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DISCRETE ABP ESTIMATE AND CONVERGENCE RATES FOR

LINEAR ELLIPTIC EQUATIONS IN NON-DIVERGENCE FORM

RICARDO H. NOCHETTO AND WUJUN ZHANG

Abstract. We design a two-scale finite element method (FEM) for linear
elliptic PDEs in non-divergence form A(x) : D2u(x) = f(x) in a bounded
but not necessarily convex domain Ω and study it in the max norm. The
fine scale is given by the meshsize h whereas the coarse scale ǫ is dictated
by an integro-differential approximation of the PDE. We show that the FEM
satisfies the discrete maximum principle (DMP) for any uniformly positive
definite matrix A provided that the mesh is face weakly acute. We establish
a discrete Alexandroff-Bakelman-Pucci (ABP) estimate which is suitable for
finite element analysis. Its proof relies on a discrete Alexandroff estimate
which expresses the min of a convex piecewise linear function in terms of the
measure of its sub-differential, and thus of jumps of its gradient. The discrete
ABP estimate leads, under suitable regularity assumptions on A and u, to
pointwise error estimates of the form

‖u− uǫ
h ‖L∞(Ω) ≤ C(A, u)h2α/(2+α)

∣

∣ lnh
∣

∣ 0 < α ≤ 2,

provided ǫ ≈ h2/(2+α). Such a convergence rate is at best of order h
∣

∣ lnh
∣

∣,
which turns out to be quasi-optimal.
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1. Introduction

We consider second order elliptic equations in non-divergence form,

Lu(x) = A(x) : D2u(x) = f(x) in Ω(1.1a)

u = 0 on ∂Ω,(1.1b)

where Ω denotes a bounded but not necessarily convex domain in R
d (d ≥ 2) with

C1,1 boundary ∂Ω, f ∈ Ld(Ω) and A is a measurable d× d matrix-valued function
satisfying the uniformly ellipticity condition for a.e. x ∈ Ω:

λI ≤ A(x) ≤ ΛI,(1.2)

for some positive constants λ and Λ with moderate aspect ratio Λ/λ ≥ 1. Moreover,
we assume the vanishing Dirichlet condition (1.1b) only for simplicity.
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2 R.H. Nochetto and W. Zhang

The elliptic PDEs (1.1a) in non-divergence form arises in linearization processes
of fully nonlinear PDEs. The latter in turn arise in stochastic optimal control,
nonlinear elasticity, fluid dynamics, image processing, materials science, and math-
ematical finance. They are thus ubiquitous in science and engineering.

The structure of (1.1a) is deceivingly simple. For example, (1.1) with forcing
f = 0 and discontinuous coefficient A given by

A(x) = Id×d +
d+ α− 2

1− α

x

|x| ⊗
x

|x|
admits two solutions in the unit ball B1(0) centered at 0, namely u(x) = |x|α − 1
and u(x) = 0, which happen to be of class H2(Ω) provided d > 2(2 − α) for any
0 < α < 1. Several notions of solutions of (1.1) are available in the literature:

• H2-solutions. For d = 2, Ω convex, A ∈ L∞(Ω) and f ∈ L2(Ω), S. N. Bernstein
established the H2-regularity of u along with the bound [5], [36, Chapter 3,
section 19]

(1.3) ‖ u ‖H2(Ω) ≤ C‖ f ‖L2(Ω) .

For d ≥ 2, if the coefficient matrix A = (aij)
d
i,j=1 satisfies the Cordès condition

(1.4) (d− 1 + ǫ)

d∑

i,j=1

a2ij ≤
(

d∑

i=1

aii

)2

with ǫ > 0, and Ω is convex, then there is a unique strong solution u ∈ H2(Ω) ∩
H1

0 (Ω) satisfying (1.3); see [39]. This condition is valid for any A ∈ L∞(Ω)
satisfying (1.2) for d = 2, thereby being consistent with [5, 36], but imposes a
restriction on off-diagonal elements and the ratio Λ/λ for d > 2.

• Strong solutions. For d ≥ 2 if A ∈ C(Ω) and Ω is of class C1,1, then the Calderón-
Zygmund theory guarantees the existence and uniqueness of solutions u ∈ W 2

p (Ω)
for any f ∈ Lp(Ω) along with the stability bound [22]

‖ u ‖W 2
p (Ω) ≤ C‖ f ‖Lp(Ω) for 1 < p <∞.(1.5)

This theory extends to vanishing mean oscillation matrices A ∈ VMO(Ω) with
uniform VMO-modulus of continuity [15, 16]; see (1.21) below for a definition.

• Classical solutions. For d ≥ 2, if A ∈ C0,α(Ω) and Ω is of class C2,α for some
0 < α < 1, then the Schauder theory guarantees the existence and uniqueness of
a solution u ∈ C2,α(Ω) for any f ∈ C0,α(Ω) along with the bound [22]

(1.6) ‖ u ‖C2,α(Ω) ≤ C‖ f ‖C0,α(Ω).

• Viscosity solutions: Weaker notions of solutions, such as Lp-viscosity solutions
[10] and good solutions [25], exists to deal with discontinuous coefficients. How-
ever, no comparison principle has been proved except when a strongW 2

p solution
exists, in which case it coincides with the Lp-viscosity solution for p ≥ d. The
famous non-uniqueness counterexample of Nadirashvili [41] for d ≥ 3, further
studied by M. Safonov [45], shows that there cannot be a comparison principle
for (1.1) with discontinuous coefficients. Moreover, one can construct two se-
quences of regularized matrices {Ai

k}∞k=1 for i = 1, 2 converging to the same limit
A but such that the corresponding solutions {uik}∞k=1 of (1.1) converge uniformly
as k → ∞ to different limits ui which are both Lp-viscosity solutions of (1.1).
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In contrast to an extensive numerics literature for elliptic PDEs in divergence
form, the numerical approximation for PDEs in non-divergence form reduces to a
few papers. Among these, we mention the discrete Hessian method of O. Lakkis
and T. Pryer [37], the DG methods of I. Smears and E. Süli [47] for the Cordès
condition (1.4) as well as the H1-conforming method of X. Feng, L. Hennings and
M. Neilan [20] and the weak Galerkin method of C. Wang and J. Wang [51], both
for coefficients A ∈ C(Ω). In [20, 47, 51], the FEMs are shown to be stable in
the broken H2-seminorm via suitable discrete inf-sup conditions. Moreover, they
prove optimal error estimates in the broken H2-seminorm under either suitable
local regularity assumptions on u [20, 47] or global ones [51].

The numerics literature is relatively larger for fully nonlinear second order ellip-
tic PDEs. The following papers are somewhat related to this one: the augmented
Lagrangian approach by E.J. Dean and R. Glowinski [18], the finite element method
by M. Jensen and I. Smears [26] and I. Smears and E. Süli [48] for the Hamilton-
Jacobi-Bellman (HJB) equation, the finite difference method by J. D. Benamou, B.
Froese, A. Oberman [4] for optimal transportation, and semi-Lagrangian methods
for linear and nonlinear elliptic problems by K. Debrabant and E. R. Jakobsen [19],
by J. F. Bonnans and H. Zidani [6] and by F. Camilli and M. Falcone [13]. The
latter methods deal with two scales, the finer one being related to the mesh and
the coarser scale being dictated by a nodal (wide stencil) finite difference opera-
tor which ensures monotonicity and consistency; this feature is known for finite
difference approximations of elliptic PDEs [40, 28] and is also present in our fi-
nite element construction below. We also refer to the books [21, 35], and references
therein, for numerical methods for the HJB equation which built on its probabilistic
interpretation.

G. Barles and P. Souganidis have proposed an abstract framework for uniform
convergence to viscosity solutions which hinges on stability, monotonicity, and op-
erator consistency [2]. These properties are tricky to enforce simultaneously. If
Th is a quasi-uniform mesh of size h, then we say that a discrete operator Lh is
monotone if, for any two discrete functions uh ≤ vh with equality at node xi, then

(1.7) Lhuh(xi) ≤ Lhvh(xi).

We say that Lh is consistent if for every ϕ ∈ C2(Ω),

(1.8) lim
h→0

Lh[Ihϕ](xh) = A(x0) : D
2ϕ(x0) for all sequences xh → x0,

where Ihϕ denotes the Lagrange interpolant of ϕ. Consider now the centered finite
difference approximation of the Hessian using a nine-point stencil

Dij
h u(x) =

1

4h2

(
u(x+hei+hej)−u(x+hei−hej)−u(x−hei+hej)+u(x−hei−hej)

)
,

which is consistent but not monotone. In fact, if uh(x + he1 + he2) = −4h2 and
uh = 0 at the other eight nodes, then the discrete Hessian is D2

huh(x) =
(

0 −1
−1 0

)
. If

A(x) =
( 1 −1/2
−1/2 1

)
, then A(x) : D2

huh(x) = 1 which violates (1.7) when compared

with vh = 0.
The finite element Laplacian ∆h for any piecewise linear function vh is given by

∆hvh(xi) := −
(∫

Ω

φi

)−1 ∫

Ω

∇vh · ∇φi(1.9)
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where φi is the hat function associated with node xi. On weakly acute meshes Th,
∆h satisfies (1.7) (see (3.6) and Lemma 3.1), but it might not satisfy (1.8) even on
uniform meshes, namely

(1.10) ∆hIhu(xi) 6→ ∆u(xi) as h→ 0.

To see this, we consider an example from [26, p. 146]: let Th be the mesh in R
2

consisting of four triangles whose vertices are z0 = (0, 0), z1 = (h, 0), z2 = (0, h),
z3 = (−h, 0), z4 = (0,−h); if u(x1, x2) = x21 + x22, then a simple calculation yields

∆hIhu(z0) = 6 6= 4 = ∆u(z0) ∀h > 0.(1.11)

This shows that (1.8) is too restrictive for finite element analysis, which was already
observed and circumvented by M. Jensen and I. Smears [26].

Regarding rates of convergence in the max norm for viscosity solutions of fully
nonlinear PDEs, we refer to H-J. Kuo and N. Trudinger [33], L. Caffarelli and P.
Souganidis [12], N. V. Krylov [30, 31], and G. Barles and E. R. Jakobsen [1].

Our primary goal in this paper is to design a two-scale finite element method for
(1.1), which is monotone and operator consistent, study its stability properties and
derive rates of convergence in the max norm within the context of classical solutions,
thereby requiring at least C1,1 domains for regularity purposes. To this end we
develop a novel technical tool for any bounded domains, a discrete Alexandroff-
Bakelman-Pucci (ABP) estimate which mimics the continuous ABP estimate; the
latter is a conerstone in the theory of fully nonlinear elliptic PDEs. To introduce
the coarse scale ǫ, let’s assume for the moment that the coefficient matrix A is
uniformly continuous in Ω and rewrite (1.1a) as follows

A(x) : D2u(x) =
λ

2
∆u(x) +

(
A(x) − λ

2
I
)
: D2u(x),(1.12)

where the second term is still elliptic thanks to the ellipticity condition (1.2). Our
method hinges on the approximation of (1.1a), and thus of (1.12), by a linear
integro-differential operator proposed by L. Caffarelli and L. Silvestre in [11]

(1.13) Lǫu
ǫ(x) :=

λ

2
∆uǫ(x) + Iǫu

ǫ(x) = f(x) for all x ∈ Ω,

where

(1.14) Iǫv(x) :=

∫

Rd

δv(x, y)

ǫd+2 det(M(x))
ϕ
(M−1(x)y

ǫ

)
dy.

Hereafter, ϕ(y) is a radially symmetric function with compact support in the unit
ball and

∫
Rd |y|2ϕ(y)dy = d where d is the dimension of Ω,

M(x) :=

(
A(x) − λ

2
I

)1/2

(1.15)

and

δv(x, y) := v(x+ y) + v(x − y)− 2v(x)

is the centered second difference operator with suitable modifications near ∂Ω; see
(2.4). The operator (1.14) is a consistent approximation of

(
A(x)− λ

2 I
)
: D2v(x)

in the sense that if v is a quadratic polynomial, then

Iǫv(x) =

(
A(x)− λ

2
I

)
: D2v(x) for all ǫ > 0,(1.16)
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To see this, note that δv(x, y) = (y ⊗ y) : D2v(x) for quadratic v where ⊗ denotes
the tensor product. Since

Iǫv(x) =

∫

Rd

y ⊗ y

ǫd+2 det(M(x))
ϕ

(
M−1(x)y

ǫ

)
dy : D2v(x),(1.17)

by definition, the change of variable z =M−1(x)y/ǫ yields

Iǫv(x) =M(x)

(∫

Rd

z ⊗ zϕ(z)dz

)
M(x) : D2v(x).

Since ϕ(z) is radially symmetric, we have
∫
zizjϕ(z)dz = 0 if i 6= j, as well as

∫

Rd

z21ϕ(z)dz = · · · =
∫

Rd

z2dϕ(z)dz =
1

d

∫

Rd

|z|2ϕ(z)dz = 1.

We thus obtain
∫
Rd z ⊗ zϕ(z)dz = I and

Iǫv(x) =M(x)2 : D2v(x) =

(
A(x) − λ

2
I

)
: D2v(x).

We now consider a sequence of conforming quasi-uniform meshes {Th}, made
of shape regular simplices, which induces polytope approximations Ωh of Ω with
boundary nodes of ∂Ωh lying on ∂Ω. Since we assume throughout, except for section
5, that ∂Ω is at least C1,1 there is a discrepancy between Ω and Ωh to account for.
Given the technical nature of this endeavor, which would complicate our discussion
without adding substance, we make the simplifying assumption that Ωh = Ω; see
subsection 6.1 for further details. We approximate Lǫuǫ(x) = f(x) by

Lǫ
hu

ǫ
h(xi) :=

λ

2
∆hu

ǫ
h(xi) + Iǫu

ǫ
h(xi) = fi for allxi ∈ Nh,(1.18)

where uǫh =
∑

xj∈Nh
Ujφj is a continuous and piecewise affine finite element func-

tion, Nh is the set of internal nodes of Th, and fi :=
∫
Ω fφi/

∫
Ω φi. The meshsize h

gives the fine scale of (1.18) in that ǫ and h satisfy ǫ ≥ Ch| lnh|1/2. The integral
Iǫu

ǫ
h(xi) is simple to compute using quadrature because the kernel is smooth and

M(x) is evaluated at x = xi. All the results in this paper are valid provided the
quadrature rule is locally supported, consistent and positive; see subsection 3.2.

