) = ρ−j
1

L

L−1∑
l=0

Σ̂N

(
δ(ρeiτl)

h

)
e−ijτl , τl = 2πl/L. (53)

The constants ρ and L and the function δ must be suitably chosen. We use ρ = 0.975,
L = T/h, where T is the end time of the computation, and δ(ζ) =

∑3
i=1

1
i
(1− ζ)i.

Remark: Note that there exist more elaborate versions of this method, see e.g. [22].
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7.2 Time discretization

We let the boundary data ĝR be zero such that Γ̂N = 0 in (25) and ΓN = 0 in (23).
The semi-discrete scheme (23) is then expressed as

Vt = F(t, V ), (54)

such that

F(t, V ) = AV + G(t) +

∫ t

0

ΣN(τ)V (t− τ)dτ, (55)

where, including the Dirichlet boundary condition in (50),

A = −(D ⊗ A) + (D2 ⊗B) + (P−1e0 ⊗ τDir.0 + P−1DT e0 ⊗ σDir.0 )(eT0 ⊗ LL)

G(t) = F − (P−1e0 ⊗ τDir.0 + P−1DT e0 ⊗ σDir.0 )gL(t).

The ordinary differential equation (54) is discretized in time using the trapezoidal rule,

Vn+1 = Vn +
h

2
(F(tn, Vn) + F(tn+1, Vn+1)) . (56)

We insert (55) into (56), and use the approximation∫ t

0

ΣN(τ)V (t− τ)dτ ≈
n∑
j=0

ω̂j(h)V (tn−j).

After moving all terms containing Vn+1 to the left-hand side, we obtain the final scheme(
I − h

2
(A + ω̂0)

)
Vn+1 =

(
I +

h

2
A

)
Vn +

h

2

n∑
j=0

(ω̂j + ω̂j+1)Vn−j

+
h

2
(G(tn) + G(tn+1)) .

(57)

When computing ω̂j in (57), using (53), we need Σ̂N . We rewrite the parts of Σ̂N V̂ in
(28) such that we can identify

Σ̂N = P̄−1(EN ⊗ τNHR +DTEN ⊗ σNHR + END ⊗ τNGR +DTEND ⊗ σNGR), (58)

where EN = eNe
T
N . That is, Σ̂N is a 2(N + 1) × 2(N + 1) matrix, and consequently

so are ω̂j. Fortunately Σ̂N is sparse since EN mainly consist of zeroes, and it suffice to
compute the lower right corner of ω̂j.

Remark: The scheme (57) exemplifies the special case when having the Dirichlet
boundary conditions at the left boundary and the exact NRBC at the right boundary.
Other scenarios, for example when having the exact NRBC’s at the left boundary and
the Dirichlet boundary condition at the right boundary, are derived in a similar way.
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7.3 Computation of the penalty parameters for the NRBC’s

When computing Σ̂N in (58), we need the penalty parameters τN and σN , which will
be given explicitly below. In the numerical simulations we will also impose the exact
NRBC’s at the left boundary, using Σ̂0 (i.e. the left analogue to Σ̂N), and therefore we
will present τ0 and σ0 as well. We either replace the indefinite terms, using

τ0 = SL, σ0 =

[
0 0
0 0

]
, τN = −

[
0
1

]
, σN =

[
0
0

]
, (59)

(see Propositions 6.3 and 6.4), or replace the ingoing variables, using

τ0 = −
[
v + c 0
v + c 0

]
Λ+J

−1
L , σ0 = −

[
0 0
−ε ε

]
Λ+J

−1
L

τN =

[
v − c
c− v

]
Λ−J

−1
R , σN =

[
0
ε

]
Λ−J

−1
R .

(60)

The derivation of the penalty parameters (60) is described below. We first find JL,R, RL,R

by rewriting (43) as

L̄L = [JL JLRL]XT , L̄R = [JRRR JR]XT .

