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Abstract

We present an algorithm for producing Delaunay triangulations of manifolds. The al-
gorithm can accommodate abstract manifolds that are not presented as submanifolds of
Euclidean space. Given a set of sample points and an atlas on a compact manifold, a
manifold Delaunay complex is produced provided the transition functions are bi-Lipschitz
with a constant close to 1, and the sample points meet a local density requirement; no
smoothness assumptions are required. If the transition functions are smooth, the output is
a triangulation of the manifold.

The output complex is naturally endowed with a piecewise flat metric which, when the
original manifold is Riemannian, is a close approximation of the original Riemannian metric.
In this case the ouput complex is also a Delaunay triangulation of its vertices with respect
to this piecewise flat metric.
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1 Introduction

We present an algorithm for computing Delaunay triangulations of Riemannian manifolds. Not
only is this the first algorithm guaranteed to produce a Delaunay triangulation of an arbi-
trary compact Riemannian manifold, it also provides the first theoretical demonstration of the
existence of such triangulations on manifolds of dimension greater than 2 with non-constant
curvature.

The Delaunay complex is a natural structure to consider when seeking to triangulate a space
equipped with a metric. It plays a central role in the development of algorithms for meshing
Euclidean domains. In applications where an anisotropic mesh is desired, a standard approach
is to consider a Riemannian metric defined over the domain and to construct an approximate
Delaunay triangulation with respect to this metric [LS03, BWY11, CG12]. In this context
we can consider the domain to be a Riemannian manifold that admits a global coordinate
parameterisation. The algorithm we present here encompasses this setting, modulo boundary
considerations.

In the case of surfaces, it has been shown that a Delaunay triangulation exists if the set
of sample points is sufficiently dense [Lei99, DZM08]. However, in higher dimensional man-
ifolds, contrary to previous claims [LL00], sample density alone is not sufficient to ensure a
triangulation [BDG13a, App. A].

In Euclidean space, Rm, the Delaunay complex on a set of points P is a triangulation
provided the points are generic, i.e., no ball empty of points contains more than m + 1 points
of P on its boundary [Del34]. A point set that is not generic is said to be degenerate, and
such configurations can be avoided with an arbitrarily small perturbation. However, when the
metric is no longer homogeneous, an arbitrarily small perturbation is not sufficient to guarantee a
triangulation. In previous work [BDG13b] we have shown that genericity can be parameterised,
with the parameter, δ, indicating how far the point set is from degeneracy. A δ-generic point set
in Euclidean space yields a Delaunay triangulation that is quantifiably stable with respect to
perturbations of the metric, or of the point positions. We later produced an algorithm [BDG14]
that, given an initial point set P ⊂ Rm, generates a perturbed point set P′ that is δ-generic.
The algorithm we present here adapts this Euclidean perturbation algorithm to the context of
compact manifolds equipped with a metric that can be locally approximated by a Euclidean
metric. In particular, this includes Riemannian metrics, as well as the extrinsic metric on
submanifolds, which defines the so-called restricted Delaunay complex, variations of which have
been exploited in algorithms for reconstructing submanifolds of Euclidean space from a finite
set of sample points [CDR05, BG14].

The simplicial complex produced by our algorithm is naturally equipped with a piecewise
flat metric that is a quantifiably good approximation to the metric on the original manifold.
The stability properties of the constructed Delaunay triangulation yield additional benefits. In
particular, the produced complex is a Delaunay triangulation of its vertices with respect to its
own intrinsic piecewise-flat metric: a self-Delaunay complex. Such complexes are of interest
in discrete differential geometry because they provide a natural setting for discrete exterior
calculus [BS07, Dye10, HKV12].

In Section 2 we review the main ideas involved in the perturbation algorithm [BDG14] for
producing δ-generic point sets in Euclidean space. The extension of the algorithm to general
manifolds is described in Section 3, where we also state our main results. Sections 3.3 and 4
describe the analysis that leads to these results.

Contributions In this paper we provide the first proof of existence of Delaunay triangulations
of arbitrary compact Riemannian manifolds. The proposed algorithm is the first triangulation
algorithm that can accommodate abstract manifolds that are not presented as submanifolds of
Euclidean space. The output complex is a good geometric approximation to the original mani-
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fold, and also posesses the self-Delaunay property. These results are summarised in Theorem 3.
The algorithm accommodates more general inputs than Riemannian manifolds: strong bi-

Lipschitz constraints are required on the transition functions, but they need not be smooth. In
this case we cannot guarantee a triangulation, but, as stated in Theorems 1 and 2, the output
complex is a manifold Delaunay complex (it is the nerve of the Voronoi diagram of the perturbed
points P′ ⊂M, and it is a manifold).

The framework encompasses and unifies previous algorithms for constructing anisotropic
meshes, and for meshing submanifolds of Euclidean space, and the algorithm itself is conceptu-
ally simple (if not the analysis).

2 The perturbation strategy

We outline here the main ideas behind the Euclidean perturbation algorithm [BDG14], upon
which the current algorithm is based. Given a set P ⊂ Rm, that algorithm produces a perturbed
point set P′ that is δ-generic. This means that the Delaunay triangulation of P′ will not change
if the metric is distorted by a small amount.

Thickness and protection We consider a finite set P ⊂ Rm. A simplex σ ⊂ P is a finite
collection of points: σ = {p0, . . . , pj}. We work with abstract simplices, and in particular
x ∈ σ means x is a vertex of σ. The join of two simplices, τ ∗ σ, is the union of their vertices.
By the standard abuse of notation, a point p may represent the 0-simplex {p}. Although we
prefer abstract simplices, we freely talk about standard geometric properties, such as the longest
edgelength, ∆(σ), and the length of the shortest edge L(σ).

For p ∈ σ, σp is the facet opposite p, and D(p, σ) is the altitude of p in σ, i.e., D(p, σ) =
d(p, aff(σp)). The thickness of σ is a measure of the quality of σ, and is denoted Υ(σ). If σ is
a 0-simplex, then Υ(σ) = 1. Otherwise Υ(σ) is the smallest altitude of σ divided by j∆(σ),
where j is the dimension of σ. If Υ(σ) = 0, then σ is degenerate. We say that σ is Υ0-thick, if
Υ(σ) ≥ Υ0. If σ is Υ0-thick, then so are all of its faces.

A circumscribing ball for a simplex σ is any m-dimensional ball that contains the vertices of
σ on its boundary. A degenerate simplex may not admit any circumscribing ball. If σ admits a
circumscribing ball, then it has a circumcentre, C(σ), which is the centre of the unique smallest
circumscribing ball for σ. The radius of this ball is the circumradius of σ, denoted R(σ).

A ball B(c, r) is open, and B(c, r) is its closure. The Delaunay complex, Del(P) is the
(abstract) simplicial complex defined by the criterion that a simplex belongs to Del(P) if it
has a circumscribing ball whose intersection with P is empty. For p ∈ P, the star of p is the
subcomplex star(p; Del(P)) consisting of all simplices that contain p, as well as the faces of those
simplices. An m-simplex σm ∈ Del(P) is δ-protected if B(C(σm), R(σm) + δ) ∩ P = σm. The
point set P ⊂ Rm is δ-generic if all the m-simplices in Del(P) are δ-protected.

Forbidden configurations The essential observation that leads to the perturbation algo-
rithm is that if P ⊂ Rm is such that there exists a Delaunay m-simplex that is not δ-protected,
then there is a forbidden configuration: a (possibly degenerate) simplex τ ⊂ P characterised by
the properties we describe in Lemma 2 below. We emphasise that a forbidden configuration
need not be a Delaunay simplex. The perturbation algorithm guarantees that the Delaunay
m-simplices will be δ-protected by ensuring that each point is perturbed to a position that is
not too close to the circumsphere of any of the nearby simplices in the current (perturbed) point
set. A volumetric argument shows that this can be achieved.

If D ⊂ Rm, then P is ε-dense for D if d(x,P) < ε for all x ∈ D. We refer to ε as the sampling
radius. The set P is µ0ε-separated if d(p, q) ≥ µ0ε for all p, q ∈ P, and P is a (µ0, ε)-net (for D)
if it is µ0ε-separated, and ε-dense (for D).
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The goal is to produce a perturbed point set P′ that contains no forbidden configurations.
A ρ-perturbation of a (µ0, ε)-net P ⊂ Rm is a bijective application ζ : P → P′ ⊂ Rm such that
d(ζ(p), p) ≤ ρ for all p ∈ P. Unless otherwise specified, a perturbation will always refer to a
ρ-perturbation, with ρ = ρ0ε for some ρ0 ≤ µ0

4 . We also refer to P′ itself as a perturbation of
P. We generally use p′ to denote the point ζ(p) ∈ P′, and similarly, for any point q′ ∈ P′ we
understand q to be its preimage in P. We observe [BDG14, Lemma 2.2] that P′ is a (µ′0, ε

′)-net,
with ε′ ≤ 5

4ε and µ′0 ≥ 2
5µ0.

