
ar
X

iv
:1

70
1.

04
55

3v
1 

 [
m

at
h.

N
A

] 
 1

7 
Ja

n 
20

17

CONVERGENCE OF THE MARKER-AND-CELL SCHEME FOR THE

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS

T. Gallouët1, R. Herbin2, J.-C. Latché3 and K. Mallem4

Abstract. We prove in this paper the convergence of the Marker And Cell (MAC) scheme for the
discretization of the steady-state and time-dependent incompressible Navier-Stokes equations in prim-
itive variables, on non-uniform Cartesian grids, without any regularity assumption on the solution. A

priori estimates on solutions to the scheme are proven; they yield the existence of discrete solutions
and the compactness of sequences of solutions obtained with family of meshes the space step and, for
the time-dependent case, the time step of which tend to zero. We then establish that the limit is a
weak solution to the continuous problem.
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1. Introduction

Let Ω be an open bounded domain of Rd with d = 2 or d = 3. The steady-state incompressible Navier-Stokes
equations read:

divū = 0 in Ω, (1a)

−∆ū + (ū ·∇)ū+∇p̄ = f̄ in Ω, (1b)

ū = 0 on ∂Ω. (1c)
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where ū stands for the (vector-valued) velocity of the flow, p̄ for the pressure and f̄ is a given field of L2(Ω)d,
and where, for two given vector fields v = (v1, . . . , vd) and w = (w1, . . . , wd), the quantity (v ·∇)w is a vector

field whose components are ((v ·∇)w)i =
∑d

k=1 vk∂kwi, i ∈
[
|1, d|

]
. A weak formulation of Problem (1) reads:

Find (ū, p̄) ∈ H1
0 (Ω)

d × L2
0(Ω) such that, ∀(v, q) ∈ H1

0 (Ω)
d × L2

0(Ω),∫

Ω

∇ū : ∇v dx+

∫

Ω

((ū ·∇)ū) · v dx−

∫

Ω

p̄ divv dx =

∫

Ω

f̄ · v dx, (2a)

∫

Ω

q divū dx = 0, (2b)

where L2
0(Ω) stands for the subspace of L2(Ω) of zero mean-valued functions.

The time-dependent Navier-Stokes equations are also considered:

divū = 0 in Ω× (0, T ), (3a)

∂tū−∆ū+ (ū ·∇)ū+∇p̄ = f̄ in Ω× (0, T ), (3b)

ū = 0 on ∂Ω× (0, T ), (3c)

ū(x, 0) = u0 in Ω. (3d)

This problem is posed for (x, t) in Ω × (0, T ) where T ∈ R∗
+; the right-hand side f̄ is now a given vector field

of L2(Ω× (0, T ))d and the initial datum u0 belongs to the space E(Ω) of divergence-free functions, defined by:

E(Ω) =
{
u ∈ H1

0 (Ω)
d ; divu = 0 a.e. in Ω

}
.

A weak formulation of the transient problem (3) reads (see e.g. [3]):

Find u ∈ L2(0, T ;E(Ω)) ∩ L∞(0, T ;L2(Ω)d) such that, ∀v ∈ L2(0, T ;E(Ω)) ∩ C∞
c (Ω× [0, T )),

−

∫ T

0

∫

Ω

ū(x, t) · ∂tv(x, t) dx dt−

∫

Ω

u0(x) · v(x, 0) dx+

∫ T

0

∫

Ω

∇ū(x, t) : ∇v(x, t) dx dt

+

∫ T

0

∫

Ω

((ū ·∇)ū)(x, t) · v(x, t) dx dt =

∫ T

0

∫

Ω

f̄ (x, t) · v(x, t) dx dt.

(4)

The Marker-And-Cell (MAC) scheme, introduced in the middle of the sixties [21], is one of the most popular
methods [28, 33] for the approximation of the Navier-Stokes equations in the engineering framework, because
of its simplicity, its efficiency and its remarkable mathematical properties. The aim of this paper is to show,
under minimal regularity assumptions on the solution, that sequences of approximate solutions obtained by the
discretization of problem (1)(resp. (3)) by the MAC scheme converge to a solution of (2)(resp. (4)) as the mesh
size (resp. the mesh size and the time step) tends (resp. tend) to 0.

For the linear problems, the first error analysis seems to be that of [29] in the case of the time-dependent Stokes
equations on uniform square grids. The mathematical analysis of the scheme was performed for the steady-
state Stokes equations in [26] for uniform rectangular meshes with H2-regularity assumption on the pressure.
Error estimates for the MAC scheme applied to the Stokes equations have been obtained by viewing the MAC
scheme as a mixed finite element method [19,20] or a divergence conforming DG method [22]. Error estimates for
rectangular meshes were also obtained for the related covolume method, see [6] and references therein. Using the
tools that were developed for the finite volume theory [11,12], an order 1 error estimate for non-uniform meshes
was obtained in [1], with order 2 convergence for uniform meshes, under the usual regularity assumptions (H2

for the velocities, H1 for the pressure). It was recently shown in [24] that under higher regularity assumptions
(C4 for the velocities and C3 for the pressure) and an additional convergence assumption on the pressure,
superconvergence is obtained for non uniform meshes. Note also that the convergence of the MAC scheme for
the Stokes equations with a right-hand side in H−1(Ω) was proven in [2].

Mathematical studies of the MAC scheme for the nonlinear Navier-Stokes equations are scarcer. A pioneering
work was that of [27] for the steady-state Navier-Stokes equations and for uniform rectangular grids. More
recently, a variant of the MAC scheme was defined on locally refined grids and the convergence proof was
performed for both the steady-state and time dependent cases in two or three space dimensions [4]. A MAC-like
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scheme was also studied for the stationary Stokes and Navier-Stokes equations on two-dimensional Delaunay-
Voronöı grids [9]. For the Stokes equations on uniform grids, the scheme given in [4] coincides with the usual
MAC scheme that is classically used in CFD codes. However, for the Navier-Stokes equations, the nonlinear
convection term is discretized in [4] and [9] in a manner reminiscent of what is sometimes done in the finite
element framework (see e.g. [32]), which no longer coincides with the usual MAC scheme, even on uniform
rectantular grids; this discretization entails a larger stencil, and numerical experiments [5] seem to show that it
is not as efficient as the classical MAC scheme.

Our purpose here is to analyse the genuine MAC scheme for the steady-state and transient Navier-Stokes
equations in primitive variables on a non-uniform rectangular mesh in two or three dimensions, and, as in [4],
without any assumption on the data nor on the regularity of the the solutions. The convergence of a subsequence
of approximate solutions to a weak solution of the Navier-Stokes equations is proved for both the steady and
unsteady case, which yields as a by product the existence of a weak solution, well known since the work of J.
Leray [23]. In the case where uniqueness of the solution is known, the whole sequence of approximate solutions
can be shown to converge, see remarks 3.14 and 4.4.

This paper is organized as follows. In Section 2, the MAC space grid and the discrete operators are introduced.
In particular, the velocity convection operator is approximated so as to be compatible with a discrete continuity
equation on the dual cells ; this discretization coincides with the usual discretization on uniform meshes [28],
contrary to the scheme of [4]. The MAC scheme for the steady state Navier-Stokes equations and its weak
formulation are introduced in Section 3. Velocity and pressure estimates are then obtained, which lead to the
compactness of sequences of approximate solutions. Any prospective limit is shown to be a weak solution of
the continuous problem. Section 4 is devoted to the unsteady Navier-Stokes equations. An essential feature
of the studied scheme is that the (discrete) kinetic energy remains controlled. We show the compactness of
approximate sequences of solutions thanks to a discrete Aubin-Simon argument, and again conclude that any
limit of the approximate velocities is a weak solution of the Navier-Stokes equations, thanks to a passage to
the limit in the scheme. In the case of the unsteady Stokes equations, some additional estimates yield the
compactness of sequences of approximate pressures; this entails that the approximate pressure converges to a
weak solution of the Stokes equations as the mesh size and time steps tend to 0.

2. Space discretization

Let Ω be a connected subset of Rd consisting in a union of rectangles (d = 2) or orthogonal parallelepipeds
(d = 3); without loss of generality, the edges (or faces) of these rectangles (or parallelepipeds) are assumed to
be orthogonal to the canonical basis vectors, denoted by (e(1), . . . , e(d)).

Definition 2.1 (MAC grid). A discretization of Ω with a MAC grid, denoted by D, is defined by D = (M,E),
where:

– M stands for the primal grid, and consists in a conforming structured partition of Ω in possibly non
uniform rectangles (d = 2) or rectangular parallelepipeds (d = 3). A generic cell of this grid is denoted
by K, and its mass center by xK . The pressure is associated to this mesh, and M is also sometimes
referred to as ”the pressure mesh”.

– The set of all faces of the mesh is denoted by E; we have E = Eint ∪ Eext, where Eint (resp. Eext) are
the edges of E that lie in the interior (resp. on the boundary) of the domain. The set of faces that are

orthogonal to e(i) is denoted by E(i), for i ∈
[
|1, d|

]
. We then have E(i) = E

(i)
int ∪ E

(i)
ext, where E

(i)
int (resp.

E
(i)
ext) are the edges of E(i) that lie in the interior (resp. on the boundary) of the domain.

For σ ∈ Eint, we write σ = K|L if σ = ∂K ∩ ∂L. A dual cell Dσ associated to a face σ ∈ E is defined
as follows:

- if σ = K|L ∈ Eint then Dσ = DK,σ ∪DL,σ, where DK,σ (resp. DL,σ) is the half-part of K (resp.
L) adjacent to σ (see Fig. 1 for the two-dimensional case);

- if σ ∈ Eext is adjacent to the cell K, then Dσ = DK,σ.
We obtain d partitions of the computational domain Ω as follows:

Ω = ∪σ∈E(i)Dσ, i ∈
[
|1, d|

]
,

and the ith of these partitions is called ith dual mesh, and is associated to the ith velocity component, in

a sense which is clarified below. The set of the faces of the ith dual mesh is denoted by Ẽ(i) (note that
these faces may be orthogonal to any vector of the basis of Rd and not only e(i)) and is decomposed into
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the internal and boundary edges: Ẽ(i) = Ẽ
(i)
int ∪ Ẽ

(i)
ext. The dual face separating two duals cells Dσ and Dσ′

is denoted by ǫ = σ|σ′.

To define the scheme, we need some additional notations. The set of faces of a primal cell K and a dual cell

Dσ are denoted by E(K) and Ẽ(Dσ) respectively. For σ ∈ E, we denote by xσ the mass center of σ. The vector
nK,σ stands for the unit normal vector to σ outward K. In some case, we need to specify the orientation of a
geometrical quantity with respect to the axis:

- a primal cell K will be denoted K = [
−→
σσ′] if σ, σ′ ∈ E

(i) ∩ E(K) for some i ∈
[
|1, d|

]
are such that

(xσ′ − xσ) · e
(i) > 0;

- we write σ =
−−→
K|L if σ ∈ E(i) and −−−−→xKxL · e(i) > 0 for some i ∈

[
|1, d|

]
;

- the dual face ǫ separating Dσ and Dσ′ is written ǫ =
−−→
σ|σ′ if −−−→xσxσ′ · e(i) > 0 for some i ∈

[
|1, d|

]
.

For the definition of the discrete momentum diffusion operator, we associate to any dual face ǫ a distance dǫ as

sketched on Figure 1. For a dual face ǫ ∈ Ẽ(Dσ), σ ∈ E(i), i ∈
[
|1, d|

]
, the distance dǫ is defined by:

dǫ =




d(xσ,xσ′) if ǫ = σ|σ′ ∈ Ẽ

(i)
int,

d(xσ, ǫ) if ǫ ∈ Ẽ
(i)
ext,

(5)

where d(·, ·) denotes the Euclidean distance in Rd.

Dσ

K

L

σ = K|L σ′′
×

×

×

xσ′

xσ xσ′′

ǫ2 ǫ3

σ′

ǫ1 = σ|σ′

∂Ω

dǫ3dǫ2

dǫ1

Figure 1. Notations for control volumes and dual cells (in two space dimensions, for the
second component of the velocity).

The size hM and the regularity ηM of the mesh are defined by:

hM = max
{
diam(K),K ∈ M

}
, (6)

ηM = max
{ |σ|

|σ′|
, σ ∈ E

(i), σ′ ∈ E
(j), i, j ∈

[
|1, d|

]
, i 6= j

}
, (7)

where | · | stands for the (d− 1)-dimensional measure of a subset of Rd−1 (in the sequel, it is also used to denote
the d-dimensional measure of a subset of Rd).

