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1 Introduction

KAM theory is concerned with the existence and stability of quasi-periodic motions in different contexts of dynamical
systems such as symplectic maps, Hamiltonian systems, reversible systems or volume-preserving systems, just to
mention a few. The foundations of the theory started with the celebrated works of A.N. Kolmogorov [46], V.I.
Arnold [2], and J.K. Moser [59], so that the acronym KAM is used in their honor. These pioneer papers sowed
the seed of a subject of remarkable importance in dynamical systems and, nowadays, KAM theory is a vast area of
research that involves a large collection of methods. Actually, there are many excellent surveys covering different
points of view in the theory (e.g. [3, 5, 6, 19, 33, 62]).

Classic KAM methods typically deal with a perturbative setting in such a way that the problem is written as a
perturbation of an integrable system (in the sense that it has a continuous family of invariant tori). They are based on
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the use of canonical transformations to simplify the expression of the problem. To this end, one takes advantage of
the existence of action-angle-like coordinates for the unperturbed system. This is a source of different shortcomings
and limitations in the study of particular problems, mainly related to the fact that many systems are non-perturbative.
For example, in some cases it is possible to identify an integrable approximation of a given system but the remaining
part cannot be considered as an arbitrarily small perturbation. Moreover, given a particular perturbative problem,
in general it is very complicated to establish action-angle variables for the unperturbed system. Such action-angle
variables can be defined implicitly, become singular or introduce problems of regularity.

In spite of the previous difficulties, classic KAM methods have been successfully applied in several problems.
The interested reader is referred to Section 1.4 in [16] for a brief history and references of the application of KAM
theory, and to [15, 48, 49] for computer assisted proofs in problems of celestial mechanics. A prominent example
is the persistence of the golden invariant curve of the standard map (c.f. Section 6.1 and notation therein). From
the numerical point of view, the persistence of this golden curve has been considered for example in [18, 35, 53]
observing that the breakdown takes place around εc ' 0.97163540324. Upper bounds for εc were provided in [55, 56]
by Converse KAM Theory. A quite sharp non-existence result was reported in [43], proving that the standard map has
no rotational invariant circles for several parameter values including ε = 0.9718. KAM theory provides lower bounds
for the critical value εc. This was already considered by Herman [40], obtaining that the golden curve persists for
ε ≤ 0.029. Later, a computer assisted proof was given in [13] proving existence of the invariant curve for ε < 0.68
using Lindstedt series. This lower bound was improved in [22, 23] extending the result up to ε ≤ 0.91.

An alternative to the classic approach is the use of the parameterization method. Instead of performing canon-
ical transformations, the strategy consists in solving the invariance equation directly by correcting an approximately
invariant object. Such correction is obtained iteratively by considering the linearized equation around the previous
approximately invariant torus. The parameterization method is suitable for studying existence of invariant tori without
using neither action-angle variables nor being in a perturbative setting. We point out that the geometry of the problem
plays an important role in the study of these equations. Such geometric approach, also referred to as KAM theory
without action-angle variables or a posteriori KAM theory, was suggested by R. de la Llave in [19] (following long-
time developed ideas, e.g. [14, 15, 42, 61, 68, 70, 78]) and a complete proof was presented in [20]. This approach has
been later extended to other contexts, such as the study of lower dimensional (isotropic) invariant tori that are hyper-
bolic [30] or elliptic [51], the case of non-twist invariant tori in degenerate systems [34] or, more recently, dissipative
systems [7, 11]. A remarkable advantage of the parameterization method is that the steps of the proof allow us to ob-
tain very fast and efficient numerical methods for the approximation of quasi-periodic invariant tori (e.g. [8, 31, 41]).
We refer the reader to the recent survey [37] for a detailed discussion on the numerical implementation of the method
and examples.

The goal of this paper is to present and illustrate a general methodology to apply the KAM theorem in specific
problems. We focus on the existence of analytic quasi-periodic Lagrangian invariant tori of symplectic maps. We
resort to a revisited version of the a posteriori KAM result presented in [20]. As usual in KAM theory, the main
hypotheses consist in checking non-resonance (Diophantine) conditions, non-degeneracy conditions and also asking
certain inequalities to hold. To check such inequalities we require to control the analytic norm of some functions that
depend on the known objects (the map, the ambient structure and the initial parameterization). To this end, we propose
a rigorous computer assisted methodology based on the use of fast Fourier transform. An important consequence of
our methodology is that the application of the KAM theorem is performed in a very fast way. Indeed, with the same
asymptotic cost of using the parameterization method to obtain numerical approximations of invariant tori (which is
of the same order of the fast Fourier transform: O(N log(N)), N being the total number of used Fourier coefficients).
Of course, the asymptotic constant depends on the dimension of the phase space, the map, and the symplectic form.

It is worth mentioning that computer assisted analysis has played an important role to achieve remarkable results in
the literature. Among them, we highlight: the proof of the Feigenbaum conjecture [45, 47]; Rigorous interval methods
in quantum mechanics [28]; the proof that the Lorenz attractor exists [74]; the proof of the double bubbling conjecture
[39], and the existence of singular solutions in fluid dynamics [12]. Computer assisted methods in analysis rely on
the fact that one can define a rigorous interval arithmetic on computers. These intervals have computer representable
floating point numbers as end-points and all basic operations as addition, subtraction, multiplication, division and
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composition of standard functions (e.g exp, cos, sin, log) satisfy the isotonicity inclusion principle (the image of any
two nested intervals is nested) and the range enclosure principle (the range of any function is enclosed with the image
of the domain under the action of the natural interval extension). We refer the reader to [75] for more details.

Finally, we describe the organization of the paper and we briefly summarize the content of each section:

• In Section 2 we introduce some elementary geometric objects (Section 2.1), set up notation and norms (Sec-
tion 2.2), and present a detailed statement of the KAM theorem (Section 2.3). Then we present a full proof of
this result (Section 2.4). This is necessary in order to link the different expressions that appear in the constants
of the theorem with their corresponding geometric object or equation. We give explicit and sharp estimates for
all constants quantifying the hypotheses of the theorem.

• In Section 3 we control the difference between an analytic function f on the torus and its discrete Fourier
approximation f̃ , and we present several technical results that allow us to control (with explicit constants) the
analytic norm of f̃ − f . More concretely, if f is an analytic and bounded function on the complex strip of size
ρ̂ > 0, then

‖f̃ − f‖ρ ≤ CNF
(ρ, ρ̂)‖f‖ρ̂,

for every 0 ≤ ρ < ρ̂, where CNF
(ρ, ρ̂) is an explicit constant that depends also on the dimension and the

number of Fourier coefficients. This result is motivated by the previous work [27] and related ideas have been
used in [57, 71]. Our aim is that this section can be read independently, in spite of some notation introduced in
Section 2.2 regarding Fourier series and norms.

• In Section 4 we consider additional technical results that allow us to apply the KAM theorem in an effective
and efficient way. On the one hand, we present an approach to obtain a positive measure set of Diophantine
vectors close to a given vector, possibly obtained numerically (Section 4.1). On the other hand, we present an
improvement of the classic Rüssmann estimates (Section 4.2). To take into account the effect of small divisors,
we compute the first elements explicitly and then we control the remaining tail analytically.

• In Section 5 we present the main methodology to apply the KAM result: the validation algorithm. The validation
procedure is performed on a sampling of an approximately invariant torus obtained numerically. We also require
a finite amount of input data characterizing the geometric information of the problem. Suitable values for these
parameters can be obtained following an heuristic method explained in Appendix A.

• In Section 6, we apply the validation algorithm to several examples, thus highlighting different features of our
approach.

In order to illustrate the reliability of the method, we consider the standard map (Section 6.1) and prove that the
golden invariant curve exists up to ε = 0.9716, thus establishing a new lower bound to the so-called Greene
critical value [35] εc ' 0.97163540324. Moreover, we have also proved the existence of other rotational
invariant curves with different rotation numbers.

An important feature of the method is that it can be applied to invariant curves that are not graphs over the
angular coordinate. We consider the non-twist standard map and prove the existence of so-called meandering
invariant curves (Section 6.2).

We finally consider a higher dimensional example. We prove the existence of 2-dimensional invariant tori for
the Froeschlé map, a 4-dimensional symplectic map consisting in two coupled standard maps (Section 6.3).

2 A KAM theorem for Lagrangian invariant tori of exact symplectic maps

In this section we present an a posteriori KAM theorem for Lagrangian invariant tori of exact symplectic maps. The
result was first obtained in [20] and it is a version of Kolmorogov theorem [46] using neither action-angle coordinates
nor a perturbative setting. The specific statement given here, with explicit and sharp estimates, is a slightly modified
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version of the KAM Theorem discussed in Chapter 4 of [37]. Roughly speaking, the a posteriori result reads as
follows: if we have a good enough approximation of an invariant torus with frequency ω, then, under certain non-
degeneracy and non-resonance conditions, there exists a true invariant torus nearby.

After setting the problem and geometrical background in Section 2.1, we introduce some basic notation regarding
Banach spaces, norms and cohomological equations in Section 2.2. In Section 2.3 we present the statement of a KAM
theorem for existence (and persistence) of Lagrangian invariant tori having Diophantine frequencies. In the proof of
the main result, given in Section 2.4, we pay special attention to compute explicitly all constants appearing during the
process and to obtain optimal and sharp estimates.

2.1 Geometric setting and invariant tori

We denote Tn = Rn/Zn the n-dimensional torus with covering space. The ambient manifold is a 2n-dimensional
annulus A ⊂ Tn × Rn with covering space Ã ⊂ R2n. The coordinates on A are denoted by z = (z1, . . . , z2n) =
(x, y), with x = (x1, . . . , xn) and y = (y1, . . . , yn). A function u : Rn → R is 1-periodic if u(θ + e) = u(θ) for all
θ ∈ Rn and e ∈ Zn. We abuse notation and denote it as u : Tn → R. Similarly, a function g : Ã → R is 1-periodic
in x if g(x+ e, y) = g(x, y) for all x, y ∈ Rn and e ∈ Zn. We abuse notation and denote it as g : A → R.

In the following we assume thatA is endowed with an exact symplectic form ω = dα for a certain 1-form α. For
any point z ∈ A, we write the matrix representation of the 1-form αz and the 2-form ωz as

a(z) = (a1(z) . . . a2n(z))>, and Ω(z) = Da(z)> −Da(z), (1)

respectively. Notice that det Ω(z) 6= 0.

Remark 2.1. The prototype example of symplectic structure is the standard symplectic structure on Tn × Rn: ω0 =∑n
i=1 dzn+i ∧ dzi. An action form for ω0 is α0 =

∑n
i=1 zn+i dzi. The matrix representations of α0 and ω0 are,

respectively,

a0(z) =

(
On In
On On

)
z, Ω0 =

(
On −In
In On

)
.

Remark 2.2. The fact that the phase space is chosen to be the annulus A is not related to the use of action-angle
coordinates. We make this choice for the sake of simplicity. All the arguments, computations and ideas can be straight-
forwardly adapted to consider that the phase-space is an open set of R2n (in fact this is the setting in [20]). What is
important is that the presented approach does not require to implement any sequence of canonical transformations in
the problem.

A map F : A → A is symplectic if F ∗ω = ω. A symplectic map F : A → A is exact if there is a smooth
function S : A → R, called primitive function of F , such that F ∗α−α = dS. In coordinates, the symplectic and the
exact symplectic properties of a map F are equivalent to

DF (z)> Ω(F (z)) DF (z) = Ω(z), ∀z ∈ A, (2)

and
DS(z) = a(F (z))>DF (z)− a(z)>, ∀z ∈ A, (3)

respectively. A map F : A → A is homotopic to the identity if F (x, y)− (x, 0) is 1-periodic in x.
Given an embedding K : Tn → A, called parameterization from now on, we say that K(Tn) is an F -invariant

torus with frequency ω ∈ Rn if
F (K(θ)) = K(θ + ω). (4)

For convenience, we denote Rω(θ) = θ+ω the rigid rotation of frequency ω. In case that ω is rationally independent
(i.e., k · ω /∈ Z for all k ∈ Zd\{0}) then the rotation Rω is ergodic and the invariant torus K(Tn) is quasi-periodic.
Finally, the parameterization K : Tn → A is homotopic to the zero section if K(θ)− (θ, 0) is 1-periodic in θ.
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Remark 2.3. IfK is homotopic to the zero section, thenK(Tn) is called primary tori. In the classic KAM perturbative
setting, these objects correspond to continuation of the planar tori that are present in the unperturbed problem. The
methodology presented in this paper can be adapted to deal with invariant tori having other relative homotopies in
a straightforward way. In the context of Remark 2.2, if the phase space is an open set of R2n (there is no angular
variables in phase space) then one simply looks for a parameterization K(θ) that is 1-periodic in θ.

By taking derivatives at both sides of Equation (4) we observe that the tangent bundle is invariant. Indeed,

DF (K(θ))DK(θ) = DK(θ + ω). (5)

Given a parameterization K as described above, we consider the pullback K∗ω. Its matrix representation at a point
K(θ) is

ΩK(θ) = DK(θ)> Ω(K(θ)) DK(θ). (6)

It is well known (c.f. [60]) that if K(Tn) is a quasi-periodic F -invariant torus, then ΩK(θ) = On for every θ ∈ Tn.
In combination with Equation (5), this means that we have a Lagrangian invariant subbundle.

Roughly speaking, the parameterization method for proving existence of quasi-periodic F -invariant tori consists in
studying the linearized invariance equation around an approximate solution. The invariance of DK(θ) in Equation (5)
suggests that these vectors will help us to obtain a suitable frame to write the map DF . The fact that every Lagrangian
subspace has a Lagrangian complementary is the starting point of the general construction discussed in [37] which
is followed in this paper (for previous constructions we refer to [20, 30, 51, 34]). This construction goes as follows:
given a map N0 : Tn → R2n×n such that

det(DK(θ)>Ω(K(θ))N0(θ)) 6= 0 (7)

it turns out that the frame map P : Tn → R2n×2n, given by

P (θ) =
(
DK(θ) N(θ)

)
, (8)

with

N(θ) = DK(θ)A(θ) +N0(θ)B(θ), (9)

B(θ) = − (DK(θ)>Ω(K(θ))N0(θ))−1, and (10)

A(θ) = − 1

2
(B(θ)>N0(θ)>Ω(K(θ))N0(θ)B(θ)), (11)

is a symplectic frame (N is the Lagrangian complement of DK). Since the dynamics on the torus is ergodic, it follows
that the symplectic frame in Equation (8) reduces the linearized dynamics DF◦K to a block-triangular matrix

P (θ + ω)−1DF (K(θ))P (θ) = Λ(θ), Λ(θ) =

(
In T (θ)
On In

)
, (12)

where the torsion matrix T : Tn → Rn×n is given by

T (θ) = N(θ + ω)> Ω(K(θ + ω)) DF (K(θ)) N(θ). (13)

Remark 2.4. Of course, if we endow the annulus with additional structure (e.g. a Riemannian metric) we can obtain
N0 in a natural way according to this structure. A summary of different approaches used in the literature can be found
in Chapter 4 of [37].
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2.2 Analytic functions and norms

In this paper we work with Banach spaces of real analytic functions in complex neighborhoods of real domains. A
complex strip of Tn of width ρ > 0 is defined as

Tnρ = {θ ∈ Cn/Zn : |Im θi| < ρ, i = 1, . . . , n} .

A function defined on Tn is real analytic if it can be analytically extended to a complex strip Tnρ .
We consider analytic functions u : Tnρ → C such that they can be continuously extended up to the boundary of

Tnρ . We endow these functions with the norm

‖u‖ρ = sup
θ∈Tnρ

|u(θ)| . (14)

Moreover, we write the Fourier expansion

u(θ) =
∑
k∈Zn

uke
2πik·θ, uk =

∫
[0,1]n

u(θ)e−2πik·θdθ,

and we denote the average of u as 〈u〉 = u0 =
∫

[0,1]n u(θ)dθ. Then, we consider the Fourier norm

‖u‖F,ρ =
∑
k∈Zn

|uk|e2π|k|1ρ, (15)

where |k|1 =
∑n

i=1 |ki|. We observe that ‖u‖ρ ≤ ‖u‖F,ρ for every ρ > 0.
A complex strip of A is a complex connected open neighborhood B ⊂ (Cn/Zn)× Cn of A that projects surject-

ively on Tn. A function defined on A is real analytic if it can be analytically extended to a complex strip B. Given an
analytic function u : B → C we introduce the norm

‖u‖B = sup
z∈B
|u(z)| . (16)

The previous definitions extend naturally to matrices. If A is an n1× n2 matrix of analytic functions on Tnρ (resp.
on B), we extend the norms in Equations (14) and (15) (resp. Equation (16)) as follows

‖A‖ρ = max
i=1,...,n1

n2∑
j=1

‖Ai,j‖ρ, ‖A‖F,ρ = max
i=1,...,n1

n2∑
j=1

‖Ai,j‖F,ρ, (resp. ‖A‖B). (17)

Notice that, if F : A → A, Ω is the matrix representation of ω and a is the matrix representation of α, then

‖DF‖B = max
i=1,...,2n

2n∑
j=1

∥∥∥∥∂Fi∂zj

∥∥∥∥
B
, ‖D2F‖B = max

i=1,...,2n

2n∑
j,k=1

∥∥∥∥ ∂Fi
∂zj∂zk

∥∥∥∥
B
,

‖Ω‖B = max
i=1,...,2n

2n∑
j=1

‖Ωi,j‖B , ‖DΩ‖B = max
i=1,...,2n

2n∑
j,k=1

∥∥∥∥∂Ωi,j

∂zk

∥∥∥∥
B
,

‖Da‖B = max
i=1,...,2n

2n∑
j=1

∥∥∥∥∂ai∂zj

∥∥∥∥
B
, ‖D2a‖B = max

i=1,...,2n

2n∑
j,k=1

∥∥∥∥ ∂2ai
∂zj∂zk

∥∥∥∥
B
,

Finally, we introduce some useful notation regarding the so-called cohomological equations that play an important
role in KAM theory. Given ω ∈ Rn, we define the cohomology operator L on functions u : Tn → R as follows:

Lu = u− u◦Rω. (18)
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Then, the core of KAM theory is the cohomological equation

Lu = v − 〈v〉 , (19)

for a given periodic function v.
Let us assume that v is a continuous function and Rω is ergodic. If there exists a continuous zero-average solution

of Equation (19), then it is unique and will be denoted by u = Rv. Note that the formal solution of Equation (19) is
immediate. Actually, if v has the Fourier expansion v(θ) =

∑
k∈Zn v̂ke

2πik·θ and the dynamics is ergodic, then

Rv(θ) =
∑

k∈Zn\{0}

ûke
2πik·θ, ûk =

v̂k
1− e2πik·ω . (20)

In particular, this implies thatRv = 0 if v = 0. The solutions of Equation (19) differ by a constant (the average).
We point out that ergodicity is not enough to ensure regularity of the solutions of cohomological equations. This

is related to the effect of the small divisors 1 − e2πik·ω in Equation (20). To deal with regularity, we require stronger
non-resonant conditions on the vector of frequencies. In this paper, we consider the following classic condition:

Definition 2.5. Given γ > 0 and τ ≥ n, we say that ω ∈ Rn is a (γ, τ)-Diophantine vector of frequencies if

|k · ω −m| ≥ γ |k|− τ1 , ∀k ∈ Zn\{0}, m ∈ Z, (21)

where |k|1 =
∑n

i=1 |ki|.

Finally, we recall the so-called Rüssmann estimates to control the regularity of the solutions of Equation (19) (we
refer the reader to [67]). If v : Tn → R is analytic, with ‖v‖ρ <∞ and ω satisfies (21), then

‖Rv‖ρ−δ ≤ cR
γδτ ‖v‖ρ (22)

for 0 < δ ≤ ρ. In Lemma 4.3 we present an improvement of the classic Rüssmann constant cR with the help of the
computer.

The above definitions for L and R extend component-wise to vector and matrix-valued functions. These exten-
sions also satisfy the Rüssmann estimates.

