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Abstract

We construct a soft thresholding operation for rank reduction of hierarchical
tensors and subsequently consider its use in iterative thresholding methods, in par-
ticular for the solution of discretized high-dimensional elliptic problems. The pro-
posed method for the latter case automatically adjusts the thresholding parameters,
based only on bounds on the spectrum of the operator, such that the arising tensor
ranks of the resulting iterates remain quasi-optimal with respect to the algebraic
or exponential-type decay of the hierarchical singular values of the true solution.
In addition, we give a modified algorithm using inexactly evaluated residuals that
retains these features. The practical efficiency of the scheme is demonstrated in
numerical experiments.

1 Introduction

Subspace-based tensor representations such as the hierarchical Tucker format [17] or the
special case of the tensor train format [25] enable the numerical treatment of problems
in very high dimensions by exploiting particular low-rank structures. Here one has a
well-defined notion of tensor rank as a tuple of matrix ranks of certain matricizations.
From a computational perspective, these tensor formats have the major advantage that
for any tensor given in such a representation, by a simple combination of linear algebraic
procedures, one may obtain an error-controlled, quasi-optimal approximation by a tensor
of lower ranks; this can be achieved by truncating the ranks of a hierarchical singular
value decomposition [14, 26,28], or HSVD for short, of the tensor.

In this work, we consider an alternative procedure for reducing ranks that is based
on soft thresholding of the singular values in a HSVD, as opposed to the mentioned rank
truncation (which would correspond to their hard thresholding). The new procedure has
similar complexity and quasi-optimality properties, but unlike the truncation it is non-
expansive, which turns out to be a major advantage in the context of iterative schemes.

A large part of the results that we obtain are in fact applicable to fixed point iterations
based on general contractive mappings. The iterative scheme that we focus on as an
∗This research was supported in part by DFG SPP 1324 and ERC AdG BREAD.
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example, however, is a Richardson iteration for solving the linear equation

Au = f (1)

on a separable tensor product Hilbert space

H = H1 ⊗ · · · ⊗ Hd ,

where f ∈ H is given and A : H → H is elliptic on H; that is, the iteration is of the form

uk+1 = Sαk
(
uk − µ(Auk − f)

)
, (2)

where Sα is the proposed soft thresholding procedure with suitable parameters αk.
Even when both A and f have exact low-rank representations, the unique solution

u∗ of the problem (1) may no longer be of low rank. It turns out, however, that in many
cases of interest, u∗ can still be efficiently approximated by low-rank tensors up to any
given error tolerance. Here one can obtain algebraic error decay with respect to the ranks
under fairly general conditions [20, 27], and superalgebraic or exponential-type decay in
more specific situations [8, 13,19].

When a solution u∗ that has this property is approximated by an iteration such
as (2), it is not a priori clear to what extent also the iterates uk retain comparably low
ranks, since the basic iteration without truncation can in principle lead to an exponential
rank increase. That the ranks of uk remain comparable to those needed for approximat-
ing u∗ at the current accuracy therefore depends crucially on the appropriate choice of
thresholding parameters αk. Keeping the tensor ranks of iterates as low as possible is of
crucial importance for the efficiency of such methods, since the complexity of the tensor
operations that need to be performed grows like the fourth power of these ranks.

We show in this work that when the rank reduction in each step is done by the tensor
soft thresholding procedure that we shall describe, quasi-optimal tensor ranks can be
enforced for each single iterate uk, irrespective of the rank increase caused by A. This
means that, assuming that the hierarchical singular values of u∗ have either algebraic
or exponential-type decay, the tensor ranks of each uk can be bounded up to a uniform
constant by the maximum rank of the best hierarchical tensor approximation to u∗ of
the same accuracy. To this end, we exploit the non-expansiveness of soft thresholding,
which allows us to choose the thresholding parameters in each step as large as required
to control the ranks, without compromising the convergence of the iteration.

After describing the construction of the operation Sαk , we begin by identifiying choices
of geometrically decreasing αk that lead to the desired rank estimates provided that
the precise decay of the hierarchical singular values of u∗ is known. On this basis, we
then construct a scheme which, based on a certain a posteriori criterion, adjusts αk
to the unknown decay of hierarchical singular values such that the quasi-optimal ranks
are preserved. This method requires no a priori information except for bounds on the
spectrum of A and the norm of f . In a third step, we develop a perturbed version of the
scheme that permits inexactly evaluated residuals.

For the case that the rank reduction is done by a truncated HSVD (that is, by hard
thresholding), a scheme for choosing thresholding parameters that leads to near-optimal

2



ranks is given in [1, 2]; to the authors’ knowledge, this is the only previous instance of a
method that guarantees global converge to the true solution while at the same time, the
arising ranks can be estimated in terms of the ranks required for the approximation of
the solution. A limitation of the approach used there to control the ranks is that their
near-optimality is enforced by truncating with a sufficiently high tolerance, which can be
done only after every few iterations when a certain error reduction has been achieved.
The ranks of intermediate iterates can therefore still accumulate in the iterations between
these complexity reductions, which can be problematic if each application of the operator
already causes a large rank increase. In the method proposed here, this accumulation
can be ruled out, and intermittent, sufficiently large increases of approximation errors
that restore quasi-optimality are no longer necessary.

Note that here we do not address the aspect of an adaptive underlying discretization of
the problem as considered in [1,2]. Although our resulting procedure of the form (2) can
in principle be formulated on infinite-dimensional Hilbert spaces, in this work we restrict
our considerations concerning a numerically realizable version to fixed discretizations. In
other words, in the form given here, the scheme applies either to infinite-dimensionalHi '
`2(N) (which is of course not implementable in practice), or to a fixed finite-dimensional
choice Hi ' Rni . The version of the algorithm allowing inexact evaluation of residuals
can, however, serve as a starting point for combining the method with adaptive concepts
for identifying suitable subsets of `2(N) in the course of the iteration. Furthermore, we
expect that the concepts put forward here can also be used in the construction of adaptive
methods for sparse basis representations.

Iterations using soft thresholding of sequences have been studied extensively in the
context of inverse and ill-posed problems, see e.g. [3, 4, 9], where they are especially well
suited for obtaining convergence under very general conditions. Note that in such a
setting, a priori choices of geometrically decreasing thresholding parameters have been
proposed, e.g., in [29] and [7]. However, our approach for controlling the complexity of
iterates – in the present case, the arising tensor ranks – in iterative schemes for well-
posed problems appears to be new, in particular the a posteriori criterion that steers the
decrease of the thresholding parameters.

The proposed method can also be motivated by a variational formulation of the
problem. For instance, if A is symmetric, the solution is characterized by

u∗ = argmin
v∈H

{1

2
〈Av,v〉 − 〈f ,v〉

}
.

A standard way to solve this problem in the spirit of a Ritz-Galerkin method would
be to restrict it to the manifold of hierarchical tensors with fixed rank and treat the
resulting minimization problem by Riemannian gradient methods or alternating least
squares techniques [18]. However, the sets over which one needs to minimize are not
convex, and there generally exist many local minima. Roughly speaking, in such methods
one fixes the model class (in this case by the admissible hierarchical tensor ranks) and
attempts to minimize the error over this class.

In an alternative variational formulation, one can prescribe an error tolerance, for
instance ‖Av− f‖ ≤ ε, and attempt to minimize the tensor ranks over the set of such v.
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Although the admissible set is then convex, even in the matrix case d = 2 the rank does
not give a convex functional. However, one can instead minimize an appropriate convex
relaxation such as the `1-norm of singular values. It is well known that in the matrix
case, such relaxed problems can be solved by proximal gradient methods, which can be
rewritten as iterative soft thresholding [22] and hence take precisely the form (2) when
d = 2. In this case, our method can therefore also be motivated as a rank minimization
scheme, although this connection does not play a role in the analysis. Note, however,
that in the case of higher-order tensors, where our soft thresholding procedure no longer
permits an interpretation of the resulting scheme as a proximal gradient method, this is
only a formal analogy.