The discrete velocity unknowns are associated to the velocity cells and are denoted by (uσ)σ∈E(i) , i ∈
[
|1, d|

]
,

while the discrete pressure unknowns are associated to the primal cells and are denoted by (pK)K∈M. The
discrete pressure space LM is defined as the set of piecewise constant functions over each of the grid cells K of
M, and the discrete ith velocity space HE(i) as the set of piecewise constant functions over each of the grid cells
Dσ, σ ∈ E

(i). The set of functions of LM with zero mean value is denoted by LM,0. As in the continuous case,
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the Dirichlet boundary conditions are (partly) incorporated into the definition of the velocity spaces, by means
of the introduction of the spaces HE(i),0 ⊂ HE(i) , i ∈

[
|1, d|

]
, defined as follows:

HE(i),0 =
{
u ∈ HE(i) , u(x) = 0 ∀x ∈ Dσ, σ ∈ E

(i)
ext

}
.

We then set HE,0 =
∏d
i=1HE(i),0. Defining the characteristic function 11A of any subset A ⊂ Ω by 11A(x) = 1

if x ∈ A and 11A(x) = 0 otherwise, the d components of a function u ∈HE,0 and a function p ∈ LM may then
be written:

ui =
∑

σ∈E(i)

uσ11Dσ , i ∈
[
|1, d|

]
and p =

∑

K∈M

pK11K .

Let us now introduce the discrete operators which are used to write the numerical scheme.

Discrete Laplace operator – For i ∈
[
|1, d|

]
, the ith component of the discrete Laplace operator is defined

by:
−∆E(i) : HE(i),0 −→ HE(i),0

ui 7−→ −∆E(i)ui = −
∑

σ∈E(i)

(∆u)σ11Dσ , with − (∆u)σ =
1

|Dσ|

∑

ǫ∈Ẽ(Dσ)

φσ,ǫ(ui),

φσ,ǫ(ui) =





|ǫ|

dǫ
(uσ − uσ′), if ǫ = σ|σ′ ∈ Ẽ

(i)
int,

|ǫ|

dǫ
uσ, if ǫ ∈ Ẽ

(i)
ext ∩ Ẽ(Dσ),

(8)

where dǫ is defined by (5). The numerical diffusion flux is conservative:

φσ,ǫ(ui) = −φσ′,ǫ(ui), ∀ǫ = σ|σ′ ∈ Ẽ
(i)
int. (9)

The discrete Laplace operator of the full velocity vector is defined by

−∆E : HE,0 −→HE,0

u 7→ −∆Eu = (−∆E(1)u1, . . . ,−∆E(d)ud).
(10)

Let us now recall the definition of the discrete H1
0 -inner product [11]: the H

1
0 -inner product between u ∈HE,0

and v ∈ HE,0 is obtained by taking, for each dual cell, the inner product of the discrete Laplace operator
applied to u by the test function v and integrating over the computational domain. A simple reordering of the
sums (which may be seen as a discrete integration by parts) yields, thanks to the conservativity of the diffusion
flux (9):

∀(u,v) ∈HE,0 ×HE,0,

∫

Ω

−∆Eu · v dx = [u,v]1,E,0 =

d∑

i=1

[ui, vi]1,E(i),0,

with, for i ∈
[
|1, d|

]
, [ui, vi]1,E(i),0 =

∑

ǫ∈Ẽ
(i)
int

ǫ=σ|σ′

|ǫ|

dǫ
(uσ − uσ′) (vσ − vσ′ ) +

∑

ǫ∈Ẽ
(i)
ext

ǫ∈Ẽ(Dσ)

|ǫ|

dǫ
uσ vσ. (11)

The bilinear forms ∣∣∣∣∣
HE(i),0 ×HE(i),0 → R

(ui, vi) 7→ [ui, vi]1,E(i),0

and

∣∣∣∣∣
HE,0 ×HE,0 → R

(u,v) 7→ [u,v]1,E,0

are inner products on HE(i),0 and HE,0 respectively, which induce the following scalar and vector discrete H1
0

norms:

‖ui‖
2
1,E(i),0 = [ui, ui]1,E(i),0 =

∑

ǫ∈Ẽ
(i)
int

ǫ=σ|σ′

|ǫ|

dǫ
(uσ − uσ′)2 +

∑

ǫ∈Ẽ
(i)
ext

ǫ∈Ẽ(Dσ)

|ǫ|

dǫ
u2σ, for i ∈

[
|1, d|

]
, (12a)

‖u‖21,E,0 = [u,u]1,E,0 =

d∑

i=1

‖ui‖
2
1,E(i),0. (12b)
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Dǫ

uσ uσ′

ǫ

(ð1u1)Dǫ =
uσ′ − uσ

dǫ

Note that this definition is still valid if σ or σ′ are
external faces (in which case the corresponding ve-
locity is equal to zero). The volumes (Dǫ, for ǫ ∈

Ẽ(1) and ǫ orthogonal to e(1)) thus form a partion of Ω
and the definition is complete.
Note also that, in the present case, Dǫ is also a primal
cell.

Dǫ

uσ

uσ′

ǫ

(ð2u1)Dǫ =
uσ′ − uσ

dǫ

Dǫ uσ

ǫ

(ð2u1)Dǫ =
−uσ
dǫ

Dǫ

uσ

ǫ

(ð2u1)Dǫ =
uσ
dǫ

Figure 2. Notations for the definition of the partial space derivatives of the first component
of the velocity, in two space dimensions.

This inner product may also be formulated as the L2-inner product of discrete gradients. To this purpose, we
introduce d × d new partitions of the domain Ω, where the (i, j)th partition consists in an union of rectangles
(d = 2) or orthogonal parallelepipeds (d = 3) associated to the dual faces orthogonal to e(j) of the dual mesh

Ẽ(i) for the ith component of the velocity. This (i, j)th partition reads:

(Dǫ)ǫ∈Ẽ(i),ǫ⊥e(j) , with

∣∣∣∣∣
Dǫ = ǫ× [xσ xσ′ ] if ǫ lies inside Ω, ǫ = σ|σ′,

Dǫ = ǫ× [xσ xσ,ǫ] if ǫ lies on ∂Ω, ǫ ∈ Ẽ(Dσ),

where xσ,ǫ is defined as the orthogonal projection of xσ on ǫ (which is also, in two space dimensions, the vertex
of σ lying on ǫ). The discrete derivative ðjui is defined on the (i, j)th partition and reads:

if ǫ lies inside Ω, ǫ =
−−→
σ|σ′, (ðjui)Dǫ =

uσ′ − uσ
dǫ

,

if ǫ lies on ∂Ω, ǫ ∈ Ẽ(Dσ), (ðjui)Dǫ =
−uσ
dǫ

−−−−→xσxσ,ǫ · e
(j),

(13)

with dǫ defined by (5). These definitions are illustrated on Figure 2. Note that some of these partitions are
the same: the (i, j)th partition coincide with the (j, i)th and (i, i)th partitions are the same for i ∈

[
|1, d|

]
. In

addition, these latters also coincide with the primal mesh: for any sub-volume Dǫ of such a partition, there
is K ∈ M such that Dǫ = K, and we may thus write equivalently (ðiui)Dǫ or (ðiui)K . We choose this latter
notation in the definition of the discrete divergence below for the sake of consistency, since, if we adopt a
variational point of view for the description of the scheme, the discrete velocity divergence has to belong (and
indeed does belong) to the space of discrete pressures (see Sections 3 and 4 below for a varitional form of the
scheme, in the steady and time-dependent case, respectively). The discrete discrete gradient of each velocity
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component ui may now be defined as:

∇
Ẽ(i)ui = (ð1ui, . . . , ðdui) with ðjui =

∑

ǫ∈Ẽ
(i)

ǫ⊥e(j)

(ðjui)Dǫ 11Dǫ . (14)

With this definition, it is easily seen that

∫

Ω

∇
Ẽ(i)ψ ·∇

Ẽ(i)χ dx = [ψ, χ]1,E(i),0, for ψ, χ ∈ HE(i),0, and i ∈
[
|1, d|

]
. (15)

If we extend this definition to the velocity vector by

∇
Ẽ
u = (∇

Ẽ(1)u1, . . . ,∇Ẽ(d)ud),

we get ∫

Ω

∇
Ẽ
u : ∇

Ẽ
v dx = [u,v]1,E,0.

This operator satisfies the following consistency result.

Lemma 2.2 (Consistency of the discrete partial derivatives of the velocity). Let ΠE be an interpolation operator
from C∞

c (Ω)d to HE,0 such that, for any ϕ = (ϕ1, · · · , ϕd) ∈ C∞
c (Ω)d, there exists Cϕ ≥ 0 depending only on

ϕ such that

ΠEϕ = (ΠE(1)ϕ1, · · · ,ΠE(d)ϕd) ∈ HE(1),0 × · · · ×HE(d),0, where
∣∣(ΠE(i)ϕi)σ − ϕi(xσ)

∣∣ ≤ Cϕ h2
M
, for σ ∈ E

(i), i ∈
[
|1, d|

]
. (16)

Let ηM be the parameter measuring the regularity of the mesh defined by (6). Then there exists Cϕ,ηM ≥ 0, only
depending in a non-decreasing way on ηM, such that

|ðjΠE(i)ϕi(x)− ∂jϕi(x)| ≤ Cϕ,η hM for a.e. x ∈ Ω and for i, j ∈
[
|1, d|

]
.

As a consequence, if (Mm,Em)m∈N is a sequence of MAC grids whose regularity is bounded and whose size tends
to 0 as m tends to +∞, then ∇

Ẽm
(ΠEmϕ) → ∇ϕ uniformly as m→ +∞.

Discrete divergence and gradient operators – The discrete divergence operator divM is defined by:

divM : HE,0 −→ LM,0

u 7−→ divM u =
∑

K∈M

1

|K|

∑

σ∈E(K)

|σ| uK,σ 11K ,
(17)

with uK,σ = uσnK,σ · e(i) for σ ∈ E
(i) ∩ E(K), i ∈

[
|1, d|

]
. (18)

Note that the numerical flux is conservative, i.e.

uK,σ = −uL,σ, ∀σ = K|L ∈ Eint. (19)

We can now define the discrete divergence-free velocity space:

EE(Ω) =
{
u ∈HE,0 ; divM u = 0

}
.

The discrete divergence of u = (u1, . . . , ud) ∈HE,0 may also be written as

divM u =
d∑

i=1

(ðiui)K11K ,

where the discrete derivative (ðiui)K is defined by Relation (13).
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Dσ K

uK,σ uK,σ′

ǫ

uσ,ǫ =
1

2
(uK,σ′ − uK,σ)

DσK L

σ

ǫ
uK,τ uL,τ ′

|ǫ|uσ,ǫ =
1

2
(|τ |uK,τ + |τ ′|uL,τ ′)

Figure 3. Mass fluxes in the definition of the convection operator for the primal component
of the velocity, in two space dimensions.

The gradient (which applies to the pressure) in the discrete momentum balance equation is built as the dual
operator of the discrete divergence, and reads:

∇E : LM −→HE,0

p 7−→ ∇Ep = (ð1p, . . . , ðdp),
(20)

where ðip ∈ HE(i),0 is the discrete derivative of p in the i-th direction, defined by:

ðip(x) =
|σ|

|Dσ|
(pL − pK) ∀x ∈ Dσ, for σ =

−−→
K|L ∈ E

(i)
int, i ∈

[
|1, d|

]
. (21)

Note that, in fact, the discrete gradient of a function of LM should only be defined on the internal faces, and
does not need to be defined on the external faces; it is chosen to be in HE,0 (that is zero on the external faces)
for the sake of simplicity. Again, the definition of the discrete derivatives of the pressure on the MAC grid is
consistent in the sense made precise in the following lemma.

Lemma 2.3 (Discrete gradient consistency). Let ΠM be an interpolation operator from C∞
c (Ω) to LM such

that, for any ψ ∈ C∞
c (Ω), there exists Cψ ≥ 0 depending only on ψ such that

|(ΠMψ)K − ψ(xK)| ≤ Cψ h2
M
, for K ∈ M. (22)

then there exists Cψ,ηM ≥ 0 depending only on ψ and, in a non-decreasing way, on ηM, such that

|ðiΠMψ(x)− ∂iψ(x)| ≤ Cψ,η hM, for a.e. x ∈ Ω and for i ∈
[
|1, d|

]
.

Lemma 2.4 (Discrete div −∇ duality). Let q ∈ LM and v ∈HE,0 then:

∫

Ω

q divM v dx+

∫

Ω

∇Eq · v dx = 0. (23)

Proof. Let q ∈ LM and v ∈HE,0. By the definition (17) of the discrete divergence operator and thanks to the
conservativity (19) of the flux:

∫

Ω

q divM v dx =
∑

K∈M

qK
∑

σ∈E(K)

|σ| vK,σ =
∑

σ∈Eint,σ=K|L

|σ| (qK − qL) vK,σ.