Given a positive parameter Γ0 ≤ 1, we say that σ is Γ0-good if for all σj ⊆ σ, we have
Υ(σj) ≥ Γj0, where Γj0 is the jth power of Γ0. A Γ0-flake is a simplex that is not Γ0-good, but
whose facets all are. A flake may be degenerate. The altitudes of a flake are subjected to an
upper bound proportional to Γ0.

If a simplex is not Γ0-good, then it necessarily contains a face that is a flake. This follows
easily from the observation that Υ(σ) = 1 if σ is a 1-simplex. If σm ∈ Del(P) is not δ-protected,
then there is a q ∈ P \ σm that is within a distance δ of the circumsphere of σm. Since q ∗ σm
is (m+ 1)-dimensional, it is degenerate, and therefore has a face τ that is a Γ0-flake. Such a τ
is a forbidden configuration.

If a simplex σ has a circumcentre, we define the diametric sphere as the boundary of
the smallest circumscribing ball: Sm−1(σ) = ∂B(C(σ), R(σ)), and the circumsphere: S(σ) =
Sm−1(σ) ∩ aff(σ). If σ ⊂ τ , then S(σ) ⊆ S(τ), and if dimσ = m, then S(σ) = Sm−1(σ).

The bound on the altitudes, together with the stability property of circumscribing balls
of thick simplices, allows us to demonstrate that forbidden configurations have the α0-hoop
property . A k-simplex τ has the α0-hoop property if for every (k − 1)-facet σ ⊂ τ we have

d(p, S(σ)) ≤ α0R(σ) <∞,

where p is the vertex of τ not in σ.
We are concerned with forbidden configurations in the perturbed point set P′. In addition

to the two parameters that describe a (µ′0, ε
′)-net, forbidden configurations depend on the flake

parameter Γ0, as well as the parameter δ0, which governs the protection via the requirement
δ = δ0µ

′
0ε
′.

Definition 1 (Forbidden configuration) Let P′ ⊂ Rm be a (µ′0, ε
′)-net. A (k + 1)-simplex

τ ⊆ P′, is a forbidden configuration in P′ if it is a Γ0-flake, with k ≤ m, and there exists a p ∈ τ
such that τp has a circumscribing ball B = B(C,R) with R < ε′, and |d(p, C)− R| ≤ δ, where
δ = δ0µ

′
0ε
′.

The definition itself is awkward, but for most purposes we can simply refer to the following
summary [BDG14, Theorem 3.10] of properties of forbidden configurations in P′ in terms of the
parameters of the original point set P:

Lemma 2 (Properties of forbidden configurations) Suppose that P ⊂ Rm is a (µ0, ε)-net
and that P′ is a ρ0ε-perturbation of P, with ρ0 ≤ µ0

4 . If

δ0 ≤ Γm+1
0 and Γ0 ≤

2µ2
0

75
, (1)

then every forbidden configuration τ ⊂ P′ satisfies all of the following properties:

P1 Simplex τ has the α0-hoop property, with α0 = 213Γ0

µ30
.

P2 For all p ∈ τ , R(τp) < 2ε.

P3 ∆(τ) < 5
2(1 + 1

2δ0µ0)ε.

P4 Every facet of τ is Γ0-good.
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The algorithm focuses on Property P1 of forbidden configurations. A critical aspect of this
property is its symmetric nature; if we can ensure that τ has one vertex that is not too close to
its opposite facet, then τ cannot be a forbidden configuration.

Using Property P3, we can find, for each p ∈ P, a complex Sp consisting of all simplices
σ ∈ P such that after perturbations p ∗ σ could be a forbidden configuration.

The algorithm proceeds by perturbing each point p ∈ P in turn, such that each point is only
visited once. The perturbation p 7→ p′ is found by randomly trying perturbations p 7→ x until it
is found that x is a good perturbation. A good perturbation is one in which d(x, S(σ)) > 2α0ε for
all σ ∈ Sp(P′), where Sp(P′) is the complex in the current perturbed point set whose simplices
correspond to those in Sp. By Property P1, x ∗ σ cannot be a forbidden configuration.

A volumetric argument based on the finite number of simplices in Sp, the small size of α0,
and the volume of the ball B(p, ρ0ε) of possible perturbations of p, reveals a high probability
that p 7→ x will be a good perturbation, and thus ensures that the algorithm will terminate.

Upon termination there will be no forbidden configurations in P′, because every perturbation
p 7→ p′ ensures that there are no forbidden configurations incident to p′ in the current point set,
and no new forbidden configurations are introduced.

3 Overview and main results

The extension of the perturbation algorithm to the curved setting is accomplished by performing
the perturbations, and the analysis, in local Euclidean coordinate patches. The main idea is that
forbidden configurations exhibit some stability with respect to small changes in the Euclidean
metric. In particular, if we ensure there are no forbidden configurations in some region of one
Euclidean coordinate patch, then, assuming a slightly smaller hoop parameter α0, there will be
no forbidden configurations in the corresponding region of any nearby coordinate patche. This
means that the perturbed point set will be δ-generic in any local Euclidean coordinate patch,
and the resulting stability of the local Euclidean Delaunay triangulations ensures that they will
agree on neighbouring patches.

We assume we have a finite set of points P in a compact manifold M. It is convenient to
employ an index set N of unique (integer) labels for P, thus we employ a bijection ι : N →
P ⊂ M. We assume that P is sufficiently dense that we may define an atlas {(Wi, ϕi)}i∈N for
M such that the coordinate charts ϕi : Wi → Ui ⊂ Rm have low metric distortion, as defined
in Section 3.2. The set Wi is required to contain a sufficiently large ball centred at the point
indexed by i. We refer to Ui as a coordinate patch.

We work exclusively in the Euclidean coordinate patches Ui, exploiting the transition func-
tions ϕji = ϕj ◦ ϕ−1

i to translate between them. We define Pi = ϕi(Wi ∩ P), but given these
sets, the algorithm itself makes no explicit reference to either P or to the coordinate charts ϕi,
except to keep track of the labels of the points. We employ the discrete map φi = ϕi ◦ ι to index
the elements of the set Pi.

The idea is to perturb pi = φi(i) ∈ Ui in such a way, pi 7→ p′i, that not only are there
no forbidden configurations incident to p′i in P′i = ϕi(Wi ∩ P′), but there are no forbidden
configurations incident to ϕji(p

′
i) ∈ P′j ⊂ Uj either, where j is the index of any sample point

near pi.
Before detailing the requirements of the input data in Section 3.2, we briefly discuss the

implicit and explicit properties of the underlying manifoldM in Section 3.1. A summary of the
analysis and main results is presented in Section 3.3.

3.1 Manifolds represented by transition functions

The essential input data for the algorithm are the transition functions, and the sample points
in the coordinate patches; we do not explicitly use the coordinate charts or the metric on the
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manifold. However, given that the transition functions can be defined by an atlas on a manifold,
this manifold is essentially unique: If M̃ has an atlas {(W̃i, ϕ̃i)}i∈N such that ϕ̃i(W̃i) = Ui and
ϕji = ϕ̃j ◦ ϕ̃−1

i for all i, j ∈ N , then M̃ and M are homeomorphic. Indeed, we define the map
f :M→ M̃ by f(x) = ϕ̃−1

i ◦ ϕi(x) if x ∈ Wi. The map is well defined, because ϕj = ϕji ◦ ϕi
on Wi ∩Wj , and ϕ̃−1

j = ϕ̃−1
i ◦ ϕ

−1
ji on Uji = ϕj(Wi ∩Wj). It can be verified directly from the

definition that f is a homeomorphism, since it is bijective and locally a homeomorphism.
Although the algorithm does not make explicit reference to a metric on the manifold M,

the metric distortion bounds required on the transition functions imply a metric constraint.
Implicitly we are using a metric on the manifold for which the coordinate charts have low
metric distortion. If a metric on the manifold is not explicitly given then, at least in the case
where the transition functions are smooth, we can be sure that such a metric exists: Given the
coordinate charts an appropriate Riemannian metric on the manifold can be obtained from the
coordinate patches by the standard construction employing a partition of unity subordinate to
the atlas (e.g., [Boo86, Thm. V.4.5]).

Thus, although the manifold may be presented abstractly in terms of coordinate patches
and transition functions between them, this information essentially characterises the manifold.
The algorithm we present is not a reconstruction algorithm, it is an algorithm to triangulate a
known manifold.

3.2 The setting and input data

We take as input a finite index set N = {1, . . . , n}, which we might think of as an abstract set of
points (without geometry), together with the geometric data we will now introduce. The details
of the arguments that lead to our choices in the size of the domains are given in Section 4.3.

Coordinate patches. For each i ∈ N we have a neighbourhood set Ni ⊆ N , a sampling
radius εi > 0, and an injective application

φi : Ni → Ui ⊆ Rm,

such that Pi = φi(Ni) is a (µ0, εi)-net for B(pi, 8εi) ⊆ Ui, where we adopt the notation pj = φi(j)
for any j ∈ Ni. The separation parameter µ0 is globally defined to be the same on all coordinate
patches, but the sampling radius εi may be different in different patches, subject to a mild
constraint described below. We call the standard metric on Ui ⊆ Rm the local Euclidean metric
for i, and we will denote it by di to distinguish between the different local Euclidean metrics.
Similarly, Bi(c, r) denotes a ball with respect to the metric di.