This article is arranged as follows: in Section 2, we collect some prerequisites con-
cerning the hierarchical tensor format as well as soft thresholding of sequences and of
Hilbert-Schmidt operators. In Section 3, we then describe and analyze the new soft
thresholding procedure for hierarchical tensors. In Section 4, we consider the combi-
nation of this procedure with general contractive fixed point iterations and derive rank
estimates for sequences of thresholding parameters that are chosen based on a priori in-
formation on the tensor approximability of u∗. In Section 5, we introduce an algorithm
that automatically determines a suitable choice of thresholding parameters without using
information on u∗, analyze its convergence, and additionally give a modified version of
the scheme based on inexact residual evaluations. In Section 6, we conclude with numer-
ical experiments on a discretized high-dimensional Poisson problem that illustrate the
practical performance of the proposed method.

Throughout this paper, the notation A . B is used to indicate that there exists a
constant C > 0 such that A ≤ CB.

2 Preliminaries

By ‖·‖, we always denote either the canonical norm on H, which is the product of the
norms on the Hi, or the `2-norm when applied to a sequence.

To quantify the sparsity of sequences, we shall frequently use membership in weak-`p
spaces, which are defined as follows: For a given sequence a = (ak)k∈N, for each n ∈ N
let a∗n be the n-th largest of the values |ak|. Then for p > 0, the space `p,∞ is defined as
the collection of sequences for which

|a|`p,∞ := sup
n∈N

n
1
pa∗n

is finite, and this quantity defines a (quasi-)norm on `p,∞. We will use these spaces with
p < 2, which implies `p,∞ ⊂ `2; note that one always has `p ⊂ `p,∞ ⊂ `p′ for all p′ > p.

For separable Hilbert spaces S1, S2, we write HS(S1,S2) for the space of Hilbert-
Schmidt operators from S1 to S2 with the Hilbert-Schmidt norm ‖·‖HS, which reduces to
the Frobenius norm in the case of finite-dimensional spaces. Hilbert-Schmidt operators
have a singular value decomposition with singular values in `2, satisfying the following
perturbation estimate, cf. [23].

4



Theorem 2.1. Let S1, S2 be separable Hilbert spaces, let X, X̃ ∈ HS(S1,S2), and let
σ, σ̃ ∈ `2(N) denote the corresponding sequences of singular values. Then ‖σ − σ̃‖`2(N) ≤
‖X− X̃‖HS.

Note that this was shown for matrices in [23], but the proof immediately carries over
to Hilbert-Schmidt operators.

2.1 The Hierarchical Tensor Format

We now briefly recall definitions and facts concerning the hierarchical Tucker format [17]
and collect some basic observations that will play a role later. For further details on the
hierarchical format, we refer to [16].

Throughout this work, we assume d ≥ 2. Let T be a binary dimension tree for tensor
order d, that is, with root element {1, . . . , d}; examples for d = 4 are given in Figure
1. We adopt the terminology of [14], referring to the collections of basis vectors in the
leaves of the tree as mode frames, and to the coefficient tensors at interior nodes of the
tree as transfer tensors.

We shall later make use of a certain equivalence between dimension trees, which we
formulate in terms of the edges in these trees. For each node n ∈ T, we set [n] :=
{1, . . . , d} \ n. In general, [n] /∈ T. Let

E :=
{
{n, [n]} : n ∈ T \ {1, . . . , d}

}
.

Then the elements of E correspond precisely to the edges in the tree T, where the root
element {1, . . . , d} is regarded as part of an edge. We set E := #E = 2d− 3.

For a given set of edges, there are several dimension trees that correspond to the same
matricizations of the tensor, but have the root element of the tree at a different edge.
This is illustrated in Figure 1 for a tensor of order four. Moving the root element in
the tensor representation can be done in practice by basic linear algebra manipulations,
where the existing component tensors in the representation are simply relabelled and
reorthogonalized accordingly. For instance, in passing from the first to the second tree
in Figure 1, the transfer tensor for node {2, 3, 4} is relabelled to {1, 3, 4}.

For what follows, we always assume a fixed enumeration {nt, [nt]}, t = 1, . . . , E, of E.
Note that the efficiency of the algorithms we will describe may depend on this sequence.
For practical purposes, it should be chosen such that moving the root element from one
edge to the next in the enumeration takes as little work as possible, as for instance in
Figure 1. For each t, we denote by Mt(u) the matricization corresponding to the t-th
edge of the tensor u, which for infinite-dimensional H is a Hilbert-Schmidt operator

Mt(u) :
⊗
i∈[nt]

Hi →
⊗
i∈nt

Hi ,

and byM−1
t we denote the mapping that converts a matricization back to a tensor. Note

that for each t, one hasMt(u) +Mt(v) =Mt(u + v) and

‖u‖ = ‖Mt(u)‖HS . (3)
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{1, 2, 3, 4}

{1} {2, 3, 4}

{2} {3, 4}

{3} {4}

{1, 2, 3, 4}

{2} {1, 3, 4}

{1} {3, 4}

{3} {4}

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{1, 2, 3, 4}

{1, 2, 4}

{1, 2}

{1} {2}

{4}

{3}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

Figure 1: Examples of equivalent dimension trees obtained by moving the root element.

The sequence of singular values of this matricization is denoted by σt(u), which we always
assume to be defined on N (with extension by zero in the case of finite-dimensional Hi),
and we set

rankt(u) := rank
(
Mt(u)

)
= #{k ∈ N : σt,k(u) 6= 0} .

2.2 Soft Thresholding

For x ∈ R, soft thresholding with parameter α > 0 is defined by

sα(x) := sgn(x) max{|x| − α, 0} .

In comparison, hard thresholding is given by hα(x) :=
(
1− χ[−α,α](x)

)
x.

Applied to each element of a vector or sequence, hard thresholding provides a very
natural means of obtaining sparse approximations by dropping entries of small absolute
value, which is closely related to best n-term approximation [10]. In contrast, soft thresh-
olding not only replaces entries that have absolute value below the threshold by zero,
but also decreases all remaining entries, incurring an additional error. However, this
operation has a non-expansiveness property that is useful in the construction of iterative
schemes, and that can be derived from a variational characterization.

To describe this characterization, for a proper, closed convex functional J : G → R
on a Hilbert space G and α ≥ 0, following [24] we define the proximity operator proxαJ :
G → G by

proxαJ (u) := argmin
v∈G

{
αJ (v) +

1

2
‖u− v‖2G

}
. (4)

As shown in [24], such operators have the following general property, which plays a crucial
role in this work.

Lemma 2.2. The proximity operator proxαJ is non-expansive, that is,

‖proxαJ (u)− proxαJ (v)‖G ≤ ‖u− v‖G , u,v ∈ G .
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Soft thresholding of a sequence v by applying sα to each entry, sα(v) :=
(
sα(vi)

)
i∈N,

can be characterized as the proximity operator of the functional ‖·‖`1 , see e.g. [9], and is
therefore a non-expansive mapping on `2.

An analogous characterization is still possible when soft thresholding is applied to the
singular values of matrices or operators, which provides a reduction to lower matrix ranks.
More precisely, the soft thresholding operation Sα for matrices is defined as follows: for
a given matrix X with singular value decomposition

X = U diag
(
σi(X)

)
VT ,

where σi(X) denotes the i-th singular value of X, we set

Sα(X) := U diag
(
sα(σi(X))

)
VT .

Note that application of the hard thresholding hα to the singular values would instead
correspond to a rank truncation of the singular value decomposition. For Hilbert-Schmidt
operators X one can define Sα(X) analogously.

The mapping Sα is the proximity operator for the nuclear norm,

‖X‖∗ := ‖σ(X)‖`1 =
∑
i≥1

σi(X) .

Lemma 2.3. Let S1,S2 be separable Hilbert spaces, X ∈ HS(S1,S2), and α ≥ 0. Then

proxα‖·‖∗(X) = Sα(X) ,

or in other words,

Sα(X) = argmin
V∈HS

{
α‖V‖∗ +

1

2
‖X−V‖2HS

}
.

Note that this statement is shown for finite matrices X, e.g., in [5]; the generalization
to Hilbert-Schmidt operators can be obtained by finite-dimensional approximation, using
Theorem 2.1 and that the `1-norm is lower semicontinuous with respect to componentwise
convergence of sequences, which follows from Fatou’s lemma.