Therefore, by the definition (21) of the discrete derivative of q,

∫

Ω

q divM v dx = −

d∑

i=1

∑

σ∈E(i)

|Dσ| vσ ðiq = −

∫

Ω

∇Eq · v dx,

which concludes the proof. �
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Discrete convection operator – Let us consider the momentum equation (1b) for the ith component of
the velocity, and integrate it on a dual cell Dσ, σ ∈ E(i). By the Stokes formula, we then need to discretize∑

ǫ∈Ẽ(Dσ)

∫
ǫ ui u · nσ,ǫ dγ(x), where nσ,ǫ denotes the unit normal vector to ǫ outward Dσ and dγ(x) denotes

the d− 1-dimensional Lebesgue measure. For ǫ = σ|σ′, the convection flux
∫
ǫ uiu · nσ,ǫ dγ(x) is approximated

by |ǫ|uσ,ǫ u
∗
ǫ ; usually, u∗ǫ is chosen as the mean value of the two unknowns uσ and uσ′ . In some situations

(high Reynolds number for instance), an upwind choice may be preferred. The two possible choices that will be
considered for uǫ are thus:

u∗ǫ = ucǫ =
uσ + uσ′

2
(centred choice, ∗=c) or u∗ǫ = uupǫ =

{
uσ if uσ,ǫ ≥ 0,

uσ′ otherwise,
(upwind choice, ∗=up). (24)

The quantity |ǫ|uσ,ǫ is the numerical mass flux through ǫ outward Dσ; it must be chosen carefully to obtain
the L2-stability of the scheme. More precisely, a discrete counterpart of divu = 0 should be satisfied also on
the dual cells. To define uσ,ǫ on internal dual edges, we distinguish two cases (see Figure 3):

- First case – The vector e(i) is normal to ǫ, and ǫ is included in a primal cell K, with E(i)(K) = {σ, σ′}.
Then the mass flux through ǫ = σ|σ′ is given by:

|ǫ|uσ,ǫ =
1

2
(−|σ|uK,σ + |σ′|uK,σ′). (25)

Note that, in this relation, all the measures of the face are the same, so this definition equivalently reads
uσ,ǫ = (−uK,σ + uK,σ′)/2.

- Second case – The vector e(i) is tangent to ǫ, and ǫ is the union of the halves of two primal faces τ and
τ ′ such that σ = K|L, τ ∈ E(K) and τ ′ ∈ E(L). The mass flux through ǫ is then given by:

|ǫ|uσ,ǫ =
1

2
(|τ |uK,τ + |τ ′|uL,τ ′). (26)

Again, the numerical flux on a dual face is conservative:

uσ,ǫ = −uσ′,ǫ, for any dual face ǫ = σ|σ′. (27)

Moreover, if divM u = 0, the following discrete free divergence condition holds on the dual cells:

∑

ǫ∈Ẽ(Dσ)

|ǫ|uσ,ǫ =
1

2

∑

σ∈E(K)

|σ|uK,σ +
1

2

∑

σ∈E(L)

|σ|uL,σ = 0. (28)

On the external dual faces associated to free degrees of freedom (which means that we are in the second of the
above cases), this definition yields uσ,ǫ = 0, which is consistent with the boundary condition (1c).

The i-th component CE(i)(u) of the non linear convection operator is defined by:

CE(i)(u) : HE(i),0 −→ HE(i),0

v 7−→ CE(i)(u) v =
∑

σ∈E
(i)
int

1

|Dσ|

∑

ǫ∈Ẽ(Dσ)

|ǫ|uσ,ǫv
∗
ǫ 11Dσ , (29)

where v∗ǫ is chosen centred or upwind, as defined in (24). The full discrete convection operator CE(u), HE,0 −→
HE,0 is defined by

CE(u)v =
(
CE(1)(u) v1, . . . , CE(d)(u) vd

)
.
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3. The steady case

3.1. The scheme

With the notations introduced in the previous sections, the MAC scheme for the discretization of the steady
Navier-Stokes equations (1) on a MAC grid (M,E) reads:

u ∈HE,0, p ∈ LM,0, (30a)

−∆Eu+CE(u)u+∇Ep = f , (30b)

divM u = 0. (30c)

The discrete right-hand side of the momentum balance equation reads f = PEf̄ , where PE is the cell mean-value
operator defined by PEv = (PE(1)v1, · · · ,PE(d)vd) ∈ HE(1),0 × · · · ×HE(d),0 and, for i ∈

[
|1, d|

]
,

PE(i) : L1(Ω) −→ HE(i),0

vi 7−→ PE(i)vi =
∑

σ∈E
(i)
int

vσ 11Dσ with, for σ ∈ E
(i)
int, vσ =

1

|Dσ|

∫

Dσ

vi(x) dx. (31)

Let us define the weak form bE of the nonlinear convection term:

for (u,v,w) ∈HE,0 ×HE,0 ×HE,0, bE(u,v,w) =

d∑

i=1

bE(i)(u, vi, wi),

where for i ∈
[
|1, d|

]
, bE(i)(u, vi, wi) =

∫

Ω

CE(i)(u)vi wi dx. (32)

We can now introduce a weak formulation of the scheme, which reads:

Find (u, p) ∈HE,0 × LM,0 such that, for any (v, q) ∈HE,0 × LM,∫

Ω

∇
Ẽ
u : ∇

Ẽ
v dx+ bE(u,u,v)−

∫

Ω

p divM v dx =

∫

Ω

f · v dx, (33a)

∫

Ω

divM u q dx = 0. (33b)

This formulation is equivalent to the strong form (30).

Remark 3.1 (Convergence of the MAC scheme for the Stokes problem and the gradient schemes theory). Omit-
ting the convection terms in (33), we obtain a weak formulation of the MAC scheme for the linear Stokes
problem. Moreover, formulating the discrete H1-inner product as the integral over Ω of dot products of discrete
gradients, the MAC scheme can be interpreted as a gradient scheme in the sense introduced in [13] (see [15]
and [8] for more details on the generalization of this formulation to other schemes). Thanks to this result, the
(strong) convergence of the velocity and of its discrete gradient to the exact velocity and its gradient can be
shown, and thus also the strong convergence of the pressure.

3.2. Stability and existence of a solution

To prove the scheme stability, it is convenient to first reformulate the trilinear form associated to the velocity
convection term. To this purpose, we introduce a reconstruction of the velocity components on the partitions
which where used for the definition of the discrete velocity gradient. This leads to define d × d class of recon-

struction operators, denoted by R
(i,j)

Ẽ
, with R

(i,j)

Ẽ
acting on the ith component of the velocity and providing a

reconstruction of this field on the partition of Ω associated to its jth partial derivative.

Definition 3.2 (Velocity reconstructions). Let (M,E) be a given MAC mesh, and let i, j ∈
[
|1, d|

]
. Let R

(i,j)

Ẽ

be a reconstruction operator defined as follows:

R
(i,j)

Ẽ
: HE(i),0 → L2(Ω)

v 7→ R
(i,j)

Ẽ
v =

∑

ǫ∈Ẽ(i), ǫ⊥e(j)

(R
(i,j)

Ẽ
v)Dǫ 11Dǫ ,
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Dǫ

uσ uσ′

ǫ

(R
(1,1)

Ẽ
u1)Dǫ = αǫ uσ + (1− αǫ)uσ′

Dǫ

uσ

uσ′

ǫ

(R
(1,2)

Ẽ
u1)Dǫ = αǫ uσ + (1− αǫ)uσ′

Dǫ uσ

ǫ

(R
(1,2)

Ẽ
u1)Dǫ = αǫ uσ

Figure 4. Reconstruction of the first component of the velocity, in two space dimensions.

First line: R
(1,1)

Ẽ
. Second line: R

(1,2)

Ẽ
, inner dual face (left) and dual face lying on the boundary

(right). The real number αǫ is only supposed to satisfy αǫ ∈ [0, 1].

where (R
(i,j)

Ẽ
v)Dǫ is a convex combination of the (one of two) discrete values of the ith component of the velocity

lying on faces of Dǫ (see Figure 4).

Such a reconstruction operator satisfies the following stability result.

Lemma 3.3 (Stability of the velocity reconstruction operators). Let (M,E) be a given MAC mesh, i, j ∈
[
|1, d|

]
,

and R
(i,j)

Ẽ
be a reconstruction operator, in the sense of Definition 3.2. Then, for p ∈ [1,+∞), there exists

CηM ≥ 0, depending only on p and on the parameter ηM characterizing the regularity of the mesh defined by
(7), and non-decreasing with respect to ηM, such that, for any v ∈ HE(i),0,

‖R
(i,j)

Ẽ
v‖Lp(Ω) ≤ CηM ‖v‖Lp(Ω).

Proof. Let p ∈ [1,+∞), i, j ∈
[
|1, d|

]
and v ∈ HE(i),0. We have:

‖R
(i,j)

Ẽ
v‖pLp(Ω) =

∑

ǫ∈Ẽ(i), ǫ⊥e(j)

|Dǫ| |(R
(i,j)

Ẽ
v)Dǫ |

p

=
∑

ǫ∈Ẽ
(i)
int

ǫ=
−−→
σσ′, ǫ⊥e(j)

|Dǫ|
∣∣αǫvσ + (1− αǫ) vσ′

∣∣p +
∑

ǫ∈Ẽ
(i)
ext

ǫ∈Ẽ(Dσ), ǫ⊥e(j)

|Dǫ| |αǫvσ|
p.

Since |αǫ| ≤ 1 and (a+ b)p ≤ 2p−1(ap + bp), for a, b ∈ [0,+∞), we get:

‖R
(i,j)

Ẽ
v‖pLp(Ω) ≤ 2p−1

∑

ǫ∈Ẽ
(i)
int

ǫ=σσ′, ǫ⊥e(j)

|Dǫ|
(
|vσ|

p + |vσ′ |p
)
+

∑

ǫ∈Ẽ
(i)
ext

ǫ∈Ẽ(Dσ), ǫ⊥e(j)

|Dǫ| |vσ|
p.
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Reordering the sums, we obtain that:

‖R
(i,j)

Ẽ
v‖pLp(Ω) ≤ 2p−1

∑

σ∈E(i)

|Vσ| |vσ|
p,

where the volume Vσ is the sum of the two volumes Dǫ such that ǫ is a face of Dσ. It may now be easily
checked that there exists CηM depending only on the the parameter ηM and non-decreasing with respect to this
parameter such that |Vσ | ≤ CηM |Dσ|, which concludes the proof. �

The discretization of the velocity convection term in the ith momentum balance equation may be seen as
a discrete counterpart of div(vi u), where vi is the convected component of the velocity field (in the scheme,
vi = ui). Multipling this expression by wi and inegrating over Ω yields a continuous counterpart b(i)(u, vi, wi)
of bE(i)(u, vi, wi) which reads:

b(i)(u, vi, wi) =

∫

Ω

div(vi u) wi dx.

An integration by parts (supposing that wi vanishes on the boundary) yields:

b(i)(u, vi, wi) = −

∫

Ω

vi u ·∇wi dx = −

d∑

j=1

∫

Ω

vi uj ∂jwi dx.

The following lemma states a discrete equivalent of this relation.

Lemma 3.4 (Reformulation of bE). Let (M,E) be a given MAC mesh, i ∈
[
|1, d|

]
, and (u,v,w) ∈ HE,0 ×

HE,0 ×HE,0. Let bE(i)(u, vi, wi) be given by (32). Then there exists two reconstruction operators in the sense

of Definition 3.2, denoted by (R
(i,j)

Ẽn
)u and (R

(j,i)

Ẽn
)v, such that:

bE(i)(u, vi, wi) = −
d∑

j=1

∫

Ω

(R
(i,j)

Ẽ
)vvi (R

(j,i)

Ẽ
)uuj ðjwi dx.

Proof. Let (u,v,w) ∈ EE ×H2
E,0. By definition,

bE(i)(u, vi, wi) =
∑

σ∈E(i)

wσ
∑

ǫ∈Ẽ(Dσ)

|ǫ| v∗ǫ uσ,ǫ.

Reordering the sums, we get by conservativity:

bE(i)(u, vi, wi) =
∑

ǫ=σ|σ′∈Ẽ
(i)
int

|ǫ| v∗ǫ uσ,ǫ (wσ − wσ′ ) = −
∑

ǫ=σ|σ′∈Ẽ
(i)
int

|Dǫ| v
∗
ǫ uσ,ǫ

wσ′ − wσ
dǫ

.