The rotation Ã = XΛXT , where Λ = diag(Λ+,Λ−) and X = [x+, x−], can be chosen
in numerous ways, and the choice of rotation will influence the penalty parameters
slightly. (To compute the eigenvalues and eigenvectors numerically is one option.) We
have used the rotation

Λ+ =

[ 1
2(v+c)

−v
v2−c2

]
, Λ− =

[
1

2(v−c)

]
, x+ =

 v + c 0
v + c 0
−ε ε

 , x− =

 v − c
c− v
ε

 ,
which is valid for 0 < v < c and yields

X−T =

 1
2(v+c)

−c
v2−c2

1
2(v−c)

1
2(v+c)

v
v2−c2

−1
2(v−c)

0 1
ε

0

 .
The matrices JL,R are obtained from L̄L,RX

−T , where L̄L,R are given in (20), as

L̄LX
−T =

[
α1+β1

2(v+c)
vβ1−cα1

v2−c2 + 1
α2+β2

2(v+c)
vβ2−cα2

v2−c2 + 1︸ ︷︷ ︸
JL

α1−β1

2(v−c)
α2−β2

2(v−c)

]
, L̄RX

−T =
[

α3+β3

2(v+c)
vβ3−cα3

v2−c2 + 1 α3−β3

2(v−c)

]
︸ ︷︷ ︸

JR

,

and thereafter the penalty parameters are computed as specified in Proposition 6.7 and
Proposition 6.8, such that (60) is obtained.

Remark: In the numerical experiments we will compare the exact NRBC’s to a low
order approximation of the NRBC’s. The approximative NRBC’s are derived by in-
serting s = 0 into the exact non-reflecting boundary operators, which yields time-local,
low-reflecting boundary conditions. The penalty parameters are obtained similarly, by
inserting s = 0 into τ0,N and σ0,N . The resulting operators are given in Appendix D.2.
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8 Numerical results

We let the computational domain be [xL, xR] = [0, 1], and as reference solution we use
the solution from a five times larger domain. The errors are defined as the difference
between the solution and the reference solution, as ∆p = p− pref and ∆u = u− uref .
The SBP matrix P is used for computing norms of the errors, as

Error(p) = ‖∆p‖P , Error(u) = ‖∆u‖P ,
where the norm of a vector v is defined as ‖v‖2P = vTPv. See [19] for details on the
accuracy and interpretations of SBP norms. For the space discretization we use a third
order accurate SBP scheme, and as mentioned earlier, the trapezoidal rule is used for
the time discretization. In all simulations we use the physical parameter values c = 1,
v = 0.5 and ε = 0.1. The time step is h = 0.001 and the end time T = 0.4. The
number of grid point varies, but in the figures we have used N = 64. The time step
is sufficiently small, such that the errors from the space discretization are dominating.
To reduce the number of figures we only show the solution for the variable u, but the
results for the variable p are similar and presented in the tables.

8.1 Non-reflecting boundary conditions at the right boundary

First, simulations are performed using the scheme (57) with the penalty parameters
given in (59) and (60). As initial condition we use

p(x, 0) = u(x, 0) =


0 0.05 ≥ x

cos3(2.5π(x− 0.25)) 0.05 < x < 0.45
0 x ≥ 0.45.

(61)

At the left boundary the Dirichlet boundary conditions are imposed and at the right
boundary the solution is supposed to propagate out without reflections. This is the same
problem setup as in the introducing examples in Figure 1 and Table 1. In comparison
the exact NRBC outperforms those examples by far, see Figure 2.
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Figure 2: The solution to (1) with initial condition given by (61). At x = 1 the
pulse should pass without reflections. At the right boundary the Dirichlet boundary
condition, the approximate NRBC or the exact NRBC is used.
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More importantly, the exact NRBC solution converges to the reference solution as
the mesh is refined, see Table 2 and 3. The errors have the same size, independently
of whether the ”replacing the indefinite terms” or the ”replacing the ingoing variables”
penalty is used. In the simulations, the computational cost when using the exact
NRBC’s are the same as when using any of the other boundary conditions.

N Error(p) ratio conv. rate Error(u) ratio conv. rate
16 0.00094582 0.00120231
32 0.00010451 9.0497 3.1779 0.00014386 8.3575 3.0631
64 0.00001193 8.7569 3.1304 0.00001848 7.7862 2.9609
128 0.00000142 8.3796 3.0669 0.00000239 7.7320 2.9508

Table 2: Results obtained using the exact NRBC (with the ”replacing the indefinite
terms” penalty) at the right boundary.

N Error(p) ratio conv. rate Error(u) ratio conv. rate
16 0.00091109 0.00121302
32 0.00010158 8.9690 3.1649 0.00014664 8.2722 3.0483
64 0.00001152 8.8217 3.1411 0.00001872 7.8317 2.9693
128 0.00000139 8.2978 3.0527 0.00000241 7.7753 2.9589

Table 3: Results obtained using the exact NRBC (with the ”replacing the ingoing
variables” penalty) at the right boundary.