3 Soft Thresholding of Hierarchical Tensors

In this section, we construct a non-expansive soft thresholding operation for the rank
reduction of hierarchical tensors. By St,α : H → H we denote soft thresholding applied
to the matricizationMt(·) of the input,

St,α(u) :=M−1
t ◦ Sα ◦Mt(u) .

The complete soft shrinkage operator Sα : H → H is then given as the successive appli-
cation of this operation to each matricization, that is,

Sα(u) := SE,α ◦ . . . ◦ S1,α(u) . (5)
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Clearly, the result of applying Sα for α > 0 always has finite (but not a priori fixed)
hierarchical ranks.

For a hierarchical tensor u with suitably numbered edges t = 1, . . . , E, the soft
thresholding Sα(u) can be obtained as follows: starting with u0 = u, for each t, we first
rearrange ut−1 such that the root element is on edge t with a singular value decomposi-
tion ofMt(ut−1), which exposes the singular values σt(ut−1) and thus allows the direct
application of St,α to obtain ut := St,α(ut−1), and finally Sα(u) = uE . An example of
an order in which the edges in E can be visited for this procedure in the case d = 4 is
given in Figure 1.

Remark 3.1. Assuming that we are given a hierarchical tensor with dimHi ≤ n ∈ N
and representation ranks bounded by r, then the first step of bringing this tensor into an
initial HSVD representation takes O(dr4 + dr2n) operations. Moving the root element
from one edge to an adjacent one costs O(r4 +r2n) operations; if an appropriate ordering
of the edges is used, the total complexity for applying Sα can thus be seen to be bounded
by O(dr4 + dr2n) as well.

Proposition 3.2. For any u,v ∈ H and α > 0, the operator Sα defined in (5) satisfies
‖Sα(u)− Sα(v)‖ ≤ ‖u− v‖.

Proof. The statement follows by repeated application of Lemmata 2.2, 2.3 and (3).

The following lemma guarantees that applying soft thresholding to a certain ma-
tricization of a tensor does not increase the hierarchical singular values of any other
matricization of this tensor.

Lemma 3.3. For any v ∈ H and for t, s = 1, . . . , E, one has σt,i(u) ≥ σt,i(Ss,α(u)) for
all i ∈ N and any α ≥ 0.

Proof. Note that for the action of Ss,α, the tensor is rearranged such that the edge s
holds the root element. Thus the statement follows exactly as in part 3 of the proof of
Theorem 11.61 in [16], see also the proof of Theorem 7.18 in [21]; there it is shown that
when singular values are decreased at the root element, this cannot cause any singular
value of any other matricization to increase.

Using the above lemma, the error incurred by application of Sα to a tensor u can be
estimated in terms of the sequences of hierarchical singular values σt(u), t = 1, . . . , E.

Lemma 3.4. For any u ∈ H and r ∈ N0, let

τt,r(u) := inf
rankt(w)≤r

‖u−w‖ =
(∑
k>r

|σt,k(u)|2
) 1

2
.

Furthermore, for any δ > 0 we define

rt,δ(u) := max
{
r ∈ N : σt,r > δ

}
∪ {0} .
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Then for any given α > 0,

max
t=1,...,E

dαt (u) ≤ ‖Sα(u)− u‖ ≤
E∑
t=1

dαt (u) , (6)

where, with τt,α(u) := τt,rt,α(u)(u),

dαt (u) :=
∥∥σt(St,α(u)

)
− σt(u)

∥∥ =

√
α2rt,α(u) +

(
τt,α(u)

)2
.

Remark 3.5. It can be seen that the upper estimate in (6) is generally sharp by choosing
u as a tensor of rank one (that is, with all hierarchical ranks equal to one) with ‖u‖ = Eα.
In this case, Sα(u) = 0.

Proof of Lemma 3.4. We first show the second inequality in (6). Let

v1 := u, vt := St−1,α ◦ . . . ◦ S1,α(u), t ≥ 2 .

By a telescoping sum argument, applying the soft thresholding error estimate to each
individual application of Sα,t, we obtain

‖Sα(u)− u‖ ≤
E∑
t=1

‖St,α(vt)− vt‖ ≤
E∑
t=1

dαt (vt) .

It remains to show that dαt (vt) ≤ dαt (u). This follows from Lemma 3.3, whose repeated
application gives σt,i(u) ≥ σt,i(S1,α(u)) ≥ σt,i(S2,α ◦ S1,α(u)) ≥ . . . for each t.

To show the first inequality in (6), we again invoke Lemma 3.3, in this case to infer
that for each t,∑

i≥1

|σt,i(Sα(u))− σt,i(u)|2 ≥
∑
i≥1

|σt,i(St,α(u))− σt,i(u)|2 =
(
dαt (u)

)2
.

Moreover, by Theorem 2.1, we have

‖σt(Sα(u))− σt(u)‖ ≤ ‖Mt(Sα(u))−Mt(u)‖HS = ‖Sα(u)− u‖ ,

and taking the maximum over t concludes the proof.

Remark 3.6. Let u ∈ H, then σt(u) ∈ `2, which implies that dαt (u) → 0 as α → 0.
Without further assumptions, however, this convergence can be arbitrarily slow.

(a) If in addition σt(u) ∈ `p,∞ for a p ∈ (0, 2) and for each t, we have

rt,α . |σt(u)|p`p,∞ α
−p , τt,α . |σt(u)|p/2`p,∞

α1−p/2 ,

see [10], and thus

‖Sα(u)− u‖ . E max
t
|σt(u)|p/2`p,∞

α1−p/2.
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(b) If σt,k(u) ≤ Ce−ckβ , k ∈ N, with C, c, β > 0, then arguing similarly as in [10, Section
7.4], we obtain

rt,α ≤
(
c−1 ln(Cα−1)

) 1
β . (1 + |lnα|)

1
β , τt,α . (1 + |lnα|)

1
2β α ,

and therefore
‖Sα(u)− u‖ . E (1 + |lnα|)

1
2β α . (7)

Remark 3.7. It is well known that soft thresholding is closely related to convex optimiza-
tion by proximal operator techniques. Note that the soft thresholding for hierarchical
tensors can be written as

Sα = SE,α ◦ · · · ◦ S1,α = proxαJE ◦ · · · ◦ proxαJ1 (8)

with Jt := ‖Mt(·)‖∗ for t = 1, . . . , E. Thus in our setting, we do not have a characterisa-
tion of Sα by a single convex optimisation problem (as provided for Sα by Lemma 2.3),
but still by a nested sequence of convex optimization problems: one has Sα(u) = ũE ,
where

ũt := argmin
v∈H

{
Jt(v) +

1

2α
‖ũt−1 − v‖2

}
, t = 1, . . . , E ,

with ũ0 := u.

4 Fixed-Point Iterations with Soft Thresholding

In this section, we consider the combination of Sα with an arbitrary convergent fixed
point iteration with a contractive mapping F : H → H, that is, there exists ρ ∈ (0, 1)
such that

‖F(v)−F(w)‖ ≤ ρ‖v −w‖ , v,w ∈ H . (9)

In the example of a linear operator equation Au = f with elliptic A, we may choose
F(v) = v − µ(Av − f) with a suitable scaling parameter µ > 0. A practical scheme for
this particular case will be considered in detail in Section 5.

Since Sα is non-expansive, the mapping Sα ◦ F still yields a convergent fixed point
iteration, but with a modified fixed point.

Lemma 4.1. Assuming (9), let u∗ be the unique fixed point of F . Then for any α > 0,
there exists a uniquely determined uα such that uα = Sα

(
F(uα)

)
, which satisfies

(1 + ρ)−1‖Sα(u∗)− u∗‖ ≤ ‖uα − u∗‖ ≤ (1− ρ)−1‖Sα(u∗)− u∗‖ . (10)

Moreover, for any given u0, for uk+1 := Sα
(
F(uk)

)
one has

‖uk − uα‖ ≤ ρk‖u0 − uα‖ .