The sum is over the whole set of dual faces Ẽ(i), so over the d partitions involved in the definition of the discrete
gradient of wi. In addition, without loss of generality, we may suppose that we have chosen for ǫ the orientation

such that ǫ =
−−→
σ|σ′. Hence, we get, by definition (13),

wσ′ − wσ
dǫ

= (ðjwi)Dǫ ,

where j is the index such that ǫ is normal no e(j). For the centered version of the convection operators,
v∗ǫ = (vσ + vσ′)/2; in the upwind case, it is equal to either vσ or vσ′ (Relation (24)). In both cases, it is a

convex combination of the two discrete values of vi lying on the faces of Dǫ; there exists thus an operator R
(i,j)

Ẽ

(still with the same meaning for j), in the sense of Definition 3.2 such that v∗ǫ = (R
(i,j)

Ẽ
vi)Dǫ . Finally, from

the definition of the convection operator and with the chosen orientation for ǫ, uσ,ǫ is a convex combination
of the two values of uj lying on the faces on Dǫ: either the mean value given by (25), if j = i, either the
convex combination of (26), if j 6= i. In addition, Dǫ is a volume used in the definition of the jth discrete
partial derivative of the ith component, and thus also a volume used in the definition of the ith discrete partial
derivative of the jth component (both partitions are the same). So there exists one reconstruction operator

R
(j,i)

Ẽ
such that uσ,ǫ = (R

(j,i)

Ẽ
uj)Dǫ , which concludes the proof. �
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Lemma 3.5 (Estimates on bE). Let (M,E) be a MAC grid and let bE be defined by (32). There exists CηM > 0,
depending only and in non-decreasing way on the regularity parameter ηM of the mesh defined by (7), such that:

∀ (u,v,w) ∈H3
E,0, |bE(u,v,w)| ≤ CηM ‖u‖L4(Ω)d ‖v‖L4(Ω)d ‖w‖1,E,0 (34)

and
∀ (u,v,w) ∈H3

E,0, |bE(u,v,w)| ≤ CηM ‖u‖1,E,0 ‖v‖1,E,0 ‖w‖1,E,0. (35)

Proof. Let i ∈
[
|1, d|

]
. Thanks to Lemma 3.4, there exists two reconstruction operators in the sense of Definition

3.2, denoted by (R
(i,j)

Ẽ
)v and (R

(j,i)

Ẽ
)u such that:

bE(i)(u, vi, wi) = −
d∑

j=1

∫

Ω

(R
(i,j)

Ẽ
)vvi (R

(j,i)

Ẽ
)uuj ðjwi dx.

Thanks to Hölder’s inequality, we get, for j ∈
[
|1, d|

]
:

∣∣∣
∫

Ω

(R
(i,j)

Ẽ
)vvi (R

(j,i)

Ẽ
)uuj ðjwi dx

∣∣∣ ≤ ‖(R
(i,j)

Ẽ
)vvi‖L4(Ω) ‖(R

(i,j)

Ẽ
)uuj‖L4(Ω) ‖ðjwi‖L2(Ω),

which, in view of Lemma 3.3 and the identity (15), concludes the proof of Estimate (34). We then deduce
(35) by the discrete Sobolev inequality [11, Lemma 3.5] which allows to control the L4-norm by the discrete
H1-norm. �

Let us now prove that bE is skew-symmetrical with respect to the last two variables. At the continuous level,
this result is obtained as follows. For i ∈

[
|1, d|

]
, on one side, we have by integration by parts:

∫

Ω

wi div(vi u) dx = −

∫

Ω

vi u ·∇wi dx. (36)

On the other side, since divu = 0, div(vi u) = u ·∇vi, so:

∫

Ω

wi div(vi u) dx =

∫

Ω

wi u ·∇vi dx,

which yields the conclusion. The following lemma states a discrete analogue of this property.

Lemma 3.6 (bE is skew-symmetrical). Let (u,v,w) ∈ EE ×HE,0 ×HE,0, and let i ∈
[
|1, d|

]
. Assume the

centred choice for vǫ in the expression of bE(i) ; then

bE(i)(u, vi, wi) = −bE(i)(u, wi, vi), (37)

and therefore,
bE(i)(u, vi, vi) = 0. (38)

Assume now the upwind choice for vǫ in the expression of bE(i) ; then,

bE(i)(u, vi, vi) ≥ 0. (39)

Proof. We mimick the computation performed in the continuous case. At the discrete level and for the centred
formulation of the convection term, we have, by a simple reordering of the sum:

bE(i)(u, vi, wi) =
∑

σ∈E
(i)
int

wσ
∑

ǫ=σ|σ′∈Ẽ(Dσ)

|ǫ|
vσ + vσ′

2
uσ,ǫ =

∑

ǫ=σ|σ′∈Ẽ
(i)
int

|ǫ|
vσ + vσ′

2
(wσ − wσ′ ) uσ,ǫ.

This relation is just obtained by conservativity of the mass flux, by a process which may be seen as a discrete
integration by parts, and we have seen that it may be written as a discrete analogue of (36) (Lemma 3.4). On

the other hand, thanks to (28) (i.e. the discrete analogue of divu = 0), we have, for any face σ ∈ E
(i)
int:

∑

ǫ∈Ẽ(Dσ)

|ǫ| (−vσ) uσ,ǫ = −vσ
∑

ǫ∈Ẽ(Dσ)

|ǫ| uσ,ǫ = 0.
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Hence:

bE(i)(u, vi, wi) =
∑

σ∈E
(i)
int

wσ
∑

ǫ=σ|σ′∈Ẽ(Dσ)

|ǫ|
vσ + vσ′

2
uσ,ǫ =

∑

σ∈E
(i)
int

wσ
∑

ǫ=σ|σ′∈Ẽ(Dσ)

|ǫ|
vσ′ − vσ

2
uσ,ǫ

=
∑

ǫ=σ|σ′∈Ẽ
(i)
int

|ǫ|
vσ′ − vσ

2
(wσ′ + wσ) uσ,ǫ.

This concludes the proof of (37) and (38). In the upwind case, we have, for i ∈
[
|1, d|

]
, bE(i)(u, vi, vi) = T1 + T2

with:

T1 =
∑

σ∈E
(i)
int

vσ
∑

ǫ∈Ẽ(Dσ)

|ǫ| vcσ uσ,ǫ, T2 =
∑

σ∈E
(i)
int

vσ
∑

ǫ∈Ẽ(Dσ)

|ǫ| (vupσ − vcσ) uσ,ǫ.

From (37), we know that T1 = 0. By definition, for ǫ = σ|σ′,

uσ,ǫ (v
up
σ − vcσ) =

1

2
uσ,ǫ

{
vσ − vσ′ if uσ,ǫ ≥ 0,

vσ′ − vσ if uσ,ǫ ≤ 0,
=

1

2
|uσ,ǫ| (vσ − vσ′).

Thus, reordering the sums:

T2 =
∑

σ∈E
(i)
int

vσ
∑

ǫ=σ|σ′∈Ẽ(Dσ)

|ǫ| (vσ − vσ′) |uσ,ǫ| =
∑

ǫ=σ|σ′∈Ẽ
(i)
int

|ǫ| (vσ − vσ′ )2 |uσ,ǫ| ≥ 0.

�

In order to obtain an a priori estimate on the pressure, we introduce a so-called Fortin interpolation operator,
i.e. a continuous operator from H1

0 (Ω)
d to HE (equipped with the discrete H1-norm) which preserves the

divergence. The following lemma is given in [18, Theorem 1, case q = 2], and we re-state it here with our
notations for the sake of clarity.

Lemma 3.7 (Fortin interpolation operator). Let (M,E) be a MAC grid of Ω. For v ∈ H1
0 (Ω)

d, we define P̃Ev

by P̃Ev = (P̃E(1)v1, · · · , P̃E(d)vd) ∈HE, where, for i ∈
[
|1, d|

]
,

P̃E(i) : H1
0 (Ω) −→ HE(i),0

vi 7−→ P̃E(i)vi =
∑

σ∈E(i)

vσ 11Dσ with vσ =
1

|σ|

∫

σ

vi(x) dγ(x), σ ∈ E
(i). (40)

For q ∈ L2(Ω), we define PMq ∈ LM by:

PMq(x) =
1

|K|

∫

K

q(x) dx. (41)

Let ϕ ∈ (H1
0 (Ω))

d. Then:

divM (P̃Eϕ) = PM(divϕ). (42)

In particular, if divϕ = 0, then divM (P̃Eϕ) = 0. In addition, there exists a real number CηM , depending only
on Ω and, in a non-decrasing way, on ηM defined by (7), such that:

‖P̃Eϕ‖1,E,0 ≤ CηM ‖∇ϕ‖L2(Ω)d×d . (43)

Theorem 3.8 (Existence and estimates). There exists a solution to (33), and there exists CηM > 0 depending
only on Ω and, in a non-decreasing way, on the parameter ηM characterizing the regularity of the mesh, such
that any solution of (33) satisfies the following stability estimate:

‖u‖1,E,0 + ‖p‖L2(Ω) ≤ CηM ‖f̄‖L2(Ω)d . (44)
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Proof. Let us start by an a priori estimate on the approximate velocity. Assume that (u, p) ∈ HE,0 × LM,0

satisfies (30); taking v = u in (33a) we get that:

‖u‖21,E,0 =

∫

Ω

p divM u dx− bE(u,u,u) +

∫

Ω

f · u dx.

Since divM u = 0 and bE(u,u,u) = 0, this yields that

‖u‖1,E,0 ≤ diam(Ω) ‖f̄‖(L2)d , (45)

thanks to the fact that ‖f‖(L2(Ω))d ≤ ‖f̄‖(L2(Ω))d and to the discrete Poincaré inequality [11, Lemma 9.1].

An a priori estimate on the pressure is obtained by remarking as in [30] that the MAC scheme is inf-sup
stable, which is a consequence of the existence of a Fortin operator. Indeed, since p ∈ L2

0(Ω), there exists
ϕ ∈ H1

0 (Ω)
d such that divϕ = p a.e. in Ω and

‖ϕ‖H1
0 (Ω)d ≤ C1 ‖p‖L2(Ω), (46)

where C2 depends only on Ω [25]. Taking v = P̃Eϕ (defined by (40)) as test function in (33a), we obtain thanks
to Lemma 3.7 that

[u,v]1,E,0 + bE(u,u,v)−

∫

Ω

p2 dx =

∫

Ω

f · v dx.

Thanks to the estimate (35) on bE and the Cauchy-Schwarz inequality we get:

‖p‖2L2(Ω) ≤ ‖u‖1,E,0‖ v‖1,E,0 + C2 ‖u‖21,E,0‖v‖1,E,0 + ‖f̄‖L2(Ω)d‖ v‖L2(Ω)d ,

where the real number C2 is a non-decreasing function of ηM. This yields

‖p‖L2 ≤ CηM‖f̄‖L2(Ω)d , (47)

with CηM non-decreasing with respect to ηM, thanks to (43), (46) and to the estimate (45).

Let us now prove the existence of a solution to (33). Consider the continuous mapping:

F : HE,0 × LM,0 × [0, 1] −→ HE,0 × LM,0,

(u, p, ζ) 7→ F (u, p, ζ) = (û, p̂),

where (û, p̂) ∈HE,0 × LM,0 is such that:

∫

Ω

û · v dx = [u,v]1,E,0 + ζ bE(u,u,v)−

∫

Ω

p divM v dx−

∫

Ω

f · v dx, ∀v ∈HE,0, (48a)

∫

Ω

p̂ q dx =

∫

Ω

divM u q dx, ∀q ∈ LM. (48b)

It is easily checked that F is well defined, since the values of ûi, i ∈
[
|1, d|

]
, and p̂ are readily obtained by

setting, for i ∈
[
|1, d|

]
and σ ∈ E

(i)
int, vi = 11Dσ , vj = 0, j 6= i in (48a) and q = 11K in (48b). We also note

that the constraint p̂ ∈ LM,0 is satisfied, thanks to the boundary conditions on u (choose q = 1 in (48b)).
The mapping F is continuous; moreover, if (u, p) ∈ HE,0 × LM,0 is such that F (u, p, ζ) = (0, 0), then for any
(v, q) ∈HE,0 × LM,

[u,v]1,E,0 + ζ bE(u,u,v)−

∫

Ω

p divM v dx =

∫

Ω

f · v dx,

∫

Ω

divM u q dx = 0.

The arguments used in the above estimates on possible solutions of (33) may be used in a similar way to show
that such a pair (u, p) is bounded independently of ζ. Since F (u, p, 0) = 0 is a bijective affine function by
the stability of the linear Stokes problem (see [2]), the existence of at least one solution (u, p) to the equation
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F (u, p, 1) = 0, which is exactly (33), follows by a topological degree argument (see [7] for the theory, [10] for
the first application to a nonlinear scheme and [14, Theorem 4.3] for an easy formulation of the result which
can be used here). �

3.3. Convergence analysis

Lemma 3.9 (Convergence of the velocity reconstructions). Let (Mn,En)n∈N be a sequence of MAC meshes
such that hMn → 0 as n→ +∞ ; assume that there exists η > 0 such that ηMn ≤ η for any n ∈ N (with ηMn

defined by (7)). Let i, j ∈
[
|1, d|

]
, let v̄ ∈ L2(Ω), and let (vn)n∈N be such that vn ∈ HE(i)

n,0 and vn converges to

v̄ as n→ +∞ in L2(Ω). Let R
(i,j)

Ẽn
be a velocity reconstruction operator, in the sense of Definition (3.2).