2.3 Statement of the KAM theorem

At this point, we are ready to state sufficient conditions to guarantee the existence of an F -invariant torus with fixed
frequency close to an approximately F -invariant torus. Theorems of this type are often called a posteriori results.
Notice that the hypotheses in Theorem 2.6 are tailored to be verified with a finite amount of computations.

Theorem 2.6. Let us consider an exact symplectic structure ω = dα on the n-dimensional annulus A, an exact
symplectic map F : A → A homotopic to the identity and a frequency vector ω ∈ Rn. Let us assume that the
following hypotheses hold:

H1 The map F , the 1-form α and the 2-form ω are real analytic and can be analytically extended to some complex
strip B and continuously up to the boundary. Moreover, there are constants cDF , cD2F , cΩ, cDΩ, cDa and cD2a

such that ‖DF‖B ≤ cDF , ‖D2F‖B ≤ cD2F , ‖Ω‖B ≤ cΩ, ‖DΩ‖B ≤ cDΩ, ‖Da‖B ≤ cDa, and ‖D2a‖B ≤ cD2a.

H2 There exists K : Tn → A, homotopic to the zero section, that can be analytically extended to Tnρ with ρ > 0,
and continuously up to the boundary, with K(Tnρ ) ⊂ B. Moreover, there exist constants σDK and σDK> such
that

‖DK‖ρ < σDK , ‖DK>‖ρ < σDK> , dist(K(Tnρ ), ∂B) > 0.

Given two subsets X,Y ∈ C2n, dist(X,Y ) is defined as inf{|x − y| : x ∈ X, y ∈ Y }, where | · | is the
maximum norm.
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H3 There exists a map N0 : Tn → R2n×n that is real analytic and can be analytically extended to Tnρ , and
continuously up to the boundary. Moreover, there exist constants cN0

, cN>0 , σN>0 (Ω◦K)N0
, and σB such that

‖N0‖ρ ≤ cN0
, ‖N>0 ‖ρ ≤ cN>0 , ‖N>0 (Ω ◦K)N0‖ρ < σN>0 (Ω◦K)N0

, ‖B‖ρ < σB,

where B(θ) = −(DK(θ)>Ω(K(θ))N0(θ))−1.

H4 There exists σT such that the matrix-valued map

T (θ) = N(θ + ω)> Ω(K(θ + ω)) DF (K(θ)) N(θ)

satisfies | 〈T 〉−1 | < σT , where
N(θ) = DK(θ)A(θ) +N0(θ)B(θ),

with A(θ) = −1
2(B(θ)>N0(θ)>Ω(K(θ))N0(θ)B(θ)).

H5 The frequency vector ω is (γ, τ)-Diophantine for certain γ > 0 and τ ≥ n.

Under the above hypotheses, for each 0 < ρ∞ < ρ there exists a constant C1 (see Remark 2.8) such that, if the
following condition holds

C1‖E‖ρ
γ4ρ4τ

< 1, (23)

where E(θ) = F (K(θ)) − K(θ + ω), then there exists an F -invariant torus K∞(Tn) with frequency ω. The map
K∞ is an embedding, homotopic to the zero section, analytic in Tnρ∞ , and satisfies

‖DK∞‖ρ∞ < σDK , ‖DK>∞‖ρ∞ < σDK> , dist(K∞(Tnρ∞), ∂B) > 0.

Furthermore, the map K∞ is close to K: there exists a constant C2 (see Remark 2.8) such that

‖K∞ −K‖ρ∞ <
C2‖E‖ρ
γ2ρ2τ

. (24)

Remark 2.7. We use the symbol σ to denote those constants that control objects that are corrected iteratively, and
so, we have to ensure that the control prevails along the proof.

Remark 2.8. Constants C1 and C2, which are given explicitly later in Equations (72) and (73), depend explicitly on
the initial data. Concretely, they depend polynomially on cDF , cD2F , cΩ, cDΩ, cDa, cD2a, cN0

, and cN>0 . They also depend
polynomially on (σDK − ‖DK‖ρ)−1, (σDK> − ‖DK>‖ρ)−1, (σN>0 (Ω◦K)N0

− ‖N>0 (Ω ◦K)N0‖)−1, (σB − ‖B‖ρ)−1,

(σT − | 〈T 〉−1 |)−1 and dist(K(Tnρ ), ∂B))−1, and on the strict estimations σDK , σDK> , σN>0 (Ω◦K)N0
, σB, and σT ,

respectively. If we fix cR > 0 then C1 and C2 depend polynomially on n, cR, γ and powers of ρ. These constants can
be optimized by selecting a suitable value of ρ∞ and adjusting the rate of converge of the iterative scheme.

2.4 Proof of the KAM theorem

The proof follows from a standard KAM scheme. Although a detailed proof of a very similar statement is given in
Chapter 4 of [37], for the sake of completeness we present here a compact self-contained exposition. This allows us
to describe the main geometric objects so that the reader can relate them to a corresponding constant that contributes
to the computation of C1 and C2.

The argument consists in refiningK(θ) by means of a Newton method. At every step, we add toK(θ) a correction
∆K(θ), given by an approximate solution of the linearized equation

DF (K(θ))∆K(θ)−∆K(θ + ω) = −E(θ). (25)
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To face this equation we consider a suitable frame on the full tangent space. The main ingredient is the fact that
(under certain assumptions) an approximately F -invariant torus is also approximately Lagrangian. Hence, the linear
dynamics around the torus is approximately reducible. Specifically, it turns out that we have a behavior similar to
Equation (12) but with an error of order ‖E‖ρ. This is enough to perform a quadratic scheme to correct the initial
approximation.

Lemma 2.9 (The Iterative Lemma). Let us consider the same setting and hypotheses of Theorem 2.6. Then, there
exist constants Ĉ1, Ĉ2, Ĉ3, Ĉ4, and Ĉ5 (depending explicitly on the constants defined in the hypotheses) such that if

Ĉ1‖E‖ρ
γ2δ2τ+1

< 1 (26)

holds for some 0 < δ < ρ, where

Ĉ1 := max

{
Ĉ1γδ

τ ,
nĈ2

σDK − ‖DK‖ρ
,

2nĈ2

σDK> − ‖DK>‖ρ
,

cN>0 cDΩcN0
δĈ2

σN>0 (Ω◦K)N0
− ‖N>0 (Ω ◦K)N0‖ρ

,
Ĉ3

σB − ‖B‖ρ
,

Ĉ4

σT − | 〈T 〉−1 |
,

Ĉ2δ

dist(K(Tnρ ), ∂B)

}
,

(27)

then we have an approximate F -invariant torus of the same frequency ω given by K̄ = K + ∆K, that defines new
objects B̄ and T̄ (obtained replacing K by K̄) satisfying

‖DK̄‖ρ−3δ < σDK , ‖DK̄>‖ρ−3δ < σDK> , dist(K̄(Tnρ−2δ), ∂B) > 0, (28)

‖B̄‖ρ−3δ < σB, |
〈
T̄
〉−1 | < σT , ‖N>0 (Ω ◦ K̄)N0‖ρ−2δ < σN>0 (Ω◦K)N0

(29)

and

‖K̄ −K‖ρ−2δ <
Ĉ2

γ2δ2τ
‖E‖ρ, ‖B̄ −B‖ρ−3δ <

Ĉ3

γ2δ2τ+1
‖E‖ρ, |

〈
T̄
〉−1 − 〈T 〉−1 | < Ĉ4

γ2δ2τ+1
‖E‖ρ. (30)

The new error of invariance is given by

Ē(θ) = F (K̄(θ))− K̄(θ + ω), ‖Ē‖ρ−2δ <
Ĉ5

γ4δ4τ
‖E‖2ρ. (31)

Before proving Lemma 2.9, we present two auxiliary results.

Lemma 2.10. Let us consider vector-valued maps η = (ηDK , ηN) : Tn → Rn × Rn and a matrix-valued map
T : Tn → Rn×n. Assume that T satisfies the non-degeneracy condition det 〈T (θ)〉 6= 0, ∀θ ∈ Tn. Then, the system
of equations (

In T (θ)
On In

)(
ξDK(θ)
ξN(θ)

)
−
(
ξDK(θ + ω)
ξN(θ + ω)

)
=

(
ηDK(θ)

ηN(θ)− 〈ηN〉

)
has a (formal) solution ξ = (ξDK , ξN) : Tn → Rn × Rn given by

ξN(θ) = R(ηN(θ)) + ξN0 , (32)

ξDK(θ) = R(ηDK(θ)− T (θ)ξN(θ)) + ξDK
0 , (33)

for every ξDK
0 ∈ Rn, and

ξN0 = 〈T 〉−1 〈ηDK − TR(ηN)〉 . (34)

Note thatR gives the zero-average solution of the one bite cohomological equation (see Equation (19)).



11

Proof. The triangular form of this system allows us to face first the equation LξN(θ) = ηN(θ) − 〈ηN〉, where L
is given by Equation (18). The right hand side of this equation has already zero average, so we obtain the solution
in (32), where ξN0 = 〈ηN〉 ∈ Rn. Then, the upper equation is LηDK(θ) = ηN(θ) − T (θ)ξN(θ) and the vector ξN0
selected in (34) allows us to guarantee that 〈ηDK − TξN〉 = 0. In this way, we obtain the solution in (33).

Lemma 2.11. If K(θ) is an approximately F -invariant torus with error E(θ), then〈
DK(θ + ω)>Ω(K(θ + ω))E(θ)

〉
=
〈

DE(θ)>∆a(θ) + DK(θ + ω)>∆2a(θ)
〉
,

where

∆a(θ) = a(F (K(θ)))− a(K(θ + ω)) =

∫ 1

0
Da(K(θ + ω) + tE(θ))E(θ)dt,

∆2a(θ) = a(F (K(θ)))− a(K(θ + ω))−Da(K(θ + ω))E(θ)

=

∫ 1

0
(1− t)D2a(K(θ + ω) + tE(θ))(E(θ), E(θ))dt.

Proof. From the definition of Ω in (1), and some easy computations,

DK(θ + ω)>Ω(K(θ + ω))E(θ)

=DK(θ + ω)>Da(K(θ + ω))>E(θ)−DK(θ + ω)>Da(K(θ + ω))E(θ)

= (D(a(K(θ + ω))))>E(θ) + DK(θ + ω)>
(
∆2a(θ)− a(F (K(θ))) + a(K(θ + ω))

)
=
(

D(a(K(θ + ω))>E(θ))
)>
− (DE(θ))>a(K(θ + ω)) + DK(θ + ω)>∆2a(θ)

− (DF (K(θ))DK(θ)−DE(θ))> a(F (K(θ))) + DK(θ + ω)>a(K(θ + ω))

=
(

D(a(K(θ + ω))>E(θ))
)>

+ (DE(θ))>∆a(θ) + DK(θ + ω)>∆2a(θ)

− (D(S(K(θ))))> −DK(θ)>a(K(θ)) + DK(θ + ω)>a(K(θ + ω)),

where in the last identity we use that S is the primitive function of F , see Equation (3). The result follows by taking
averages and realizing that D(a(K(θ+ω))>E(θ)), D(S(K(θ))) and a(K(θ+ω))>DK(θ+ω)− a(K(θ))>DK(θ)
have zero average.

Proof of Lemma 2.9. In the first part of the proof we see that, since K(Tn) is approximately F -invariant, the frame
P (θ) is symplectic up to an error controlled by E(θ).

We start by controlling the objectsN ,B andA, given in Equations (9), (10), and (11), respectively. By hypothesis,
we have ‖DK‖ρ < σDK and ‖B‖ρ < σB. Then, we obtain

‖A‖ρ = ‖A>‖ρ ≤
1

2
‖B>N>0 (Ω◦K)N0B‖ρ ≤

1

2
nσN>0 (Ω◦K)N0

(σB)2 =: cA. (35)

where the constant cA is introduced in order to simplify subsequent computations. We use small letters (cA, cN , etc.)
when the constant is related to an estimation of a geometric object, using the subscript to identify the corresponding
object. We use capital letters (C1, C2, etc.) for constants that appear in estimates that depend on the error ‖E‖ρ
(divisors are considered separately).

We estimate the norm of N as

‖N‖ρ ≤ ‖DK‖ρ‖A‖ρ + ‖N0‖ρ‖B‖ρ ≤ σDKcA + cN0
σB =: cN

and
‖N>‖ρ ≤ cAσDK> + nσBcN>0 =: cN> .



12

The frame P (θ), given by Equation (8), satisfies

‖P‖ρ ≤ ‖DK‖ρ + ‖N‖ρσDK + cN =: cP

and the torsion T (θ), given by Equation (13), is controlled by

‖T‖ρ ≤ ‖N>‖ρ‖Ω‖B‖DF‖B‖N‖ρ ≤ cN>cΩcDF cN =: cT .

Now we control the approximate Lagrangian character of K(Tn). Taking derivatives at both sides of E(θ) =
F (K(θ))−K(θ + ω) we have

DF (K(θ))DK(θ) = DK(θ + ω) + DE(θ). (36)

Then, a direct computation of LΩK(θ), using Equations (18) and (36), leads to

LΩK(θ) =DK(θ + ω)>∆Ω(θ) DK(θ + ω) + DK(θ + ω)>Ω(F (K(θ))) DE(θ)

+ DE(θ)>Ω(F (K(θ)))DF (K(θ))DK(θ) ,
(37)

where

∆Ω(θ) = Ω(F (K(θ)))− Ω(K(θ + ω)) =

∫ 1

0
DΩ(K(θ + ω) + tE(θ))E(θ)dt . (38)

Using the Mean Value Theorem for integrals and properties of Banach algebras we obtain ‖∆Ω‖ρ ≤ cDΩ‖E‖ρ, and
introducing this expression into Equation (37) we control ‖LΩK‖ρ−δ as follows (we use Cauchy estimates)

‖LΩK‖ρ−δ ≤
(
σDK>σDKcDΩδ + nσDK>cΩ + 2ncΩcDFσDK

)
‖E‖ρ
δ

=:
C1

δ
‖E‖ρ.

Then, using the Rüssmann estimates (see Equation (22) or Lemma 4.3) we end up with

‖ΩK‖ρ−2δ ≤
cRC1

γδτ+1
‖E‖ρ =:

C2

γδτ+1
‖E‖ρ.

Next, we introduce the error in the symplectic character of the frame as follows

Esym(θ) = P (θ)>Ω(K(θ))P (θ)− Ω0 (39)

and a straightforward computation shows that

Esym(θ) =

(
ΩK(θ) ΩK(θ)A(θ)

A(θ)>ΩK(θ) A(θ)>ΩK(θ)A(θ)

)
, (40)

which is controlled by

‖Esym‖ρ−2δ ≤
(1 + cA) max{1, cA}C2

γδτ+1
‖E‖ρ =:

C3

γδτ+1
‖E‖ρ. (41)

Next, we show that the tangent map DF is approximately reducible in the frame P (θ). To this end, we introduce

Ered(θ) = −Ω0P (θ + ω)>Ω(K(θ + ω))DF (K(θ))P (θ) − Λ(θ), (42)

where Λ(θ) is given by Equation (12). We decompose Ered(θ) into four (n× n)-block components given by:

E1,1
red(θ) = N(θ + ω)>Ω(K(θ + ω))DE(θ) +A(θ + ω)>ΩK(θ + ω) , (43)

E1,2
red(θ) = N(θ + ω)>Ω(K(θ + ω))DF (K(θ))N(θ)− T (θ) = On

E2,1
red(θ) = − ΩK(θ + ω)−DK(θ + ω)>Ω(K(θ + ω))DE(θ) , (44)

E2,2
red(θ) = − ΩK(θ)A(θ) + DK(θ + ω)>∆Ω(θ)DF (K(θ))N(θ)

+ DE(θ)>Ω(F (K(θ)))DF (K(θ))N(θ). (45)
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Then, we conclude that the error of reducibility satisfies

‖Ered‖ρ−2δ ≤
max{C4, C5 + C6}

γδτ+1
‖E‖ρ =:

C7

γδτ+1
‖E‖ρ

where

C4 = ncN>cΩγδ
τ + cAC2,

C5 = C2 + nσDK>cΩγδ
τ ,

C6 = cAC2 + σDK>cDΩcDF cNγδ
τ+1 + 2ncΩcDF cNγδ

τ . (46)

Now, we study Equation (25) using the symplectic frame in (8): we introduce ∆K(θ) = P (θ)ξ(θ) thus obtaining

DF (K(θ))P (θ)ξ(θ)− P (θ + ω)ξ(θ + ω) = −E(θ).

We multiply both sides by −Ω0P (θ + ω)>Ω(K(θ + ω)) and we get

Λ(θ)ξ(θ) + Ered(θ)ξ(θ)− (I − Ω0Esym(θ + ω))ξ(θ + ω) =

Ω0P (θ + ω)>Ω(K(θ + ω))E(θ),
(47)

where we used Equations (39) and (42). In order to obtain an approximate solution of Equation (47), we consider
Lemma 2.10 taking

η(θ) = Ω0P (θ + ω)>Ω(K(θ + ω))E(θ), (48)

and T (θ) given by Equation (13). We choose the solution satisfying ξDK
0 = 0. To control the resulting Equa-

tions (32), (33), and (34), we first compute

‖ηDK‖ρ = ‖N(θ + ω)>Ω(K(θ + ω))E(θ)‖ρ ≤ cN>cΩ‖E‖ρ, (49)

‖ηN‖ρ = ‖DK(θ + ω)>Ω(K(θ + ω))E(θ)‖ρ ≤ σDK>cΩ‖E‖ρ. (50)

On the one hand, using Equations (22) and (50), we obtain

‖R(ηN)‖ρ−δ ≤
cRσDK>cΩ

γδτ
‖E‖ρ =:

C8

γδτ
‖E‖ρ,

and on the other hand, using Hypothesis H4 and Equations (34), (22) and (49), we have

‖ξN‖ρ−δ ≤
C8 + σT (cN>cΩγδ

τ + cTC8)

γδτ
‖E‖ρ =:

C9

γδτ
‖E‖ρ,

‖ξDK‖ρ−2δ ≤
cR(cN>cΩγδ

τ + cTC9)

γ2δ2τ
‖E‖ρ =:

C10

γ2δ2τ
‖E‖ρ.

(51)

The new parameterization K̄ = K+ ∆K and the related objects are controlled using standard computations. The
first estimate in (30) follows directly from ∆K = DKξDK +NξN and estimates in (51):

‖K̄ −K‖ρ−2δ = ‖∆K‖ρ−2δ ≤
σDKC10 + cNC9γδ

τ

γ2δ2τ
‖E‖ρ =:

Ĉ2

γ2δ2τ
‖E‖ρ.

