COMPUTING MIXED VOLUME AND ALL MIXED CELLS IN QUERMASSINTEGRAL TIME

GREGORIO MALAJOVICH

Abstract

The mixed volume counts the roots of generic sparse polynomial systems. Mixed cells are used to provide starting systems for homotopy algorithms that can find all those roots, and track no unnecessary path. Up to now, algorithms for that task were of enumerative type, with no general nonexponential complexity bound. A geometric algorithm is introduced in this paper. Its complexity is bounded in the average and probability-one settings in terms of some geometric invariants: quermassintegrals associated to the tuple of convex hulls of the support of each polynomial. Besides the complexity bounds, numerical results are reported. Those are consistent with an outputsensitive running time for each benchmark family where data is available. For some of those families, an asymptotic running time gain over the best code available at this time was noticed.

Contents

1. Introduction 2
2. Mixed Legendre transform and tropical varieties 6
3. Proof of Theorem 13 10
4. Facet pivoting 14
5. The main algorithm 21
6. Deterministic complexity analysis 24
7. Average complexity analysis 26
8. Implementation notes 28
9. Numerical results 30
10. Conclusions 35
Glossary of notations 36
References 36
[^0]
1. Introduction

The mixed volume of an n-tuple of convex bodies $\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right), \mathcal{A}_{i} \subset \mathbb{R}^{n}$ is defined by

$$
V\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right) \stackrel{\text { def }}{=} \frac{1}{n!} \frac{\partial^{n}}{\partial t_{1} \partial t_{2} \cdots \partial t_{n}} \operatorname{Vol}\left(t_{1} \mathcal{A}_{1}+\cdots+t_{n} \mathcal{A}_{n}\right)
$$

where $t_{1}, \ldots, t_{n} \geq 0$ and the derivative is computed at $t=0$. It generalizes ordinary volume:

$$
V(\mathcal{A}, \mathcal{A}, \ldots, \mathcal{A})=\operatorname{Vol}(A)
$$

Mixed volume was introduced by Minkowski (1901) in connection with the quermassintegrals $V\left(\mathcal{A}, \mathcal{A}, B^{3}\right)$ and $V\left(\mathcal{A}, B^{3}, B^{3}\right)$, where B^{3} stands for the unit 3-ball. Those quermassintegrals are equal (up to a factor) to the area and the total mean curvature of $\partial \mathcal{A}$.

In this paper, A_{1}, \ldots, A_{n} are finite subsets of \mathbb{Z}^{n}. We will provide an algorithm to compute the scaled mixed volume

$$
V=n!V\left(\operatorname{Conv}\left(A_{1}\right), \cdots, \operatorname{Conv}\left(A_{n}\right)\right)
$$

together with a set of lower mixed facets for a random lifting (in modern language, a zero-dimensional tropical variety). The BKK bound (Bernstein, 1975 Bernstein et al., 1976) states that V is the number of roots in $\left(\mathbb{C}^{\times}\right)^{n}$ of a generic system of Laurent polynomials $f_{1}(\mathbf{x})=\cdots=f_{n}(\mathbf{x})=0$ where

$$
\begin{equation*}
f_{i}(\mathbf{x})=\sum_{\mathbf{a} \in A_{i}} f_{i a} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} \quad, 1 \leq i \leq n \tag{1}
\end{equation*}
$$

where the $f_{i a}$ are complex numbers. Huber and Sturmfels (1995) suggested to use the lower mixed facets ($\operatorname{Def} 12$ to produce a starting system for homotopy algorithms to solve sparse polynomial equations $f_{1}(\mathbf{x})=\cdots=f_{n}(\mathbf{x})=0$ with f_{i} as above. Emiris and Canny (1995) introduced the first incremental algorithms for computing mixed volume and mixed cells. For a certain time, computing the starting system was a bottleneck for polyhedral homotopy based polynomial solving software (Lee and Li, 2011, p.98). Later breakthroughs by Gao and Li (2000), Li and Li (2001), Gao et al. (2005), Mizutani et al. (2007), Lee and Li (2011), and Chen et al. (2014) provided efficient practical implementations through enumerative algorithms (Remark 14). The complexity properties of those algorithms are not well understood.

The algorithm AllMixedCells in page 21 is geometric in nature. This will allow for a complexity bound in terms of geometric invariants (quermassintegrals).

Before writing an algorithm or stating complexity results, one should fix a model of computation. In this paper, an algorithm is a randomized real Random Access Machine (real RAM) (Preparata and Shamos, 1985). Arithmetic operations,+- , $\times, /, \sqrt{ }, \log (), \sin (), \cos ()$ are allowed and cost one unit of time. Memory access is also assumed to be performed at unit cost. In addition, a randomized real RAM has access to an unlimited supply of independently uniformly distributed random numbers in $[0,1]$. The running time of a machine with a fixed input is therefore a random variable. Henceforth, the expressions with probability one and on average refer to the product measure of $[0,1]^{\infty}$.

Let $\mathcal{A}_{i}=\operatorname{Conv}\left(A_{i}\right), \mathcal{A}=\mathcal{A}_{1}+\cdots+\mathcal{A}_{n}$ and let B^{n} be the unit n-ball of radius 1 . Let $d_{i}=\operatorname{dim} \operatorname{Conv}\left(A_{i}\right)$. Let $V_{i}=d_{i}!\operatorname{Vol}\left(\operatorname{Conv}\left(A_{i}\right)\right)_{d_{i}}$ be the generic root bound of an unmixed polynomial system of support A_{i}. Let $0 \leq E_{i}<\# A_{i}$ be the numbers to be formally defined in section 5 (but see Remark 6 below).
Theorem 1. With probability one, the algorithm AllMixedCellsFull stated on page 23 produces all the lower mixed facets in time bounded by $O\left(T+T^{\prime}\right)$ arithmetic operations, where

$$
\begin{gather*}
T=\left(\sum_{i=2}^{n} v_{i}\right)\left(n^{2} \sum_{i=1}^{n} E_{i}+\log \sum_{i=2}^{n} v_{i}\right), \tag{2}\\
T^{\prime}=\left(\max V_{i}\right)\left(n^{2} \sum_{i=1}^{n} \# A_{i}+\log \max _{i=1, \ldots, n} V_{i}\right), \tag{3}
\end{gather*}
$$

and v_{i} is a random variable satisfying the two bounds below:
(a) With probability one,

$$
v_{i} \leq n!V\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{i-1}, \mathcal{A}, B^{n}, \ldots, B^{n}\right)
$$

(b) Let \bar{v}_{i} be the average of v_{i}, then

$$
\bar{v}_{i} \leq \frac{n!}{2^{n-i}} V\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{i-1}, \mathcal{A}, B^{n}, \ldots, B^{n}\right)
$$

Remark 2. If the polytopes A_{i} are represented by dense $\# A_{i} \times n$ matrices, then $n \sum E_{i}$ is a lower bound for the input size S. So the complexity can be bounded above by

$$
\begin{equation*}
O(W(n S+\log W)), \quad W=\max \left(\max _{i}\left(V_{i}\right), \sum_{i} v_{i}\right) \tag{4}
\end{equation*}
$$

Remark 3. Because of monotonicity of the mixed volume, $v_{i} \leq n!V(\mathcal{A}, \ldots, \mathcal{A}$, $\left.B^{n}, \ldots, B^{n}\right)$. Also, $V_{i} \leq n!\operatorname{Vol}(\mathcal{A})_{n}$. If \mathcal{A} contains a copy of the unit ball, then $v_{i} \leq n!\operatorname{Vol}(\mathcal{A})$.

Remark 4. In the probability-one bound (a) for v_{i}, one can replace B^{n} by $\beta_{n}=\{x \in$ $\left.\mathbb{R}^{n}:\|x\|_{1} \leq 1\right\}$, the n-orthoplex (Sec. 6). This replacement gives an exponentially smaller bound when i is small. Assuming that $\operatorname{Vol}(\mathcal{A}) \neq 0$, we obtain

$$
v_{i} \leq n!2^{n-i} \operatorname{Vol}(\mathcal{A})
$$

It is not clear whether a similar bound holds for \bar{v}_{i} in the average case analysis (b).
Remark 5. Assume that $\operatorname{dim} \operatorname{Conv}\left(A_{i}\right)=n$. Let δ_{i} denote the radius of the inscribed sphere to \mathcal{A}_{i} and Δ the radius of the circumscribed sphere to \mathcal{A}. Then,

$$
v_{i} \leq n!\frac{\Delta}{\delta_{i} \delta_{i+1} \cdots \delta_{n}} V\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right) \quad \text { and } \quad \bar{v}_{i} \leq \frac{n!}{2^{n-i}} \frac{\Delta}{\delta_{i} \delta_{i+1} \cdots \delta_{n}} V\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)
$$

Remark 6. The bound T^{\prime} represents the cost of computing a lower convex hull of a random lifting for each of the polytopes A_{1}, \ldots, A_{n}. Typically $T^{\prime} \ll T$ but counterexamples may be produced. In a previous version of this paper, the algorithm was assumed to receive those lower convex hulls as precomputed information. E_{i} is the degree of the 1-skeleton of the lower convex hull for the lifting of A_{i} (Sec. 5).

From a complexity standpoint, bounding the cost of mixed volume computation in terms of the mixed volume and similar invariants is the best that we can aim for. The general problem of computing the mixed volume is known to be \#P-complete. This follows from the famous result by Khachiyan (1989) that computing volumes of convex polytopes is already \#P-hard. Barvinok (1997) suggested approximating mixed volumes by the mixed volume of ellipsoids. Gurvits (2009) obtained an approximation within a factor exponential in the number of variables, and showed that the same ratio could not be obtained with a deterministic algorithm in the Oracle setting. Dyer et al. (1998) provided good approximations in certain special cases, but showed also that computing mixed volumes of zonotopes is already \#Phard.

Emiris (1996) was able to bound the complexity of the algorithm by Emiris and Canny (1995) for enumerating mixed cells in terms of the volume of the Minkowski sum of all polytopes. Assuming that all polytopes have non-zero n-dimensional volume, he deduced bounds for the bit-complexity. Simultaneously, Verschelde et al. (1996) introduced dynamic lifting and also obtained complexity bounds. In both papers the complexity bounds depend on the number of lower facets, not necessarily mixed facets. More recently Emiris and Vidunas (2014) gave specific formulas for certain semi-mixed volumes. Emiris and Fisikopoulos (2014) devised an algorithm to compute the mixed volume without actually computing the mixed cells.

The algorithm in this paper visits v_{n} lower facets including all the mixed cells. Those facets are 'dual' to a certain tropical curve, not necessarily connected. The precise definition of this tropical curve requires the introduction of a mixed Legendre transform, which allows to efficiently represent tropical varieties as specific subsets of the viable set of some linear programming problem. The precise formalism in introduced in Section 2.

In Section 3, it is proved that each connected component of this tropical curve cuts a generic affine hyperplane with probability 1 . This allows to find all the connected components by a dimensional induction. Each component of the tropical curve is explored by a particular pivoting procedure, that takes into account the structure of the problem. Those procedures are explained in Section 4, together with the procedures for pivoting from one induction level to the other. Because of numerical stability reasons, the generic affine hyperplane is sent to infinity and the pivoting procedures use nonstandard real numbers (real polynomials in a parameter $R \rightarrow \infty)$.

The algorithm and intermediate complexity bounds are given in Section 5. An important complexity gain is obtained by assigning a hash value to every lower face. This allows to efficiently store sets of explored and unexplored lower faces as a balanced tree. The proof of Theorem 1 is completed in Sections 6 and 7 where the numbers v_{d} and \bar{v}_{d} get bounded in terms of mixed volumes (quermassintegrals).

An actual implementation of the algorithm is described in sections 8 to 10 . This is part of a long-term project to produce a toric homotopy based polynomial system solver. The source code is available at http://sourceforge.net/projects/pss5/ and licensed under GNU Public License. At this time, only the mixed volume section of the code is complete and fully tested. There is a glossary of notations at the end of the paper.

The rationale for including sections 8 to 10 in this paper is to substantiate the following claims:

Figure 1. Measured running time (using 8 cores) against the invariant T from equation (2) for several benchmark examples. Data from table 1 page 30

Claim 7. The model of computation is realistic, in the sense that the complexity bound in Theorem 1 accurately describes the running-time measurements for a publicly available implementation of the algorithm.

Experiments were performed on a large number of examples, including some very large benchmark systems (Fig. 11). It is worth to mention that numerical stability issues did arise. Those were circumvented by a careful error analysis and a recovery step in the linear algebra routines (Sec. 8). The experiments in Fig 1 show no noticeable running time increase due to the eventual recovery step.

Claim 8. The algorithm is scalable.
Modern computers are built with multiple cores, and serial complexity analysis does not guarantee a competitive parallel running-time. The program was successfully tested on a parallel environment with up to 8 nodes running 8 cores each.

When analyzing parallel algorithms, the most important complexity invariant is the communication complexity. The parallel version of the algorithm will exchange at most $O\left(\sum v_{d}\right)$ messages of size $O(n)$. Again, this bound alone does not imply good practical scalability properties, so experimentation is necessary.

For each given polynomial system, let T_{N} be the measured running time with N cores. In the benchmark families tested, the running time was of the order of $O\left(N^{0,93}\right)$.

Another parallel algorithm for the same problem was described by Chen et al. (2014). Figure 5 in their paper shows the speedup factor for the Cyclic-15 benchmark example in a similar multi-node environment. From their picture, their speedup factor T_{32} / T_{64} from 32 to 64 cores is around 1, 80 against 1,96 obtained here.
Claim 9. The program performance is comparable to the best available code.
Other free software for mixed volume computations are MixedVol by Gao et al. (2005), DEMICs by Mizutani and Takeda (2008) and PHCpack by Verschelde
(1999). Closed source programs are MixedVol2.0 by Lee and Li (2011) and MixedVol3.0 by Chen et al. (2014).

At this time, Lee and $\mathrm{Li}(2011)$ and Chen et al. (2014) have the best published timings for the problem of computing mixed volumes and mixed cells. Since the algorithm in this paper is different, the results obtained here are better for some benchmark families and worse for others.

Overall, the implementation of AllMixedCellsFull appeared to be reliable for systems with output size of around $n V \simeq 10^{7}$ and beyond. In each of the benchmark families tested, the running time grows moderately with respect to the output size. In some of the benchmark families, a big performance gain was obtained by using a random path heuristic.

I would like to thank Elizabeth Gross for explaining graphical models to me and providing the graphmodel example (Table 1), and Ioannis Emiris for useful conversations on mixed volume estimation. I would also like to thank Leonid Gurvits, Bernd Sturmfels and four anonymous referees for their corrections and comments. Special thanks to the NACAD staff for keeping the computer running despite severe hardware malfunctions.

2. Mixed Legendre transform and tropical varieties

In order to introduce our main tools, it is convenient to work in a more general setting. Some of the supports A_{i} may be repeated, and there is some work to save by considering semi-mixed volumes, that is mixed volumes with multiplicities. Through this paper, A_{1}, \ldots, A_{s} are finite subsets of $\mathbb{Z}^{n}, s \leq n$. Multiplicities $m_{1}+\cdots+m_{s}=n$ are fixed, $m_{i} \geq 0$. The semi-mixed volume is defined by

$$
\begin{aligned}
& V=V\left(\operatorname{Conv}\left(A_{1}\right), m_{1} ; \cdots ; \operatorname{Conv}\left(A_{s}\right), m_{s}\right) \\
& \stackrel{\text { def }}{=} V(\underbrace{\operatorname{Conv}\left(A_{1}\right), \ldots, \operatorname{Conv}\left(A_{1}\right)}_{m_{1} \text { times }}, \ldots, \underbrace{\operatorname{Conv}\left(A_{s}\right), \ldots, \operatorname{Conv}\left(A_{s}\right)}_{m_{s} \text { times }}) .
\end{aligned}
$$

Thus, $n!V$ is the generic number of roots in $\left(\mathbb{C}^{\times}\right)^{n}$ of polynomial systems of the form

$$
f_{i j}(\mathbf{x})=0, \quad 1 \leq j \leq m_{i}, \quad 1 \leq i \leq s
$$

with

$$
f_{i j}(\mathbf{x})=\sum_{\mathbf{a} \in A_{i}} f_{i j \mathbf{a}} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

Definition 10. A real function $b: A_{1} \sqcup \cdots \sqcup A_{s} \rightarrow \mathbb{R}$ is in general position if and only if, for any subset S of $\left\{\left[-\mathrm{e}_{i}, \mathbf{a}, b(i, \mathbf{a})\right]: \mathbf{a} \in A_{i}\right\} \subset \mathbb{R}^{s} \times \mathbb{R}^{n} \times \mathbb{R}$ of cardinality $k \leq n+s+1$, either the vectors in S are linearly independent or $[0, \cdots, 0,1]$ is a linear combination of the points in S.

