CONVERGENCE OF THE MARKER-AND-CELL SCHEME FOR THE
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS
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Abstract. We prove in this paper the convergence of the Marker And Cell (MAC) scheme for the
discretization of the steady-state and time-dependent incompressible Navier-Stokes equations in prim-
itive variables, on non-uniform Cartesian grids, without any regularity assumption on the solution. A
priori estimates on solutions to the scheme are proven; they yield the existence of discrete solutions
and the compactness of sequences of solutions obtained with family of meshes the space step and, for
the time-dependent case, the time step of which tend to zero. We then establish that the limit is a
weak solution to the continuous problem.
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1. INTRODUCTION

Let © be an open bounded domain of R? with d = 2 or d = 3. The steady-state incompressible Navier-Stokes
equations read:

diva =0 in €, (1a)
—Au+(u-VYu+Vp=f in Q, (1b)
u=0 on S (1c)
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where @ stands for the (vector-valued) velocity of the flow, p for the pressure and f is a given field of L2(Q2)4,
and where, for two given vector fields v = (v1,...,vq) and w = (w1, ..., wq), the quantity (v - V)w is a vector
field whose components are ((v - V)w); = ZZ:l vpOkw;, i € [1,d]. A weak formulation of Problem (I reads:

Find (@,p) € HL(Q)? x L(Q) such that, ¥(v,q) € Hi () x L3(Q),

Vﬂ:Vvdcc—l—/

((w-V)u)-v dm—/ﬁdivv de = [ f-vdz, (2a)
Q

Q Q Q

/ g diva dz =0, (2b)
Q

where L2(Q) stands for the subspace of L?(Q) of zero mean-valued functions.

The time-dependent Navier-Stokes equations are also considered:

dives = 0 in Q x (0,7), (3a)
ou—Au+ (a-V)a+Vp=f in Qx(0,7), (3b)
w=0 on 90 x (0,7), (3c)
a(x,0) = ug in Q. (3d)

This problem is posed for (x,t) in € x (0,T') where T" € R ; the right-hand side f is now a given vector field
of L2(Q x (0,T))? and the initial datum g belongs to the space E(Q) of divergence-free functions, defined by:

E(Q)={uec H}(Q)*; divu =0 a.e. in Q}.
A weak formulation of the transient problem (3] reads (see e.g. [3]):

Find w € L2(0,T; E(R)) N L>=(0,T; L*(2)?) such that, Yo € L2(0,T; E(Q)) N C>(Q x [0,T)),
/ / u(z,t) - Ov(x,t) de dt — / o(x) - v(x,0) dw—i—/o /QVﬁ(w,t) : Vo(e,t) de dt (4)

+/0 /Q ((w- V)u)(x,t) - v(x,t) de dtz/oT/Qf(w,t)-v(w,t) de dt.

The Marker-And-Cell (MAC) scheme, introduced in the middle of the sixties [21], is one of the most popular
methods [28[33] for the approximation of the Navier-Stokes equations in the engineering framework, because
of its simplicity, its efficiency and its remarkable mathematical properties. The aim of this paper is to show,
under minimal regularity assumptions on the solution, that sequences of approximate solutions obtained by the
discretization of problem () (resp. ([B])) by the MAC scheme converge to a solution of ([2)(resp. (@) as the mesh
size (resp. the mesh size and the time step) tends (resp. tend) to 0.

For the linear problems, the first error analysis seems to be that of [29] in the case of the time-dependent Stokes
equations on uniform square grids. The mathematical analysis of the scheme was performed for the steady-
state Stokes equations in [26] for uniform rectangular meshes with H?2-regularity assumption on the pressure.
Error estimates for the MAC scheme applied to the Stokes equations have been obtained by viewing the MAC
scheme as a mixed finite element method [1920] or a divergence conforming DG method [22]. Error estimates for
rectangular meshes were also obtained for the related covolume method, see [6] and references therein. Using the
tools that were developed for the finite volume theory [ITL[I2], an order 1 error estimate for non-uniform meshes
was obtained in [1], with order 2 convergence for uniform meshes, under the usual regularity assumptions (H?
for the velocities, H! for the pressure). It was recently shown in [24] that under higher regularity assumptions
(C* for the velocities and C? for the pressure) and an additional convergence assumption on the pressure,
superconvergence is obtained for non uniform meshes. Note also that the convergence of the MAC scheme for
the Stokes equations with a right-hand side in H~1(Q) was proven in [2].

Mathematical studies of the MAC scheme for the nonlinear Navier-Stokes equations are scarcer. A pioneering
work was that of [27] for the steady-state Navier-Stokes equations and for uniform rectangular grids. More
recently, a variant of the MAC scheme was defined on locally refined grids and the convergence proof was
performed for both the steady-state and time dependent cases in two or three space dimensions [4]. A MAC-like
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scheme was also studied for the stationary Stokes and Navier-Stokes equations on two-dimensional Delaunay-
Voronoi grids [9]. For the Stokes equations on uniform grids, the scheme given in [4] coincides with the usual
MAC scheme that is classically used in CFD codes. However, for the Navier-Stokes equations, the nonlinear
convection term is discretized in [4] and [9] in a manner reminiscent of what is sometimes done in the finite
element framework (see e.g. [32]), which no longer coincides with the usual MAC scheme, even on uniform
rectantular grids; this discretization entails a larger stencil, and numerical experiments [5] seem to show that it
is not as efficient as the classical MAC scheme.

Our purpose here is to analyse the genuine MAC scheme for the steady-state and transient Navier-Stokes
equations in primitive variables on a non-uniform rectangular mesh in two or three dimensions, and, as in [4],
without any assumption on the data nor on the regularity of the the solutions. The convergence of a subsequence
of approximate solutions to a weak solution of the Navier-Stokes equations is proved for both the steady and
unsteady case, which yields as a by product the existence of a weak solution, well known since the work of J.
Leray [23]. In the case where uniqueness of the solution is known, the whole sequence of approximate solutions
can be shown to converge, see remarks [3.14] and [£.4]

This paper is organized as follows. In Section[2] the MAC space grid and the discrete operators are introduced.
In particular, the velocity convection operator is approximated so as to be compatible with a discrete continuity
equation on the dual cells ; this discretization coincides with the usual discretization on uniform meshes [28],
contrary to the scheme of [4]. The MAC scheme for the steady state Navier-Stokes equations and its weak
formulation are introduced in Section Bl Velocity and pressure estimates are then obtained, which lead to the
compactness of sequences of approximate solutions. Any prospective limit is shown to be a weak solution of
the continuous problem. Section M is devoted to the unsteady Navier-Stokes equations. An essential feature
of the studied scheme is that the (discrete) kinetic energy remains controlled. We show the compactness of
approximate sequences of solutions thanks to a discrete Aubin-Simon argument, and again conclude that any
limit of the approximate velocities is a weak solution of the Navier-Stokes equations, thanks to a passage to
the limit in the scheme. In the case of the unsteady Stokes equations, some additional estimates yield the
compactness of sequences of approximate pressures; this entails that the approximate pressure converges to a
weak solution of the Stokes equations as the mesh size and time steps tend to O.

2. SPACE DISCRETIZATION

Let © be a connected subset of R? consisting in a union of rectangles (d = 2) or orthogonal parallelepipeds
(d = 3); without loss of generality, the edges (or faces) of these rectangles (or parallelepipeds) are assumed to
be orthogonal to the canonical basis vectors, denoted by (e(l), el e(d)).

Definition 2.1 (MAC grid). A discretization of Q with a MAC grid, denoted by D, is defined by D = (M, &),
where:

— M stands for the primal grid, and consists in a conforming structured partition of {2 in possibly non
uniform rectangles (d = 2) or rectangular parallelepipeds (d = 3). A generic cell of this grid is denoted
by K, and its mass center by xx. The pressure is associated to this mesh, and M is also sometimes
referred to as ”the pressure mesh”.

— The set of all faces of the mesh is denoted by &; we have € = Ejp U Eext, Where Eipng (resp. ECext) are
the edges of € that lie in the interior (resp. on the boundary) of the domain. The set of faces that are
orthogonal to e(? is denoted by &), for i € [1,d]. We then have &) = e ueld where €9 (resp.
el ) are the edges of €(*) that lie in the interior (resp. on the boundary) of the domain.

ext

For o € &y, we write 0 = K|L if c = 0K NOL. A dual cell D, associated to a face o € € is defined
as follows:
-if o = K|L € &py then D, = Dk, U Dy, where Dg , (resp. Dy ) is the half-part of K (resp.
L) adjacent to o (see Fig. [l for the two-dimensional case);
- if 0 € Ecxt is adjacent to the cell K, then D, = D 5.
We obtain d partitions of the computational domain 2 as follows:

Q:UUeg(i)DO’a 7’6 ﬂ17d[|7

and the i of these partitions is called i*" dual mesh, and is associated to the i*" velocity ‘component, in
a sense which is clarified below. The set of the faces of the i** dual mesh is denoted by €(* (note that
these faces may be orthogonal to any vector of the basis of R? and not only e(?) and is decomposed into



the internal and boundary edges: W = El(;)t U ggﬁt The dual face separating two duals cells D, and D,
is denoted by € = o|o’.

To define the scheme, we need some additional notations. The set of faces of a primal cell K and a dual cell

D, are denoted by E(K) and g(Dg) respectively. For o € €, we denote by x, the mass center of o. The vector
Nk, stands for the unit normal vector to o outward K. In some case, we need to specify the orientation of a
geometrical quantity with respect to the axis:

— .
- a primal cell K will be denoted K = [00"] if 0,0’ € €D N E(K) for some i € [1,d] are such that
(Lo — x4) - e(i)_>> 0;
- we write 0 = K|L if 0 € €% and Zxx/ - e > 0 for some i € ﬂl,dﬂ;
- the dual face € separating D, and D, is written € = o|o’ if z,x,7 - €} > 0 for some i € ﬂl, dﬂ.
For the definition of the discrete momentum diffusion operator, we associate to any dual face € a distance de as
sketched on Figure[ll For a dual face € € £(D,), o € el e ﬂl, dﬂ, the distance d. is defined by:

d(@,,xp) if e=olo’ € EL),

d. = . (5)
d(xy,€) if e € €Y

ext?

where d(-,-) denotes the Euclidean distance in R%.

déz df:%
7
K o o
€ = olo’
de,
D,
€2 €3
g = KIL g//
wa. a}o.//
L
o9

FIGURE 1. Notations for control volumes and dual cells (in two space dimensions, for the
second component of the velocity).