8.2 Non-reflecting boundary conditions at the left boundary

Next we consider the NRBC’s at the left boundary. For this case we use the initial
condition

p(x, 0) = −u(x, 0) =


0 0.3 ≥ x

−cos3(2.5π(x− 0.5)) 0.3 < x < 0.7
0 x ≥ 0.7,

(62)

such that the main content of the initial solution travels in the left direction. The
resulting solution at time t = 0.4 is shown in Figure 3, and as can be seen in Table 4
the solution converges to the reference solution as the mesh is refined.

N Error(p) ratio conv. rate Error(u) ratio conv. rate
16 0.00026816 0.00036867
32 0.00003824 7.0134 2.8101 0.00005167 7.1355 2.8350
64 0.00000414 9.2323 3.2067 0.00000522 9.9028 3.3078
128 0.00000051 8.0689 3.0124 0.00000064 8.1321 3.0236

Table 4: Results obtained using the exact NRBC (with the ”replacing the ingoing
variables” penalty) at the left boundary.

The results obtained using the ”replacing the indefinite terms” are omitted since
those are similar to the results obtained using the ”replacing the ingoing terms” penalty.

21



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

So
lu

tio
n

 

 

u ref. (t=0.0)
u ref. (t=0.2)
u ref. (t=0.4)
u Dirichlet
u Approx.
u Exact

(a) t = 0.4

0 0.2 0.4 0.6 0.8 1
0.3

0.2

0.1

0

0.1

0.2

0.3

x

Er
ro

r

 

 

error Dirichlet
error Approx.
error Exact

(b) t = 0.4

Figure 3: The solution to (1) with initial condition given by (62). At x = 0 the pulse
should pass without reflections. At the left boundary the Dirichlet boundary condition,
the approximate NRBC or the exact NRBC is imposed.

8.3 Initial condition without compact support

In the boundary conditions (14) the possibility of perturbed data, due to an unknown
particular solution, is indicated. To model this, we also use an initial condition that
does not have compact support in x ∈ [0, 1],

p(x, 0) = u(x, 0) =


0 0.7 ≥ x

cos3(2.5π(x− 0.9)) 0.7 < x < 1.1
0 x ≥ 1.1,

(63)

where p(1, 0) = u(1, 0) ≈ 0.35. Despite this, we still give zero boundary data to the
non-reflecting boundary condition (which we know is wrong, i.e. g′R in (14) will be
non-zero). The results for the exact NRBC’s are still superior compared to the ones
obtained with the Dirichlet or the approximate NRBC’s, see Figure 4. However, since
the boundary data does not match the non-zero particular solution, the convergence
rates are zero.

9 Conclusions

We have investigated exact non-reflecting boundary conditions (NRBC) for flow prob-
lems, with focus on the theoretical aspects, well-posedness and stability. We consider an
incompletely parabolic system of partial differential equations, as a model of the Navier-
Stokes equations. The exact NRBC’s were derived in Laplace transformed space.

We express the transformed solution as a superposition of ingoing and outgoing
waves, and eliminate the ingoing waves at each boundary. Both inflow and outflow
NRBC’s are derived. It is shown that the exact non-reflecting boundary conditions
lead to well-posedness, both in the GKS sense and in the energy sense.

The system is discretized in space using a high order accurate finite difference
scheme on Summation-By-Parts form (SBP), and the boundary conditions are imposed
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Figure 4: The solution to (1) with initial condition given by (63). At x = 1 the pulse
should pass out without reflections. At the right boundary the Dirichlet boundary
condition, the approximate NRBC or the exact NRBC is imposed.

weakly using a penalty formulation (SAT). With the continuous energy estimate as a
guideline, two different SAT formulations have been derived, both yielding a discrete
energy estimate mimicking the continuous one. Hence, by the combined use of the
SBP operators and the SAT implementation, stability follows directly from the result
of well-posedness for the continuous problem.

The exact non-reflecting boundary conditions are global in time, and must be trans-
formed back for the numerical experiments. This is done by employing convolution
quadratures. In the simulations the solutions converge to a reference solution, as accu-
rately as the design order of the numerical scheme. The two different SAT formulations
derived perform equally good, producing almost identical results in the numerical sim-
ulations.