Then R
(i,j)

Ẽn
vn → v̄ in L2(Ω) as n→ +∞.

Proof. Let i, j ∈
[
|1, d|

]
. Denoting R

(i,j)

Ẽn
by Rn and P

E
(i)
n

(defined by (31)) by Pn for short, we have, for any

ϕ ∈ C∞
c (Ω):

‖Rnvn− v̄‖L2(Ω) ≤ ‖Rnvn−Rn ◦Pnv̄‖L2(Ω)+ ‖Rn ◦Pnv̄−Rn ◦Pnϕ‖L2(Ω)+ ‖Rn ◦Pnϕ−ϕ‖L2(Ω)+ ‖ϕ− v̄‖L2(Ω).

Since Rnvn = Rn ◦Pnvn, and thanks to the fact that ‖Rn‖L2(Ω) is bounded (see Lemma 3.3) and that Pn is an

L2-orthogonal projection, we get that there exists C ≥ 0 such that

‖Rnvn − v̄‖L2(Ω) ≤ C‖vn − v̄‖L2(Ω) + C‖v̄ − ϕ‖L2(Ω) + ‖Rn ◦ Pnϕ− ϕ‖L2(Ω) + ‖ϕ− v̄‖L2(Ω).

Let ε > 0. Let us choose ϕ ∈ C∞
c (Ω) such that ‖ϕ − v̄‖L2(Ω) ≤ ε/(C + 1). There exists n1 such that

C‖vn − v̄‖L2(Ω) ≤ ε, ∀n ≥ n1, and there exists n2 such that ‖Rn ◦ Pnϕ − ϕ‖L2(Ω) ≤ ε, ∀n ≥ n2. Therefore
‖Rnvn − v̄‖L2(Ω) ≤ 3ε for n ≥ max(n1, n2), which concludes the proof. �

Lemma 3.10 (Weak consistency of the nonlinear convection term). Let (Mn,En)n∈N be a sequence of meshes
such that hMn → 0 as n → +∞ ; assume that there exists η > 0 such that ηMn ≤ η for any n ∈ N (with ηMn

defined by (7)). Let (vn)n∈N and (wn)n∈N be two sequences of functions such that

- vn ∈HEn,0 and wn ∈HEn,0, for n ∈ N,
- the sequences (vn)n∈N and (wn)n∈N converge in L2(Ω)d to v̄ and w̄ respectively.

Let (ΠEn)n∈N be a family of interpolation operators satisfying (16) and let ϕ ∈ C∞
c (Ω)d.

Then

bE(vn,wn,ΠEnϕ) → b(v̄, w̄,ϕ) = −
d∑

i=1

∫

Ω

w̄i v̄ ·∇ϕi dx as n→ +∞.

Proof. We have bEn(vn,wn,ΠEnϕ) =
∑d

i=1 bE(i)(v, wi,ΠE(i)ϕi), where we have omitted the sub- and super-
scripts n for the sake of clarity in the right-hand side of the equality, with, thanks to Lemma 3.4:

bE(i)(v, wi,ΠE(i)ϕi) = −

d∑

j=1

∫

Ω

(R
(i,j)

Ẽ
)wwi (R

(j,i)

Ẽ
)vvj ðjΠE(i)ϕi dx,

where (R
(i,j)

Ẽn
)v and (R

(j,i)

Ẽn
)w are two reconstruction operators, in the sense of Definition 3.2. Thanks to the

convergence properties of the reconstruction operators (Lemma 3.9) and the strong consistency of the discrete
partial derivatives of the velocity (Lemma 2.2), we obtain:

bE(i)(v, wi,ΠE(i)ϕi) → −

d∑

j=1

∫

Ω

v̄j w̄i ∂jϕi dx as n→ +∞,

which concludes the proof. �

Lemma 3.11 (Weak consistency of the nonlinear convection term, continued). Let (Mn,En)n∈N be a sequence
of meshes such that hMn → 0 as n → +∞ ; assume that there exists η > 0 such that ηMn ≤ η for any n ∈ N

(with ηMn defined by (7)). Let (un)n∈N, (vn)n∈N and (wn)n∈N be three sequences of functions such that
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- (un,vn,wn) ∈H
3
En,0, for n ∈ N,

- the sequences (un)n∈N and (vn)n∈N converge in Lp(Ω)d, 1 ≤ p < 6, to ū and v̄ respectively,
- the sequence (wn)n∈N converge in Lp(Ω)d, 1 ≤ p < 6, to w̄ ∈ H1

0 (Ω)
d, and (∇

Ẽn
wn)n∈N converges to

∇w̄ weakly in L2(Ω)d×d.

Then

bE(un,vn,wn) → b(v̄, w̄, w̄) as n→ +∞.

Proof. Once again, we use the reformulation of the form bE, provided by Lemma 3.4. Omitting sub- and
superscripts n for short, we have:

bEn(un,vn,wn) =
d∑

i=1

bE(i)(u, vi, wi) with

bE(i)(u, vi, wi) = −

d∑

j=1

∫

Ω

(R
(i,j)

Ẽ
)vvi (R

(j,i)

Ẽ
)uuj ðjwi dx, for i ∈

[
|1, d|

]
,

where (R
(i,j)

Ẽn
)u and (R

(j,i)

Ẽn
)v are two reconstruction operators, in the sense of Definition 3.2. Thanks to

the stability and convergence properties of the reconstruction operators (Lemma 3.3 and 3.9), the sequences

((R
(j,i)

Ẽ
)uuj,n)n∈N and ((R

(i,j)

Ẽ
)vvn,i)n∈N are uniformly bounded in Lp(Ω)d, for 1 ≤ p < 6 and i, j ∈

[
|1, d|

]
, and

converge in L2(Ω)d to ū and v̄, respectively. Hence, these sequences also converge in L2(Ω)d, 1 ≤ p < 6, and
the result follows thanks to the weak convergence in L2(Ω)d×d of the partial derivatives. �

Lemma 3.12 (A discrete integration by parts formula). Let (M,E) be a given MAC mesh, and i, j ∈
[
|1, d|

]
.

Let u and v be two functions of HE(i),0. Then there exists a reconstruction operator, in the sense of Definition
3.2, such that: ∫

Ω

ðju v dx = −

∫

Ω

R
(i,j)

Ẽ
u ðjv dx.

Proof. Let i, j ∈
[
|1, d|

]
and (u, v) ∈ HE(i),0. We have, by conservativity:

∫

Ω

ðj(u v) dx =
∑

ǫ∈Ẽ
(i)
int

ǫ=
−−→
σσ′, ǫ⊥e(j)

|ǫ| (uσ′vσ′ − uσvσ)−
∑

ǫ∈Ẽ
(i)
ext

ǫ∈Ẽ(Dσ), ǫ⊥e(j)

ηǫ |ǫ| uσvσ = 0,

where ηǫ = ±1, depending on the relative locations of σ and σ. For any real number αǫ ∈ [0, 1], we have:

uσ′vσ′ − uσvσ =
(
uσ′ − uσ

)(
αǫvσ′ + (1− αǫ)vσ

)
+
(
(1− αǫ)uσ′ + αǫuσ

) (
vσ′ − vσ

)
.

We thus have T1 + T2=0, with:

T1 =
∑

ǫ∈Ẽ
(i)
int

ǫ=
−−→
σσ′, ǫ⊥e(j)

|ǫ|
(
uσ′ − uσ

)(
αǫvσ′ + (1 − αǫ)vσ

)
−

1

2

∑

ǫ∈Ẽ
(i)
ext

ǫ∈Ẽ(Dσ), ǫ⊥e(j)

ηǫ |ǫ| uσvσ,

T2 =
∑

ǫ∈Ẽ
(i)
int

ǫ=
−−→
σσ′, ǫ⊥e(j)

|ǫ|
(
(1− αǫ)uσ′ + αǫuσ

) (
vσ′ − vσ

)
−

1

2

∑

ǫ∈Ẽ
(i)
ext

ǫ∈Ẽ(Dσ), ǫ⊥e(j)

ηǫ |ǫ| uσvσ.

When i = j, all the dual faces are included in the domain (so the last sum vanishes). In addition, a dual face ǫ
is included in a cell of the primal mesh, say K, and Dǫ = K; we choose in this case αǫ = |DK,σ′ |/|K| and, by
definition of the half-diamond cells, 1− α = |DK,σ|/|K|. With this choice, we obtain:

T1 =

∫

Ω

ðju v dx and T2 =

∫

Ω

R
(i,j)

Ẽ
u ðjv dx, (50)
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with, for ǫ = σ|σ′,

(R
(i,i)

Ẽ
u)Dǫ =

|DK,σ′ |

|K|
uσ +

|DK,σ|

|K|
uσ′ .

Let us choose now consider the case i 6= j. In this case, we choose α = |Dσ′ |/(2 |Dǫ|), so 1− α = |Dσ|/(2 |Dǫ|,
by definition of Dǫ, and we get (50) with:

for any ǫ = σ|σ′ ∈ Ẽ
(i)
int, ǫ ⊥ e

(j), (R
(i,j)

Ẽ
u)Dǫ =

1

|Dǫ|
(
|Dσ′|

2
uσ +

|Dσ|

2
uσ′),

for any ǫ ∈ Ẽ
(i)
ext ∩ Ẽ(Dσ), ǫ ⊥ e

(j), (R
(i,j)

Ẽ
u)Dǫ =

1

2
uσ.

�

We are now in position to state and prove the convergence of the scheme.

Theorem 3.13 (Convergence of the scheme, steady case). Let (Mn,En)n∈N be a sequence of meshes such that
hMn → 0 as n → +∞ ; assume that there exists η > 0 such that ηMn ≤ η for any n ∈ N (with ηMn defined by
(7)). Let (un, pn) be a solution to the MAC scheme (30) or its weak form (33), for M = Mn. Then there exists
ū ∈ H1

0 (Ω)
d and p̄ ∈ L2(Ω) such that, up to a subsequence:

- the sequence (un)n∈N converges to ū in L2(Ω)d,
- the sequence (∇

Ẽn
un)n∈N converges to ∇ū in L2(Ω)d×d,

- the sequence (pn)n∈N converges to p̄ in L2(Ω),
- (ū, p̄) is a solution to the weak formulation of the steady Navier-Stokes equations (2).

Proof. Thanks to the estimate (45) on the velocity, applying the classical estimate on the translates [11, Theorem
14.2] we obtain the existence of a subsequence of approximate solutions (un)n∈N which converges to some
ū ∈ L2(Ω)d. From the estimates on the translates, we also get the regularity of the limit, that is ū ∈ H1

0 (Ω)
d.

The estimate (47) on the pressure then yields the weak convergence of a subsequence of (pn)n∈N to some p̄ in
L2(Ω). Let us then pass to the limit in the scheme in order to prove its (weak) consistency.

Passing to the limit in the mass balance equation – Let ψ ∈ C∞
c (Ω). Taking ψn = ΠMnψ, the pointwise

interpolate defined by (22), as test function in (33b) and using (23), we get that:

0 =

∫

Ω

divMn un ψn dx = −

∫

Ω

un ·∇Enψn dx = −

d∑

i=1

∫

Ω

un,i ðiψn dx.

Therefore, thanks to Lemma 2.3,

0 = lim
n→+∞

−

d∑

i=1

∫

Ω

un,i ðiψn dx = −

d∑

i=1

∫

Ω

ūi ∂iψ dx = −

∫

Ω

ū ·∇ψ dx =

∫

Ω

divū ψ dx,

and therefore ū satisfies (33b).

Passing to the limit in the momentum balance equation – Let ϕ = (ϕ1, · · · , ϕd) ∈ C∞
c (Ω)d, and take

ϕn = ΠEnϕ = (ϕn,1, · · · , ϕn,d) ∈HEn,0 as test function in (33a). This yields:

∫

Ω

∇
Ẽn
un : ∇

Ẽn
ϕn dx+ bE(un,un,ϕn)−

∫

Ω

pn divMn ϕn dx =

∫

Ω

PEn f̄ ·ϕn dx. (51)

Thanks to the weak L2-convergence of pn to p and to the uniform convergence of PEn f̄ to f̄ and of divMn ϕn
to divϕ (see Lemma 2.2) as n→ +∞, we have

∫

Ω

PEn f̄ · ϕn dx→

∫

Ω

f̄ · ϕ̄ dx and

∫

Ω

pn divMn ϕn dx→

∫

Ω

p̄ div ϕ̄ dx as n→ +∞.