The size hyt and the regularity ny of the mesh are defined by:

hot = max{diam(K), K € M}, (6)
_ {M £D o e e i ie T dl iz
Iv = max |0_/|7 o€ , 0 € » L,) € ﬂlv [Iv Z#.] ) (7)

where |- | stands for the (d — 1)-dimensional measure of a subset of R%~! (in the sequel, it is also used to denote
the d-dimensional measure of a subset of R%).

The discrete velocity unknowns are associated to the velocity cells and are denoted by (ue),cew), © € ﬂl, dﬂ ,
while the discrete pressure unknowns are associated to the primal cells and are denoted by (px)xem. The
discrete pressure space Ly is defined as the set of piecewise constant functions over each of the grid cells K of
M, and the discrete i*" velocity space He(:) as the set of piecewise constant functions over each of the grid cells
D, o€ & The set of functions of Ly with zero mean value is denoted by Lat,0. As in the continuous case,
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the Dirichlet boundary conditions are (partly) incorporated into the definition of the velocity spaces, by means
of the introduction of the spaces Hew) o C Hewy, i € ﬂl, dﬂ, defined as follows:

Hg(i)ﬁo = {’U, S HE(i), u( )—O Vo € DU, (S Ecxt}

We then set He o = H?:l He ) . Defining the characteristic function 14 of any subset A C Q by 14(x) =1
if x € A and 1 4(x) = 0 otherwise, the d components of a function u € He o and a function p € Ly may then
be written:
Z usllp,, @ € ﬂl,dﬂ and p= Z prllk.
cel® KeM

Let us now introduce the discrete operators which are used to write the numerical scheme.

Discrete Laplace operator — For ¢ € ﬂl, dﬂ, the i*" component of the discrete Laplace operator is defined
by:
_AE('L) : H£(¢)70 — H((“(i)ﬁo

U; — _Ag(i)ui = — Z (Au) ]lDau with — (AU | Z (ba'e uz
oecé&(d) eGE(D )

le] (8)

0 (ug — ugr), if €=0clo’ EEmt,

d—ug, if e € £ N E(D,),

¢U,e(ui) -

where d. is defined by (@l). The numerical diffusion flux is conservative:

Po,e(Ui) = —Pore(ui), Ve=oalo' € 81nt (9)
The discrete Laplace operator of the full velocity vector is defined by

—Ag : Hg_’() — Hgyo

(10)

u — —Agu = (—Agu)ul, ey —Ag(d)ud).
Let us now recall the definition of the discrete Hg-inner product [I1]: the H{-inner product between u € He g
and v € Hg is obtained by taking, for each dual cell, the inner product of the discrete Laplace operator
applied to u by the test function v and integrating over the computational domain. A simple reordering of the
sums (which may be seen as a discrete integration by parts) yields, thanks to the conservativity of the diffusion

flux @):

d
V(uv)EHeosto,/ —Agu-vdr =[u,v)1eo0= guz,vugmo,
=1

with, for i € [1,d], [ui,vili e o= Y 'i( —Ugr) (Vg — V) + Y 7 U Vo (11)
568(1) 6 el ¢

int - ext
e=olo’ e€c&(Ds)
The bilinear forms
HE('L))OXHE('L)7O—>R q Hg)QXH570—>R
al
(uis vi) = [ui, vil1 e 0 (u,v) = [u,v]1e0

are inner products on Hge) o and H g o respectively, which induce the following scalar and vector discrete H}
norms:

™

Huz||1 gm0 = = [ui, uily g0 0 = Z |d_| (uo — ua’)2 + Z d_| U§= for i € ﬂ17d[|7 (12a)
ccfln et
e=alo’ ec&(D,)
d
lellf g0 =l ulieo =Y uillf o o (12b)

i=1



Note that this definition is still valid if ¢ or o’ are
Uy Uy external faces (in which case the corresponding ve-

- € - locity is equal to zero). The volumes (D, fore €
n. &M and e orthogonal to e)) thus form a partion of €
- and the definition is complete.
Note also that, in the present case, D, is also a primal
(Brur)p, = L2 cell
. d.
LN
D
€ €
Ug D‘ Ug Ug
- - =
D.
€
Ug! — Uy —Ugs Uo
(O2u1)p, = g (O2u1)p, = 7 (O2u1)p, = T
€ € €

FIGURE 2. Notations for the definition of the partial space derivatives of the first component
of the velocity, in two space dimensions.

This inner product may also be formulated as the L2-inner product of discrete gradients. To this purpose, we

introduce d x d new partitions of the domain (2, where the (i, j)!* partition consists in an union of rectangles
(d = 2) or orthogonal parallelepipeds (d = 3) associated to the dual faces orthogonal to e of the dual mesh
ED for the ith component of the velocity. This (i, )" partition reads:

D.=e€ex [xyx,] if €lies inside Q, € = oo’

D) =4 5, with ~
( >668( Selel? D.=e¢x [xy x| if €lieson 09, € € E(D,),

where x, ¢ is defined as the orthogonal projection of &, on € (which is also, in two space dimensions, the vertex
of o lying on €). The discrete derivative d;u; is defined on the (4, 7)* partition and reads:

— ;-
if € lies inside ©Q, € = oo’ (0ui)p, = %,

~ e _ (13)
if € lies on 99, € € £(D,), (0ui)p, = dug ToTo . el

with de defined by (B). These definitions are illustrated on Figure Note that some of these partitions are
the same: the (i,7)" partition coincide with the (j,4)"" and (i,i)"" partitions are the same for i € [1,d]. In
addition, these latters also coincide with the primal mesh: for any sub-volume D, of such a partition, there
is K € M such that D. = K, and we may thus write equivalently (0;u;)p, or (0;u;)x. We choose this latter
notation in the definition of the discrete divergence below for the sake of consistency, since, if we adopt a
variational point of view for the description of the scheme, the discrete velocity divergence has to belong (and
indeed does belong) to the space of discrete pressures (see Sections [l and M below for a varitional form of the
scheme, in the steady and time-dependent case, respectively). The discrete discrete gradient of each velocity



component u; may now be defined as:

V‘g(i)ui = (61’(1,1', ey 6,1’(1,1') with 6jui = Z (5jui)D€ ]lDe- (14)
cc€®
elel

With this definition, it is easily seen that
/Qvéu’ﬂ/) : VE(z’)X dx = W%X]l,sﬁ),o, for ¢, x € H8<i>,0a and i € ﬂl,dﬂ- (15)

If we extend this definition to the velocity vector by

Vzu= (Vg(l)ul, ooy Vi ua),
we get

/QVgu 1 Vzv de = [u,v]1e0.
This operator satisfies the following consistency result.

Lemma 2.2 (Consistency of the discrete partial derivatives of the velocity). Let Ilg be an interpolation operator
from C=(Q)¢ to He o such that, for any ¢ = (o1, ,pa) € CZ(Q)%, there exists C, > 0 depending only on
@ such that

Hep = (Hgwpr, -+ s Hewpa) € Heay g X -+ X Hew o, where
(e ¢i)o — i(xo)| < Cp Ri, for o € €D, i€ [1,d]. (16)

Let ny be the parameter measuring the reqularity of the mesh defined by (@). Then there exists Cp ., > 0, only
depending in a non-decreasing way on Ny, such that

0,11y @i () — 0j0i(x)| < Cpy havt for a.e. @ € Q and fori,j € [1,d].

As a consequence, if (M, Em)men s a sequence of MAC grids whose regularity is bounded and whose size tends
to 0 as m tends to +oo, then Vg (Ilg,, ) — Vo uniformly as m — +oo.

Discrete divergence and gradient operators — The discrete divergence operator divy is defined by:

diVM : Hg_’() — LM70
1
w— divacu= Y oo 3 ol s Tk, (17)
KeM K] oc€E(K)
with uk s = UsNK o - e® for ¢ € £ N E(K), i e ﬂl,dﬂ. (18)
Note that the numerical flux is conservative, i.e.
UK, o = —UL,s, V0 =K|L € &y. (19)

We can now define the discrete divergence-free velocity space:

EE(Q) = {U S Hgyo ) divygu = 0}

The discrete divergence of w = (uq,...,uq) € Heg o may also be written as
d
diVM u = Z(aiui)[{ﬂ]{,
i=1

where the discrete derivative (0;u;)k is defined by Relation (I3).



1 €
UK 7| ur, r
UK, UK, o’
— € — o
D, K K D, L
1 1 )
e = 5 (trcor = o) e = 5 (17l urcr + 7' ur.)

FIGURE 3. Mass fluxes in the definition of the convection operator for the primal component
of the velocity, in two space dimensions.

The gradient (which applies to the pressure) in the discrete momentum balance equation is built as the dual
operator of the discrete divergence, and reads:

Vg : LM — H&O (20)
pr— VEP = (61]97 .. '76dp)7
where 0;p € Hgq)  is the discrete derivative of p in the i-th direction, defined by:
H .
dip(z) = id (pr —pK) Yx € D,, foroc=K|L € Si(:])t, i€ [1,d]. (21)

Do |

Note that, in fact, the discrete gradient of a function of Ly; should only be defined on the internal faces, and
does not need to be defined on the external faces; it is chosen to be in H¢ ¢ (that is zero on the external faces)
for the sake of simplicity. Again, the definition of the discrete derivatives of the pressure on the MAC grid is
consistent in the sense made precise in the following lemma.