10



Proof. By the non-expansiveness of Sα, the operator G := Sα ◦ F is a contraction. The
existence and uniqueness of uα, as well as the stated properties of the iteration, thus
follow from the Banach fixed point theorem. Let eα := G(uα) − G(u∗). Then since
G(uα) = uα, one has

uα − u∗ = G(u∗)− u∗ + eα .

Combining this with the observation

‖eα‖ = ‖G(uα)− G(u∗)‖ ≤ ‖F(uα)−F(u∗)‖ ≤ ρ‖uα − u∗‖ ,

where we have again used that Sα is non-expansive, yields

‖uα − u∗‖ ≤ ‖G(u∗)− u∗‖+ ρ‖uα − u∗‖ , ‖G(u∗)− u∗‖ ≤ ‖uα − u∗‖+ ρ‖uα − u∗‖ .

Finally, noting that G(u∗) = Sα(u∗) since F(u∗) = u∗, we arrive at (10).

Theorem 4.1 tells us that if we keep the thresholding parameter α fixed, the thresh-
olded Richardson iteration will converge, at the same rate ρ as the unperturbed Richard-
son iteration, to a modified solution uα. Its distance to the true solution u∗ is uniformly
proportional to ‖Sα(u∗)− u∗‖, that is, to the error of thresholding the exact solution.

4.1 A Priori Choice of Thresholding Parameters

In order to ensure convergence to u∗, instead of working with a fixed α, we will instead
consider the iteration

uk+1 = Sαk
(
F(uk)

)
, (11)

where we choose αk with αk → 0. The central question is now how one can obtain a
suitable such choice; clearly, if the αk decrease too slowly, this will hamper the conver-
gence of the iteration, whereas αk that decrease too quickly may lead to very large tensor
ranks of the iterates.

In principle, if the decay of the sequences σt(u∗) is known, for instance σt(u∗) ∈ `p,∞,
then Remark 3.6 immediately gives us a choice of values for αk that ensure convergence
to u∗ with almost the unperturbed rate ρ. To this end, observe that

‖uk+1 − u∗‖ ≤ ‖uk+1 − uαk‖+ ‖uαk − u∗‖ ≤ ρ‖uk − u∗‖+ (1 + ρ)‖uαk − u∗‖

≤ ρ‖uk − u∗‖+
1 + ρ

1− ρ
∑
t

dαkt (u∗) , (12)

and based on Remark 3.6 we can adjust αk in every step so as to balance the decrease
in the two terms on the right hand side of (12). Choices of αk in (11) for the respective
cases in Remark 3.6 are given in the following proposition.

Proposition 4.2. Let σt(u∗) ∈ `p,∞, t = 1, . . . , E, for a p ∈ (0, 2), let c0 > 0, and let
u0 := 0. Then for the choice αk := (ρk+1c0)

2
2−p in the iteration (11), we have

‖uk − u∗‖ ≤
(
‖u∗‖+ CEmax

t
|σt(u∗)|p/2`p,∞

k
)
ρk , (13)

11



where C depends on ρ, p, and c0. Furthermore, for any ρ̃ > ρ, with αk := (ρ̃k+1c0)
2

2−p ,
we have

‖uk − u∗‖ ≤

(
‖u∗‖+

CEmaxt|σt(u∗)|p/2`p,∞
ρ̃

ρ̃− ρ

)
ρ̃k (14)

Under the same assumptions, but with the stronger condition σt,k(u
∗) ≤ Ce−ck

β with
C, c, β > 0, for the choice αk := ρk+1c0 we have

‖uk − u∗‖ . Ek
1+ 1

2β ρk ,

and with αk := ρ̃k+1c0, we have instead

‖uk − u∗‖ . E k
1
2β ρ̃k , (15)

where the constant depends on (ρ̃− ρ)−1.

Proof. Using (12) and Remark 3.6(a), we obtain

‖uk − u∗‖ ≤ ρk‖u∗‖+ C1Emax
t
|σt(u∗)|

p
2
`p,∞

k−1∑
i=0

ρk−i−1α
1− p

2
i .

Note that with our choice of αk, we have α
1− p

2
i = ρi+1c0, which implies the first statement.

For the second choice of αk, we obtain instead

‖uk − u∗‖ ≤
(
θk‖u∗‖+ C1Emax

t
|σt(u∗)|

p
2
`p,∞

c0

k−1∑
i=0

θk−1−i
)
ρ̃k , θ :=

ρ

ρ̃
< 1 .

Under the second set of assumptions, we proceed analogously based on Remark 3.6(b),
which for αk := ρk+1c0 yields

‖uk − u∗‖ . ρk + E

k−1∑
i=0

ρk−i−1(1 + |ln c0|+ i|ln ρ|)
1
2β ρi+1 .

where the modified power of k in the assertion thus arises due to the logarithmic term
in (7). For αk := ρ̃k+1c0, with θ as above,

‖uk − u∗‖ .
(
θk + E

k−1∑
i=0

θk−i−1(1 + i|ln ρ̃|)
1
2β

)
ρ̃i+1 . Ek

1
2β ρ̃k .

In summary, in this idealized setting with full knowledge of the decay of ‖Sα(u∗)−u∗‖
with respect to α, we can achieve convergence of the iteration with any asymptotic rate
ρ̃ > ρ.

12



4.2 Rank Estimates

We now give estimates for the ranks of the iterates that can arise in the course of the
iteration, assuming that the αk are chosen as in Proposition 4.2.

For the proof we will use the following lemma, which is a direct adaptation of [6,
Lemma 5.1], where the same argument was applied to hard thresholding of sequences; it
was restated for soft thresholding of sequences (with the same proof) in [7].

Lemma 4.3. Let v,w ∈ H and ε > 0 such that ‖v−w‖ ≤ ε, and for t ∈ {1, . . . , E} let
σt(v) ∈ `p,∞ for a p ∈ (0, 2). Then

rankt
(
Sα(w)

)
≤ 4ε2

α2
+ Cp|σt(v)|p`p,∞α

−p .

If σt,k(v) ≤ Ce−ckβ for k ∈ N with C, c, β > 0, then

rankt
(
Sα(w)

)
≤ 4ε2

α2
+
(
c−1 ln(2Cα−1)

)1/β
.

Proof. Note first that as an immediate consequence of Theorem 2.1, for each t we have

‖σt(v)− σt(w)‖ =
(∑

i

|σt,i(v)− σt,i(w)|2
) 1

2 ≤ ‖Mt(v)−Mt(w)‖HS = ‖v −w‖ ≤ ε .

Furthermore, Lemma 3.3 yields rankt(Sα(w)) ≤ rankt(St,α(w)), and it thus suffices to
estimate the latter.

The first inequality in the statement now follows with the same argument as in [6],
which we include for the convenience of the reader. We abbreviate a := σt(v), b := σt(w).
Let I1 := {i : bi ≥ α, ai > α/2} and I2 := {i : bi ≥ α, ai ≤ α/2}. Then(α

2

)2
#I2 ≤

∑
i∈I2

|ai − bi|2 ≤ ε2

as well as
#I1 ≤ #{i : ai > α/2} ≤ Cp|σt(v)|p`p,∞α

−p ,

which proves the first statement, since rankt(St,α(w)) ≤ #I1 + #I2. To obtain the
second inequality, we use Remark 3.6(b) to estimate #I1 in an analogous way.

Theorem 4.4. Let ρ̃ > ρ, u0 := 0, and εk := ρ̃k. If σt(u∗) ∈ `p,∞, t = 1, . . . , E, for a
p ∈ (0, 2), then for the choice αk := (ρ̃k+1c0)

2
2−p with c0 > 0 in the iteration (11), we

have
‖uk − u∗‖ . dεk , max

t=1,...,E
rankt(uk) . d2ε

− 1
s

k , s = 1
p −

1
2 . (16)

Under the same assumptions, but with σt,k(u∗) ≤ Ce−ck
β , t = 1, . . . , E, with C, c, β > 0,

for the choice αk := ρ̃k+1c0 we have

‖uk − u∗‖ . d
(
1 + |log εk|

) 1
2β εk , max

t=1,...,E
rankt(uk) . d2

(
1 + |log εk|

) 1
β . (17)
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Proof. Recall that E = 2d − 3. The estimates ‖uk − u∗‖ . Eεk were shown in (14)
and (15) of Proposition 4.2. To obtain the corresponding estimates for the ranks, we
use Lemma 4.3. Note that with wk := F(uk−1), we have uk = Sαk−1

(wk) and, by
contractivity of F ,

‖wk − u∗‖ ≤ ρ‖uk−1 − u∗‖ . Eεk−1 .