We derive rates of convergence in the maximum norm for (1.18) in the context of
classical solutions. In contrast to [20, 47, 51], we do not show an inf-sup condition
to deal with the maximum norm. The main difficulty is indeed to establish an alter-
native notion of stability. We first prove that (1.18) is a monotone FEM provided
that the meshes {Th} are weakly acute; see (3.6). We next recall a fundamental sta-
bility property of (1.1), namely the celebrated Alexandroff-Bakelman-Pucci (ABP)
estimate. The ABP estimate for (1.1) reads [9, 24]:

(1.19) sup
Ω
u− ≤ C

( ∫

{u=Γ(u)}

|f(x)|ddx
)1/d

,

where u−(x) = max{−u(x), 0} is the negative part of u and {u = Γ(u)} denotes
the (lower) contact set of u with its convex envelope Γ(u); see (4.1) and (4.2). This
estimate gives a bound for u− while a bound for the positive part u+ can be derived
in the same fashion by considering a concave envelope and corresponding (upper)
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contact set. A combination of both estimates yields stability of the L∞-norm of u
in terms of the Ld-norm of f . We establish Theorem 5.1 (discrete ABP estimate)

(1.20) sup
Ω

(uǫh)
− ≤ C




∑

{xi:uǫ
h
(xi)=Γ(uǫ

h
)(xi)}

|fi|d|ωi|




1/d

,

where {xi : uǫh(xi) = Γ(uǫh)(xi)} denotes the (lower) nodal contact set, defined in
(5.1) and |ωi| stands for the volume of the star ωi := supp φi associated with the
node xi ∈ Nh. Note that the nodal contact set is just a collection of nodes. The
estimate (1.20) hinges on Proposition 5.1 (discrete Alexandroff estimate), which is
of intrinsic interest. It is worth mentioning that the estimates in section 5 do not
require any regularity of the domain Ω which is just assumed to be bounded. This
undertaking is somewhat related to early work in the maximum norm for linear
elliptic PDE in divergence form by Ph. Ciarlet and P.A. Raviart [14].

We would like to mention that a discrete ABP estimate is proved in [34] for finite
differences on general meshes under the assumption that the discrete operator is
monotone. Compared with [34], the novelties of this paper are the following:

• We give a novel proof of discrete ABP estimate, which is more geometric in
nature and suitable for FEM: it is based on a geometric characterization of the
sub-differential of piecewise linear functions and control of its Lebesgue measure
by jumps of the normal flux.

• The estimate in [34] is sub-optimal when applied to our finite element method
(1.18). In fact, it replaces the measure of star |ωi| ≈ hd in (1.20), which corre-
sponds to the fine scale h, by the volume ≈ ǫd of a ball used to define (1.14). The
two estimates thus differ by a multiplicative factor ǫ/h ≫ 1, the ratio of scales,
which is responsible for suboptimal decay rates.

• Upon combining our discrete ABP estimate with operator consistency of (1.18)
in L∞(Ω), we derive pointwise rates of convergence under natural regularity re-
quirements of u in Hölder spaces, i.e. in the realm of classical solutions. We also
exploit that operator consistency is measured in a discrete Ld norm in (1.20) to
establish convergence rates for piecewise smooth solutions u.

Our 2-scale FEM (1.18) extends to certain classes of discontinuous coefficients.
We recall that A ∈ VMO(Ω), the space of vanishing mean oscillation functions, if
the mean oscillation of A satisfies for all x ∈ Ω

(1.21) sup
ρ≤r

1

|Bρ(x) ∩Ω|

∫

Bρ(x)∩Ω

|A(y)−Aρ(x)| dy ≤ η(r) → 0 as r → 0,

where Aρ(x) is the mean-value of A in a ball Bρ(x) of center x and radius ρ

Aρ(x) :=
1

|Bρ(x) ∩ Ω|

∫

Bρ(x)∩Ω

A(y) dy;

function η is the so-called VMO-modulus of continuity of A. Since neither A(x)
norM(x) may be well defined at each node x = xi, and this is critical in (1.18), we
replace nodal values of A at xi by the means Ā(xi) of A over the star ωi of xi

Ā(xi) :=
1

|ωi|

∫

ωi

A(x) dx, M(xi) :=

(
Ā(xi)−

λ

2
I

)1/2

,(1.22)
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in the definition (1.14) of Iǫu
ǫ
h(xi). We prove uniform convergence in Corollary 6.5

provided u ∈ C2(Ω) and ǫ = C0h| lnh|. Obviously, the accuracy of the solution uǫh
depends on the approximation quality of A by its mean. We show that if

(
∑

xi∈Nh

∫

ωi

|A(x) − Ā(xi)|d dx
)1/d

≤ Chβ and u ∈ C2,α(Ω)(1.23)

with 2α
2+α ≤ β ≤ α and ǫ = C1

(
h2| lnh|

) 1
2+α for an arbitrary constant C1 > 0, then

‖ u− uǫh ‖L∞(Ω) ≤ C
(
h2| lnh|

) α
2+α ‖u‖C2,α(Ω) ;

see Corollary 6.7. Note that, according to (1.6), the C2,α(Ω) regularity assumption
on u is guaranteed by A, f ∈ C0,α(Ω) and Ω being of class C2,α [8, 22], which is
consistent with (1.23). For u ∈ C3,α(Ω) instead, we impose 2+2α

3+α ≤ β ≤ 1 and

ǫ = C2h
2

3+α for an arbitrary constant C2 > 0, to show in Corollary 6.8 that

‖ u− uǫh ‖L∞(Ω) ≤ Ch
2(1+α)
3+α | lnh| ‖u‖C3,α(Ω) .

We stress that for α = 1, we obtain a nearly linear decay rate ‖ u − uǫh ‖L∞(Ω) ≤
h| lnh|, which turns out to be optimal for our method.

We further allow u to be piecewise C2,α in a collection of disjoint subdomains
{Ωj}Jj=1 with Lipschitz boundaries ∂Ωj. We exploit that (1.20) measures operator

consistency in a discrete Ld-norm to set ǫ = C3

(
h2| lnh|

) d
1+2d and show

‖ u− uǫh ‖L∞(Ω) ≤ C
(
h2| lnh|

) 1
1+2d

in Corollary 6.9 without requiring that ∂Ωj aligns with the mesh Th. This accounts
for a special but important class of discontinuous coefficients [27, 38].

Our two-scale FEM is a compromise between the fine scale accuracy provided
by the discrete Laplace operator ∆h and the monotonicity and stability achieved
at the coarse scale ǫ by the integral operator Iǫ in (1.14). This also explains why
the geometric mesh restriction of weak acuteness is unrelated to the coefficient
matrix A but to the identity: it guarantees monotonicity of ∆h! The coarser scale
enhances the stability of (1.18) at the cost of additional coarser scale error which
reduces the fine scale accuracy; this is somewhat related to wide stencil techniques
[6, 13, 19]. The enhanced stability enables us to establish L∞ estimates based on
the ABP maximum principle, instead of variational techniques as in [20, 47, 51].
Our method requires regularity of u beyond C2(Ω) whereas those in [20, 47, 51]
require regularity beyond H2(Ω). It is worth stressing that, due to the structure of
the ABP estimate, such a regularity assumption is only required to hold piecewise
with discontinuities of the Hessian D2u of u not necessarily aligned with the mesh.

The rest of this paper is organized as follows. In Section 2, we describe the
approximation (1.13) of (1.1) proposed by L. Caffarelli and L. Silvestre [11]. We
introduce finite element methods and show the monotonicity property in Section
3. We next discuss the classical ABP estimate in Section 4 and apply it to derive
the error estimate ‖ u − uǫ ‖L∞(Ω) ≤ Cǫα provided u ∈ C2,α(Ω), where uǫ is the
solution of the integro-differential equation (1.13). In Section 5, we prove our
discrete Alexandroff estimate, which has some intrinsic interest and is instrumental
to derive convergence rates for the Monge-Ampère equation [43]. We also derive
our discrete ABP estimate, which hinges only on the mesh Th being face weakly
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acute. Utilizing the discrete ABP estimate, we establish several rates of convergence
depending on solution and data regularity in Section 6. We conclude in Section 7
with numerical experiments which explore properties and limitations of our FEM.

2. Approximation of uniformly elliptic equations

In this section, we discuss the approximation proposed by L. Caffarelli and L.
Silvestre in [11] for the linear elliptic PDE in non-divergence form (1.1) by the
integro-differential equation (1.13). We also propose a modification of the second
difference δu(x, y) near ∂Ω which avoids extending the functions outside Ω.

2.1. Integro-differential equation. Let ϕ be a radially symmetric function with
compact support in the unit ball and

∫
Rd |x|2ϕ(x) = d. Given a continuous function

u, we let Iǫu be the integral transform

(2.1) Iǫu(x) :=

∫

Rd

δu(x, y)Kǫ(x, y)dy,

where the kernel

(2.2) Kǫ(x, y) :=
1

ǫd+2det(M(x))
ϕ

(
M−1(x)y

ǫ

)

has support contained in the ball BQǫ(0) with radius Qǫ where Q = (Λ − 1
2λ)

1/2.
If u is just defined in Ω, then the integral in (2.1) is problematic for values of x
close to ∂Ω unless u is suitably extended outside Ω; an H1 extension is used in [11]
which restricts the order of accuracy. Our goal is to avoid an extension by suitably
modifying the definition of δu(x, y) for x near ∂Ω and at the same time retain
exactness for quadratic polynomials. To this end, we denote the region bounded
away from the boundary by

(2.3) Ωǫ = {x ∈ Ω : dist(x, ∂Ω) > Qǫ},
and note that the δu(x, y) is well defined only for x ∈ Ωǫ. If the line connecting x
with either x + y or x − y is not contained in the domain Ω, let θ ∈ (0, 1) be the
largest number such that x± θy ∈ Ω for all y ∈ BQǫ, define

δu(x, y) :=
u(x− θy) + u(x+ θy)− 2u(x)

θ2
,(2.4)

and note that δu(x, y) = D2u(x) : (y ⊗ y) provided u is a quadratic polynomial.
We now approximate the equation (1.1) by the integro-differential equation

Lǫu
ǫ(x) =

λ

2
∆uǫ(x) + Iǫu

ǫ(x) = f(x) in Ω .(2.5)

We refer to [11] for details about the existence and uniqueness of solution uǫ.

2.2. Rate of convergence of integral transform Iǫu(x). The convergence rate
of Iǫu(x) depends on the regularity of the function u, and is established below.

Lemma 2.1 (approximation property of Iǫ). Let Iǫu(x) be the integral transform
defined by (2.1)-(2.4) withM =M(x) given in (1.15), and let UQǫ(x) := BQǫ(x)∩Ω.

(1) If u ∈ C2(Ω), then Iǫu(x) → (A(x) − λ
2 I) : D

2u(x) as ǫ→ 0 for all x ∈ Ω.

(2) If dist(x, ∂Ω) ≤ Qǫ and u ∈ C2,α(UQǫ(x)) for 0 < α ≤ 1, then
∣∣∣Iǫu(x)−

(
A(x) − λ

2
I
)
: D2u(x)

∣∣∣ ≤ C|u|C2,α(UQǫ(x))θ
αǫα.



FEM for elliptic equations in non-divergence form 9

(3) If x ∈ Ωǫ and u ∈ C2+k,α(UQǫ(x)) for k = 0, 1 and 0 < α ≤ 1, then
∣∣∣Iǫu(x)−

(
A(x) − λ

2
I
)
: D2u(x)

∣∣∣ ≤ C|u|C2+k,α(UQǫ(x))ǫ
k+α.

Proof. We recall that Iǫu is exact if u is quadratic, namely (1.16) holds.
Case (2). If dist (x, ∂Ω) ≤ Qǫ, then we have

u(x+ θy)− u(x) = θ|y|
∫ 1

0

Dyu(x+ sθy)ds,

where Dyu = |y|−1y ·∇u. Hence,

δu(x, y) =
|y|
θ

∫ 1

0

(
Dyu(x+ sθy)−Dyu(x− sθy)

)
ds.

Upon adding and substracting Dyu(x), we obtain

(2.6) δu(x, y) = |y|2
∫ 1

0

∫ 1

0

s
(
D2

yyu(x+ stθy) +D2
yyu(x− stθy)

)
dtds.

Using the following property, shown earlier for (1.16),

(2.7)

M(x)2 : D2u(x) =

∫

Rd

|y|2D2
yyu(x)Kǫ(x, y)dy

=

∫

Rd

2|y|2
∫ 1

0

∫ 1

0

s D2
yyu(x)dtds Kǫ(x, y)dy

and the Hölder continuity of D2
yyu in UQǫ(x)

∣∣D2
yyu(x+ stθy)−D2

yyu(x)
∣∣ ≤ |u|C2,α(UQǫ(x))θ

α|y|α,
we deduce

∣∣Iǫu(x)−M(x)2 : D2u(x)
∣∣ ≤ |u|C2,α(UQǫ(x))

∫

Rd

|y|2+αKǫ(x, y)dy

≤ C|u|C2,α(UQǫ(x))θ
αǫα.