Lemma 2.3 (Discrete gradient consistency). Let Iy be an interpolation operator from C° () to Lyt such
that, for any ¢ € C°(Q), there exists Cy, > 0 depending only on 1 such that

|(Mn) — Y(wx)| < Cyp 3y, for K € M. (22)

then there exists Cy ., > 0 depending only on ¢ and, in a non-decreasing way, on N, such that
0l () — Oitp(x)| < Cyy hovt, for ace. @ € Q and for i € [1,d].

Lemma 2.4 (Discrete div — V duality). Let ¢ € Ly and v € Hg o then:

/qdiva de+ [ Veg-vde=0. (23)
Q Q

Proof. Let q € Ly and v € Hg o. By the definition (I7) of the discrete divergence operator and thanks to the
conservativity ([9) of the flux:

/quiVMvd:c: Z qK Z

ol vko = Y. ol (ax — qr) vk .-
KeM c€e&(K)

G'Egim,o':KIL
Therefore, by the definition (2I]) of the discrete derivative of g,
d
/qdiVMv de = —Z Z |Dy| vy 0;q = —/ Veq- v de,
Q i=1 gee® Q

which concludes the proof. O
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Discrete convection operator — Let us consider the momentum equation (IB) for the i** component of
the velocity, and integrate it on a dual cell D,, o € €%, By the Stokes formula, we then need to discretize
ZeeE(D )fe u; u - N dy(x), where n, . denotes the unit normal vector to € outward D, and dy(x) denotes

the d — 1-dimensional Lebesgue measure. For e = o|¢’, the convection flux fé U - Ny dy(x) is approximated
by |€| uqul; usually, u} is chosen as the mean value of the two unknowns u, and ues. In some situations
(high Reynolds number for instance), an upwind choice may be preferred. The two possible choices that will be

considered for u,. are thus:

* c_u<7+u0'

(upwind choice, x*=up).  (24)

. Ug if Ug e >0
(centred choice, x=c) or u} = uP = { ' ’

¢ Uy otherwise,

The quantity |€| uq is the numerical mass flux through e outward D,; it must be chosen carefully to obtain
the L2-stability of the scheme. More precisely, a discrete counterpart of divu = 0 should be satisfied also on
the dual cells. To define u, . on internal dual edges, we distinguish two cases (see Figure B]):

- First case — The vector e() is normal to €, and € is included in a primal cell K, with € (K) = {o,0'}.
Then the mass flux through € = o|¢’ is given by:

1
el o = 5 (=lolur,q + 0" uk,or)- (25)

Note that, in this relation, all the measures of the face are the same, so this definition equivalently reads
Ug,e = (_UK,G + U’K,U’)/z

- Second case — The vector e(?) is tangent to €, and € is the union of the halves of two primal faces 7 and
7’ such that 0 = K|L, 7 € £(K) and 7 € E(L). The mass flux through € is then given by:

|e|u01€ = (|7'|UK77' + |7J|UL,T’)- (26)

N =

Again, the numerical flux on a dual face is conservative:
Upe = —Ugyr e, for any dual face € = o|o’. (27)

Moreover, if divyg w = 0, the following discrete free divergence condition holds on the dual cells:

> |e|u075:% > |a|uK,C,+% > lofur, =0. (28)

e€€(Dy) oc€(K) oc&(L)

On the external dual faces associated to free degrees of freedom (which means that we are in the second of the
above cases), this definition yields u,, = 0, which is consistent with the boundary condition (Id).

The i-th component Cg ) (1) of the non linear convection operator is defined by:
Cg(i)(u) : H5(¢)70 —>H5(¢)70

1
vi— Cey(u)v = Z D, Z €| ug, vl Ip,, (29)
7! ec€(Dy)

ceel®

int

where v¥ is chosen centred or upwind, as defined in ([24]). The full discrete convection operator C¢(u), He o —
H¢ ( is defined by

Cg (u) v = (05(1) (u) Vlye-ny Cg(d) (u) ’Ud).
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3. THE STEADY CASE

3.1. The scheme

With the notations introduced in the previous sections, the MAC scheme for the discretization of the steady
Navier-Stokes equations (1) on a MAC grid (M, €) reads:

u € Heo, p€ Lo, (30a)
—Agu+Ce(u)u+Vep=f, (30b)
divacw = 0. (30c)

The discrete right-hand side of the momentum balance equation reads f = P¢ f, where Pg¢ is the cell mean-value
operator defined by Pev = (Pgyvi, -+, Pewva) € Hey g X -+ + X Hew o and, for i € [1,d],
':Pg(i) : LI(Q) — Hs(i),o

v; — Peiyv; = Z ve Ilp, with, for o € Ei(r?t, Vy = Dyl v;(x) de. (31)
ol JD,

ceel®

int

Let us define the weak form be of the nonlinear convection term:
d
for (u,v,w) € Heo x Heo X He o, be(u,v,w) = stm (w, v, W),
i=1

where for i € [1,d], bew (w,vi, w;) = / Cew (w)v; w; de. (32)
Q
We can now introduce a weak formulation of the scheme, which reads:
Find (u,p) € He o X Lyt such that, for any (v,q) € He o X L,
/QVgu : Vzv de + be(u, u,v) — /deiva de = /Qf v de, (33a)

/ divagu g de = 0. (33b)
Q

This formulation is equivalent to the strong form (B0).

Remark 3.1 (Convergence of the MAC scheme for the Stokes problem and the gradient schemes theory). Omit-
ting the convection terms in (B3], we obtain a weak formulation of the MAC scheme for the linear Stokes
problem. Moreover, formulating the discrete H'-inner product as the integral over {2 of dot products of discrete
gradients, the MAC scheme can be interpreted as a gradient scheme in the sense introduced in [13] (see [15]
and [§] for more details on the generalization of this formulation to other schemes). Thanks to this result, the
(strong) convergence of the velocity and of its discrete gradient to the exact velocity and its gradient can be
shown, and thus also the strong convergence of the pressure.

3.2. Stability and existence of a solution

To prove the scheme stability, it is convenient to first reformulate the trilinear form associated to the velocity
convection term. To this purpose, we introduce a reconstruction of the velocity components on the partitions
which where used for the definition of the discrete velocity gradient. This leads to define d x d class of recon-
struction operators, denoted by Rg 9 with ng 9)
reconstruction of this field on the partition of € associated to its j** partial derivative.

Definition 3.2 (Velocity reconstructions). Let (M, &) be a given MAC mesh, and let i,5 € ﬂl, dﬂ. Let R0

g
be a reconstruction operator defined as follows:

acting on the i** component of the velocity and providing a

fR(g’j)I Hg(i)70 — L2(Q)

v — R(g’])v: Z (RS’J)U)DE 1p,,
€& clel)
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&
Ug
—_>
D.
€ €
Us De Us
—_ _
(ng’g)Ul)De = Qe Uy + (]_ — ae) Uy (fR%LQ)Ul)DS = Q¢ Uy

FIGURE 4. Reconstruction of the first component of the velocity, in two space dimensions.
First line: fR(El’l). Second line: JQ(EM), inner dual face (left) and dual face lying on the boundary

(right). The real number «. is only supposed to satisfy a. € [0, 1].

where (IRS I )v) p. is a convex combination of the (one of two) discrete values of the i** component of the velocity
lying on faces of D, (see Figure M.

Such a reconstruction operator satisfies the following stability result.

Lemma 3.3 (Stability of the velocity reconstruction operators). Let (M, &) be a given MAC mesh, i,j € [1,d],

and RE? be a reconstruction operator, in the sense of Definition [Z4. Then, for p € [1,400), there exists

Cypy = 0, depending only on p and on the parameter my characterizing the reqularity of the mesh defined by
(@), and non-decreasing with respect to ny, such that, for any v € Hew g,

IRED 0] L) < Cone 0]l 2o ()

Proof. Let p € [1,4+00),4,j € ﬂl,dﬂ and v € Hga) o. We have:

RS v = > D[RSV )p, [P
eeg(i), ele(d

= > IDlfaws (1 —aguel"+ ST D el

ece) ec€l),

e:a'_a}7 elel ec&(D,), eLe

Since |a| < 1 and (a + b)P < 2P~ 1(aP + bP), for a,b € [0, +00), we get:

IR0l <227 D ADd (ool + o)+ DD 1D [eal”
cc€l) ccel)

ext

e=co’, ele?) EGE(DU)7 cle®
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Reordering the sums, we obtain that:

IREDw[?, o <2271 S V| [uo
A

where the volume V, is the sum of the two volumes D, such that € is a face of D,. It may now be easily
checked that there exists Cy,, depending only on the the parameter 7y and non-decreasing with respect to this
parameter such that |V,| < C,, |Ds|, which concludes the proof. O

The discretization of the velocity convection term in the i** momentum balance equation may be seen as
a discrete counterpart of div(v; u), where v; is the convected component of the velocity field (in the scheme,
v; = u;). Multipling this expression by w; and inegrating over  yields a continuous counterpart b®) (w, v;, w;)
of be i) (w, v;, w;) which reads:

b(Z) (U,’Ui,’wi) = / diV(’Ui ’u,) w; de.
Q

An integration by parts (supposing that w, vanishes on the boundary) yields:

d
b(i)(u,vi,wi) = —/ v;u - Vw; de = —Z/ v uj Ojw; de.
Q — /o

The following lemma states a discrete equivalent of this relation.