In particular, b is in general position with probability 1 , that is outside of a certain set of Lebesgue measure zero. The function b appears in mixed volume computation papers as a random lifting.

Let $b_{i}=b_{\mid A_{i}}$. The Legendre dual of b_{i} is the function $\lambda_{i}:\left(\mathbb{R}^{n}\right)^{*} \rightarrow \mathbb{R}$ defined by

$$
\lambda_{i}(\boldsymbol{\xi})=\max _{\mathbf{a} \in A_{i}} \boldsymbol{\xi}(\mathbf{a})-b(\mathbf{a})
$$

Figure 2. Legendre duality for $s=1$.

The function λ_{i} is convex. Its Legendre dual is the lower convex hull of b_{i}, defined as the largest convex function $\hat{b}_{i}: \operatorname{Conv}\left(A_{i}\right) \rightarrow \mathbb{R}$ with $\hat{b}_{i}(\mathbf{a}) \leq b_{i}(\mathbf{a})$ for all $\mathbf{a} \in A_{i}$. (Fig 2). Its epigraph $\{(\mathbf{x}, y): y \geq \hat{b}(\mathbf{x})\}$ can be seen as the convex hull of the set $\left\{\left(\mathbf{a}, b_{i}(\mathbf{a}): \mathbf{a} \in A_{i}\right\}\right.$ and a point at infinity $(0, \infty)$. The non-vertical faces of the epigraph project onto a subdivision of the Newton polytope $\operatorname{Conv}\left(A_{i}\right)$.

Remark 11. In the language of tropical algebraic geometry, the Legendre dual λ_{i} of b_{i} is a tropical polynomial.

Assume that b is in general position. To any $\boldsymbol{\xi} \in\left(\mathbb{R}^{n}\right)^{*}$, we associate the numbers $m_{1}(\boldsymbol{\xi}), \ldots, m_{s}(\boldsymbol{\xi})$ such that $\lambda_{i}(\boldsymbol{\xi})$ is attained for exactly $m_{i}(\boldsymbol{\xi})+1$ values of $\mathbf{a} \in A_{i}$. We also associate to the pair $(i, \boldsymbol{\xi})$ a face $L_{i, \boldsymbol{\xi}}$ of $\operatorname{Graph}\left(\hat{b}_{i}\right)$,

$$
\begin{equation*}
L_{i, \boldsymbol{\xi}}=\left\{(\mathbf{x}, \hat{b}(\mathbf{x})): \mathbf{x} \in \operatorname{Conv}\left(A_{i}\right) \text { and } \lambda_{i}(\boldsymbol{\xi})=\boldsymbol{\xi}(\mathbf{x})-\hat{b}(\mathbf{x})\right\} \tag{5}
\end{equation*}
$$

Let $t_{1}, \ldots, t_{s}>0$ be indeterminates. We consider now the mixed lifting $t_{1} b_{1}+$ $\cdots+t_{s} b_{s}$ of the set of formal linear combinations $t_{1} A_{1}+\cdots+t_{s} A_{s}$ by:

$$
t_{1} \mathbf{a}_{1}+\cdots+t_{s} \mathbf{a}_{s} \mapsto t_{1} b_{1}\left(\mathbf{a}_{1}\right)+\cdots+t_{s} b_{s}\left(\mathbf{a}_{s}\right)
$$

No ordering between the t_{i} is assumed. Yet, to every $\xi \in \mathbb{R}^{n}$, we can associate a face L_{ξ} of $\operatorname{Graph}\left(t_{1} \hat{b}_{1}+\cdots+t_{s} \hat{b}_{s}\right)$,

$$
\begin{equation*}
L_{\boldsymbol{\xi}}=t_{1} L_{1, \boldsymbol{\xi}}+\cdots+t_{s} L_{s, \boldsymbol{\xi}} \tag{6}
\end{equation*}
$$

The face $L_{\boldsymbol{\xi}}$ is is well defined because the $L_{i, \boldsymbol{\xi}}$ are independent with respect to the specialization of the variables t_{i}. This face is said to be of type $\left(m_{1}(\boldsymbol{\xi}), \ldots, m_{s}(\boldsymbol{\xi})\right)$. Since b is in general position, the dimension of $L_{\boldsymbol{\xi}}$ is $m_{1}(\boldsymbol{\xi})+\cdots+m_{s}(\boldsymbol{\xi})$.

Reciprocally, any n-dimensional lower facet L admits a unique vector $\boldsymbol{\xi} \in\left(\mathbb{R}^{n}\right)^{*}$ with $L=L_{\xi}$. More generally, let L be a lower face of any dimension and define $\Xi(L)=\left\{\xi: L=L_{\xi}\right\}$. Then $\Xi(L)$ is a (possibly unbounded) polyhedron of dimension $n-\sum m_{i}(\boldsymbol{\xi})$, 'dual' to L.
Definition 12. Let m_{1}, \ldots, m_{s} be the fixed multiplicities associated to each polytope, $m_{1}+\cdots+m_{s}=n$. A lower mixed facet is a lower face of type $\left(m_{1}, \ldots, m_{s}\right)$. A mixed cell is the projection of a lower mixed facet into \mathbb{R}^{n}.

The mixed volume V is equal to the sum of the volume of the mixed cells. The basic idea for enumerating the mixed facets is to explore certain tropical varieties. One can specify a tropical variety in \mathbb{R}^{n} by bounding the $m_{i}(\boldsymbol{\xi})$ below. For instance,

$$
T_{i} \stackrel{\text { def }}{=}\left\{\boldsymbol{\xi} \in \mathbb{R}^{n}: m_{i}(\boldsymbol{\xi}) \geq 1\right\}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{n}: \max \left(\mathbf{a} \boldsymbol{\xi}-b_{i}(\mathbf{a})\right) \text { attained twice }\right\}
$$

is the hypersurface defined by the tropical polynomial

$$
\sum_{\mathbf{a} \in A_{i}}\left(-b_{i}(\mathbf{a})\right) \xi_{1}^{a_{1}} \xi_{2}^{a_{2}} \cdots \xi_{n}^{a_{n}}
$$

Since the lifting b_{i} is assumed to be in general position, the set

$$
\left\{\boldsymbol{\xi} \in \mathbb{R}^{n}: m_{i}(\boldsymbol{\xi}) \geq 2\right\}
$$

is a codimension 2 hypersurface, which is the stable intersection $2 T_{i} \stackrel{\text { def }}{=} T_{i} \cap_{\text {st }} T_{i}$ Maclagan and Sturmfels, 2015, Ch.3). More generally if $1 \leq m \leq n,\left\{\boldsymbol{\xi} \in \mathbb{R}^{n}\right.$: $\left.m_{i}(\boldsymbol{\xi}) \geq m\right\}$ is the stable intersection $m T_{i}=T_{i} \cap_{\mathrm{st}} \cdots \cap_{\mathrm{st}} T_{i}$. The lower mixed facets are the $L_{\boldsymbol{\xi}}$ where $\boldsymbol{\xi} \in X_{n}$ and X_{n} is the point configuration

$$
X_{n} \stackrel{\text { def }}{=} m_{1} T_{1} \cap_{\mathrm{st}} \cdots \cap_{\mathrm{st}} m_{s} T_{s}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{n}: m_{1}(\boldsymbol{\xi}) \geq m_{1}, \ldots, m_{s}(\boldsymbol{\xi}) \geq m_{s}\right\}
$$

In order to find X_{n} we will proceed by induction on the dimension $0 \leq d \leq$ n. At each step we will explore a one-dimensional tropical variety G_{d} containing X_{d}. Those varieties need to satisfy certain genericity hypotheses, so we proceed as follows:

Let $F_{0} \subset F_{1} \subset \cdots \subset F_{n}=\mathbb{R}^{n}$ be a flag of generic affine subspaces. At dimension d, we will produce $X_{d} \subset F_{d}$ corresponding to certain multiplicities $m_{1}^{(d)}, \ldots, m_{s}^{(d)}$. If $d<n$, we will then explore G_{d} and produce X_{d+1}. For $i \in\{1, \ldots, s\}$ and $d \in\{0, \ldots, n\}$, we choose the multiplicities $0=m_{i}^{(0)} \leq m_{i}^{(1)} \leq \cdots m_{i}^{(n)}=m_{i} \in \mathbb{N}_{0}$ so that $\sum_{i} m_{i}^{(d)}=d$. To do this, we start at $d=0$ with all the $m_{i}^{(0)}=0$ and then increase exactly one of the $m_{i}^{(d)}$ at each step $1 \leq d \leq n$. We define:

$$
\begin{aligned}
X_{d} & =F_{d} \cap\left(m_{1}^{(d)} T_{1} \cap_{\mathrm{st}} \cdots \cap_{\mathrm{st}} m_{s}^{(d)} T_{s}\right) \\
G_{d} & =F_{d} \cap\left(m_{1}^{(d-1)} T_{1} \cap_{\mathrm{st}} \cdots \cap_{\mathrm{st}} m_{s}^{(d-1)} T_{s}\right) .
\end{aligned}
$$

Using explicit notation,

$$
\begin{aligned}
X_{d} & =\left\{\boldsymbol{\xi} \in F_{d}: \forall i, m_{i}(\boldsymbol{\xi}) \geq m_{i}^{(d)}\right\} \\
G_{d} & =\left\{\boldsymbol{\xi} \in F_{d}: \forall i, m_{i}(\boldsymbol{\xi}) \geq m_{i}^{(d-1)}\right\}
\end{aligned}
$$

The induction starts with $X_{0}=\left\{F_{0}\right\}$. The induction step is possible because of the result below, stated in classical terms:

Theorem 13. Assume that $V\left(\operatorname{Conv}\left(A_{1}\right), m_{1} ; \cdots ; \operatorname{Conv}\left(A_{s}\right), m_{s}\right) \geq 1$. If $b: A_{1} \sqcup$ $\cdots \sqcup A_{n} \rightarrow \mathbb{R}$ is in general position and the flag F_{d} generic, then
(a) Each set $G_{d}, d=1, \ldots, n$, is a finite closed union of line segments and halflines.
(b) $X_{d-1}=G_{d} \cap F_{d-1}$.
(c) Each connected component of G_{d} intersects F_{d-1} at least in one point.
(d) (Transversality) All points in $G_{d} \cap F_{d-1}$ are in the interior of a line segment or a half-line of G_{d}.

Moreover, a certain balancing condition (Lemma 16 holds for the edges incident to a vertex.

The structure theorem of Tropical Algebraic Geometry (Cartwright and Payne, 2012, Maclagan and Sturmfels, 2015) guarantees the connectedness of one-dimensional intersections of tropical varieties $G=G_{d}$, as long as the underlying complex variety is irreducible. Example 15 shows how G_{n} can fail to be connected on a positive measure set of liftings b when the underlying complex variety is reducible. The precise combinatorial conditions for the connectedness of tropical hypersurfaces are described by $\mathrm{Yu}(2015)$.

The main tool for proving Theorem 13 is the mixed Legendre transform $\boldsymbol{\xi} \mapsto$ $\lambda_{1}(\boldsymbol{\xi}), \ldots, \lambda_{s}(\boldsymbol{\xi})$. As before, the t_{1}, \ldots, t_{s} are positive indeterminates. The 'epigraph' of the function $t_{1} b_{1}+\cdots+t_{s} b_{s}$ is the set of all the pairs $\left(\boldsymbol{\xi}, t_{1} \lambda_{1}+\cdots+t_{s} \lambda_{s}\right)$ so that $(\boldsymbol{\lambda}, \boldsymbol{\xi})$ is a solution of the system of inequalities

$$
\mathbf{C}\left[\begin{array}{l}
\lambda \tag{7}\\
\xi
\end{array}\right] \leq \mathbf{b}
$$

where \mathbf{C} is the Cayley matrix

$$
\mathbf{C}=\left[\begin{array}{ccccc}
-1 & 0 & \ldots & 0 & \tag{8}\\
\vdots & \vdots & & \vdots & A_{1} \\
-1 & 0 & \ldots & 0 & \\
0 & -1 & \ldots & 0 & \\
\vdots & \vdots & & \vdots & A_{2} \\
0 & -1 & \ldots & 0 & \\
& & \ddots & & \vdots \\
0 & 0 & \ldots & -1 & \\
\vdots & \vdots & & \vdots & A_{s} \\
0 & 0 & \ldots & -1 &
\end{array}\right]
$$

and each support A_{i} is represented by a matrix with rows $\boldsymbol{a} \in A_{i}$. As no confusion can arise, we use the same symbol for the support and its representing matrix.

A lower face L of dimension d can be represented by a pair $(\boldsymbol{\lambda}(\boldsymbol{\xi}), \boldsymbol{\xi})$ so that $L=L(\boldsymbol{\xi})$, with exactly $s+d$ equalities in (7). In the language of linear programming, those are known as the active constraints while the strict inequations are deemed inactive.

The same lower face L can also be represented by its set of active constraints. Its dual $\{\boldsymbol{\xi}\}=\Xi(L)$ is the set of solutions of

$$
\begin{array}{ll}
{\left[-\mathrm{e}_{i}, \mathbf{a}\right]\left[\begin{array}{c}
\boldsymbol{\lambda}(\xi) \\
\boldsymbol{\xi}
\end{array}\right]=b(i, \mathbf{a})} & \text { for }(i, \mathbf{a}) \text { an active constraint } \\
{\left[-\mathrm{e}_{i}, \mathbf{a}\right]\left[\begin{array}{c}
\boldsymbol{\lambda}(\xi) \\
\boldsymbol{\xi}
\end{array}\right]<b(i, \mathbf{a})} & \text { for }(i, \mathbf{a}) \text { inactive }
\end{array}
$$

The tropical varieties G_{d} can be explored by pivoting from each d-dimensional lower face to its neighboring faces. The numerics for pivoting are a fallback from the techniques of the simplex algorithm. This is explained in section 4.

Remark 14. The other known practically efficient algorithms are those by Mizutani et al. (2007) and (Lee and Li, 2011). Both algorithms function by enumerating certain viable lower faces of dimension k, for $0 \leq k \leq n$. To simplify the discussion we assume $n=s$ and $m_{1}=\cdots=m_{n}=1$. In the language of this paper, those algorithms enumerate lower faces corresponding to solutions of (7) with exactly 2 equalities for the i-th block of \mathbf{C}, only for i in a cardinality k subset of $\{1, \ldots, n\}$. Given one of such faces for $k<n$, they extend it to a $k+1$ face using ideas of linear programming. It can happen that some faces are not extensible, and a lot of effort is made to devise heuristics that prune the decision tree as early as possible. No complexity analysis is available.

Example 15. (Fig 3). Consider the Cyclic-3 polynomial system, and replace the coefficients with random coefficients:

$$
\begin{aligned}
c_{0} x_{1}+c_{1} x_{2}+c_{2} x_{3} & =0 \\
c_{3} x_{1} x_{2}+c_{4} x_{2} x_{3}+c_{5} x_{3} x_{1} & =0 \\
c_{6} x_{1} x_{2} x_{3}+c_{7} & =0
\end{aligned}
$$

The zero set of the first two equations is reducible: eliminate x_{3} from the first equation and substitute in the second to obtain an equation of the form $A x_{1}^{2}+$ $2 B x_{1} x_{2}+C x_{2}^{2}$, which clearly factors. Let $m_{1}^{(1)}=m_{2}^{(2)}=m_{3}^{(3)}=1$ as in the figure.

The figure show that for the following values of $b_{i}=c_{i}$, the tropical variety G_{3} is disconnected for a generic flag:

$b_{0}=0.0681718062929322$	$b_{3}=0.8654168322306781$	$b_{6}=0.6575801418616753$	
$b_{1}=0.2764482146232536$	$b_{4}=0.6630347993316177$	$b_{7}=0.2139433513437121$	
$b_{2}=0.4266688073141105$	$b_{5}=0.2369372029023467$		

The mixed vertices of X_{3} are:

$$
X_{3}=\left\{\left[\begin{array}{c}
1.7041246197535198 \ldots 10^{-01} \\
-2.5568513445391900 \ldots 10^{-1} \\
5.2890946299653028 \ldots 10^{-01}
\end{array}\right],\left[\begin{array}{c}
2.8794667050532442 \ldots 10^{-1} \\
4.9622307883564581 \ldots 10^{-1} \\
-3.4053295882300698 \ldots 10^{-1}
\end{array}\right]\right\}
$$

3. Proof of Theorem 13

A vertex in G_{d} is a point $\boldsymbol{\xi} \in F_{d}$ such that $\sum m_{i}(\boldsymbol{\xi})=d$. An edge in G_{d} is a onedimensional intersection $F_{d} \cap L_{\xi}$ where L_{ξ} is the lower face associated to a vector ξ as in (6). Equivalently, an edge is the projection onto $\boldsymbol{\xi}$-space of a non-empty solution set of 77 in F_{d} with prescribed $m_{1}^{(d-1)}+1, \cdots, m_{s}^{(d-1)}+1$ equalities in the respective block, and no more equalities.