Combining this expression with Cauchy estimates we obtain the first estimate in (28):

‖DK̄‖ρ−3δ ≤ ‖DK‖ρ + ‖D∆K‖ρ−3δ ≤ ‖DK‖ρ +
nĈ2

γ2δ2τ+1
‖E‖ρ < σDK . (52)
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The last inequality in the previous computation is obtained by including this condition in Hypothesis (26). The control
of the transposed object in (28) is analogous:

‖DK̄>‖ρ−3δ ≤ ‖DK>‖ρ +
2nĈ2

γ2δ2τ+1
‖E‖ρ < σDK> . (53)

To control B̄ and
〈
T̄
〉−1 we use that for every pair of matrices X and Y

Y −1 = (I +X−1(Y −X))−1X−1. (54)

If ‖X−1‖‖Y −X‖ < 1, the Neumann series implies

‖Y −1 −X−1‖ ≤ ‖X−1‖2‖Y −X‖
1− ‖X−1‖‖Y −X‖

. (55)

First, we use Equation (54) taking X = DK>Ω(K)N0 and Y = DK̄>Ω(K̄)N0. We obtain the second estimate
in (30) with

Ĉ3 := 2σ2
BC11, C11 := cN0

Ĉ2(σDK>cDΩδ + 2ncΩ),

where we assumed that (to be included in (26))

2σBC11

γ2δ2τ+1
‖E‖ρ < 1. (56)

This computation allows us to set that in order to satisfy the first estimate in (29) we have to include

‖B̄‖ρ−3δ ≤ ‖B‖ρ−3δ + ‖B̄ −B‖ρ−3δ ≤ ‖B‖ρ−3δ +
Ĉ3

γ2δ2τ+1
‖E‖ρ < σB, (57)

into Condition (26). The third estimate in (29) follows from

‖N>0 (Ω ◦ K̄)N0‖ρ−2δ ≤ ‖N>0 (Ω ◦K)N0‖ρ−2δ + cN>0 cDΩcN0
‖K̄ −K‖ρ−2δ

< ‖N>0 (Ω ◦K)N0‖ρ +
cN>0 cDΩcN0

Ĉ2

γ2δ2τ
‖E‖ρ < σN>0 (Ω◦K)N0

,

and including this last inequality into Condition (26).
The third expression in (30) also follows using Equation (54) with X = T and Y = T̄ . Now we have to control

the new matrices N̄(θ) and Ā(θ), given by Equations (9) and (11) replacing K(θ) by K̄(θ). Specifically, we obtain

‖Ā−A‖ρ−3δ ≤
(
n
2 (σB)2cDΩĈ2δ + n+1

2 σN>0 (Ω◦K)N0
Ĉ3

) ‖E‖ρ
γ2δ2τ+1

=:
C12

γ2δ2τ+1
‖E‖ρ,

and observe that ‖Ā−A‖ρ−3δ = ‖Ā> −A>‖ρ−3δ. Moreover

‖N̄ −N‖ρ−3δ ≤
(σDKC12 + nĈ2cA + cN0

Ĉ3)‖E‖ρ
γ2δ2τ+1

=:
C13

γ2δ2τ+1
‖E‖ρ

and

‖N̄> −N>‖ρ−3δ ≤
(σDK>C12 + 2nĈ2cA + ncN>0 Ĉ3)‖E‖ρ

γ2δ2τ+1
=:

C∗13

γ2δ2τ+1
‖E‖ρ,

that allow us to compute

‖T̄ − T‖ρ−3δ ≤
C14

γ2δ2τ+1
‖E‖ρ, (58)
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with
C14 := cN>cNĈ2(cΩcD2F + cDΩcDF )δ + cΩcDF (cN>C13 + cNC

∗
13).

Introducing Equation (58) into Equation (55) we obtain the third estimate in (30) by defining the constant Ĉ4 :=
2σ2

TC14 and also the second estimate in (29). Computations are analogous to those performed to control the object B̄.
Hence we have to include the condition

Ĉ4

γ2δ2τ+1
‖E‖ρ < σT − | 〈T 〉−1 | (59)

in (26). Note that the closure of K̄(Tnρ−2δ) lies in B, since

dist(K̄(Tnρ−2δ), ∂B) ≥ dist(K(Tnρ ), ∂B)− ‖∆K‖ρ−2δ ≥ dist(K(Tnρ ), ∂B)− Ĉ2

γ2δ2τ
‖E‖ρ > 0. (60)

The last inequality is also included in (26).
Hence, the terms Ered(θ)ξ(θ) and Ω0Esym(θ + ω)ξ(θ + ω) in Equation (47) are quadratic in E(θ). Then, using

∆K(θ) = P (θ)ξ(θ), Equation (47), the definition of ξ(θ), and also that

(−Ω0P (θ + ω)>Ω(K(θ + ω)))−1 = P (θ + ω)(I − Ω0Esym(θ + ω))−1,

it turns out that

DF (K(θ))∆K(θ)−∆K(θ + ω) + E(θ) =

P (θ + ω)(I − Ω0Esym(θ + ω))−1Elin(θ),
(61)

where

Elin(θ) = Ered(θ)ξ(θ) + Ω0Esym(θ + ω)ξ(θ + ω)−
(

0〈
L(θ + ω)>Ω(K(θ + ω))E(θ)

〉) . (62)

After performing one step of the Newton method, the error of invariance associated to the parameterization K̄ =
K + ∆K is given by

Ē(θ) = F (K(θ) + ∆K(θ))−K(θ)−∆K(θ + ω)

= P (θ + ω)(I − Ω0Esym(θ + ω))−1Elin(θ) + ∆2F (θ),
(63)

where we used Equation (61), and

∆2F (θ) = F (K(θ) + ∆K(θ))− F (K(θ))−DF (K(θ))∆K(θ)

=

∫ 1

0
(1− t)D2F (K(θ) + t∆K(θ))(∆K(θ),∆K(θ)) dt.

The last step of the proof is to see, using the previously computed expressions, that the new error Ē(θ) is quadratic in
E(θ).

We use Lemma 2.11 to control the modulus of the average:∣∣∣〈L(θ + ω)>Ω(K(θ + ω))E(θ)
〉∣∣∣ ≤ (2ncDa

δ
+
cD2a

2

)
‖E‖2ρ

and from the expression of Elin(θ) in Equation (62) we obtain

‖Elin‖ρ−2δ ≤
(

(C3 + C7) max{C9γδ
τ , C10}

γ3δ3τ+1
+

2ncDa

δ
+
cD2a

2

)
‖E‖2ρ =:

C15

γ3δ3τ+1
‖E‖2ρ.
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Using a Neumann series argument we obtain

‖(I − Ω0Esym)−1‖ ≤ 1

1− ‖Ω0Esym‖
. (64)

Let us consider, as a hypothesis that we include in (26), that

2C3

γδτ+1
‖E‖ρ =:

Ĉ1

γδτ+1
‖E‖ρ < 1. (65)

Using Equations (41), (64) and (65), we obtain ‖(I − Ω0Esym)−1‖ < 2. Then, the new error of invariance, given by
Equation (63), satisfies Condition (31):

‖Ē‖ρ−2δ <

(
2cPC15γδ

τ−1 +
1

2
cD2F Ĉ

2
2

) ‖E‖2ρ
γ4δ4τ

=:
Ĉ5‖E‖2ρ
γ4δ4τ

. (66)

We complete the proof by merging Equations (52), (53), (57), (59), (60) and (65), thus obtaining the expression
in (27) that appears in the statement.

Proof of Theorem 2.6. Let us consider the approximate F -invariant torus K0 := K with initial error E0 := E. We
also introduce B0 := B and T0 := T associated with the initial approximation. By applying Lemma 2.9 recursively
we obtain new objects Ks = Ks−1, Es = Es−1, Bs = Bs−1, and Ts = Ts−1. The domain of analyticity of these
objects is reduced at every step. To characterize this fact, we introduce parameters a1 > 1, a2 > 1, a3 = 3 a1

a1−1
a2
a2−1

and define

ρ0 = ρ, δ0 =
ρ0

a3
, ρs = ρs−1 − 3δs−1, δs =

δ0

as1
, ρ∞ = lim

s→∞
ρs =

ρ0

a2
.

We can select the above parameters to optimize the convergence of the KAM process for a particular problem. This
has been used for example in [23]. Due to the quadratic convergence of the scheme, a good strategy is to optimize the
first numbers δ0, δ1, . . . , δm.

We denote the objects at the s-step as Ks, Es, Bs and Ts, respectively. We observe that Condition (26) is required
at every step but the construction has been performed in such a way that we can control ‖DKs‖ρs , ‖DK>s ‖ρs , ‖Bs‖ρs ,
dist(Ks(Tnρs), ∂B), and | 〈Ts〉−1 | uniformly with respect to s, so the constants that appear in Lemma 2.9 are taken to
be the same for all steps by considering the worst value of δs, that is, δ0 = ρ0/a3.

Now we proceed by induction. We suppose that we have applied s times Lemma 2.9, for certain s ≥ 0, so we
have to verify that we can apply it again. To this end, we first compute the error Es in terms of E0 as follows

‖Es‖ρs <
Ĉ5

γ4δ4τ
s−1

‖Es−1‖2ρs−1
=
Ĉ5a

4τ(s−1)
1

γ4δ4τ
0

‖Es−1‖2ρs−1

and iterating this sequence backwards (we use that 1 + 2 + . . . + 2s−1 = 2s − 1 and 1(s − 1) + 2(s − 2) + 22(s −
3) . . .+ 2s−21 = 2s − s− 1) we obtain

‖Es‖ρs <
(
a4τ

1 Ĉ5‖E0‖ρ0

γ4δ4τ
0

)2s−1

a−4τs
1 ‖E0‖ρ0 . (67)

We use this expression in order to verify Condition (26) so we can perform the step s+ 1. Before that, in order to
produce a decreasing sequence of errors, we assume that

a4τ
1 Ĉ5‖E0‖ρ0

γ4δ4τ
0

< 1 (68)
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thus including this condition in Hypothesis (23). Now, to verify the inequality in (26) we observe that in the expression
for Ĉ1, given by Equation (27), there are two types of conditions. On the one hand, we have conditions like (65),
depending only on the error Es and δs. On the other hand, we have conditions like (52) depending also on other
objects at the s-step. For example, Condition (65) is direct using Equation (67) and τ ≥ n

2C3‖Es‖ρs
γδτ+1

s
<

2C3a
(τ+1)s
1

γδτ+1
0

(
a4τ

1 Ĉ5‖E0‖ρ0

γ4δ4τ
0

)2s−1

a−4τs
1 ‖E0‖ρ0 <

2C3

γδτ+1
0

‖E0‖ρ0 < 1,

where the last inequality is included in (23). If the condition depends also on other objects, we have to relate it to the
initial one. For example, Condition (52) requires to compute, using Equation (68), the following

‖DKs‖ρs +
nĈ2‖Es‖ρs
γ2δ2τ+1

s
< ‖DK0‖ρ0 +

s∑
j=0

nĈ2‖Ej‖ρj
γ2δ2τ+1

j

< ‖DK0‖ρ0 +

∞∑
j=0

nĈ2a
(2τ+1)j
1

γ2δ2τ+1
0

(
a4τ

1 Ĉ5‖E0‖ρ0

γ4δ4τ
0

)2j−1

a−4τj
1 ‖E0‖ρ0

< ‖DK0‖ρ0 +
nĈ2

γ2δ2τ+1
0

(
1

1− a1−2τ
1

)
‖E0‖ρ0 < σDK .

As usual, the last inequality is included in (23). Then, we perform analogous computations to guarantee the conditions
in (26) and we obtain the sufficient condition

Ĉ8‖E0‖ρ
γ2δ2τ+1

0

< 1, (69)

where Ĉ8 is given by

Ĉ8 := max

{
2C3γδ

τ
0 ,

Ĉ6

1− a1−2τ
1

,
Ĉ7

1− a−2τ
1

}
(70)

with

Ĉ6 := max

{
nĈ2

σDK − ‖DK0‖ρ0

,
2nĈ2

σDK> − ‖DK>0 ‖ρ0

,

cN>0 cDΩcN0
δĈ2

σN>0 (Ω◦K)N0
− ‖N>0 (Ω ◦K0)N0‖ρ−2δ

,
Ĉ3

σB − ‖B0‖ρ0

,
Ĉ4

σT −
∣∣∣〈T0〉−1

∣∣∣
} (71)

and

Ĉ7 :=
Ĉ2δ0

dist(K0(Tnρ0
), ∂B)

.

Since Hypotheses H1 to H4 and Condition (26) are satisfied, we can apply Lemma 2.9 again. Note that the
sequence of errors satisfies ‖Es‖ρs → 0 when s → ∞, so the iterative scheme converges to a true quasi-periodic
torus K∞. Condition (23) of the smallness of ‖E0‖ρ0 is obtained by merging Conditions (68) and (69). Indeed, we
have

C1 := max

{
(a1a3)4τ Ĉ5, (a3)2τ+1Ĉ8γ

2ρ2τ−1
0

}
, (72)

where Ĉ5 is given in (31), Ĉ8 is given in (70) and we used that δ0 = ρ0/a3. Finally, we obtain the constant

C2 := a2τ
3 Ĉ2/(1− a1−2τ

1 ) (73)

that appears in (24), controlling that the torus is close to the initial approximation.
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3 On the approximation of periodic functions using discrete Fourier transform

In the core of the computer assisted methodology presented in this work, we have to bound the error produced when
approximating a periodic function by its discrete Fourier transform. This is a very natural problem that has been
considered in the approximation theory literature [66]. It is well known that error estimates improve commensurately
as the functions become smoother [27]. We refer the reader to [57, 71] for problems where similar ideas have been
used. Motivated by the setting of the present paper, we address the problem for analytic functions. The estimates
presented in this section improve the ones given in [27] for this specific case (see Section 3.3).

3.1 Notation regarding discretization of the torus and Fourier transforms

Given a function f : Tn → C, we consider its Fourier series

f(θ) =
∑
k∈Zn

fke
2πik·θ,

where the Fourier coefficients are given by the Fourier transform (FT)

fk =

∫
[0,1]n

f(θ)e−2πik·θdθ. (74)

We consider a sample of points on the regular grid of size NF = (NF,1, . . . , NF,n) ∈ Nn

θj := (θj1 , . . . , θjn) =

(
j1
NF,1

, . . . ,
jn
NF,n

)
, (75)

where j = (j1, . . . , jn), with 0 ≤ j` < NF,` and 1 ≤ ` ≤ n. This defines an n-dimensional sampling {fj}, with
fj = f(θj). The total number of points is ND = NF,1 · · ·NF,n. The integrals in Equation (74) are approximated using
the trapezoidal rule on the regular grid, obtaining the discrete Fourier transform (DFT)

f̃k =
1

ND

∑
0≤j<NF

fje
−2πik·θj ,

where the sum runs over integer subindices j ∈ Zn such that 0 ≤ j` < NF,` for ` = 1, . . . , n. Notice that f̃k
is periodic with respect to the components k1, . . . , kn of k, with periods NF,1, . . . , NF,n, respectively. The periodic
function f is approximated by the discrete Fourier approximation

f̃(θ) =
∑
k∈INF

f̃ke
2πik·θ, (76)

where INF
is the finite set of multi-indices given by

INF
=

{
k ∈ Zn | − NF,`

2
≤ k` <

NF,`

2
, 1 ≤ ` ≤ n

}
. (77)

Along this section we will use the standard notation [x] for the integer part of x: [x] = min {j ∈ Z : x ≤ j}.

3.2 Error estimates on the approximation of analytic periodic functions

Motivated by the setting of the present paper, we will work in spaces of analytic functions on a complex strip of the
torus (see Section 2.2), but most of the arguments can be adapted to other spaces. The main goal is to control the error
between f̃ and f , using suitable norms. As a previous step, we establish estimates of the approximation f̃k of fk.
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Lemma 3.1. The coefficients of the DFT are obtained from the coefficients of the FT by

f̃k =
∑
m∈Zn

fk+NF(m),

where NF(m) = (NF,1m1, . . . , NF,nmn).

The proof of Lemma 3.1 is direct. Using this result we obtain a bound for the difference between f̃k and fk as
follows:

Proposition 3.2. Let f : Tnρ̂ → C be an analytic and bounded function in the complex strip Tnρ̂ of size ρ̂ > 0. Let
f̃ be the discrete Fourier approximation of f in the regular grid of size NF = (NF,1, . . . , NF,n) ∈ Nn. Then, for
−NF

2 ≤ k <
NF
2 :

|f̃k − fk| ≤ s∗NF
(k, ρ̂)‖f‖ρ̂

where

s∗NF
(k, ρ̂) =

n∏
`=1

(
e−πρ̂NF,`

e2πρ̂(|k`|−NF,`/2) + e−2πρ̂(|k`|−NF,`/2)

1− e−2πρ̂NF,`

)
− e−2πρ̂|k|1 .

Proof: Let k ∈ Zn be a multi-index. From Lemma 3.1 and standard bounds of the Fourier coefficients of analytic
functions, we obtain

|f̃k − fk| ≤
∑

m∈Zn\{0}

|fk+NF(m)| ≤
∑

m∈Zn\{0}

e−2πρ̂|k+NF(m)|1‖f‖ρ̂.

Then we define

sNF
(k, ρ̂) =

∑
m∈Zn

e−2πρ̂|k+NF(m)|1 , s∗NF
(k, ρ̂) =

∑
m∈Zn\{0}

e−2πρ̂|k+NF(m)|1 .

Notice that sNF
(k, ρ̂) = sNF

(k′, ρ̂) for every k′ ∈ Zn such that |ki| = |k′i| for all i = 1, . . . n. Then, we write

sNF
(k, ρ̂) =

n∏
`=1

sNF,`
(k`, ρ̂),

where
sNF,`

(k`, ρ̂) =
∑
m∈Z

e−2πρ̂|k`+NF,`m|.

Then, by defining r` ≡ k` (mod NF,`) for ` = 1, . . . , n, we obtain

sNF,`
(k`, ρ̂) = sNF,`

(r`, ρ̂) =
∑
m`≥0

e−2πρ̂(r`+NF,`m`) +
∑
m`<0

e−2πρ̂(−r`−NF,`m`)

=
e2πρ̂(r`−NF,`) + e−2πρ̂r`

1− e−2πρ̂NF,`
.

The result follows directly from s∗NF
(k, ρ̂) = sNF

(k, ρ̂)− e−2πρ̂|k|1 . tu

Next, we state the main result of this section, that allows us to control the error between f̃ and f .

Theorem 3.3. Let f : Tnρ̂ → C be an analytic and bounded function in the complex strip Tnρ̂ of size ρ̂ > 0. Let f̃ be
the discrete Fourier approximation of f in the regular grid of size NF = (NF,1, . . . , NF,n) ∈ Nn. Then

‖f̃ − f‖ρ ≤ CNF
(ρ, ρ̂)‖f‖ρ̂,
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for 0 ≤ ρ < ρ̂, where CNF
(ρ, ρ̂) = S∗1NF

(ρ, ρ̂) + S∗2NF
(ρ, ρ̂) + TNF

(ρ, ρ̂) is given by

S∗1NF
(ρ, ρ̂) =

n∏
`=1

1

1− e−2πρ̂NF,`

∑
σ ∈ {−1, 1}n
σ 6= (1, . . . , 1)

n∏
`=1

e(σ`−1)πρ̂NF,`ν`(σ`ρ̂− ρ),

S∗2NF
(ρ, ρ̂) =

n∏
`=1

1

1− e−2πρ̂NF,`

(
1−

n∏
`=1

(
1− e−2πρ̂NF,`

)) n∏
`=1

ν`(ρ̂− ρ)

and

TNF
(ρ, ρ̂) =

(
e2π(ρ̂−ρ) + 1

e2π(ρ̂−ρ) − 1

)n (
1−

n∏
`=1

(
1− µ`(ρ̂− ρ) e−π(ρ̂−ρ)NF,`

))
,

with

ν`(δ) =
e2πδ + 1

e2πδ − 1

(
1− µ`(δ) e−πδNF,`

)
and µ`(δ) =

 1 if NF,` is even
2eπδ

e2πδ + 1
if NF,` is odd

.

Proof: From the definition of the discrete Fourier approximation f̃ of f , we have

‖f̃ − f‖ρ ≤
∑
k∈INF

|f̃k − fk|e2πρ|k|1 +
∑
k/∈INF

|fk|e2πρ|k|1 ,

where INF
is the finite set of multi-indices given by Equation (77). From Proposition 3.2 and the growth rate properties

of the Fourier coefficients of an analytic function, we get

‖f̃ − f‖ρ ≤ (S∗NF
(ρ, ρ̂) + TNF

(ρ, ρ̂))‖f‖ρ̂,

where
S∗NF

(ρ, ρ̂) =
∑
k∈INF

s∗N (k, ρ̂)e2πρ|k|1 ,

and
TNF

(ρ, ρ̂) =
∑
k/∈INF

e2π(ρ−ρ̂)|k|1 .

Next, we obtain a computable expression for TNF
(ρ, ρ̂). Notice that

TNF
(ρ, ρ̂) =

∑
k∈Zn

e2π(ρ−ρ̂)|k|1 −
∑
k∈INF

e2π(ρ−ρ̂)|k|1 =

(
e2π(ρ̂−ρ) + 1

e2π(ρ̂−ρ) − 1

)n
−

n∏
`=1

ν`(ρ̂− ρ),

where

ν`(δ) =

[
NF,`−1

2

]∑
k`=−

[
NF,`

2

] e−2πδ|k`|.