Lemma 3.4 (Reformulation of bg). Let (M, &) be a given MAC mesh, i € [1,d], and (u,v,w) € Hegg x
Heox Heg. Let bey (w,v;,w;) be given by B2). Then there exists two reconstruction operators in the sense

of Definition[3.2, denoted by (TR(”)) and (R(Ej’i))”, such that:

d
beo (w, vi,wi) = Z/Q (53)yo (TRS Ny §w; de.
j=1

Proof. Let (u,v,w) € Eg x Héo. By definition,

be (w, v, w;) = Z We Z le] v} Uug,e.

oee® ec&(Dy)
Reordering the sums, we get by conservativity:

Wy — Wae

be (w, v, w;) = Z le| V7 Ug,e (Wg — W) = — Z |De| v} g y]
€

e:o|o/65§;1 €:U|U/€gi(rij)t

The sum is over the whole set of dual faces E(i), so over the d partitions involved in the definition of the discrete
gradient of w;. In addition, without loss of generality, we may suppose that we have chosen for € the orientation

such that e = o|o’. Hence, we get, by definition (I3]),

Wy — W,
— 7 ~ = (0wi)p,,
€

where j is the index such that e is normal no e). For the centered version of the convection operators,

v} = (vs + ver)/2; in the upwind case, it is equal to either v, or v,» (Relation ([24))). In both cases, it is a

€
convex combination of the two discrete values of v; lying on the faces of D.; there exists thus an operator R 49)

(still with the same meaning for j), in the sense of Definition such that v} = (ng 9) v;)p,. Finally, from
the definition of the convection operator and with the chosen orientation for €, u,  is a convex combination
of the two values of u; lying on the faces on D,: either the mean value given by (2], if j = 4, either the
convex combination of (26), if j # i. In addition, D, is a volume used in the definition of the j** discrete
partial derivative of the i*" component, and thus also a volume used in the definition of the i*" discrete partial
derivative of the j** component (both partitions are the same). So there exists one reconstruction operator

IR(Ej’i) such that us . = (fR(Ej’i)uj)De, which concludes the proof. O
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Lemma 3.5 (Estimates on be). Let (M, E) be a MAC grid and let be be defined by [B2)). There exists Cy,. > 0,
depending only and in non-decreasing way on the regularity parameter ny of the mesh defined by (), such that:

v (uvvvw) € H(SE‘,Ov |b5(u7v7w)| < CnM HUHL‘*(Q)d ”'U”L“(Q)d ”w”l,&o (34)

and
V (uw,v,w) € He |be (w, v, w)| < Cpy Nlulleo [[v]1e0 [[wlieo (35)

Proof. Let i € ﬂl dﬂ Thanks to Lemma[3.4] there exists two reconstruction operators in the sense of Definition
B2 denoted by (RY”)” and (RY")* such that:

d
be o (w, v, w;) = Z/ (RED); (RED )y Bjw; da
j=1
Thanks to Holder’s inequality, we get, for j € ﬂl, dﬂ:

| /Q (RED) u; (RED) ;s Bj; da| < |(RED) il pagey IRED) w5l g0y 950200,

which, in view of Lemma B3] and the identity (IH), concludes the proof of Estimate ([B4). We then deduce
@A) by the discrete Sobolev inequality [I1, Lemma 3.5] which allows to control the L*-norm by the discrete
H'-norm. ]

Let us now prove that bg is skew-symmetrical with respect to the last two variables. At the continuous level,
this result is obtained as follows. For i € ﬂl, dﬂ, on one side, we have by integration by parts:

/ w; div(v; u) de = —/ v u - Vw; de. (36)
Q Q

On the other side, since divu = 0, div(v; u) = u - V;, so:

/ w; div(v; u) de = / w; w - Vu; dz,
Q

Q

which yields the conclusion. The following lemma states a discrete analogue of this property.
Lemma 3.6 (be is skew-symmetrical). Let (u,v,w) € Eg x Heg g x He g, and let i € ﬂl,dﬂ. Assume the
centred choice for v in the expression of bewy; then

bew (W, vi, wi) = —=be (u, wi, v;), (37)
and therefore,

bE(’i) (uavivvi) - O (38)

Assume now the upwind choice for v. in the expression of be ) ; then,

bg(i) (u,vi,vi) Z 0. (39)

Proof. We mimick the computation performed in the continuous case. At the discrete level and for the centred
formulation of the convection term, we have, by a simple reordering of the sum:

Vo + Vg Vo + Vo7
be iy (w, v, w;) = Z Wy Z le] — Ug,e = Z le] — (Wo — Wor) Ug,e.

0681(:11 €= U\U’GE(DU) e:cr|cr’€§i(;)t
This relation is just obtained by conservativity of the mass flux, by a process which may be seen as a discrete

integration by parts, and we have seen that it may be written as a discrete analogue of (B8] (Lemma B4). On
().

int*

the other hand, thanks to (28] (i.e. the discrete analogue of divw = 0), we have, for any face o € ;'

Z |€| (_UU) Uge = Vo Z |6| Ug,e = 0.

ec&(Dy) ec&(Dy)
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Hence:

Vo + Vg Vo! — Vo
bg(i) (u,vi,wi) = Z Weo Z |€| T Ug,e = Z Wo Z |€| T Ug,e

ocell,  e=olo’'€€(Dy) oeell  e=olo'€€(Dy)
Vo' — Vs
=Y T b e
€:U|U’Eg(i)

int

This concludes the proof of [B7) and (B8). In the upwind case, we have, for i € [1,d], bew) (u, vi,v;) = T1 + T

with:
T, = Z Vg Z le] V5 uge, Ty = Z Vg Z le] (03P — V%) Uge.

occel)  e€&(Dy) occel)  e€€&(D,)
From (1), we know that 71 = 0. By definition, for e = o|o”,
1 Vg — Vgr 1 Use >0 1
Uge (VP —0S) == u T =2 Vg — Vg
0,€ ( o O') 2 0,€ {'UU/ — vy lf 'Ll,gﬁe S O7 2 | (775| ( o (7)

Thus, reordering the sums:

Ty = Z Vg Z le] (Vo — Vor) |tg,e| = Z le] (ve — vg/)2 [tg,e] > 0.

oce® E:U\U’EE(DU) E:g\g/e'éi(;'{

int

O

In order to obtain an a priori estimate on the pressure, we introduce a so-called Fortin interpolation operator,
i.e. a continuous operator from H} ()? to He (equipped with the discrete H'-norm) which preserves the
divergence. The following lemma is given in [I8 Theorem 1, case ¢ = 2|, and we re-state it here with our
notations for the sake of clarity.

Lemma 3.7 (Fortin interpolation operator). Let (M, &) be a MAC grid of Q. For v € H}(Q)?, we define Pev
by Pev = (Peayvr, -+, Pewyvg) € He, where, fori € ﬂl,dﬂ,
?8(1‘) : H&(Q) — Hg(i)70 )
v; — ﬁsg(iwi = Z Ve LIp, with v, = —| / vi(x) dy(x), o € e, (40)

reel o

For q € L*(Q), we define Pyiq € Lot by:
1
Paf@) = 7 [ al@) dz. (1)

Let ¢ € (H3(Q))?. Then:
divag (Pep) = Pre(divep). (42)

In particular, if divee = 0, then divyy (U~3590) = 0. In addition, there exists a real number C,, ., depending only
on  and, in a non-decrasing way, on ny defined by (@), such that:

1Pellte.0 < Cone IVl L2(@yaxa (43)

Theorem 3.8 (Existence and estimates). There exists a solution to (B3), and there exists C,, > 0 depending
only on Q and, in a non-decreasing way, on the parameter nye characterizing the regqularity of the mesh, such
that any solution of [B3) satisfies the following stability estimate:

lull1e0+ lIplzzi@) < Con 1F L2 (44)
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Proof. Let us start by an a priori estimate on the approximate velocity. Assume that (u,p) € He o X Lo
satisfies ([B0); taking v = w in (33a) we get that:

||u||§£)0 = /Qp divyeu doe — be (u, u,u) + /Q fude.

Since divye u = 0 and bg (u, u,w) = 0, this yields that
lulle0 < diam(Q) || £ll(z2)a, (45)

thanks to the fact that || fl(r2()ye < || fll(r2(a))« and to the discrete Poincaré inequality [IT, Lemma 9.1].

An a priori estimate on the pressure is obtained by remarking as in [30] that the MAC scheme is inf-sup
stable, which is a consequence of the existence of a Fortin operator. Indeed, since p € L3(f2), there exists
¢ € H}(Q)? such that dive = p a.e. in  and

Il g e < Cr lpllL2@), (46)

where C, depends only on € [25]. Taking v = Pe¢ (defined by (@) as test function in (F3a]), we obtain thanks
to Lemma B.7] that

[w,v]1,6,0+ be(u,u,v) — /

Q

Thanks to the estimate (B5) on be and the Cauchy-Schwarz inequality we get:

pPde= [ f vde.
Q

P72 () < llullreol vlieo + Co llulli e ollvlieo + I Fllz2@ll vllz2ia,

where the real number Cs is a non-decreasing function of 7. This yields

IPllz2 < Copcll £l 2(c2)05 (47)

with Cj,,, non-decreasing with respect to 7y, thanks to ([@3), @) and to the estimate (@EH).

Let us now prove the existence of a solution to ([B3). Consider the continuous mapping:

F Hgﬁo X LM70 X [0, 1] — Hgyo X LMyO,
(u7p7 C) = F(u7p7 C) = (ﬂuﬁ)a

where (&, p) € He o X Ly o is such that:

/ﬁ-vdcc:[u,v]17510+<bg(u,u,v)—/ p divye v dm—/f~'vdw, Vv € Heg p, (48a)
Q Q Q

/ pqde = / divyew g de, Vg € L. (48b)
Q Q

It is easily checked that F' is well defined, since the values of 4;, i € ﬂl,dﬂ, and p are readily obtained by
setting, for i € [1,d] and o € Si(:])t, v; =1p,,v; =0, j #iin @8a) and ¢ = Lk in (48L). We also note
that the constraint p € Ly is satisfied, thanks to the boundary conditions on u (choose ¢ = 1 in (48)).
The mapping F is continuous; moreover, if (u,p) € Heg g X Lyt o is such that F(u,p, () = (0,0), then for any
('U,q) € HE,O X LM7

[u,v]Lg)o—l—Cbg(u,u,v)—/pdiVMv de= [ f vdex,
Q Q

/divMu q dx = 0.
Q

The arguments used in the above estimates on possible solutions of (B3] may be used in a similar way to show
that such a pair (u,p) is bounded independently of ¢. Since F(u,p,0) = 0 is a bijective affine function by
the stability of the linear Stokes problem (see [2]), the existence of at least one solution (u,p) to the equation
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F(u,p,1) = 0, which is exactly [33]), follows by a topological degree argument (see [7] for the theory, [I0] for
the first application to a nonlinear scheme and [14, Theorem 4.3] for an easy formulation of the result which
can be used here). O

3.3. Convergence analysis

Lemma 3.9 (Convergence of the velocity reconstructions). Let (M, Ey)nen be a sequence of MAC meshes
such that ha, — 0 as n — 400 ; assume that there exists n > 0 such that ny, < n for any n € N (with ny,
defined by (@)). Leti,j € [1,d], let v € L*(2), and let (vy)nen be such that v, € Hew), o and v, converges to

v as n — +oo in L*(Q). Let fR(g’j) be a velocity reconstruction operator, in the sense of Definition (B2).
Then Rg’j)vn — v in L3(Q) as n — +oo.