Transition functions. For each pj ∈ Bi(pi, 6εi) ⊂ Ui we require a neighbourhood Uij ⊆ Ui
such that

Bi(pi, 6εi) ∩Bi(pj , 9εi) ⊆ Uij
and

Uij ∩ φi(Ni) = φi(Ni ∩Nj).

The set Uij is the domain of the transition function ϕji, which is a homeomorphism

ϕji : Uij → Uji ⊆ Uj ,

such that ϕji = ϕ−1
ij and

ϕji ◦ φi = φj on Ni ∩Nj .

These transition functions are required to have low metric distortion:

|di(x, y)− dj(ϕji(x), ϕji(y))| ≤ ξ0di(x, y) for all x, y ∈ Uij , (2)
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where ξ0 > 0 is a small positive parameter that quantifies the metric distortion. We say that
ϕji is a ξ0-distortion map.

In order to ease the notational burden, φi(j) ∈ Uik, and φk(j) ∈ Uki, are denoted by the
same symbol, pj . Ambiguities are avoided by distinguishing between the Euclidean metrics di
and dk. Although di is the canonical metric on Uik, we may consider the pullback of dk from
the homeomorphic domain Uki. Thus for x, y ∈ Uik the expression dk(x, y) is understood to
mean dk(ϕki(x), ϕki(y)), but we also occasionally employ the latter, redundant, notation.

Using symmetry, we observe that Equation (2) implies that

|di(x, y)− dj(x, y)| ≤ ξ0 min{di(x, y), dj(x, y)}.

Our analysis will require that ξ0 be very small. For standard coordinate charts, ξ0 can be shown
to be O(ε), where ε is a sampling radius on the manifold. For example, this is the case when
considering a smooth submanifold of RN , and using the orthogonal projection onto the tangent
space as a coordinate chart [BDG13a, Lemma 3.7]. Thus ξ0 may be made as small as desired
by increasing the sampling density.

Adaptive sampling. We will further require a constraint on the difference between neigh-
bouring sampling radii:

|εi − εj | ≤ ε0 min{εi, εj},

whenever di(pi, pj) ≤ 6εi. This allows us to work with a constant sampling radius in each
coordinate frame, while accommodating a globally adaptive sampling radius.

For example, suppose ε : M → R is a positive, ν-Lipschitz function, with respect to the
metric dM on the manifold. Then ε may be used as an adaptive sampling radius on M, i.e.,
P ⊂ M is ε-dense if dM(x,P) < ε(x) for all x ∈ M. A popular example of such a function is
ε(x) = νf(x), where f is the (1-Lipschitz) local feature size [AB99].

Using the ν-Lipschitz continuity of ε, we can define, for any pi ∈ M, a constant ε̃i, such
that P is ε̃i-dense in some neighbourhood of pi. In fact, given c > 0, with c < ν−1, we find that
P is ε̃i-dense within the ball BM(pi, cε̃i), where

ε̃i =
ε(pi)

1− cν
.

For any pj ∈ BM(pi, ε̃i), we obtain |ε̃i − ε̃j | ≤ ε0ε̃i, where

ε0 =
cν

1− cν
, (3)

and if ν ≤ 1
2c , then ε0 ≤ 1.

Similarly, if P is µ̂0ε-separated, then it will be µ̃0ε̃i-separated on BM(pi, cε̃i), provided
µ̃0 ≤ (1− 2cν)µ̂0. The constant µ̂0 itself may be constrained to satisfy µ̂0 ≤ (1 + ν)−1 ≤ 1

2 .
In our framework here, the local constant sampling radii are applied to the local Euclidean

metric, rather than the metric on the manifold, but the same idea applies. Although Equa-
tion (3) indicates that ε0 is expected to become small as the sampling radius decreases, our
analysis does not demand this. As explained in Section 3.3, we only require that ε0 be mildly
bounded.

We summarise the assumptions on the input to the extended algorithm as Hypotheses 1,
where the parameters ε0 and ξ0 are left free to be constrained by subsequent hypotheses.

Hypotheses 1 (Input assumptions) We have a finite index set N representing the sample
points. For each i ∈ N there is associated a subset of neighbours Ni ⊆ N . The geometry is
imposed by

6



1. Coordinate patches. For each i ∈ N , there is a coordinate patch Ui ⊆ Rm, and an
injective application φi : Ni → Ui such that Pi = φi(Ni) is a (µ0, εi)-net forBi(pi, 8εi) ⊆ Ui.
We introduce a parameter ε0 ≥ 0, and demand that, if di(pi, pj) ≤ 6εi, then

|εi − εj | ≤ ε0 min{εi, εj}.

2. Transition functions. Each pj ∈ Bi(pi, 6εi) ⊂ Ui lies in the domain Uij ⊆ Ui of the

transition function ϕji : Uij
∼=−→ Uji. The domains must be suffiently large:

Bi(pi, 6εi) ∩Bi(pj , 9εi) ⊆ Uij ,

and the transition functions must satisfy the compatibility conditions ϕji = ϕ−1
ij and

ϕji ◦φi = φj on Ni ∩Nj . Furthermore, the metric distortion of the transition functions is
bounded by a parameter ξ0:

|di(x, y)− dj(ϕji(x), ϕji(y))| ≤ ξ0di(x, y) for all x, y ∈ Uij .

The extended algorithm The algorithm we present here is the same in spirit as the algo-
rithm for the Euclidean setting [BDG14] described in Section 2, and we refer to it as the extended
algorithm. It takes an input satisfying Hypotheses 1. For each i ∈ N , a ρ0εi-perturbation is
repeatedly applied to the point pi ∈ P′i ⊂ Ui until a good perturbation p′i is found. The Defini-
tion 3 of a good perturbation involves something closely resembling the hoop property P1 with
a parameter α̃0 > α0. When a good perturbation p′i is selected, then the affected point sets P′j
are updated, as well as P′i itself. By demonstrating stability of the hoop property with respect
to small changes in the Euclidean metric, we are able to show that when the extended algo-
rithm terminates, there will be no forbidden configurations in the region of interest of any local
Euclidean coodinate patch. Then, assuming appropriate constraints on ξ0 and ε0, a manifold
simplicial complex whose vertex set is N is constructed by defining the star of i to correspond
to star(p′i; Del(P′i)). The stability of these stars ensures that this complex is indeed a manifold
(Theorem 1), and we call it Del(P′), as justified by Theorem 2. We refer to Del(P′) as the
output of the extended algorithm, thus we assume that the extended algorithm includes a final
step of computing all the stars after the perturbation algorithm has completed.

3.3 Outline of the analysis

We have defined the point sets Pi = φi(Ni) in the coordinate patch for pi. We will let P′i
denote the corresponding perturbed point set at any stage in the algorithm: P′i changes during
the course of the algorithm, and we do not rename it according to the iteration as was done
in the original description of the algorithm for flat manifolds [BDG14]. The perturbation of a
point pi 7→ p′i is performed in the coordinate patch Ui, and then all the coordinate charts must
be updated so that if i ∈ Nj , then φ′j(i) = ϕji(p

′
i). However, we will refer to the point as p′i

regardless of which coordinate frame we are considering. The discrete maps φ′i will change as
the algorithm progresses, but φi will always refer to the initial map.

In order to ensure that we maintain a (µ′0, ε
′)-net in each coordinate chart ([BDG14, Lemma

2.2]), we need to constrain the point perturbation so that in any local Euclidean coordinate
patch Uj , the cumulative perturbation is a ρ̃0εj-perturbation with ρ̃0 ≤ µ0

4 . If pi 7→ ζ(pi) such
that di(ζ(pi), pi) ≤ ρ = ρ0εi, then dj(ζ(pi), pi) ≤ (1 + ξ0)ρ ≤ (1 + ξ0)(1 + ε0)ρ0εj , and we have

ρ̃0 = (1 + ξ0)(1 + ε0)ρ0.

Thus we demand that
ρ̃0 ≤

µ0

4
. (4)
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In order to facilitate the analysis, we want an explicit constant to bound the ratio between ρ0

and ρ̃0. We ensure that
(1 + ε0)(1 + ξ0) ≤ 2 (5)

by imposing the mild constraint that

ε0 ≤
1− ξ0

1 + ξ0
. (6)

We will keep the definition of forbidden configuration as in the flat case. In other words a
forbidden configuration is that which satisfies the four properties described in Lemma 2, where
ε refers to the local sampling radius εi.

We do not attempt to remove the forbidden configurations from all of P′i. Rather, we define
Q′i = P′i ∩ Bi(pi, 6εi) as our region of interest. The reasoning behind this choice appears in
Section 4.3, where we also show that [BDG14, Lemma 3.6] implies:

Lemma 17 (Protected stars) If there are no forbidden configurations in Q′i, then all the
m-simplices in star(p′i; Del(Q′i)) are Γ0-good and δ-protected, with δ = δ0µ

′
0ε
′
i.

This allows us to exploit the Delaunay metric stability result [BDG13b, Theorem 4.17],
which we show (Section 4.3) may be stated in our current context as:

Lemma 18 (Stable stars) If

ξ0 ≤
Γ2m+1

0 µ2
0

212
,

and there are no forbidden configurations in Q′i, then for all p′j ∈ star(p′i; Del(P′i)), we have

star(p′i; Del(P′i))
∼= star(p′i; Del(P′j)).