Figure 3. Cyclic-3 polynomial system: X_{3} is represented by the two big balls, G_{3} by the two thick lines going through X_{3}. G_{3} cuts F_{2} on X_{2} (light green balls). G_{2} is visible as three half-lines starting at the black ball afar. Albeit at infinity, F_{2} was artificially represented as a usual plane. This is why the lines in G_{3} 'stop' at F_{2}. Similarly, F_{1} is represented as a usual line, and parts of G_{1} are visible as the thin line from bottom left to right. This figure was obtained for $m_{1}^{(1)}=m_{2}^{(2)}=m_{3}^{(3)}=1$.

The set G_{d} is a finite union of vertices and edges. Edges may be bounded or unbounded. Bounded edges are open segments, whose end points are vertices of G_{d}. Unbounded edges cannot be a line, for otherwise all the A_{i} 's would be contained in an hyperplane orthogonal to that line. Therefore, unbounded edges are half-lines, bounded in one side by a vertex of X_{0}. (Fig (4) Recall that $m_{i}(\boldsymbol{\xi})$ is the number of values of $\mathbf{a} \in A_{i}$ such that $\lambda_{i}(\boldsymbol{\xi})=\mathbf{a} \boldsymbol{\xi}-b(i, \mathbf{a})$.
Lemma 16. Let $\boldsymbol{\xi}$ be a vertex of G_{d} and let $1 \leq q \leq s$ be the unique integer with $m_{q}(\boldsymbol{\xi})=m_{q}^{(d-1)}+1$. Then, there are precisely $m_{q}(\boldsymbol{\xi})+1=m_{q}^{(d-1)}+2$ edges of G_{d} with endpoint $\boldsymbol{\xi}$. Moreover, those edges are of the form $\left\{\boldsymbol{\xi}+t \Delta_{j} \boldsymbol{\xi}: t \in\left(0, I_{j}\right)\right\}$ where I_{j} is either a strictly positive real number, or infinity. The following balancing condition holds:

$$
\begin{equation*}
\sum \Delta_{j} \boldsymbol{\xi}=0 \tag{9}
\end{equation*}
$$

This follows directly from the balancing condition in tropical algebraic geometry. For the benefit of general readers, a self-contained proof is given below.

Proof. Let $\mathbf{C}_{\text {act }}, \mathbf{b}_{\text {act }}$ be the submatrix of the Cayley matrix (resp. subvector of \mathbf{b}) with rows in the set of active constraints of vertex $\boldsymbol{\xi}$, plus the $n-d$ affine constraints in ξ that define F_{d}. So $\mathbf{C}_{\text {act }}$ is a $(s+n) \times(s+n)$ matrix and $\mathbf{b}_{\text {act }} \in \mathbb{R}^{s+n}$. Let $\mathbf{C}_{\text {inact }}$

Figure 4. The Cohn 3 polynomial system from Posso. X_{4} is pictured as light balls and the rest of G_{4} as dark balls and lines.
(resp. $\mathbf{b}_{\text {inact }}$) be the submatrix (resp. subvector) of inactive constraints associated to vertex $\boldsymbol{\xi}$. Therefore we assumed that

$$
\mathbf{C}_{\text {act }}\left[\begin{array}{l}
\boldsymbol{\lambda} \\
\boldsymbol{\xi}
\end{array}\right]=\mathbf{b}_{\text {act }}, \quad, \mathbf{C}_{\text {inact }}\left[\begin{array}{l}
\boldsymbol{\lambda} \\
\boldsymbol{\xi}
\end{array}\right]<\mathbf{b}_{\text {inact }}
$$

The edges incident to $\boldsymbol{\xi}$ are obtained by releasing one of the $m_{q}(\boldsymbol{\xi})+1$ equalities in the q-th block.

Suppose we release the j-th equality, where the index j corresponds to the row in $\mathbf{C}_{\text {act }}$ associated to that equality. In particular $j \in J_{q}=\left\{j: 1 \leq j-\left(\sum_{i<q} m_{i}^{(d-1)}\right)-\right.$ $\left.q \leq m_{i}^{(d-1)}+2\right\}$. We obtain a system of equalities of the form

$$
\mathbf{C}_{\mathrm{act}}\left[\begin{array}{c}
\boldsymbol{\lambda}+t \Delta_{j} \boldsymbol{\lambda} \\
\boldsymbol{\xi}+t \Delta_{j} \boldsymbol{\xi}
\end{array}\right]=\mathbf{b}_{\mathrm{act}}-t \mathrm{e}_{j}
$$

where e_{j} is the j-th canonical basis vector and $t>0$ is indeterminate. This simplifies to

$$
\mathbf{C}_{\mathrm{act}}\left[\begin{array}{c}
\Delta_{j} \boldsymbol{\lambda} \\
\Delta_{j} \boldsymbol{\xi}
\end{array}\right]=-\mathrm{e}_{j}
$$

We can solve and find

$$
\left[\begin{array}{c}
\Delta_{j} \boldsymbol{\lambda} \\
\Delta_{j} \boldsymbol{\xi}
\end{array}\right]=-\mathbf{C}_{\mathrm{act}}^{-1} \mathrm{e}_{j}
$$

The balancing condition follows from the fact that

$$
\mathbf{C}_{\mathrm{act}}\left[\begin{array}{c}
\mathrm{e}_{q} \\
0
\end{array}\right]=-\sum_{j \in J_{q}} \mathrm{e}_{j} .
$$

Multiplying by $\mathbf{C}_{\text {act }}^{-1}$,

$$
\left[\begin{array}{c}
\mathrm{e}_{q} \\
0
\end{array}\right]=-\sum_{j} \mathbf{C}_{\mathrm{act}}^{-1} \mathrm{e}_{j}=\left[\begin{array}{c}
\sum_{j \in J_{q}} \Delta_{j} \boldsymbol{\lambda} \\
\sum_{j \in J_{q}} \Delta_{j} \boldsymbol{\xi}
\end{array}\right]
$$

From this we deduce that $\sum_{j \in J_{q}} \Delta_{j} \boldsymbol{\xi}=0$.

An immediate consequence of (9) is the following Lemma, to be used in the proof of Theorem 13(c).

Lemma 17. Let $\mathbf{Q} \in\left(\mathbb{R}^{n}\right)^{*}$ be an arbitrary objective function. Then either $\mathbf{Q} \Delta_{j} \boldsymbol{\xi}>$ 0 for some $j \in J_{q}$, or $\mathbf{Q} \Delta_{j} \boldsymbol{\xi}=0$ for all $j \in J_{q}$.

In order to pivot from face to face, we need to know the value of I_{j} in Lemma 16
Lemma 18. In the conditions above,

$$
I_{j}=\min \left(\{+\infty\} \cup\left\{t(i, \mathbf{a}): \mathbf{a} \in A_{i}, \lambda_{i}(\boldsymbol{\xi})<\lambda_{i} \text { and } t(i, \mathbf{a})>0\right\}\right)
$$

where

$$
t(i, \mathbf{a})=\frac{\left[-\mathrm{e}_{i}, \mathbf{a}\right]\left[\begin{array}{l}
\lambda \\
\xi
\end{array}\right]-b(i, \mathbf{a})}{\left[-\mathrm{e}_{i}, \mathbf{a}\right] \mathbf{C}_{\mathrm{act}}^{-1} \mathrm{e}_{j}}
$$

Proof. In order to find I_{j}, we solve

$$
\mathbf{C}_{\text {inact }}\left[\begin{array}{l}
\boldsymbol{\lambda}+t \Delta_{j} \boldsymbol{\lambda} \\
\boldsymbol{\xi}+t \Delta_{j} \boldsymbol{\xi}
\end{array}\right] \leq \mathbf{b}_{\text {inact }}
$$

with exactly one equality. This is the same as

$$
\mathbf{C}_{\text {inact }}\left[\begin{array}{l}
\boldsymbol{\lambda} \\
\boldsymbol{\xi}
\end{array}\right]-\mathbf{b}_{\text {inact }} \leq t \mathbf{C}_{\text {inact }} \mathbf{C}_{\text {act }}^{-1} \mathrm{e}_{j}
$$

with $t>0$ and exactly one equality. The left hand side is always negative. For each inactive constraint $\left[-\mathrm{e}_{i}, \mathbf{a}\right], \mathbf{a} \in A_{i}$, set

$$
t(i, \mathbf{a})=\frac{\left[-\mathrm{e}_{i}, \mathbf{a}\right]\left[\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\xi}
\end{array}\right]-b(i, \mathbf{a})}{\left[-\mathrm{e}_{i}, \mathbf{a}\right] \mathbf{C}_{\mathrm{act}}^{-1} \mathrm{e}_{j}}
$$

Then I_{j} is the minimal positive value of $t(i, \mathbf{a})$ where $\left[\mathrm{e}_{i}, \mathbf{a}\right]$ is an inactive constraint. In case the set of positive values is empty, $I_{j}=+\infty$.

Proof of Theorem 13. We already checked (a), and (b) holds by construction. We prove (c) now. Let \mathbf{Q}_{d} be a non-zero normal vector to $F_{d-1} \subseteq F_{d}$ so that $F_{d-1}=$ $\left\{\boldsymbol{\xi} \in F_{d}: \mathbf{Q}_{d} \boldsymbol{\xi}=r_{d}\right\}$. Each connected component of $G(d)$ has finitely many vertices. There is a finite number of possible matrices $\mathbf{C}_{\text {act }}$. The first $s+d$ rows of each $\mathbf{C}_{\text {act }}$ are constraints and the remaining $n-d$ rows are obtained from constraints $\mathbb{Q}_{d+1}, \cdots, \mathbb{Q}_{n}$. Because the flag $F_{0} \subset F_{1} \subset \cdots \subset F_{n}$ is generic, \mathbf{Q}_{d} is not orthogonal to any of the columns of any $\mathbf{C}_{\text {act }}^{-1}$. Thus, at all vertices of $G(d), \mathbf{Q}_{d} \Delta_{j} \boldsymbol{\xi} \neq 0$ and $\mathrm{Q}_{d} \Delta_{j} \boldsymbol{\xi}$ assumes both strictly positive and negative values. As there is a finite number of vertices in each connected component C of $G(d)$, at least one of the strictly positive (resp. strictly negative) values corresponds to a half-line. Hence, the connected component C has points with $\mathbf{Q}_{d} \boldsymbol{\xi} \rightarrow-\infty$ and $\mathbf{Q}_{d} \boldsymbol{\xi} \rightarrow+\infty$.

By the intermediate value theorem, C must cut $F_{d-1}=\left\{\boldsymbol{\xi}: \mathbf{Q}_{d} \boldsymbol{\xi}=r_{d}\right\}$ at least once. This proves (c). The transversality condition (d) follows from the genericity of r_{d}.

Remark 19. If one picks $r_{n} \gg r_{n-1} \gg \cdots \gg r_{d+1}$ then the transversality condition still holds.

4. Facet pivoting

In this section we produce the equations for pivoting from a point of X_{d} to its neighbors in G_{d} (Lemma 23) and also to pivot between X_{d} and X_{d+1} (Lemmas 24 and 25). We start with a well-known Lemma that can be used to relate the matrices of active constraints in two adjacent vertices of G_{d}.

Lemma 20 (Rank 1 updates). Let A and B be $n \times n$ matrices with $B=A^{-1}$. Let $u, v \in \mathbb{R}^{n}$. Then $A-u v^{T}$ is invertible if and only if $v^{T} B u \neq 0$. Moreover, if $A-u v^{T}$ is invertible,

$$
\left(A-u v^{T}\right)^{-1}=B+\frac{1}{1-v^{T} B u} B u v^{T} B
$$

Proof. First of all, notice that $\operatorname{det}\left(A-u v^{T}\right)=\operatorname{det}(A) \operatorname{det}\left(I-A^{-1} u v^{T}\right)=1-$ $v^{T} A^{-1} u$. Assuming this is different from zero,

$$
\left(A-u v^{T}\right)^{-1}=B\left(I-u v^{T} B\right)^{-1}=B\left(I+\frac{1}{1-v^{T} B u} u v^{T} B\right)
$$

The last equality follows from multiplying $I-u v^{T} B$ and $I+\frac{1}{1-v^{T} B u} u v^{T} B$.
Now, assume that $F_{d} \subset F_{d+1}$ is defined by the equation $Q_{d+1} \xi=R^{n-d} r_{d+1}$, where $r_{d+1}>0$ and $R>0$ is a parameter that will tend to infinity. The reason for the choice $R \rightarrow \infty$ comes from practical considerations.

Figure 5 shows a typical graph G_{d}. The region close to the origin seems overcrowded with interlaced edges, while the 'spikes' do not appear to be as numerous as the finite edges. Cutting by a plane at infinity minimizes the number of intersections, hence the number of faces to be found. There are other advantages related to the stability of the numerical implementation that will be discussed in section 8 ,

We write down below the pivoting equations for G_{d}. Let $\{\xi\}$ be a vertex of G_{d} and $\lambda=\lambda(\xi)$. This means that there are $s+d$ active constraints such that

$$
\mathbf{C}_{\mathrm{act}}=\left[\begin{array}{cc}
-\mathrm{e}_{i_{1}} & a_{1} \tag{10}\\
\vdots & \vdots \\
-\mathrm{e}_{i_{d}} & a_{d} \\
0 & Q_{d+1} \\
\vdots & \vdots \\
0 & Q_{n}
\end{array}\right] \quad \text { and } \quad \mathbf{b}_{\text {act }}=\left[\begin{array}{c}
b\left(i_{1}, a_{1}\right) \\
\vdots \\
b\left(i_{d}, a_{d}\right) \\
R^{n-d} r_{d+1} \\
\vdots \\
R r_{n}
\end{array}\right]
$$

are respectively the matrix of active constraints and the vector of active constraints. There are at least $m_{i}^{(d-1)}+1$ occurrences of e_{i}. There is a unique $1 \leq q \leq s$ so that there are $m_{q}^{(d-1)}+2$ occurrences of e_{q}, and those are the active constraints that may be 'dropped'. Facets are uniquely defined by the set of active constraints:

Lemma 21. Let $R \geq 0$. Assume that

$$
\mathbf{C}_{\mathrm{act}}\left[\begin{array}{l}
\lambda \\
\xi
\end{array}\right]=\mathbf{b}_{\mathrm{act}}
$$

Then $\mathbf{C}_{\mathrm{act}}$ is invertible. Moreover, there cannot be any extra (i, a) so that

$$
\left[\begin{array}{ll}
-\mathrm{e}_{\mathrm{i}}, & a
\end{array}\right]\left[\begin{array}{l}
\lambda \\
\xi
\end{array}\right]=\mathbf{b}(i, \mathbf{a})
$$

Figure 5. Those pictures illustrate the reason we prefer to take an affine flag 'at infinity'. The top picture shows G_{18} for the sonic3 polynomial system (18 equations in 18 variables) viewed from close to the origin. The pipes that are interrupted are actually crossing the screen. The bottom picture shows G_{18} viewed from far away.

Proof. The matrix $\mathbf{C}_{\mathrm{act}}$ is of the form

$$
\mathbf{C}_{\mathrm{act}}=\left[\begin{array}{cc}
\mathrm{e}_{i_{1}} & \mathbf{a}_{1} \\
\vdots & \vdots \\
\mathrm{e}_{i_{d}} & \mathbf{a}_{d} \\
0 & Q_{d+1} \\
\vdots & \vdots \\
0 & Q_{n}
\end{array}\right]
$$

Because the flag $F_{0} \subset \cdots \subset F_{n}$ is generic and the A_{i} are finite, the span of Q_{d+1}, \ldots, Q_{n} is transversal to any space spanned by exactly d vectors of the form $a-a^{\prime}$, where $a, a^{\prime} \in \cup A_{i}$. After elimination and some row permutations, matrix
$\mathbf{C}_{\text {act }}$ factors:

$$
\mathbf{C}_{\mathrm{act}}=P L\left[\begin{array}{cc}
-I & U_{12} \\
& U_{22} \\
& Q_{d+1} \\
& \vdots \\
& Q_{n}
\end{array}\right] .
$$

P is a permutation. L is lower triangular with $L_{i i}=1$. The rows of U_{12} are elements of $\cup A_{i}$, and the rows of U_{22} are of the form $a-a^{\prime}, a, a^{\prime} \in A_{i}$ for the same i.