Proof. Let i,j € [1,d]. Denoting IR(g’j) by R, and P, (defined by (BI)) by P, for short, we have, for any
p € CX(Q):

[Rnvn =0l 22(2) < [Rnvn —Rn 0 PrtllL2(q) + |Rn 0 Prt — Ry 0 Pl 2(q) + |Rn 0 Prp — @l L2(0) + |0 — 0| L2 () -

Since Rpvn = Ry 0 Py, and thanks to the fact that ||R,[|z2(q) is bounded (see Lemma [B.3) and that P, is an
L?-orthogonal projection, we get that there exists C > 0 such that

[Rnvn — 0l L2@@) < Cllvn = 0L2() + Cllv — @llz2(@) + |Rn 0 Py — @llz2) + | — ?llL2(0)-

Let ¢ > 0. Let us choose ¢ € C(2) such that [|¢ — 0z2q) < &/(C + 1). There exists ny such that
Cllvn — 0llz2() < &, Vn > ny, and there exists ny such that ||R, o Pro — ¢llr2q) < €, ¥n > na. Therefore
[Rnvn — 0| z2(q) < 3¢ for n > max(ny,n2), which concludes the proof. O

Lemma 3.10 (Weak consistency of the nonlinear convection term). Let (M,,, €, )nen be a sequence of meshes
such that ha, — 0 as n — +0o ; assume that there exists n > 0 such that ny, < n for any n € N (with ny,
defined by ([0)). Let (vp)nen and (Wi )nen be two sequences of functions such that

- v, €Heg, oandw, € He, o, forneN,
- the sequences (Vn)nen and (wy)nen converge in L2(Q)? to © and w respectively.
Let (Ig, Jnen be a family of interpolation operators satisfying () and let ¢ € C°(Q)<.

Then

d
be (v, wy, e, p) = bV, w, ) = — Z/ w; 0- Vi, de  asn — +oo.
i=17/%

Proof. We have bg, (v, w,, e, @) = Zle be ) (v, w;, e i), where we have omitted the sub- and super-
scripts n for the sake of clarity in the right-hand side of the equality, with, thanks to Lemma 3.4}

d
b(g(i) (v,wi,l'[gmgoi) = —Z/(Rgd))wwi (Rg’l))v’l}j 6j]:[8(i) ©i dx,
j=1"¢

where (fR%’j ))” and (ng ’i))w are two reconstruction operators, in the sense of Definition Thanks to the

convergence properties of the reconstruction operators (Lemma [30) and the strong consistency of the discrete
partial derivatives of the velocity (Lemma 22), we obtain:

d
bs(i) (v,wi,HE(i)%) — —Z/ U_J w; 8j<p1- dr as n— +00,
j=17¢
which concludes the proof. ([l

Lemma 3.11 (Weak consistency of the nonlinear convection term, continued). Let (M, E,)nen be a sequence
of meshes such that hat, — 0 as n — 400 ; assume that there exists n > 0 such that ny, < n for anyn € N
(with nw,, defined by ([M)). Let (Un)neN, (Un)nen and (Wy)nen be three sequences of functions such that
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- (up,vp,w,) € H?gmo, forn e N,

- the sequences (U )nen and (Vn)nen converge in LP(Q), 1 < p < 6, to u and v respectively,

- the sequence (Wp)nen converge in LP(Q)4, 1 < p < 6, to w € HY(Q)?, and (Ve wn)nen converges to

Vw weakly in L?(2)4*4.
Then
be (Un, Uy, wy) = b(V, W, W) asn — +oo.

Proof. Once again, we use the reformulation of the form bg, provided by Lemma B4l Omitting sub- and
superscripts n for short, we have:

d
be, (Un, Up, wy) = Zbg(i) (u,v;,w;) with
i=1
d .. ..
be i (w, vy, w;) = —Z/(IR%’J))”W (IR(EJ’Z))“uj 0;w; de, for i e ﬂl,dﬂ,
i=1"9

where (Rg’j))“ and (Rg’i))” are two reconstruction operators, in the sense of Definition Thanks to

the stability and converg%nce properties of the reconstruction operators (Lemma and B9)), the sequences
((ng’z))“uj,n)neN and ((R%’]))”vnﬂ-)neN are uniformly bounded in LP(2)%, for 1 <p < 6 and i,j € [1,d], and
converge in L?(2)? to w and v, respectively. Hence, these sequences also converge in L2(Q)¢, 1 < p < 6, and

the result follows thanks to the weak convergence in L?(2)?*? of the partial derivatives. O

Lemma 3.12 (A discrete integration by parts formula). Let (M, &) be a given MAC mesh, and i,j € ﬂl, dﬂ.
Let u and v be two functions of Hgw) o. Then there exists a reconstruction operator, in the sense of Definition

[2.3, such that:
/Qﬁju vdx = —/QIR(EW)U djv de.

Proof. Let 1,5 € ﬂl, dﬂ and (u,v) € Hgwy o- We have, by conservativity:

0(uv) de = Z le] (UorVer — UpVs) — Z Ne €] ugve =0,

cc€ln ccE),
e:c;?, elel ec&(D,), elLe)

where 7. = £1, depending on the relative locations of o and o. For any real number «. € [0, 1], we have:
Ug! V! — UgVy = (ug/ - ug) (ozévg/ +(1- ae)vg) + ((1 — Q) U + ozéug) (vg/ - vg).

We thus have Ty + T5=0, with:

1
T = Z e (Um — ug) (asvg/ +(1- Oég)vo) -3 Z Ne |€] oo,

(%)

cc€fl) ec€l),
e:a'_a}7 elel ec&(D,), elLe
1
= z : |6| ((1 - af)u“’ + afu“) (’U‘Tl - UU) 9 Z Ne |6| U Vg -
ccel?) el
e:(ﬁ, elel@ ec&(D,), eLe)

When ¢ = j, all the dual faces are included in the domain (so the last sum vanishes). In addition, a dual face €
is included in a cell of the primal mesh, say K, and D, = K; we choose in this case a. = |Dg |/|K| and, by
definition of the half-diamond cells, 1 — @ = |Dg »|/|K|. With this choice, we obtain:

le/ﬁjuvdw and ng/fR(j’j)u d,v d, (50)
Q o ¢
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with, for e = oo’
(i:0) [Dror|, , |PKol
(RyVu)p, = Uy +
€ K] K]
Let us choose now consider the case 7 # j. In this case, we choose & = |Dy/|/(2 |Dc|), s0 1 — a = |Dy|/(2 | D],
by definition of D, and we get (B0) with:

Ug! .

(1 - i.q 1 Dg/ Da’
for any e = olo’ € g’i(n)t’ el el (R%’J)u)pe = D] (| 5 Ly + | 5 |ug/),
g0 A7 ) 1)y, — L
for any e € £, N E(Dy), € L e\, (IR-g u)p, = 3 Uo-

We are now in position to state and prove the convergence of the scheme.

Theorem 3.13 (Convergence of the scheme, steady case). Let (M, E,)nen be a sequence of meshes such that
ha, — 0 as n — 400 ; assume that there exists n > 0 such that ny, < n for any n € N (with ny,, defined by
@). Let (un,pn) be a solution to the MAC scheme @BQ) or its weak form [B3)), for M = M,,. Then there exists
u € H(Q)? and p € L*(Q) such that, up to a subsequence:

- the sequence (U )nen converges to w in L2(Q)?,

- the sequence (Vg Un)nen converges to Vi in L2 (Q)dxd,

- the sequence (pp)nen converges to p in L?(Q),

- (@m,p) is a solution to the weak formulation of the steady Navier-Stokes equations (2.

Proof. Thanks to the estimate ([@Z]) on the velocity, applying the classical estimate on the translates [T, Theorem

14.2] we obtain the existence of a subsequence of approximate solutions (u,)nen which converges to some

@ € L*(Q)?. From the estimates on the translates, we also get the regularity of the limit, that is @ € H} ()%

The estimate (@) on the pressure then yields the weak convergence of a subsequence of (p,)nen to some p in
L?(Q). Let us then pass to the limit in the scheme in order to prove its (weak) consistency.

Passing to the limit in the mass balance equation — Let ¢ € C2°(2). Taking t,, = IIy, ¢, the pointwise
interpolate defined by (22), as test function in (33D) and using ([23)), we get that:

d
0= / diva, Wy, P, da = —/ Uy - Ve, de = — Z/ Un,i Oithy de.
Q Q -1 Y@

Therefore, thanks to Lemma 23]

d d
0= lim - /umﬁiwndw:— /@iai’gbdw:—/ﬂ-V’g/Jd:B:/diVﬂ’g/Jd:B,
n—-+o00 ; Q ; Q Q Q

and therefore @ satisfies (33D)).