We have compared the exact NRBC’s to the Dirichlet boundary conditions and
to approximate NRBC’s. The exact NRBC’s outperform the other conditions, yielding
lower reflections both for exact and erroneous boundary data. Unlike the approximative
non-reflecting boundary conditions and the Dirichlet boundary conditions, the exact
ones yields convergence to the correct solution when the mesh is refined (and exact
boundary data is available).

The superior accuracy, both on the boundary and in the interior (owing to the exact
NRBC’s and the high order scheme, respectively), in combination with the guaranteed
stability, results in a competitive numerical method for computations on unbounded
domains.

A Multiple roots

We show that the polynomial q(κ, s) in (6) has no multiple roots κ for Re(s) ≥ 0, unless
v = c. We start by writing q̃(κ, s) = −q(κ, s)/(εv) as

q̃(κ, s) = κ3 − r2κ2 + r1κ− r0
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where the coefficients r0, r1 and r2 are given in (9). The derivative q̃′(κ, s) = ∂
∂κ
q̃(κ, s),

q̃′(κ, s) = 3κ2 − 2r2κ+ r1,

has roots

κ4,5 =
r2
3
±
√(r2

3

)2

− r1
3
.

If the polynomial q̃(κ, s) has a multiple root κj, then that root κj will be a solution to
the derivative q̃′(κ, s) as well. To check whether q̃(κ, s) and q̃′(κ, s) have any roots in
common, we insert κ4,5 into q̃(κ, s). This yields

q̃(κ4,5, s) =
−1

27

(
r2
(
2r2

2 − 9r1
)
± 2
√
r2
2 − 3r1

(
r2
2 − 3r1

)
+ 27r0

)
.

Requiring q̃(κ4,5, s) = 0 leads to

r2
(
2r2

2 − 9r1
)

+ 27r0 = ∓2
√
r2
2 − 3r1

(
r2
2 − 3r1

)
,

which we square on both sides to obtain

(r2
(
2r2

2 − 9r1
)

+ 27r0)
2 = 4

(
r2
2 − 3r1

)3
. (64)

If the relation (64) is fulfilled q(κ, s) has a multiple root. We check if this can occur by
defining Υ = (r2 (2r2

2 − 9r1) + 27r0)
2 − 4 (r2

2 − 3r1)
3
, and see whether it is possible to

find Υ = 0. Inserting the values r0 = s2/(εv), r1 = −2s/ε and r2 = (v2 − c2 − sε)/(εv)
from (9) gives

Υ = −27
s2

ε4v4

(
4c2(v2 − c2)2 + 4c2(3c2 + 5v2)sε+ (v2 + 12c2)(sε)2 + 4(sε)3

)
.

Let sε = η̃ + ξ̃i to split Υ into one real and one imaginary part, as

Υ =− 27
s2

ε4v4

(
4c2(v2 − c2)2 + 4c2(3c2 + 5v2)η̃ + (v2 + 12c2)(η̃2 − ξ̃2) + 4(η̃3 − 3η̃ξ̃2)

)
− 27

s2

ε4v4

(
4c2(3c2 + 5v2) + 2(v2 + 12c2)η̃ + 4(3η̃2 − ξ̃2)

)
ξ̃i.

The imaginary part of Υ can be cancelled either by choosing ξ̃ = 0 or by choosing
ξ̃2 = c2(3c2 +5v2)+(v2 +12c2)η̃/2+3η̃2. In both these cases the real part of Υ can only
be cancelled if η̃ < 0. The only exception is if s = 0, then a multiple root is possible.
This case is considered next.

A.1 The s = 0 case

For s = 0 the polynomial in (6) becomes q(κ, 0) = (v2 − c2)κ2 − εvκ3, and has roots

v < c : κ1 =
v2 − c2

εv
, κ2 = 0, κ3 = 0

v = c : κ1 = 0, κ2 = 0, κ3 = 0

v > c : κ1 = 0, κ2 = 0, κ3 =
v2 − c2

εv
.
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If v 6= c, we can find two linearly independent eigenvectors corresponding to the double
root κ = 0, so in this case the single root ansatz Ūh = eκxΨ still holds. When v = c,
κ = 0 is a triple root, but we can only find two linearly independent eigenvectors. Hence
the single root ansatz is no longer valid in this case.