From [11, Proof of Theorem 9.1], thanks to the L2-convergence of un to ū, we get that, for i ∈
[
|1, d|

]
,

∫

Ω

∇
Ẽ

(i)
n
un,i ·∇

Ẽ
(i)
n
ϕn,i dx = [un,i, ϕn,i]1,E(i)

n ,0
→ −

∫

Ω

ūi∆ϕi dx as n→ +∞.
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Therefore,
∫

Ω

∇
Ẽn
un : ∇

Ẽn
ϕn dx→ −

d∑

i=1

∫

Ω

ūi∆ϕi dx =

∫

Ω

∇ū : ∇ϕ dx as n→ +∞.

By Lemma 3.10, we have

lim
n→+∞

bEn(un,un,ϕn) =

∫

Ω

(ū ·∇)ū ·ϕ dx. (52)

Passing to the limit as n→ +∞ in (51) thus yields that ū and p̄ satisfy (2).

Strong convergence of ∇
Ẽn
un to ∇ū in L2(Ω)d×d – The sequence (∇

Ẽn
un)n∈N is bounded in L2(Ω)d×d

and therefore, there exists ξ ∈ L2(Ω)d×d and a subsequence still denoted by (∇
Ẽn
un)n∈N converging to ξ weakly

in L2(Ω)d×d. Let i, j ∈
[
|1, d|

]
, and let ϕ be a function of C∞

c (Ω). We denote by ϕn the interpolate of ϕ by the

projection operator Π
E

(i)
n

associated to the ith component of the velocity. By Lemma 3.12, we know that there

exists a reconstruction operator R
(i,j)

Ẽ
, in the sense of Definition 3.2, such that:

∫

Ω

ðjun,i ϕn dx = −

∫

Ω

R
(i,j)

Ẽ
un,i ðjϕn dx.

By the strong convergence of ϕn to ϕ, of R
(i,j)

Ẽ
un,i to ūi and of ðjϕn to ∂jϕ, passing to the limit in the above

relation, we get: ∫

Ω

ξi,j ϕ dx = −

∫

Ω

ūi ∂jϕ dx.

Integrating by parts in the right-hand side thanks to the regularity of ū, we obtain:

∫

Ω

ξi,j ϕ dx =

∫

Ω

∂j ūi ϕ dx.

Hence, by density, ξ = ∇ū. Taking ϕn = un in (51) yields:

∫
∇

Ẽn
un : ∇

Ẽn
un dx ≤

∫

Ω

PEn f̄ · un dx.

Passing to the limit as n→ +∞ we get that:

lim
n→+∞

‖∇
Ẽn
un‖

2
L2(Ω)d×d ≤

∫

Ω

f̄ · ū dx = ‖∇ū‖2L2(Ω)d×d ,

which implies the strong convergence of the discrete gradient of the velocity.

Strong convergence of the pressure – Let ϕn ∈ H1
0 (Ω)

d be such that divϕn = pn a.e. in Ω and

‖ϕn‖H1
0 (Ω)d ≤ C ‖pn‖L2(Ω), where C depends only on Ω. Let ψn = P̃Enϕn; thanks to Lemma 3.7, we

have ‖ψn‖1,En,0 ≤ C Cηn ‖pn‖L2(Ω), and since pn ∈ LMn , we get that divMn ψn = pn. Therefore, taking

ψn = P̃Enϕn as test function in (33a), we obtain:

∫

Ω

p2n dx =

∫

Ω

∇
Ẽn
un : ∇

Ẽn
ψn dx+ bE(un,un,ψn)−

∫

Ω

PEn f̄ ·ψn dx,

‖ψn‖1,E,0 ≤ C Cηn ‖pn‖L2(Ω).

From the bound on ‖ψn‖1,E,0, we know that ψn converges to some ψ ∈ H1
0 (Ω)

d in L2(Ω)d and, by the same
arguments as for the identification of ξ with ∇ū, that ∇

Ẽn
ψn → ∇ψ weakly in L2(Ω)d×d as n → +∞. In

addition, we also have that divϕ = p a.e. in Ω. By Lemma 3.11, bE(un,un,ψn) converges to b(ū, ū,ψ). Passing
to the limit as n→ +∞, we thus get that

lim
n→+∞

‖pn‖
2
L2(Ω) =

∫

Ω

∇ū : ∇ψ dx+ b(ū, ū,ψ)−

∫

Ω

f̄ · ψ dx.

Since (ū, p̄) satisfies (2), this implies that ‖pn‖L2(Ω) → ‖p̄‖L2(Ω), which in turn yields that pn → p̄ in L2(Ω) as
n→ +∞. �
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Remark 3.14 (Uniqueness of the continuous solution and convergence of the whole sequence). In the case where
uniqueness of the solution is known, then a classical argument can be used to show that the whole sequence
converges ; this is for instance the case for small data, see e.g. [31, Theorem 1.3] or [3, Theorem V.3.5].

4. The time-dependent case

4.1. Time discretization

Let us now turn to the time discretization of the problem (3). We consider a MAC grid (M,E) of Ω in the
sense of Definition 2.1, and a partition 0 = t0 < t1 < · · · < tN = T of the time interval (0, T ), and, for the sake of
simplicity, a constant time step δt = tn+1−tn; hence tn = n δt, for n ∈

[
|0, N |

]
. Let {un+1

σ , σ ∈ E, n ∈
[
|0, N−1|

]
}

and {pn+1
K , K ∈ M, n ∈

[
|0, N − 1|

]
} be sets of discrete velocity and pressure unknowns. For n ∈

[
|1, N |

]
, we

first define the corresponding piecewise constant space-dependent functions u = (un1 , . . . , u
n
d ) and p

n by:

uni =
∑

σ∈E(i)

unσ 11Dσ for i ∈
[
|1, d|

]
, pn =

∑

K∈M

pnK 11K .

We enforce that unσ = 0 for σ ∈ Eext and n ∈
[
|1, N |

]
(so uni ∈ HE(i),0 and the sum in the relation above

may be restricted to E
(i)
int), and we set un = (un1 , . . . , u

n
d ) ∈ HE,0. Then, we define the discrete (time- and

space-dependent) velocities and pressures functions by:

ui(x, t) =
N−1∑

n=0

un+1
i 11]tn,tn+1] for i ∈

[
|1, d|

]
, p(x, t) =

N−1∑

n=0

pn+1 11]tn,tn+1].

where 11]tn,tn+1] is the characteristic function of the interval ]tn, tn+1]. For i ∈
[
|1, d|

]
, we denote by X

(i)
E,δt

the set of such piecewise constant functions on time intervals and dual cells for the ith velocity component

approximation, we set XE,δt =
∏d
i=1X

(i)
E,δt, and we denote by YM,δt the space of piecewise constant functions

on time intervals and primal cells for the pressure approximation. Setting

u0 = P̃Eu0, i.e., for i ∈
[
|1, d|

]
, u0i =

∑

σ∈E
(i)
int

u0σ 11Dσ , with u
0
σ =

1

|σ|

∫

σ

u0,i(x) dγ(x), σ ∈ E
(i),

we define the discrete time derivative ðtu ∈ XE,δt by:

ðtu =

N−1∑

n=0

1

δt
(un+1 − un) 11]tn,tn+1].

Finally, we define the discrete right-hand side by:

f ∈ XE,δt, fn+1
σ =

1

δt |Dσ|

∫ tn+1

tn

∫

Dσ

f̄i(x, t) dx dt, n ∈
[
|0, N − 1|

]
, i ∈

[
|1, d|

]
, σ ∈ E

(i)
int.

With these notations, the time-implicit MAC scheme for the transient Navier-Stokes reads:

Initialization :

u0 = P̃Eu0. (53a)

Step n, n ∈
[
|0, N − 1|

]
. Solve for un+1 and pn+1 :

un+1 ∈HE,0, p
n+1 ∈ LM,0, (53b)

ðtu
n+1 −∆Eu

n+1 +CE(u
n+1)un+1 +∇Ep

n+1 = fn+1, (53c)

divM un+1 = 0. (53d)
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Step n, n ∈
[
|0, N − 1|

]
, of the scheme (53) admits the following weak formulation:

Find un+1 ∈ EE such that, for any v ∈ EE,∫

Ω

ðtu
n+1 · v dx+

∫

Ω

∇
Ẽ
un+1 : ∇

Ẽ
v dx+ bE(u

n+1,un+1,v) =

∫

Ω

fn+1 · v dx. (54)

The equivalence between this relation and (53b)-(53d) (in the sense that (54) implies the existence of a discrete
pressure field such that (53b)-(53d) is satisfied) is a consequence of the stability of the MAC scheme for the
Stokes problem (i.e. the fact that this scheme satisfies a discrete inf-sup condition).

4.2. Estimates on discrete solutions and existence

Let us define the two following discrete norms for functions of space and time:

For any v ∈ XM,δt,

‖v‖2L2(0,T ;HE,0)
=

N−1∑

n=0

δt ‖vn+1‖21,E,0,

‖v‖L∞(0,T ;L2(Ω)d) = max
{
‖vn+1‖L2(Ω)d , n ∈

[
|0, N − 1|

]}
.

Lemma 4.1 (Existence and first estimates on the velocity). There exists at least a solution u ∈XM,δt satisfying
(53). Furthermore, there exists C > 0 depending only on u0 and f̄ such that, for any function u ∈ XM,δt

satisfying (53), the following estimates hold:

‖u‖L2(0,T ;HE,0) ≤ C, (55)

‖u‖L∞(0,T ;L2(Ω)d) ≤ C. (56)

Proof. We prove the a priori estimates (55) and (56). The existence of a solution then follows by a topological
degree argument, as for the stationary case.

Let M ∈
[
|0, N − 1|

]
; taking v = un+1 in (54), multiplying by δt and summing the result over n ∈

[
|0,M |

]
, we

obtain thanks to Lemma 3.6 and to the Cauchy-Schwarz inequality:

M∑

n=0

d∑

i=1

∑

σ∈E(i)

|Dσ| u
n+1
σ (un+1

σ − unσ) +

M∑

n=0

δt ‖un+1‖21,E,0 ≤

M∑

n=0

δt ‖fn+1‖L2(Ω)d ‖un+1‖L2(Ω)d .

Using the fact that for all a, b ∈ R, 2a(a− b) = (a− b)2 + a2 − b2 for the first term of the left-hand side and the
discrete Poincaré and Young inequalities for the right-hand side, we get that

‖uM+1‖2L2(Ω)d +

M∑

n=0

δt ‖un+1‖21,E,0 ≤ ‖u0‖2L2(Ω)d + C2
P ‖f‖2L2(0,T ;L2(Ω)d),

where CP > 0 depends only on Ω. On one hand, this inequality yields the L∞-estimate (56); on the other hand,
taking M = N − 1, we get the L2-estimate (55). �

Next we turn to an estimate on the discrete time derivative. To this end, we introduce the following discrete
dual norms on HE,0 and XE,δt:

v ∈HE,0 7→ ‖v‖E′

E
= max{

∣∣∣
∫

Ω

v · ϕ dx
∣∣∣ ; ϕ ∈ EE and ‖ϕ‖1,E,0 ≤ 1},

v ∈XE,δt 7→ ‖v‖L4/3(0,T ;E′

E
) =

(
N−1∑

n=0

δt ‖vn+1‖
4/3
E′

E

)3/4

.

(57)
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Lemma 4.2 (Estimate on the dual norm of the velocity discrete time derivative). Let u ∈XE,δt be a solution
to (53). Then there exists C > 0 depending only on u0, Ω, f̄ and, in a non-decreasing way, on ηM, such that:

‖ðtu‖L4/3(0,T ;E′

E
) ≤ C.

Proof. Taking v ∈ EE such that ‖v‖1,E,0 ≤ 1 as test function in (54), we have, for n ∈
[
|0, N − 1|

]
:

∫

Ω

ðtu
n+1 · v dx+

∫

Ω

∇
Ẽ
un+1 : ∇

Ẽ
v dx+ bE(u

n+1,un+1,v) =

∫

Ω

fn+1 · v dx.

By Lemma 3.6 and thanks to the estimate (34), we have:

|bE(u
n+1,un+1,v)| ≤ CηM‖un+1‖2L4(Ω))d .

Using the Cauchy-Schwarz inequality, we note that:

‖un+1‖4L4(Ω)d =

∫

Ω

|un+1| |un+1|3 dx ≤ ‖un+1‖L2(Ω)d‖u
n+1‖3L6(Ω)d .