The main technical result we develop in the current analysis is the bound on the distortion
of the hoop property (Section 4.4) due to the transition functions:

Lemma 20 (Hoop distortion) If

ξ0 ≤
(

Γ2m+1
0

4

)2

,

then for any forbidden configuration τ = p′j ∗ σ ⊂ Q′i, there is a simplex σ̃ = ϕji(σ) ⊂ P′j such

that dj(p
′
j , S

m−1(σ̃)) ≤ 2α̃0εj , where

α̃0 =
216m

3
2 Γ0

µ3
0

.

The proof of Lemma 20 relies heavily on the thickness bound (Property P4) for the facets of a
forbidden configuration. In Section 4.1 we show bounds on the changes of the intrinsic proper-
ties, such as thickness and circumradius, of a Euclidean simplex subjected to the influence of
a transition function. This leads, as shown in Section 4.2, to bounds on circumcentre displace-
ment under small changes of a Euclidean metric. These bounds could not be recovered directly
from earlier work [BDG13b], because they involve simplices that are not full dimensional. With
these results in place, the proof of Lemma 20 is assembled in Section 4.4.

By considering the diameter of a forbidden configuration subjected to metric distortion,
we can determine the size of the neighbourhood of pi that must be considered when checking
whether a perturbation pi 7→ p′i creates conflicts.
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Suppose τ ⊂ Q′j ⊂ Uj is a forbidden configuration with p′i ∈ τ . By Lemma 2, Property P3,

we have ∆(τ) < 5
2(1 + 1

2δ0µ0)εj . It follows then that if τ̃ = ϕij(τ) ⊂ P′i, then

∆(τ̃) < (1 + ξ0)(1 + ε0)
5

2

(
1 +

1

2
δ0µ0

)
εi

≤ 5

(
1 +

1

2
δ0µ0

)
εi,

and we find, as in [BDG14, Lemma 4.4], that if δ0 ≤ 2
5 , then

(φ′j)
−1(τ) ⊂ φ−1

i (Bi(pi, r) ∩ Pi), where r =

(
5 +

3µ0

2

)
εi.

Indeed, this is ensured by the fact that Pi is a (µ0, εi)-net for Bi(pi, 8εi), and 8εi − r > εi.
Let Si denote all the m-simplices in Ni whose vertices are contained in

φ−1
i (Bi(pi, r) ∩ Pi) \ {i} where r =

(
5 +

3µ0

2

)
εi.

Then the simple packing argument demonstrated in [BDG14, Lemma 5.1] yields

#Si <
(

14

µ0

)m2+m

. (7)

We strengthen the definition of a good perturbation:

Definition 3 (Good perturbation) For the extended algorithm, we say that pi 7→ x is a good
perturbation of pi ∈ Ui if there are no m-simplices σ ∈ φ′i(Si) such that di(x, S

m−1(σ)) ≤ 2α̃0εi,
where α̃0 is defined in Lemma 20.

It is sufficient to only consider the m-simplices, because if σ is a non-degenerate j-simplex, with
j < m, then it is the face of some non-degenerate m-simplex τ , and S(σ) ⊂ Sm−1(τ). With
this definition of a good perturbation, the extended algorithm yields the analogue of [BDG14,
Lemma 4.3]:

Lemma 4 After the extended algorithm terminates there will be no forbidden configurations
in Q′i, for every i ∈ N .

Proof We argue by induction that after the ith iteration, for any j ≤ i, and any k ∈ N , there
are no forbidden configurations in Q′k that have p′j as a vertex. For i = 1, the assertion follows
directly from Definition 3, and Lemma 20. Assume the assertion is true for i − 1. Suppose τ
is a forbidden configuration in Q′k, after the ith iteration. Then since p′i is a good perturbation,
according to Definition 3, τ cannot contain p′i. Also, τ cannot contain any p′j with j < i, for
that would contradict the induction hypothesis. Thus the hypothesis holds for all i ≥ 1. �

We need to quantify the conditions under which the algorithm is guaranteed to terminate.
We use the same volumetric analysis that is demonstrated in the proof of [BDG14, Lemma 5.4],
with the only modifications being a change in two of the constants involved in the calculation.
In particular, the number of simplices involved is now given by Equation (7), and we use the

bound on α̃0 given by Lemma 20, which is 23m
3
2 times the bound on α0 used in the original

calculation. This calculation, coupled with the criterion for Lemma 20, yields a constraint on ξ0

with respect to the perturbation parameter ρ0. Together with Equations (4) and (6), this gives
us all the constraints on the parameters that will ensure the existence of good perturbations,
and therefore the termination of the algorithm:
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Hypotheses 2 (Parameter constraints) Define

ρ̃0 = (1 + ε0)(1 + ξ0)ρ0,

We require

ε0 ≤
1− ξ0

1 + ξ0
, and ρ̃0 ≤

µ0

4
, and ξ0 ≤

1

24

(ρ0

C

)4m+2
,

where

C = m
3
2

(
2

µ0

)4m2+5m+21

.

Thus, using Lemma 17, the main result [BDG14, Theorem 4.1] of the original perturbation
algorithm can be adapted to the context of the extended algorithm as:

Lemma 5 (Algorithm guarantee) If Hypotheses 1 and 2 are satisfied, then the extended
algorithm terminates, and for every i ∈ N , the set Q′i is a (µ′0, ε

′
i)-net such that there are no

forbidden configurations with

Γ0 =
ρ0

C
, and δ = Γm+1

0 µ′0ε
′
i,

where µ′0 = µ0−2ρ̃0
1+ρ̃0

, and ε′i = (1 + ρ̃0)εi.

This allows us to apply Lemma 18, and we can define the abstract complex Del(P′) by the
criterion that φ′i(star(i; Del(P′))) = star(p′i; Del(P′i)) for all i ∈ N . This is a manifold piecewise
linear1 simplicial complex. The bound on ξ0 imposed by Lemma 18 is met by the one imposed
by Hypotheses 2 and we arrive at our first main result:

Theorem 1 (Manifold mesh) Given an input satisfying Hypotheses 1 and 2, the extended
algorithm produces a manifold abstract simplicial complex Del(P′) defined by

star(i; Del(P′)) ∼= star(p′i; Del(P′i)).

The algorithm itself makes no explicit reference to the underlying manifold M or point set
P ⊂ M, but we need to consider these in order to justify the name Del(P′) for the output of
the extended algorithm.

Given P ⊂ M, we define the set P′ ⊂ M to be the perturbed point set produced by the
algorithm, i.e., P → P′ is given by p 7→ p′ = ϕ−1

i (p′i), where i ∈ N is the label associated with
p ∈ P. If the metric on M is such that the coordinate maps ϕi themselves have low metric
distortion, then the constructed complex Del(P′) is in fact the Delaunay complex of P′ ⊂ M.
This follows from the fact that in the local Euclidean coordinate frames we have ensured that
the points have stable Delaunay triangulations. Thus, using Γ0 = ρ0

C given by Lemma 5, the
stability result [BDG13b, Thm 4.17] leads, by the same reasoning that yields Lemma 18, to the
following:

Theorem 2 (Delaunay complex) Suppose that {(Wi, ϕi)}i∈N is an atlas for the compact m-
manifold M, and the finite set P ⊂ M is such that Hypotheses 1 and 2 are satisfied. Suppose
also that M is equipped with a metric dM, such that

|di(ϕi(x), ϕi(y))− dM(x, y)| ≤ ηdi(ϕi(x), ϕi(y)),

whenever x and y belong to ϕ−1
i (B(pi, 6εi)). If

η ≤ µ2
0

212

(ρ0

C

)2m+1
,

then Del(P′) is the Delaunay complex of P′ ⊂M with respect to dM.

1A manifold simplicial complex that admits an atlas of piecewise linear coordinate charts from the stars of the
vertices is called piecewise linear . There exists manifold simplical complexes that are not piecewise linear [Thu97,
Example 3.2.11], but they are not a concern for us here.
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The required bound on η is weaker than the bound on ξ0 demanded by Hypotheses 2. In the
standard scenario, the metric distortion of the transition functions is bounded by bounding
the metric distortion of the coordinate charts, and in this case the bound on η required by
Theorem 2 is automatically met when Hypotheses 2 are satisfied.

3.4 The Riemannian setting

IfM is a Riemannian manifold, then Del(P′) is a Delaunay triangulation ofM and is equipped
with a piecewise flat metric that is a good approximation of dM. This follows from recent
results [DVW14] that guarantee a homeomorphism in this setting.