In the first case, for each t, Lemma 4.3 gives

rankt(Sαk−1
(wk)) .

(Eεk)
2

α2
k−1

+ α−pk−1 . E2
(
ρ̃

1− 2
2−p
)2k

+ ρ̃
− 2pk

2−p .

Noting that
(
ρ̃

1− 2
2−p
)2k

= ρ̃
− 2pk

2−p = ε
− 1
s

k , we obtain the first assertion. In the second case

we have Eεk/αk . E
(
1 + |log εk|

) 1
2β , and the lemma thus yields

rankt(Sα(wk)) . E2
(
1 + |log εk|

) 1
β +

(
1 + |log ρ̃kc0|

) 1
β . E2

(
1 + |log εk|

) 1
β .

5 A Posteriori Choice of Parameters

The results of the previous section lead to the question whether the results in Theorem
4.4 can still be recovered when a priori knowledge of the decay of the sequences σt(u∗) is
not available. We thus now consider a modified scheme that adjusts the αk automatically
without using such information on u∗, but still yields quasi-optimal rank estimates as in
Theorem 4.4 for both cases considered there.

The design of such a method is more problem-specific than the general considerations
in the previous section, and here we thus restrict ourselves to linear operator equations
Au = f with A symmetric and elliptic. We assume to have γ,Γ > 0 such that

γ‖v‖2 ≤ 〈Av,v〉 ≤ Γ‖v‖2 , v ∈ H , (18)

that is, the spectrum of A is contained in [γ,Γ] and κ := γ−1Γ is an upper bound for the
condition number of A. The choice µ := 2/(γ + Γ) then yields

‖Id− µA‖ ≤ κ− 1

κ+ 1
=: ρ < 1 , (19)

and the results of the previous section apply with F(v) := v − µ(Av − f).
In order to be able to obtain estimates for the ranks of iterates as in Theorem 4.4,

the method in Algorithm 1 is constructed such that whenever αk is decreased in the
iteration,

‖uk+1 − u∗‖ ≤ C‖uαk − u∗‖ (20)

holds with some fixed constant C > 1. It will be established in what follows that the
validity of such an estimate ensures that αk never becomes too small in relation to the
corresponding current error ‖uk − u∗‖. A bound of the form (20) is ensured by the
condition in line 5 of Algorithm 1, which is explained in more detail in the proof of
Theorem 5.1 below.
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Algorithm 1 uε = STSolve(A, f ; ε)

parameters: γ, Γ as in (18), µ, ρ as in (19), arbitrary ν, θ ∈ (0, 1) and α0 ≥ E−1µ‖f‖.
output: uε satisfying ‖uε − u∗‖ ≤ ε.
1: u0 := 0, r0 := −f , k := 0
2: while ‖rk‖ > γε
3: uk+1 = Sαk

(
uk − µrk

)
4: rk+1 := Auk+1 − f

5: if ‖uk+1 − uk‖ ≤
(1− ρ)ν

Γρ
‖rk+1‖ then

6: αk+1 := θαk
7: else
8: αk+1 := αk
9: end if

10: k ← k + 1
11: end while
12: uε := uk

Note that Algorithm 1 only requires – besides a hierarchical tensor representation of f
and the action of A on such representations – bounds γ, Γ on the spectrum of A, certain
quantities derived from these, as well as constants that can be adjusted arbitrarily. The
following is the main result of this work.

Theorem 5.1. Algorithm 1 produces uε with ‖uε − u∗‖ ≤ ε in finitely many steps.
Furthermore, if σt(u∗) ∈ `p,∞, t = 1, . . . , E, for a p ∈ (0, 2), then there exists ρ̃ ∈ (0, 1)
such that with εk := ρ̃k, the iterates satisfy

‖uk−u∗‖ . dεk , max
t=1,...,E

rankt(uk) . d2 max
τ=1,...,E

|στ (u∗)|
1
s
`p,∞

ε
− 1
s

k , s = 1
p −

1
2 . (21)

If σt,k(u∗) ≤ Ce−ck
β , t = 1, . . . , E, with C, c, β > 0, then the analogous statement holds

with
‖uk − u∗‖ . dεk , max

t=1,...,E
rankt(uk) . d2

(
1 + |ln εk|

) 1
β . (22)

In the proof we will use the following technical lemma, which limits the decay of the
soft thresholding error as the thresholding parameter is decreased.

Lemma 5.2. Let v 6= 0, then dαt (v) ≤ θ−1dθαt (v), t = 1, . . . , E, for all α > 0, θ ∈ (0, 1).

Proof. For the proof, we omit the dependence of quantities on v. We clearly have rt,θα ≥
rt,α and τt,θα ≤ τt,α. Furthermore, τ2

t,α − τ2
t,θα ≤ α2(rt,θα − rt,α), and consequently,(

dαt
dθαt

)2

=
α2rt,α + τ2

t,α

(θα)2rt,θα + τ2
t,θα

≤
α2rt,α + τ2

t,θα + α2(rt,θα − rt,α)

(θα)2rt,θα + τt,θα
≤ θ−2 .
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Proof of Theorem 5.1. Step 1: We first show that the condition

‖uk+1 − uk‖ ≤
(1− ρ)ν

Γρ
‖rk+1‖ (23)

in line 5 of the algorithm is always satisfied after a finite number of steps.
The combination of the first inequality of (6) in Lemma 3.4 and the first inequality

in (10) of Lemma 4.1 shows

(1 + ρ)−1 max
t
dαt (u∗) ≤ ‖uα − u∗‖ .

Thus we always have ‖uα−u∗‖ > 0 if α > 0, unless u∗ = 0 and hence f = 0. In the latter
case, however, the algorithm stops immediately, and we can thus assume that uα 6= u∗

for any positive α.
If αk = . . . = α0, we have on the one hand

‖uk+1 − uk‖ ≤ ‖uk+1 − uα0‖+ ‖uk − uα0‖ ≤ ρk(1 + ρ)‖u0 − uα0‖ , (24)

and on the other hand, we similarly obtain

γ−1‖rk+1‖ ≥ ‖uk+1 − u∗‖ ≥ ‖uα0 − u∗‖ − ρk+1‖u0 − uα0‖
≥ (1− ρk+1)‖uα0 − u∗‖ − ρk+1‖u0 − u∗‖ . (25)

Thus the right hand side in (24) converges to zero, whereas the right hand side in (25)
is bounded away from zero for sufficiently large k. Hence (23) holds with k = J0 − 1
for some J0 ∈ N, and we assume this to be the minimum integer with this property.
The thresholding parameter is then decreased for the following iteration, that is, αJ0 =
θαJ0−1 = θα0. As in (12), for k < J0 we obtain

‖uk+1 − u∗‖ ≤ ρk+1‖u0 − u∗‖+ (1 + ρk+1)‖uα0 − u∗‖ . (26)

The same arguments then apply with α0 replaced by αJ0 and u0 by uJ0 . Thus αk will
always be decreased after a finite number of steps.