This can also be seen from the s → 0 limit of ΦT
i Ψi (the diagonal entries of E(s)

in Proposition 4.1). Under the assumption |s| << 1 the approximate values of κj and
ΦT
i Ψi can be computed. For v < c we get

κ1 ≈
v2 − c2

εv
, κ2 ≈

−s
v + c

, κ3 ≈
−s
v − c

ΦT
1 Ψ1 ≈ v2 − c2, ΦT

2 Ψ2 ≈ 2c(v + c), ΦT
3 Ψ3 ≈ −2c(v − c),

and for v > c we have the same relations, except that the expression for κ1 has become
κ3, and vice versa. In both these cases we see that ΦT

i Ψi 6= 0 and hence E(0) is non-
singular. However, the above approximations only hold for v 6= c. For v = c the κj’s
and ΦT

i Ψi’s are

κ1 ≈ −
√

2s

ε
, κ2 ≈

−s
2c
, κ3 ≈

√
2s

ε

ΦT
1 Ψ1 ≈ −2c

√
2sε, ΦT

2 Ψ2 ≈ 4c2, ΦT
3 Ψ3 ≈ 2c

√
2sε.

We see that both ΦT
1 Ψ1 and ΦT

3 Ψ3 become zero for s = 0, and consequently the matrix
E(s) in Proposition 4.1 is in fact singular for s = 0 and v = c. In this case the
ansatz Ūh = eκxΨ and the general homogeneous solution (7) must be replaced by a
double root ansatz. Moreover, new non-reflecting boundary conditions might need to
be constructed. In this paper we will simply avoid the special case v 6= c.

B The signs of Re(κ/s)

Consider the roots κj of the polynomial q(κ, s) in (6). We show that Re(κj/s) has
the same sign as Re(κj) for j = 1, 2, 3. Start by denoting κ̃ = κ/s, such that q(κ, s)
becomes

q(sκ̃, s) = s2
(
1 + 2vκ̃+ (v2 − c2 − εs)κ̃2 − sεvκ̃3

)
= 0.

Let s = η + ξi and assume that κ̃ passes the imaginary axis, i.e. κ̃ = β̃i. Inserting this
into q(sκ̃, s) and dividing by s2 (assuming s 6= 0) yields

1− (v2 − c2 − εη + vεξβ̃)β̃2 + (2v + εξβ̃ + vεηβ̃2)β̃i = 0. (65)

There are two options that make the imaginary part of (65) zero. Either we let β̃ = 0 or
we let 2v+εξβ̃+vεηβ̃2 = 0. For η ≥ 0, both these choices results in a non-zero real part
of (65). We know already that the signs of Re(κj/s) are equal to the signs of Re(κj)
when s is real and positive, and thus Re(κ1/s) < 0, Re(κ2/s) < 0 and Re(κ3/s) > 0 for
all Re(s) > 0.
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C Proofs of propositions

C.1 Proof of Proposition 4.3

Proof. The right boundary condition in (12) yields the solution Ūh = σ1e
κ1xΨ1 +

σ2e
κ2xΨ2. Inserting this into BTR in (17) we obtain

BTR = −
[
σ1e

κ1xR

σ2e
κ2xR

]∗
AR
[
σ1e

κ1xR

σ2e
κ2xR

]
,

where AR is a Hermitian matrix as

AR =

[
Ψ∗1ÃΨ1 Ψ∗1ÃΨ2

Ψ∗2ÃΨ1 Ψ∗2ÃΨ2

]
.

To show that AR ≥ 0 we first note that the diagonal elements of AR, Ψ∗1ÃΨ1 and

Ψ∗2ÃΨ2, are both positive for Re(s) > 0. This is seen from

Ψ∗i ÃΨi = −Re

(
s

κi

)(
c2 +

∣∣∣∣s+ vκi
κi

∣∣∣∣2
)
− εRe (κi)

∣∣∣∣s+ vκi
κi

∣∣∣∣2 ≥ 0, for i = 1, 2,

where we have used that Re(κi/s) < 0 and Re(κi) < 0 for i = 1, 2. Moreover, the

off-diagonal elements Ψ∗jÃΨi must be sufficiently small, which they are if the quantity