Case (3). If dist (x, ∂Ω) > Qǫ, then we take θ = 1 in (2.4) and rewrite it as
follows

δu(x, y) = |y|
∫ 1

0

(
Dyu(x+ sy)−Dyu(x− sy)

)
ds

= |y|2
∫ 1

0

∫ 1

0

s
(
D2

yyu(x+ sty) +D2
yyu(x− sty)

)
dtds,

upon adding and subtracting D2u(x). In view of (2.7) with θ = 1 and
∣∣D2

yyu(x+ sty) +D2
yyu(x− sty)− 2D2

yyu(x)
∣∣ ≤ 2|u|C2+k,α(UQǫ(x))|y|k+α,

we deduce
∣∣Iǫu(x)−M(x)2 : D2u(x)

∣∣ ≤ |u|C2+k,α(UQǫ(x))

∫

Rd

|y|2+k+αKǫ(x, y)dy

≤ C|u|C2+k,α(UQǫ(x))ǫ
k+α.

Case (1). Note that if u ∈ C2(Ω), then

|D2
yyu(x+ sty) +D2

yyu(x− sty)− 2D2
yyu(x)| → 0
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as |y| → 0. This implies
∣∣Iǫu(x)−M(x)2 : D2u(x)

∣∣→ 0 as ǫ→ 0 for all x ∈ Ω, and
completes the proof. �

3. Finite element method for the integro-differential problem

In this section, we introduce a finite element method for (2.5) and show that the
method is monotone provided that the mesh Th is weakly acute (see (3.6)).

We start with some notation. Let Th = {K} be a conforming, quasi-uniform
and shape-regular partition of Ω into simplices K with shape regularity constant
σ. The latter is a bound for the ratio between the diameter of any element K ∈ Th

and the diameter of the largest ball inscribed in K.
Let Fh be the set of faces, or equivalently of interior (d−1)-dimensional simplices

of Th, and Nh be the set of interior nodes of Th.
Let Vh be the space of continuous piecewise affine functions relative to Th, and

V
0
h be its subspace with vanishing trace

Vh := {v ∈ C(Ω) : v|K is affine for all K ∈ Th}, V
0
h := {v ∈ Vh : v|∂Ω = 0}.

Given xi ∈ Nh, let φi be its hat function and ωi = supp φi be its star.

3.1. Finite element method. We seek a solution uǫh ∈ V
0
h satisfying

−λ
2

∫

Ω

∇uǫh ·∇φi + Iǫu
ǫ
h(xi)

∫

Ω

φi =

∫

Ω

f φi(3.1)

for all nodes xi ∈ Nh, or equivalently

(3.2) Lǫ
hu

ǫ
h(xi) =

λ

2
∆hu

ǫ
h(xi) + Iǫu

ǫ
h(xi) = fi =

∫
Ω fφi∫
Ω
φi

,

where the discrete Laplacian is defined in (1.10). We define Iǫ as in Section 2,
namely

Iǫu
ǫ
h(xi) =

∫

Rd

δuǫh(xi, y)

ǫd+2det(M(xi))
ϕ

(
M−1(xi)y

ǫ

)
dy(3.3)

where M(xi) =
(
Ā(xi)− λ

2 I
)1/2

. If A(x) ∈ C(Ω), then Ā(xi) = A(xi) is well

defined at every node xi. Otherwise, we let Ā(xi) be the meanvalue of A over ωi:

Ā(xi) =
1

|ωi|

∫

ωi

A(x) dx.

We emphasize that the discrete formulation (3.1) above is not obtained by simply
testing (2.5) with a hat function φi, which would lead to a term

∫
Ω
Iǫu

ǫ
h(x)φi(x) dx

instead of Iǫu
ǫ
h(xi)

∫
Ω
φi dx. This quadrature (mass lumping) preserves monotonic-

ity, which plays a crucial role in establishing the ABP estimate and the a priori
error estimates, and is much easier to implement since we only need to evaluate
Iǫu

ǫ
h(xi) at every node xi. We deal with monotonicity in subsection (3.3) and with

the computation of Iǫu
ǫ
h(xi) in subsection 3.2.
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3.2. Quadrature. We briefly discuss the effect of quadrature in computing Iǫu
ǫ
h(xi),

which renders our method fully practical. The change of variables z =M−1(x)y/ǫ
yields

Iǫu
ǫ
h(x) =

∫

B1(0)

δuǫh(xi, ǫM(xi)z)

ǫ2
ϕ(z) dz,

where B1(0) is the unit ball in R
d. We thus define the quadrature formula

Qǫu
ǫ
h(xi) :=

J∑

j=1

δuǫh(xi, ǫM(xi)zj)

ǫ2
ϕ(zj)wj for all xi ∈ Nh,

where the node-weight pairs (zj , wj)
J
j=1 satisfy the following properties [49]

• local support: zj ∈ B1(0) for all quadrature points zj ;

• consistency: Qǫp(xi) = Iǫp(xi) for all quadratic polynomials p and xi ∈ Nh;

• positivity: wj > 0 for all quadrature weights wj .

Finally, it is easy to check that operator consistency holds provided that

J∑

j=1

zj ⊗ zjϕ(zj)wj = I.

3.3. Mesh weak acuteness and discrete maximum principle. We start by
recalling the definition (1.10) of discrete Laplace operator at each node xi ∈ Nh,
and rewrite it upon integrating by parts elementwise

∆hu
ǫ
h(xi) =

(∫

Ω

φi

)−1 ∑

F ∋xi

∫

F

JF (u
ǫ
h)φi,

where
JF (u

ǫ
h) := −n+

F ·∇uǫh|K+ − n−
F ·∇uǫh|K−

denotes the jump of ∇uǫh across the face F ∈ Fh, K
± ∈ Th denote the two elements

sharing the face F and n±
F the outer unit normal vectors of K± on F . We point

out that JF (u
ǫ
h) is the opposite of the usual jump because it corresponds to ∆hu

ǫ
h

rather than −∆hu
ǫ
h. Since JF (u

ǫ
h) is constant and∫

Ω

φi =
|ωi|
d+ 1

and

∫

F

φi =
|F |
d
,

provided xi ∈ F , we get the following expression for the discrete Laplacian

∆hu
ǫ
h(xi) =

d+ 1

d

∑

F∈Fh:xi∈F

|F |
|ωi|

JF (u
ǫ
h).(3.4)

We now impose restrictions on the geometry of meshes. We say that the mesh
Th is weakly acute with respect to faces, or face weakly acute for short, if

∫

ωF

∇φi ·∇φj ≤ 0 for all i 6= j and all faces F(3.5)

where ωF := ∪{K± ∈ Th : F ⊂ K±}. We say that Th is weakly acute [17] if

kij :=

∫

Ω

∇φi ·∇φj ≤ 0 for all i 6= j.(3.6)

This condition is equivalent to (3.5) for d = 2 and is valid if and only if the sum
of the two angles opposite to a face (or edge) is no greater than π [14, 42]. On



12 R.H. Nochetto and W. Zhang

the other hand, (3.6) is weaker than (3.5) for d > 2 because the former is obtained
upon adding the latter over all faces F containing the segment that connects nodes
xi and xj . For d = 3, the property that internal dihedral angles of tetrahedra does
not exceed π/2 implies (3.5); we refer to [3, 29].

It is well known that monotonicity of piecewise linear finite element methods for
the Laplace equation hinges on (3.6). We are now ready to discuss monotonicity of
the discrete operator Lǫ

h in (3.2).

Lemma 3.1 (monotonicity property of Lǫ
h). Let vh and wh be two functions in Vh,

and vh ≤ wh in Ω with equality attained at some node xi ∈ Nh. Then the integral
operator Iǫ satisfies the monotonicity property

Iǫvh(xi) ≤ Iǫwh(xi).

In addition, if the mesh Th satisfies (3.6), then the discrete Laplacian ∆h satisfies
the monotonicity property

∆hvh(xi) ≤ ∆hwh(xi),

whence

Lǫ
hvh(xi) ≤ Lǫ

hwh(xi).

Proof. To show the monotonicity property of Iǫ, we note that the assumptions
vh ≤ wh and vh(xi) = wh(xi) imply

δvh(xi, y) ≤ δwh(xi, y).

The first assertion follows from the definition (2.1) of Iǫ and the fact Kǫ(x, y) ≥ 0.
On the other hand, following [17], we realize that

(3.7) −
∫

Ω

∇(wh − vh) ·∇φi = −
∑

j

(
wh(xj)− vh(xj)

)
kij ≥ 0,

because kij ≤ 0 for i 6= j. Invoking the definition (1.10) of ∆h yields

∆h(wh − vh)(xi) ≥ 0.

This proves the second inequality. Finally, the last assertion follows from (3.2). �

It is worth stressing that the monotonicity property of Lǫ
h relies solely on (3.6)

and is thus valid for all matrices A(x) regardless of possible anisotropies. We
mention two important consequences of the monotonicity property: the discrete
maximum principle and the unique solvability of (3.2). The proof of the former, as
well as that of Lemma 3.1, extends to the quadrature described in subsection 3.2
and requires no a priori relation between the two scales ǫ and h.

Corollary 3.2 (discrete maximum principle). Let Th satisfy (3.6). If Lǫ
hwh(xi) ≥ 0

for all xi ∈ Nh, and wh ≤ 0 on the boundary ∂Ω, then wh ≤ 0 in Ω.

Proof. Given γ > 0 arbitrary, we argue with the auxiliary function vh := wh+γIhψ,
where ψ(x) = |x|2 − α and α = α(Ω) > 0 is so large that ψ ≤ 0 on ∂Ω. Upon
subtracting a linear function tangent to ψ(x) at xi ∈ Nh, whose discrete Laplacian
vanishes, we can assume that ψ attains a minimum at xi, namely ψ(x) = |x−xi|2−
α. Employing (3.7) to compare Ihψ with the constant function −α, we deduce

∆Ihψ(xi)

∫

Ω

φi = −
∫

Ω

∇Ihψ ·∇φi = −
∑

j 6=i

|xj − xj |2kij > 0,
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because
∑

j 6=i kij = −kii < 0. In addition, realizing that δIhψ(xi, y) > 0 for all y =

ǫM(xi)z with z in the unit ball, we obtain Iǫ[Ihψ](xi) > 0, whence Lǫ
hvh(xi) > 0.

Let xi be a node where vh attains an absolute positive maximum. Such a node
xi ∈ Nh must be interior because vh ≤ 0 on ∂Ω. Applying Lemma 3.1 to compare
vh with the constant function wh = vh(xi) we infer that Lǫ

hvh(xi) ≤ 0, which
contradicts the preceding statement. This implies vh ≤ 0 in Ω, or equivalently

wh ≤ −γIhψ ≤ γα in Ω.

Taking the limit as γ → 0 yields the asserted inequality. �

Corollary 3.3 (uniqueness). If the mesh Th satisfies (3.6), then the linear system
(3.2) has a unique solution.

Proof. Since the equation (3.2) is a square linear system, we only need to show
that uǫh = 0 if f = 0 in Ω. This statement is a direct consequence of Corollary 3.2
(discrete maximum principle). �

A third important consequence of the monotonicity property is the discrete ABP
estimate, which relies on (3.5) rather than (3.6) and is discussed in Section 5. We
first review its continuous counterpart in Section 4.

4. The Alexandroff-Bakelman-Pucci estimate

We start with the definition of convex envelope and sub-differential of continuous
functions which is frequently used in the analysis of fully nonlinear elliptic PDEs.

4.1. Convex envelope and sub-differential. Let the domain Ω be compactly
contained in a ball BR of radius R and v ∈ C(Ω) with v ≥ 0 on ∂Ω. Since the
negative part v− of v vanishes on ∂Ω, we extend v− continuously by zero to BR \Ω.
We define, with some abuse of notation, the convex envelope of v in BR by

Γ(v)(x) := sup
L

{L(x) : L ≤ −v− in BR, L is affine} ∀ x ∈ BR.(4.1)

Obviously, Γ(v) is a convex function and Γ(v) ≤ −v− ≤ v in Ω. Moreover, Γ(v) = 0
on ∂BR because dist (∂Ω, ∂BR) > 0. In fact, for every x ∈ ∂BR there exists an
affine function L such that L(z) ≤ −v−(z) for all z ∈ Ω and L(x) = 0, whence
Γ(v)(x) = 0. The set

C
−(v) := {x ∈ BR : Γ(v)(x) = v(x)}(4.2)

is called (lower) contact set of v. We may assume that C−(v) ⊂ Ω unless Γ(v) = 0.
In fact, if Γ(v)(x) = −v−(x) = 0 for some x ∈ BR \ Ω, then the convexity of Γ(v)
and Γ(v) = 0 on ∂BR implies Γ(v) = 0 in Ω.

Since Γ(v) is convex its subdifferential ∇Γ(v)(x0) is nonempty for all x0 ∈ BR

(4.3) ∇Γ(v)(x0) := {w ∈ R
d : 〈w, x − x0〉+ Γ(v)(x0) ≤ Γ(v)(x) for all x ∈ BR},

where 〈·, ·〉 denotes the dot product in R
d. In particular, if x0 ∈ C

−(v), then

〈w, x − x0〉+ v(x0) ≤ v(x) ∀ w ∈ ∇Γ(v)(x0), x ∈ BR.



14 R.H. Nochetto and W. Zhang

4.2. Alexandroff-Bakelman-Pucci estimate and applications. The classical
ABP estimate is the cornerstone in the regularity theory of fully nonlinear elliptic
equations. The estimate gives a bound for the L∞(Ω)-norm of the negative part
u− of the solution u to equation (1.1) in terms of the Ld-norm of f :

sup
Ω
u− ≤ C

(∫

C−(u)

|f |d
)1/d

,

where C−(u) is the lower contact set of u in BR defined in (4.2) and C = C(d, λ,Ω).
We complement the ABP estimate with a modified version at the ǫ-scale [11].

Lemma 4.1 (ABP estimate at ǫ-scale [11]). If uǫ is a solution of (2.5) with uǫ ≥ 0
on the boundary ∂Ω. Then

sup
Ω

(uǫ)− ≤ C

(∫

C−(uǫ)

|f |d
)1/d

,

where C
−(uǫ) is defined in (4.2) and C = C(d, λ,Ω).