Thus,

$$
\begin{aligned}
\operatorname{rank}\left(\mathbf{C}_{\mathrm{act}}\right) & =\operatorname{rank}\left(\left[\begin{array}{cc}
\mathrm{e}_{i_{1}} & \mathbf{a}_{1} \\
\vdots & \vdots \\
\mathrm{e}_{i_{d}} & \mathbf{a}_{d}
\end{array}\right]\right)+n-d \\
& =\operatorname{rank}\left(\left[\begin{array}{ccc}
\mathrm{e}_{i_{1}} & \mathbf{a}_{1} & b\left(i_{1}, \mathbf{a}_{1}\right) \\
\vdots & \vdots & \\
\mathrm{e}_{i_{d}} & \mathbf{a}_{d} & b\left(i_{d}, \mathbf{a}_{d}\right)
\end{array}\right]\right)+n-d .
\end{aligned}
$$

Should the matrix $\mathbf{C}_{\text {act }}$ be singular, there will be d linearly dependent vectors of the form $\left[\mathrm{e}_{i}, \mathbf{a}, b(i, \mathbf{a}] \in \mathbb{R}^{n+s+1}\right.$ contradicting the genericity of the lifting b.

The same argument shows that should there be another active constraint (i,a), there would be $d+1 \leq n+s_{1}$ linearly dependent vectors of the form $\left[\mathrm{e}_{i}, \mathbf{a}, b(i, \mathbf{a}] \in\right.$ \mathbb{R}^{n+s+1}, contradiction again.

The flag $F=F_{0} \subset \cdots \subset F_{n}$ will be assumed to be an affine flag 'at infinity'. This means that the equations for F_{d} are of the form

$$
\begin{aligned}
Q_{d+1} \xi & =R^{n-d} r_{d+1} \\
& \vdots \\
Q_{n} \xi & =R r_{n}
\end{aligned}
$$

with generic Q_{i}, non-zero r_{i} and $R \rightarrow+\infty$. The values of ξ and $\lambda(\xi)$ are now polynomials in R. Let $B=\mathbf{C}_{\text {act }}^{-1}$. The ansatz below is the key to represent those polynomials by their constant term:

$$
\left[\begin{array}{c}
\lambda \tag{11}\\
\xi
\end{array}\right]=\left[\begin{array}{c}
\lambda_{0} \\
\xi_{0}
\end{array}\right]+B\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
R^{n-d} r_{d+1} \\
\vdots \\
R r_{n}
\end{array}\right] \quad \text { with } \quad \mathbf{C}_{\text {act }}\left[\begin{array}{c}
\lambda_{0} \\
\xi_{0}
\end{array}\right]=\mathbf{b}_{\mathrm{act}}=\left[\begin{array}{c}
b\left(i_{1}, a_{1}\right) \\
\vdots \\
b\left(i_{d}, a_{d}\right) \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Only λ_{0} and ξ_{0} need to be stored in memory, the rest of the polynomial is implicit once we know $\mathbf{C}_{\text {act }}$ and B.

Inactive constraints (i, a) (for $R \rightarrow \infty$) satisfy

$$
\begin{align*}
R^{n-d} r_{d+1}\left[-\mathrm{e}_{i}, a\right] B \mathrm{e}_{s+d+1}+ & \cdots+R r_{n}\left[-\mathrm{e}_{i}, a\right] B \mathrm{e}_{n+s}+ \\
& +\left[-\mathrm{e}_{i}, a\right] B\left[\begin{array}{c}
\lambda_{0} \\
\xi_{0}
\end{array}\right]-b(i, a)<0 \tag{12}
\end{align*}
$$

The expression above may be interpreted as a polynomial in R or, as $R \rightarrow \infty$ as a non-standard number. It is strictly negative if and only if the higher-order non-zero coefficient is strictly negative. The reader can check that only the sign of the r_{j} 's matters:
Lemma 22. Assume that $r_{j}>0$ for all j. If 12 is strictly negative for R large enough, then for any other choice of the $r_{j}>0$ it will remain negative for R large enough.

Now we consider the effect of 'dropping' the j-th constraint. As before, we set

$$
\left[\begin{array}{c}
\Delta_{j} \lambda \\
\Delta_{j} \xi
\end{array}\right]=-B \mathrm{e}_{j}
$$

By Lemma 16, the corresponding edge is of the form

$$
\left\{t \Delta_{j} \xi, t \in\left(0, I_{j}\right)\right\}
$$

where I_{j} can be determined as in Lemma 18 . We will need the polynomial

$$
t(i, a)(R)=\sum_{l=0}^{n-d} t_{l}(i, a) R^{l}
$$

where

$$
t_{0}(i, \mathbf{a})=\frac{a\left(\xi_{0}\right)_{i}-b(i, a)-\left(\lambda_{0}\right)_{i}}{\left[-\mathrm{e}_{i}, \mathbf{a}\right] B \mathrm{e}_{j}}
$$

and for $l=1, \ldots, n-d$,

$$
t_{l}(i, \mathbf{a})=\frac{\left[-\mathrm{e}_{i}, \mathbf{a}\right] B \mathrm{e}_{n+s+1-l}}{\left[-\mathrm{e}_{i}, \mathbf{a}\right] B \mathrm{e}_{j}} r_{n+1-l}
$$

Let \mathcal{C} be the set of inactive constraints with $t(i, a)(R)>0$ once R is large enough. There may be inactive constraints with $\left[-\mathrm{e}_{i}, \mathbf{a}\right] B \mathrm{e}_{j}=0$ but those are not eligible as elements of C. Assuming C not empty, $\operatorname{argmin}_{C} t(i, a)(R)$ denotes the constraint $(i, a) \in C$ that is minimal, once R is large enough.

Lemma 23. Let $\xi \in G_{d}$ be a vertex. Assume all the notations above. If C is not empty, Let $\left(i^{*}, a^{*}\right)=\operatorname{argmin}_{(i, a) \in C} t(i, a)(R), t^{*}=t\left(i^{*}, a^{*}\right)=\sum_{l=0}^{n-d} t_{l}^{*} R^{l}$. Then,
(a) $\left(i^{*}, a^{*}\right)$ is uniquely defined.
(b) If R is large enough, $\left[\xi, \xi^{\prime}\right]$ is a segment of G_{d}, where $\xi^{\prime}=\xi+t^{*} \Delta \xi$.
(c) Let $\lambda^{\prime}=\lambda+t^{*} \Delta \lambda$. Let B^{\prime} be the inverse to the matrix of active constraints at ξ^{\prime}. Then

$$
\left[\begin{array}{c}
\lambda^{\prime} \\
\xi^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\lambda_{0}^{\prime} \\
\xi_{0}^{\prime}
\end{array}\right]+B^{\prime}\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
R^{n-d} r_{d+1} \\
\vdots \\
R r_{n}
\end{array}\right]
$$

with

$$
\left[\begin{array}{c}
\lambda_{0}^{\prime} \\
\xi_{0}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\lambda_{0} \\
\xi_{0}
\end{array}\right]-t_{0}^{*} B \mathrm{e}_{\mathrm{j}} .
$$

Proof. We prove item (b) before unicity. Let $0<\tau<t^{*}$. For active constraints $\left(k, a_{k}\right)$ except the j-th one (that we 'dropped'), $-\tau\left[-e_{k}, a_{k}\right] B e_{j}=-\tau \delta_{j k}=0$ so that

$$
a_{k}\left(\xi+\tau \Delta_{j} \xi\right)-b(k, a)=\lambda_{k}+\tau \Delta_{j} \lambda_{k}
$$

We claim that all the other constraints $\left(k, a^{\prime}\right)$ satisfy

$$
a^{\prime}\left(\xi+\tau \Delta_{j} \xi\right)-b\left(k, a^{\prime}\right)<\lambda_{k}+\tau \Delta_{j} \lambda_{k}
$$

For the j-th constraint, this follows from $-\tau\left[-e_{j}, a_{j}\right] B e_{j}=-\tau<0$. Similarly, if $\left(k, a^{\prime}\right)$ is an inactive constraint not in C, either $-\tau\left[-e_{k}, a^{\prime}\right] B e_{j}=0$ or $\left[-e_{k}, a^{\prime}\right] B e_{j}$ and $a_{k} \xi-b\left(k, a^{*}\right)-\lambda_{k}$ have different sign. Since the latter is negative, $\left[-e_{k}, a^{\prime}\right] B e_{j}>$ 0 and $-\tau\left[-e_{k}, a^{\prime}\right] B e_{j} \leq 0$.

Now assume $\left(k, a^{\prime}\right) \in C$: since the numerators of $t\left(i^{*}, a^{*}\right) \leq t\left(k, a_{k}\right)$ are all negative, we have the inequality $\left[e_{i^{*}}, a^{*}\right] B e_{j} \geq \tau\left[-e_{k}, a_{k}\right] B e_{k}$.

$$
\begin{aligned}
a_{k}\left(\xi+\tau \Delta_{j} \xi\right)-b(k, a)-\lambda_{k}+\tau \Delta_{j} \lambda_{k} & =a_{k} \xi-b(k, a)-\lambda_{k}-\tau\left[e_{k}, a\right] B e_{j} \\
& =(t(k, a)-\tau)\left[e_{k}, a\right] B e_{j} \\
& \leq(t(k, a)-\tau)\left[e_{i^{*}}, a^{*}\right] B e_{j} \\
& \leq 0
\end{aligned}
$$

with equality if $(k, a)=\left(i^{*}, a^{*}\right)$.
We can prove item (a) now. Should unicity fail, there will be $n+d+1$ active constraints for $\xi+t^{*} \Delta_{j} \xi$, which contradicts Lemma 21. Therefore, the minimum of w is attained in a unique $\left(i^{*}, a^{*}\right) \in C$.

Let $\mathbf{C}_{\text {act }}^{\prime}$ be the matrix of active constraints for ξ^{\prime} and let B^{\prime} be its inverse. In order to prove item (C), we will first check that for $1 \leq l<n-d$,

$$
B^{\prime} \mathrm{e}_{n+s+1-l} r_{n-l+1}=B \mathrm{e}_{n+s+1-l} r_{n-l+1}-t_{l}^{*} B \mathrm{e}_{\mathrm{j}}
$$

Notice that $\mathbf{C}_{\mathrm{act}}^{\prime}=\mathbf{C}_{\mathrm{act}}-\mathrm{e}_{j} v$, with $v=\left[-\mathrm{e}_{j}, a_{j}\right]-\left[-\mathrm{e}_{i^{*}}, a^{*}\right]$. Also, let $\mathbf{b}_{\mathrm{act}}^{\prime}=$ $\mathbf{b}_{\text {act }}+\mathrm{e}_{j}\left(b\left(i^{*}, a^{*}\right)-b\left(j, a_{j}\right)\right)$. By the previous item and by construction,

$$
\mathbf{C}_{\mathrm{act}}^{\prime}\left[\begin{array}{l}
\lambda+t \Delta_{j} \lambda \\
\xi+t \Delta_{j} \xi
\end{array}\right]=\mathbf{b}_{\mathrm{act}}^{\prime}
$$

The invertibility of $\mathbf{C}_{\mathrm{act}}^{\prime}$ follows from Lemma 21 . Now we apply Lemma 20 to obtain an expression for B^{\prime} :

$$
B^{\prime}=B+\frac{1}{1-v^{T} B e_{j}} B e_{j} v^{T} B
$$

Note that $v^{T} B=e_{j}^{T}-\left[-\mathrm{e}_{i^{*}} a^{*}\right] B$. Thus, for each $1 \leq l \leq n-d$,

$$
\begin{aligned}
r_{n+s-l} B^{\prime} e_{n+s+1-l}= & r_{n+s-l} B e_{n+s+1-l} \\
& +r_{n+s-l} \frac{\left[-\mathrm{e}_{j}, a_{j}\right] B e_{n+s+1-l}-\left[-\mathrm{e}_{i^{*}}, a^{*}\right] B e_{n+s+1-l}}{\left[-\mathrm{e}_{i^{*}} a^{*}\right] B e_{j}} B e_{j} \\
= & r_{n+s-l} B e_{n+s+1-l}-t_{l}^{*} B e_{j}
\end{aligned}
$$

Hence,

$$
B^{\prime}\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
R^{n-d} r_{d+1} \\
\vdots \\
R r_{n}
\end{array}\right]=B\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
R^{n-d} r_{d+1} \\
\vdots \\
R r_{n}
\end{array}\right]-\sum_{l=1}^{n-d} R^{l} t_{l} B e_{j}
$$

Thus,

$$
\begin{aligned}
{\left[\begin{array}{l}
\lambda^{\prime} \\
\xi^{\prime}
\end{array}\right] } & =\left[\begin{array}{l}
\lambda \\
\xi
\end{array}\right]-t^{*} B e_{j} \\
& =\left[\begin{array}{l}
\lambda_{0} \\
\xi_{0}
\end{array}\right]+B\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
R^{n-d} r_{d+1} \\
\vdots \\
R r_{n}
\end{array}\right]-t^{*} B e_{j} \\
& =\left[\begin{array}{l}
\lambda_{0} \\
\xi_{0}
\end{array}\right]-t_{0}^{*} B e_{j}
\end{aligned}
$$

Lemma 23 allows us to explore each of the sets $G_{d}, 1 \leq d \leq n$ and hence to produce X_{d}, as long as we have at least one vertex from each connected component of G_{d}. Those vertices can be recovered from X_{d-1} by using Theorem 13 and the lemma below.

The following Lemma allows to find starting points in G_{d+1} by exploring X_{d}. In order to do that, we 'drop' the $s+d+1$-th constraint. Let w and C be defined accordingly:

$$
t(i, a)(R)=\sum_{l=0}^{n-d} t_{l}(i, a) R^{l}
$$

where

$$
t_{0}(i, \mathbf{a})=\frac{a\left(\xi_{0}\right)_{i}-b(i, a)-\left(\lambda_{0}\right)_{i}}{\left[-\mathrm{e}_{i}, \mathbf{a}\right] B \mathrm{e}_{s+d+1}}
$$

and for $l=1, \ldots, n-d$,

$$
t_{l}(i, \mathbf{a})=\frac{\left[-\mathrm{e}_{i}, \mathbf{a}\right] B \mathrm{e}_{n+s+1-l}}{\left[-\mathrm{e}_{i}, \mathbf{a}\right] B \mathrm{e}_{s+d+1}} r_{n+1-l} .
$$

Let \mathcal{C} be the set of inactive constraints with $t(i, a)(R) \neq 0$ once R is large enough. It is important to notice that for R large, item (d) of Theorem 13 reads:
(d') All points in $G_{d} \cap F_{d-1}$ are in the interior of a half line of G_{d}.
Therefore, all constraints in \mathcal{C} have value of the same sign (positive or negative).
Lemma 24. With the notations of Lemma 233, let $j=s+d+1$. Let $\xi \in X_{d}$ be a vertex. If C is not empty, Let $\left(i^{*}, a^{*}\right)=\operatorname{argmin}_{(i, a) \in C}|t(i, a)(R)|, t^{*}=t\left(i^{*}, a^{*}\right)=$ $\sum_{l=0}^{n-d} t_{l}^{*} R^{l}$. Then,
(a) $\left(i^{*}, a^{*}\right)$ is uniquely defined.
(b) If R is large enough, $\left[\xi, \xi^{\prime}\right)$ is a half line of G_{d}, where $\xi^{\prime}=\xi+t^{*} \Delta \xi$. Moreover, ξ^{\prime} is a point of G_{d+1}.
(c) Let $\lambda^{\prime}=\lambda+t^{*} \Delta \lambda$. Let B^{\prime} be the inverse to the matrix of active constraints at ξ^{\prime}. Then

$$
\left[\begin{array}{c}
\lambda^{\prime} \\
\xi^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\lambda_{0}^{\prime} \\
\xi_{0}^{\prime}
\end{array}\right]+B^{\prime}\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
R^{n-d-1} r_{d+2} \\
\vdots \\
R r_{n}
\end{array}\right]
$$

with

$$
\left[\begin{array}{c}
\lambda_{0}^{\prime} \\
\xi_{0}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\lambda_{0} \\
\xi_{0}
\end{array}\right]-t_{0}^{*} B \mathrm{e}_{\mathrm{j}}
$$

Proof. The proof of items (a) and (b) is similar to the proof of Lemma (23). Therefore we will only prove item (c).