γ = (Ψ∗1ÃΨ1)(Ψ
∗
2ÃΨ2)− (Ψ∗1ÃΨ2)(Ψ

∗
2ÃΨ1) is positive. By using

Ψ∗jÃΨi =−1

2

(
s

κi
+
s∗

κ∗j

)(
c2+

(
s+ vκj
κj

)∗(
s+ vκi
κi

))
−ε

2

(
κi + κ∗j

)(s+ vκj
κj

)∗(
s+ vκi
κi

)
,

it is possible to write

γ =

(
Re

(
sε

κ1κ2

)(
c2v2 +

∣∣∣∣s+ vκ1

κ1

∣∣∣∣2 ∣∣∣∣s+ vκ2

κ2

∣∣∣∣2
)

+ Re

(
s2

κ1κ2

)
c2|s|2

|κ1κ2|2

)
|κ1 − κ2|2

where the terms sε/(κ1κ2) and s2/(κ1κ2) have positive real parts. This is realized by
using the relation κ1κ2κ3 = s2/(εv) in (9), which leads to

sε

κ1κ2

= ε2v
κ3

s
,

s2

κ1κ2

= εvκ3

where Re(κ3/s) ≥ 0 and Re(κ3) ≥ 0 according to Proposition 3.1 and Proposition 3.2.
Hence γ ≥ 0 and consequently AR is positive definite and BTR ≤ 0.

C.2 Proof of Proposition 6.1.

Proof. Written out explicitly, the matrix ML = A+ H̃L + H̃T
L in (34) is

ML =

[
v + a∆α + a∗∆∗α c+ α∗2 + b∗∆∗α + a∆β

c+ α2 + b∆α + a∗∆∗β v + β2 + β∗2 + b∆β + b∗∆∗β

]
,
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where the choice of a and b affects the eigenvalues of ML. For ML to be negative
semi-definite it is needed that either (i) or (ii) holds, together with (iii).

i) v + 2Re(a∆α) ≤ 0

ii) v + 2Re(β2 + b∆β) ≤ 0

iii) (v + 2Re(a∆α))(v + 2Re(b∆β + β2))− |c+ b∆α + α2 + a∗∆∗β|2 ≥ 0.

The requirement (iii) leads to the equivalent relation (35), which we identify as the
equation for a parabola with complex coefficients in the x = a∆∗β−b∆∗α, y = a∆α+b∆β

coordinate system. Further, we note that r in (36) is negative, by rewriting it as

r = −
v|s|2 + v|κ3|2Re(s/κ3)

2 + (v2|κ3|2 + |s|2)Re(s/κ3) + 1
2
vε|κ3|2Re(s+ vκ3)

2|vκ3 + s|2
≤ 0,

where we have used that Re(κ3) ≥ 0 and Re(κ3/s) ≥ 0. Then, by rearranging equation
(35) as

v + 2Re(a∆α) ≤ 1

r

∣∣∣∣a∆∗β − b∆∗α +
v∆∗β − (c+ α2)∆

∗
α

∆α

∣∣∣∣2 ≤ 0

v + 2Re(β2 + b∆β) ≤ |∆β|2

r|∆α|2

∣∣∣∣a∆∗β − b∆∗α −
(v + 2Re(β2))∆

∗
α − (c+ α∗2)∆∗β

∆β

∣∣∣∣2 ≤ 0,

we see that if (iii) holds, so do the relations (i) and (ii). Hence the pairs of a and b
fulfilling (35) lead to negative semi-definiteness of ML.

C.3 Proof of Proposition 6.6

Proof. Using that Ã = x+Λ+x
T
+ +x−Λ−x

T
− and denoting the components of AR in (19)

as AjiR, gives

AjiR = Ψ∗jÃΨi

= Ψ∗j
(
x+Λ+x

T
+ + x+R

∗
RΛ−RRx

T
+

)
Ψi + Ψ∗j

(
x−Λ−x

T
− − x+R

∗
RΛ−RRx

T
+

)
Ψi

= Ψ∗jx+CRxT+Ψi + Ψ∗j
(
x−Λ−x

T
− − x+R̄

∗
RΛ−R̄Rx

T
+

)
Ψi︸ ︷︷ ︸

N ji
R

.