Passing to the limit in the momentum balance equation — Let ¢ = (¢1, - ,pq) € C°(Q)4, and take
p,=1e = (pn1,  ,¢nda) € He, o as test function in (B3al). This yields:

/ Vi un: Vg ¢, dz +be(un, un, ¢,) — / P, divi,, @, de = / Pe. f -, dzx. (51)
Q Q Q

Thanks to the weak L2-convergence of p, to P and to the uniform convergence of Pe_ f to f and of divy, ¢,
to divep (see Lemma 2:2) as n — +00, we have

/Tgnj’"-cpndw%/f-(odw and /pndiVMngondw%/ﬁdiv@dwasn%—i—oo.
Q Q Q Q

From [11], Proof of Theorem 9.1], thanks to the L?-convergence of u,, to @, we get that, for i € ﬂl, dﬂ,

V“(i)un7i - Vs Pn,i de = [u,m-, (Pn,i] (i) o = — U Agoi dx as n — +o00.
Q En En 1,€,7,0 Q
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Therefore,

d
Qvgnun;vgncpn dma—Z/ﬂiA% dx = QVﬁ:ch dx as n — +o0.

By Lemma [3.10, we have
lim be, (U, Un, p,) = /(ﬁ -V)u - de. (52)
n—-+oo Q
Passing to the limit as n — +oo in (EI) thus yields that @ and p satisfy ().

Strong convergence of Vi wu, to Vu in L?(Q)¥*4 — The sequence (Vg, Un)nen is bounded in L2(Q)dxd
and therefore, there exists & € LQ(Q)dXd and a subsequence still denoted by (Vg wn)nen converging to § weakly
in L2(Q)94. Let i,5 € [1,d], and let ¢ be a function of CZ°(£2). We denote by ¢,, the interpolate of ¢ by the

projection operator II e associated to the i*" component of the velocity. By Lemma .12, we know that there

exists a reconstruction operator JQ(E , in the sense of Definition 3.2] such that:

o _ (i,9), =,
A OjUn,; ¢n dx = /QJ%E Un,i Oj¢n de.

(4,4)

By the strong convergence of ¢,, to ¢, of fR Un,; to Uu; and of 9;p, to J;¢p, passing to the limit in the above

Q Q

Integrating by parts in the right-hand side thanks to the regularity of w, we obtain:

/fz‘,j ¢ de = / dju; ¢ de.
Q 0

Hence, by density, £ = Vu. Taking ¢,, = u,, in (BI) yields:

relation, we get:

/Vgnun : Vgnun de < Tgn]" -u, do.
Q
Passing to the limit as n — +o00 we get that:
hm HV un||L2(Q axa < / f u dx = HVUHLQ(Q dxdy

which implies the strong convergence of the discrete gradient of the velocity.

Strong convergence of the pressure — Let ¢, € H&(Q)d be such that dive,, = p, ae. in Q and
lenllzi@e < C ||anL2 (@), where C' depends only on Q. Let v, = Pe. @,; thanks to Lemma 377, we
have Hd; l1,e,.0 < C Cy, Ipnllz2(), and since p, € Lat,, we get that divye, 1, = p,. Therefore, taking
P, = ngngon as test function in ([33a)), we obtain:

/pfI dx = / Vi un: Vg ap, dz + be(un, un, ¥,,) —/ Pe. f -, dz,
Q Q Q
[%nll1e.0 < C Co, llpnll L2

From the bound on ||4,,|/1,¢.0, we know that 4, converges to some ¥ € H}(Q)? in L2(Q2)? and, by the same
arguments as for the identification of { with Vu, that Vi ¢, — Vi) weakly in L2(Q)%%4 as n — +oo. In
addition, we also have that dive = p a.e. in Q. By LemmaB.I1] be (uy,, un, v,,) converges to b(u, u, ). Passing
to the limit as n — 400, we thus get that

n—+

lim IPnllZ2(0) :/QVﬁ:wp dm+b(a,u,¢)—/9}.¢dm.

Since (@,p) satisfies [2)), this implies that ||p,|/12(q) = [|Pl/£2(0), Which in turn yields that p, — p in L*(Q) as
n — +00. O
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Remark 3.14 (Uniqueness of the continuous solution and convergence of the whole sequence). In the case where
uniqueness of the solution is known, then a classical argument can be used to show that the whole sequence
converges ; this is for instance the case for small data, see e.g. [31, Theorem 1.3] or [3] Theorem V.3.5].

4. THE TIME-DEPENDENT CASE

4.1. Time discretization

Let us now turn to the time discretization of the problem [B). We consider a MAC grid (M, &) of Q in the
sense of Definition 2.1] and a partition 0 = tg < t; < --- < tn§ = T of the time interval (0,T), and, for the sake of
simplicity, a constant time step 0t = ¢,,41 —t,; hence t,, = ndt, forn € HO, Nﬂ. Let {u"*t!, 0 €& ne HO, N—lﬂ}

and {p}?rl, KeM, ne HO, N — lﬂ} be sets of discrete velocity and pressure unknowns. For n € ﬂl, Nﬂ, we
first define the corresponding piecewise constant space-dependent functions w = (uf,...,u}) and p" by:

wp= 3 wllp, forie [Ld], p"= > pilx.
see KeM

We enforce that u = 0 for ¢ € Eext and n € ﬂl,Nﬂ (so u € Hgwy o and the sum in the relation above

may be restricted to El(;)t), and we set u” = (uf,...,uly) € Hgo. Then, we define the discrete (time- and
space-dependent) velocities and pressures functions by:

N-1 N-1
ui(x,t) = Z u?“ My, 4, for i € ﬂl, dﬂ, p(x,t) = Z pn ! Wy, ]
n=0 n=0

where 1j;, ;.1 is the characteristic function of the interval |t,,t,.1]. For i € ﬂl,dﬂ, we denote by Xéi)&

t

the set of such piecewise constant functions on time intervals and dual cells for the " velocity component

approximation, we set Xe¢ 51 = Hle X g)&, and we denote by Ya s the space of piecewise constant functions

on time intervals and primal cells for the pressure approximation. Setting

~ 1 .
u’ = Peuy, i.e., forie ﬂl,dﬂ, u) = Z ul lp,, with ud = ﬁ / ugi(x) dy(z), o € e,
o
oce® 7

int

we define the discrete time derivative 0;u € X¢ ¢ by:

1
Bu= Y (@ —w) Ly, g,

Finally, we define the discrete right-hand side by:

tn+1

! /ﬁmﬂm% ne0,N-1], i [Ld, oce?
tn D,

5t Dy

feXes, fitl=

int*

With these notations, the time-implicit MAC scheme for the transient Navier-Stokes reads:

Initialization :
u® = Peug. (53a)
Step n, n € ﬂO,N - 1ﬂ. Solve for w"*! and p"*t! :
u"tt e He, p"™ € Lo, (53b)
O™ — Agu™ 4 Ce(u™ T u™ T  Vepn ™ = (53c)
divyu™ T = 0. (53d)
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Step n, n € HO, N — 1ﬂ, of the scheme (G53]) admits the following weak formulation:

Find u"*! € E¢ such that, for any v € Eg,

geu" v de+ | Veu't: Vev de +be(u T w o) = | fUT v de. (54)
Q Q Q

The equivalence between this relation and (53D)-(53d) (in the sense that (54]) implies the existence of a discrete
pressure field such that (53D)-(53d) is satisfied) is a consequence of the stability of the MAC scheme for the
Stokes problem (i.e. the fact that this scheme satisfies a discrete inf-sup condition).

4.2. Estimates on discrete solutions and existence

Let us define the two following discrete norms for functions of space and time:

For any v € X ¢,
N—-1
Il 20,70 ) = D 0 0™ 13 2 0
n=0
ol 0,722ty = max{ 0" 2y, n € 0, N = 1]},

Lemma 4.1 (Existence and first estimates on the velocity). There exists at least a solution w € X st satisfying
G3). Furthermore, there exists C > 0 depending only on wg and f such that, for any function w € X st
satisfying [B3), the following estimates hold:

lullr20,7m5m, 4) < C, (55)

e/l Lo 07522 (0)0) < C. (56)
Proof. We prove the a priori estimates (B8] and (B6]). The existence of a solution then follows by a topological
degree argument, as for the stationary case.

Let M € ﬂO, N — 1ﬂ; taking v = ™! in (54)), multiplying by §t and summing the result over n € ﬂ(), Mﬂ, we
obtain thanks to Lemma and to the Cauchy-Schwarz inequality:

M d M M
Z Z Z | Do | “Z“(“gﬂ —ug) + Z ot ||Un+1||%,£,o < Z ot ||fn+1||L2(Q)d ||un+1||L2(Q)d'

n=0 i=1 g &) n=0 n=0

Using the fact that for all a,b € R, 2a(a —b) = (a — b)? + a® — b? for the first term of the left-hand side and the
discrete Poincaré and Young inequalities for the right-hand side, we get that

M
[ Gy + D2 8t IR o0 < u®l3ape + C3 111320 7122000,

n=0
where Cp > 0 depends only on . On one hand, this inequality yields the L*-estimate (B6]); on the other hand,
taking M = N — 1, we get the L?-estimate (55)). O

Next we turn to an estimate on the discrete time derivative. To this end, we introduce the following discrete
dual norms on H¢ o and X g5

vEHeo v, = max{’/ v-p dcc‘ ; @ € Ee and ||p|l1,6.0 < 1},
Q

N-1 3/4 (57)
nt114/3
v € Xeot = [[vlpassore,) = <Z ot [Jv +1||E/ﬁg> .

n=0
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Lemma 4.2 (Estimate on the dual norm of the velocity disgrete time derivative). Let u € X¢ s5¢ be a solution
to B3)). Then there exists C > 0 depending only on ug, Q, f and, in a non-decreasing way, on Ny, such that:

10¢w|| Lasso,.7,m,) < C-

Proof. Taking v € E¢ such that |[v]|1,e,0 < 1 as test function in (&), we have, for n € [0, N — 1]:

u v de+ [ Veu Vev do + be(u T " v) = e de.
Q Q Q

By Lemma [3.0 and thanks to the estimate (34)), we have:
lbe (u™ T, ™ 0)| < Oy w14

Using the Cauchy-Schwarz inequality, we note that:
”un—i_lHi‘l(Q)d = /Q |U"+1| |un+1|3 de < HU"H||L2(sz)d||un+l|&6(ﬂ)d'

Therefore, thanks to the estimate (B6) of Lemma 1] and to the discrete Poincaré inequality, there exists

Chy > 0 depending only on 2 and on the regularity of the mesh, such that:

; Opu v de < Gy, (|lu +1||(£G(Q))d + " reo + 1 p2@))a)-

Hence,

nl114/3 = n ntl4/3 nt14/3
[0 +1HE/’g <9 Cﬁ,/f' (|l +1||%G(Q)d + [l +1||1,/£,0+ I f +1||L/2(Q)d)

= 1
<9 Gl (Il Zoaye + ™ g0 + 1 17200 +2).