We now apply Lemma 4.1 to establish a rate of convergence for ‖ u− uǫ ‖L∞(Ω).

Lemma 4.2 (rate of convergence of ‖ u − uǫ ‖L∞(Ω)). If the solution u of (1.1)

satisfies u ∈ C2,α(Ω) for some 0 < α ≤ 1 and uǫ is a solution of (2.5), then there
exists C = C(d, λ,Ω) such that

‖ u− uǫ ‖L∞(Ω) ≤ Cǫα|u|C2,α(Ω).

Proof. We only need to establish a bound for the negative part of u− uǫ such as

sup
Ω

(u− uǫ)− ≤ Cǫα,(4.4)

because the bound for the positive part is similar. By Lemma 2.1 (approximation
property) of Iǫ, we have

∣∣Lǫu(x)−A(x) : D2u(x)
∣∣ ≤ Cǫα|u|C2,α(Ω) for all x ∈ Ω.

Thanks to (1.1) and (2.5), a simple comparison between Lǫu with Lǫu
ǫ yields

∣∣Lǫ(u− uǫ)(x)
∣∣ ≤ Cǫα|u|C2,α(Ω).

Invoking Lemma 4.1 (ABP estimate at ǫ-scale), we readily obtain (4.4). �

5. Discrete Alexandroff-Bakelman-Pucci estimate

The aim of this section is to establish Theorem 5.1 (discrete ABP estimate).
This and related results are of intrinsic interest and do not require regularity of
the domain Ω, which is just assumed to be bounded in this section. We recall
that a discrete ABP estimate is also proved in [34] for finite differences on general
meshes within the abstract framework of [33]. However, when applied to our finite
element method, the estimate in [34] yields sub-optimal results because it replaces
the measure of star |ωi| in (1.20) by the much larger quantity |Bǫ(xi)|, where Bǫ(xi)
stand for the set of influence of xi which, according to (1.14), is of size ǫ≫ h. We
present a novel proof which is more geometric and suitable for FEM. It is based on
the geometric characterization of the sub-differential of piecewise linear functions
vh ∈ Vh and control of its measure by the jumps of ∇vh.
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First, we need a definition. Given vh ∈ Vh with vh ≥ 0 on ∂Ω, we observe that
if x belongs to the interior of some element K ∈ Th and to the contact set C−(vh),
then the vertices of K are also in the contact set. This motivates the following
definition of (lower) nodal contact set – the discrete counterpart of (4.2):

(5.1) C
−
h (vh) := {z ∈ Nh : Γ(vh)(z) = vh(z)} ∀vh ∈ Vh,

Therefore, C−
h (vh) is just a collection of nodes and C

−
h (vh) ⊂ C

−(vh) ⊂ Ω unless
Γ(vh) = 0.

Theorem 5.1 (discrete Alexandroff-Bakelman-Pucci estimate). Let the mesh Th

be shape regular and satisfy (3.5). Let vh ∈ Vh with vh ≥ 0 on ∂Ω satisfy

Lǫ
hvh(xi) ≤ fi for all xi ∈ Nh.

If C−
h (vh) is the nodal contact set of (5.1), then the discrete ABP estimate reads

sup
Ω
v−h ≤ C




∑

xi∈C
−

h
(vh)

|f+
i |d|ωi|




1/d

,

where the constant C = C(σ, d, λ,Ω) and |ωi| denotes the volume of the star ωi.

5.1. Local convex envelope of piecewise affine functions. There are two
critical issues in dealing with Γ(vh): first Γ(vh) is not locally defined and second
Γ(vh) is not a piecewise affine function subordinate to Th. To overcome the first
issue, we define the local convex envelope for any z ∈ C

−
h (vh)

Γz(vh)(x) = sup
L

{
L(x) : L ≤ vh in ωz, L is affine and L(z) = vh(z)

}
(5.2)

for all x ∈ ωz. We wonder whether Γz(vh) ∈ Vh and explore this question next.

Lemma 5.1 (local convex envelope for d = 2). The function Γz(vh) ∈ Vh for all
z ∈ Nh provided d = 2.

Proof. Given a triangle with vertices z = 0, x1, x2, let L1, L2 ≤ vh in ωz be two
affine functions which satisfy, without loss of generality,

L1(z) = L2(z) = vh(z) = 0, L1(x1) > L2(x1), L1(x2) < L2(x2).

Let L be the affine function which agrees with L1 at z, x1 and with L2 at x2. Since
vh is affine in T , we deduce L ≤ vh in T . On the other hand, L ≤ max{L1, L2} ≤ vh
in ωz \ T because y = λ1x1 + λ2x2 ∈ ωz \ T entails either λ1 < 0 or λ2 < 0 and

L(y) = λ1L(x1) + λ2L(x2) ≤ λ1L2(x1) + λ2L2(x2) = L2(y) ≤ max{L1(y), L2(y)}
if λ1 < 0 or likewise if λ2 < 0. This implies that L is an admissible function in the
definition of Γz(vh), whence Γz(vh) must be affine in T as asserted. �

Remark 5.1 (local convex envelope for d = 3). Unfortunately, Lemma 5.1 is false
for d = 3. To see this, we construct a counterexample: consider the vertices

z0 = (0, 0,−1), z1 = (−1, 0, 0), z2 = (0, 1, 0), z3 = (1, 0, 0),

and tetrahedra T1, T2 to be the convex hulls of z0, z1, z2, z3 and z0, z1,−z2, z3. If
vh is piecewise affine with nodal values vh(z0) = −1, vh(z1) = vh(z3) = 0 and
vh(±z2) = −1, then the local convex envelope Γz0(vh)(x) = |x1| − 1 is not affine in
each Ti for i = 1, 2.



16 R.H. Nochetto and W. Zhang

In view of (5.2), we let the local sub-differential ∇Γz(vh)(z) at z ∈ C
−
h (vh) be

∇Γz(vh)(z) :=
{
w ∈ R

d : 〈w, x− z〉+ Γz(vh)(z) ≤ Γz(vh)(x) for all x ∈ ωz

}
.

Comparing with definition (4.3) we immediately deduce the key property

∇Γ(vh)(z) ⊂ ∇Γz(vh)(z) ∀ z ∈ C
−
h (vh),(5.3)

which will be instrumental in the subsequent derivation. In fact, all statements
involving ∇Γ(vh)(z) will be proved using ∇Γz(vh)(z) for z ∈ C

−
h (vh) instead.

5.2. Discrete Alexandroff estimate. The next Alexandroff estimate for a con-
tinuous piecewise affine function vh states that the L∞-norm of vh is controlled by
the Lebesgue measure of the sub-differential of its convex envelope.

Proposition 5.1 (discrete Alexandroff estimate). Let vh ∈ Vh with vh ≥ 0 on ∂Ω,
and Γ(vh) be its convex envelope in BR. Then

sup
Ω
v−h ≤ C




∑

xi∈C
−

h
(vh)

|∇Γ(vh)(xi)|




1/d

,(5.4)

where |∇Γ(vh)(xi)| denotes the d-Lebesgue measure of the sub-differential of Γ(vh)
associated with the contact node xi ∈ C

−
h (vh) and C = C(d,Ω).

Proof. We proceed in four steps as follows.

Step 1. We first show that

sup
BR

v−h = sup
BR

Γ(vh)
−.

Since vh ≥ Γ(vh), the inequality supBR
v−h ≤ supBR

Γ(vh)
− is obvious. To show

the reversed inequality, let supBR
v−h = v−h (x∗) for some x∗ ∈ BR and let L be a

horizontal hyperplane touching vh from below at x∗. By (4.1) (definition of convex
envelope) again, we deduce

Γ(vh)(x) ≥ L(x) = L(x∗) = vh(x
∗) for all x ∈ Ω,

whence supBR
Γ(vh)

− ≤ v−h (x
∗). Hence, to prove (5.4), we only need to show that

sup
BR

Γ(vh)
− ≤ C




∑

xi∈C
−

h
(vh)

|∇Γ(vh)(xi)|




1/d

.

Step 2. We construct a cone K(x) with vertex at x∗ such that

K(x∗) = − sup
BR

Γ(vh)
− = −M and K(x) = 0 on ∂BR,

and assume that M > 0 for otherwise Γ(vh) = 0 and (5.4) is trivial in view of Step
1; thus K(x) < 0 for all x ∈ BR. We note that for any vector v ∈ B M

2R
(0), the affine

function L(x) = −M+〈v, x−x∗〉 is a supporting plane of K(x) at point x∗, namely
L(x) ≤ K(x) for all x ∈ BR and L(x∗) = K(x∗). This implies ∇K(x∗) ⊃ B M

2R
(0),

whence

|∇K(x∗)| ≥ C(d)

(
M

R

)d

.

Step 3. We claim that

(5.5) ∇K(x∗) ⊂ ∪
{
∇Γ(vh)(xi) : xi ∈ C

−
h (vh)

}
.
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This is equivalent to showing that for any supporting plane L(x) of K(x) at x = x∗,

there is a parallel supporting plane L̃(x) for Γ(vh)(x) at some contact node y,
namely y ∈ C

−
h (vh). Consider the function vh(x)−L(x), and observe that vh(x) ≥ 0

on ∂Ω and vh(x
∗) = K(x∗) = L(x∗), whence

vh(x)− L(x) ≥ K(x)− L(x) ≥ 0 on ∂Ω,

vh(x
∗)− L(x∗) = K(x∗)− L(x∗) = 0.

We infer that vh−L attains a non-positive minimum inside Ω at y. Hence, L̃(x) :=
L(x) + vh(y)− L(y) is a parallel supporting plane for vh(x) at y. Since, according
to (4.1), every supporting plane of vh is a supporting plane of Γ(vh), we find that

L̃(x) ≤ Γ(vh)(x) ≤ vh(x) with equality at x = y. The function vh − L, being
piecewise affine in Ω, attains its minimum at a node of Th, whence y ∈ C

−
h (vh).

Step 4. Computing Lebesgue measures in (5.5) yields

C(d)

(
M

R

)d

≤ |∇K(x∗)| ≤
∑

xi∈C
−

h
(vh)

|∇Γ(vh)(xi)|.

Finally, (5.4) follows from a simple algebraic manipulation. �

In view of Proposition 5.1 (discrete Alexandroff estimate) and (5.3), to prove
Theorem 5.1 (discrete ABP estimate), we intend to relate |∇Γxi

(vh)(xi)| with the
discrete Laplacian at the contact node xi, namely to show

∣∣∇Γxi
(vh)(xi)

∣∣ ≤ C
(
∆hvh(xi)

)d|ωi| for all xi ∈ C
−
h (vh),

for C = C(d, λ,Ω, G) where G is a geometric constant defined below in (5.16). This
entails estimating |∇Γxi

(vh)(xi)| in terms of the jumps JF (Γxi
(vh)) across faces F

containing xi according to (3.4). This is precisely our next task.

5.3. Sub-differential of convex piecewise linear functions. Given xi ∈ C
−
h (vh),

let {zj}mj=1 = ωi∩Nh be the set of nodes connected with xi and Γxi
(vh) be the local

convex envelope defined in (5.2). Without loss of generality, we assume xi = 0 and
Γxi

(vh) ≥ 0 in ωi with equality at node xi only. We further assume Γxi
(vh) ∈ Vh

and simplify the notation in this subsection upon writing

γ(x) := Γxi
(vh)(x), γ(0) = 0, ∇γ(0) := ∇Γxi

(vh)(xi), ω := ωi.

Our goal in this section is to show the following proposition. Let F(0) denote
the set of (d− 1)-dim simplices (faces) containing the origin.

Proposition 5.2 (estimate of |∇γ(0)|). Let γ be a convex piecewise affine function
on a star ω centered at the origin. Then there is a constant C = C(d) such that

|∇γ(0)| ≤ C



∑

F∈F(0)

JF (γ)




d

.

We first point out that the jump JF (γ) across face F has a sign.

Lemma 5.3 (sign of JF (γ)). If γ is a convex function in ω, then JF (γ) ≥ 0 for
all faces F ∈ F(0).
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Proof. Let {K±} ⊂ ω be the elements sharing F and ω(F ) := K+ ∪K−. If nF is
the normal vector of F pointing from K+ to K−, then JF (γ) reads

JF (γ) = ∇γ|K− · nF −∇γ|K+ · nF .

Take a point x ∈ F and ǫ > 0 sufficiently small such that x ± ǫnF ∈ ω(F ). Since
γ(x) is piecewise affine and convex, we have

JF (γ) = ∇γ|K− · nF −∇γ|K+ · nF =
γ(x+ ǫnF ) + γ(x− ǫnF )− 2γ(x)

ǫ
≥ 0,

which is the asserted inequality. �

It is easy to see that ∇γ(0) is always a convex set. Since γ(x) is a piecewise
linear function on ω, we have a more precise characterization.

Lemma 5.4 (characterization of ∇γ(0)). The local sub-differential ∇γ(0) is a
convex polytope determined by the intersection of the half-spaces

Sj := {w ∈ R
d : 〈w, zj〉 ≤ γ(zj)} 1 ≤ j ≤ m.

Moreover, a vector w is in the interior of ∇γ(0) if and only if all the inequalities

〈w, zj〉 < γ(zj) 1 ≤ j ≤ m

hold strictly.