We use the exponential map to define the coordinate charts. Proposition 17 and Lemma 11
of [DVW14] directly imply that if

ϕji = exp−1
ι(j) ◦ expι(i),

then on Bi(pi, r) we have

|dj(ϕji(x), ϕji(y))− di(x, y)| ≤ 6Λr2di(x, y),

where Λ is a bound on the absolute value of the sectional curvatures ofM. Here we will assume
a constant sampling radius, i.e., ε0 = 0 and εj = εi for all j ∈ N . For our purposes, we need r =
6εi, and thus ξ0 = 63Λε2i , and in order to satisfy Hypotheses 2 we require 63Λε2i ≤ 1

24
(Γ2m+1

0 )2,
which is satisfied if

εi ≤
Γ2m+1

0

26
√

Λ
. (8)

We exploit [DVW14, Theorem 3], which guarantees that the output complex is homeomor-
phic and with a metric quantifiably close to dM. This demands that the star of each p ∈ P ⊂M
be contained in a geodesic ball BM(p, h) with

h = min

{
inj(M)

4
,

Γm0
6
√

Λ

}
.

Since expp preserves the radius of a ball centred at p, we have that h = 2εi, and we see that the

constraint h ≤ Γm
0

6
√

Λ
is automatically satisfied when εi satisfies (8).

We wish to express the required sampling conditions in terms of the intrinsic metric dM.
If ε is the sampling radius with respect to dM, we require an upper bound on ε such that the
needed bound on εi is attained when accounting for metric distortion. The Rauch Theorem
([DVW14, Lemma 9]) bounds the metric distortion of the exponential map, and it implies that
within a ball of radius r

di(ϕi(x), ϕi(y)) ≤
(

1 +
Λr2

3

)
dM(x, y). (9)

In order to ensure that Pi meets the density requirement of item 1 of Hypotheses 1, we demand
that Bi(pi, 9εi) ⊆ Ui. Then, using (8) to bound r = 9εi, we use (9) to find the bound on ε
required to ensure (8). In fact, the correction is so small that it is already accommodated by
the adjustment made when we rounded the constant in (8) to a power of 2. In other words, the
right hand side of (8) is already sufficient as a bound on ε.

We also need to ensure that the conditions of Hypotheses 2 are met. In particular, if P is a
(µ0, ε)-net with respect to dM, then the effective separation parameter with respect to di will
be slightly smaller, due to the metric distortion of the coordinate charts. In order to compute
this correction, we again use the Rauch Theorem [DVW14, Lemma 9], and we find, for p, q ∈ P

di(ϕi(p), ϕi(q)) ≥
(

1− Λr2

2

)
µ0ε ≥

(
1− Λr2

2

1 + Λr2

3

)
µ0εi,
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where r = 9εi, as above. Using (8), and the constraint on Γ0 imposed by Lemma 5, we find
that the correction is indeed extremely small:

di(ϕi(p), ϕi(q)) ≥ (1− 2−200)µ0εi.

We make crude adjustments to the constraint on ρ0 and the constant defining Γ0 to accommo-
date this. We can now formulate [DVW14, Theorem 3] in our context:

Theorem 3 (Riemannian Delaunay triangulation) Suppose M is a Riemannian mani-
fold, and P ⊂M is a (µ0, ε)-net with respect to the metric dM, with

ε ≤ min

{
inj(M)

4
,

1

26
√

Λ

(
ρ0

C̃

)2m+1
}
,

where Λ is a bound on the absolute value of the sectional curvatures and inj(M) is the injectivity
radius, and

C̃ = m
3
2

(
2

µ0

)5m2+5m+21

.

If the coordinate charts are defined by

ϕi = exp−1
ι(i) : BM(ι(i), 10ε)→ Ui,

and ρ0 ≤ µ0
5 , then the output Del(P′) of the extended algorithm is a Delaunay triangulation:

there is a natural homeomorphism H : |Del(P′)| → M that satisfies

|dM(H(x), H(y))− dPL(x, y)| ≤

28Λ

(
C̃

ρ0

)2m

ε2

 dPL(x, y),

where dPL is the natural piecewise flat metric on Del(P′) defined by geodesic distances between
vertices inM. In addition, Del(P′) is self-Delaunay: it is a Delaunay triangulation of its vertices
with respect to its intrinsic metric dPL.

The general smooth case. The homeomorphism result in the Riemannian setting can be
exploited whenever the transition functions are smooth (or at least C3), even if there is no
explicit Riemannian metric associated with the input. The reason is that we can construct a
Riemannian metric on the manifold by the standard trick using a partition of unity subordinate
to the atlas [Boo86, Thm. V.4.5]. Then a short exercise shows that the metric distortion of the
coordinate charts is bounded by ξ0. It follows then that the constructed Riemannian metric
satisfies Theorem 2 if Hypotheses 1 and 2 are satisfied. Thus we can guarantee the existence of
a Delaunay triangulation with respect to any smooth metric that can be locally approximated
by a Euclidean metric to any desired accuracy (i.e., with arbitrarily small metric distortion):
At a sufficiently high sampling density Del(P′) will satisfy Theorem 2 with respect to the given
metric, as well as both of Theorems 2 and 3 for the constructed Riemannian metric.

The primary example of such a smooth, non-Riemannian metric is the metric of the ambient
space RN restricted to a submanifoldM⊂ RN . The associated Delaunay complex is often called
the restricted Delaunay complex. Sampling conditions that ensure that the Delaunay complexes
associated with the restricted ambient metric and the induced Riemannian metric coincide are
worked out in detail from the extrinsic point of view in [BDG13a].

4 Details of the analysis

In this section we provide details to support the argument made in Section 3.3.
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4.1 Simplex distortion

Our transition functions introduce a metric distortion when we move from one coordinate chart
to another. The geometric properties of a simplex will be slightly different if we consider it
with respect to the Euclidean metric di than they would be if we are using a different Euclidean
metric dj . We wish to bound the magnitude of the change of such properties as the thickness
and the circumradius of a simplex that is subjected to such a distortion. This is an exercise in
linear algebra.

We wish to compare two Euclidean simplices with corresponding vertices, but whose cor-
responding edge lengths differ by a relatively small amount. The embedding of the simplex in
Euclidean space (i.e., the coordinates of the vertices) is not relevant to us. Previous results
often only consider the case where the vertices of a given simplex are perturbed a small amount
to obtain a new simplex. Lemma 10 demonstrates the existence of an isometry that allows us
to also consider the general situation in terms of vertex displacements.

We will exploit observations on the linear algebra of simplices developed in previous work
[BDG13b]. A k-simplex σ = {p0, . . . , pk} in Rm can be represented by an m × k matrix P ,
whose ith column is pi − p0. We let si(A) denote the ith singular value of a matrix A, and
observe that ‖P‖ = s1(P ) ≤

√
k∆(σ).

We are particularly interested in bounds on the smallest singular value of P , which is the
inverse of the largest singular value of the pseudo-invese P † = (PTP )−1PT. If the columns of
P are viewed as a basis for aff(σ), then the rows of P † may be viewed as the dual basis. The
magnitude of a dual vector is equal to the inverse of the corresponding altitudes in σ, and this
leads directly to the desired bound on the smallest singular value of P , which is expressed in
the following Lemma [BDG13b, Lemma 2.4]:

Lemma 6 (Thickness and singular value) Let σ = [p0, . . . , pk] be a non-degenerate k-
simplex in Rm, with k > 0, and let P be the m × k matrix whose ith column is pi − p0.
Then the ith row of P † is given by wT

i , where wi is orthogonal to aff(σpi), and

‖wi‖ = D(pi, σ)−1.

We have the following bound on the smallest singular value of P :

sk(P ) ≥
√
kΥ(σ)∆(σ).

We will also have use for a lower bound on the thickness of σ, given the smallest singular value
for the representative matrix P . We observe that P was constructed by arbitrarily choosing one
vertex, p0, to serve as the origin. If there is a vertex pi, different from p0, such that D(pi, σ)
is minimal amongst all the altitudes of σ, then according to Lemma 6, ‖wi‖ = (kΥ(σ)∆(σ))−1,
and it follows then that s1(P †) ≥ (kΥ(σ)∆(σ))−1, and therefore

sk(P ) ≤ kΥ(σ)∆(σ), (10)

in this case.
We are going to be interested here in purely intrinsic properties of simplices in Rm; properties

that are not dependent on the choice of embedding in Rm. In this context it is convenient to
make use of the Gram matrix PTP , because if QTQ = PTP , then there is an orthogonal
transformation O such that P = OQ. This assertion becomes evident when considering the
singular value decompositions of P and Q. Indeed, the entries of the Gram matrix can be
expressed in terms of squared edge lengths, as observed in the proof of the following:

Lemma 7 Suppose that σ = {p0, . . . , pk} and σ̃ = {p̃0, . . . , p̃k} are two k-simplices in Rm such
that

|‖pi − pj‖ − ‖p̃i − p̃j‖| ≤ ξ0∆(σ),

13



for all 0 ≤ i < j ≤ k. Let P be the matrix whose ith column is pi − p0, and define P̃ similarly.
Consider the Gram matrices, and let E be the matrix that records their difference:

P̃TP̃ = PTP + E.

If ξ0 ≤ 2
3 , then the entries of E are bounded by |Eij | ≤ 4ξ0∆(σ)2, and in particular

‖E‖ ≤ 4kξ0∆(σ)2. (11)

Proof Let vi = pi−p0, and ṽi = p̃i−p̃0. Expanding scalar products of the form (vj − vi)T(vj−
vi), we obtain a bound on the magnitude of the coefficients of E:

|ṽTi ṽj − vTi vj | ≤
1

2

(
|‖ṽi‖2 − ‖vi‖2|+ |‖ṽj‖2 − ‖vj‖2|+ |‖ṽj − ṽi‖2 − ‖vj − vi‖2|

)
≤ 3

2
(2 + ξ0)ξ0∆(σ)2

≤ 4ξ0∆(σ)2.