Step 2: To show convergence of the uk, we first observe that by our requirement
that α0 ≥ E−1µ‖f‖ (which is in fact not essential for the execution of the iteration), we
actually have u1 = 0 and hence uα0 = 0, implying also J0 = 1. In particular,

‖un − u∗‖ ≤ ‖u∗ − uα0‖ , 0 ≤ n ≤ J0 = 1 . (27)

We next investigate the implications of the condition (23) for the further iterates. Note
first that

‖uk+1 − u∗‖ − ‖uk+1 − uαk‖ ≤ ‖u∗ − uαk‖ . (28)

The standard error estimate for contractive mappings, combined with (23) and (18),
gives

‖uk+1 − uαk‖ ≤ ρ

1− ρ
‖uk+1 − uk‖ ≤

ν

Γ
‖rk+1‖ ≤ ν‖uk+1 − u∗‖ . (29)
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Inserting the latter into (28), we thus obtain

‖uk+1 − u∗‖ ≤ (1− ν)−1
(
‖uk+1 − u∗‖ − ‖uk+1 − uαk‖

)
≤ (1− ν)−1‖u∗ − uαk‖ . (30)

We introduce the following notation that groups iterates according to the correspond-
ing values of αk: for each i ∈ N0, let ηi := θiα0. With u0,0 = u0 = 0 and r0,0 = −f ,
iterates are produced according to

wi,j+1 := ui,j − µri,j , ui,j+1 := Sαi,j (wi,j+1), ri,j+1 := Aui,j+1 − f , (31)

where the index i is increased each time that condition (23) is satisfied. For each i,
consistently with the previous definition of J0, we define Ji as the last index of an iterate
produced with the value ηi, which means that ui+1,0 = ui,Ji and, as a consequence of
(30),

‖ui+1,0 − u∗‖ = ‖ui,Ji − u∗‖ ≤ (1− ν)−1‖u∗ − uηi‖ , i ≥ 0 . (32)

For i ≥ 0 and j = 0, . . . , Ji, with (32) we obtain

‖ui,j − u∗‖ ≤ ‖ui,j − uηi‖+ ‖uηi − u∗‖
≤ ρj‖ui,0 − u∗‖+ (1 + ρj)‖uηi − u∗‖
≤ (1− ν)−1ρj‖uηi−1 − u∗‖+ (1 + ρj)‖uηi − u∗‖ , (33)

where we have used (27) in the case i = 0. By Remark 3.6 this implies in particular that,
in our original notation, uk → u∗.

Step 3: Our next aim is to estimate the values of Ji. We have already established
that J0 = 1. In order to estimate Ji for i > 0, we use (24) and (25) to obtain

‖ui,j+1 − ui,j‖
‖ri,j+1‖

≤ ρjγ−1(1 + ρ)‖ui,0 − uηi‖
‖uηi − u∗‖ − ρj+1‖ui,0 − uηi‖

(34)

for j sufficiently large. Thus (23) follows if the two conditions

ρjγ−1(1 + ρ)
‖ui,0 − uηi‖
‖uηi − u∗‖

≤ (1− ρ)ν

2Γρ
, ρj+1 ‖ui,0 − uηi‖

‖uηi − u∗‖
≤ 1

2

hold. These are guaranteed if

j ≥ |ln ρ|−1

(
C(γ,Γ, ν) + ln

‖ui,0 − uηi‖
‖uηi − u∗‖

)
(35)

with some constant C(γ,Γ, ν) ≥ 0. By (32),

ln
‖ui,0 − uηi‖
‖uηi − u∗‖

≤ ln

(
1 + (1− ν)−1 ‖uηi−1 − u∗‖

‖uηi − u∗‖

)
,

and by Lemma 3.4 and Lemma 4.1,

‖uηi−1 − u∗‖
‖uηi − u∗‖

≤
(1 + ρ)‖Sηi−1(u∗)− u∗‖
(1− ρ)‖Sηi(u∗)− u∗‖

≤ (1 + ρ)

(1− ρ)

E∑
t=1

dθ
i−1α0
t (u∗)

dθ
iα0
t (u∗)

≤ (1 + ρ)E

(1− ρ)θ
,
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where we have used that as a consequence of Lemma 5.2, the quotients dθ
i−1α0
t (u∗)/dθ

iα0
t (u∗)

remain uniformly bounded by θ−1. Putting this together with (35), we thus obtain

Ji . ln(d) ,

with a uniform constant depending on γ, Γ, ν, and θ. In view of (33), this implies that
uk converges to u∗ at a linear rate in cases (21) and (22).

Step 4: In order to establish rank estimates, we need to bound the errors of wi,j as
defined in (31) for each i ≥ 0 and 0 < j ≤ Ji. Since u0 = uη0 = 0 by our choice of α0,
for i = 0 we obtain

‖w0,j − u∗‖ ≤ ρ‖u0,j−1 − u∗‖ = ρ‖uη0 − u∗‖ , j = J0 = 1 , (36)

and for i > 0 and j > 0, by (33),

‖wi,j − u∗‖ ≤ ρ‖ui,j−1 − u∗‖ ≤ (1− ν)−1ρj‖uηi−1 − u∗‖+ ρ(1 + ρj−1)‖uηi − u∗‖. (37)

By Lemma 4.3, with M := maxt|σt(u∗)|`p,∞ , for all t we have

rankt(ui,j) .
‖wi,j − u∗‖2

η2
i

+ f(ηi) , f(ηi) :=

{
Mpη−pi , in case (21),

(1 + |ln ηi|)
1
β , in case (22).

Note that this also covers ui,0 for i ≥ 0, since ui,0 = ui−1,Ji−1 for i > 0 and u0,0 = 0.
In case (21), as a consequence of (27), (33), (36), (37), with Remark 3.6(a) we obtain

‖wi,j − u∗‖ . EM
p
2 η

1− p
2

i

for all respective i, j, and consequently

rankt(ui,j) . E2Mpη2−p−2
i +Mpη−pi = (1 + E2)Mpη−pi .

By the same argument, we also have ‖ui,j − u∗‖ . EM
p
2 η

1− p
2

i . Setting εi,j := M
p
2 η

1− p
2

i ,
we thus have ‖ui,j − u∗‖ . Eεi,j as well as

rankt(ui,j) . (1 + E2)M
1
s ε
− 1
s

i,j , s =
1

p
− 1

2
.

This completes the proof of (21). In the case (22), Remark 3.6(b) yields, expanding
ηi = θiα0,

‖ui,j − u∗‖, ‖wi,j − u∗‖ . E(1 + i|ln θ|)
1
2β θi ,

and hence
rankt(ui,j) . E2(1 + i|ln θ|)

1
β + (1 + i|ln θ|)

1
β .

We choose θ̃ ∈ (θ, 1) and set εi,j := θ̃i to obtain ‖ui,j − u∗‖ . Eεi,j and

rankt(ui,j) . E2

[(
1 +
|ln θ|
|ln θ̃|

|ln θ̃i|
)] 1

β

. E2
(
1 + |ln εi,j |

) 1
β .

This completes the proof of (22).
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Remark 5.3. The above algorithm is universal in the sense that it does not require
knowledge of the decay of the σt(u∗), but we still obtain the same quasi-optimal rank
estimates as with αk prescribed a priori as in Theorem 4.4. Note that in (22), we have
absorbed the additional logarithmic factor that is present in the error bound in (17) by
comparing to a slighly slower rate of linear convergence, but the estimates are essentially
of the same type.

Remark 5.4. For the effective convergence rate ρ̃ in the statement of Theorem 5.1, as can
be seen from the proof (in particular from the estimates for the Ji), one has an estimate
from above of the form ρ̃ ≤ ρ̂

1
log d < 1, where ρ̂ does not explicitly depend on d (although

it may still depend on d through other quantities such as γ, Γ). Consequently, combining
this with the statements in (21) and (22), we generally have to expect that the number
of iterations required to ensure ‖uk − u∗‖ ≤ ε scales like |log ρ̂|−1

(
(log ε+ log d) log d

)
.

5.1 Inexact Evaluation of Residuals

We finally consider a perturbed version of Algorithm 1 where residuals are no longer
evaluated exactly, but only up to a certain relative error. We assume that for each given
v and δ > 0, we can produce r such that ‖r− (Av − f)‖ ≤ δ.