Proof. Since γ(x) is a piecewise affine function, any vectorw is in the sub-differential
∇γ(0) if and only if 〈w, zj〉 ≤ γ(zj) for all zj . Therefore, the sub-differential ∇γ(0)
is determined by the intersection of the half-spaces Sj for 1 ≤ j ≤ m. If 〈w, zj〉 <
γ(zj) for all 1 ≤ j ≤ m, then for ǫ > 0 sufficiently small such that

ǫ|zj| ≤ γ(zj)− 〈w, zj〉 1 ≤ j ≤ m,

we deduce

〈w + v, zj〉 ≤ γ(zj),

for all v in the small Bǫ(0) with radius ǫ and centered at 0, whence w+ v ∈ ∇γ(0).
This implies that w is in the interior of ∇γ(0). The argument can be reversed to
prove the equivalence. �

Lemma 5.4 immediately leads to two important consequences. First, if γ(x) ≥ 0
with equality only at the origin, i.e. γ(zj) > 0 for all 1 ≤ j ≤ m, then the vector
0 is in the interior of ∇γ(0). This implies that ∇γ(0) has a non-empty interior
and is thus d-dimensional. Second, a vector w is on the boundary ∂∇γ(0) of the
sub-differential∇γ(0) if and only if equality holds for at least one of the inequalities

〈w, zj〉 ≤ γ(zj) 1 ≤ j ≤ m.

The second consequence gives a characterization of ∂∇γ(0) which motivates us to
introduce the notion of dual set below.

Let T be an n-dim simplex with 0 ≤ n ≤ d such that 0 ∈ T . We define

(5.6) ω(T ) = ∪{K ⊂ ω : T ⊂ K,K d-dim simplex},
and the dual set T ∗ of T with respect to a convex piecewise affine function γ

T ∗ = {w ∈ ∇γ(0) : 〈w, z〉 = γ(z) ∀z ∈ T }.(5.7)
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Lemma 5.5 (geometry of T ∗). The dual set T ∗ of an n-dim simplex T is a convex
polytope contained in the (d− n)-dim plane

P = {w ∈ R
d : 〈w, z〉 = γ(z) ∀z ∈ T },

which happens to be orthogonal to T .

Proof. It is obvious that T ∗ is a subset of P . Moreover, in view of Lemma 5.4
(characterization of∇γ(0)) and the definition (5.7), we realize that T ∗ = ∩m

j=1Sj∩P
which means that T ∗ is a convex polytope bounded by the half-spaces {Sj}, 1 ≤
j ≤ m.

To show that P is orthogonal to T we see that, given arbitrary w1, w2 ∈ P ,
〈w1 − w2, z〉 = 0 for all z ∈ T . This proves the claim. �

The geometry of T ∗ is rather simple in two dimensions as the following example
illustrates.
• Case I (0-dim simplex): If T = {0}, then ω(T ) = ω. It is easy to check by
definition that T ∗ is nothing but the sub-differential ∇γ(0).
• Case II (2-dim simplex): If T = K is an element, then ω(K) = K. If a
vector w ∈ K∗, then the equality 〈w, z〉 = γ(z) for all z ∈ K implies w = ∇γ|K . It
is easy to check that the constant gradient ∇γ|K is in the sub-differential ∇γ(0)
by using the convexity of function γ. Hence, we conclude that K∗ consists of one
vector ∇γ|K only.
• Case III (1-dim simplex): Finally, we consider the most complicated case by
taking T = F which is a face with two vertices 0, z1. Then, ω(F ) consists of two
elements K± sharing the face F . Lemma 5.5 implies F ∗ is contained in the line

{w ∈ R
2, 〈w, z1〉 = γ(z1)}

It is easy to check that 〈∇γ|K± , z1〉 = γ(z1) which implies that the two constant
gradients ∇γ|K± ∈ F ∗. We claim that

F ∗ is the line segment joining the two vectors ∇γ|K± .(5.8)

Moreover, Lemma 5.4 gives us the following characterization of ∂∇γ(0)

∂∇γ(0) = ∪{F ∗, 0 ∈ F},(5.9)

namely the boundary of ∇γ(0) is made of straight segments joining ∇γ|K on
consecutive triangles K clockwise. Both claims are proved in Proposition 5.6 below
in a more general setting which holds for any space dimensions. Figure 5.1 depicts
a face T = [z1, z3] and its dual set T ∗ for d = 2.
Finally, we mention that combining claims (5.9) and (5.8) implies that

∇γ(0) is the (convex hull) polygon with vertices {∇γ|K , K ⊂ ω}.
We now establish a characterization of dual set T ∗ for any n-dim simplex T ,

which is inspired in [23] and extends the preceding discussion to any dimension d.

Proposition 5.6 (characterization of dual set). Let 0 ≤ n < d and

T be an n-dim simplex of ω such that 0 ∈ T ,

S be the set of (n+ 1)-dim simplices S of ω such that S ⊃ T .

The dual set T ∗ of T is the convex polytope given by

T ∗ = {w ∈ R
d : 〈w, z〉 = γ(z) ∀z ∈ T and 〈w, z〉 ≤ γ(z) ∀z ∈ ω(T )}.

Moreover, the boundary ∂T ∗ of T ∗ is given by ∂T ∗ = ∪{S∗ : S ∈ S }.
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z1 = 0

z2

z3

z4

T

K+

K−

0

z3

∇γ|K−

∇γ|K+

P

T ∗

Figure 5.1. Face T = [z1, z3] and its dual set T ∗ (segment joining
∇γ|K± ). The latter lies on a straight line P perpendicular to z3.

Before proving Proposition 5.6, we apply it to characterize the geometry of the
boundary ∂∇γ(0) of the sub-differential ∇γ(0) for d = 2, 3. We denote by {E}
(edges) the set of all 1-dim simplices for d = 3 such that 0 ∈ E, and by {F} (faces)
the set of all (d− 1)-dim simplices for d = 2, 3 such that 0 ∈ F . We let {K} be the
set of all d-dim simplices (tetrahedra for d = 3 and triangles for d = 2) such that
0 ∈ K.

Corollary 5.7 (characterization of ∂∇γ(0) for d = 2, 3). For d = 2, the boundary
∂∇γ(0) of the sub-differential ∇γ(0) is the union of dual sets F ∗ for all edges
F ⊂ ω such that 0 ∈ F . Each dual set F ∗ is the segment with endpoints {∇γ|K± :
K± ⊂ ω(F )} and the length of F ∗ equals the jump JF .
For d = 3, the boundary ∂∇γ(0) is the union of dual sets E∗ for all edges E ⊂ ω
such that 0 ∈ E. The boundary ∂E∗ is the union of dual sets F ∗ for all faces F such
that E ⊂ F . Each dual set F ∗ is a segment with endpoints {∇γ|K± : K± ⊂ ω(F )}
and the length of F ∗ is the jump JF .

Proof. We only prove the lemma for d = 3; the case d = 2 is simpler. To prove
∂∇γ(0) = ∪E∗, we take T in Proposition 5.6 to be the origin (0-dim simplex) and
S to be the set of all edges (1-dim simplices) E ∋ 0. Since T ∗ = ∇γ(0), the first
assertion follows immediately from Proposition 5.6.

Similarly, to prove

∂E∗ = ∪F ∗ ∀F ⊃ E and ∂F ∗ = ∪(K±)∗ ∀K± ⊃ F

we take T to be either an edge E or a face F and S to be {F : F ⊃ E} or
{K± : K± ⊃ F} respectively. The second assertion follows again directly from
Proposition 5.6.

Finally, since F ∗ is the line segment connecting (K±)∗ = ∇γ|K± , we deduce
that the length |F ∗| of F ∗ satisfies

|F ∗| = |∇γ|K+ −∇γ|K− |.
The fact that ∇γ|K+ −∇γ|K− is perpendicular to F , indeed equal to JFnF with
nF being the unit normal pointing from K+ to K−, in conjunction with Lemma
5.3 (sign of JF ), yields |F ∗| = JF as asserted. �

Now we proceed to prove Proposition 5.6.
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Proof of Proposition 5.6. To show the first statement, we note that by definition
(5.7), we have 〈w, z〉 ≤ γ(z) for all z ∈ ω, whence

T ∗ ⊂ {w ∈ R
d : 〈w, z〉 = γ(z) ∀z ∈ T and 〈w, z〉 ≤ γ(z), ∀z ∈ ω(T )}.

To show the reversed inclusion, we argue by contradiction: assume that 〈w, z〉 ≤
γ(z) for all z ∈ ω(T ) with equality for all z ∈ T , but w /∈ T ∗ or equivalently
w /∈ ∇γ(0). Then there is a point z0 ∈ ω such that 〈z0, w〉 > γ(z0). Let z1 ∈ T be
a point in the interior of ω(T ). Hence γ(z1) = 〈w, z1〉 and due to the convexity of
γ(z), for 0 < λ < 1,

γ(λz0 + (1− λ)z1) ≤ λγ(z0) + (1− λ)γ(z1) < 〈λz0 + (1− λ)z1, w〉.
Since z1 belongs to the interior of ω(T ), we have λz0+(1−λ)z1 ∈ ω(T ) for λ small
enough. Consequently, the inequality contradicts the assumption that 〈w, z〉 ≤ γ(z)
for all z ∈ ω(T ). This proves the first statement.

Now, we show that ∂T ∗ = ∪S∗ for all S ∈ S . In view of (5.7), this is equivalent
to showing that w ∈ ∂T ∗ if and only if w ∈ ∇γ(0) and the equality

〈w, z〉 = γ(z) holds for all z ∈ S and some (n+ 1)-dim simplex S ⊃ T .(5.10)

Let zs be the vertex of S off the simplex T (zs /∈ T ). Since γ(x) is piecewise affine,
(5.10) is equivalent to showing that

〈w, zs〉 = γ(zs) for some S ∈ S .(5.11)

We also recall from Lemma 5.5 (geometry of T ∗) that T ∗ is contained in the (d−n)-
dim plane

P = {w ∈ R
d : 〈w, z〉 = γ(z) ∀z ∈ T }

which is orthogonal to T . Consequently, a vector w ∈ T ∗ is in the interior of T ∗ if
and only if there is a small ǫ > 0 such that w+ ǫn ∈ T ∗ for any unit vector n ⊥ T .
Equivalently,

w ∈ ∂T ∗ ⇐⇒ ∃n ⊥ T such that w + ǫn /∈ T ∗ for any ǫ > 0.(5.12)

We first prove that if w ∈ ∂T ∗, then (5.11) holds. If not, then

〈w, zs〉 < γ(zs) for all vertices zs and 〈w, z〉 = γ(z) for all z ∈ T .

There is ǫ > 0 sufficiently small such that,

〈w + ǫn, zs〉 ≤ γ(zs) ∀zs and 〈w, z〉 = γ(z) ∀z ∈ T

for any unit vector n orthogonal to T . Since γ(z) is piecewise linear, this implies
that for each element K ⊂ ω(T )

〈w + ǫn, z〉 ≤ γ(z) ∀z ∈ K. and 〈w + ǫn, z〉 = γ(z) for all z ∈ T ,

whence (w+ ǫn) ∈ T ∗ for any n⊥T according to the first assertion of this Proposi-
tion. This contradicts that w ∈ ∂T ∗ in view of (5.12).

We next show that if (5.11) holds for some vector w ∈ T ∗, then w ∈ ∂T ∗. Let
p(zs) be the orthogonal projection of zs onto the face T and n(zs) = zs − p(zs);
obviously, the vector n(zs) 6= 0 and n(zs) ⊥ T . Since 〈w, zs〉 = γ(zs), we obtain

〈w + ǫn(zs), zs〉 = γ(zs) + ǫ|n(zs)|2 > γ(zs) for all ǫ > 0

whence w + ǫn(zs) /∈ ∇γ(0) for any ǫ > 0. This implies that w + ǫn(zs) /∈ T ∗ for
any ǫ > 0 because T ∗ ⊂ ∇γ(0) according to (5.7). With the aid of (5.12) we thus
deduce w ∈ ∂T ∗, and conclude the proof. �
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Proof of Proposition 5.2. The proof hinges on the isoperimetric inequality relating
the measure |P | of an n-dim polytope P with that of its perimeter |∂P |: there
exists a constant C = C(n), thereby depending on d, so that

|P | ≤ C|∂P |n/(n−1).

The proof proceeds by dimension reduction. We know that ∇γ(0) is the dual set
of T = {0} and, by virtue of Proposition 5.6 (characterization of dual set), that

∂∇γ(0) = ∪{S∗
1 : S1 ∈ S1(0)}

where S1(0) is the set of all 1-dim simplices of ω such that 0 ∈ S1. Therefore

(5.13) |∇γ(0)| ≤ C|∂∇γ(0)|d/(d−1) ≤ C




∑

S1∈S1(0)

|S∗
1 |




d/(d−1)

.

The dual sets S∗
1 are convex (d − 1)-dim polytopes orthogonal to S1, according to

Lemma 5.5 (geometry of T ∗). Applying again Proposition 5.6, this time to T = S1,
we obtain

∂S∗
1 = ∪{S∗

2 : S2 ∈ S2(S1)}
where S2(S1) stands for all 2-dim simplices S2 of ω such that S1 ⊂ S2. Hence

|S∗
1 | ≤ C|∂S∗

1 |(d−1)/(d−2) ≤ C




∑

S2∈S2(S1)

|S∗
2 |




(d−1)/(d−2)

.

Inserting this in the expression for |∇γ(0)|, we get

|∇γ(0)| ≤ C




∑

S1∈S1(0)




∑

S2∈S2(S1)

|S∗
2 |




(d−1)/(d−2)



d/(d−1)

.

Since
∑

i a
t
i ≤ (

∑
i ai)

t is valid for any nonnegative sequence {ai} and t ≥ 1, the
preceding inequality becomes

(5.14) |∇γ(0)| ≤ C




∑

S1∈S1(0)

∑

S2∈S2(S1)

|S∗
2 |




d/(d−2)

.

Moreover, each 2-dim simplex S2 contains exactly two 1-dim simplices S1 ∋ 0. This
allows us to rewrite |∇γ(0)| with C modified by a factor 2d/(d−2) as follows:

|∇γ(0)| ≤ C




∑

S2∈S2(0)

|S∗
2 |




d/(d−2)

.