This leads us to a bound on s1(E) = ‖E‖. Indeed, the magnitude of the column vectors of
E is bounded by

√
k times a bound on the magnitude of their coefficients, and the magnitude

of s1(E) is bounded by
√
k times a bound on the magnitude of the column vectors. We obtain

Equation (11). �

Lemma 7 enables us to bound the thickness of a distorted simplex:

Lemma 8 (Thickness under distortion) Suppose that σ = {p0, . . . , pk} and σ̃ = {p̃0, . . . , p̃k}
are two k-simplices in Rm such that

|‖pi − pj‖ − ‖p̃i − p̃j‖| ≤ ξ0∆(σ)

for all 0 ≤ i < j ≤ k. Let P be the matrix whose ith column is pi − p0, and define P̃ similarly.
If

ξ0 ≤
(
ηΥ(σ)

2

)2

with η2 ≤ 1,

then
sk(P̃ ) ≥ (1− η2)sk(P ),

and

Υ(σ̃)∆(σ̃) ≥ 1√
k

(1− η2)Υ(σ)∆(σ),

and

Υ(σ̃) ≥ 4

5
√
k

(1− η2)Υ(σ).

Proof The equation P̃TP̃ = PTP + E implies that

|sk(P̃ )2 − sk(P )2| ≤ s1(E),

and so

|sk(P̃ )− sk(P )| ≤ s1(E)

sk(P̃ ) + sk(P )
≤ s1(E)

sk(P )
.

Thus

sk(P̃ ) ≥ sk(P )− s1(E)

sk(P )
= sk(P )

(
1− s1(E)

sk(P )2

)
.
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From Lemma 7 and the bound on ξ0 we have

s1(E) ≤ η2kΥ(σ)2∆(σ)2,

and so s1(E)
sk(P )2

≤ η2 by Lemma 6, and we obtain sk(P̃ ) ≥ (1− η2)sk(P ).

For the thickness bound we assume, without loss of generality, that there is some vertex
different from p̃0 that realises the minimal altitude in σ̃ (our choice of ordering of the vertices is
unimportant, other than to establish the correspondence between σ and σ̃). Thus Equation (10)
and Lemma 6, give the inequalities

kΥ(σ̃)∆(σ̃) ≥ sk(P̃ ), and sk(P ) ≥
√
kΥ(σ)∆(σ),

and we obtain
kΥ(σ̃)∆(σ̃) ≥ (1− η2)

√
kΥ(σ)∆(σ).

The final result follows since ∆(σ)
∆(σ̃) ≥

1
1+ξ0

≥ 4
5 . �

In order to obtain a bound on the circumradius of σ̃ with respect to that of σ, it is convenient
to find an isometry that maps the vertices of σ close to the vertices of σ̃. Choosing p̃0 and p0

to coincide at the origin, the displacement error for the remaining vertices is minimised by
taking the orthogonal polar factor of the linear transformation A = P̃P−1 that maps σ to σ̃.
In other words, if the singular value decomposition of A is A = UAΣAV

T
A , then A = ΦS, where

S = VAΣAV
T
A , and Φ = UAV

T
A is the desired linear isometry. We have the following result,

which is a special case of a theorem demonstrated by Jiménez and Petrova [JP13]:

Lemma 9 (Close alignment of bases) Suppose that P and P̃ are non-degenerate k × k
matrices such that

P̃TP̃ = PTP + E. (12)

Then there exists a linear isometry Φ : Rk → Rk such that

‖P̃ − ΦP‖ ≤ s1(P )s1(E)

sk(P )2
.

Proof Multiplying by P−T := (PT)
−1

on the left, and by P−1 on the right, we rewrite
Equation (12) as

ATA = I + F, (13)

where A = P̃P−1, and F = P−TEP−1. Using the singular value decomposition A = UAΣAV
T
A ,

we let Φ = UAV
T
A , and we find

P̃ − ΦP = (A− Φ)P = UA(ΣA − I)V T
A P. (14)

From Equation (13) we deduce that s1(A)2 ≤ 1 + s1(F ), and also that sk(A)2 ≥ 1− s1(F ). It
follows that

max
i
|si(A)− 1| ≤ s1(F )

1 + si(A)
≤ s1(F ),

and thus
‖ΣA − I‖ ≤ s1(F ) ≤ s1(P−1)2s1(E) = sk(P )−2s1(E).

The result now follows from Equation (14). �

Recalling that an upper bound on the norm of a matrix also serves as an upper bound on the
norm of its column vectors, we obtain the following immediate consequence of Lemma 9, using
Lemma 7 and Lemma 6:
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Lemma 10 (Close alignment of simplices) Suppose that σ = {p0, . . . , pk} and σ̃ = {p̃0, . . . , p̃k}
are two k-simplices in Rm such that

|‖pi − pj‖ − ‖p̃i − p̃j‖| ≤ ξ0∆(σ),

for all 0 ≤ i < j ≤ k. Let P be the matrix whose ith column is pi − p0, and define P̃ similarly.
If ξ0 ≤ 2

3 , then there exists an isometry Φ : Rm → Rm such that

‖P̃ − ΦP‖ ≤ 4
√
kξ0∆(σ)

Υ(σ)2
,

and if σ̂ = Φσ = {p̂0, . . . , p̂k}, then p̂0 = p̃0, and

‖p̂i − p̃i‖ ≤
4
√
kξ0∆(σ)

Υ(σ)2
for all 1 ≤ i ≤ k.

Using Lemma 10 together with [BDG13b, Lemma 4.3] we obtain a bound on the difference in
the circumradii of two simplices whose edge lengths are almost the same:

Lemma 11 (Circumradii under distortion) Suppose that σ = {p0, . . . , pk} and σ̃ = {p̃0, . . . , p̃k}
are two k-simplices in Rm such that

|‖pi − pj‖ − ‖p̃i − p̃j‖| ≤ ξ0∆(σ),

for all 0 ≤ i < j ≤ k. If

ξ0 ≤
(

Υ(σ)

4

)2

,

then

|R(σ̃)−R(σ)| ≤ 16k
3
2R(σ)ξ0

Υ(σ)3
.

Proof We define σ̂ = Φσ, where Φ : σ → aff(σ̃) is the isometry described in Lemma 10. Since
p̂0 = p̃0, and R(σ̂) = R(σ), we have |R(σ̃)−R(σ)| ≤ ‖C(σ̂)−C(σ̃)‖. By Lemma 9, the distances
between C(σ) and the vertices of σ̃ are all bounded by

R(σ) +
4
√
kξ0∆(σ)

Υ(σ)2
≤ (1 +

√
k

2
)R(σ) ≤ 3

√
k

2
R(σ),

and these distances differ by no more than

8
√
kξ0∆(σ)

Υ(σ)2
.

It follows then from [BDG13b, Lemma 4.3] that

‖C(σ̂)− C(σ̃)‖ ≤
3
√
k

2 R(σ)

Υ(σ̃)∆(σ̃)

(
8
√
kξ0∆(σ)

Υ(σ)2

)

≤ 12kR(σ)ξ0
3

4
√
k
Υ(σ)3

by Lemma 8, with η =
1

2

≤ 16k
3
2R(σ)ξ0

Υ(σ)3
.

�
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4.2 Circumcentres and distortion maps

It is convenient to introduce the affine space N(σ), which is the space of centres of circumscribing
balls for a simplex σ ∈ Rm. If σ is a non-degenerate k-simplex, then N(σ) is an affine space of
dimension m− k perpendicular to aff(σ) and containing C(σ).

The transition functions introduce a small metric distortion, which motivated our interest in
the properties of perturbed simplices. In order to extend the perturbation algorithm [BDG14]
to the setting of curved manifolds, we are interested in quantifying how the test for the hoop
property behaves under a perturbation of the interpoint distances. Specifically, if a point p is at
a distance α0R from the diametric sphere of a simplex σ in one coordinate frame, what can we
say about the distance of p from Sm−1(σ) when measured by the metric of another coordinate
frame? To this end, we are interested in the behaviour of the circumcentre under the influence
of a mapping that is not distance preserving. As a first step in this direction, we observe another
consequence of [BDG13b, Lemma 4.3]:

Lemma 12 (Circumscribing balls under distortion) Suppose φ : Rm ⊃ U → V ⊂ Rm is
a homeomorphism such that, for some positive ξ0,

|d(x, y)− d(φ(x), φ(y))| ≤ ξ0d(x, y) for all x, y ∈ U.

Suppose also that σ ⊂ U is a k-simplex, and that B(c, r) is a circumscribing ball for σ with
c ∈ U . Let σ̃ = φ(σ). If

ξ0 ≤
(

Υ(σ)

4

)2

,

then there is a circumscribing ball B(c̃, r̃) for σ̃ such that

d(φ(c), c̃) ≤ 3
√
kr2ξ0

Υ(σ)∆(σ)
,

and

|r̃ − r| ≤ 5
√
kr2ξ0

Υ(σ)∆(σ)
.