Inserting the relation xT− +RRx
T
+ = J−1

R L̄R from (43) into NL we obtain

N ji
R = Ψ∗j

(
x−Λ̃−x

T
− − x+R

∗
RΛ̃−RRx

T
+

)
Ψi

=
1

2
Ψ∗j
(
(xT− +RRx

T
+)∗Λ−(xT− −RRx

T
+) + (xT− −RRx

T
+)∗Λ−(xT− +RRx

T
+)
)

Ψi

[use (43)] =
1

2
Ψ∗j
(
(J−1
R L̄R)∗Λ−(xT− −RRx

T
+) + (xT− −RRx

T
+)∗Λ−J

−1
R L̄R

)
Ψi

= (L̄RΨj)
∗ (J

−1
R )∗Λ−(xT− −RRx

T
+)Ψi

2
+

Ψ∗j(x
T
− −RRx

T
+)∗Λ−J

−1
R

2
L̄RΨi.
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Recall that L̄R = ΦT
3 and that ΦT

j Ψi = 0. This makes L̄RΨ1 = 0 and L̄RΨ2 = 0. Thus

N ji
R = 0 for all i = 1, 2 and j = 1, 2, and we get

AjiR = Ψ∗jx+CRxT+Ψi, i = 1, 2, j = 1, 2.

From these coefficients we compose

AR =
(
xT+
[

Ψ1 Ψ2

])∗ CRxT+ [ Ψ1 Ψ2

]
,

where xT+ [Ψ1 Ψ2] is a non-singular 2×2 matrix. Since AR ≥ 0 from Proposition 4.3, we
know that CR ≥ 0.

D Penalty parameters

D.1 Dirichlet boundary conditions

Giving Dirichlet boundary conditions implies that LL = I2 and LR = [0, 1] in the
numerical scheme (1), and that the terms ((Σ0,N ∗ V )(t)− Γ0,N) in (23) are replaced
by (P−1e0,N ⊗ τDir.0,N + P−1DT e0,N ⊗ σDir.0,N )(LL,RV0,N − gL,R). If the Dirichlet boundary
conditions are used at both boundaries, the scheme becomes

Vt + (D1 ⊗ A)V − (D2 ⊗B)V = (P−1e0 ⊗ τDir.0 + P−1DT e0 ⊗ σDir.0 )(LLV0 − gL)

+ (P−1eN ⊗ τDir.N + P−1DT eN ⊗ σDir.N )(LRVN − gR).

By choosing the penalty matrices as

τDir.0 = −
[
v c
v c

]
, σDir.0 =

[
0 0
0 ε

]
, τDir.N =

[
c− v
v − c

]
, σDir.N = −

[
0
ε

]
,

the scheme becomes stable for 0 < v < c.

D.2 Approximate non-reflecting boundary conditions

The approximative boundary conditions are derived by inserting s = 0 into the ex-
act non-reflecting boundary operators, which yields time-local, low-reflecting boundary
conditions. They are expressed as H low

L,RU +Glow
L,RUx = gL,R, where

H low
L = −

[
0 0

v + c v + c

]
Glow
L =

[
0 ε
0 ε

]
H low
R =

[
v − c c− v

]
, Glow

R =
[

0 ε
]
,

which is HL,R and GL,R in (22), evaluated at s = 0 and for 0 < v < c. If the approximate
NRBC’s are imposed at both boundaries, the numerical scheme (23) becomes

Vt + (D1 ⊗ A)V − (D2 ⊗B)V= (P−1e0 ⊗ τ low0 + P−1DT e0 ⊗ σlow0 )(H low
L V0 +Glow

L (D̄V )0)

+(P−1eN ⊗ τ lowN + P−1DT eN ⊗ σlowN )(H low
R VN +Glow

R (D̄V )N),
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where we have used gL,R = 0. Following the ”replacing the indefinite terms” approach,
by evaluating the penalty (59) at s = 0, we obtain

τ low0 = SL, σlow0 =

[
0 0
0 0

]
, τ lowN = −SR, σlowN =

[
0
0

]
.

In SL the constants a, b must be chosen properly, correspondingly to Proposition 6.1.
Instead following the ”replacing the ingoing variables” approach, by evaluating the
penalty (60) at s = 0, yields

τ low0 =

[
0 1/2
0 1/2

]
, σlow0 =

[
0 0
εv

v2−c2
ε

2(v+c)

]
, τ lowN =

[
1/2
−1/2

]
, σlowN =

[
0
ε

2(v−c)

]
,

for 0 < v < c.
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