Iterating this argument, we easily arrive at

|∇γ(0)| ≤ C




∑

Sd−1∈Sd−1(0)

|S∗
d−1|




d

,
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with C = C(d). The dual set S∗
d−1 of a (d − 1)-simplex Sd−1 = F or face F , is a

1-dim segment connecting ∇γ|K± where K± ∈ Th are the elements sharing F (see
proof of Corollary 5.7). Consequently,

|F ∗| = JF

because the length |F ∗| of F ∗ equals the jump JF . This concludes the proof. �

5.4. Proof of Theorem 5.1. We are now ready to prove the discrete ABP esti-
mate for d = 2, 3 and comment on the case d > 3. We start with d = 3 for which
the main difficulty is that γ = ∇Γxi

(vh) may not belong to Vh, whence its jumps
JF (γ) may not be directly related to those of ∇vh, namely JF (vh). We proceed as
in Proposition 5.2 upon reducing the dimension.

Let xi ∈ C
−
h (vh) be a (lower) contact node for vh and let γ(xi) = 0 for simplicity.

In view of (5.13), there is a constant C depending on the dimension d such that

|∇γ(xi)| ≤ C




∑

Sj∈S1(xi)

|S∗
j |




d/(d−1)

,

where S1(xi) is the set of edges (or 1-dim simplices) Sj connecting nodes xj and
xi and S

∗
j is the dual set of Sj with respect to γ

S∗
j = {w ∈ ∇γ(xi) : 〈w, xj − xi〉 = γ(xj)}.

To estimate |S∗
j | we introduce a convex function γj defined in ωij as follows:

γj(x) := sup
L affine

{L(x) : L = γ on Sj , L(xk) ≤ γ(xk) for all xk ∈ Nh(ωij)},

where ωij := ω(Sj) is defined in (5.6) and Nh(ωij) := Nh ∩ ωij . The same proof of
Lemma 5.1 shows that γj ∈ Vh(ωij). Since the sub-differential ∇γj(xi) is
∇γj(xi) = {w ∈ R

d : 〈w, xj − xi〉 = γ(xj), 〈w, xk − xi〉 ≤ γ(xk) ∀xk ∈ Nh(ωij)},
we deduce S∗

j ⊂ ∇γj(xi), whence |S∗
j | ≤ |∇γj(xi)| and we have to estimate the

latter. The set ∇γj(xi) is a convex polygon perpendicular to the edge Sj and is the
dual set of Sj with respect to the convex function γj . Applying Proposition 5.6 we
get an expression for ∂∇γj(xi), namely

∂∇γj(xi) = ∪{F ∗ : F ∈ S2(Sj)},
where S2(Sj) is the set of faces (or 2-dim simplices) containing Sj . The dual sets
F ∗ are 1-dim segments connecting the gradient ∇γj in the two elements sharing F ,
whence |F ∗| = JF (γj). Consequently, we infer that

|∇γj(xi)| ≤ C|∂∇γj(xi)|
d−1
d−2 ≤ C




∑

F∈S2(Sj)

JF (γj)




(d−1)/(d−2)

and, arguing as in the proof of Proposition 5.2, we further obtain

(5.15) |∇γ(xi)| ≤ C




∑

Sj∈S1(xi)

∑

F∈S2(Sj)

JF (γj)




d

.

It remains to estimate the right-hand side of this expression. It is worth men-
tioning here that we could use induction and an argument similar to that below to
deal with dimension d > 3. For simplicity, we just prove the assertion of Theorem
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5.1 for d = 3. We first recall that JF (γj) ≥ 0 according to Lemma 5.3. Since

|F | ≃ |ωi|1− 1
d and JF (γj) is constant, we can write

∑

F∈S2(Sj)

JF (γj) ≤ C|ωi|
1
d
−1

∑

F∈S2(Sj)

∫

F

JF (γj)φiφj ,

where the constant C depends on the dimension d and geometric quantity

(5.16) G := max
Th∈T

max
xi∈Nh

max
F∋xi

{
|F |−d|ωi|d−1

}
.

We next exploit that φiφj vanishes on ∂ωij to integrate by parts and thereby obtain

∑

F∈S2(Sj)

JF (γj) ≤ −C|ωi|
1
d
−1

∫

ωij

∇γj · ∇(φiφj).

Since γj , φj , φi are all piecewise linear, the right-hand side reads
∫

ωij

∇γj · ∇(φiφj) =

∫

ωij

∇γj · ∇φi φj +∇γj · ∇φj φi

=
1

d+ 1

∫

ωij

∇γj · ∇φi +∇γj · ∇φj .

We now resort to (3.5), the face weakly acute condition on Th, to replace γj by
Ihγ. In fact, we know that γj(x) =

∑
xk∈Nh(ωij)

γj(xk)φk and γj(xk) ≤ γ(xk) with

equality at xk = xi and xk = xj , whence
∫

ωij

∇γj · ∇φi =
∑

xk∈Nh(ωij)

γj(xk)

∫

ωij

∇φk · ∇φi ≥
∑

xk∈Nh(ωij)

γ(xk)

∫

ωij

∇φk · ∇φi.

Since the same inequality hold for the remaining term
∫
ωij

∇γj∇φj , we infer that
∫

ωij

∇γj · ∇(φiφj) ≥
∫

ωij

∇Ihγ · ∇(φiφj).

To complete the estimate of the right-hand side of (5.15) we must add over Sj ∈
S1(xi). We now make use of

∑
Sj∈S1(xi)

φj = 1−φi together with (1.10) to obtain

∑

Sj∈S1(xi)

∑

F∈S2(Sj)

JF (γj) ≤ −C|ωi|
1
d
−1

∫

ωi

∇Ihγ ·
(
∇φi − 2φi∇φi

)

= −C d− 1

d+ 1
|ωi|

1
d
−1

∫

ωi

∇Ihγ · ∇φi = C|ωi|
1
d∆hIhγ(xi).

Since

Ihγ(x) ≤ vh(x) for all x ∈ ωi

with equality at xi, the monotonicity property of ∆h in Lemma 3.1 yields

∆hIhγ(xi) ≤ ∆hvh(xi).

Now to prove Theorem 5.1, we only need to show that

∆hvh(xi) ≤ Cfi ∀xi ∈ C
−
h (vh).

Since the (global) convex envelope Γ(vh) touches vh at xi from below, we get

0 ≤ IǫΓ(vh)(xi) ≤ Iǫvh(xi)
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where the first inequality follows from the convexity of Γ(vh) and the second one
from the monotonicity of operator Iǫ in Lemma 3.1. Hence, by the definition (3.2)
of discrete operator Lǫ

h and the fact that fi ≥ 0 for xi ∈ C
−
h (vh), we obtain

∆hvh(xi) ≤
2

λ
Lǫ
hvh(xi) ≤

2

λ
fi =

2

λ
f+
i .

Altogether, utilizing (5.15), we conclude that

|∇Γ(vh)(xi)| ≤ |∇γ(xi)| ≤ C|f+
i |d|ωi| ∀xi ∈ C

−
h (vh).

Finally, invoking Proposition 5.1 (discrete Alexandroff estimate), we arrive at

(5.17) sup
Ω
v−h ≤ C




∑

xi∈C
−

h
(vh)

|f+
i |d|ωi|




1/d

,

which is the desired discrete ABP estimate. This completes the proof for d = 3.
The case d = 2 is simpler because Ihγ = γ and the first step above already gives

|∇γ(xi)| ≤ C




∑

F∈S1(xi)

|F ∗|




2

= C




∑

F∈S1(xi)

JF (γ)




2

≤ C|ωi|
(
∆hγ(xi)

)2
.

The proof shows that the constant C in (5.17) depends on λ−1 and the constants
C(d, λ,Ω) in Proposition 5.1 (discrete Alexandroff estimate) and G in (5.16), rather
than the shape regularity constant σ. Therefore, C is independent of the number
n of elements within ωi, which is an improvement over [34] where C depends on n.

6. A priori error estimates

In this section, we proceed as follows to derive rates of convergence for the FEM.
In § 6.1, we review a finite element approximation uG of the solution u, commonly
known as Galerkin projection. In § 6.2, we introduce a boundary layer function
which is instrumental to deal with points ǫ-close to the boundary ∂Ω. In § 6.3,
we derive the error equation (6.10) for uǫh − uG. In § 6.4, we examine (6.10) and
show that the various terms exhibit a decay rate, measured in Ld-norm, in the
region bounded ǫ-away from the boundary. In § 6.5, we develop a discrete barrier
function which is instrumental in controlling the behavior of the error uǫh−uG in the
region ǫ-close to the boundary. We conclude in § 6.6 and 6.7 with pointwise rates
of convergence, which combine the discrete ABP estimate and the discrete barrier
technique. In §6.6 we deal with C2,α solutions whereas in §6.7 we allow solutions
to be piecewise C2,α. Throughout this section, we take ǫ = ǫ(h) ≥ Ch| lnh| so that
h/ǫ(h) → 0 as h→ 0.

6.1. Galerkin projection. We have already shown in (1.11) that ∆hIhu(xi) does
not converge to ∆u(xi) as h→ 0 for general meshes Th. To circumvent this operator
inconsistency, we borrow an idea from [26] and consider the Galerkin projection uG
of u instead.

We recall that Ω must be at least C1,1 for the solution u of (1.1) to be of class
W 2

∞(Ω). Let Ωh be a polytope induced by Th with boundary nodes on ∂Ω.
We define the Galerkin (or elliptic) projection uG ∈ V

0
h of u as follows:

∫

Ωh

∇uG ·∇vh =

∫

Ωh

∇u ·∇vh = −
∫

Ωh

∆u vh for all vh ∈ V
0
h,(6.1)
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provided u ∈ C2(Ω) is suitably extended to Ωh. Upon taking vh = φi, we have

∆huG(xi) =

∫
Ωh
φi∆u

∫
Ωh
φi

∀xi ∈ Nh,(6.2)

according to (1.10). Therefore, the discrete Laplacian ∆huG of uG is a weighted
mean of ∆u over the star ωi and thus converges to ∆u(xi) as h→ 0 in contrast to
∆hIhu.

Our discretization satisfies the following three standard assumptions [46]:

• The partition Th of Ωh is quasi-uniform and shape regular;
• The Hausdorff distance between ∂Ω and ∂Ωh satisfies

dist (∂Ωh, ∂Ω) = max
x∈∂Ωh

dist (x, ∂Ω) ≤ Ch2;

• Functions v ∈ W 2
∞(Ω) that vanish on ∂Ω can be approximated by piecewise

linear functions that vanish on ∂Ωh to order h2 in the maximum norm.

Therefere, the convergence rate of the Galerkin projection uG in the L∞-norm is
known to be quasi-optimal for u ∈ C0(Ω) and is given by [46]

‖ u− uG ‖L∞(Ωh) ≤ C| lnh| inf
vh∈V0

h

‖ u− vh ‖L∞(Ωh).(6.3)

Moreover, if u ∈ W 2
∞(Ω), then the third bullet above implies

‖ u− uG ‖L∞(Ωh) ≤ Ch2| lnh| |u|W 2
∞(Ω).(6.4)

In view of these results, and to avoid technical difficulties, we make the somewhat
standard simplifying assumption that Ωh = Ω. Thanks to (6.4), for all xi ∈ Nh

such that dist(xi, ∂Ω) ≥ Qǫ, we obtain
∣∣δuG(xi, y)− δu(xi, y)

∣∣ ≤ Ch2| lnh| |u|W 2
∞(Ω)

which, by definition (2.1) of the integral operator Iǫ, implies

∣∣IǫuG(xi)− Iǫu(xi)
∣∣ ≤ C

h2

ǫ2
| lnh| |u|W 2

∞(Ω).(6.5)

6.2. Boundary layer function. We introduce now a boundary layer function
b : Ω → R

− which is instrumental in dealing with the boundary layer ωǫ := Ω \Ωǫ,
where Ωǫ is defined in (2.3). Let dist (x) be the distance function from x ∈ Ω to
∂Ω, which inherits the same regularity as ∂Ω for x close to the boundary, that is,
dist (x) is of class C1,1 provided dist (x) ≤ Qǫ and ǫ is small. Let ζ : R+ → R

− be

ζ(s) :=

{
Q−2

(
s−Qǫ

)2 − ǫ2 s ≤ Qǫ

−ǫ2 s > Qǫ,

and note that ζ′′(s) = 2Q−2χ(0,Qǫ)(s) where χ(0,Qǫ) is the characteristic function
of (0, Qǫ). Let the function b be given by

b(x) := ζ(dist (x)) ∀x ∈ Ω,

and observe the simple but important properties

∇b(x) = ζ′(dist (x))∇dist (x),

D2b(x) = ζ′′(dist (x))∇dist (x)⊗∇dist (x) + ζ′(dist (x))D2dist (x).
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Lemma 6.1 (integral operator of b). There is a constant C > 0 such that

(6.6) Iǫb(x) ≥ Cχωǫ
(x) ∀x ∈ Ω,

i.e. b is non-negative in Ω and strictly positive in ωǫ.

Proof. If x /∈ ωǫ, then b(x) = −ǫ2 ≤ b(x + y), b(x − y) and δb(x, y) ≥ 0 whence
Iǫb(x) ≥ 0. Therefore, we consider x ∈ ωǫ and observe that, in view of (2.6), it
suffices to deal with

δ+(x, y) :=

∫ 1

0

∫ 1

0

sD2b(x+ sty) : y ⊗ y dtds

and

I+ǫ b(x) :=

∫

B1(0)

∫ 1

0

∫ 1

0

sD2b
(
x+ tsθǫM(x)z

)
:M(x)z ⊗M(x)z ϕ(z) dsdtdz.