Multiplying this latter inequality by 6t and summing for n € HO, N — 1ﬂ, we get:

4/3 ~ 2
||6t“HL/4/3(0_,T;E/g) <9 Céz/v? (||u||%2(O,T,L5(Q)d) + ||“||%2(0,T,H5,0) + ”f”%?(o,T,L?(Q)d) + 2T)'

We conclude by the discrete Sobolev inequality [11, Lemma 3.5] and thanks to the L?(0,T; He o)-estimate (55)
of u. O

4.3. Convergence analysis

Theorem 4.3 (Convergence of the scheme, time-dependent case). Let (8tm)men and (M, Em)men be a se-
quence of time steps and MAC grids (in the sense of Definition [21]) such that §t, — 0 and hy,, — 0 as
m — +o0o. Assume that there exists n > 0 such that nye,, < n for any m € N (with n,, defined by ([@)). Let
Wy, be a solution to (B4) for 6t = 6ty and (M, &) = (M, Em). Then there exists u € L2(0,T; E(Q)) such that,
up to a subsequence:

- the sequence (Up)men converges to w in L*/3(0,T; L?(Q)%),

- @ is a solution to the weak formulation ().

- v € LY3(0,T; E'(Q)).

Proof. We proceed in four steps.

First step: compactness in L4/3(O,T;L2(Q)d) — The first step consists in applying the discrete Aubin-
Simon theorem in order to obtain the existence of a subsequence of (W, )men which converges to @ in
LA3((0,T); L2(Q)?). In our setting, we apply Theorem [5.3] with p = 4/3; the Banach space B is L?(Q)¢, and
the spaces X,,, and Y;,, consist in the space Hg, o endowed with the norms defined respectively by Relations
([@2) and (E7). By [II, Theorem 14.2] and the Kolmogorov compactness theorem (see e.g. [I1, Theorem 14.1]),
we obtain that (X,,, Y )men is compactly embedded in B in the sense of Definition 5.1l Let us then show that
the sequence (X, Y;n)men is compact-continuous in L2(Q)? in the sense of Definition Let vy, € He 0
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such that (||vml|1,e,,,0)men is bounded and [[vy||gr — 0 as m — 4o00. Assume that v, — v in (L2(€2))%; by
definition (B7)) of the dual norm, we have:

/ O - O A2 < [Omllnen 0 [Om]l5 -
Q

Passing to the limit in this inequality as m — oo, we get that v = 0, so that the sequence (X, Yin)men is
compact-continuous in L?(2)?. We now check the three assumptions (H1), (H2) and (H3) of Theorem [5.3t
by Lemma [AT], the sequence ||ty || L1(0,T;H o) 18 bounded, and thanks to the discrete Poincaré inequality, the
sequence (U, )men is also bounded in L*/3(0,T; (L?(Q)4)); furthermore, the sequence [10¢wml /30,71, I8
bounded by Lemma Hence, Theorem applies and there exists @ € L*/3(0,T; L?(Q)9) such that, up to
a subsequence,
Uy — @ in LY3 (0,75 L*(Q)?) as m — +oc.

Step 2: Convergence in L?(0,7; L?(2)¢) — Thanks to Lemma 1] the sequence (u,,)men is bounded in
L>(0,T, L*(2)%), and therefore, there exists @ € L>(0,T; L?(Q2)?) and a subsequence (@ ())men converging
to @ x-weakly in L>°(0,T; L*(Q)%). Since wy(my — @ in L*/3(0,T; L*(Q2)?), the uniqueness of the limit in the
sense of distributions implies that 4 = @ so that w € L>(0,T; L2(Q)%). By a classical interpolation result on
L?(0,T) spaces, we have:

”u um||L2(0 T;L2(Q)%) < ||u um||L4/a(0 T;L2(0Q)4) ”u umHLao(o T;L2(Q)4)?

which implies that u,, converges towards @ in L2?(0,T; L%(Q)?) as m tends to infinity.

Step 3: Weak consistency of the scheme — The notion of weak consistency that we use here is the
Lax-Wendroff notion: we show that if a sequence of approximate solutions of the scheme converges to some
limit, then this limit is a weak solution to the original problem. Let us then show that w satisfies (). Let

@ € C(Q x [0,T))%, such that dive = 0. By Lemma 37 we have diva,, Pe, (-, t,) =0, and so we can take
pr = Pe. (-, ty) € Eg as test function in (B4)) ; multiplying by dt,, and summing for n = {0,..., N, — 1}
(with N6t = T), we then get:

Ny —1

Z Otm, /5tu"+l o, dx dt+/V ultt Vi ¢ de
n=0

e, (g o) - [ £ da) =0
Q

where the subscript m in f&“ is here to recall that the discrete right-hand side is an interpolation of the

continuous one, which depends on the mesh and time step. The first term of the left-hand side reads T4 ,, =
d .
E i=1 Tl,m,i with:

Ty, = Z Z Dol (unfy = Um.q) Pm.o

n=0 068(1)

__ Z 5t 3 Dyl u ”*17@’” It S Dol sy s

oce&® oce&®

/ /umlwt 01om,i(x,t) dwdt—/? Uo,i(x 0 (x) de.

We know that u,, ; — @; in L*(0,T; L*(2)) as m — +oo. By definition, the discrete partial derivative d¢ppm, ;
converges uniformly to dyp; as m — +oo. Moreover, U’g?n Uo,; converges to g,; in L1(Q2) for all ¢ in [1,2], and
©n, o converges to ¢;(-,0) in L¢(Q) for all ¢ in [1, 00]. Hence:

T
T — —/ / u(x,t) - Orp(x,t) de dt — / wo(x) - p(x,0) de as m — +o0. (58)
Q Q
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Let us then study the second term of the left-hand side. We have:

/Q Vi uptl: Vi oh de = /Q Vi uptl Vg @nt! da + /Q Vi uptlt Vi (@h — @t de.

By the same arguments as in the stationary case, we get that

Nyp—1 T
Z Otm | V3 ultl Vs Pt de — / Vu: Ve de dt as m — +oo.
"0 " " o Ja

ot
Moreover, thanks to the regularity of ¢,

Ve upt™ Ve (eptt — @) da < 0t Cy Jlup ™ 160
Q

where C, only depends on ¢. We thus obtain that
Npp—1
Z Otm /Q ngu:ﬁfl : ng(cpﬁfl —r) dz — 0 as m — +o0.
n=0
Similarly, we have:

Np—1
Z Otm /Q ot (@ — @pt) dae < 6t Cy || Fll2(0x 0,7y — 0 as m — 400,
n=0

so that
Np—1

T
Zétm/‘f’;fl-goﬁldm—)/ /}'~god:cdtasm—>—|—oo.
n=0 Q 0o Ja

The convection term is dealt with by remarking that an easy adaptation of Lemma B.10] to the time-dependent
framework implies that

N-1 T
Z St be (wt Tt ) — / b(w,uw,p) dt as n — +o0.
0

m=0

Therefore, @ is indeed a solution of (@).
Step 4: Regularity of the limit — Thanks to [I1, Theorems 14.1 and 14.2], the sequence of normed vector
spaces (He,, 0, - [l1.e,..0)men is L?(2)%limit-included in H}(2)? in the sense of Definition £.4l We have
Uy — @ in L2(0,T, L%(Q)%) as m — +oo and (lwmll20,13H¢, o))men is bounded thanks to Lemma (.1l
Therefore Theorem applies, so that w € L2(0,T; H}(Q)%); then, adapting the proof that divae = 0 of the
stationary case (see the proof of Theorem B.I3), we get that u € L?(0,T; E(Q)).

Let us finally show that d;u € L*3(0,T;E'(R2)). Let ¢ € C(Q x (0,T)) such that dive = 0. Let
®,, € Xe,, 5t, be defined by

1 [ o
go%“ = E/ Pe. (-, 8)ds for t € [ty, tnt1], n € HO,N - 1ﬂ.
tn

Note that, for n € [0, N —1], ¢! is discretely divergence-free, i.e. 75! € E¢ . Thanks to Lemma 2] there
exists C' > 0 depending only on ug, 2, n and f such that:

T
/ Ot - P, dz dt < C o, || La(0,75H ¢ o)-
o Ja

By Lemma 3.7 there exists Cy depending only on n and Q, such that ||, ||z10,7:8. o) < C2llellLe0,1:E0);
where E(Q) is endowed with the H} norm. Hence, passing to the limit as m — +oo in a similar way as for



25
T1,m in Step 3, we get that

T
/ /Qu - Opp dx < CCaollpll L0, 15E(02))-
0

We then obtain that d;u € L*/3(0,T; E'(Q)) by density (see [31, Theorem 1.6] for the density of divergence-free
regular functions in divergence-free functions of HZ(2)%). O

Remark 4.4 (Uniqueness and convergence of the whole sequence). In the case where uniqueness of the solution
is known, then again the whole sequence converges ; this is for instance the case for d = 2, see e.g. [31 Theorem
3.2], under a small data assumption [3I, Theorem 3.7] or under a short time assumption [31, Theorem 3.11].

4.4. Case of the unsteady Stokes equations

In the case of the unsteady Stokes equations, that is Problem (B]) where the nonlinear convection term in (3h)
is omitted, stronger estimates can be obtained, which entail the weak convergence of the pressure. To obtain
these bounds, the assumption that ug € H'(2)¢ and that divug = 0 plays a central role.