Let $\mathbf{C}_{\mathrm{act}}^{\prime}$ be the matrix of active constraints for ξ^{\prime} and let B^{\prime} be its inverse. As before, $\mathbf{C}_{\mathrm{act}}^{\prime}=\mathbf{C}_{\mathrm{act}}-\mathrm{e}_{j} v$ where $v=\left[0, Q_{d+1}\right]-\left[-\mathrm{e}_{i^{*}}, a^{*}\right]$ is the difference between the j-th row of $\mathbf{C}_{\text {act }}$ and the j-th row of $\mathbf{C}_{\text {act }}^{\prime}$, and $\mathbf{b}_{\mathrm{act}}^{\prime}=\mathrm{e}_{d+1} b\left(i^{*}, a^{*}\right)$. We have

$$
\mathbf{C}_{\mathrm{act}}^{\prime}\left[\begin{array}{c}
\lambda+t \Delta_{j} \lambda \\
\xi+t \Delta_{j} \xi
\end{array}\right]=\mathbf{b}_{\mathrm{act}}^{\prime}
$$

The invertibility of $\mathbf{C}_{\text {act }}^{\prime}$ follows from Lemma 21, and

$$
B^{\prime}=B+\frac{1}{1-v^{T} B e_{s+d+1}} B e_{s+d+1} v^{T} B
$$

with $v^{T} B=e_{s+d+1}^{T}-\left[-\mathrm{e}_{i^{*}} a^{*}\right] B$. As in Lemma 23 item (C), for $1 \leq l<n-d$,

$$
B^{\prime} \mathrm{e}_{n+s-l+1} r_{n-l+1}=B \mathrm{e}_{n+s-l+1} r_{n-l+1}-t_{l}^{*} B \mathrm{e}_{s+d+1} .
$$

When $l=n-d, t_{l}^{*}=r_{d+1}$. Therefore $R^{n-d} r_{d+1} B e_{s+d+1}-R^{n-d} t_{n-d} B e_{s+d+1}=0$ and

$$
\begin{aligned}
{\left[\begin{array}{l}
\lambda^{\prime} \\
\xi^{\prime}
\end{array}\right] } & =\left[\begin{array}{l}
\lambda \\
\xi
\end{array}\right]-t^{*} B e_{j} \\
& =\left[\begin{array}{c}
\lambda_{0} \\
\xi_{0}
\end{array}\right]+B\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
R^{n-d} r_{d+1} \\
\vdots \\
R r_{n}
\end{array}\right]-t^{*} B e_{j} \\
& =\left[\begin{array}{l}
\lambda_{0} \\
\xi_{0}
\end{array}\right]-t_{0}^{*} B e_{j}
\end{aligned}
$$

There is a reciprocal to Lemma 24.

Lemma 25. Let ξ^{\prime} be a vertex from G_{d+1}. Let q be the unique integer such that $m_{q}\left(\xi^{\prime}\right)>m_{q}^{(d)}$. Then there is $\xi \in X_{d}$ such that $\left[\xi, \xi^{\prime}\right)$ is a half line of G_{d} if and only if the following conditions hold for some active constraint (q, a) of ξ^{\prime} (say the j-th):
(a) The set \mathcal{C} corresponding to 'dropping' constraint j is empty.
(b) $\left[0 Q_{d+1}\right] B^{\prime} e_{j}<0$.

In that case, with the notations of Lemma 24.

$$
\left[\begin{array}{c}
\lambda \\
\xi
\end{array}\right]=\left[\begin{array}{c}
\lambda_{0} \\
\xi_{0}
\end{array}\right]+B\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
R^{n-d} r_{d+1} \\
\vdots \\
R r_{n}
\end{array}\right]
$$

with

$$
\left[\begin{array}{c}
\lambda_{0} \\
\xi_{0}
\end{array}\right]=\left[\begin{array}{c}
\lambda_{0}^{\prime} \\
\xi_{0}^{\prime}
\end{array}\right]+\frac{r_{d+1}}{\left[0, Q_{d+1} B^{\prime} e_{j}\right]} B^{\prime} e_{j}
$$

5. The main algorithm

Here is a simplified version of the algorithm. Let \mathcal{V}_{d} denote the set of points (vertices) of the tropical curve G_{d} and \mathcal{E}_{d} the set of finite segments (edges) in G_{d}, $1 \leq d \leq n$. The degree of the graph $\Gamma_{d}=\left(\mathcal{V}_{d}, \mathcal{E}_{d}\right)$ is at most max $m_{i}^{(d-1)}$. Consider now the graph $\Gamma=(\mathcal{V}, \mathcal{E})$ where $\mathcal{V}=\cup \mathcal{V}_{d}$ and \mathcal{E} is the union of all the \mathcal{E}_{d} with the set of connecting segments $\left[\xi, \xi^{\prime}\right]$ from Lemma $24, \xi \in V_{d}, \xi^{\prime} \in V_{d+1}$. The degree of Γ is at most $1+2 \max m_{i}^{(d-1)}$. The AllMixedCells algorithm is a graph walk through Γ.

The algorithm will operate on two sets: a set $\mathcal{V}_{\text {pending }} \subset \mathcal{V}$ to explore, and a set $\mathcal{V}_{\text {known }} \subset \mathcal{V}$ of already explored lower faces. Notice that $\# \mathcal{V} \leq \sum_{d=2}^{n} v_{d}$ where v_{d} is the number of vertices of G_{d}. Therefore $\# \mathcal{E} \leq\left(\sum_{d=2}^{n} v_{d}\right) \operatorname{deg}(\Gamma) / 2$.

The operator $\operatorname{Visited}\left(\mathcal{V}_{\text {known }}, L\right)$ returns true if $L \in \mathcal{V}_{\text {known }}$. Otherwise, it inserts L in $\mathcal{V}_{\text {known }}$ and returns false. The simplified graph exploration algorithm is:

```
Algorithm AllMixedCellS
\(\mathcal{V}_{\text {pending }} \leftarrow\left\{L_{F_{0}}\right\}\).
\(\mathcal{V}_{\text {known }} \leftarrow \emptyset\)
While \(\mathcal{V}_{\text {pending }} \neq \emptyset\),
    Remove some \(L_{\xi}\) from \(\mathcal{V}_{\text {pending }}\).
    If not \(\operatorname{Visited}\left(\mathcal{V}_{\text {known }}, L_{\xi}\right)\)
        If \(L_{\xi}\) is a mixed cell, then output \(L_{\xi}\).
    For each neighbor \(L_{\xi^{\prime}}\) of \(L_{\xi}\) in \(\Gamma\), insert \(L_{\xi^{\prime}}\) in \(\mathcal{V}_{\text {pending }}\).
    Discard \(L_{\xi}\).
```

We assume that elements of $\sqcup A_{i}$ are uniquely labeled by an integer from 1 to $\sum \# A_{i}$. A face L in $\mathcal{V}_{\text {pending }}$ is represented by its list of active constraints, and each active constraint is represented by an integer. Thus, a face L_{ξ} for $\xi \in \mathcal{V}_{d}$ is represented by a strictly increasing list of $s+d$ integers. From this representation one can find the inverse B to the matrix of active constraints in time $O\left(n^{\omega}\right)$ with
$\omega<2.3728639$ the exponent of matrix multiplication Vassilevska Williams, 2012 ; Le Gall, 2014). Once we obtained B it is easy to compute ξ_{0} and λ_{0}.

The neighbors $L_{\xi^{\prime}}$ can be listed by the formulas in Lemmas 23 to 25. Not all inactive constraints need to be tested. Suppose we drop the j-th constraint. All other active constraints will be called the remaining constraints.
Lemma 26. Let $(i, \mathbf{a}),\left(i, \mathbf{a}^{\prime}\right)$ be active constraints in the same lower face. Then,

$$
\left[(\mathbf{a}, b(i, \mathbf{a})),\left(\mathbf{a}^{\prime}, b\left(i, \mathbf{a}^{\prime}\right)\right)\right]
$$

is a sharp lower edge of

$$
\hat{\mathcal{A}}_{i}=\operatorname{Conv}\left(\left\{(\mathbf{a}, b(i, a)): a \in A_{i}\right\}\right) \subset \mathbb{R}^{n} \times \mathbb{R}
$$

It follows from the Lemma that the only inactive constraints to check are those $\left(i^{*}, a^{*}\right)$ so that $\left[\left(\mathbf{a}^{*}, b\left(i^{*}, \mathbf{a}^{*}\right)\right),\left(\mathbf{a}^{\prime}, b\left(i^{*}, \mathbf{a}^{\prime}\right)\right)\right]$ is a sharp lower edge of $\hat{\mathcal{A}}_{i^{*}}$ for all remaining constraints \mathbf{a}^{\prime}. Thus,
Lemma 27. Assume that a lower face L_{ξ} is given and that the matrix B inverse to the matrix of active constraints is known.
(1) If $s=1$ and $d=n$, the neighboring lower face of L_{ξ} can be produced in time at most

$$
O\left(n^{2} \# A_{1}\right)
$$

(2) If $n=s$ and $m_{1}=\cdots=m_{n}=2$ and the sharp lower edges of the $\hat{\mathcal{A}}_{i}$'s are known, then the neighboring lower faces of L_{ξ} can be produced in time at most

$$
O\left(n^{2} \sum\left(E_{i}\right)\right)
$$

where E_{i} is the maximal number of lower sharp edges incident to a sharp vertex of $\hat{\mathcal{A}}_{i}$.

Proof. If $s=1$, there are $n+1$ active constraints that may be 'dropped' by using the formulas in Lemmas 23 to 25 . Since $d=n$, testing an inactive constraint costs $O(n)$ arithmetic operations. Testing all inactive constraints, the argmin in the formulas costs at most $n^{2} \# A_{1}$.

In the second case, there are two or three constraints that may be 'dropped'. Testing an inactive constraint costs $O(n(n+1-d)) \leq O\left(n^{2}\right)$ arithmetic operations. There are at most $\sum E_{i}$ inactive constraints to test for the argmin.

Remark 28. One does not need to explore edges going from \mathcal{V}_{d} to \mathcal{V}_{d-1}.
Remark 29. If L_{ξ} and $L_{\xi^{\prime}}$ are adjacent and B is known, the inverse B^{\prime} of the matrix of active constraints of $L_{\xi^{\prime}}$ can be produced by a rank-one update with cost $O\left(n^{2}\right)$.

In order to bound the cost of each While iteration inside algorithm AllMixedCells, we still need to bound the cost of storing and retrieving data from sets $\mathcal{V}_{\text {pending }}$ and $\mathcal{V}_{\text {known }}$. We represented each lower face L by a list of active constraints, that is a unique strictly increasing list of integers $\left(l_{1}, \cdots, l_{s+d}\right)$ from 1 to $\sum \# A_{i}$. To each of those lists, we associate a hash value, that is a real number in $[0,1]$ computed by the formula:

$$
\sigma(L)=H_{1} l_{1}+\cdots+H_{s+d} l_{s+d} \quad \bmod 1
$$

where the $H_{j} \in[0,1]$ are uniformly distributed random numbers computed once and for all before starting AllMixedCells. The probability of a collision, that is
of two different lower faces having the same value of σ, is zero. The hash function σ will be used to order the lower faces in such a way that the comparison cost is one.

The sets $\mathcal{V}_{\text {pending }}$ and $\mathcal{V}_{\text {known }}$ are represented by balanced trees Knuth, 1998 Ch.6). For lower faces in $\mathcal{V}_{\text {known }}$, only the hash value needs to be stored. The cost of the operator VISITED is therefore bounded above by $O(\log (\# \mathcal{V}))$. For the case of $\mathcal{V}_{\text {pending }}$, we can also store the list of active constraints. Thus:

Lemma 30. Under the assumptions above, the cost of storing or retrieving a value in $\mathcal{V}_{\text {pending }}$ or $\mathcal{V}_{\text {known }}$ is at most $O(n+\log (\# \mathcal{V}))$.

The algorithm below supports the bounds in Theorem 1. It proceeds in two steps. First it computes the sharp lower edges of each $\hat{\mathcal{A}}_{i}$ (See Lemma 27). For each $\mathbf{a} \in A_{i}$, its lifting $\left(\mathbf{a}, b_{i}(\mathbf{a})\right)$ is a sharp lower vertex of $\hat{\mathcal{A}}_{i}$ if and only if it belongs to the border of a sharp lower edge. We will now replace the lifting $b_{i}: A_{i} \rightarrow[0,1]$ with a new general lifting, $\tilde{b}_{i}: A_{i} \rightarrow[0,2]$ with

$$
\tilde{b}_{i}(\mathbf{a})= \begin{cases}b_{i}(\mathbf{a}) & \text { if }\left(\mathbf{a}, b_{i}(\mathbf{a})\right) \text { a sharp lower vertex, and } \\ b_{i}(\mathbf{a})+1 & \text { otherwise }\end{cases}
$$

The second step is the AllMixedCells algorithm applied to the lifting $\left(\tilde{b}_{1}, \ldots, \tilde{b}_{n}\right)$.
Algorithm AllMixedCellsFull $\left(n, A_{1}, \ldots A_{n}\right)$
Draw a random lifting $b: \sqcup_{i} A_{i} \rightarrow[0,1]$, each coordinate uniformly distributed.
Draw uniform random numbers $H_{1}, \ldots, H_{2 n}$ uniformly distributed in [0, 1].
Draw an orthogonal matrix Q uniformly distributed with respect to the Haar measure of $S O(n)$ and define F_{i} as the space orthogonal to the last $n-i$ columns of Q.
For $i=1, \ldots, n$ invoke AllMixedCells with $s=1$ and input A_{i}, b_{i}. Produce a list of the lower edges of \hat{A}_{i}.
Set $V \leftarrow 0$.
Invoke AllMixedCells with $s=n, m_{i}=2$ and input $A_{1}, \ldots, A_{n}, \tilde{b}_{1}, \ldots, \tilde{b}_{n}$. For each mixed lower face, add the volume of the mixed cell to V and output the lower face.
Output V.
We can prove the first part of Theorem 1.
Lemma 31. Let $d_{i}=\operatorname{dim} \operatorname{Conv}\left(A_{i}\right)$ and $V_{i}=d_{i}!\operatorname{Vol}\left(\operatorname{Conv}\left(A_{i}\right)\right)_{d_{i}}$. Let
$T=\left(\sum_{i=2}^{d} v_{i}\right)\left(n^{2} \sum_{i=1}^{n} E_{i}+\log \sum_{i=2}^{n} v_{i}\right), T^{\prime}=\left(\max V_{i}\right)\left(n^{2} \sum_{i=1}^{n} \# A_{i}+\log \max _{i=1, \ldots, n} V_{i}\right)$.
The algorithm AllMixedCellsFull performs at most $O\left(T+T^{\prime}\right)$ arithmetic operations.

Proof. Uniform random numbers $b(i, a)$ and H_{i} can be obtained at unit cost. To produce the matrix $Q \in S O(n)$, one first produces a random matrix A, where each coordinate $A_{i j}$ is an independently distributed $N(0,1)$ random numbers. By using standard algorithms like the Box-Müller method, one obtains each $A_{i j}$ within bounded cost. Then, Q may be produced by computing the QR factorization of A, or equivalently be Gram-Schmidt orthonormalization of the columns of A.

Computing the dimension d_{i} of each A_{i} is easy. There are at most

$$
d_{i}!\operatorname{Vol}\left(\operatorname{Conv}\left(A_{i}\right)\right)_{d_{i}}
$$

lower faces to explore, and the first one can be found by standard linear programming techniques. The cost of each exploration step is bounded by Lemma 27(1). Therefore, the total cost is $O\left(T^{\prime}\right)$.

The last call to AllMixedCells must explore $\# \mathcal{V}=\sum v_{i}$ lower faces, and the cost of exploring each one was bounded in Lemma 27(2). The total cost of this step is therefore $O(T)$.

Remark 32. The Box-Müller method requires the use of a logarithm, a square root, sine and cosine. The Gram-Schmidt method or QR factorization uses square roots. Rather than approximating those functions, I assumed that they are available at unique cost.

6. Deterministic complexity analysis

Let v_{d} be the number of vertices of G_{d}. The number v_{d} depends on the lifting $b: A_{1} \sqcup \cdots \sqcup A_{s} \rightarrow \mathbb{R}$ that is assumed generic, but fixed. It also depends on the flag $\left(F_{0} \subset \cdots \subset F_{n}\right)$ that we take of the form

$$
F_{n-d}(R)=\left\{\xi \in \mathbb{R}^{n}: Q_{d+1} \xi=R^{n-d}, \ldots, Q_{n-1} \xi=R^{2}, Q_{n} \xi=R\right\}
$$

where Q_{1}, \ldots, Q_{n} are the rows of a generic matrix in $O(n)$, and $R>0$ is assumed to be large enough.