Then, the formula stated in the proposition follows by distinguishing the cases where NF,` is odd and even.
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To obtain a suitable expression for S∗NF
(ρ, ρ̂), we compute

SNF
(ρ, ρ̂) =

∑
k∈INF

sNF
(k, ρ̂)e2πρ|k|1

=
∑
k∈INF

n∏
`=1

(
e−πρ̂NF,`

e2πρ̂(|k`|−NF,`/2) + e−2πρ̂(|k`|−NF,`/2)

1− e−2πρ̂NF,`
e2πρ|k`|

)

=
n∏
`=1

e−πρ̂NF,`

1− e−2πρ̂NF,`

∑
σ∈{−1,1}n

∑
k∈INF

n∏
`=1

e−2π(σ`ρ̂−ρ)|k`|eπσ`ρ̂NF,`

=
n∏
`=1

e−πρ̂NF,`

1− e−2πρ̂NF,`

∑
σ∈{−1,1}n

n∏
`=1

∑
−
NF,`

2
≤k`<

NF,`
2

e−2π(σ`ρ̂−ρ)|k`|eπσ`ρ̂NF,`

=

n∏
`=1

e−πρ̂NF,`

1− e−2πρ̂NF,`

∑
σ∈{−1,1}n

n∏
`=1

eπσ`ρ̂NF,`ν`(σ`ρ̂− ρ).

Finally, we use that

S∗NF
(ρ, ρ̂) = SNF

(ρ, ρ̂)−
n∏
`=1

ν`(ρ̂− ρ),

and we decompose the resulting expression in the two functions S∗1NF
and S∗2NF

. tu

Remark 3.4. In the above formulae, there are expressions of the form 1 −
∏n
`=1(1 − x`), where 0 < x` < 1 for

` = 1 . . . n. In our applications, it turns out that 0 < x` � 1, so we have to be aware of the propagation of the error
when enclosing this expression using interval arithmetics. To this end, we will use the formulae

1−
n∏
`=1

(1− x`) =
n∑
j=1

(−1)j−1
∑

`1<···<`j
1≤li≤n

x`1 . . . x`j .

Notice that the dominant term of the expression is
n∑
`=1

x`.

Remark 3.5. It is interesting to characterize the dominant terms in the expression CNF
(ρ, ρ̂) = S∗1NF

(ρ, ρ̂) +

S∗2NF
(ρ, ρ̂) + TNF

(ρ, ρ̂). The dominant term of S∗1NF
(ρ, ρ̂) corresponds to the multi-indices σ ∈ {−1, 1}n for which

only one component is −1. Hence, we have

S∗1NF
(ρ, ρ̂) '

(
e2π(ρ̂−ρ) + 1

e2π(ρ̂−ρ) − 1

)n−1(
e2π(ρ̂+ρ) + 1

e2π(ρ̂+ρ) − 1

)
n∑
`=1

µ`(ρ̂− ρ) e−π(ρ̂−ρ)NF,` .

Then, we observe that the dominant term of S∗2NF
(ρ, ρ̂),

S∗2NF
(ρ, ρ̂) '

(
e2π(ρ̂−ρ) + 1

e2π(ρ̂−ρ) − 1

)n n∑
`=1

e−2πρ̂NF,` ,

is much smaller than S∗1NF
(ρ, ρ̂). Finally,

TNF
(ρ, ρ̂) '

(
e2π(ρ̂−ρ) + 1

e2π(ρ̂−ρ) − 1

)n n∑
`=1

µ`(ρ̂− ρ) e−π(ρ̂−ρ)NF,` ,
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which is of the same order as S∗1NF
(ρ, ρ̂). Putting this together we obtain

CNF
(ρ, ρ̂) '

(
e2π(ρ̂−ρ) + 1

e2π(ρ̂−ρ) − 1

)n−1(
e2π(ρ̂−ρ) + 1

e2π(ρ̂−ρ) − 1
+

e2π(ρ̂+ρ) + 1

e2π(ρ̂+ρ) − 1

)
n∑
`=1

µ`(ρ̂− ρ) e−π(ρ̂−ρ)NF,`

and µ`(ρ̂− ρ) ≤ 1 implies
CNF

(ρ, ρ̂) ' O(e−π(ρ̂−ρ) min`{NF,`}).

3.3 Comments on the 1-dimensional case

The simplest case n = 1 deserves especial attention, as it is a common situation in the literature. Let us formulate
Proposition 3.2 and Theorem 3.3 in this case.

Corollary 3.6. Let f : Tρ̂ → C be an analytic and bounded function in the complex strip Tρ̂ of size ρ̂ > 0. Let f̃ be

the discrete Fourier approximation of f in the regular grid of size NF ∈ N. Then, for k = −
[
NF
2

]
, . . . ,

[
NF−1

2

]
,

|f̃k − fk| ≤ s∗NF
(k, ρ̂)‖f‖ρ̂

where

s∗NF
(k, ρ̂) =

e−2πρ̂NF

1− e−2πρ̂NF

(
e2πρ̂k + e−2πρ̂k

)
.

Corollary 3.7. Let f : Tρ̂ → C be an analytic and bounded function in the complex strip Tρ̂ of size ρ̂ > 0. Let f̃ be
the discrete Fourier approximation of f in the regular grid of size NF. Then, for 0 ≤ ρ < ρ̂, we have

‖f̃ − f‖ρ ≤ CNF
(ρ, ρ̂)‖f‖ρ̂,

where CNF
(ρ, ρ̂) = S∗1NF

(ρ, ρ̂) + S∗2NF
(ρ, ρ̂) + TNF

(ρ, ρ̂), with

S∗1NF
(ρ, ρ̂) =

e−2πρ̂NF

1− e−2πρ̂NF

e−2π(ρ̂+ρ) + 1

e−2π(ρ̂+ρ) − 1

(
1− µ1(−ρ̂− ρ) eπ(ρ̂+ρ)NF

)
,

S∗2NF
(ρ, ρ̂) =

e−2πρ̂NF

1− e−2πρ̂NF

e2π(ρ̂−ρ) + 1

e2π(ρ̂−ρ) − 1

(
1− µ1(ρ̂− ρ) e−π(ρ̂−ρ)NF

)
and

TNF
(ρ, ρ̂) =

e2π(ρ̂−ρ) + 1

e2π(ρ̂−ρ) − 1
µ1(ρ̂− ρ) e−π(ρ̂−ρ)NF .

In order to compare with [27] we consider the odd case, for NF = 2M + 1. In this reference, the following
uniform bound was obtained

|f̃k − fk| ≤ s̃∗NF
(ρ̂)‖f‖ρ̂,

for k = −M, . . . ,M , where

s̃∗NF
(ρ̂) =

4e−2πρ̂M

e2πρ̂ − 1
.

Let us now compare s∗NF
(k, ρ̂) with s̃∗NF

(ρ̂), for k = −M, . . . ,M :

s∗NF
(k, ρ̂)

s̃∗NF
(ρ̂)

≤
s∗NF

(M, ρ̂)

s̃∗NF
(ρ̂)

=
1

4

(
1− e−2πρ̂

) 1 + e−2πρ̂(NF−1)

1− e−2πρ̂NF
≤ 1

4
.

Notice that the estimates produced in Corollary 3.6 are at least four times better than the estimates produced in [27].
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Now we consider Corollary 3.7 in the case ρ = 0. First, we observe that µ1(−δ) = µ1(δ), so we get

‖f̃ − f‖0 ≤ CNF
(0, ρ̂)‖f‖ρ̂,

with

CNF
(0, ρ̂) = 2

e2πρ̂ + 1

e2πρ̂ − 1
µ1(ρ̂) e−πρ̂NF .

In the odd case, with NF = 2M + 1, this expression reads as follows:

CNF
(0, ρ̂) =

4 e−2πρ̂M

(e2πρ̂ − 1) (1− e−2πρ̂NF)
.

It is worth pointing out that the best uniform approximation p∗ of the form p(θ) =
∑
−M≤k≤M p̃ke

2πik·θ satisfies
(c.f. [27])

‖p∗ − f‖0 ≤
2e−2πρ̂M

(e2πρ̂ − 1)
‖f‖ρ̂.

Hence, the discrete Fourier approximation is very close to optimal, since the corresponding error (approximately)
doubles the less possible error.

3.4 Matrices of periodic functions

In this section we consider some extensions of Theorem 3.3 to deal with matrix functions A : Tn → Cm1×m2 . Our
goal is to control the propagation of the error when we perform matrix operations. Specifically, we are interested in
the study of products and inverses, but the ideas given below can be adapted to control other operations if necessary.

The first result is obtained directly from Theorem 3.3:

Corollary 3.8. Let us consider two matrix functions A : Tn → Cm1×m2 , and B : Tn → Cm2×m3 , such that their
entries are analytic and bounded functions in the complex strip Tnρ̂ of size ρ̂ > 0. We denote byAB the product matrix
and ÃB the corresponding approximation given by DFT. Given a grid of size NF = (NF,1, . . . , NF,n), we evaluate A
and B in the grid, and we interpolate the points AB(θj) = A(θj)B(θj). Then, we have

‖AB − ÃB‖ρ ≤ CNF
(ρ, ρ̂)‖A‖ρ̂‖B‖ρ̂ (78)

for every 0 ≤ ρ < ρ̂, where CNF
(ρ, ρ̂) is given in Theorem 3.3.

Notice that Corollary 3.8 is useful to control the product of approximated objects. If Ã and B̃ are the corresponding
approximations of A and B given by DFT, then

‖ÃB̃ − ˜̃AB̃‖ρ ≤ CNF
(ρ, ρ̂)‖Ã‖ρ̂‖B̃‖ρ̂ ≤ CNF

(ρ, ρ̂)‖Ã‖F,ρ̂‖B̃‖F,ρ̂ (79)

for every 0 ≤ ρ < ρ̂. Notice that since Ã and B̃ are Fourier series with finite support, then it is interesting to control
Equation (79) using Fourier norms.

The second result allows us to control the inverse of a matrix using the discrete Fourier approximation:

Corollary 3.9. Let us consider a matrix function A : Tn → Cm×m whose entries are analytic and bounded functions
in the complex strip Tnρ̂ of size ρ̂ > 0. Given a grid of size NF = (NF,1, . . . , NF,n), we evaluate A in the grid and
compute the inverses X(θj) = A(θj)

−1. Then, if X̃ is the corresponding discrete Fourier approximation associated
to the sample X(θj), the error E(θ) = Im −A(θ)X̃(θ) satisfies

‖E‖ρ ≤ CNF
(ρ, ρ̂)‖A‖ρ̂‖X̃‖ρ̂, (80)

for 0 ≤ ρ < ρ̂. Moreover, if ‖E‖ρ < 1, there exists an analytic inverse A−1 : Tn → Cm×m satisfying

‖A−1 − X̃‖ρ ≤
‖X̃‖ρ̂‖E‖ρ
1− ‖E‖ρ

. (81)
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Proof. To obtain Equation (80) we observe that if ÃX̃ is the discrete Fourier approximation of AX̃ , then it turns out
that

(AX̃)(θj) = A(θj)X̃(θj) = Im

for all points in the grid. This implies that ÃX̃ = Im and we end up with

‖E‖ρ = ‖Im −AX̃‖ρ = ‖ÃX̃ −AX̃‖ρ

and Inequality (80) follows applying Corollary 3.8. Inequality (81) follows from the expression E = Im − AX̃ ,
simply writing A−1 = X̃(Im − E)−1 and using a Neumann series argument.

4 Dealing with the small divisors

In this Section we discuss two technical auxiliary results that play a fundamental role in KAM theory: the characte-
rization of the Diophantine constants (γ, τ) and the computation of the Rüssmann constant cR. In Section 4.1 we
propose a general method to assign Diophantine constants to a given interval vector of frequencies, such that the cor-
responding set of Diophantine vectors has positive measure. In Section 4.2 we revisit the classic Rüssmann estimates.
To take into account the effect of small divisors, we compute the first elements explicitly and then we control the
remaining tail analytically. In this way, with the help of the computer, we obtain sharper estimates than in the classic
literature.

4.1 On the characterization of Diophantine constants

A fundamental hypothesis of Theorem 2.6 is the fact that ω ∈ Rn satisfies Diophantine conditions. To ensure it, we
enclose ω with an interval vector $ and we look for constants (γ, τ) such that $ contains (γ, τ)-Diophantine vectors.
The estimates presented in this section are based on two elementary observations. First, that we only need to give a
lower bound of the measure of vectors ω ∈ $ satisfying |k · ω −m| ≥ γ|k|−τ1 , for every k ∈ Zn\{0} and m ∈ Z.
Second, that this lower bound is obtained by splitting the computations in two parts: the low resonances are checked
rigorously with the help of the computer, while the measure of the high resonances are bounded analytically.

Consider an interval vector of the form $ =
∏n
i=1[ai, bi], and Diophantine constants (γ, τ). For each index

k ∈ Zn\{0} we define the k-resonant set of type (γ, τ) as

Resk($, γ, τ) =
⋃
m∈Z

{
ω ∈ $ : |k · ω −m| < γ

|k|τ1

}
,

so that the resonant set of type (γ, τ) is

Res($, γ, τ) =
⋃

k∈Zn\{0}

Resk($, γ, τ).

The relative measure of the set of (γ, τ)-Diophantine vectors in $ is

p(ω, γ, τ) = 1− meas (Res($, γ, τ))

meas($)
, (82)

where meas(A) stands for the Lebesgue measure of a Borel set A. Our goal is to obtain positive lower bounds of
p(ω, γ, τ). To do so, we control the resonant set by fixing M sufficiently big, and using the decomposition

Res($, γ, τ) = Res≤M ($, γ, τ) ∪ Res>M ($, γ, τ),

where Res≤M ($, γ, τ) and Res>M ($, γ, τ) are, respectively, the sets of resonances with index k satisfying |k|1 ≤M
and |k|1 > M . By choosing γ sufficiently small, we get Res≤M ($, γ, τ) = ∅, and then we have to get an upper
bound of the measure of Res>M ($, γ, τ). These arguments are the core of the proof of the following proposition.
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Proposition 4.1. Let $ =
∏n
i=1[ai, bi] be an interval vector, whose diameter is diam($) =

√∑n
i=1(bi − ai)2.

Given M ≥ n, we assume that for any ω ∈ $, k ∈ Zn such that 0 < |k|1 ≤M , and m ∈ Z, we have k · ω −m 6= 0.
For any τ > n, we define

γM ($, τ) = min{|k · ω −m||k|τ1 : ω ∈ $, 0 < |k|1 ≤M, m ∈ Z}.

Then, for any positive γ ≤ γM ($, τ), we have

p($, γ, τ) > 1− C($,n)γ

(τ − n)M τ−n ≥ 1− C($,n)γM ($, τ)

(τ − n)M τ−n , (83)

where

C($,n) =
22n

(n− 1)!

(diam($))n

meas($)
.

Moreover, the equation for τ

1− C($,n)γM ($, τ)

(τ − n)M τ−n = 0 (84)

has a unique solution τM ($), for which we define γM ($) = γM ($, τM ($)). As a consequence, for any pair (γ, τ)
with τ ≥ τM ($) and γ ≤ γM ($), we have p($, γ, τ) > 0.

Proof. Notice that, for γ ≤ γM ($, τ), we obtain Res($, γ, τ) = Res>M ($, γ, τ), since Res≤M ($, γ, τ) = ∅. In
order to get an upper bound of meas(Res>M ($, γ, τ)), we use the elementary estimate

meas(Resk($, γ, τ)) ≤ 2γ|k|−τ1 (diam($))n,

for any k ∈ Zn \ {0} (see the proof of Lemma 2.11 of [19]). Consequently,

meas(Res>M ($, γ, τ)) ≤ 2(diam($))nγ
∑
|k|1>M

|k|−τ1 <
22n(diam($))n

(n− 1)!(τ − n)M τ−n . (85)

The lower bound (83) follows immediately.
Let us consider the function p̂ : (n,∞)→ R defined by

p̂(τ) = 1− C($,n)γM ($, τ)

(τ − n)M τ−n . (86)

Then, from the definition of γM ($, τ),

p̂(τ) = 1− C($,n)

(τ − n)M−n
min

{
|k · ω −m|

(
|k|1
M

)τ
: ω ∈ $, 0 < |k|1 ≤M, m ∈ Z

}
,

from where we deduce that p̂ is a strictly increasing function of τ , and lim
τ→n+

p̂(τ) = −∞. Moreover, since

p̂(τ) ≥ 1− C($,n)

2(τ − n)M−n
,

then lim
τ→∞

p̂(τ) = 1. Hence, there exists a unique τ = τM ($) > n such that p̂(τ) = 0. The rest of the proof follows
immediately.

Remark 4.2. The constant C($,n) in Proposition 4.1 is specially simple if the length of the edges of the interval
vector are equal:

C($,n) =
22nn

n
2

(n− 1)!
=: C(n).

In particular, we have C(1) = 4 and C(2) = 32.
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In this paper we are not interested in maximizing the measure of Diophantine numbers but simply in guaranteeing
that it is positive. Proposition 4.1 provides a simple algorithm to associate pairs (γ, τ) to an interval vector $.
Specifically, we take M ≥ n and solve Equation (84) to find the pair (γM ($), τM ($)). Notice that τM ($) is the
minimum value of τ that guarantees the existence of Diophantine vectors in $ for γ ≤ γM ($). To produce larger
sets of Diophantine vectors, take a pair (γM ($, τ), τ), with τ ≥ τM ($) (since the function p̂ defined in the proof is
strictly increasing). Giving measure estimates of invariant tori (both in frequency space and in phase space) is a very
interesting problem that deserves full attention and will be considered in future work.

To illustrate the previous construction we consider (tight) interval frequencies $ enclosing

[ωa,b − 2−50, ωa,b + 2−50], with ωa,b =

√
b2 + 4b/a− b

2
. (87)

In Table 1 we provide Diophantine constants (γ, τ), for some of these interval frequencies, such that the Lebesgue
measure of (γ, τ)-Diophantine frequencies in$ is positive. The computations have been performed using the interval
arithmetics library MPFI (see [65]) taking a precision of 64 bits. The values of Table 1 are obtained using M = 1000.
If we take a larger value of M , then we can obtain a smaller lower value of τ . For example, for the golden mean (with
a = b = 1), taking M = 103 we obtain τ ≥ 1.26, taking M = 104 we obtain τ ≥ 1.22, taking M = 105 we obtain
τ ≥ 1.19, and taking M = 106 we obtain τ ≥ 1.17,

a b γ ≤ τ ≥ a b γ ≤ τ ≥ a b γ ≤ τ ≥
1 1 0.381966011250104 1.26 3 1 0.263762615825972 1.23 5 1 0.170820393249935 1.19
1 2 0.267949192431121 1.23 3 2 0.290994448735804 1.24 5 2 0.183215956619922 1.20
1 3 0.208712152522079 1.21 3 3 0.302775637731993 1.24 5 3 0.188194301613412 1.20
1 4 0.171572875253808 1.19 3 4 0.277309053319640 1.23 5 4 0.190890230020663 1.20
1 5 0.145898033750314 1.18 3 5 0.223037765858308 1.21 5 5 0.192582403567251 1.20
1 6 0.127016653792582 1.17 3 6 0.187329140491556 1.20 5 6 0.193743884534261 1.20
2 1 0.366025403784437 1.26 4 1 0.207106781186546 1.21 6 1 0.145497224367901 1.18
2 2 0.413767832000904 1.27 4 2 0.224744871391588 1.22 6 2 0.154700538379250 1.18
2 3 0.300011472016747 1.24 4 3 0.232050807568876 1.22 6 3 0.158312395177698 1.19
2 4 0.235323972166368 1.22 4 4 0.236067977499788 1.22 6 4 0.160246899469285 1.19
2 5 0.192798030208926 1.20 4 5 0.238612787525829 1.22 6 5 0.161453237111884 1.19
2 6 0.163806299636515 1.19 4 6 0.206140402288459 1.21 6 6 0.162277660168378 1.19

Table 1: Rigorously computed Diophantine constants (γ, τ) ensuring positive measure for several 1-dimensional (tight) interval frequencies

$ enclosing intervals given by Equation (87). We use the methodology derived from Proposition 4.1 with M = 1000.