We will show below that for our purposes it suffices to ensure a certain relative error
for each rk computed in Algorithm 1, more precisely, to adjust δ for each k such that

‖rk − (Auk − f)‖ ≤ min{τ1‖rk‖, τ2µ
−1‖uk+1 − uk‖} ,

with suitable τ1, τ2 > 0. This can be achieved by simply decreasing the value of δ and
recomputing rk (and the resulting uk+1) until δ ≤ min{τ1‖rk‖, τ2µ

−1‖uk+1 − uk‖} is
satisfied. With such a choice of δ, we then have in particular

(1− τ1)‖rk‖ ≤ ‖Auk − f‖ ≤ (1 + τ1)‖rk‖ . (38)

Our scheme can be regarded as an extension of the residual evaluation strategy used
in [12] in the context of an adaptive wavelet scheme, where the residual error is controlled
relative to the norm of the computed residual. Note that in our algorithm, the error
tolerance δk used for each computed rk is adjusted twice: first in line 13 to ensure the
accuracy with respect to ‖rk‖, and possibly a second time in line 7 (after incrementing
k) to ensure the accuracy with respect to ‖uk+1 − uk‖.

The analysis of the resulting modified Algorithm 2 follows the same lines as the proof
of Theorem 5.1, and we obtain the same statements with modified constants. We do not
restate the full proof, but instead indicate how the central estimates are modified. For a
given iterate uk, we now denote the exact residual by r̄k := Auk − f and the computed
residual by rk.

We first consider the influence of the perturbation on the iteration without thresh-
olding, but with inexact residual, for which we obtain

‖(uk − µrk)− u∗‖ ≤ ‖(uk − µr̄k)− u∗‖+ µ‖rk − r̄k‖ ≤ ρ‖uk − u∗‖+ τ1µ‖rk‖ .
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Using ‖rk‖ ≤ (1− τ1)−1‖r̄k‖ ≤ (1− τ1)−1Γ‖uk − u∗‖ and µΓ ≤ 2,

‖(uk − µrk)− u∗‖ ≤
(
ρ+

2τ1

1− τ1

)
‖uk − u∗‖ , (39)

which yields a contraction provided that τ1 < (3 − ρ)−1(1 − ρ). However, in (36) and
(37), where the bound (39) is required, τ1 < 1 is in fact sufficient.

We now turn to the contractivity of the iteration with thresholding. Note that

‖uk+1 − uk‖ ≤ ‖uk+1 − Sαk(uk − µr̄k)‖+ ‖Sαk(uk − µr̄k)− uαk‖+ ‖uαk − uk‖ , (40)

where by non-expansiveness of Sαk ,

‖uk+1 − Sαk(uk − µr̄k)‖ ≤ µ‖rk − r̄k‖ ,

and thus, since µ‖rk − r̄k‖ ≤ τ2‖uk+1 − uk‖ by our construction, (40) gives

‖uk+1 − uk‖ ≤
1 + ρ

1− τ2
‖uk − uαk‖ .

As a consequence,

‖uk+1 − uαk‖ ≤ ‖Sαk(uk − µr̄k)− uαk‖+ ‖Sαk(uk − µrk)− Sαk(uk − µr̄k)‖
≤ ρ‖uk − uαk‖+ µ‖rk − r̄k‖

≤ ρ̂(τ2)‖uk − uαk‖ , ρ̂(τ2) := ρ+
(1 + ρ)τ2

1− τ2
, (41)

where ρ̂(τ2) < 1 holds precisely when τ2 <
1
2(1− ρ); in other words, the perturbed fixed

point iteration then has the same contractivity property with a modified constant.
Furthermore, we show next that the validity of the modified condition

‖uk+1 − uk‖ ≤ B‖rk+1‖ , B :=
(1− ρ)(1− τ1)ν

(1 + τ2)(ρ+ (1− τ2)−1(1 + ρ)τ2)Γ
, (42)

in Algorithm 2 still implies that the corresponding iterates satisfy (30).
To this end, as in the proof of Theorem 5.1, it suffices to show that (42) implies

‖uk+1 − uαk‖ ≤ ν‖uk+1 − u∗‖. On the one hand, by the construction of rk and the
standard error estimate for fixed point iterations, we have

‖uk+1 − uαk‖ ≤ ρ̂(τ2)‖uk − uαk‖ ≤ ρ̂(τ2)

1− ρ
‖Sαk(uk − µr̄k)− uk‖

≤ ρ̂(τ2)(1 + τ2)

1− ρ
‖uk+1 − uk‖ ,

and on the other hand, by the construction of rk+1,

‖uk+1 − u∗‖ ≥ Γ−1‖r̄k+1‖ ≥ (1− τ1)Γ−1‖rk+1‖ .
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Algorithm 2 uε = InexactSTSolve(A, f ; ε)

parameters: µ, ρ as in (19), arbitrary ν, θ, ω ∈ (0, 1), α0 ≥ E−1µ‖f‖,
τ1 ∈ (0, 1), τ2 ∈ (0, 1

2(1− ρ)), B as in (42), D as in (43).
output: uε satisfying ‖uε − u∗‖ ≤ ε.
1: u0 := 0, r0 := −f
2: k := 0, δ0 := τ1‖r0‖
3: while ‖rk‖+ δk > γε
4: uk+1 := Sαk

(
uk − µrk

)
5: while δk > τ2µ

−1‖uk+1 − uk‖ ∧ δk > D‖rk‖ with D as in (43)
6: δk ← ωδk
7: compute rk such that ‖rk − (Auk − f)‖ ≤ δk
8: uk+1 ← Sαk

(
uk − µrk

)
9: end while

10: δk+1 := ω−1δk
11: repeat
12: δk+1 ← ωδk+1

13: compute rk+1 such that ‖rk+1 − (Auk+1 − f)‖ ≤ δk+1

14: if ‖rk+1‖+ δk+1 ≤ γε then
15: set uε := uk+1 and stop
16: end if
17: until δk+1 ≤ τ1‖rk+1‖
18: if ‖uk+1 − uk‖ ≤ B‖rk+1‖ with B as in (42), then
19: αk+1 := θαk
20: δk+1 ← τ1‖rk+1‖
21: else
22: αk+1 := αk
23: end if
24: k ← k + 1
25: end while
26: uε := uk

Combining these two estimates, we find that (42) implies (30). With this implication
and the modified estimates (39) and (41), one can now follow the proof of Theorem 5.1
to obtain the same statements.

There are two additional checks in the algorithm to ensure that the δk cannot become
arbitrarily small. On the one hand, when the condition in line 14 of Algorithm 2 is
satisfied, then ‖Auk+1 − f‖ ≤ γε, which implies ‖uk+1 − u∗‖ ≤ ε, and we can therefore
stop the iteration.

On the other hand, if the loop in line 5 exits because the second condition with the
constant

D := min

{
(1− τ1)τ2B

(1 + τ1 + ΓB)µ
,

ρντ2(1− τ1)2(
ρ(1 + τ1)(1 + τ2) + ν(1− τ1)(1− ρ)

)
µ

}
(43)
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is violated, that is, if
δk ≤ D‖rk‖ , (44)

then the condition ‖uk+1 − uαk‖ ≤ ν‖uk+1 − u∗‖ as in (29) is satisfied and condition
(42) in line 18 is guaranteed to hold, which means that αk will be decreased. To see this,
note first that

‖rk+1‖ ≥ (1 + τ1)−1
(
(1− τ1)‖rk‖ − Γ‖uk+1 − uk‖

)
, (45)

and since the first condition in line 5 still holds, we have ‖uk+1−uk‖ ≤ µτ−1
2 δk. Therefore

(44) implies in particular(
1 + (1 + τ1)−1ΓB

)
‖uk+1 − uk‖ ≤ B(1 + τ1)−1(1− τ1)‖rk‖ ,

which combined with (45) implies (42). Furthermore, (44) also yields, with the second
case in the minimum in (43), the estimate

ρ

1− ρ
(τ−1

2 µ+ µ)δk ≤ νΓ−1(1− τ1)(1 + τ1)−1
(
(1− τ1)‖rk‖ − Γµτ−1

2 δk
)
. (46)

Since ν‖uk+1 − u∗‖ ≥ νΓ−1‖r̄k‖ ≥ νΓ−1(1 − τ1)‖rk+1‖, by (45) the right hand side in
(46) can be estimated from above by ν‖uk+1 − u∗‖. For the left hand side, we have

ρ

1− ρ
(τ−1

2 µ+ µ)δk ≥
ρ

1− ρ
(
‖uk+1 − uk‖+ µ‖rk − r̄k‖

)
≥ ρ

1− ρ
‖Sαk(uk − µr̄k)− uk‖ ≥ ‖uk+1 − uαk‖ ,

and from (46) altogether we obtain ‖uk+1 − uαk‖ ≤ ν‖uk+1 − u∗‖ as required.
Note that as a consequence of this construction, the δk obtained in Algorithm 2

remain proportional to ‖rk‖ during the iteration.