Let $A_{0}=\left\{0, \mathrm{e}_{1},-\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots,-\mathrm{e}_{n}\right\}$ and $\mathcal{A}_{0}=\operatorname{Conv}\left(A_{0}\right)$. The solid \mathcal{A}_{0} is also known as the n-orthoplex and denoted by β_{n}. Alternative terminologies are n-cross and cocube. Notice that

$$
\frac{1}{\sqrt{n}} B^{n} \subset \beta_{n} \subset B^{n}
$$

The main result in this section is:
Proposition 33.

$$
v_{d} \leq n!V\left(\mathcal{A}_{1}, m_{1}^{(d-1)} ; \cdots ; \mathcal{A}_{s}, m_{s}^{(d-1)} ; \mathcal{A}, 1 ; \beta_{n}, n-d\right)
$$

Towards the proof of Proposition 33 we extend the lifting b to $A_{0}=\beta_{n}$ by

$$
b(0,0)=0 \quad \text { and } \quad b\left(0, \pm \mathrm{e}_{i}\right)=S
$$

where $S>0$ will be determined later.
Definition 34. Let $W \subset A_{0} \sqcup \cdots \sqcup A_{s}$. The set of viable points for W is

$$
\begin{aligned}
& \Xi(W)=\left\{\xi \in \mathbb{R}^{n}: \forall(i, a) \in A_{0} \sqcup \cdots \sqcup A_{s},\right. \\
& \\
& a \xi-\lambda_{i}(\xi)-b_{i}(a) \leq 0
\end{aligned}
$$

with equality iff $(i, a) \in W\}$.

To every $W \subset A_{0} \sqcup \cdots \sqcup A_{s}$ we associate the pair

$$
\mathbf{C}_{\text {act }}=\mathbf{C}_{\mathrm{act}}(W)=\left[\begin{array}{cc}
\vdots & \vdots \tag{13}\\
-\mathrm{e}_{i} & a \\
\vdots & \vdots \\
0 & Q_{e+1} \\
\vdots & \vdots \\
0 & Q_{n}
\end{array}\right] \text { and } \mathbf{b}_{\text {act }}=\mathbf{b}_{\text {act }}(W)=\left[\begin{array}{c}
\vdots \\
b_{i}(a) \\
\vdots \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $e=\# W-(s+1)$ and $(i, a) \in W$. We say that W is linearly independent if $\mathbf{C}_{\mathrm{act}}(W)$ is invertible. In that case we also set $B=B(W)=\mathbf{C}_{\mathrm{act}}(W)^{-1}$.

Proof of Proposition 33. We start by fixing S. To that end, we notice that for every linearly independent set W such that

$$
\exists S, R(S)>0 \text { s.t. } \quad \forall R>R(S), \Xi(W) \cap F_{e}(R) \neq \emptyset
$$

equation 11) determines $\xi(R) \in \Xi(W) \cap F_{e}(R)$ as

$$
\left[\begin{array}{c}
\lambda(R) \\
\xi(R)
\end{array}\right]=B \mathbf{b}_{\text {act }}+B\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
R^{n-e} \\
\vdots \\
R
\end{array}\right]
$$

The first term is a constant when $W \cap A_{0}=\{0\}$, otherwise it is affine in S. The second term is a polynomial in R.

For any $(i, a) \notin W$, write

$$
t(i, a)=\left[\mathrm{e}_{i} a\right]\left[\begin{array}{l}
\lambda(R) \\
\xi(R)
\end{array}\right]-b_{i}(a)=f_{W, i, a}(R)+g_{W, i, a} S
$$

where $f_{W, i, a}$ is a polynomial in R and $g_{W, i, a}$ is a constant, vanishing when $W \cap A_{0}=$ $\{0\}$. By hypothesis, the expression above is negative for R large enough. This means that the leading term of $f_{W, i, a}$ is strictly negative.

As there are finitely many W, i and a, there exists a uniform constant $R_{d}>0$ such that when $R \geq R_{d}$, each of the $f_{W, i, a}(R)$ for all $d \leq e \leq n-1$ is strictly negative and non-increasing. This constant R_{d} is independent of S. Now pick S large enough so that if $W \cap A_{0}=\{0\},\left\|\xi\left(R_{d}\right)\right\|_{\infty}<S$. Notice that if $(0,0) \in W$ and $\left(0, \pm \mathrm{e}_{i}\right) \in W$ then forcefully $\xi_{i}= \pm S$.

For each $d \leq e \leq n$, let \mathcal{W}_{e} be the class of all subsets $W \subset A_{0} \sqcup \cdots \sqcup A_{s}$ such that
(a) $(0,0) \in W$.
(b) W is linearly independent.
(c) $\# W=s+e+1$.
(d) $\# W \cap A_{0}=1+e-d$.
(e) $\# W \cap A_{i} \geq 1+m_{i}^{(d-1)}$, and
(f) For R large enough, $\Xi(W) \cap F_{e}(R) \neq \emptyset$. This holds in particular for some R with $\|\xi(R)\|_{\infty} \leq S$.

Induction hypothesis in $e \in\{d, d+1, \ldots, n\}$: For every vertex $\xi(R)$ of G_{d}, there is one and only one $W \in \mathcal{W}_{e}$ with $\xi(R) \in \Xi(W)$ for $R>R_{e}$ for some R_{e} with $\left\|\xi\left(R_{e}\right)\right\|_{\infty} \leq S$.

Base step $e=d$: Let $W=\{(0,0)\} \cup\left\{(i, a) \in A_{i}, i \geq 1:-\lambda_{i}(\xi(R))+a \xi(R)-\right.$ $b(i, a)=0\}$. For this choice of $W, g_{W, i, a}=0$ at all inactive constraints. By construction of $G_{d}, W \in \mathcal{W}_{d}$ and $\xi(R) \in \Xi(W)$.

Induction step: Let $W \in \mathcal{W}_{e}, d<e<n$. Assume after reshuffling indexes and changing signs that $W \cap A_{0}=\left\{0, \mathrm{e}_{1}, \ldots, \mathrm{e}_{e-d}\right\}$. For some value of $R_{e+1}>R_{e}$, the curve $\left(\xi_{e-d+1}(R), \ldots, \xi_{n}(R)\right)$ will exit the hypercube $\max _{i>e-d}\left(\left|\xi_{i}\right|\right)=S$. Say this happens for $\xi_{e-d+1}\left(R_{e+1}\right)$. Then we set $W^{\prime}=W \cup\left\{\left(0, \mathrm{e}_{e-d+1}\right)\right\}$.

The point $\xi\left(R_{e+1}\right)$ belongs to $\Xi\left(W^{\prime}\right)$. By construction, W^{\prime} is linearly independent. So we can construct $\mathbf{C}_{\mathrm{act}}\left(W^{\prime}\right)$ and $B\left(W^{\prime}\right)$, and hence all the $f_{W^{\prime}, i, a}$ and $g_{W^{\prime}, i, a}$ for inactive constraints $(i, a) \notin W^{\prime}$. With $R \geq R_{e+1}$, set:

$$
\left[\begin{array}{c}
\lambda^{\prime}(R) \\
\xi^{\prime}(R)
\end{array}\right]=B\left(W^{\prime}\right) \mathbf{b}_{\mathrm{act}}\left(W^{\prime}\right)+B\left(W^{\prime}\right)\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
R^{n-e-1} \\
\vdots \\
R
\end{array}\right]
$$

Then for all inactive constraints,

$$
-\left[\mathrm{e}_{i}, a\right]\left[\begin{array}{c}
\lambda^{\prime}(R) \\
\xi^{\prime}(R)
\end{array}\right]-b(a)=f_{W^{\prime}, i, a}(R)+g_{W^{\prime}, i, a}(S)
$$

Since $R \geq R_{e+1}>R_{e}, f_{W^{\prime}, i, a}\left(R^{\prime}\right)<0$ is negative and non-increasing. Thus

$$
f_{W^{\prime}, i, a}(R)+g_{W^{\prime}, i, a}(S) \leq f_{W^{\prime}, i, a}\left(R_{e+1}\right)+g_{W^{\prime}, i, a}(S)<0
$$

It follows that for $R \geq R_{e+1}, \Xi\left(W^{\prime}\right) \cap F_{e}\left(R^{\prime}\right) \neq \emptyset$. Moreover, $\left\|\xi^{\prime}\left(R_{e+1}\right)\right\|_{\infty}=S$.
Conclusion. By induction, we can associate injectively to each vertex of G_{d}, an element of \mathcal{W}_{n} which is a mixed cell for one $\left(A_{0}, n-d ; A_{1}, m_{1}^{(d-1)}+\delta_{1 p} ; \cdots ; A_{s}, m_{s}^{(d-1)}+\right.$ $\left.\delta_{s p}\right)$. The volume of such a mixed cell is an integral multiple of $1 / n$!. Proposition 33 follows.

7. Average complexity analysis

Proposition 33 holds for a generic lifting b and for a sufficiently generic flag $F_{0} \subset \cdots \subset F_{n}$. Now we assume that the orthogonal group $O(n)$ is endowed with the Haar probability measure. For each $Q \in O(n)$, let Q_{d} be the d-th row of Q. Let R be an arbitrarily large positive real number. As before, the flag of affine subspaces is: $F_{n}=\mathbb{R}^{n}$,

$$
F_{d-1}=\left\{\xi \in F_{d}: Q_{d} \xi=R^{n-d+1}\right\} .
$$

Then we set $\bar{v}_{d}=\operatorname{Avg}_{Q \in O(n)} v_{d}$. The following result should be compared with Proposition 33
Proposition 35. Suppose that $V\left(\mathcal{A}_{1}, m_{1} ; \cdots ; \mathcal{A}_{s}, m_{s}\right) \neq 0$. Then,

$$
\bar{v}_{d} \leq \frac{n!}{2^{n-d}} V\left(\mathcal{A}_{1}, m_{1}^{(d-1)} ; \cdots ; \mathcal{A}_{s}, m_{s}^{(d-1)} ; \mathcal{A}, 1 ; B^{n}, n-d\right)
$$

We will use the following fact to establish Proposition 35 .

Lemma 36. Suppose that the topological closure $\overline{\Xi(W)}$ of $\Xi(W)$ contains a line. Then $V\left(\mathcal{A}_{1}, m_{1} ; \cdots ; \mathcal{A}_{s}, m_{s}\right)=0$.
Proof. Let the line be $\xi_{0}+t \dot{\xi}$. Without loss of generality, assume that $a \dot{\xi}=0$ for all active constraints $(i, a) \in W$. For inactive constraints,

$$
-\lambda_{i}+a \xi_{0}+t a \dot{\xi} \leq b(i, a) \forall t .
$$

This is only possible if $a \dot{\xi}=0$. So $A_{1}, \ldots, A_{s} \subset \dot{\xi}^{\perp}$.
Proof of Proposition 35. The case $d=n$ follows from Proposition 33 so we assume $d<n$. Let $\mu_{1}+\cdots+\mu_{s}=d$. We define $\mathcal{W}\left(\mu_{1}, \ldots, \mu_{s}\right)$ as the class of subsets $W \in A_{1} \sqcup \cdots \sqcup A_{s}$ with $\# W \cap A_{i}=\mu_{i}+1$ and such that $\Xi(W)$ contains an affine cone of dimension $n-d$.

Every vertex of G_{d} corresponds to such a subset for some choice of $\mu_{i} \geq m_{i}^{(d-1)}$. Indeed, the curve $\xi(R)$ obtained by varying R large enough cannot be contained in an hyperplane of codimension $d+1$. So what we need to do is to count the average number of elements of $\mathcal{W}\left(\mu_{1}, \ldots, \mu_{s}\right)$.

Let $\mathbf{C}_{\text {act }}(W, Q)$ be as in 13 for a particular choice of Q. Then,

$$
\max _{Q \in O(n)} \operatorname{det}\left(\mathbf{C}_{\mathrm{act}}(W, Q)\right)=\max _{Q_{d+1}, \ldots, Q_{n} \in B^{n}} \operatorname{det}\left(\mathbf{C}_{\mathrm{act}}(W, Q)\right) \geq 1
$$

Also, let $\mathcal{W}\left(\mu_{1}, \ldots, \mu_{s}, Q\right)$ be the set of $W \in \mathcal{W}\left(\mu_{1}, \ldots, \mu_{s}\right)$ such that $\Xi(W) \cap$ $F_{d}(R)$ is not empty, for R sufficiently large. Then,

$$
\begin{aligned}
\operatorname{Avg}_{Q \in O(n)} & \# \mathcal{W}\left(\mu_{1}, \ldots, \mu_{s} ; Q\right) \leq \\
\leq & \sum_{W \in \mathcal{W}\left(\mu_{1}, \ldots, \mu_{s}\right)} \operatorname{Prob}\left[\Xi(W) \cap F_{n-d}(R) \neq \emptyset\right] \\
\leq & \sum_{W \in \mathcal{W}\left(\mu_{1}, \ldots, \mu_{s}\right)}\left(\operatorname{Prob}\left[\Xi(W) \cap F_{n-d}(R) \neq \emptyset\right] \max _{Q_{d+1}, \ldots, Q_{n} \in B^{n}} \operatorname{det}\left(\mathbf{C}_{\mathrm{act}}(W, Q)\right)\right) \\
\leq & \left(\max _{W} \operatorname{Prob}\left[\Xi(W) \cap F_{n-d}(R) \neq \emptyset\right]\right)\left(\sum_{W} \max _{Q_{d+1}, \ldots, Q_{n} \in B^{n}} \operatorname{det} \mathbf{C}_{\mathrm{act}}(W, Q)\right)
\end{aligned}
$$

The second term is bounded above by

$$
n!V\left(\mathcal{A}_{1}, \mu_{1} ; \cdots ; \mathcal{A}_{s}, \mu_{s} ; B^{n}, n-d\right)
$$

We claim now that

$$
\operatorname{Prob}\left[\Xi(W) \cup F_{n-d}(R) \neq \emptyset\right] \leq \frac{1}{2^{n-d}}
$$

Indeed, let $W \in \mathcal{W}\left(\mu_{1}, \ldots, \mu_{s}\right)$ and admit that there is Q such that

$$
\xi(R) \in \Xi(W) \cap F_{n-d}(R)
$$

exists for R large enough. Let

$$
I_{n} \neq \Sigma=\left[\begin{array}{llll}
I_{d} & & & \\
& \pm 1 & & \\
& & \ddots & \\
& & & \pm 1
\end{array}\right]
$$

be a non-trivial sign change matrix, and let $Q^{\prime}=\Sigma^{\prime} Q$. Let $F_{n-d}^{\prime}(R)$ be the induced flag. Suppose that $\xi^{\prime}(R) \in \Xi(W) \cap F_{n-d}^{\prime}(R)$.

Since $\Xi(W)$ is a convex, the line segment $\left[\xi(R), \xi^{\prime}(R)\right]$ is contained in $\Xi(W)$. Making $R \rightarrow \infty$, we conclude that $\overline{\Xi(W)}$ contains a straight line. Then Lemma 36 implies that the mixed volume of the \mathcal{A}_{i} vanishes, contradiction. Therefore, $\Xi(W) \cap$ $F_{n-d}^{\prime}(R)=\emptyset$.

The multiplicative group of all the sign matrices Σ as above preserves the Haar metric in $O(n)$, and has order 2^{n-d}. Since only one of the ΣQ can have $\Xi(W) \cap$ $F_{n-d}(R) \neq \emptyset$, we deduce that

$$
\operatorname{Prob}\left[\Xi(W) \cup F_{n-d}(R) \neq \emptyset\right] \leq \frac{1}{2^{n-d}}
$$

8. Implementation notes

In this section, I describe several techniques that were used in the software and have an effect on the experiments.
Hermite normal form. The polytopes A_{1}, \ldots, A_{n} are translated so that each one has a vertex equal to zero. Then, the program computes a basis for the lattice generated by $\cup\left(A_{i}\right)$ through a Hermite normal form factorization. The supports A_{i} are then rewritten into lattice basis coordinates. This may reduce the mixed volume in families of examples such as Cyclic-n or Gridanti-n. If the mixed volume algorithm is coupled to a path-following algorithm, this technique reduces the number of paths to track.
Hash function. In Section 5 , we associated a unique real number to each possible lower face. To a lower face L_{ξ} with active constraints labeled by integers $l_{1}<\cdots<$ l_{s+d} we associated the hash value

$$
\sigma\left(L_{\xi}\right)=\sum_{j=1}^{s+d} l_{j} H_{j} \quad \bmod 1
$$

with H_{j} independently distributed random numbers in $[0,1]$. In the program, those are replaced by pseudo-random floating point numbers. Since pseudo-random numbers are a good proxy for irrational numbers, we expect the values of σ to be well spread from each other (Knuth, 1998, Th.S Sec. 6.4). The reason for choosing the l_{j} in increasing order is to ensure that the floating point value associated to a face L_{ξ} is always the same.
Parallelization. If N processors are available, the k-th node or processor ($0 \leq k<$ $N)$ is in charge of lower faces L_{ξ} for $k \leq N \sigma\left(L_{\xi}\right)<k$. The sets $\mathcal{V}_{\text {pending }}$ and $\mathcal{V}_{\text {known }}$ are distributed between the processors: each processor stores the lower faces in its range as a balanced tree.