Proof By the perturbation bounds on φ, the distances between φ(c) and the vertices of σ̃
differ by no more than 2ξ0r, and these distances are all bounded by (1 + ξ0)r. In this context
[BDG13b, Lemma 4.3] says that there exists a c̃ ∈ N(σ) such that

d(φ(c), c̃) ≤ (1 + ξ0)r2ξ0r

Υ(σ̃)∆(σ̃)
.

We apply Lemma 8, using η = 1
2 , to obtain Υ(σ̃)∆(σ̃) ≥ 3

4
√
k
Υ(σ)∆(σ). We find

d(φ(c), c̃) ≤ 8
√
k(1 + ξ0)r2ξ0

3Υ(σ)∆(σ)
.

The announced bound on d(φ(c), c̃) is obtained by observing that ξ0 ≤ 1
16 .

Choosing a vertex p̃ = φ(p) ∈ σ̃, the bound on the difference in the radii follows:

r̃ = d(p̃, c̃) ≥ d(p̃, φ(c))− d(φ(c), c̃)

≥ r − ξ0r −
3
√
kr2ξ0

Υ(σ)∆(σ)

≥ r − 5
√
kr2ξ0

Υ(σ)∆(σ)
,

and similarly for the upper bound. �
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We will find it convenient to have a bound on the circumradius of a simplex, relative to its
thickness and longest edge length:

Lemma 13 If σ is a non-degenerate simplex in Rm, then

R(σ) ≤ ∆(σ)

2Υ(σ)
.

Proof Let σ = {p0, . . . , pk}, We work in Rk = aff(σ) ⊂ Rm, and let P be the k × k matrix
whose ith column is pi− p0. Then, by equating ‖C(σ)− p0‖2 with ‖C(σ)− pi‖2 and expanding,
we find a system of equations that may be written in matrix form as

PTC(σ) = b,

where the ith component of the vector b is 1
2(‖pi‖2 − ‖p0‖2). Choosing p0 as the origin, we

have ‖C(σ)‖ = R(σ), and ‖b‖ ≤ 1
2

√
k∆(σ)2. Since s1(P−T ) = sk(P )−1, the result follows from

Lemma 6, which says sk(P ) ≥
√
kΥ(σ)∆(σ). �

Using the bound on d(φ(C(σ)), N(σ̃)) given by Lemma 12, together with the circumradius
bound of Lemma 11, we obtain a bound on d(φ(C(σ)), C(σ̃)) by means of the Pythaogrean
theorem:

Lemma 14 (Circumcentres under distortion) Suppose φ : Rm ⊃ U → V ⊂ Rm is a
homeomorphism such that

|d(x, y)− d(φ(x), φ(y))| ≤ ξ0d(x, y) for all x, y ∈ U.

Suppose also that σ ⊂ U is a k-simplex, and let σ̃ = φ(σ). If

ξ0 ≤
(

Υ(σ)

4

)2

,

then

d(φ(C(σ)), C(σ̃)) ≤
[(

42k2

Υ(σ)3

)
ξ0

] 1
2

R(σ).

p̃C(σ̃)

c

ĉ

φ(C(σ))

N(σ̃)

w

z

σ̃

Figure 1: Diagram for the proof of Lemma 14.
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Proof Let c be the closest point in N(σ̃) to φ(C(σ)), and let w be the distance from c to
φ(C(σ)). Setting z as the distance between c and C(σ̃), we have that d(φ(C(σ)), C(σ̃))2 =
z2 + w2; see Figure 1. Let ĉ be the orthogonal projection of φ(C(σ)) into aff(σ̃). Then, letting
R = R(σ), and R̃ = R(σ̃), and choosing p̃ = φ(p) ∈ σ̃, we have

z2 = d(φ(C(σ)), p̃)2 − d(p̃, ĉ)2

≤ (1 + ξ0)2R2 − (R̃− w)2

= R2 − R̃2 + 2R̃w + 2R2ξ0 + ξ2
0R

2 − w2.

Using Lemma 11, we write R̃ in terms of R, as |R− R̃| ≤ sR, where

s =
16k

3
2 ξ0

Υ(σ)3
.

Then using Lemma 12 to bound w, and writing ∆, and Υ, instead of ∆(σ) and Υ(σ), we find

d(φ(C(σ)), C(σ̃))2 ≤ R2 − (1− s)2R2 + 2w(1 + s)R+ 2ξ0R
2 + ξ2

0R
2

≤ 2(sR+ w + ws)R+ (2 + ξ0)ξ0R
2

≤

[
2

(
16k

3
2

Υ3
+

3
√
kR

Υ∆
+

54k2Rξ0

Υ4∆

)
+ (2 + ξ0)

]
R2ξ0

≤

[
2

(
16k

3
2

Υ3
+

3
√
k

2Υ2
+

27k2

16Υ3

)
+ 3

]
R2ξ0 using Lemma 13

≤
[

42k2

Υ3

]
R2ξ0.

�

4.3 The size of the domains

The domains Uij on which the transition functions are defined need to be large enough to
accommodate two distinct requirements. First, the domain of the transition function ϕji must
contain a large enough neighbourhood of p′i that we can apply the metric stability result of
[BDG13b] to ensure that star(p′i; Del(P′i)) will be the same as star(p′i; Del(P′j)) whenever p′j ∈
star(p′i; Del(P′i)). The second requirement is that any potential forbidden configuration in the
region of interest must lie entirely within the domain of the transition function associated with
each of its vertices.

We recall the stability result [BDG13b, Theorem 4.17] that we will use:

Lemma 15 (Delaunay stability under metric perturbation) Suppose Q′i is a (µ′0, ε
′
i)-net

and conv(Q′i) ⊆ U ⊂ Rm and dj : U×U → R is such that |di(x, y)−dj(x, y)| ≤ ξ for all x, y ∈ U .
Suppose also that S ⊆ Q′i is a set of interior points such that every m-simplex σ ∈ star(S) is
Γm0 -thick and δ-protected and satisfies di(p, ∂U) ≥ 2ε′i for every vertex p ∈ σ. If

ξ ≤ Γm0 µ
′
0

36
δ,

then
star(S; Deldj (Q

′
i)) = star(S; Deldi(Q

′
i)).

The notation Deldj (Q
′
i) in Lemma 15 means that the metric dj is used to compute the Delaunay

complex of Q′i. For our purposes, dj is the pullback by ϕji of the Euclidean metric on Uj . Thus
we have the identification

star(S; Deldj (Q
′
i))
∼= star(ϕji(S); Del(ϕji(Q

′
i))).

19



We will use S = {p′i}. Some argument is required to ensure that Lemma 15 provides a route to
the desired equivalence

star(p′i; Del(P′i))
∼= star(p′i; Del(P′j)), when p′j ∈ star(p′i; Del(P′i)). (15)

We first establish our “region of interest”. We demand, for all i ∈ N , that Pi be a (µ0, εi)-net
for Bi(pi, 8εi), and we define Q′i = P′i∩Bi(pi, 6εi). Since P′i changes as the algorithm progresses,
points may come and go from Q′i, but we will ensure that when the algorithm terminates, Q′i
will contain no forbidden configurations.

Lemma 16 For all i ∈ N we have

star(p′i; Del(Q′i)) = star(p′i; Del(P′i)).

and if p ∈ star(p′i; Del(P′i)), then di(p, ∂Bi(pi, 6εi)) > 2ε′i.
If Bi(pi, 6εi) ⊆ Uij whenever p′j ∈ star(p′i; Del(P′i)), then

star(p′i; Del(ϕji(Q
′
i))) = star(p′i; Del(P′j)).

Proof We have di(p
′
i, ∂Bi(pi, 6εi)) ≥ 24

5 ε
′
i − 1

4ε
′
i > 4ε′i. The density assumption guarantees

that if σm ∈ star(p′i; Del(Q′i)), then R(σm) < ε′i, and the observation that Bi(C(σm), R(σm)) ⊂
Bi(pi, 4εi), leads to the first equality, and the bound on the distance from p to ∂Bi(pi, 6εi).

The second equality follows from two observations. First we show that if σm ∈ star(p′i; Del(ϕji(Q
′
i))),

then R(σ) < ε′j . Since ϕji(Q
′
i) ⊂ P′j , and P′j is ε′j-dense for B = Bj(pj , 8εj), it is suf-

ficient to show that dj(p
′
i, ∂B) ≥ 2ε′j . Since p′j ∈ star(p′i; Del(P′i)), we have dj(p

′
i, p
′
j) ≤

(1 + ξ0)di(p
′
i, p
′
j) ≤ (1 + ξ0)2ε′i ≤ 2(1 + ξ0)(1 + ε0)5

4εj ≤ 5εj . Thus since dj(pj , p
′
j) ≤ 1

4εj ,

we have dj(p
′
j , ∂B) ≥ 8εj − 21

4 εj = 11
4 εj ≥

11
5 ε
′
j . This establishes that the Delaunay ball for σm

must remain empty when points outside of B are considered.
The second obervation required to establish the second equality is that if q ∈ P′j is such that

dj(p
′
i, q) < ε′j , then q ∈ ϕji(Bi(pi, 6εi)). Indeed, we have di(p

′
i, q) ≤ 2(1 + ξ0)ε′j ≤ 2(1 + ξ0)(1 +

ε0)5
4εi ≤ 5εi. The result follows since di(pi, p

′
i) ≤ 1

4εi. �

If p′j star(p′i; Del(P′i)), then di(pi, pj) <
1
2εi + 2ε′i ≤ 3εi. Thus Lemma 16 establishes the first

requirement on Uij , namely

Bi(pi, 6εi) ⊂ Uij if di(pi, pj) < 3εi. (16)

The second requirement arises from the fact that we wish to ensure that there are no forbidden
configurations in Q′i. This will be sufficient for us to apply Lemma 15.