Let us consider the following weak formulation of the unsteady Stokes problem:

Find ( (0,T; E(Q)) x L*(0,T; L3(Q)) such that Ve € C>([0, T[xQ)4,

@,p) € L?
/ / ) - Orp(z, t)d:cdt—/uo( ) - (e, O)d:v—i—/ /Vuwt) Ve(z,t) de dt

/ /p dive de dt = / f(z,t) - p(x,t) dz dt. (59)
Q Q

Note that this formulation does not use divergence-free test functions as in (), so the pressure still appears.

The scheme — We look for an approximation (u,p) € Xe¢ 5t X Yar,s: of (u,p) solution to the problem ([B3); we
consider the time-implicit MAC scheme which reads:

Initialization :
u® = Peug. (60a)
Step n, n € HO,N — 1“. Solve for u™*! and p"*! :
u"t € He o, p"™ € Lo, (60D)
deu™t — Agutl 4 Vepttt = ot (60c)
divyg u" T = 0. (60d)

Note that the choice of the discretization of the initial condition in (60al), together with the assumption divug =
0, implies that divy; u® = 0; this fact is important for the obtention of the estimates. A weak formulation of

(6OD)—(60d) reads:
Find (u™*,p"™!) € E¢ x Lyt such that, Vv € He o,

/ Opu" ™ v dx + / Vgu’”rl : Vzv dx — / p"divyv de = / frtovda. (61)
Q Q Q Q
The estimates of Lemma [£.J] on the approximate solutions obtained in the case of the Navier-Stokes equations

are of course still valid. However we get stronger estimates on d;u and on p, as we proceed to show.

Lemma 4.5 (Estimates on the velocity and its discrete time derivative). Let u € Xe¢ s be a solution to (60);
then there exists C' > 0 depending only on ug, 2, f and, in a non-decreasing way, on nyt, such that:

10 wll p2(0,7;,L2(0)%) < C, (62)

lwllLoe0,rsme o) < C- (63)
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Proof. Let u"™! € E¢ be a solution to (61). Taking v = d;u"! as test function, we get:
/(5tu”+1)2 de+ [ Vzu": Vi (0u"t!) de — / P divye (@u™th) de = [ Bt da. (64)
Q Q Q Q

By linearity of the discrete time derivative and the discrete divergence operators, and thanks to (60d)), we get
that divae (J;u"™) = 9y (divac w" ™) = 0. Multiplying (G4) by 6¢ and summing the result over n € [0, M], for
M e HO,N - 1ﬂ, we obtain T7 + T5 = T3 where

M M
T = Z 5t /Q(Eitu”“ de, Th = Z 5t 1i0y(Veu") de and Ty = Z 5t A F gt da.
— n=0

We have, by linearity of the discrete gradient operator:

M

1. 1
Ty=3" (5 ™ ieo — 5 lu

n=0

1

n+1 012
— = ||uw .
92 H ||1,8,0

5 ||u

I

%,5,0) 2

N =

By continuity of the Fortin operator, we have in addition that [u°(]1¢0 < C [luol| g1 (n)e, with C' depending
only on  and (in a non-decreasing way) on 7y¢. Let us now turn to T3. By the Cauchy-Schwarz and the Young
inequalities, we obtain:

M M M
1 1
T 3o [ 1 ae) [ @ i) < g 3o [ 1 g 3ot [ @ar ae
n=0 n=0 n=0

and the Cauchy-Schwarz inequality, together with the definition of f, yields for the first term at the right-hand

side:
M —
St [ 1 < 1 Ir pinrer
n=0

Gathering the above inequalities, we get that:

M
Z5t/(5tu”+1)2 de + ||u
n=0 Q2

This in turn yields the L?-estimate (62)) (taking M = N — 1) on the discrete time derivative of the velocity, and
the L>°(H")-estimate (63) on the velocity itself. O

<N Fl 205220090 + w0l gy (65)

Lemma 4.6 (Estimatg on the pressure). Let (u,p) € X5t X Yar,s¢ be a solution to @Q). There exists C >0
depending only on 2, f and, in a non-decreasing way, on My, such that:

ol L200,7:02(0)) < C. (66)

Proof. We follow the same strategy as in the proof of the pressure estimate in Proposition Therefore, let
@ € Hj(2)* be such that dive = p"*! and |Vel|p2(q)ixa < C |[p" | 12(q), with C depending only on €.

Taking v = Pe ¢ as test function in (GI), we obtain, thanks to (@2):
‘/Q5tu"+l cv dx + /Q Vau™: Vev de — [[p"t|720) = /anﬂ .o da.

Thanks to the Cauchy-Schwarz and Poincaré inequalities and to the continuity of the Fortin operator ‘jv)g, we
then get that there exists C,,,, depending on €2 and on the regularity of the mesh such that

1
1" 12y < Cone (180 22y + 1w e+ 112 e ) -

Summing this relation over n € [0, N — 1] and multiplying by &t yields the result thanks to (E5) and (€2). O
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Theorem 4.7 (Convergence of the scheme, time-dependent Stokes problem). Let (6t)men and (Mo, Em)men
be a sequence of time steps and meshes such that (6t),, — 0 and hy,, — 0 as m — +oo; assume that there
exists 1 > 0 such that ny,, < n for any m € N (with ny,, defined by [@)). Let (W, pm) be a solution to (G0)
for 6t = 6ty and M = M,,. Then there exists (w,p) € L*(0,T; E(Q)) x L?(0,T;L*(Q)) such that, up to a
subsequence:

- the sequence (Um)men converges to w in L2(0,T; L*(Q)%),

- the sequence (pm)men weakly converges to p in € L*(0,T; L?(%)),

- (@,p) is a solution to the weak formulation (B3l).
Proof. The convergence of the sequence of discrete solutions of the velocity follow from Theorem and the
weak convergence of the sequence of discrete solutions of the pressure in L?(0, T; L*(Q2)) follow from the estimate
[66). Let us then show that (u,p) satisfies (5J). Let ¢ € C°(Q x [0,T))%. Taking 7, = 9~75mgo(-,tn) €Heg o
as test function in (EI)), multiplying by d0t,, and summing for n € HO, Ny, — 1ﬂ (with N,,,6t,,, = T'), we obtain:

Np—1

Z Otm /5tu"+l @, dw—|—/V~ ultt Vi on de
n=0

—/ pHdivyy,, @, de —/ Frrt.pn d:c) =0.

Let us deal with the pressure term (all other terms of the equation can be dealt with as in the proof of Theorem
[3). We have, by the divergence preservation property of the Fortin operator:

/ pHdivy,, @, de —/ prHdive(x, t,) d

Hence, thanks to the regularity of ¢ (i.e. the fact that [¢(x,t) —@(x, t,)| < Cy 0ty for x € Qand t € (tn, tni1))
and the weak convergence of p,, to p,

Npp—1 Npp—1
- Z 5tm/ pdivyy,, @ de = — Z 5tm/ prHdive(x, t,) d
n=0 n=0

T
_>_/ /ﬁdiw,o(w,t) dz dt as m — +o0.
0o Ja
[l

5. APPENDIX: DISCRETE FUNCTIONAL ANALYSIS

Definition 5.1 (Compactly embedded sequence of spaces). Let B be a Banach space; a sequence (X, )men of
Banach spaces included in B is compactly embedded in B if any sequence (t,)men satisfying:

o u, € X, (Vm e N),

e the sequence (||um| x,, )men is bounded,
is relatively compact in B.

Definition 5.2 (Compact-continuous sequence of spaces). Let B be a Banach space, and let (X, )men and
(Yin)men be sequences of Banach spaces such that X,,, C B for m € N. The sequence (X, Yy, )men is compact-
continuous in B if the following conditions are satified:
e The sequence (X, )men is compactly embedded in B (see Definition B.1]),
e X,, CY,, (for all m € N),
o if the sequence (um )men is such that u,, € X,, (for allm € N), (||um|| x,, )men is bounded and ||u,|y,, —
0 as m — +o0o, then any subsequence of (um,)men converging in B converges to 0 (in B).

The following theorem is proved [4] and is a generalization of a previous work carried out in [16].

Theorem 5.3 (Aubin-Simon Theorem with a sequence of subspaces and a discrete derivative.). Let 1 < p < oo,
let B be a Banach space, and let (X.m)men and (Yo )men be sequences of Banach spaces such that X,, C B for
m € N. We assume that the sequence (X, Y )men s compact-continuous in B. Let T > 0 and (u(m))meN be
a sequence of LP(0,T; B) satisfying the following conditions:
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e (H1) the sequence (u'™),,cn is bounded in LP(0,T; B).
e (H2) the sequence (||u(m)||L1(07T;Xm))m€N is bounded.
e (H3) the sequence (|[0:u'™ ] o(0.7:v,))men s bounded.

Then there exists u € LP(0,T; B) such that, up to a subsequence, uw™ = uin L?(0,T; B).

Definition 5.4 (B-limit-included). Let B be a Banach space, (X,,)men be a sequence of Banach spaces
included in B and X be a Banach space included in B. The sequence (X,;)men is B-limit-included in X if
there exists C' € R such that if w is the limit in B of a subsequence of a sequence (U, )men verifying u,, € X,,
and [Jum| x,, <1, then v € X and |lul|x < C.

The regularity of a possible limit of approximate solutions may be proved thanks to the theorem which we
recall below [I7, Theorem B1].

Theorem 5.5 (Regularity of the limit). Let 1 < p < oo and T > 0. Let B be a Banach space, (Xm)men be
a sequence of Banach spaces included in B and B-limit-included in X (where X is a Banach space included in
B). Let T >0 and, for m € N, Let up, € LP(0,T; X,,). We assume that the sequence (||tuml| 10, 1:x,,))meN 5
bounded and that tum, — u a.e. as m — co. Then u € LP(0,T; X).
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