Below is a crude version of the parallel algorithm, running on node k out of N. The new parallel operations are explained afterwards.

```
Algorithm AllMixedCells (Parallel)
If \(k \leq N \sigma\left(L_{F_{0}}\right)<k+1\)
    then \(\mathcal{V}_{\text {pending }} \leftarrow\left\{L_{F_{0}}\right\}\).
    else \(\mathcal{V}_{\text {pending }} \leftarrow \emptyset\).
\(\mathcal{V}_{\text {known }} \leftarrow \emptyset\)
work_to_do \(\leftarrow\) True.
While work_to_do
    \(L_{\xi} \leftarrow \emptyset\).
    While \(\mathcal{V}_{\text {pending }} \neq \emptyset\) and \(L_{\xi}=\emptyset\),
        Remove some \(L_{\xi}\) from \(\mathcal{V}_{\text {pending }}\).
        If \(\operatorname{Visited}\left(\mathcal{V}_{\text {known }}, L_{\xi}\right)\) then \(L_{\xi}=\emptyset\).
    If \(L_{\xi} \neq \emptyset\),
        If \(L_{\xi}\) is a mixed cell, then output \(L_{\xi}\).
        For each neighbor \(L_{\xi^{\prime}}\) of \(L_{\xi}\) in \(\Gamma\), send \(L_{\xi^{\prime}}\) to processor \(\left\lfloor\sigma\left(L_{\xi^{\prime}}\right) / N\right\rfloor\).
        Discard \(L_{\xi}\).
    Wait until all sent messages are available to the recipient node.
    Receive all \(L_{\xi}\) 's sent to node \(k\) and insert them in \(\mathcal{V}_{\text {pending }}\).
    work_to_do \(\leftarrow\left(\mathcal{V}_{\text {pending }} \neq \emptyset\right)\)
    Reduce ( work_to_do, or, \(0 \leq k<N\) )
```

Parallel machines communicate by sending messages between processors. Operations send and receive refer to a message from a given processor, sent to a specified processor. Each node can check whether a message went through, that is whether it is available to the recipient. It can check for incoming messages.

The reduce operation (modeled on MPI_Allreduce) takes three arguments, variable, operation and range. It allows to efficiently compute an aggregated value out of a variable at each node in the range, for the given operation. In the example above, the variables work at each processor are 'or-ed', and the result is propagated to all the nodes in the range.
The choice of the function $m_{i}^{(d)}$. The choice of the $m_{i}^{(d)}$ makes a difference. I opted to reorder the A_{i} 's by increasing dimension, then increasing volume, then increasing number of points. In the unmixed case, $m_{i}^{(d)}=2$ for $i \leq d$ and $m_{i}^{(d)}=1$ when $i>d$.
Numerical stability. Numerical stability is an issue. Instead of computing rank1 updates, I opted for producing the matrix B independently for each lower face. Then I stipulated a value of $\epsilon=10^{5} \epsilon_{M}$ where ϵ_{M} is the 'machine epsilon' for double precision. The value of B is always assumed correct, in the sense that

$$
\left\|B_{\text {computed }}-B_{\text {true }}\right\|_{\infty} \leq \epsilon\left\|B_{\text {computed }}\right\|_{\infty}
$$

The bounds for the condition number provided by the Lapack library are not always correct. Therefore, I estimated the condition number of $\mathbf{C}_{\text {act }}$ by $\left\|\mathbf{C}_{\text {act }}\right\|_{\infty}$ $\left\|B_{\text {computed }}\right\|_{\infty}$. This was used to bound the forward error $\left\|B_{\text {computed }}-B_{\text {true }}\right\|_{\infty}$.
Recovery step: When necessary, the precision of the matrix B can be improved by Newton iteration, where the residual $\mathbf{C}_{\text {act }} B-I$ is computed using long double or quadruple precision using Newton iteration (Demmel, 1997, Sec.2.5). This is a very rare event.
Nonstandard numbers: Numerators and denominators for each of the $t_{l}(i, a)$ can be computed with absolute error no more than $2\left(1+\max d_{i}\right)(n+s) \epsilon$. If the computed absolute value of the numerator (resp. denominator) of $t_{l}(i, a)$ is below that bound,

Example	n	$\sum E_{i}$	Visited faces	T	AVG $R T$	Std dev	$R T / T$
Cyclic13	13	133	3.07×10^{06}	7.51×10^{10}	2.06×10^{02}	7.73×10^{00}	2.74×10^{-09}
Cyclic14	14	157	1.10×10^{07}	3.66×10^{11}	8.50×10^{02}	2.79×10^{01}	2.33×10^{-09}
Cyclic15	15	183	4.40×10^{07}	1.96×10^{12}	4.07×10^{03}	1.22×10^{02}	2.08×10^{-09}
Noon18	18	324	8.10×10^{06}	8.92×10^{11}	1.23×10^{03}	1.42×10^{02}	1.38×10^{-09}
Noon19	19	361	1.64×10^{07}	2.24×10^{12}	2.87×10^{03}	4.08×10^{02}	1.28×10^{-09}
Noon20	20	400	3.37×10^{07}	5.62×10^{12}	6.46×10^{03}	6.53×10^{02}	1.15×10^{-09}
Chandra18	18	307	3.32×10^{06}	3.45×10^{11}	5.18×10^{02}	3.63×10^{01}	1.50×10^{-09}
Chandra19	19	343	7.17×10^{06}	9.27×10^{11}	1.27×10^{03}	5.44×10^{01}	1.37×10^{-09}
Chandra20	20	381	1.57×10^{07}	2.50×10^{12}	3.08×10^{03}	1.96×10^{02}	1.23×10^{-09}
Chandra21	21	421	3.46×10^{07}	6.67×10^{12}	7.58×10^{03}	4.59×10^{02}	1.14×10^{-09}
Katsura15	16	200	5.03×10^{06}	2.73×10^{11}	5.57×10^{02}	6.15×10^{01}	2.04×10^{-09}
Katsura16	17	225	1.41×10^{07}	9.72×10^{11}	1.88×10^{03}	2.69×10^{02}	1.93×10^{-09}
Katsura17	18	252	3.55×10^{07}	3.05×10^{12}	5.31×10^{03}	5.57×10^{02}	1.74×10^{-09}
Katsura18	19	280	8.30×10^{07}	8.81×10^{12}	1.42×10^{04}	9.02×10^{02}	1.61×10^{-09}
Gaukwa7	14	98	9.78×10^{05}	2.01×10^{10}	7.00×10^{01}	4.83×10^{00}	3.48×10^{-09}
Gaukwa8	16	128	1.07×10^{07}	3.73×10^{11}	1.02×10^{03}	9.30×10^{01}	2.73×10^{-09}
Vortex5	10	120	1.37×10^{05}	1.83×10^{09}	7.62×10^{00}	6.47×10^{-01}	4.16×10^{-09}
Vortex6	15	240	7.53×10^{07}	4.39×10^{12}	7.25×10^{03}	9.17×10^{02}	1.65×10^{-09}
N-body5	10	130	2.94×10^{05}	4.30×10^{09}	1.42×10^{01}	1.78×10^{00}	3.31×10^{-09}
Gridanti3	18	81	7.10×10^{04}	1.93×10^{09}	9.26×10^{00}	4.28×10^{-01}	4.80×10^{-09}
Gridanti4	32	144	3.08×10^{07}	4.62×10^{12}	1.14×10^{04}	5.98×10^{02}	2.47×10^{-09}
Sonic8	28	407	6.78×10^{06}	2.21×10^{12}	2.49×10^{03}	4.37×10^{02}	1.13×10^{-09}
Sonic9	30	452	1.38×10^{07}	5.70×10^{12}	5.89×10^{03}	9.25×10^{02}	1.03×10^{-09}
Sonic10	32	497	2.34×10^{07}	1.21×10^{13}	1.18×10^{04}	1.56×10^{03}	9.73×10^{-10}
Graphmodel6	21	48	3.37×10^{04}	7.29×10^{08}	6.50×10^{00}	6.65×10^{-01}	8.92×10^{-09}
Graphmodel7	28	63	4.14×10^{05}	2.08×10^{10}	1.11×10^{02}	7.52×10^{00}	5.33×10^{-09}
Graphmodel8	36	80	7.43×10^{06}	7.80×10^{11}	3.85×10^{03}	3.38×10^{02}	4.94×10^{-09}
Eco20	20	209	1.11×10^{07}	9.61×10^{11}	1.93×10^{03}	5.25×10^{02}	2.00×10^{-09}
Eco21	21	230	2.36×10^{07}	2.48×10^{12}	4.62×10^{03}	1.30×10^{03}	1.86×10^{-09}
Reimer13	13	169	6.99×10^{03}	2.10×10^{08}	1.54×10^{00}	1.22×10^{-01}	7.33×10^{-09}
Reimer14	14	196	1.15×10^{04}	4.62×10^{08}	2.18×10^{00}	2.51×10^{-01}	4.72×10^{-09}
Reimer15	15	225	1.92×10^{04}	1.02×10^{09}	3.35×10^{00}	2.20×10^{-01}	3.29×10^{-09}
VortexAC4	12	84	1.17×10^{04}	1.50×10^{08}	1.55×10^{00}	6.69×10^{-02}	1.03×10^{-08}
VortexAC5	20	200	3.19×10^{06}	2.64×10^{11}	4.84×10^{02}	5.09×10^{01}	1.83×10^{-09}

TABLE 1. Predicted value of T and measured running time for selected examples (8 cores).
it is assumed to be zero. Similarly, if $\left|t_{l}(i, a)-t_{l}\left(i^{\prime}, a^{\prime}\right)\right|<\epsilon\left\|\left[-e_{i} a\right] B \mathrm{e}_{j}\right\|^{-1}$, those quantities are deemed equal.
Random walk: I experimented with a random walk strategy to find all the connected components of G_{n} in Γ, instead of the deterministic walk through all of Γ. Each connected component found was explored by the AllMixedCells algorithm. Then other random paths were explored until an heuristic stopping criterion was met. The results are discussed on section 9 ,

9. Numerical Results

9.1. Choice of the examples. I selected a few families of benchmark systems for which a general formula is available or is easy to figure. In particular, the benchmark families tested by Lee and $\mathrm{Li}(2011)$ were all included in the benchmark: Cyclic, Noon, Chandra, Katsura, Gaukwa, Vortex, N-body, Gridanti and Sonic. Precise references for most of them were given by Verschelde (1999).

Number of cores:	8	16	32	64	Efficiency exp.
Cyclic15	4.07×10^{03}	2.06×10^{03}	1.15×10^{03}	5.90×10^{02}	9.20×10^{-01}
Noon20	6.46×10^{03}	3.25×10^{03}	1.81×10^{03}	9.00×10^{02}	9.37×10^{-01}
Chandra21	7.58×10^{03}	3.81×10^{03}	2.14×10^{03}	1.08×10^{03}	9.28×10^{-01}
Gaukwa9	Unavail.	8.25×10^{03}	4.57×10^{03}	2.27×10^{03}	9.30×10^{-01}

TABLE 2. Parallel timing. The efficiency exponent is the quadratic best fit for the linear coefficient of $\left(\log \left(N_{i}\right),-\log \left(T_{i}\right)\right)$ where T_{i} is the measured running time with N_{i} cores.

Example	n	Mixed volume	det	Output size	AllMixedCells (8 cores)	Random path (8 cores)	Lee and Li $(1$ core $)$
Cyclic12	12	500352	12	5.00×10^{05}	3.95×10^{01}	1.91×10^{01}	5.70×10^{01}
Cyclic13	13	2704156	13	2.70×10^{06}	2.06×10^{02}	1.14×10^{02}	5.04×10^{02}
Cyclic14	14	8795976	14	8.80×10^{06}	8.50×10^{02}	4.10×10^{02}	4.03×10^{03}
Cyclic15	15	35243520	15	3.52×10^{07}	4.07×10^{03}	1.91×10^{03}	3.64×10^{04}
Cyclic16	16	135555072	16	1.36×10^{08}		8.28×10^{03}	
Noon18	18	387420453	1	6.97×10^{09}	1.23×10^{03}		
Noon19	19	1162261429	1	2.21×10^{10}	2.87×10^{03}		6.35×10^{02}
Noon20	20	3486784361	1	6.97×10^{10}	6.46×10^{03}		1.11×10^{03}
Noon21	21	10460353161	1	2.20×10^{11}		3.56×10^{03}	4.30×10^{03}
Noon22	22	31381059565	1	6.90×10^{11}		8.72×10^{03}	9.21×10^{03}
Noon23	23	94143178781	1	2.17×10^{12}		1.98×10^{4}	2.43×10^{04}
Chandra18	18	131072	1	2.36×10^{06}	5.18×10^{02}		
Chandra19	19	262144	1	4.98×10^{06}	1.27×10^{03}		
Chandra20	20	524288	1	1.05×10^{07}	3.08×10^{03}		4.62×10^{02}
Chandra21	21	1048576	1	2.20×10^{07}	7.58×10^{03}		1.07×10^{03}
Chandra22	22	2097152	1	4.61×10^{07}			2.60×10^{03}
Chandra23	23	4194304	1	9.65×10^{07}			7.38×10^{03}
Chandra24	24	8388608	1	2.01×10^{08}			1.80×10^{04}
Katsura13	14	8190	1	1.15×10^{05}			1.32×10^{02}
Kastura14	15	16254	1	2.44×10^{05}			6.02×10^{02}
Katsura15	16	32730	1	5.24×10^{05}	5.57×10^{02}	1.69×10^{01}	2.57×10^{03}
Katsura16	17	65280	1	1.11×10^{06}	1.88×10^{03}	2.85×10^{01}	1.46×10^{04}
Katsura17	18	131070	1	2.36×10^{06}	5.31×10^{03}	4.68×10^{01}	7.56×10^{04}
Katsura18	19	261576	1	4.97×10^{06}	1.42×10^{04}	9.97×10^{01}	
Katsura19	20	524286	1	1.05×10^{07}		1.67×10^{02}	
Kastura20	21	1047540	1	2.20×10^{07}		3.68×10^{02}	
Gaukwa7	14	11390625	1	1.59×10^{08}	7.00×10^{01}	9.14×10^{00}	2.75×10^{02}
Gaukwa8	16	410338673	1	6.57×10^{09}	1.02×10^{03}	7.98×10^{01}	1.07×10^{04}
Gaukwa9	18	16983563041	1	3.06×10^{11}		1.00×10^{03}	3.70×10^{05}
Gaukwa10	20	794280046581	1	1.59×10^{13}		1.28×10^{04}	
Eco19	19	131072	1	2.49×10^{06}	9.28×10^{02}		
Eco20	20	262144	1	5.24×10^{06}	1.93×10^{03}	1.21×10^{02}	
Eco21	21	524288	1	1.10×10^{07}	4.62×10^{03}	2.39×10^{02}	
Eco22	22	1048576	1	2.31×10^{07}	8.75×10^{03}	4.75×10^{02}	
Eco23	23	2097152	1	4.82×10^{07}		1.06×10^{03}	

TABLE 3. Measured output-sensitivity of the full AllMixedCells algorithm, of AllMixedCells with the random path heuristic and results reported by Lee and Li (2011).

Figure 6. Measured running time (using 8 cores) against the invariant T from equation (2) for several benchmark examples. Data from table 1 page 30

The system VortexAC from (Chen et al., 2014) was also included for the sake of comparison. Due to hardware limitations, I was unable to compute the mixed volume of VortexAC-6.

Jan Verschelde maintains a list of polynomial systems in http://homepages. math.uic.edu/~jan/demo.html. From his list I selected the Eco and the Reimer families.