As an illustration for n = 2, we consider (tight) interval frequency vectors $ enclosing

[ωp − 2−50, ωp + 2−50]× [ωq − 2−50, ωq + 2−50] ⊂ R2, (88)

with ωp =
√
p − [

√
p] and ωq =

√
q − [

√
q], where [ · ] stands for the integer part. The computations have been

performed using the interval arithmetics library MPFI (see [65]) taking a precision of 64 bits. Diophantine constants
associated to these intervals are given in Table 2, using the methodology derived from Proposition 4.1 withM = 1000.

p = 2 p = 3 p = 5 p = 7 p = 11 p = 13

q = 2 0.1421950391579065 0.0100027079360758 0.0216249622296120 0.1108017984300913 0.0642768464253883
q = 3 2.40 0.1706190237467459 0.3712175538099537 0.0587500580246455 0.2621757106909654
q = 5 2.14 2.42 0.0090434339906178 0.0939733872704087 0.1120569499083642
q = 7 2.20 2.51 2.13 0.0139696161322762 0.1940680771272715
q = 11 2.37 2.30 2.35 2.17 0.0044815206623438
q = 13 2.31 2.47 2.37 2.43 2.09

Table 2: Rigorously computed Diophantine constants (γ, τ) ensuring positive measure for several 2-dimensional (tight) interval frequencies

$ enclosing intervals given by Equation (88). We use the methodology derived from Proposition 4.1 with M = 1000. An upper value of γ is

given above the diagonal and a lower value of τ is given below the diagonal.
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4.2 On the Rüssmann estimates

In this section we present a version of the Rüssmann estimates that is tailored to be evaluated with the help of the
computer. We use the notation introduced in Section 2.2.

Lemma 4.3. Let ω ∈ Rn be a (γ, τ)-Diophantine frequency vector, for certain γ > 0 and τ ≥ n (see Definition 2.5).
Then, for any analytic function v : Tnρ → C, with ‖v‖ρ < ∞ and ρ > 0, there exists a unique zero-average analytic
solution u : Tnρ → C of Lu = v − 〈v〉, denoted by u = Rv. Moreover, given L ∈ N, for any 0 < δ < ρ we have

‖u‖ρ−δ ≤
cR(δ)

γδτ
‖v‖ρ, (89)

where

cR(δ) =

√√√√γ2δ2τ2n
∑

0<|k|1≤L

e−4π|k|1δ

4| sin(πk · ω)|2
+ 2n−3ζ(2, 2τ )(2π)−2τ

∫ ∞
4πδ(L+1)

u2τe−u du (90)

and ζ(a, b) =
∑

j≥0(b+ j)−a is the Hurwitz zeta function.

Proof. We follow standard arguments (see [19, 37, 51, 67, 69]), with an eye in the feasibility of computing rigorous
upper bounds of finite sums (up to order L).

We control the divisors in the expansion of the function u(θ) = Rv(θ), formally given by Equation (20), as

|1− e2πik·ω| = 2| sin(πk · ω)| ≥ 22 min
m∈Z
|k · ω −m|,

where we used that sinx ≥ 2x/π if x ≤ π/2 and that minm∈Z |k · ω −m| < 1/2. Then, it is natural to introduce
the notation dk = k · ω −mk, such that |dk| = minm∈Z |k · ω −m|. Notice that the divisors dk satisfy dk1 6= dk2 if
k1 6= k2, and d−k = −dk. The Diophantine condition in (21) reads |dk| ≥ γ|k|−τ1 .

We then control the norm of u as

‖u‖ρ−δ ≤ ‖u‖F,ρ−δ ≤
∑

k∈Zn\{0}

|v̂k|
2| sin(πk · ω)|

e2π|k|1(ρ−δ)

≤
( ∑
k∈Zn\{0}

|v̂k|2e4π|k|1ρ
)1/2( ∑

k∈Zn\{0}

e−4π|k|1δ

22 sin2(πk · ω)

)1/2

, (91)

where we used Cauchy-Schwarz inequality. On the one hand, the first term is bounded by∑
k∈Zn\{0}

|v̂k|2e4π|k|1ρ ≤
∑
k∈Zn

|v̂k|2e4π|k|1ρ ≤ 2n‖v‖2ρ (92)

(see [67]), and on the other hand, the second term is bounded by computing the sum up to order L and controlling the
tail, ∑

k∈Zn\{0}

e−4π|k|1δ

4| sin(πk · ω)|2
=

∑
0<|k|1≤L

e−4π|k|1δ

4| sin(πk · ω)|2
+
∑
|k|1>L

e−4π|k|1δ

4| sin(πk · ω)|2
. (93)

By using that 2| sin(πk · ω)| ≥ 22|dk|, and the Abel summation formula, we bound the tail by

∑
|k|1>L

e−4π|k|1δ

4| sin(πk · ω)|2
≤

∞∑
`=L+1

( ∑
k∈Zn\{0}
|k|1≤`

1

24|dk|2

)
(e−4π`δ − e−4π(`+1)δ). (94)

Then, given ` ∈ N, we define the set of positive divisors up to order ` as

D` = {k ∈ Zn\{0} : |k|1 ≤ ` and dk > 0},
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and we sort the divisors according to 0 < dk1 < . . . < dk#D`
with kj ∈ D`, for j = 1, . . . ,#D`. We obtain

recursively that
dkj = (dkj − dkj−1

) + · · ·+ (dk2 − dk1) + dk1 ≥ (j − 1)γ(2`)−τ + γ`−τ ,

where we used that |k1|1 ≤ ` and |ki − ki−1|1 ≤ 2`. Then, we have

#D∑̀
j=1

1

(dkj )
2
≤
∞∑
j=1

`2τ

γ2(1 + (j − 1)2−τ )2
= 22τ

∞∑
j=0

1

(2τ + j)2

`2τ

γ2
= 22τζ(2, 2τ )

`2τ

γ2
.

The same result is obtained for the sum corresponding to the negative divisors up to order `.
Finally, we control the sum of Equation (94) as follows∑

|k|1>L

e−4π|k|1δ

4| sin(πk · ω)|2
≤ 22τζ(2, 2τ )

23γ2

∑
`>L

`2τ
∫ `+1

`
4πδe−4πδxdx

≤ 4πδ22τζ(2, 2τ )

23γ2

∫ ∞
L+1

x2τe−4πδxdx =
2−3ζ(2, 2τ )

γ2(2πδ)2τ

∫ ∞
4πδ(L+1)

u2τe−udu. (95)

Combining Equations (91), (92), and (95), we end up with the stated estimate.

Remark 4.4. Taking L = 0 we obtain

cR(δ) =

√
2n−3ζ(2, 2τ )(2π)−2τ

∫ ∞
4πδ

u2τe−u du ≤
√

2n−3ζ(2, 2τ )(2π)−2τΓ(2τ + 1), (96)

which gives us the classic (uniform) Rüssmann estimate.

If we use a computer to control the first divisors explicitly, then it turns out that the expression cR(δ) in Equa-
tion (90) improves the classic estimate in Equation (96). To this end, we enclose ω with an interval vector $, as
described in Section 4.1, and we rigorously enclose the finite sum for 0 < |k|1 ≤ L using interval arithmetics. We
consider upper bounds of the integral in the tail using that, if y > x,∫ ∞

y
uxe−udu ≤ y

y − x
yxe−y.

Applying this last estimate requires to take L such that 4πδ(L + 1) > 2τ in (95). In practice, we take a value of L
large enough in such a way that the contribution of the tail is smaller than the contribution of the finite sum.

In Tables 3 and 4 we present some rigorous bounds of cR(δ), given by Equation (90), for several values of δ and
we compare them with the classic constant cR, given by Equation (96). Specifically, in Table 3 we consider the same
1-dimensional interval frequencies characterized in Table 1. In Table 4 we consider the same 2-dimensional interval
frequencies characterized in Table 2. The computations have been performed using the interval arithmetics library
MPFI (see [65]) taking a precision of 64 bits. We observe that the improvement of Equation (90) is remarkable and,
in some cases, we improve the classic constant by several orders of magnitude. As we will see, this represents an
important improvement in order to apply the KAM theorem.

5 Validation algorithm to apply the KAM theorem

In this section we present a methodology to perform computer assisted validations of Lagrangian quasi-periodic
invariant tori in exact symplectic maps. Given an approximately F -invariant torus (e.g. obtained numerically) we
have to rigorously bound the error of such an approximation, and to rigorously verify the a priori hypotheses of
Theorem 2.6. One of the applications of the proposed methodology falls into one of the main strains of the field of
validated numerics and, for this reason, we use the term validation algorithm in what follows.
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ωa,b cR(δ) ≤
a b L = 0 δ = 0.1 δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

1 1 6.53700395e-02 1.70002315e-02 1.01408017e-02 5.57856565e-03 3.06566441e-03 1.68472062e-03
1 2 6.76832915e-02 1.40967097e-02 8.84204788e-03 5.26914629e-03 3.08884783e-03 1.79851814e-03
1 3 6.92956514e-02 1.29193920e-02 8.71895511e-03 5.18084015e-03 3.29070636e-03 1.98865837e-03
1 4 7.09671322e-02 1.25818941e-02 8.36835924e-03 5.84462956e-03 3.60202865e-03 2.21507905e-03
1 5 7.18258809e-02 1.23983728e-02 7.88617196e-03 5.47041537e-03 3.93080619e-03 2.62830129e-03
1 6 7.27004339e-02 1.24386826e-02 8.01767004e-03 5.19907101e-03 3.59023334e-03 2.59913106e-03
2 1 6.53700395e-02 1.74727821e-02 1.04651045e-02 5.78939864e-03 3.21601209e-03 1.75767438e-03
2 2 6.46258261e-02 1.87353432e-02 1.09024839e-02 5.85645816e-03 3.14665921e-03 1.68979306e-03
2 3 6.68984767e-02 1.63024413e-02 9.88023684e-03 5.56751156e-03 3.12759392e-03 1.77052228e-03
2 4 6.84822445e-02 1.53872642e-02 9.71562658e-03 5.85967409e-03 3.53201756e-03 2.12887318e-03
2 5 7.01238363e-02 1.50961843e-02 9.60632258e-03 5.78570281e-03 3.43840456e-03 2.04301934e-03
2 6 7.09671322e-02 1.48540346e-02 9.04822601e-03 5.05304849e-03 2.95729166e-03 1.98349009e-03
3 1 6.76832915e-02 1.46809408e-02 1.00993505e-02 5.63999620e-03 3.50708184e-03 1.95894122e-03
3 2 6.68984767e-02 1.43496537e-02 8.98100848e-03 5.22239107e-03 3.08135263e-03 1.82028295e-03
3 3 6.68984767e-02 1.58579091e-02 9.83769747e-03 5.65400813e-03 3.24897579e-03 1.86887029e-03
3 4 6.76832915e-02 1.62566583e-02 9.69074106e-03 5.59759584e-03 3.32500705e-03 1.99628047e-03
3 5 6.92956514e-02 1.50813939e-02 8.58023012e-03 5.31739360e-03 3.58299882e-03 2.46021534e-03
3 6 7.01238363e-02 1.42772183e-02 7.56136730e-03 5.20508341e-03 4.02265302e-03 2.54652970e-03
4 1 6.92956514e-02 1.31882573e-02 9.51364826e-03 6.14222557e-03 3.50022063e-03 2.17640510e-03
4 2 6.84822445e-02 1.26639499e-02 8.35820776e-03 5.03133457e-03 3.02541383e-03 1.81923509e-03
4 3 6.84822445e-02 1.32535840e-02 9.03724309e-03 5.61174299e-03 3.33248407e-03 1.90879693e-03
4 4 6.84822445e-02 1.39802574e-02 9.34078901e-03 5.55619944e-03 3.32472818e-03 2.05369884e-03
4 5 6.84822445e-02 1.48184252e-02 9.49849042e-03 5.85472306e-03 3.88991086e-03 2.07085456e-03
4 6 6.92956514e-02 1.38269028e-02 8.66584042e-03 6.22603715e-03 3.90134199e-03 1.99958702e-03
5 1 7.09671322e-02 1.26864212e-02 8.86482905e-03 6.21678963e-03 4.26563195e-03 2.68508905e-03
5 2 7.01238363e-02 1.22725538e-02 8.83966465e-03 5.80010426e-03 3.74378915e-03 2.37051014e-03
5 3 7.01238363e-02 1.24917622e-02 9.34589411e-03 5.62325597e-03 3.07349358e-03 1.89609801e-03
5 4 7.01238363e-02 1.27481886e-02 9.35639250e-03 5.19209738e-03 3.32315143e-03 2.18847977e-03
5 5 7.01238363e-02 1.30462113e-02 9.23511743e-03 5.79164682e-03 3.51817789e-03 2.36970971e-03
5 6 7.01238363e-02 1.33875654e-02 9.20387961e-03 6.71312444e-03 3.57979848e-03 2.30908333e-03
6 1 7.18258809e-02 1.24345830e-02 8.50000514e-03 5.57984051e-03 3.88857456e-03 2.76605873e-03
6 2 7.18258809e-02 1.23988684e-02 9.62126814e-03 6.51124354e-03 4.05219896e-03 2.34111803e-03
6 3 7.09671322e-02 1.22004393e-02 9.29930218e-03 4.89324773e-03 2.80122249e-03 2.10296918e-03
6 4 7.09671322e-02 1.22880935e-02 8.91873609e-03 4.68287840e-03 3.19881083e-03 2.50645650e-03
6 5 7.09671322e-02 1.23862489e-02 8.53842453e-03 5.33661343e-03 3.55154114e-03 2.28605325e-03
6 6 7.09671322e-02 1.24977263e-02 8.40455003e-03 5.93603968e-03 3.81558500e-03 2.25377574e-03

Table 3: We give a rigorous upper bound of cR(δ), given by Equation (90) for several 1-dimensional tight interval frequencies frequencies

$ enclosing intervals given by Equation (87). We use the values (γ, τ) provided in Table 1. The column L = 0 corresponds to the classic

Rüssmann constant in Equation (96).

cR(δ) ≤
p q L = 0 δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.005 δ = 0.001

2 3 3.62859961e-02 3.10060284e-03 6.00977402e-03 1.50395887e-03 1.23391239e-03 8.15687337e-04
2 5 4.24412098e-02 6.88136970e-04 8.38062576e-04 6.85210209e-03 3.48793730e-03 1.39435290e-03
2 7 4.08296165e-02 1.51913516e-03 1.64056165e-03 5.96490692e-03 2.86266455e-03 1.08117640e-03
2 11 3.68950309e-02 3.40361447e-03 5.37454913e-03 2.42226866e-03 1.16692138e-03 5.72003609e-04
2 13 3.81857929e-02 3.34411162e-03 1.88186836e-03 5.70267600e-03 6.35005202e-03 2.59988091e-03
3 5 3.58927516e-02 6.12958788e-03 3.95221883e-03 2.42682994e-03 1.30875574e-03 1.17588322e-03
3 7 3.42417879e-02 6.62761410e-03 4.15150247e-03 2.08654672e-03 1.29692066e-03 1.82961175e-03
3 11 3.84108018e-02 5.79145725e-03 5.55693971e-03 8.86690139e-04 7.03975422e-04 1.57560298e-03
3 13 3.49523429e-02 5.16292254e-03 6.09178577e-03 2.29447926e-03 1.84095693e-03 1.36098576e-03
5 7 4.27225331e-02 6.29450376e-03 6.95330075e-03 8.63897764e-04 3.99507510e-04 1.95384727e-03
5 11 3.73142594e-02 2.16195541e-03 3.88935752e-03 1.44076003e-03 7.74345647e-04 6.57036231e-03
5 13 3.68950309e-02 2.73635212e-03 4.34566648e-03 2.63259686e-03 1.00779405e-03 1.73212787e-03
7 11 4.16193859e-02 2.03472877e-03 6.68639919e-03 2.04760389e-03 7.38986151e-04 2.71601280e-04
7 13 3.56998570e-02 4.23255275e-03 4.16600489e-03 2.44375364e-03 1.91977769e-03 4.23864594e-03
11 13 4.38862946e-02 2.62790710e-03 7.60559938e-03 2.07028161e-03 6.59592023e-04 2.09531497e-04

Table 4: We give a rigorous upper bound of cR(δ), given by Equation (90) for several 2-dimensional (tight) interval frequencies $ enclosing

intervals given by Equation (88). We use the values (γ, τ) provided in Table 2. The column L = 0 corresponds to the classic Rüssmann

constant in Equation (96).
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We use fast Fourier transform to manipulate approximations of periodic functions and then we use the error estim-
ates discussed in Section 3. Hence, the computational cost of the proposed methodology is of order O(ND logND),
where ND is the total number of used Fourier coefficients and the asymptotic constant depends on the problem. Ob-
serve that we do not require to perform any symbolic manipulation of Fourier series (as in [29]) which has cost
O(ND

2). An important aspect of our approach is that the asymptotic cost of the validation coincides with the asymp-
totic cost of computing invariant tori using the parameterization method (see [8, 31, 37, 41]).

5.1 A validation algorithm

In this section we propose an algorithm to apply Theorem 2.6 in particular problems. The algorithm is stated at a
formal level but, when implementing it using a computer, operations must be performed using interval arithmetics. In
Algorithm 5.1 we overview the procedure. A detailed discussion of each step is given in separate subsections.

Let us first present some useful notation. We recall that F : A → A is homotopic to the identity and K : Tn → A
is homotopic to the zero section. For this reason, it is interesting to introduce the notation

F (x, y) = (x, 0) + Fp(x, y),

and
K(θ) = (θ, 0) +Kp(θ).

To handle periodic functions, we approximate them using discrete Fourier transform and we control such approx-
imation using the estimates presented in Section 3. Given a periodic function f : Tn → C and a regular grid of size
NF = (NF,1, . . . , NF,n) ∈ Nn, satisfying that NF,` = 2q` , with q` ∈ N, for ` = 1, . . . , n, we consider a sample of
points θj ∈ Tn, given by (75), that defines an n-dimensional array {fj}, fj = f(θj), where j = (j1, . . . , jn), with
0 ≤ j` < NF,` and 1 ≤ ` ≤ n.

We recall that the total number of points is given by ND = NF,1 · · ·NF,n and that we denote by f̃ the discrete
Fourier approximation given by Equation (76). For every sample {fj} we introduce the forward discrete Fourier
transform

{f̃k} = DFTF({fj}), with f̃k =
1

ND

∑
0≤j<NF

fje
−2πik·θj , (97)

with k = (k1, . . . , kn) and −NF,`

2 ≤ k` <
NF,`

2 . Similarly, we introduce the backward discrete Fourier transform

{fj} = DFTB({f̃k}), with fj =
∑

−NF
2
≤k<NF

2

f̃ke
2πik·θj . (98)

Notice that Equations (97) and (98) are just formal definitions. When implementing the validation algorithm we
will resort to FFT to evaluate these expressions. Such FFT algorithms carry operations in a particular ordering, which
may not be optimal in terms of rounding operations (when using interval arithmetics), but allows performing fast
computations. From now on we use the notation FFTF and FFTB to refer to Equations (97) and (98) evaluated
according to the FFT algorithms.

Finally, we give some details on the manipulation of functions discretized in the Fourier space. Given a periodic
function f , discretized as {f̃k}, we compute the Fourier discretization of a partial derivative ∂θlf as {(∂̃θlf)k} =
{2πklif̃k}, which corresponds to a diagonal operator in Fourier space. Similarly, given an interval vector $, the
composition f◦R$ is approximated as {(f̃◦R$)k} = {e2πik·$f̃k}.

Algorithm 5.1. Given an annulus A endowed with an exact symplectic structure ω = dα represented by Ω(z) and
a(z), let us consider an exact symplectic map F : A → A and the following input:

• Input 1. Sampling of an approximately invariant torus: a sampling {Kp,j}, with Kp,j = K0(θj)− (θj , 0) on a
regular grid on Tn of size NF = (NF,1, . . . , NF,n), with NF,` = 2q` and q` ∈ N, for ` = 1, . . . , n.
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• Input 2. Transversal vectors: a map N0 : Tn → R2n×n.

• Input 3. Frequency vector: a pair of constants τ > 0 and γ > 0, and an interval vector $ = ($1, . . . , $n)
containing a (γ, τ)-Diophantine vector of frequencies.

• Input 4. KAM parameters: constants δ, σ, ρ, ρ̂, ρ∞, and dB satisfying 0 < δ < ρ/3, 0 < ρ < ρ̂, 1 < σ,
0 < ρ∞ < ρ, and dB > 0.