Therefore, thanks to the estimate (56) of Lemma 4.1 and to the discrete Poincaré inequality, there exists

C̃ηM > 0 depending only on Ω and on the regularity of the mesh, such that:

∫

Ω

ðtu
n+1 · v dx ≤ C̃ηM

(
‖un+1‖

3/2

(L6(Ω))d
+ ‖un+1‖1,E,0 + ‖fn+1‖(L2(Ω))d

)
.

Hence,

‖ðtu
n+1‖

4/3
E′

E

≤ 9 C̃4/3
ηM

(
‖un+1‖2L6(Ω)d + ‖un+1‖

4/3
1,E,0 + ‖fn+1‖

4/3

L2(Ω)d

)

≤ 9 C̃4/3
ηM

(
‖un+1‖2L6(Ω)d + ‖un+1‖21,E,0 + ‖fn+1‖2L2(Ω)d + 2

)
.

Multiplying this latter inequality by δt and summing for n ∈
[
|0, N − 1|

]
, we get:

‖ðtu‖
4/3

L4/3(0,T ;E′

E
)
≤ 9 C̃4/3

ηM

(
‖u‖2L2(0,T,L6(Ω)d) + ‖u‖2L2(0,T,HE,0)

+ ‖f̄‖2L2(0,T,L2(Ω)d) + 2T
)
.

We conclude by the discrete Sobolev inequality [11, Lemma 3.5] and thanks to the L2(0, T ;HE,0)-estimate (55)
of u. �

4.3. Convergence analysis

Theorem 4.3 (Convergence of the scheme, time-dependent case). Let (δtm)m∈N and (Mm,Em)m∈N be a se-
quence of time steps and MAC grids (in the sense of Definition 2.1) such that δtm → 0 and hMm → 0 as
m → +∞. Assume that there exists η > 0 such that ηMm ≤ η for any m ∈ N (with ηMm defined by (7)). Let
um be a solution to (54) for δt = δtm and (M,E) = (Mm,Em). Then there exists ū ∈ L2(0, T ;E(Ω)) such that,
up to a subsequence:

- the sequence (um)m∈N converges to ū in L4/3(0, T ;L2(Ω)d),
- ū is a solution to the weak formulation (4).
- ∂tū ∈ L4/3(0, T ;E′(Ω)).

Proof. We proceed in four steps.

First step: compactness in L4/3(0, T ;L2(Ω)d) – The first step consists in applying the discrete Aubin-
Simon theorem 5.3 in order to obtain the existence of a subsequence of (um)m∈N which converges to ū in
L4/3((0, T );L2(Ω)d). In our setting, we apply Theorem 5.3 with p = 4/3; the Banach space B is L2(Ω)d, and
the spaces Xm and Ym consist in the space HEm,0 endowed with the norms defined respectively by Relations
(12) and (57). By [11, Theorem 14.2] and the Kolmogorov compactness theorem (see e.g. [11, Theorem 14.1]),
we obtain that (Xm, Ym)m∈N is compactly embedded in B in the sense of Definition 5.1. Let us then show that
the sequence (Xm, Ym)m∈N is compact-continuous in L2(Ω)d in the sense of Definition 5.2. Let vm ∈ HEm,0
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such that (‖vm‖1,Em,0)m∈N is bounded and ‖vm‖E′

m
→ 0 as m → +∞. Assume that vm → v in (L2(Ω))d; by

definition (57) of the dual norm, we have:

∫

Ω

vm · vm dx ≤ ‖vm‖1,Em,0 ‖vm‖E′

m
.

Passing to the limit in this inequality as m → ∞, we get that v = 0, so that the sequence (Xm, Ym)m∈N is
compact-continuous in L2(Ω)d. We now check the three assumptions (H1), (H2) and (H3) of Theorem 5.3:
by Lemma 4.1, the sequence ‖um‖L1(0,T ;HE,0) is bounded, and thanks to the discrete Poincaré inequality, the

sequence (um)m∈N is also bounded in L4/3(0, T ; (L2(Ω)d)); furthermore, the sequence ‖ðtum‖L4/3(0,T ;E′

E
) is

bounded by Lemma 4.2. Hence, Theorem 5.3 applies and there exists ū ∈ L4/3(0, T ;L2(Ω)d) such that, up to
a subsequence,

um → ū in L4/3
(
0, T ;L2(Ω)d

)
as m→ +∞.

Step 2: Convergence in L2(0, T ;L2(Ω)d) – Thanks to Lemma 4.1, the sequence (um)m∈N is bounded in
L∞(0, T, L2(Ω)d), and therefore, there exists û ∈ L∞(0, T ;L2(Ω)d) and a subsequence (uφ(m))m∈N converging

to û ⋆-weakly in L∞(0, T ;L2(Ω)d). Since uφ(m) → ū in L4/3(0, T ;L2(Ω)d), the uniqueness of the limit in the

sense of distributions implies that ū = û so that ū ∈ L∞(0, T ;L2(Ω)d). By a classical interpolation result on
Lp(0, T ) spaces, we have:

‖ū− um‖L2(0,T ;L2(Ω)d) ≤ ‖ū− um‖
2/3

L4/3(0,T ;L2(Ω)d)
‖ū− um‖

1/3

L∞(0,T ;L2(Ω)d)
,

which implies that um converges towards ū in L2(0, T ;L2(Ω)d) as m tends to infinity.

Step 3: Weak consistency of the scheme – The notion of weak consistency that we use here is the
Lax-Wendroff notion: we show that if a sequence of approximate solutions of the scheme converges to some
limit, then this limit is a weak solution to the original problem. Let us then show that ū satisfies (4). Let

ϕ ∈ C∞
c (Ω× [0, T ))d, such that divϕ = 0. By Lemma 3.7, we have divMm P̃Emϕ(·, tn) = 0, and so we can take

ϕnm = P̃Emϕ(·, tn) ∈ EE as test function in (54) ; multiplying by δtm and summing for n = {0, . . . , Nm − 1}
(with Nmδtm = T ), we then get:

Nm−1∑

n=0

δtm

(∫

Ω

ðtu
n+1
m · ϕnm dx dt+

∫

Ω

∇
Ẽm
un+1
m : ∇

Ẽm
ϕnm dx

+ bEm

(
un+1
m ,un+1

m ,ϕnm
)
−

∫

Ω

fn+1
m ·ϕnm dx

)
= 0,

where the subscript m in fn+1
m is here to recall that the discrete right-hand side is an interpolation of the

continuous one, which depends on the mesh and time step. The first term of the left-hand side reads T1,m =∑d
i=1 T1,m,i with:

T1,m,i =

Nm−1∑

n=0

∑

σ∈E(i)

|Dσ| (u
n+1
m,σ − unm,σ) ϕ

n
m,σ

= −

Nm−1∑

n=0

δt
∑

σ∈E(i)

|Dσ| u
n+1
m,σ

ϕn+1
m,σ − ϕnm,σ

δt
−
∑

σ∈E(i)

|Dσ| u
0
m,σ ϕ

0
m,σ

= −

∫ T

0

∫

Ω

um,i(x, t) ðtϕm,i(x, t) dx dt−

∫

Ω

P̃
(i)
Em
ū0,i(x) ϕ

0
m(x) dx.

We know that um,i → ūi in L
2(0, T ;L2(Ω)) as m → +∞. By definition, the discrete partial derivative ðtϕm,i

converges uniformly to ∂tϕi as m → +∞. Moreover, P̃
(i)
Em
ū0,i converges to ū0,i in L

q(Ω) for all q in [1, 2], and

ϕ0
m,σ converges to ϕi(·, 0) in L

q(Ω) for all q in [1,∞]. Hence:

T1,m → −

∫ T

0

∫

Ω

ū(x, t) · ∂tϕ(x, t) dx dt−

∫

Ω

ū0(x) ·ϕ(x, 0) dx as m→ +∞. (58)
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Let us then study the second term of the left-hand side. We have:

∫

Ω

∇
Ẽm
un+1
m : ∇

Ẽm
ϕnm dx =

∫

Ω

∇
Ẽm
un+1
m : ∇

Ẽm
ϕn+1
m dx+

∫

Ω

∇
Ẽm
un+1
m : ∇

Ẽm
(ϕnm −ϕn+1

m ) dx.

By the same arguments as in the stationary case, we get that

Nm−1∑

n=0

δtm

∫

Ω

∇
Ẽm
un+1
m : ∇

Ẽm
ϕn+1
m dx→

∫ T

0

∫

Ω

∇ū : ∇ϕ dx dt as m→ +∞.

Moreover, thanks to the regularity of ϕ,

∫

Ω

∇
Ẽm
un+1
m : ∇

Ẽm
(ϕn+1

m −ϕnm) dx ≤ δtm Cϕ ‖un+1
m ‖1,E,0

where Cϕ only depends on ϕ. We thus obtain that

Nm−1∑

n=0

δtm

∫

Ω

∇
Ẽm
un+1
m : ∇

Ẽm
(ϕn+1

m −ϕnm) dx→ 0 as m→ +∞.

Similarly, we have:

Nm−1∑

n=0

δtm

∫

Ω

fn+1
m · (ϕnm −ϕn+1

m ) dx ≤ δtm Cϕ ‖f̄‖L2(Ω×(0,T ))d → 0 as m→ +∞,

so that
Nm−1∑

n=0

δtm

∫

Ω

fn+1
m ·ϕnm dx→

∫ T

0

∫

Ω

f̄ · ϕ dx dt as m→ +∞.

The convection term is dealt with by remarking that an easy adaptation of Lemma 3.10 to the time-dependent
framework implies that

N−1∑

m=0

δtm bE(u
n+1
m ,un+1

m ,ϕnm) →

∫ T

0

b(ū, ū,ϕ) dt as n→ +∞.

Therefore, ū is indeed a solution of (4).

Step 4: Regularity of the limit – Thanks to [11, Theorems 14.1 and 14.2], the sequence of normed vector
spaces (HEm,0, ‖ · ‖1,Em,0)m∈N is L2(Ω)d-limit-included in H1

0 (Ω)
d in the sense of Definition 5.4. We have

um → ū in L2(0, T, L2(Ω)d) as m → +∞ and (‖um‖L2(0,T ;HEm,0))m∈N is bounded thanks to Lemma 4.1.

Therefore Theorem 5.5 applies, so that ū ∈ L2(0, T ;H1
0 (Ω)

d); then, adapting the proof that divū = 0 of the
stationary case (see the proof of Theorem 3.13), we get that ū ∈ L2(0, T ;E(Ω)).

Let us finally show that ∂tū ∈ L4/3(0, T ;E′(Ω)). Let ϕ ∈ C∞
c (Ω × (0, T )) such that divϕ = 0. Let

ϕm ∈ XEm,δtm be defined by

ϕn+1
m =

1

δt

∫ tn+1

tn

P̃Emϕ(·, s) ds for t ∈ [tn, tn+1[, n ∈
[
|0, N − 1|

]
.

Note that, for n ∈
[
|0, N−1|

]
, ϕn+1

m is discretely divergence-free, i.e. ϕn+1
m ∈ EEm . Thanks to Lemma 4.2, there

exists C ≥ 0 depending only on u0, Ω, η and f̄ such that:

∫ T

0

∫

Ω

ðtum ·ϕm dx dt ≤ C ‖ϕm‖L4(0,T ;HE,0).

By Lemma 3.7, there exists C2 depending only on η and Ω, such that ‖ϕm‖L4(0,T ;HE,0) ≤ C2‖ϕ‖L4(0,T ;E(Ω)),

where E(Ω) is endowed with the H1
0 norm. Hence, passing to the limit as m → +∞ in a similar way as for
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T1,m in Step 3, we get that
∫ T

0

∫

Ω

u · ∂tϕ dx ≤ CC2‖ϕ‖L4(0,T ;E(Ω)).

We then obtain that ∂tū ∈ L4/3(0, T ;E′(Ω)) by density (see [31, Theorem 1.6] for the density of divergence-free
regular functions in divergence-free functions of H1

0 (Ω)
d). �

Remark 4.4 (Uniqueness and convergence of the whole sequence). In the case where uniqueness of the solution
is known, then again the whole sequence converges ; this is for instance the case for d = 2, see e.g. [31, Theorem
3.2], under a small data assumption [31, Theorem 3.7] or under a short time assumption [31, Theorem 3.11].

4.4. Case of the unsteady Stokes equations

In the case of the unsteady Stokes equations, that is Problem (3) where the nonlinear convection term in (3b)
is omitted, stronger estimates can be obtained, which entail the weak convergence of the pressure. To obtain
these bounds, the assumption that u0 ∈ H1(Ω)d and that divu0 = 0 plays a central role.