According to Morgan (1987, p.148(7.3)), the system Eco-n arised from economic modeling. It is defined by

$$
\begin{aligned}
-c_{i}+x_{i} x_{n}+\sum_{j=1}^{n-i-1} x_{j} x_{i+j} x_{n} & =0 \\
x_{1}+\cdots+x_{n-1}+1 & =0
\end{aligned} \quad \text { for } i=1, \ldots, n-1,
$$

The Reimer- n family was defined in the Posso suite, still available at http://wwwsop.inria.fr/saga/POL/. It is given by:

$$
-1 / 2+\sum_{j=1}^{n}(-1)^{j+1} x_{j}^{i+1}=0 \quad \text { for } 1 \leq i \leq n
$$

The family Graphmodel comes from Gaussian graphical models in statistics (Uhler, 2012). Let G be the cyclic graph with vertices $\{1, \ldots, n\}$ and edges $\mathcal{E}=$ $\{\{1,1\},\{2,2\} \ldots,\{n, n\} \cup\{\{1,2\},\{2,3\}, \cdots,\{n, 1\}\}$. Let X and Y be $n \times n$ symmetric matrices, constructed as follows. Assume that $i \leq j$: If $\{i, j\} \in \mathcal{E}$, then $X_{i j}$ is a variable and $Y_{i j}$ is a random complex number. If $(i, j) \notin \mathcal{E}$, then $Y_{i j}$ is a variable and $X_{i j}=0$.

Figure 7. Measured running time of AllMixedCells $-\bullet$, AllMixedCells with random path \square and running time published by Lee and Li (2011) against the output size for selected examples. All times in seconds. Data from table 3 page 31 .

The system Graphmodel-n is given by the upper triangular part of the matrix equation $X Y=I$. The actual number of roots of the overdetermined system $X Y=I$ is known as the Maximum Likelihood degree of the graphical model G. The same construction may be carried out for any graph G.
9.2. Hardware. Computations were performed at NACAD (Núcleo Avançado de Computação de Alto Desempenho) in the Universidade Federal do Rio de Janeiro. The machine used was a SGI Altix ICE 8400 running Intel MKL (includes Lapack) and MVAPICH2 (MPI implementation). I used up to 8 nodes, with 8 cores per node. The CPUs are either Six Core Intel Xeon X5650 (Westmere) running at 2.67 GHz or Quad Core Intel Xeon X5355 (Clovertown) running at 2.66 GHz .
9.3. Claim 1: adequacy of the computation model. Each of the benchmark examples was tested for 10 pseudo-random liftings. The results are displayed in table 1. The number of visited faces is an average. The column T displays the bound in (2). The running time is the average wall time for all steps of the program, from reading the input to writing the mixed cells to the output file. For systems large enough, the running time was found to be of the order of $10^{-9} \mathrm{~T}$ seconds, with a standard deviation under 15%.
9.4. Claim 2: scaling. Four benchmark examples with $T>10^{12}$ were selected for the scaling test (Table 2).

In order to evaluate the efficiency of parallelization, I used least squares to compute the linear coefficient of the best affine approximation for data $\left(\log N_{i},-\log T_{i}\right)$ where N_{i} is the number of cores and T_{i} the average running time. I obtained a running time of

$$
O\left(N^{0.93}\right)
$$

while perfect, linear parallelization would yield $O(N)$.
9.5. Claim 3: comparison with other available software. The best published timings for finding mixed cells are those in (Lee and Li, 2011) and (Chen et al., 2014). Since experiments were performed in different machines, the absolute timings may not be comparable. However, the time ratio from a benchmark example to the next example in the same family is an invariant.

To make sense from this invariant, I plotted the running time against the output size, in a log-log scale (Fig. 7).

The slopes of the lines show how the running time increases with respect to the output size. A slope close to one or smaller implies that computing the mixed cells will not be a bottleneck for the overall polynomial solving by homotopy.

Fig. 7 shows that there is not a best algorithm for all cases and that all the three tested algorithms are competitive for some of the benchmark families. It is possible to see an asymptotic gain in running time for the families Cyclic, Katsura and Gaukwa when using AllMixedCellsFull.

Comparison with the results by (Chen et al., 2014) can only be done in terms of absolute running time, adjusting their results in the shared memory model to 8 cores. Their program had a similar running time for the Cyclic-15 and Eco-20 examples and was faster than AllMixedCellsFull for Sonic-8 and Katsura-15. However the number of cores using shared memory is limited so those results are not necessarily scalable.

10. Conclusions

We introduced a new algorithm to compute mixed cells and mixed volumes. Its running time was bounded in terms of quermassintegrals associated to the supporting polytopes of the equations. This is the first non-combinatorial bound for mixed volume computation.

The implementation of the algorithm is competitive with available software. Its main drawbacks are memory usage and some numerical stability problems for very large polynomial systems.

Memory usage problems disappear when using a sufficient number of processors, since most memory storage is local and distributed.

Numerical instability arises when two faces are nearly parallel, or when the matrix of active constraints is nearly degenerate. This problem was solved through rigorous error bounds and judicious use of quadruple precision arithmetic. Extra precision may be required if the number of faces to visit becomes substantially larger than in the tested examples (table 1). At this time precision is not an issue, so this is left for future implementations.

The random walk method for accelerating the algorithm is a promising strategy. It should be coupled with a fast mixed volume estimator (unavailable at this time) to ensure correctness of the results. Moreover, random graph search algorithms are a research subject by itself.

While the motivation of this paper was to provide good starting systems for homotopy, the numerical implementation of polyhedral homotopy continuation may require adequate mathematical machinery beyond projective spaces and unitary group action. See for instance (Malajovich and Rojas, 2004, Malajovich, 2013) on conditioning and root counting on toric varieties. Homotopy algorithms on toric varieties will be the subject of a future paper.

Note. While this paper was under review, Jensen (2016) proposed a symbolic algorithm for tropical homotopy continuation, using similar but subtly different ideas. Preliminary experiments suggest a running time comparable to the random path method (table 3), yet it is deterministic.

Glossary of notations

$V\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)$	Mixed volume of $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$.	p. 2
A_{i}	Finite subset of \mathbb{Z}^{n}.	p. 2
V	Scaled mixed volume $n!V\left(\operatorname{Conv}\left(A_{1}\right), \cdots, \operatorname{Conv}\left(A_{n}\right)\right)$.	p. 2
V_{i}	Generic root bound of an unmixed system of support A_{i}.	p. 3
T, T^{\prime}	Time bounds for the algorithm	p. 3
s	Number of different supports A_{i}.	p. 6
m_{i}	Multiplicity of each support A_{i}.	p. 6
$b_{i}=b_{i}(\mathbf{a})=b(i, \mathbf{a})$	Lifting value for $\mathbf{a} \in A_{i}$.	p. 6
$\lambda_{i}=\lambda_{i}(\xi)$	Legendre dual for the lifting b_{i}.	p. 6
$m_{i}(\boldsymbol{\xi})$	Number of times $\lambda_{i}(\xi)$ attained, minus one.	p. 7
$L_{i, \boldsymbol{\xi}}$	Facet of Graph (\hat{b}_{i}) .	p. 7
L_{ξ}	Facet of $\operatorname{Graph}\left(\sum t_{i} \hat{b}_{i}\right), t_{i}$ indeterminates.	p. 7
$\Xi(L)$	Possibly unbounded polyhedron dual to face L.	p. 8
$F_{0} \subset \cdots \subset F_{n}$	Generic affine flag in \mathbb{R}^{n}.	p. 8
$m_{i}{ }^{(d)}$	Certain non-decreasing sequence.	p. 8
X_{d}	Certain zero-dimensional tropical variety.	p. 8
G_{d}	Certain one-dimensional tropical variety.	p. 8
C, b	Cayley matrix and lifting vector.	p. 9
q	Last polytope so that $m_{q}^{(d)}$ increased at time d.	p. 11
Δ_{j}	Pivoting direction, in ξ-space.	p. 11
I_{j}	Pivoting distance.	p. 11
$\Delta_{j} \boldsymbol{\xi}, \Delta_{j} \boldsymbol{\lambda}$	Pivoting vectors while dropping constraint j.	p. 11
$\mathbf{C a c t}_{\text {act }}, \mathbf{b}_{\text {act }}$	Matrix and vector of active constraints.	p. 11
$\mathbf{C}_{\text {inact }}, \mathbf{b}_{\text {inact }}$	Matrix and vector of inactive constraints.	p. 12
$t(i, \mathbf{a})$	score of inactive constraint [i, \mathbf{a}]	p. 13
Q_{i}	Unit vector orthogonal to F_{i-1} in F_{i}.	p. 16
R	non-standard number, $R>k$ for all $k \in \mathbb{R}$.	p. 16
B	Inverse to the matrix $\mathbf{C}_{\text {act }}$ of active constraints.	p. 16
$t_{i, a}(R)$	Scores for inactive constraints.	p. 17
$\Gamma=(\mathcal{V}, \mathcal{E})$	Graph to be explored. Union of tropical curves.	p. 21
v_{d}	number of vertices of G_{d}.	p. 21
E_{i}	Degree of 1-skeleton of lifting of A_{i}	p. 22

References

Barvinok, A. 1997. Computing mixed discriminants, mixed volumes, and permanents, Discrete Comput. Geom. 18, no. 2, 205-237, DOI 10.1007/PL00009316.
Bernstein, D. N. 1975. The number of roots of a system of equations, Funkcional. Anal. i Priložen. 9, no. 3, 1-4 (Russian).
Bernstein, D. N., A. G. Kušnirenko, and A. G. Hovanskiĭ. 1976. Newton polyhedra, Uspehi Mat. Nauk 31, no. 3(189), 201-202 (Russian).
Chen, Tianran, Tsung-Lin Lee, and Tien-Yien Li. 2014. Mixed volume computation in parallel, Taiwanese J. Math. 18, no. 1, 93-114, DOI 10.11650/tjm.18.2014.3276.
Cartwright, Dustin and Sam Payne. 2012. Connectivity of tropicalizations, Math. Res. Lett. 19, no. 5, 1089-1095, DOI 10.4310/MRL.2012.v19.n5.a10.
Demmel, James W. 1997. Applied numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Dyer, Martin, Peter Gritzmann, and Alexander Hufnagel. 1998. On the complexity of computing mixed volumes, SIAM J. Comput. 27, no. 2, 356-400, DOI 10.1137/S0097539794278384.
Emiris, Ioannis Z. 1996. On the complexity of sparse elimination, J. Complexity 12, no. 2, 134166, DOI 10.1006/jcom.1996.0010.

Emiris, Ioannis Z. and John F. Canny. 1995. Efficient incremental algorithms for the sparse resultant and the mixed volume, J. Symbolic Comput. 20, no. 2, 117-149, DOI 10.1006/jsco.1995.1041.
Emiris, Ioannis Z. and Vissarion Fisikopoulos. 2014. Efficient Random-Walk Methods for Approximating Polytope Volume, 30th Annual Symposium on Computational Geometry, SOCG'14, Kyoto, Japan, June 08-11, 2014, pp. 318.

Emiris, Ioannis Z. and Raimundas Vidunas. 2014. Root counts of semi-mixed systems, and an application to counting Nash equilibria, ISSAC'14, pp. 154-161.
Gao, Tangan and T. Y. Li. 2000. Mixed volume computation via linear programming, Taiwanese J. Math. 4, no. 4, 599-619.

Gao, Tangan, T. Y. Li, and Mengnien Wu. 2005. Algorithm 846: MixedVol: a software package for mixed-volume computation, ACM Trans. Math. Software 31, no. 4, 555-560, DOI 10.1145/1114268.1114274.

Gurvits, Leonid. 2009. A polynomial-time algorithm to approximate the mixed volume within a simply exponential factor, Discrete Comput. Geom. 41, no. 4, 533-555, DOI 10.1007/s00454-009-9147-5.
Huber, Birkett and Bernd Sturmfels. 1995. A polyhedral method for solving sparse polynomial systems, Math. Comp. 64, no. 212, 1541-1555, DOI 10.2307/2153370.
Jensen, Anders. 2016. Tropical Homotopy Continuation, available at http://arxiv.org/abs/ 1601.02818

Khachiyan, L. G. 1989. The problem of calculating the volume of a polyhedron is enumeratively hard, Uspekhi Mat. Nauk 44, no. 3(267), 179-180, DOI 10.1070/RM1989v044n03ABEH002136 (Russian); English transl.,. 1989, Russian Math. Surveys 44, no. 3, 199-200.
Knuth, Donald E. 1998. The art of computer programming. Vol. 3, Addison-Wesley, Reading, MA.
Le Gall, François. 2014. Powers of Tensors and Fast Matrix Multiplication, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC 2014), pp. 296303.

Lee, Tsung-Lin and Tien-Yien Li. 2011. Mixed volume computation in solving polynomial systems, Randomization, relaxation, and complexity in polynomial equation solving, Contemp. Math., vol. 556, Amer. Math. Soc., Providence, RI, pp. 97-112, DOI 10.1090/conm/556/11009, (to appear in print).
Li, T. Y. and Xing Li. 2001. Finding mixed cells in the mixed volume computation, Found. Comput. Math. 1, no. 2, 161-181, DOI 10.1007/s102080010005.
Maclagan, Diane and Bernd Sturmfels. 2015. Introduction to Tropical Geometry, American Mathematical Society, Providence, RI.
Malajovich, Gregorio. 2013. On the Expected Number of Zeros of Nonlinear Equations, Found. Comput. Math. 13, no. 6, 867-884, DOI 10.1007/s10208-013-9171-y.
Malajovich, Gregorio and J. Maurice Rojas. 2004. High probability analysis of the condition number of sparse polynomial systems, Theoret. Comput. Sci. 315, no. 2-3, 524-555, DOI 10.1016/j.tcs.2004.01.006.

Minkowski, Hermann. 1901. Sur les surfaces convexes fermées, C.R. Acad.Sci., Paris 132, 21-24. Mizutani, Tomohiko and Akiko Takeda. 2008. DEMiCs: a software package for computing the mixed volume via dynamic enumeration of all mixed cells, Software for algebraic geometry, IMA Vol. Math. Appl., vol. 148, Springer, New York, pp. 59-79, DOI 10.1007/978-0-387-78133-4, (to appear in print).
Mizutani, Tomohiko, Akiko Takeda, and Masakazu Kojima. 2007. Dynamic enumeration of all mixed cells, Discrete Comput. Geom. 37, no. 3, 351-367, DOI 10.1007/s00454-006-1300-9.
Morgan, Alexander. 1987. Solving polynomial systems using continuation for engineering and scientific problems, Prentice Hall, Inc., Englewood Cliffs, NJ.
Preparata, Franco P. and Michael Ian Shamos. 1985. Computational geometry, Texts and Monographs in Computer Science, Springer-Verlag, New York. An introduction.
Uhler, Caroline. 2012. Geometry of maximum likelihood estimation in Gaussian graphical models, Ann. Statist. 40, no. 1, 238-261, DOI 10.1214/11-AOS957.

Vassilevska Williams, Virginia. 2012. Multiplying matrices faster than Coppersmith-Winograd, Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pp. 887-898. Verschelde, Jan. 1999. Algorithm 795: PHCPack: A general-purpose solver for polynomial systems by homotopy continuation, ACM Transactions on Mathematical Software 25, no. 2, 251-276.
Verschelde, J., K. Gatermann, and R. Cools. 1996. Mixed-volume computation by dynamic lifting applied to polynomial system solving, Discrete Comput. Geom. 16, no. 1, 69-112, DOI 10.1007/BF02711134.

Verschelde, Jan, Pierre Verlinden, and Ronald Cools. 1994. Homotopies exploiting Newton polytopes for solving sparse polynomial systems, SIAM J. Numer. Anal. 31, no. 3, 915-930, DOI 10.1137/0731049.

Yu, Josephine. 2015. Do most polynomials generate a prime ideal?, available at http://arxiv. org/abs/1509.02050

Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal do Rio de Janeiro. Caixa Postal 68530, Rio de Janeiro RJ 21941-909, Brasil.

E-mail address: gregorio.malajovich@gmail.com

[^0]: Date: April 14, 2016.
 2010 Mathematics Subject Classification. Primary 65H10, Secondary 52A39, 14M25, 14N10, 52B55 .

 Key words and phrases. mixed volume, sparse polynomials, homotopy algorithms, tropical algebraic geometry.

 A substantial part of this paper was written while visiting the Simons Institute for the Theory of Computing in the University of California at Berkeley. This visit was funded by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil. Proc. BEX 2388/146). This research is also funded by CNPq, grants $441678 / 2014-9$ and $306673 / 2013-4$. Numerical experiments were performed at NACAD (Núcleo Avançado de Computação de Alto Desempenho) at UFRJ.