Then, proceed as follows:

• Step 0. Parameterization of the approximately invariant torus: compute the parameterization K(θ) = (θ, 0) +
K̃p(θ), and characterize the global complex domain B. Details are provided in Section 5.2.

• Step 1. Error of invariance: compute a constant bE such that ‖E‖ρ ≤ bE. Details are provided in Section 5.3.

• Step 2. Symplectic frame: compute constants bDK , bDK> , bN>0 (Ω◦K)N0
, bB, bA, bN , and bN> such that ‖DK‖ρ ≤

bDK , ‖DK>‖ρ ≤ bDK> , ‖N>0 (Ω ◦ K)N0‖ρ ≤ bN>0 (Ω◦K)N0
, ‖B‖ρ ≤ bB, ‖A‖ρ ≤ bA, ‖N‖ρ ≤ bN , and

‖N>‖ρ ≤ bN> . Details are provided in Section 5.4.

• Step 3. Torsion matrix: compute the discrete Fourier approximation T̃ of T and compute a constant bT such
that | 〈T 〉 | ≤ bT . Details are provided in Section 5.5.

• Step 4. Hypotheses of the theorem: introduce the constants

σDK = bDK σ, σDK> = bDK> σ, σN>0 (Ω◦K)N0
= bN>0 (Ω◦K)N0

σ, σB = bB σ, σT = bT σ, (99)

so that (using σ > 1) Hypotheses H1, H2, H3, H4, and H5 in Theorem 2.6 are satisfied. Then, compute
constants C1 and C2. Details are provided in Section 5.6.

If the condition
C1bE
γ4ρ4τ

< 1

holds, then, for every (γ, τ)-Diophantine frequency ω ∈ $ there exists an F -invariant torus K∞,ω(Tn), analytic in
the strip of width ρ∞ = ρ/a2. Moreover, these invariant tori satisfy

‖DK∞,ω‖ρ∞ < σDK , ‖DK>∞,ω‖ρ∞ < σDK> , ‖K∞,ω −K‖ρ∞ <
C2bE
γ2ρ2τ

.

Remark 5.2. Incidentally, the above process gives a lower bound of the relative measure of the vectors ω in $ for
which the KAM theorem applies. Assume that the pair (γ, τ) has been assigned to the interval vector $ by the
algorithm derived from Proposition 4.1 (using a given value of M ). Notice that for γ0 < γ the constant C1 = C1(γ)
is an upper bound of C1(γ0). Then, if we take γ0 such that

C1(γ)bE
γ4

0ρ
4τ

= 1,

it turns out that the theorem also applies for (γ0, τ)-Diophantine vectors. A straightforward computation gives that

p($, γ0, τ) > 1− C($,n)γ0

(τ − n)M τ−n = 1−
C($,n) 4

√
C1(γ)bE

(τ − n)M τ−nρτ
. (100)
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5.2 Implementation details of Step 0

This preliminary step is performed in order to simplify the implementation of the algorithm. We observe that The-
orem 2.6 deals with real analytic objects with real analytic derivatives. Notice that this property is not preserved by
DFT. A simple way to avoid this problem is to consider the validation of a suitable parameterization. To this end, we
perform the following computations:

• We compute K̃p = {K̃p,k} = FFTF({Kp,j}), where {Kp,j} is the sample given in Input 1.

• We set to zero the coefficients K̃p,k with k = (k1, . . . , kn) such that −NF,`/2 ≤ k` ≤ −NF,`/4 or NF,`/4 ≤
k` < NF,`/2 for some index k`.

• We set the parameterization K(θ) = (θ, 0) + K̃p(θ) and redefine the sampling {Kp,j} = FFTB({K̃p,k}),
replacing the original one.

Remark 5.3. An alternative formulation of Algorithm 5.1 would consist in considering the constructed discrete Four-
ier approximation K̃ = {K̃p,k} in Input 1.

Now we introduce the domain B given by

B = {(x, y) ∈ Cn/Zn × Cn : |Imxi| ≤ dB + ρ+ ‖Kxi
p ‖F,ρ , |yi| ≤ dB + ‖Kyi

p ‖F,ρ}, (101)

and the domain B̂ given by

B̂ = {(x, y) ∈ Cn/Zn × Cn : |Imxi| ≤ ρ̂+ ‖Kxi
p ‖F,ρ̂ , |yi| ≤ ‖Kyi

p ‖F,ρ̂}.

Finally, we compute the following upper estimates ‖Da‖B ≤ cDa, ‖D2a‖B ≤ cD2a, ‖Ω‖B ≤ cΩ, ‖DΩ‖B ≤ cDΩ,
‖DF‖B ≤ cDF , and ‖D2F‖B ≤ cD2F , which appear in the statement of Theorem 2.6. We also compute the upper
estimates ‖Ω‖B ≤ ĉΩ, and ‖Fp‖B̂ ≤ ĉFp .

5.3 Implementation details of Step 1

To evaluate the error E(θ) we use the expression

E(θ) =

(
Kx
p (θ) + F xp (K(θ))−Kx

p (θ +$)−$
F yp (K(θ))−Ky

p (θ +$)

)
. (102)

To evaluate this formula at the grid points, we first compute Fp◦K and Kp◦R$: the first term is computed directly
from the grid, thus obtaining

{(Fp◦K)j} = {Fp(θj +Kx
p,j ,K

y
p,j)},

and the second term is computed in Fourier space, thus obtaining { ˜(Kp◦R$)k}. Then we compute

{(Kp◦R$)j} = FFTB({ ˜(Kp◦R$)k}).

From these expressions, the computation of Equation (102) at the grid, {Ej}, is straightforward. Then, we compute
{Ẽk} = FFTF({Ej}).

Finally, using component-wise Theorem 3.3, we have

‖Ẽ − E‖ρ = max{‖Ẽx − Ex‖ρ, ‖Ẽy − Ey‖ρ} ≤ CNF
(ρ, ρ̂) max{‖Ex‖ρ̂, ‖Ey‖ρ̂}

≤ CNF
(ρ, ρ̂) max

{
‖F xp ◦K‖ρ̂ + 2‖Kx

p ‖ρ̂ + |$|, ‖F yp ◦K‖ρ̂ + ‖Ky
p‖ρ̂
}
,

≤ CNF
(ρ, ρ̂) max

{
ĉFp + 2‖Kx

p ‖F,ρ̂ + |$|, ĉFp + ‖Ky
p‖F,ρ̂

}
,

thus obtaining

‖E‖ρ ≤ ‖Ẽ‖F,ρ + CNF
(ρ, ρ̂) max

{
ĉFp + 2‖Kx

p ‖F,ρ̂ + |$|, ĉFp + ‖Ky
p‖F,ρ̂

}
=: bE.
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5.4 Implementation details of Step 2

To construct the frame P (θ) we represent the tangent vectors DK(θ) as

{D̃Kk} =

{(
In
On

)
δk,0 + D̃Kp,k

}
, {DKj} =

{(
In
On

)
+ DKp,j

}
,

where δk,0 is Kronecker’s delta, and the computation of {D̃Kp,k} is performed in Fourier space. Finally compute
{DKp,j} = FFTB({D̃Kp,k}).

We compute an approximation of the matrix G(θ) = −DK(θ)>Ω(K(θ))N0(θ) in a grid as

{Gj} = {−DK>j ΩjN0,j},

where Ωj = Ω((θj , 0) +Kp,j) and N0,j = N0(θj). We complement DK(θ) by computing N(θ) as

{Nj} = {DKjAj +N0
j Bj},

where
{Bj} = {G−1

j } and {Aj} = {−1

2
(B>j N0,j

>ΩjN0,jBj)}. (103)

Then, we obtain {Ñk} using DFT, thus ending up with

{P̃k} = {
(
D̃Kk Ñk

)
}, {Pj} = {

(
DKj Nj

)
}.

Let us observe that, since the parameterization is a truncated series, we have DK(θ) = D̃K(θ) and we set

‖DK‖ρ ≤ ‖D̃K‖F,ρ =: bDK , ‖DK>‖ρ ≤ ‖D̃K
>
‖F,ρ =: bDK> .

We also need to control ‖N0‖ρ ≤ cN0
, ‖N>0 ‖ρ ≤ cN>0 , ‖N>0 (Ω ◦ K)N0‖ρ ≤ bN>0 (Ω◦K)N0

, ‖N0‖ρ̂ ≤ ĉN0
, and

‖N>0 ‖ρ̂ ≤ ĉN>0 . Since the selection of N0 depends on the particular application at hand, we do not give here explicit
details for the estimation of these objects. They follow using the same ideas that we discuss next to control the error of
discrete Fourier approximations of the remaining objects. To use Corollary 3.8 we control the norm of In−G(θ)B̃(θ)
as follows

‖In −GB̃‖ρ ≤ CNF
(ρ, ρ̂)‖G‖ρ̂‖B̃‖ρ̂ ≤ CNF

(ρ, ρ̂)‖D̃K
>
‖ρ̂‖Ω‖B̂‖N0‖ρ̂‖B̃‖ρ̂

≤ CNF
(ρ, ρ̂)ĉΩĉN0

‖D̃K
>
‖F,ρ̂‖B̃‖ρ̂ =: tB.

Then, if tB < 1 we use Corollary 3.9, thus obtaining

‖B‖ρ ≤ ‖B̃‖F,ρ +
tB‖B̃‖F,ρ̂

1− tB
=: bB. (104)

Finally, we obtain direct estimates for ‖A‖ρ and ‖N‖ρ. On the one hand, using Equation (104), we have

‖A‖ρ ≤
1

2
‖B>‖ρ‖N>0 (Ω ◦K)N0‖ρ‖B‖ρ ≤

n

2
bN>0 (Ω◦K)N0

(bB)2 =: bA, (105)

and on the other hand, using Equations (104) and (105), we have

‖N‖ρ ≤ ‖DK‖ρ‖A‖ρ + ‖N0‖ρ‖B‖ρ ≤ bDKbA + cN0
bB =: bN , (106)

‖N>‖ρ ≤ ‖A‖ρ‖DK>‖ρ + ‖B>‖ρ‖N>0 ‖ρ ≤ bAbDK> + nbBcN>0 =: bN> . (107)
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5.5 Implementation details of Step 3

To compute the torsion matrix T (θ), we first obtain the shifted normal frame {(Ñ ◦ R$)k} and {(Ñ ◦ R$)j} =
FFTB({(Ñ ◦R$)k}). Then, we compute

{Tj} = {(N◦R$)>j (Ω◦K◦R$)j(DF◦K)jNj},

and approximate the average 〈T 〉 as follows

T̃0 =
1

ND

∑
j

Tj .

Then we compute

|T̃0 − 〈T 〉 | ≤ s∗NF
(0, ρ)‖T‖ρ ≤ s∗NF

(0, ρ)‖N>‖ρ‖Ω‖B‖DF‖B‖N‖ρ ≤ s∗NF
(0, ρ)cΩcDF bNbN> := tT

using the upper estimates in (106) and (107) for ‖N‖ρ and ‖N>‖ρ, respectively. Finally, we check that

|T̃−1
0 |tT < 1,

and we obtain (using a Neumann series argument)

| 〈T 〉−1 | ≤ |T̃−1
0 |

1− |T̃−1
0 ||T̃0 − 〈T 〉 |

≤ |T̃−1
0 |

1− |T̃−1
0 |tT

=: bT .

5.6 Implementation details of Step 4

We notice that the choice in (99) introduces some suitable simplifications in the expression of Constants C1 and C2.
Indeed, after simple manipulations of the expressions described in Section 2.4 and using the Equations (99) and (101),
we obtain

C1 = max
{

2(a3)τ+1γ3ρ3τ−1C3,C3,C4,C5

}
, C2 :=

a2τ
3 Ĉ2

1− a1−2τ
1

,

where

C3 = (a1a3)4τ Ĉ5, C4 =
σ∗(a3)2τ+1γ2ρ2τ−1Ĉ2

(σ − 1)(1− a1−2τ
1 )

, C5 =
(a3)2τγ2ρ2τ Ĉ2

dB(1− a−2τ
1 )

. (108)

Finally, we provide expressions for the constants σ∗, Ĉ2, and Ĉ5 in terms of the initial data. The first one is given by

σ∗ = max

{
n

bDK

,
2n

bDK>
,
cN>0 cDΩcN0

δ

bN>0 (Ω◦K)N0

,
β1

bB
,
β5

bT

}
(109)

where

β1 = 2σ2
BcN0

(
σDK>cDΩδ + 2ncΩ

)
,

β2 = n
2 (σB)2cDΩδ + n+1

2 σN>0 (Ω◦K)N0
β1,

β3 = σDKβ2 + ncA + cN0
β1,

β4 = σDK>β2 + 2ncA + ncN>0 β1,

β5 = 2(σT )2
(
cN>cN(cΩcD2F + cDΩcDF )δ + cΩcDF (cN>β3 + cNβ4)

)
and

cA = 1
2nσN>0 (Ω◦K)N0

(σB)2, cN = σDKcA + cN0
σB, cN> = cAσDK> + nσBcN>0 .
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The constants Ĉ2 and Ĉ5 follow from the next sequence of computations:

cP = σDK + cN ,

cT = cN>cΩcDF cN ,

C1 = σDK>σDKcDΩδ + nσDK>cΩ + 2ncΩcDFσDK ,

C2 = cRC1,

C3 = (1 + cA) max(1, cA)C2,

C4 = ncN>cΩγδ
τ + cAC2,

C5 = C2 + nσDK>cΩγδ
τ ,

C6 = cAC2 + σDK>cDΩcDF cNγδ
τ+1 + 2ncΩcDF cNγδ

τ ,

C7 = max(C4, C5 + C6),

C8 = 2cRσDK>cΩ,

C9 = C8 + σT (cN>cΩγδ
τ + cTC8),

C10 = cR(cN>cΩγδ
τ + cTC9),

Ĉ2 = σDKC10 + cNC9γδ
τ ,

C15 = (C3 + C7) max(C9γδ
τ , C10) + 2ncDaγ

3δ3τ + 1
2cD2aγ

3δ3τ+1,

Ĉ5 = 2cPC15γδ
τ−1 + 1

2cD2F Ĉ
2
2 ,

where the value cR is computed using Equation (90). We recall that if we take the value L = 0 in (90) we obtain the
classic expression in (96).

Remark 5.4. It is worth mentioning that the above expressions are very general. Using specific information from
a particular problems, it is possible to improve some estimates. For example, if n = 1 then the phase space is 2-
dimensional and every 1-dimensional subspace is Lagrangian. This has the immediate consequence that we can take
C1 = 0, bA = cA = 0 and bN>0 (Ω◦K)N0

= 0, thus simplifying the computations and reducing the size of the subsequent
constants. Indeed, in this case the third element in (109) is removed. For the same reason, if n = 1 we do not have
to control ‖Ā − A‖ρ−3δ so we can take C12 = 0, and so, β2 = 0. Moreover, we can take advantage of the specific
expression of the map F and the matrix N0 in order to control the norm of the twist matrix T . More precisely, we can
replace the estimate ‖T‖ρ ≤ cT = cN>cΩcDF cN by an ad hoc estimation for the considered problem.

6 Application of the KAM theorem in some examples

In this section we apply the techniques described in the paper to prove existence of invariant tori in different scenarios.
A common feature in the selected examples is that the objects F , Ω, and a are explicit. As a consequence we directly
obtain global estimates for ‖DF‖B, ‖D2F‖B, ‖Ω‖B, ‖DΩ‖B, ‖Da‖B, and ‖D2a‖B. This allows us to focus in the
fundamental steps involved in the computer assisted proof (CAP). If the symplectic map is defined by means of an
implicit equation or it is given by the discretization of the flow of a Hamiltonian vector field, then the control of global
estimates may deserve a particular attention and can become a very difficult problem (see the discussion in Section 7).

In order to avoid repeated explanations in the description of the different examples, we summarize next some
general details regarding the input of Algorithm 5.1 that we use to perform the CAPs.

• Input 1. The numerical values of the sampling {Kp,j}, with Kp,j = K0(θj) − (θj , 0) in a regular grid of size
NF = (NF,1, . . . , NF,n), are provided by means of a data file. These numbers are read rounding to the nearest
representable number. These numbers are used to construct the parameterization that will be validated (Step 0
of the Algorithm 5.1).
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• Input 2. The transversal mapN0 is selected according to the particular problem at hand. For example, if we look
for an invariant curve and we know that it is a graph, then we can introduce a constant vector complementing
the tangent vector of the curve at every point. We also can use the geometric structure of the problem to obtain
the transversal map. The evaluation rule for the map N0 is provided by means of a separate subroutine. The
reader is referred to Chapter 4 of [37] for a detailed discussion that summarizes different approaches in the
literature.

• Input 3. When the frequency vector is defined by means of an algebraic equation then $ is obtained by enclos-
ing the solution of this equation. When the frequency vector has been obtained in a numerical computation, then
the enclosing interval vector $ is selected according with the precision of the computation. If the Diophantine
constants of a target frequency are known, they can be provided (e.g. for the golden mean). Otherwise, we
obtain a pair of constants τ > n and γ > 0 using the methodology derived from Proposition 4.1.

• Input 4. For every parameterization given in Input 1, we need suitable constants δ, σ, ρ, ρ̂, ρ∞, and dB satisfying
0 < δ < ρ/3, 0 < ρ < ρ̂, 1 < σ, 0 ≤ ρ∞ < ρ, and dB > 0. These constants are obtained from the heuristic
(non-rigorous) methodology described in Appendix A, and are provided by a data file. They are read rounding
to the nearest representable number.

The sampling {Kp,j} is obtained numerically using the implementation of the parameterization method proposed
in Chapter 4 of [37]. Analogous implementations of the method in different contexts have been previously presen-
ted in the literature adapted to several problems [8, 9, 10, 21, 31, 38, 41]. We want to remark that the validation
algorithm admits complete freedom in using a different method to obtain the approximate parameterization. Indeed,
the numerical computation of invariant tori has been a fruitful area of research in the last years and there is a wide
set of numerical methods available. The parameterization method is a suitable choice for several reasons: it has cost
O(ND) in storage and only O(ND log(ND)) in time, where ND = NF,1 · · ·NF,n; it does not use a perturbative setting
of the problem so we can consider any invariant torus in phase space, without performing any perturbative analysis of
the parameters of the problem; the numerical algorithm of the parameterization method has a similar structure than
Algorithm 5.1 so we can take advantage of the same codes using a suitable overloading of arithmetics. Finally, we
observe that the bottleneck of Algorithm 5.1 is the error of invariance of the parameterization defined by the sampling
{Kp,j} (see details in Section 5.2). To this end, the fact that the convergence of the parameterization method is
quadratic and that the iterations are fast allows us to obtain approximations of invariant tori with very high accuracy.

6.1 Standard map

We first consider the study of quasi-periodic invariant curves of the so-called Chirikov standard map [18]

F : T× R −→ T× R
(x, y) 7−→ (x̄, ȳ) =

(
x+ ȳ, y − ε

2π sin(2πx)
) . (110)

For ε = 0 the dynamics is very simple: the orbit of any point (x, y) ∈ T×R is given by the rigid rotation Fn(x, y) =
(x+ny, y). Note that if y = p/q ∈ Q the corresponding orbit is periodic, i.e., F q(x, y) = (x+p, y) = (x, y). On the
contrary, if y ∈ R\Q, the orbit is dense in the invariant curve T × {y}. In any case, the orbit of a given point (x, y)
has rotation number ω = y for every x ∈ T.

For ε > 0, sufficiently small, KAM theory concludes that “most” of the previous invariant curves persist, although
they are slightly deformed. The deformation preserves the homotopy class of these rotational invariant curves, also
called primary tori. These curves are successively destroyed as ε is increased. The value of ε for which an invariant
curve is destroyed is called critical value εc = εc(ω). A particularly interesting case is the golden rotation ω =

√
5−1
2 .