We further decompose I+ǫ b(x) into two terms according to the expression of D2b(x)

Aǫ(x) :=

∫

B1(0)

∫ 1

0

∫ 1

0

sζ′′
(
dist (x(z))

)∣∣∇dist (x(z)) ·M(x)z
∣∣2 ϕ(z) dsdtdz,

Bǫ(x) :=

∫

B1(0)

∫ 1

0

∫ 1

0

ζ′
(
dist (z(x))

)
D2dist (x(z)) :M(x)z ⊗M(x)z ϕ(z) dsdtdz,

where x(z) := x+tsθǫM(x)z. We now introduce the ellipsoid Eǫ(x) and cone C(x),
centered at x and with opening arccosβ < π/2, defined as follows:

(6.7) Eǫ(x) := {x(z) : z ∈ B1(0)}, C(x) := {y : 〈x− y,∇dist (x)〉 ≥ β|x − y|}.
We point out that the set Cǫ := Eǫ(x) ∩ C(x) satisfies the important property

|Cǫ(x)| ≥ c|Eǫ(x) ∩ ωǫ| ≥ c|Eǫ(x)|.
We examine Aǫ(x) first. Since

∣∣∇[dist (x(z))− dist (x)]
∣∣ ≤ cǫ|M(x)z|, we deduce

∣∣∇dist (x(z)) ·M(x)z
∣∣ ≥ cβ|z| ∀x(z) ∈ C(x).

If D1(0) := {z ∈ B1(0) : x(z) ∈ Cǫ(x)}, then |D1(0)| ≥ c|B1(0)| and

Aǫ(x) ≥ cβ

∫

D1(0)

∫ 1

0

∫ 1

0

sϕ(z)|z|dsdtdz ≥ C1 > 0.

On the other hand, using that |ζ′(dist (x(z)))| ≤ cǫ for z ∈ B1(0) in conjunction
with the uniform bound of D2dist (x(z)) provided ∂Ω ∈ C1,1, we readily obtain
|Bǫ(x)| ≤ C2ǫ. This implies

I+ǫ b(x) ≥ C1 − C2ǫ ≥
1

2
C1 ∀x ∈ ωǫ,

which translates into Iǫb ≥ cχωǫ
and concludes the proof. �

We now discretize the boundary layer function b upon defining

(6.8) bh := Ihb.

Lemma 6.2 (properties of bh). There is a constant C independent of ǫ, h such that

(6.9) Iǫbh(xi) ≥ Cχωǫ
(xi), Lǫ

hbh(xi) ≥ Cχωǫ
(xi) ∀xi ∈ Nh.
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Proof. We fix xi ∈ Nh and let dist i(x) := dist (xi) +∇dist (xi) · (x− xi) and ψ be
the convex function

ψ(x) := ζ
(
dist i(x)

)
− ℓ(x),

where ℓ is a linear function (corrector) with the following properties

ψ(xi) = b(xi),

∫

ωi

∇ψ =

∫

ωi

∇b.

1 Integral operator. If xi /∈ ωǫ, then we again have Iǫbh(xi) ≥ 0 as in Lemma
6.1. Let’s consider xi ∈ ωǫ and write

Iǫbh(xi) = Iǫb(xi) + Iǫ[bh − b](xi)

In light of Lemma 6.1 it suffices to show that
∣∣Iǫ[bh − b](xi)

∣∣ is small relative to 1,

or equivalently
∣∣bh − b

∣∣(xi) is small relative to ǫ2. Write

bh − b = Ih(b− ψ)− (b− ψ) + Ihψ − ψ,

and note that δ[Ihψ − ψ](xi, y) ≥ 0, whence Iǫ[Ihψ − ψ](xi) ≥ 0, because ψ is
convex. Therefore, we only have to bound the first two terms, namely [7],

∣∣(b − ψ)− Ih(b − ψ)
∣∣(y) ≤ Ch2−

d
p ‖D2(b − ψ)‖Lp(Bh(y))

for 2− d
p > 0 and any y = xi + ǫM(xi)z with z ∈ B1(0). This yields

∣∣Iǫ[(b− ψ)− Ih(b− ψ)](xi)
∣∣ ≤ C

h2−
d
p

ǫ2
‖D2(b− ψ)‖Lp(Eǫ+h(xi)),

where Eǫ(xi) is the ellipsoid introduced in (6.7). We need to estimate

D2(b− ψ)(x) = ζ′′(dist (x))∇dist (x)⊗∇dist (x)

− ζ′′(dist i(x))∇dist (xi)⊗∇dist (xi) + ζ′(dist (x))D2dist (x)

for x ∈ Eǫ+h(xi). The third term is the simplest because |ζ′(dist (x))| ≤ Cǫ for all
x ∈ ωǫ. The first two terms are problematic because ζ′′ is discontinuous. We split
them as follows:

T1(x) + T2(x) + T3(x) : =
[
ζ′′(dist (x))− ζ′′(dist i(x))

]
∇dist (x) ⊗∇dist (x)

+ ζ′′(dist i(x))[∇dist (x) −∇dist (xi)]⊗∇dist (x)

+ ζ′′(dist i(x))∇dist (xi)⊗ [∇dist (x)−∇dist (xi)].

The function ζ′′(dist (x))−ζ′′(dist i(x)) which vanishes for x ∈ Eǫ+h(xi) except in a
set Sǫ(xi) with measure |Sǫ(xi)| ≤ Cǫd+1 because the distance function dist ∈ C1,1.
Consequently, recalling that |∇dist (x)| = 1 and h ≤ ǫ, we arrive at

‖T1‖Lp(Eǫ+h(xi)) ≤ Cǫ
1+d
p .

The remaining two terms are similar and, employing that dist ∈ C1,1, yield

‖Ti‖Lp(Eǫ+h(xi)) ≤ Ch‖D2dist ‖Lp(Eǫ+h(xi)) ≤ Chǫ
1
p

for i = 2, 3. Collecting these estimates, and taking p ≥ d, we obtain

∣∣Iǫ[(b− ψ)− Ih(b − ψ)](xi)
∣∣ ≤ ǫ

1
p

(h
ǫ

)2− d
p

,

which is small relative to 1 for ǫ small because h ≤ ǫ.
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2 Laplace operator. Let xi /∈ ωǫ. Invoking (1.9) and the fact that bh(xj) ≥
bh(xi) = −ǫ2 we deduce

∆hbh(xi)

∫

ωi

φi = −
∫

ωi

∇bh · ∇φi =
∑

j

kij
(
bh(xi)− bh(xj)

)
≥ 0.

Otherwise, if xi ∈ ωǫ, then decompose ∆hbh(xi) as follows

∆hbh(xi)

∫

ωi

φi =

∫

ωi

∇Ih(b − ψ) · ∇φi +
∫

ωi

∇Ihψ · ∇φi

and examine each term separately. We start with the last term. Since ψ is convex,
we can always substract a linear function and assume that ψ(xj) ≥ ψ(xi) = 0 for
all j. This correction being linear does not alter the last term, which becomes

∫

Ω

∇Ihψ · ∇φi =
∑

j

kij ψ(xj) ≤ 0.

It remains to show that the first term is small relative to hd ≈
∫
ωi
φi. We first

resort to the pointwise stability of the Lagrange interpolant ‖∇Ih(b− ψ)‖L∞(ωi) ≤
‖∇(b− ψ)‖L∞(ωi), which combined with the vanishing mean property of ∇(b − ψ)

in ωi and Poincaré inequality ‖∇(b− ψ)‖L∞(ωi) ≤ Ch1−
d
p ‖D2(b− ψ)‖Lp(ωi) yields

∣∣〈∇Ih(b − ψ),∇φi〉
∣∣ ≤ ‖∇(b− ψ)‖L∞(ωi)‖∇φi‖L1(ωi) ≤ Chd−

d
p ‖D2(b − ψ)‖Lp(ωi).

We next observe that ‖D2(b − ψ)‖Lp(ωi) ≤ C|Sh(xi)|
1
p where Sh(xi) is the subset

of ωi where D
2(b− ψ) 6= 0. Since dist ∈ C1,1, we have |Sh(xi)| ≤ Chd+1 whence

∣∣〈∇Ih(b− ψ),∇φi〉
∣∣ ≤ Chd+

1
p .

Combining these estimates for ∆hbh(xi) with Iǫbh(xi) ≥ Cχωǫ
(xi) yields L

ǫ
hbh(xi) ≥

Cχωǫ
(xi) and concludes de proof. �

6.3. Error equation. We now derive an equation for Lǫ
h(uG − uǫh) assuming Ω =

Ωh. By definition (3.2) of Lǫ
h and (6.2), we can split Lǫ

huG(xi) as follows

Lǫ
huG(xi)

∫

Ω

φi = − λ

2

〈
∇uG,∇φi

〉
+
〈
IǫuG(xi), φi

〉

=
〈
f + T1 + T2 + T3 + T4, φi

〉
,

where

T1 = IǫuG(xi)− Iǫu(xi),

T2 = Iǫu(xi)−
(
Ā(xi)−

λ

2
I
)
: D2u(xi),

T3 =
(
Ā(xi)−

λ

2
I
)
:
(
D2u(xi)−D2u(x)

)
,

T4 =
(
Ā(xi)−A(x)

)
: D2u(x),

and Ā(xi) is the mean of A(x) over the star ωi defined in (1.22). Since Lǫ
hu

ǫ
h(xi) =

fi, according to (3.2), we thus get the following expression, for all xi ∈ Nh,

Lǫ
h[uG − uǫh](xi) =

(∫

Ω

φi

)−1 〈
T1 + T2 + T3 + T4, φi

〉
.(6.10)
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6.4. Operator consistency and convergence. We now derive an upper bound
for the four error terms Ti in (6.10); a lower bound follows along the same lines.
To this end, we must account for the behavior in the boundary layer ωǫ = Ω \ Ωǫ,
where the definition of the second difference (2.4) changes and the operator accuracy
reduces to order 1. This leads to convergence for C2-solutions.

Lemma 6.3 (estimate of T1). Let u ∈W 2
∞(Ω) and bh ∈ V

0
h be the discrete boundary

layer function defined in (6.8). Then there is a constant C = C(Ω, σ) such that

Iǫ[uG − u](xi) ≤ C|u|W 2
∞(Ω)| lnh|

(
h2

ǫ2
+ Lǫ

hbh(xi)

)
∀xi ∈ Nh,

Proof. Applying the L∞ estimate (6.4) of uG − u yields

δ[uG − u](xi, y) ≤ C|u|W 2
∞(Ω) h

2| lnh|
{
1 if xi ∈ Ωǫ

θ−2 if xi ∈ ωǫ

whence

Iǫ[uG − u](xi) ≤ C|u|W 2
∞(Ω)

(
h2

ǫ2
| lnh|+ h2

θ2ǫ2
| lnh|χωǫ

(xi)

)
.

Since every node xi ∈ ωǫ is at most at distance Ch to ∂Ω, i.e. θǫ ≥ Ch, we see that
the truncation error within the layer ωǫ may be of order | lnh|. We thus invoke
(6.9) to replace the second term by | lnh|Lǫ

hbh(xi), as asserted. �

To estimate the term T4 in (6.10), we recall the assumption (1.23): if Ā(xi) =
1

|ωi|

∫
ωi
A(x)dx is the mean of A(x) in the star ωi of node xi, then

(
∑

xi∈Nh

∫

ωi

∣∣A(x)− Ā(xi)
∣∣d dx

)1/d

≤ C(A)hβ

for some 0 < β ≤ 1. Note that if A ∈ W 1
d (Ω), then this estimate with β = 1 follows

immediately from the Poincaré inequality. It is weaker than A ∈ Lγ,d(Ω), the
Campanato space with index γ = d+ βd and Lebesgue integrability d; embedding
theory implies A ∈ C0,β(Ω) [32, Theorem 4.6.1], which is consistent with Schauder
theory. We also introduce the notation

Si =

(∫

Ω

φi

)−1 〈
T4, φi

〉
for all i = 1, 2, · · · , N ,

where N is the cardinality of Nh. Now we are ready to estimate each term Ti.

Lemma 6.4 (estimate of error equation). Let the mesh Th satisfy (3.6). If the
solution u ∈ C2,α(Ω) with 0 < α ≤ 1, then

Lǫ
h[uG − uǫh − C| ln h| bh](xi) ≤ Cα(u)

(
ǫα + hα +

h2

ǫ2
| lnh|

)
+ Si.

where Cα(u) = C
(
|u|C2,α(Ω) + |u|W 2

∞(Ω)

)
. If the solution u ∈ C3,α(Ω), then

Lǫ
h[uG − uǫh − C| lnh| bh](xi) ≤

{
C1+α(u)E1 + Si for xi ∈ Ωǫ,
C1+α(u)E2 + Si for xi ∈ ωǫ.

where

E1 = ǫ1+α + h+
h2

ǫ2
| lnh|, E2 = ǫ+ h+

h2

ǫ2
| lnh|
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and the constant C1+α(u) = C
(
|u|C3,α(Ω) + |u|W 2

∞(Ω)

)
. Moreover, if (1.23) is

valid, then

(
N∑

i=1

|Si|d|ωi|
)1/d

≤ C(A, u) hβ(6.11)

with a constant C(A, u) = C(A)|u|W 2
∞(Ω).

Proof. The upper bound of T1 follows from Lemma 6.3 (estimate of T1)

T1 ≤ C|u|W 2
∞(Ω) | lnh|

(
h2

ǫ2
+ Lǫ

hbh(xi)

)
.

The estimate of T2 is a consequence of Lemma 2.1 (approximation property of Iǫ)

|T2| ≤ C|u|C2,α(Ω)ǫ
α.

The estimate for T3, for u ∈ C2,α(Ω), reads

|T3| ≤ C|u|C2,α(Ω)h
α.

Therefore, we conclude from the error equation (6.10) that

Lǫ
h[uG − uǫh](xi) ≤ C|u|C2,α(Ω)

(
ǫα + hα + | lnh|h

2

ǫ2
+ | lnh|Lǫ

hbh(xi)

)
+ Si

for all xi ∈ Nh, which proves the first estimate.
For u ∈ C3,α(Ω), we only need to note that, by Lemma 2.1,

|T2| ≤
{
Cǫ1+α|u|C3,α(Ω) for x ∈ Ωǫ,

Cǫ|u|C2,1(Ω) for x ∈ ωǫ,

and |T3| ≤ Ch|u|C2,1(Ω). We thus have from the error equation (6.10) that

Lǫ
h

[
uG − uǫh − C| ln h|bh

]
(xi) ≤ C1+α(u)

{
E1 for x ∈ Ωǫ,

E2 for x ∈ ωǫ.