Lemma 17 (Protected stars) If there are no forbidden configurations in Q′i, then all the
m-simplices in star(p′i; Del(Q′i)) are Γ0-good and δ-protected, with δ = δ0µ

′
0ε
′
i.

Proof Since P′i is a (µ′0, ε
′
i)-net for Bi(pi, 8εi), it follows that Q′i is a (µ′0, ε

′
i)-net. Thus if there

are no forbidden configurations in Q′i, then by [BDG14, Lemma 3.6], all the m-simplices in
Del|(Q

′
i) will be Γ0-good and δ-protected, with δ = δ0µ

′
0ε
′
i.

The sampling criteria ensure that every point on ∂conv(Q′i) must be at a distance of less

than 2ε′i from ∂Bi(pi, 6εi). Thus di(pi, ∂conv(Q′i)) > 6εi − 2ε′i ≥ 14
5 ε
′
i. Also, di(pi, p

′
i) ≤

ε′i
4 , and

we find that di(p
′
i, ∂conv(Q′i)) ≥ 51

20ε
′
i. Thus, since di(p

′
i, C(σ)) < ε′i if σ is in star(p′i; Del(Q′i)),

we have star(p′i; Del(Q′i)) ⊆ Del|(Q
′
i), and hence the result. �

According to Lemma 2 P3, if τ is a forbidden configuration in Q′i, then ∆(τ) < 15
4 εi, and

it follows that if p′j ∈ τ , then τ ⊂ Bi(pj , 4εi). We will require that each potential forbidden
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configuration in Q′i lies within the domain of any transition function associated one of its vertices.
Thus we demand that

Bi(pj , 4εi) ∩Bi(pi, 6εi) ⊂ Uij if pj ∈ Bi(pi, 6εi). (17)

For simplicity we accommodate Equations (16) and (17) by demanding that

Bi(pj , 9εi) ∩Bi(pi, 6εi) ⊂ Uij if pj ∈ Bi(pi, 6εi). (18)

In summary, Lemmas 15, 16, and 17 combine to yield the desired equivalence of stars (15),
under the assumption that Q′i has no forbidden configurations. We take U = Bi(pi, 6εi) in
Lemma 15, and Equation (2) yields ξ ≤ ξ012εi. Using δ = Γm+1

0 µ′0ε
′
i ≥ 1

2Γm+1
0 µ0εi we have:

Lemma 18 (Stable stars) If

ξ0 ≤
Γ2m+1

0 µ2
0

212
,

and there are no forbidden configurations in Q′i, then for all p′j ∈ star(p′i; Del(P′i)), we have

star(p′i; Del(P′i))
∼= star(p′i; Del(P′j)).

We have established minimal requirements on the size of the domains Uij , but these require-
ments may implicitly demand more. Although ϕji : Uij → Uji is close to an isometry, εi may
be almost twice as large as εj . Thus the requirement on Uij may imply that Uji = ϕji(Uij) is
significantly larger than Equation (18) demands.

Clearly we must have ⋃
j∈Ni

Uij ⊂ Ui.

We have also explicitly demanded that Pi be a (µ0, εi)-net for Bi(pi, 8εi). We will assume that
Bi(pi, 8εi) ⊂ Ui.

4.4 Hoop distortion

We will rely primarily on Properties P1 and P4 of forbidden configurations ( Lemma 2), and
the stability of the circumcentres exhibited by Lemma 14. We have the following observation
about the properties of forbidden configurations under the influence of the transition functions:

Lemma 19 Assume ξ0 ≤
(

Γk
0

4

)2
. If τ = p′i ∗ σ ⊂ Q′j ⊂ Uj is a forbidden configuration, where

σ is a k-simplex, then σ̃ = ϕij(σ) ⊂ P′i is Γ̃k0-thick, with

Γ̃k0 =
2

5
√
k

Γk0,

has a radius satisfying

R(σ̃) ≤ 2

(
1 +

16k
3
2 ξ0

Γ3k
0

)
(1 + ε0)εi,

and di(p
′
i, S

m−1(σ̃)) ≤ 2α̃0εi, where

α̃0 =

(
α0(1 + ξ0) +

(
12k

3
2

Γ2k
0

)
ξ

1
2
0

)
(1 + ε0).
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Proof The bound for Γ̃k0 follows immediately from Lemma 8, and the fact that σ is Γk0-
thick (Lemma 2 P4). Likewise, the radius bound is a direct consequence of Lemma 11 and
Lemma 2 P2.

The bound on α̃0 is obtained from Property P1 with the aid of Lemmas 11 and 14. We
have di(p

′
i, S

m−1(σ̃)) = |di(p′i, C(σ̃)) − R(σ̃)|, and we are able to get a tighter upper bound on
R(σ̃)− di(p′i, C(σ̃)), than we can for di(p

′
i, C(σ̃))−R(σ̃). Thus

di(p
′
i, S

m−1(σ̃)) = |di(p′i, C(σ̃))−R(σ̃)|
≤ (1 + ξ0)dj(p

′
i, C(σ)) + di(ϕij(C(σ)), C(σ̃))− (R(σ)− |R(σ̃)−R(σ)|)

≤ (1 + ξ0)(α0R(σ) +R(σ))−R(σ) + di(ϕij(C(σ)), C(σ̃)) + |R(σ̃)−R(σ)|

≤

(
α0(1 + ξ0) + ξ0 +

[(
42k2

Υ(σ)3

)
ξ0

] 1
2

+
16k

3
2 ξ0

Υ(σ)3

)
R(σ)

≤ 2

(
α0(1 + ξ0) + ξ0 +

[(
42k2

Γ3k
0

)
ξ0

] 1
2

+
16k

3
2 ξ0

Γ3k
0

)
εj

≤ 2

α0(1 + ξ0) +

ξ 1
2
0 +

7k

Γ
3k
2

0

+
16k

3
2 ξ

1
2
0

Γ3k
0

 ξ
1
2
0

 (1 + ε0)εi

≤ 2

(
α0(1 + ξ0) +

(
12k

3
2

Γ2k
0

)
ξ

1
2
0

)
(1 + ε0)εi.

�

We have abused the notation slightly because τ̃ = ϕij(τ) need not actually satisfy the α̃0-hoop
property definition di(p, S(τ̃p)) ≤ α̃0R(τ̃p), because R(τ̃) may be larger than 2εi. However we
are not concerned with the α̃0-property for τ̃ ; instead we desire a condition that will permit
the extended algorithm to emulate the original Euclidean perturbation algorithm [BDG14], and
guarantee that forbidden configurations such as τ cannot exist in any of the sets Q′j .

The bounds in Lemma 19 can be further simplified. We have announced them in this
intermediate state in order to elucidate the roles played by ξ0 and ε0. In particular, there is no
need to significantly constrain ε0. The original perturbation algorithm for points in Euclidean
space [BDG14] extends to the case of a non-constant sampling radius simply by replacing α0

by α̃0 ≤ (1 + ε0)α0 ≤ 2α0, as can be seen by setting ξ0 = 0 in the expression for α̃0.
In the general case of interest here, we see from the espression for α̃0 presented in Lemma 19,

that ξ0 must be considerably more constrained with respect to Γ0 if we are to obtain an expres-
sion for α̃0 that goes to zero as Γ0 goes to zero. For the purposes of the algorithm, we do not
require the bounds on the radius or the thickness.

Lemma 20 (Hoop distortion) If

ξ0 ≤
(

Γ2m+1
0

4

)2

,

then for any forbidden configuration τ = p′j ∗ σ ⊂ Q′i, there is a simplex σ̃ = ϕji(σ) ⊂ P′j such

that dj(p
′
j , S

m−1(σ̃)) ≤ 2α̃0εj , where

α̃0 =
216m

3
2 Γ0

µ3
0

.
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Proof By the properties of a forbidden configuration, σ is a k-simplex with k ≤ m. From
Lemma 19,

α̃0 =

(
α0(1 + ξ0) +

(
12k

3
2

Γ2k
0

)
ξ

1
2
0

)
(1 + ε0)

≤ 2

(
213Γ0

µ3
0

(1 + ξ0) +

(
12m

3
2

Γ2m
0

)
Γ2m+1

0

4

)

<
(

(1 + 2−4) +m
3
2

) 214Γ0

µ3
0

<
216m

3
2 Γ0

µ3
0

.

�
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