For the standard map, given by Equation (110), we have A = T × R, α = α0 = ydx and ω = ω0 = dy ∧ dx.
Hence, we take cΩ = 1, cDΩ = 0, cDa = 1 and cD2a = 0. We select the transversal vector N0 : T→ R2×1 as

N0(θ) = N0 =

(
0
1

)
.
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ε NF ρ δ σ − 1 dB ρ̂ C1bE
γ4ρ4τ

C2bE
γ2ρ2τ

0.06 128 1.606160e-02 3.212319e-03 1.670325e-01 5.064098e-06 2.569855e-01 1.35e-28 9.47e-34
0.16 256 1.369960e-02 2.739919e-03 9.673976e-02 2.937365e-06 1.369960e-01 9.24e-28 3.77e-33
0.26 256 1.369960e-02 2.739919e-03 6.974093e-02 2.044422e-06 1.301462e-01 1.74e-26 4.94e-32
0.36 512 1.369960e-02 2.739919e-03 5.229422e-02 1.400906e-06 7.534778e-02 4.24e-25 8.26e-31
0.46 512 1.369960e-02 2.739919e-03 3.941981e-02 9.278480e-07 7.534778e-02 1.76e-23 2.27e-29
0.56 512 4.520867e-03 8.908112e-04 1.268703e-02 9.401294e-08 6.329214e-02 9.39e-24 1.24e-30
0.66 1024 3.300233e-03 5.973272e-04 1.047736e-02 4.061043e-08 3.300233e-02 1.88e-23 1.11e-30
0.76 1024 2.310163e-03 4.017675e-04 5.924431e-03 1.166394e-08 3.003212e-02 2.32e-18 3.98e-26
0.86 2048 1.178183e-03 1.996921e-04 1.921375e-03 1.234843e-09 1.531638e-02 1.74e-17 3.19e-26
0.96 32768 1.178183e-04 1.971855e-05 3.648874e-05 5.996316e-13 1.060365e-03 2.34e-12 2.09e-24

Table 5: Application of Theorem 2.6 using Algorithm 5.1 for the golden invariant curve of the standard map (110) for different values of ε.

We use γ = 3−
√

5
2

, τ = 1 and the ad hoc Rüssmann estimates in (90). The result (last two columns) is given with 2 significant digits.

In Step 0 of Algorithm 5.1, we introduce the domain B as

B = {(x, y) ∈ C/Z× C : |Imx| ≤ r1 , |y| ≤ r2},

and the domain B̂ as
B̂ = {(x, y) ∈ C/Z× C : |Imx| ≤ r̂1 , |y| ≤ r̂2},

where

r1 = dB + ρ+ ‖Kx
p ‖F,ρ, r2 = dB + ‖Ky

p‖F,ρ, r̂1 = ρ̂+ ‖Kx
p ‖F,ρ̂, r̂2 = ‖Ky

p‖F,ρ̂.

Then, global estimates of the symplectic map (110) in these domains are characterized as follows

‖DF‖B ≤ cDF := 2 + ε cosh(2πr1),

‖D2F‖B ≤ cD2F := 2πε cosh(2πr1),

‖Fp‖B̂ ≤ ĉFp := r̂2 +
ε

2π
cosh(2πr̂1).

Let us characterize the constants that appear in Step 2 of Algorithm 5.1. Since N0 is constant, we take cN0
= 1,

cN>0 = 1, ĉN0
= 1, and ĉN>0 = 1. Moreover, we observe that N>0 (Ω ◦ K)N0 vanishes identically, so we take

cN>0 (Ω◦K)N0
= 0 (see Remark 5.4).

In Table 5 we show the fundamental information in the computer assisted proof for the existence of the golden
invariant curve for different values of ε. The second column is the number of points NF in the regular grid where
the sampling {Kp,j} is defined. As it is mentioned in the introduction of this section, this sampling is obtained via
the parameterization method asking for a tolerance of 10−33 in the error of invariance (using the norm ‖E‖F,0). For
each value of ε and the corresponding sampling, we take the values ρ, δ, σ, dB and ρ̂ that are given in columns 3 to 7.
These values have been obtained using the heuristic methodology described in Appendix A. In all computations we
take a2 = 1000 so that ρ∞ = ρ/1000. We use the specific Diophantine constants γ = 3−

√
5

2 and τ = 1 of the golden
mean. After applying the rigorous computations described in Algorithm 5.1, using 267 bits, in the last two columns
we provide the values of the left-hand side of the KAM condition and the bound of the correction of the true invariant
tori, which are given by

C1bE
γ4ρ4τ

, ‖K∞ −K‖ρ∞ <
C2bE
γ2ρ2τ

,

respectively. It is worth mentioning that the results presented in Table 5 are non-perturbative, in the sense that the
computations are performed independently of each value of ε, without using any information related to smaller values
of the parameter. The computational time of the CAP for the case ε = 0.96 is 117 seconds in a single processor
Intel(R) Xeon(R) CPU at 2.40 GHz.

The application of the KAM theorem becomes computationally more demanding as we approach the critical
value εc. Indeed, from ε = 0.02 to ε = 0.96 the KAM condition has worsened by 16 orders of magnitude. From
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this point, the number of Fourier coefficients required to apply the theorem increase dramatically (exponentially). In
this situation, the Rüssmann estimates proposed in Section 4.2 play a significant role in improving the applicability of
the KAM theorem. For example, if we repeat the CAP for ε = 0.96 using the classic Rüssmann estimates in (96) we
obtain

C1bE
γ4ρ4τ

≤ 5.42 · 10−6,
C2bE
γ2ρ2τ

≤ 1.71 · 10−21.

In this case, expression C1bEγ
−4ρ−4τ is 6 orders of greater than the value obtained using the ad hoc estimates in (90).

The difference increases when we approach to the critical value. The last value of ε for which we have applied the
KAM theorem is the following:

Theorem 6.1. For ε = 0.9716 the standard map has a rotational invariant curve with golden rotation number.

Proof. We consider a parameterization K obtained using the parameterization method with NF = 8388608 Fourier
coefficients (we show the significant ones in Figure 1). This parameterization satisfies ‖E‖F,0 ≤ 2.74 · 10−41. Again,
we take the Diophantine constants γ = 3−

√
5

2 and τ = 1, and we use the improved Rüssmann constant in (90). Setting
the parameters

ρ = 3.748290 · 10−7,

δ = 6.273289 · 10−8,

σ = 1 + 1.610158 · 10−9,

dB = 3.159428 · 10−21,

ρ̂ = 4.872777 · 10−6,

and applying Algorithm 5.1 with precision of 367 bits we obtain the following rigorous bound:

C1bE
γ4ρ4τ

≤ 0.0823.

This allows us to apply the KAM theorem. Moreover, the golden curve satisfies

‖K∞ −K‖ρ∞ <
C2bE
γ2ρ2τ

≤ 3.89 · 10−22.

The computational time of this CAP is 11404 seconds in a single processor Intel(R) Core(R) CPU at 3.50 GHz. It
required the use of almost 32 GB of RAM.

Now we illustrate the methodology proposed in Section 4.1 to obtain a pair of constants (γ, τ) for a given interval
vector. For example, we consider the interval $ obtained by computing

√
5−1
2 using MPFI with 267 bits and taking

M = 1000. In Table 6 we repeat the CAPs given in Table 5 using the obtained constants γ = 0.38196601125010 and
τ = 1.26. Using the argument in Remark 5.2 we obtain a rigorous upper bound of the relative measure of the set of
frequencies in $ for which the KAM theorem does not apply.

In Table 7 we present the application of the KAM theorem for other invariant curves. Specifically, we consider
the rotation numbers that have been characterized in Table 1. We fix NF = 32768 and we show the maximum number
of ε for which we have been able to apply the KAM theorem (taking jumps of length 0.01 in ε). Computations are
performed using interval arithmetics with 267 bits. We perform the CAP using both the classic Rüssmann estimates
in (96) and the ad hoc estimates in (90). Numerical approximations of the critical values of some of these curves have
been reported in [31], for example, εc ' 0.957447 for ω2,2 (we prove existence for ε = 0.95), εc ' 0.87608 for ω1,2

(we prove existence for ε = 0.87), εc ' 0.89086 for ω3,3 (we prove existence for ε = 0.88), and εc ' 0.77242 for
ω1,3 (we prove existence for 0.76). As in Theorem 6.1, we can obtain sharper rigorous lower bounds of these critical
values by increasing the number of Fourier coefficients. We remark again that the use of ad hoc Rüssmann estimates
represents a significant advantage in order to apply the KAM theorem. In some cases we improve up to 17 orders of
magnitude the size of the smallness condition. The computational time of these CAPs ranges between 75 and 123
seconds in a single processor Intel(R) Xeon(R) CPU at 2.40 GHz.
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Figure 1: Fourier coefficients (for positive k) of the validated parameterization of the golden invariant curve of the standard map (110) for

ε = 0.9716. In the left plot we show k 7→ log10(|Kx
p,k|) and in the right plot we show k 7→ log10(|K

y
p,k|).

ε C1bE
γ4ρ4τ

C2bE
γ2ρ2τ

1− p($, γ0, τ)

0.06 3.50e-28 7.56e-34 1.33e-07
0.16 2.40e-27 3.01e-33 2.16e-07
0.26 4.51e-26 3.94e-32 4.50e-07
0.36 1.10e-24 6.60e-31 9.99e-07
0.46 4.56e-23 1.81e-29 2.53e-06
0.56 2.39e-23 9.83e-31 2.16e-06
0.66 4.25e-23 8.64e-31 2.49e-06
0.76 5.00e-18 3.08e-26 4.61e-05
0.86 3.64e-17 2.46e-26 7.58e-05
0.96 4.84e-12 1.61e-24 1.45e-03

Table 6: Application of Theorem 2.6 using Algorithm 5.1 around the golden invariant curve of the standard map (110) for different values of

ε. We use the same implementation parameters as in Table 5. We take the constants γ = 0.38196601125010, τ = 1.26 and use the ad hoc

Rüssmann estimates in (90). A rigorous upper bound of the relative measure of the set of frequencies in $ for which the KAM theorem does

not apply (we use expression (100)). The results are given with 2 significant digits.

6.2 Non-twist standard map

The second application falls in the context of the so-called non-twist maps. It is well known that there is an analogue
of KAM theory in the non-twist scenario (see for example [25, 34, 72]). The loss of the twist condition introduces
different properties with respect to the twist case, for example the fact that the Birkhoff Graph Theorem does not
apply and folded invariant curves are observed. A classic mechanism that creates such folded invariant curves is
called reconnection (see [24, 72]). Reconnection is a global bifurcation of the invariant manifolds of two or more
distinct hyperbolic periodic orbits having the same winding number. This creates a meandering region having folded
quasi periodic curves. Among these orbits, of special interest is the one that corresponds to an invariant curve having
a local extremum in the rotation number, called shearless invariant curve. In this section we are not interested in
applying singular KAM theory to study the shearless invariant curves (in the spirit of [34]) but we will consider
invariant curves inside the meandering region that are non-degenerate (in the spirit of [72]). The study of shearless
invariant curves and their bifurcations can be performed in combination with the tools in [34].

Let us consider the non-twist standard map

F : T× R −→ T× R
(x, y) 7−→ (x̄, ȳ) =

(
x+ (ȳ + λ1)(ȳ + λ2), y − ε

2π sin(2πx)
) (111)

where (x, y) ∈ T × R are phase space coordinates and λ1, λ2 ∈ R and ε > 0 are parameters. Although this family
is not generic (it contains just one harmonic), it describes the essential features of non-twist systems with a local
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a b ε ρ δ σ − 1 dB ρ̂ C1bE
γ4ρ4τ

C2bE
γ2ρ2τ

1 2 0.87 9.226561e-05 1.544194e-05 5.101229e-06 4.377668e-14 9.687889e-04 1.71e-07 9.11e-21
1 3 0.76 1.919125e-04 3.211924e-05 1.149569e-05 1.945721e-13 2.111037e-03 1.57e-11 3.85e-24
1 4 0.67 2.140562e-04 3.582531e-05 7.808704e-06 1.020386e-13 2.140562e-03 7.08e-11 9.33e-24
1 5 0.60 3.321562e-04 5.559099e-05 5.647400e-06 6.322830e-14 2.159015e-03 3.38e-08 2.75e-21
1 6 0.54 1.992937e-04 3.335460e-05 2.297353e-06 1.249607e-14 2.092584e-03 7.49e-09 1.20e-22
2 1 0.93 1.845312e-04 3.088388e-05 1.340147e-05 3.284838e-13 1.107187e-03 2.90e-10 1.17e-22
2 2 0.95 1.033375e-04 1.729498e-05 7.353570e-06 1.004165e-13 1.033375e-03 1.70e-10 2.14e-23
2 3 0.91 1.919125e-04 3.211924e-05 1.297609e-05 3.508463e-13 1.151475e-03 4.39e-10 1.97e-22
2 4 0.86 1.771500e-04 2.964853e-05 1.090351e-05 2.725768e-13 2.037225e-03 6.87e-11 2.42e-23
2 5 0.82 1.107187e-04 1.853033e-05 2.959595e-06 2.577350e-14 1.051828e-03 1.85e-09 6.21e-23
2 6 0.78 9.595623e-05 1.605962e-05 1.243173e-06 6.667071e-15 1.055519e-03 2.51e-08 2.19e-22
3 1 0.83 2.066750e-04 3.458995e-05 1.428538e-05 3.464827e-13 2.066750e-03 6.95e-12 3.02e-24
3 2 0.89 1.144094e-04 1.914801e-05 8.411203e-06 1.146242e-13 1.029684e-03 1.45e-10 2.05e-23
3 3 0.88 1.771500e-04 2.964853e-05 1.476158e-05 3.809012e-13 1.151475e-03 3.09e-11 1.47e-23
3 4 0.86 1.144094e-04 1.914801e-05 5.127246e-06 6.122894e-14 1.029684e-03 4.37e-10 3.43e-23
3 5 0.83 1.771500e-04 2.964853e-05 1.026994e-05 1.831959e-13 1.860075e-03 1.66e-07 3.95e-20
3 6 0.80 1.992937e-04 3.335460e-05 1.067795e-05 2.109941e-13 2.092584e-03 1.14e-11 3.14e-24
4 1 0.74 1.771500e-04 2.964853e-05 4.904504e-06 4.722540e-14 1.948650e-03 4.97e-07 2.88e-20
4 2 0.80 1.771500e-04 2.964853e-05 1.002141e-05 1.894322e-13 1.860075e-03 2.32e-07 5.61e-20
4 3 0.81 9.226561e-05 1.544194e-05 4.429583e-06 3.382568e-14 1.014922e-03 1.74e-09 7.33e-23
4 4 0.79 2.140562e-04 3.582531e-05 1.653331e-05 4.949205e-13 2.140562e-03 2.19e-12 1.37e-24
4 5 0.78 1.291718e-04 2.161872e-05 5.383696e-06 5.697885e-14 1.097961e-03 5.25e-10 3.79e-23
4 6 0.76 1.771500e-04 2.964853e-05 6.388444e-06 9.570476e-14 1.948650e-03 6.39e-08 7.93e-21
5 1 0.66 1.328625e-04 2.223640e-05 2.056577e-06 8.775943e-15 1.062900e-03 2.64e-08 3.03e-22
5 2 0.72 1.144094e-04 1.914801e-05 3.830449e-06 2.609694e-14 1.029684e-03 1.88e-09 6.41e-23
5 3 0.73 1.033375e-04 1.729498e-05 4.269049e-06 3.062480e-14 1.033375e-03 2.50e-09 9.36e-23
5 4 0.72 2.066750e-04 3.458995e-05 1.094161e-05 2.103895e-13 2.066750e-03 8.81e-11 2.40e-23
5 5 0.71 1.919125e-04 3.211924e-05 8.565614e-06 1.320616e-13 1.919125e-03 1.51e-08 2.52e-21
5 6 0.70 1.439343e-04 2.408943e-05 3.888326e-06 3.451748e-14 1.079508e-03 1.38e-09 5.90e-23
6 1 0.59 1.771500e-04 2.964853e-05 2.193874e-06 1.019455e-14 2.037225e-03 2.24e-08 2.75e-22
6 2 0.65 8.488436e-05 1.420659e-05 1.660222e-06 4.346395e-15 9.337279e-04 1.24e-04 7.09e-19
6 3 0.66 8.857498e-05 1.482426e-05 1.695908e-06 6.855800e-15 9.743248e-04 2.46e-06 2.03e-20
6 4 0.65 2.140562e-04 3.582531e-05 1.192707e-05 2.027028e-13 2.140562e-03 2.16e-11 5.59e-24
6 5 0.65 9.226561e-05 1.544194e-05 1.994275e-06 7.521929e-15 1.014922e-03 3.06e-08 2.97e-22
6 6 0.64 1.181000e-04 1.976569e-05 2.045468e-06 1.035221e-14 1.062900e-03 1.33e-08 1.76e-22

Table 7: Application of Theorem 2.6 using Algorithm 5.1 for the standard map (110). We consider several interval
frequencies $ enclosing intervals given by Equation (87). For each curve, we present the larger value of ε (second
column) for which we can apply the KAM theorem with ad hoc Rüssmann estimates (90) using a grid of size NF =
32768.

quadratic extremum in the rotation number.
For the non-twist standard map, given by Equations (111), we have A = T× R, α = α0 = ydx and ω = ω0 =

dy ∧ dx. Hence, we take cΩ = 1, cDΩ = 0, cDa = 1 and cD2a = 0.
Contrary to the example discussed in Section 6.1, we notice that the tangent vectors to the invariant curves are

not in general in the horizontal direction, since invariant curves are not expected to be graphs. Using the ambient
structure, we select the transversal vectors N0 : T→ R2×1 as

N0(θ) = Ω0DK(θ), (112)

and it is clear that DK(θ) and N0(θ) form a basis of R2 for every θ ∈ T.
In Step 0 of Algorithm 5.1, we introduce the domain B as

B = {(x, y) ∈ C/Z× C : |Imx| ≤ r1 , |y| ≤ r2},

and the domain B̂ as
B̂ = {(x, y) ∈ C/Z× C : |Imx| ≤ r̂1 , |y| ≤ r̂2}.

where

r1 = dB + ρ+ ‖Kx
p ‖F,ρ, r2 = dB + ‖Ky

p‖F,ρ, r̂1 = ρ̂+ ‖Kx
p ‖F,ρ̂, r̂2 = ‖Ky

p‖F,ρ̂.
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Figure 2: Meandering invariant curves for the non-twist standard map (111) for parameters λ1 = 0.1, λ2 = −0.2 and ε = 0.45.

Then, global estimates of the symplectic map (111) in these domains are characterized as follows

‖DF‖B ≤ cDF := max

{
1 + |∂xȳ|, 1 + (2|ȳ|+ |λ1 + λ2|)(1 + |∂xȳ|),

}
,

‖D2F‖B ≤ cD2F := max

{
|∂xxȳ|, 2 + 2|∂xȳ|+ 2|∂xȳ|2 + (2|ȳ|+ |λ1 + λ2|)|∂xxȳ|

}
,

‖Fp‖B̂ ≤ ĉFp := max

{
r̂2 + ε cosh(2πr̂1), (r̂2 + ε cosh(2πr̂1) + |λ1|)(r̂2 + ε cosh(2πr̂1) + |λ2|)

}
,

where

|ȳ| = r2 +
ε

2π
cosh(2πr1), |∂xȳ| = ε cosh(2πr1), |∂xxȳ| = 2πε cosh(2πr1).

Let us characterize the constants that appear in Step 2 of Algorithm 5.1. Using Equation (112) and the fact that
Ω0 is constant, we control the analytic norms related to N0 using

cN0
= ‖N0‖F,ρ = ‖DK‖F,ρ, cN>0 = ‖DK>‖F,ρ, ĉN0

= ‖DK‖F,ρ̂, ĉN>0 = ‖DK>‖F,ρ̂.

Notice that we can evaluate the above norms directly since Kp is a trigonometric polynomial. We also observe that
N>0 (Ω ◦K)N0 vanishes identically, so we take cN>0 (Ω◦K)N0

= 0.
Let us describe a simple general approach to obtain candidates of invariant curves using a global (non-perturbative)

analysis of the problem. Given fixed values of λ1, λ2 and ε, we take an initial condition (x0, y0). To this initial
condition we associate a rotation number (frequency) using the extrapolation method of [50]. Notice that we can
define a (non-equispaced) sampling of a parameterization as follows K(nω) = (xn, yn), where (xn, yn) is the orbit
of the previous initial condition and ω is the computed frequency. Then, we obtain a first equispaced sampling {Kp,j}
by means of polynomial interpolation (as used for example in [64]). If the error of invariance of this approximation is
not good enough, we apply the parameterization method.