Let us consider the following weak formulation of the unsteady Stokes problem:

Find (ū, p̄) ∈ L2(0, T ;E(Ω))× L2(0, T ;L2
0(Ω)) such that ∀ϕ ∈ C∞

c ([0, T [×Ω)d,

−

∫ T

0

∫

Ω

ū(x, t) · ∂tϕ(x, t) dx dt−

∫

Ω

u0(x) ·ϕ(x, 0) dx+

∫ T

0

∫

Ω

∇ū(x, t) : ∇ϕ(x, t) dx dt

−

∫ T

0

∫

Ω

p̄ divϕ dx dt =

∫ T

0

∫

Ω

f̄ (x, t) · ϕ(x, t) dx dt. (59)

Note that this formulation does not use divergence-free test functions as in (4), so the pressure still appears.

The scheme – We look for an approximation (u, p) ∈ XE,δt × YM,δt of (u, p) solution to the problem (59); we
consider the time-implicit MAC scheme which reads:

Initialization :

u0 = P̃Eu0. (60a)

Step n, n ∈
[
|0, N − 1|

]
. Solve for un+1 and pn+1 :

un+1 ∈HE,0, p
n+1 ∈ LM,0, (60b)

ðtu
n+1 −∆Eu

n+1 +∇Ep
n+1 = fn+1, (60c)

divM un+1 = 0. (60d)

Note that the choice of the discretization of the initial condition in (60a), together with the assumption divu0 =
0, implies that divM u0 = 0; this fact is important for the obtention of the estimates. A weak formulation of
(60b)–(60d) reads:

Find (un+1, pn+1) ∈ EE × LM,0 such that, ∀v ∈HE,0,∫

Ω

ðtu
n+1 v dx+

∫

Ω

∇
Ẽ
un+1 : ∇

Ẽ
v dx−

∫

Ω

pn+1divM v dx =

∫

Ω

fn+1 · v dx. (61)

The estimates of Lemma 4.1 on the approximate solutions obtained in the case of the Navier-Stokes equations
are of course still valid. However we get stronger estimates on ðtu and on p, as we proceed to show.

Lemma 4.5 (Estimates on the velocity and its discrete time derivative). Let u ∈ XE,δt be a solution to (60);
then there exists C > 0 depending only on u0, Ω, f̄ and, in a non-decreasing way, on ηM, such that:

‖ðt u‖L2(0,T ;L2(Ω)d) ≤ C, (62)

‖u‖L∞(0,T ;HE,0) ≤ C. (63)
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Proof. Let un+1 ∈ EE be a solution to (61). Taking v = ðtu
n+1 as test function, we get:

∫

Ω

(ðtu
n+1)2 dx+

∫

Ω

∇
Ẽ
un+1 : ∇

Ẽ
(ðtu

n+1) dx−

∫

Ω

pn+1 divM(ðtu
n+1) dx =

∫

Ω

fn+1 · ðtu
n+1 dx. (64)

By linearity of the discrete time derivative and the discrete divergence operators, and thanks to (60d), we get
that divM (ðtu

n+1) = ðt(divM un+1) = 0. Multiplying (64) by δt and summing the result over n ∈
[
|0,M |

]
, for

M ∈
[
|0, N − 1|

]
, we obtain T1 + T2 = T3 where

T1 =

M∑

n=0

δt

∫

Ω

(ðtu
n+1)2 dx, T2 =

M∑

n=0

δt

∫

Ω

∇
Ẽ
un+1 : ðt(∇Ẽ

un+1) dx and T3 =

M∑

n=0

δt

∫

Ω

fn+1 · ðtu
n+1 dx.

We have, by linearity of the discrete gradient operator:

T2 =
M∑

n=0

(1
2
‖un+1‖21E,0 −

1

2
‖un‖21,E,0 +

1

2
‖un+1 − un‖21,E,0

)
≥

1

2
‖uM+1‖21,E,0 −

1

2
‖u0‖21,E,0.

By continuity of the Fortin operator, we have in addition that |u0‖1,E,0 ≤ C ‖u0‖H1(Ω)d , with C depending
only on Ω and (in a non-decreasing way) on ηM. Let us now turn to T3. By the Cauchy-Schwarz and the Young
inequalities, we obtain:

T3 ≤
M∑

n=0

δt
( ∫

Ω

|fn+1|2 dx
)1/2(

∫

Ω

(ðtu
n+1)2 dx

)1/2
≤

1

2

M∑

n=0

δt

∫

Ω

|fn+1|2 +
1

2

M∑

n=0

δt

∫

Ω

(ðtu
n+1)2 dx,

and the Cauchy-Schwarz inequality, together with the definition of f , yields for the first term at the right-hand
side:

M∑

n=0

δt

∫

Ω

|fn+1|2 ≤ ‖f̄‖2L2(0,T ;L2(Ω)d).

Gathering the above inequalities, we get that:

M∑

n=0

δt

∫

Ω

(ðtu
n+1)2 dx+ ‖uM+1‖21,E,0 ≤ ‖f̄‖2L2(0,T ;L2(Ω)d) + ‖u0‖

2
H1(Ω)d . (65)

This in turn yields the L2-estimate (62) (taking M = N − 1) on the discrete time derivative of the velocity, and
the L∞(H1)-estimate (63) on the velocity itself. �

Lemma 4.6 (Estimate on the pressure). Let (u, p) ∈XM,δt × YM,δt be a solution to (60). There exists C ≥ 0
depending only on Ω, f̄ and, in a non-decreasing way, on ηM, such that:

‖p‖L2(0,T ;L2(Ω)) ≤ C. (66)

Proof. We follow the same strategy as in the proof of the pressure estimate in Proposition 3.8. Therefore, let
ϕ ∈ H1

0 (Ω)
d be such that divϕ = pn+1 and ‖∇ϕ‖L2(Ω)d×d ≤ C ‖pn+1‖L2(Ω), with C depending only on Ω.

Taking v = P̃Eϕ as test function in (61), we obtain, thanks to (42):

∫

Ω

ðtu
n+1 · v dx+

∫

Ω

∇
Ẽ
un+1 : ∇

Ẽ
v dx− ‖pn+1‖2L2(Ω) =

∫

Ω

fn+1 · v dx.

Thanks to the Cauchy-Schwarz and Poincaré inequalities and to the continuity of the Fortin operator P̃E, we
then get that there exists CηM depending on Ω and on the regularity of the mesh such that

‖pn+1‖2L2(Ω) ≤ CηM

(
‖ðtu

n+1‖2(L2(Ω))d + ‖un+1‖21,E,0 + ‖fn+1‖2
L2(Ω)d

)
.

Summing this relation over n ∈
[
|0, N − 1|

]
and multiplying by δt yields the result thanks to (55) and (62). �
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Theorem 4.7 (Convergence of the scheme, time-dependent Stokes problem). Let (δt)m∈N and (Mm,Em)m∈N

be a sequence of time steps and meshes such that (δt)m → 0 and hMm → 0 as m → +∞; assume that there
exists η > 0 such that ηMm ≤ η for any m ∈ N (with ηMm defined by (7)). Let (um, pm) be a solution to (60)
for δt = δtm and M = Mm. Then there exists (ū, p̄) ∈ L2(0, T ;E(Ω)) × L2(0, T ;L2(Ω)) such that, up to a
subsequence:

- the sequence (um)m∈N converges to ū in L2(0, T ;L2(Ω)d),
- the sequence (pm)m∈N weakly converges to p̄ in ∈ L2(0, T ;L2(Ω)),
- (ū, p̄) is a solution to the weak formulation (59).

Proof. The convergence of the sequence of discrete solutions of the velocity follow from Theorem 4.3 and the
weak convergence of the sequence of discrete solutions of the pressure in L2(0, T ;L2(Ω)) follow from the estimate

(66). Let us then show that (ū, p̄) satisfies (59). Let ϕ ∈ C∞
c (Ω× [0, T ))d. Taking ϕnm = P̃Emϕ(·, tn) ∈HEm,0

as test function in (61), multiplying by δtm and summing for n ∈
[
|0, Nm − 1|

]
(with Nmδtm = T ), we obtain:

Nm−1∑

n=0

δtm

(∫

Ω

ðtu
n+1
m · ϕnm dx+

∫

Ω

∇
Ẽm
un+1
m : ∇

Ẽm
ϕnm dx

−

∫

Ω

pn+1
m divMm ϕ

n
m dx−

∫

Ω

fn+1
m ·ϕnm dx

)
= 0.

Let us deal with the pressure term (all other terms of the equation can be dealt with as in the proof of Theorem
4.3). We have, by the divergence preservation property of the Fortin operator:

∫

Ω

pn+1
m divMm ϕ

n
m dx =

∫

Ω

pn+1
m divϕ(x, tn) dx.

Hence, thanks to the regularity of ϕ (i.e. the fact that |ϕ(x, t)−ϕ(x, tn)| ≤ Cϕ δtm for x ∈ Ω and t ∈ (tn, tn+1))
and the weak convergence of pm to p̄,

−

Nm−1∑

n=0

δtm

∫

Ω

pn+1
m divMm ϕ

n
m dx = −

Nm−1∑

n=0

δtm

∫

Ω

pn+1
m divϕ(x, tn) dx

→ −

∫ T

0

∫

Ω

p̄ divϕ(x, t) dx dt as m→ +∞.

�

5. Appendix: Discrete functional analysis

Definition 5.1 (Compactly embedded sequence of spaces). Let B be a Banach space; a sequence (Xm)m∈N of
Banach spaces included in B is compactly embedded in B if any sequence (um)m∈N satisfying:

• um ∈ Xm (∀m ∈ N),
• the sequence (‖um‖Xm)m∈N is bounded,

is relatively compact in B.

Definition 5.2 (Compact-continuous sequence of spaces). Let B be a Banach space, and let (Xm)m∈N and
(Ym)m∈N be sequences of Banach spaces such that Xm ⊂ B for m ∈ N. The sequence (Xm, Ym)m∈N is compact-
continuous in B if the following conditions are satified:

• The sequence (Xm)m∈N is compactly embedded in B (see Definition 5.1),
• Xm ⊂ Ym (for all m ∈ N),
• if the sequence (um)m∈N is such that um ∈ Xm (for allm ∈ N), (‖um‖Xm)m∈N is bounded and ‖um‖Ym →

0 as m→ +∞, then any subsequence of (um)m∈N converging in B converges to 0 (in B).

The following theorem is proved [4] and is a generalization of a previous work carried out in [16].

Theorem 5.3 (Aubin-Simon Theorem with a sequence of subspaces and a discrete derivative.). Let 1 ≤ p <∞,
let B be a Banach space, and let (Xm)m∈N and (Ym)m∈N be sequences of Banach spaces such that Xm ⊂ B for
m ∈ N. We assume that the sequence (Xm, Ym)m∈N is compact-continuous in B. Let T > 0 and (u(m))m∈N be
a sequence of Lp(0, T ;B) satisfying the following conditions:
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• (H1) the sequence (u(m))m∈N is bounded in Lp(0, T ;B).
• (H2) the sequence (‖u(m)‖L1(0,T ;Xm))m∈N is bounded.

• (H3) the sequence (‖ðtu
(m)‖Lp(0,T ;Ym))m∈N is bounded.

Then there exists u ∈ Lp(0, T ;B) such that, up to a subsequence, u(m) → u in Lp(0, T ;B).

Definition 5.4 (B-limit-included). Let B be a Banach space, (Xm)m∈N be a sequence of Banach spaces
included in B and X be a Banach space included in B. The sequence (Xm)m∈N is B-limit-included in X if
there exists C ∈ R such that if u is the limit in B of a subsequence of a sequence (um)m∈N verifying um ∈ Xm

and ‖um‖Xm ≤ 1, then u ∈ X and ‖u‖X ≤ C.

The regularity of a possible limit of approximate solutions may be proved thanks to the theorem which we
recall below [17, Theorem B1].

Theorem 5.5 (Regularity of the limit). Let 1 ≤ p < ∞ and T > 0. Let B be a Banach space, (Xm)m∈N be
a sequence of Banach spaces included in B and B-limit-included in X (where X is a Banach space included in
B). Let T > 0 and, for m ∈ N, Let um ∈ Lp(0, T ;Xm). We assume that the sequence (‖um‖Lp(0,T ;Xm))m∈N is
bounded and that um → u a.e. as m→ ∞. Then u ∈ Lp(0, T ;X).
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[14] R. Eymard, R. Herbin, and J.-C. Latché. Convergence analysis of a colocated finite volume scheme for the incompressible
Navier-Stokes equations on general 2 or 3d meshes. SIAM J. Numer. Anal., 45(1):1–36, 2007.

[15] P. Féron and R. Eymard. Gradient scheme for stokes problem. In Finite volumes for complex applications VII, volume 1, pages
265–274. Springer, London, 2014. Finite Volumes for Complex Applications VII (FVCA VII), Berlin, June 2014.
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