6 Numerical Experiments

In principle, Algorithms 1 and 2 can be applied to quite general discretized elliptic
problems, since only bounds on the spectrum of the discrete operator A are required.
For our numerical tests, we choose a particular setting where we have a suitable method
for preconditioning with explicit control of the resulting condition numbers available: we
test Algorithm 2 on a discretized Poisson problem with homogeneous Dirichlet boundary
conditions

−∆u = f on (0, 1)d,

using similar techniques as for the adaptive treatment in [1], with the difference that we
now use a wavelet Galerkin discretization with the basis functions chosen in advance.

We shall now briefly describe how the discrete operator A is obtained as a symmetri-
cally preconditioned Galerkin discretization in a tensor product wavelet basis. Starting
from an orthonormal basis of sufficiently regular (multi-)wavelets {ψν}ν∈∇ of L2(0, 1),
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we obtain a tensor product orthonormal basis {Ψν}ν∈∇d of L2((0, 1)d) with Ψν :=
ψν1 ⊗ · · · ⊗ ψνd , such that the rescaled basis functions ω−1

ν Ψν , ν ∈ ∇d, where

ων :=
(
‖ψν1‖2H1

0 (0,1) + . . .+ ‖ψνd‖
2
H1

0 (0,1)

) 1
2
,

form a Riesz basis of H1
0 ((0, 1)d). We now pick a fixed finite subset Λ1 ⊂ ∇ and set

Λ := Λ1 × · · · × Λ1 ⊂ ∇d. Furthermore, we use the family of low-rank approximate
diagonal scaling operators S̃−1

n , n ∈ N, constructed in [1]: we choose a δ̄ ∈ (0, 1) and
then take n̄ according to [1, Theorem 4.1] such that

(1− δ̄)
∥∥diag(ω−1

ν )v
∥∥ ≤ ∥∥S̃−1

n̄ v
∥∥ ≤ (1 + δ̄)

∥∥diag(ω−1
ν )v

∥∥
for all sequences v supported on Λ. With

T̂Λ :=
( d∑
i=1

〈∂iΨν , ∂iΨµ〉L2

)
λ,ν∈Λ

, f̂Λ :=
(
〈f,Ψν〉

)
ν∈Λ

,

we then set
A := S̃−1

n̄ T̂ΛS̃−1
n̄ , f := S̃−1

n̄ f̂Λ .

Thus u∗ = S̃n̄T̂
−1
Λ f̂Λ, where the additional scaling by S̃n̄ yields convergence of the scheme

in H1-norm at a controlled rate. An approximation of T̂−1
Λ f̂Λ, which in turn is a Galerkin

approximation of the sequence of L2-coefficients 〈u,Ψν〉 of the true solution, can then be
recovered by applying S̃−1

n̄ to the computed uε. For A, one can obtain accurate bounds
for γ, Γ, and in particular,

κ ≤ (1 + δ̄)2

(1− δ̄)2
cond2

(
ω−1
λ 〈ψ

′
λ, ψ

′
ν〉ω−1

ν

)
λ,ν∈Λ1

.

In our numerical tests, as in [1] we take f = 1 and use the piecewise polynomial, contin-
uously differentiable orthonormal multiwavelets of order 7 constructed in [11]. The uni-
variate index set Λ1 comprises all multiwavelet basis functions on levels 0, . . . , 4, which
yields #(Λ1) = 224. The unspecified constants in Algorithm 2 are chosen as θ := 3

4 ,
ω := 1

2 , ν := 9
10 , α0 := 1

2µ‖f‖, and we take δ̄ := 1
10 .

Note that since the resulting diagonal scalings S̃−1
n̄ consist of 10 separable terms,

a naive direct application of A could increase the hierarchical ranks of a given input
v by a factor of up to 200; the observed ranks required for accurately approximating
Av, however, are much lower. Therefore we use the recompression strategy described
in [1, Section 7.2] for an approximate evaluation of Av with prescribed tolerance in order
to avoid unnecessarily large ranks in intermediate quantities. In this setting, the inexact
residual evaluation in Algorithm 2 is thus of crucial practical importance.

We compare the computed solutions to a very accurate reference solution of the
discrete problem obtained by an exponential sum approximation û0 ≈ T̂−1

Λ f̂Λ, see [13,15].
The error to the reference solution is computed as errk := ‖diag(ων)(S̃−1

n̄ uk−û0)‖, which
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Figure 2: From left to right (versus iteration number k): computed discrete residual
norms ‖rk‖, ratios of differences to reference solution errk to ‖rk‖, corresponding thresh-
olding parameters αk; each for d = 16 (light grey), d = 32 (dark grey), d = 64 (black).
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Figure 3: Solid lines: maximum and minimum hierarchical ranks of iterates, i.e.,
mint rankt(uk) and maxt rankt(uk); dotted lines: maximum ranks of computed resid-
uals, maxt rankt(rk); each versus k.

is proportional to the error in H1-norm of the corresponding represented functions. The
quantity errk thus serves as a substitute for the difference in the relevant norm of uk to
the exact solution of the discretized problem.

The numerical results for d = 16, d = 32, and d = 64 are shown in Figures 2
and 3. It can be observed in Figure 2 that the norm of the solution of the problem
decreases slightly with increasing d; apart from this, the iteration behaves very similarly
for the different values of d, producing in particular a monotonic decrease of discrete
residual norms. As expected, these values also remain uniformly proportional, up to
very moderate constants, to the H1-difference to the reference solution. The values αk
can be seen to first decrease in every step as long as uk = 0; subsequently, they decrease
in a regular manner after an essentially constant number of iterations. As one would also
expect, the final value of αk needs to be slightly smaller for larger d.

Figure 3 shows the maximum and minimum hierarchical ranks of the computed it-
erates (whose difference grows slightly with increasing d) compared to the ranks of the
corresponding computed discrete residuals rk, clearly demonstrating the reduced rank
increase relative to uk that we obtain by the approximate residual evaluation. The addi-
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tional variation in the residual ranks is a consequence of the fact that the the differences
‖uk+1−uk‖ decrease as long as αk remains constant, enforcing a more accurate residual
evaluation. As soon as the thresholding parameter changes, the accuracy requirement is
subsequently relaxed again by line 20 in Algorithm 2, since the values ‖uk+1 − uk‖ are
again increased when uαk changes. Note furthermore that the ranks show little variation
with increasing d, which is substantially more favorable than the quadratic increase with
d that is possible in the estimates (21) and (22) of Theorem 5.1.

7 Conclusion

We have constructed an iterative scheme for solving linear elliptic operator equations in
hierarchical tensor representations. This method guarantees linear convergence to the
solution u∗ as well as quasi-optimality of the tensor ranks of all iterates, and is universal
in the sense that no a priori knowledge on the tensor approximability of u∗ is required.

However, if it is known that the hierarchical singular values of u∗ have, for instance,
exponential-type decay, then Theorem 4.4 shows that one can obtain the same properties
by a priori prescribing αk that decrease geometrically at some rate ρ̃ > ρ. In such a
setting, this simpler approach with a priori choice may thus be a viable alternative.

Since the given a priori choices of thresholding parameters work for quite general
contractive fixed point mappings, the construction of schemes that make this choice a
posteriori may be possible for more general cases than the linear elliptic one treated here.
In this regard, note that although we have always assumed for ease of presentation that
the considered operator A is also symmetric, this is not essential.

In this work, we have considered fixed discretized problems, but we expect that the
basic strategy proposed here can also be used in the context of adaptive discretizations.
Moreover, there may exist other related soft thresholding procedures for tensors than the
sequential approach underlying our construction that retain the required features.
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