From now on, we fix λ1 = 0.1, λ2 = −0.2 and ε = 0.45. In Figure 2 we show the iteration of several initial
conditions and we observe meandering (folded) invariant curves. We consider one of the two invariant curves having
rotation number ω =

√
5−1
32 , which corresponds to the green curve in Figure 2. Next we show that, for the above

values of the parameters, there exists a true invariant curve nearby. To this end, we obtain an approximation of the
corresponding parameterization using NF = 2048 and with a numerically estimated error of invariance of 10−42 (us-
ing the norm ‖·‖F,0). Computations are performed using interval arithmetics with 267 bits. As input of Algorithm 5.1
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we enclose ω with a tight interval of length 10−80, and we use the parameters

ρ = 1.223945 · 10−3,

δ = 2.048444 · 10−4,

σ = 1 + 1.601973 · 10−11,

dB = 8.333835 · 10−22,

ρ̂ = 1.835918 · 10−2.

We use also the improved Rüssmann estimates in (90). The obtained result is

C1bE
γ4ρ4τ

≤ 0.0343,
C2bE
γ2ρ2τ

≤ 3.78 · 10−23.

Then, we can ensure the existence of a meandering invariant curve close to the green curve in Figure 2. Notice that,
even though the curve is quite regular, we need a very good approximation of the invariant curve in order to apply the
KAM theorem. The reason is that the twist condition around the curve is quite weak. Indeed, we obtain cT ≤ 2388.12
and σT ≤ 33.11 that propagate significantly along the computation of C1 and C2. Still, we are able to conclude that
the distance, measure by the analytic norm, between the true invariant curve and the initial approximation is controlled
by 3.78 · 10−23. The computational time of this CAP is 65 seconds in a single processor Intel(R) Xeon(R) CPU at
2.40 GHz.

6.3 Froeschlé map

Next we illustrate the use of Algorithm 5.1 to prove existence of Lagrangian invariant tori in a higher dimensional
case. We consider the so-called Froeschlé map (see [32]), which consists in two coupled standard maps, given by

F : T2 × R2 −→ T2 × R2
x1

x2

y1

y2

 −→


x̄1

x̄2

ȳ1

ȳ2

 =


x1 + ȳ1

x2 + ȳ2

y1 − λ1
2π sin(2πx1)− ε

2π sin(2π(x1 + x2))

y2 − λ2
2π sin(2πx2)− ε

2π sin(2π(x1 + x2))

 ,
(113)

where (x, y) ∈ T2 × R2 are phase space coordinates and λ1, λ2, ε are parameters. This family has been extensively
studied in the literature as a model to understand instability channels and the destruction of invariant tori [36, 44, 54,
73].

For the Froeschlé map, given by Equation (113), we have A = T2 × R2, α = α0 = y1dx1 + y2dx2 and
ω = ω0 = dy1 ∧ dx1 + dy2 ∧ dx2. Hence, we take cΩ = 1, cDΩ = 0, cDa = 1 and cD2a = 0.

Using the ambient structure, we select the transversal vectors N0 : T→ R4×2 as

N0(θ) = Ω0DK(θ), (114)

and it is clear that DK(θ) and N0 form a basis of R4 for every θ ∈ T2.
In Step 0 of Algorithm 5.1, we introduce the domain B as

B = {(x, y) ∈ C2/Z2 × C2 : |Imx1| ≤ r1 , |Imx2| ≤ r2 , |y1| ≤ r3 , |y2| ≤ r4},

and the domain B̂ as

B̂ = {(x, y) ∈ C2/Z2 × C2 : |Imx1| ≤ r̂1 , |Imx2| ≤ r̂2 , |y1| ≤ r̂3 , |y2| ≤ r̂4},

where

r1 = dB + ρ+ ‖Kx1
p ‖F,ρ, r2 = dB + ρ+ ‖Kx2

p ‖F,ρ, r3 = dB + ‖Ky1
p ‖F,ρ, r4 = dB + ‖Ky2

p ‖F,ρ,
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ε NF,1 ×NF,2 ρ δ σ − 1 dB ρ̂ C1bE
γ4ρ4τ

C2bE
γ2ρ2τ

0.005 128×128 5.037106e-02 8.325794e-03 9.971678e-09 1.304797e-13 2.518553e-01 1.22e-11 1.65e-24
0.010 128×128 4.149000e-02 6.943934e-03 2.991465e-09 2.984918e-14 2.489400e-01 8.18e-11 2.53e-24
0.015 128×128 3.381873e-02 5.660038e-03 1.007737e-09 7.594011e-15 2.198217e-01 3.17e-09 2.49e-23
0.020 128×128 2.640907e-02 4.419929e-03 3.038407e-10 1.678977e-15 1.980681e-01 1.51e-05 2.62e-20
0.025 256×256 1.480798e-02 2.447599e-03 2.798552e-09 8.363941e-15 1.184638e-01 4.82e-11 4.18e-25
0.030 512×512 6.403442e-03 1.071706e-03 1.635121e-10 2.072109e-16 1.088585e-01 3.38e-41 7.25e-57
0.035 512×512 6.339408e-03 1.060989e-03 1.271988e-10 1.484302e-16 1.014305e-01 8.06e-38 1.24e-53
0.040 512×512 6.339408e-03 1.060989e-03 1.042153e-10 1.129674e-16 1.014305e-01 1.13e-37 1.32e-53
0.045 512×512 6.339408e-03 1.060989e-03 8.603873e-11 8.652147e-17 1.077699e-01 9.77e-42 8.75e-58
0.050 512×512 6.339408e-03 1.060989e-03 7.143414e-11 6.649623e-17 1.077699e-01 1.71e-41 1.17e-57
0.055 512×512 6.339408e-03 1.060989e-03 5.955329e-11 5.127525e-17 1.077699e-01 2.98e-41 1.58e-57
0.060 512×512 6.339408e-03 1.060989e-03 5.050749e-11 4.016518e-17 1.077699e-01 1.34e-40 5.57e-57
0.065 512×512 6.339408e-03 1.060989e-03 4.239981e-11 3.109553e-17 1.014305e-01 1.96e-36 6.31e-53
0.070 512×512 6.339408e-03 1.060989e-03 3.566570e-11 2.408118e-17 9.509112e-02 7.89e-32 1.97e-48
0.075 1024×512 6.085832e-03 1.018549e-03 1.128252e-14 6.748840e-21 7.911581e-02 1.45e-16 1.01e-36

Table 8: Application of Theorem 2.6 using Algorithm 5.1 around the cubic invariant torus of the Froeschlé map (113) for different values of

ε. We use the Rüssmann estimates given in (90).

and
r̂1 = ρ̂+ ‖Kx1

p ‖F,ρ̂, r̂2 = ρ̂+ ‖Kx2
p ‖F,ρ̂, r̂3 = ‖Ky1

p ‖F,ρ̂, r̂4 = ‖Ky2
p ‖F,ρ̂.

Then, global estimates of the the symplectic map (113) in these domains are characterized as follows

‖DF‖B ≤ cDF := max

{
2 + λ1c1 + 2εc3, 2 + λ2c2 + 2εc3

}
,

‖D2F‖B ≤ cD2F := max

{
2πλ1c1 + 4πεc3, 2πλ2c2 + 4πεc3

}
,

‖Fp‖B̂ ≤ ĉFp := max

{
r̂3 +

λ1

2π
ĉ1 +

ε

2π
ĉ3, r̂4 +

λ3

2π
ĉ3 +

ε

2π
ĉ3,

}
,

where
c1 = cosh(2πr1), c2 = cosh(2πr2), c3 = cosh(2π(r1 + r2)),

and
ĉ1 = cosh(2πr̂1), ĉ2 = cosh(2πr̂2).

In Step 2 of Algorithm 5.1, we observe that

N0(θ)>Ω0N0(θ) = DK(θ)>Ω0DK(θ),

where we used Ω>0 Ω0 = I4. Using Theorem 3.3 we take

cN>0 (Ω◦K)N0
= ‖DK>Ω0DK‖F,ρ + CNF

(ρ, ρ̂)‖DK>‖F,ρ̂‖DK‖F,ρ̂.

Moreover, using Equation (114), we control the remaining analytic norms related to N0 with the constants

cN0
= ‖DK‖F,ρ, cN>0 = ‖DK>‖F,ρ, ĉN0

= ‖DK‖F,ρ̂, ĉN>0 = ‖DK>‖F,ρ̂.

We consider the frequency vector ω = (ν, ν2) where ν is the so-called cubic golden number (the only real root of
x3 + x− 1 = 0). We fix the parameters λ1 = 0.01 and λ2 = 0.02 and we validate the invariant torus with frequency
ω for different values of ε. Several validations are summarized in Table 8 whose format is analogous as in previous
examples. In Table 9 we provide some complementary information about the execution of the computer program
depending on the number of Fourier coefficients. We enclose the components of ω with intervals of radius µ2, where
µ is the tolerance requested in the numerical computation of the parameterization (see Table 9). The last validated
invariant torus, corresponding to ε = 0.075, is shown in Figure 3.
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NF,1 ×NF,2 Precision (bits) Tolerance CPU time (sec)

128×128 267 1e-33 246
256×256 347 1e-38 751
512×512 533 1e-66 3628

1024×512 533 1e-66 6992

Table 9: Auxiliary implementation parameters of the CAPs corresponding to Table 8. The CAPs are performed in a single processor Intel(R)

Xeon(R) CPU at 2.40 GHz.

Figure 3: Last validated invariant torus (ε = 0.075) in Table 8. Left-Top plot: (θ1, θ2) 7→ Kx1
p (θ1, θ2). Right-Top plot: (θ1, θ2) 7→

Kx2
p (θ1, θ2). Left-Bottom plot: (θ1, θ2) 7→ Ky1

p (θ1, θ2). Left-Bottom plot: (θ1, θ2) 7→ Ky2
p (θ1, θ2).

The (numerical) breakdown value is εc ' 0.232, obtained using the methods described in [36, 52] (we also refer
the reader to [17] for other possible methods). Notice that using 1024× 512 Fourier modes we have proved existence
of the invariant torus up to values of ε around 32% of the breakdown. The use of more modes would exceed our
threshold of RAM memory (32 Gb).
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7 Final remarks and perspectives

We conclude by presenting several remarks and comments on different aspects of the methodology of the paper. Our
aim is to point out possible extensions of the methodology and future research.

It is well known that KAM theory has strong interest in the context of Hamiltonian vector fields (see e.g. [2, 4,
5, 19, 46, 78]) and, in particular, in the context of celestial mechanics (see e.g. [3, 16, 48, 49]). Given a Hamiltonian
system, the methodology presented in this paper can be applied by defining a discrete dynamical system either by
considering its flow or a Poincaré section. This requires to obtain rigorous enclosures for the integrations of the
vector field and the variational equations up to second order (we refer the reader to the library [1]) and it may become
a difficult and demanding task. Another interesting alternative to study Hamiltonian systems is to characterize the
invariance equation on the vector field, thus avoiding to integrate the solutions. In this context, given a Hamiltonian
vector fieldXH and a frequency vector ω ∈ Rn, a Lagrangian torus is characterized by a parameterizationK satisfying

∂ωK(θ) = XH(K(θ)), ∂ω =
n∑
i=1

ωi
∂

∂θi
.

Indeed, a posteriori KAM theorems for vector fields have been presented in [20, 51] (see also [37, Section 4.8.2]). The
drawback of this approach, compared with performing a reduced Poincaré section, is that the dimension of phase space
is not reduced, so we can be limited by the number of Fourier coefficients required to approximate the torus. Rigorous
application of the a posterior approach for Hamiltonian system is being explored, and it is still not clear which of
the above strategies is the best one in general, since the computational cost and the difficulty of the implementation
strongly depends on the particular problem and the analyticity of the invariant torus.

It is clear that the a posteriori approach can be used to study close-to-integrable situations (the examples in Sec-
tion 6 are close-to-integrable when ε is small). In this situation, the classic KAM result (à la Arnold [2]) establishes
that the Lebesgue measure of the gaps between surviving invariant tori is O(ε1/2). This estimate cannot be improved
in general (see e.g. [63]) and it is related to the fact that the threshold value of ε for which the KAM theorem can be
applied is such that ε = O(γ2). However, the KAM theorem used in the present paper is a result à la Kolmogorov
[46], that is, it is oriented to obtain the existence of a single invariant torus with prescribed frequency. This typically
produces a threshold value of ε such that ε = O(γ4) and hence is translated to a natural lower bound for γ that is of
O(ε1/4) (see [4, 46]). The source of this discrepancy is that the Arnold approach requires to solve only one cohomo-
logical equation at every iterative step, while the Kolmogorov approach requires to solve two equations. Remarkably,
the Kolmogorov approach was adapted to obtain a lower bound for γ that is of O(ε1/2) in [76] (using classic normal
forms) and, more recently, in [77] (using the a-posteriori approach). These bounds require carrying out very elaborate
estimates and replacing the condition of invariance by a system of three functional equations. It is worth noticing that
these works are concerned with the case of Hamiltonian systems and may find additional difficulties to deal with the
case of symplectic maps. Of course, it would be interesting to adapt these techniques to obtain an analogous of The-
orem 2.6 with estimates of the form ε = O(γ2). This would be particularly relevant to obtain computer-assisted lower
bounds of the measure of invariant tori in phase space (not in frequency space). Nevertheless, in the goal pursued in
this paper, the refinement in the above estimates does not represent a significant improvement since we are interested
in the existence of a torus with prefixed frequency. For example, we observe that for the values of γ in Tables 1
and 2, the difference between O(γ2) and O(γ4) can be easily overcame by slightly reducing the error of invariance
of the approximately invariant torus. In a typical situation, this is feasible and more advantageous that increasing the
complexity of the estimates.

Having said that Theorem 2.6 is local (it asserts “just” the existence of an invariant torus), it is a natural question
to connect this approach with the existence of local normal forms (à la Kolmogorov). A possibility to approach the
problem is the following: assume that K0 is a parameterization of an approximate invariant torus (in the annulusA or
in an open set of R2n); construct a normal frame N using Equations (9), (10), and (11); and then introduce the change
of variables

(θ, I)→ K(θ) +N(θ)I. (115)
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Then, it is not difficult to see that the obtained system is expressed as a perturbation of a Kolmorogov-like normal
form, where I plays the role of an “action” variable. Indeed, Hypothesis H4 in Theorem 2.6 is translated into the
classic Kolmogorov non-degeneracy conditions. Notice that the change of variables (115) is not symplectic so we
require to change the symplectic form. In order to implement this approach effectively, it may be interesting to
introduce the change (115) using automatic differentiation techniques. Let us highlight that the coordinates in (115)
are used only to define the system, and that the idea would be to proceed without performing any sequence of canonical
transformations. This may be an interesting idea to explore in order to perform a further analysis of the local dynamics.
For instance, if K0 is an actual invariant torus, one could try to obtain classic estimates on the effective stability with
respect to I (see e.g. [58]) or connect the approach with recent results on the local dynamics around KAM tori
(see [26]).

Finally, it is worth mentioning that the methodology described in Section 3 extends beyond the analytical setting.
It is of independent interest that similar estimates can be deduced in the case of functions with finite regularity. In this
case, one uses that the decay of Fourier coefficients of a Cr-function is of the form |fk| ≤ (2πk)−r‖f‖Cr . The role
of increasing the strip of analyticity is replaced by controlling higher order derivatives. Other spaces of interest are
Sobolev spaces, which are particularly useful to the study of partial differential equations.
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[34] A. González, A. Haro, and R. de la Llave. Singularity theory for non-twist KAM tori. Mem. Amer. Math. Soc.,
227(1067):vi+115, 2014.

[35] J.M. Greene. A method for determining a stochastic transition. J. Math. Phys, 20(6):1183–1201, 1975.

[36] A. Haro. The Primitive Function of an Exact Symplectomorphism. PhD thesis, Universitat de Barcelona, 1998.
Available at http://hdl.handle.net/2445/42094.

[37] A. Haro, M. Canadell, J.-Ll. Figueras, A. Luque, and J.M. Mondelo. The parameterization method for invari-
ant manifolds: from rigoruos results to effective computations. To appear in Applied Mathematical Sciences,
Springer. In press, 2015.

[38] A. Haro and R. de la Llave. A parameterization method for the computation of invariant tori and their whiskers
in quasi-periodic maps: numerical algorithms. Discrete Contin. Dyn. Syst. Ser. B, 6(6):1261–1300, 2006.

[39] J. Hass and R. Schlafly. Double bubbles minimize. Ann. of Math. (2), 151(2):459–515, 2000.

[40] M.-R. Herman. Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 2. Astérisque, (144):248,
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A A heuristic selection of parameters to validate invariant tori

In this appendix we describe a direct method to select the implementation parameters ρ, δ, σ, ρ∞, dB, and ρ̂, required
in Input 4 of Algorithm 5.1 to rigorously validate an invariant torus. The idea consists in using the structure of the
constants that appear in Step 4 (c.f. Section 5.6). We do not claim that the procedure described below is optimal, but
allows us to obtain suitable values of the parameters at a moderate computational cost.

We assume that the term 2(a3)3τ+1γ3ρ3τ−1C3 does not contribute to the constant C1 and we look for parameters
such that the constants in (108) satisfy C3 = C4 = C5. The neglected term is in general very small (it stands for the
control of the approximate Lagrangian character of the approximated torus) and this assumption allows us to simplify
the heuristic analysis of the constants.
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We proceed in analogy with the procedure described in [37]. We observe that the dependence on a2 is very simple:
it appears only in the expression a3 = 3 a1

a1−1
a2
a2−1 and in the final strip of analyticity ρ∞ = ρ/a2. In order to look for

the limit condition, we take a2 =∞ (so ρ∞ = 0) in all subsequent computations.
Now we can describe a very simple algorithm to obtain suitable values of the parameters ρ, δ, σ, dB and ρ̂ for a

given parameterization K in a grid of size NF = (NF,1, . . . , NF,n):

I. We take ρ0 = − log(‖E‖F,0)/(2πN), where E is the error of invariance and N = maxi{NF,i}. This will be
the initial value of ρ.

II. For a given value ρ, we consider values δ ∈ [ ρ6.5 ,
ρ

4.5 ] (recall that a3 = ρ
δ and a1 = a3

a3−3 ). For any of these
values (ρ, δ) we compute σ and dB solving the equations C4 = C5 and C3 = C4, which are respectively written
as follows:

σ∗(1− a−2τ
1 )dB − (σ − 1)δ(1− a1−2τ

1 ) = 0, (116)

σ∗(a3)2τ+1γ2ρ2τ−1Ĉ2 − (σ − 1)(1− a1−2τ
1 )(a1a3)4τ Ĉ5 = 0. (117)

Let us recall that σ∗, Ĉ2 and Ĉ5 depend on ρ, δ, σ, dB, and ρ̂. In order to avoid the dependence on ρ̂ in the
above expression, we take CNF

(ρ, ρ̂) = 0 when computing these constants. A suitable value of ρ̂ is fixed later.
Then, we select the value of δ that minimizes the expression C1γ

−4ρ−4τ‖E‖ρ.

III. If C1γ
−4ρ−4τ‖E‖ρ ≥ 1, we decrease the value of ρ and repeat step II, thus obtaining a new value of C1.

We proceed until we find that C1γ
−4ρ−4τ‖E‖ρ < 1. If at any point we reach a minimum of the function

C1γ
−4ρ−4τ‖E‖ρ then we stop the computations. If this condition is not satisfied at the minimum, then we need

a better approximation of the invariant torus.

IV. Assume that we have obtained values of ρ, δ, σ, and dB as above. Then, we take a sequence of increasing
values of ρ̂ (starting at a value slightly greater than ρ) and compute the constant CNF

(ρ, ρ̂). Then we compute
again the constant C1 and the bound bE (see Section 5.3). We select a value of ρ̂ that minimizes the expression
C1γ

−4ρ−4τ bE.