Finally, to prove the last statement, we only need to note that by definition

|Si| =
(∫

ωi

φi

)−1 ∣∣∣∣
∫

ωi

(
A(x) − Ā(xi)

)
: D2u(x) φi(x) dx

∣∣∣∣ .

Since D2u(x) is bounded, invoking Hölder’s inequality, we obtain

|Si|d ≤ |u|dW 2
∞(Ω)

(∫

ωi

φi

)−d(∫

ωi

|A(x) − Ā(xi)|d dx
)(∫

ωi

φi(x)
d

d−1 dx

)d−1

≤ |u|dW 2
∞(Ω)

(∫

ωi

φi

)−1(∫

ωi

|A(x) − Ā(xi)|d dx
)
,

due to the fact that φi ≤ 1. Hence, we infer from assumption (1.23) that

N∑

i=1

|Si|d|ωi| ≤ |u|dW 2
∞(Ω)(d+ 1)

N∑

i=1

∫

ωi

|A(x) − Ā(xi)|d dx ≤ C(A)|u|dW 2
∞(Ω) h

βd.

This completes the proof. �
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Corollary 6.5 (convergence for C2 solutions). Let the two scales h and ǫ satisfy
ǫ = C1h| lnh| for any constant C1 > 0. If the solution u ∈ C2(Ω), the coefficient
matrix A ∈ VMO (Ω), and the mesh Th satisfies (3.5), then

lim
h→0

‖uǫh − u‖L∞(Ω) = 0.

Proof. Let Eh(xi) := Lǫ
h

[
uG − uǫh − C| lnh| bh

]
(xi). If

(6.12) lim sup
h→0

Eh(xi) ≤ 0

is valid uniformly in xi as h, ǫ → 0, then applying Theorem 5.1 (discrete ABP
estimate) to the function uG − uǫh − C| lnh| bh with vanishing trace on ∂Ω yields

sup
Ω

(
uG − uǫh − C| lnh| bh

)− ≤ C




∑

xi∈C
−

h
(vh)

|Eh(xi)
+|d|ωi|




1/d

→ 0 as h→ 0.

Realizing that | lnh| ‖bh‖L∞(Ω) = ǫ2| lnh| → 0 as h→ 0, we obtain

lim
h→0

‖(uG − uǫh)
−‖L∞(Ω) = 0.

Since a similar result is valid for (uG − uǫh)
+ the assertion follows.

It thus remains to show (6.12). In view of (6.10), we just estimate each term Ti
for 1 ≤ i ≤ 4. Lemma 6.3 (estimate of T1) yields

T1 ≤ C|u|W 2
∞(Ω)| lnh|

(
h2

ǫ2
+ Lǫ

hbh(xi)

)
.

The estimate of T2 is a consequence of Lemma 2.1 (approximation property of Iǫ)

|T2| → 0 as ǫ→ 0

because u ∈ C2(Ω). The latter also implies |T3| → 0 as h→ 0. Finally, we deduce

〈T4, φi〉 =
∫

Ω

(Ā(xi)−A(x)) : D2u(x)φi(x) dx ≤ |u|W 2
∞(Ω)

∫

ωi

|Ā(xi)−A(x)| dx

whence

〈T4, φi〉∫
Ω φi

≤ C|u|W 2
∞(Ω)

1

|ωi|

∫

ωi

|Ā(xi)−A(x)| dx ≤ C|u|W 2
∞(Ω)η(h),

where η is the modulus of continuity for A ∈ VMO(Ω) defined in (1.21). This is
not obvious because Ā(xi), defined in (1.22), is the meanvalue of A over the star
ωi instead of balls of radius ≤ h. To prove such a statement, note that

Ā(xi) = Ah(xi) +
1

|ωi|

∫

ωi

(
A(x)−Ah(xi)

)
dx

yields

1

|ωi|

∫

ωi

|Ā(xi)−A(x)| dx ≤ C
1

|Bh(xi) ∩Ω|

∫

Bh(xi)∩Ω

∣∣A(x)−Ah(xi)
∣∣ dx ≤ Cη(h),

where C > 0 depends on the shape regularity of Th. We thus conclude (6.12)
uniformly in xi as h, ǫ→ 0 because η(h) → 0. �
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6.5. Discrete barrier functions. We note that while the estimate in the interior
of Ω is rather straightforward the boundary estimate is more involved, due to the
reduced rate of E2 in the ǫ-region ωǫ close to ∂Ω in Lemma 6.4. We assume that Ω
satisfies the exterior ball property [22], namely at every point z0 ∈ ∂Ω there is a ball
BR(y) of radius R > 0 lying outside Ω and tangent to ∂Ω at z0; this is consistent
with ∂Ω being of class C1,1. We consider the following barrier function [22, p.106]

(6.13) ψ(x) :=

{
τ
(
|x− y|−σ −R−σ

)
d ≥ 3

τ
(
| ln |x− y||−σ − | lnR|−σ

)
d = 2,

with τ, σ > 0. It turns out that ψ(x) ≤ 0 for all x ∈ Ω, ψ(z0) = 0 and for d ≥ 3

(6.14) D2ψ(x) =
τσ

|x− y|σ+2

(
(σ + 2)

x− y

|x− y| ⊗
x− y

|x− y| − I
)
,

whence for σ, τ sufficiently large depending on λ,Λ and R

(6.15) A(x) : D2ψ(x) ≥ τσ

|x− y|σ+2

(
(σ + 2)λ− tr(A)

)
≥ 2 ∀x ∈ Ω.

The same properties hold for d = 2; we omit details.

Lemma 6.6 (discrete barrier). Let Ω be of class C1,1. Given a constant E > 0,
for each node z ∈ Nh with dist(z, ∂Ω) ≤ Qǫ, there exists a function pz ∈ Vh such
that Lǫ

hpz(xi) ≥ E for all xi ∈ Nh, pz ≤ 0 on ∂Ω and

|pz(z)| ≤ CEǫ,

provided h, ǫ are sufficiently small and satisfy Ch| lnh|2 ≤ ǫ| lnh| ≤ 1.

Proof. Let z0 ∈ ∂Ω be such that |z − z0| = dist(z, ∂Ω), and let p := Eψ where ψ is
the barrier function defined in (6.13). Let pG ∈ Vh be the Galerkin projection of p
which interpolates p on ∂Ω. According to (6.4) and (6.14), we get

‖ p− pG ‖L∞(Ω) ≤ CEh2| lnh|,
where C > 0 depends on R, τ and σ. Lemma 6.3 (estimate of T1) yields

∣∣IǫpG(xi)− Iǫp(xi)
∣∣ ≤ CE | lnh|

(
h2

ǫ2
+ Lǫ

hbh(xi)

)
.

Thanks to the operator consistency (6.2) of the Galerkin projection, we obtain

∣∣Lǫ
hpG(xi)− Lǫp(xi)

∣∣ ≤ CE | lnh|
(
h2

ǫ2
+ Lǫ

hbh(xi)

)
.

where Lǫ is defined in (2.5). Hence,

Lǫ
h

[
pG + CE | lnh| bh

]
(xi) ≥ Lǫp(xi)− CE | lnh|h

2

ǫ2
.

In view of (6.15) and Lemma 2.1(3) (approximation property of Iǫ), we obtain
Lǫp(xi) ≥ 2E − CEǫ2, where C > 0 is proportional to |ψ|C3,1(Ω). Setting pz :=

pG + CE | lnh|bh, this implies

Lǫ
hpz(xi) ≥ 2E − CE

(
ǫ2 + | lnh|h

2

ǫ2

)
≥ E
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because Cǫ2 + C| ln h|h2/ǫ2 ≤ 1 for h, ǫ sufficiently small. Moreover

|pz(z)| ≤
∣∣p(z)

∣∣+
∣∣p(z)− pG(z)

∣∣+ CE| lnh|
∣∣bh(z)

∣∣

≤ CEǫ+ CEh2| lnh|+ CE | lnh|ǫ2 ≤ CEǫ

because Ch| lnh|2 ≤ ǫ| lnh| ≤ 1. This concludes the proof. �

6.6. Convergence rates for classical solutions. We recall that if A ∈ VMO(Ω)
and f ∈ L∞(Ω), then there is a unique strong solution u satisfying (1.5) for all
1 < p < ∞ [16]. On the other hand, if A, f ∈ C0,α(Ω) and ∂Ω ∈ C2,α, then
there exists a unique classical solution u ∈ C2,α(Ω) satisfying (1.6) [22]. Below we
establish two convergence rates for ‖ u−uǫh ‖L∞(Ω) which assume both the existence

of u ∈ C2,α(Ω) and A having minimal regularity compatible with A ∈ C0,α(Ω).

Corollary 6.7 (convergence rate for C2,α solutions). Let the two scales h and ǫ

satisfy ǫ = C1

(
h2| lnh|

)1/(2+α)
for an arbitrary constant C1 > 0 and 0 < α ≤ 1. If

the solution u of (1.1) belongs to C2,α(Ω), the coefficient matrix A satisfies (1.23)
for 2α

2+α ≤ β ≤ α, and the mesh Th satisfies (3.5), then

‖ u− uǫh ‖L∞(Ω) ≤ C
(
h2| lnh|

) α
2+α

(
|u|C2,α(Ω) + |u|W 2

∞(Ω)

)
,

where the constant C is proportional to the constant C(σ,Ω, d, λ) in Theorem 5.1
(discrete ABP estimate), the constant C(A) in (1.23) and C1.

Proof. Lemma 6.4 (estimate of error equation) gives

Lǫ
h

[
uG − uǫh − C| lnh| bh

]
(xi) ≤ C

(
ǫα + hα +

h2

ǫ2
| lnh|

)
+ Si.

Invoking Theorem 5.1 (discrete ABP estimate), along with (6.11) and β ≤ α, we
get

sup
Ω

(
uG − uǫh − C| lnh| bh

)− ≤ C

(
ǫα + hβ +

h2

ǫ2
| lnh|

)
.

Since |bh(x)| ≤ ǫ2, we obtain

sup
Ω

(
uG − uǫh

)− ≤ C

(
ǫα + hβ +

h2

ǫ2
| lnh|+ ǫ2| lnh|

)
,

together with a similar bound for (uG − uǫh)
+. Since ǫ, α ≤ 1, we get

‖ uG − uǫh ‖L∞(Ω) ≤ C

(
ǫα + hβ +

h2

ǫ2
| lnh|

)
,

and combine it with (6.4) to arrive at

‖ u− uǫh ‖L∞(Ω) ≤ ‖ u− uG ‖L∞(Ω) + ‖ uG − uǫh ‖L∞(Ω) ≤ C

(
ǫα + hβ +

h2

ǫ2
| lnh|

)
.

We finally set ǫα = C h2

ǫ2 | lnh| with C > 0 arbitrary, that is ǫ = C1

(
h2| lnh|

)1/(2+α)
,

and use the assumption that β ≥ 2α/(2 + α) to infer the asserted estimate. �

We now examine the rate of convergence for a solution u ∈ C3,α(Ω). It is worth
stressing that for α = 1, we obtain an almost linear rate ‖ u−uǫh ‖L∞(Ω) ≤ Ch| lnh|.
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Corollary 6.8 (convergence rate for C3,α solutions). Let the two scales h and ǫ
satisfy ǫ = C2h

2/(3+α) for an arbitrary constant C2 > 0 and 0 < α ≤ 1. If the
solution u of (1.1) belongs to C3,α(Ω), the coefficient matrix A satisfies (1.23) for
2+2α
3+α ≤ β ≤ 1, and the mesh Th satisfies (3.5), then

‖ u− uǫh ‖L∞(Ω) ≤ Ch2(1+α)/(3+α)| lnh|
(
|u|C3,α(Ω) + |u|W 2

∞(Ω)

)
,

where the constant C is proportional to the constant C(σ,Ω, d, λ) in Theorem 5.1
(discrete ABP estimate), the constant C(A) in (1.23) and C2.

Proof. We start with the estimate in Lemma 6.4

∣∣Lǫ
h[uG − uǫh − C| lnh| bh](xi)

∣∣ ≤
{
CE1 + Si for xi ∈ Ωǫ,
CE2 + Si for xi ∈ ωǫ.

and carry out the proof in two steps, according to the distance of xi to ∂Ω.

1 (boundary behavior). Our first goal is to show that
(
uG − uǫh − C| lnh| bh

)−
(z) ≤ CE2ǫ+ Chβ for all nodes z ∈ ωǫ.

For each z ∈ ωǫ, let pz ∈ Vh be the barrier function in Lemma 6.6 with E = CE2:

Lǫ
hpz(xi) ≥ CE2 ∀xi ∈ Nh and pz(x) ≤ 0 on ∂Ω.

Set vh := uG − uǫh − C| ln h| bh − pz, and use that E2 ≥ E1 to deduce

Lǫ
hvh(xi) ≤ Si ∀xi ∈ Nh, and vh(x) ≥ 0 on ∂Ω .

Theorem 5.1 (discrete ABP estimate), coupled with (6.11), yields

−vh(z) ≤ sup
Ω
v−h ≤ C

(
∑

xi∈Nh

|S+
i |d|ωi|

)1/d

≤ Chβ .

Hence, we infer that

pz(z)− Chβ ≤ (vh + pz)(z) = uG(z)− uǫh(z)− C| lnh| bh(z),
and the assertion now follows from the estimate on pz(z) in Lemma 6.6.

2 (interior behavior). We consider the discrete domain Ωǫ,h = ∪{T ∈ Th :
T ∩Ωǫ 6= ∅} which is slightly larger than Ωǫ. We apply again Theorem 5.1 (discrete
ABP estimate) to uG − uǫh − C| lnh| bh + CE2ǫ + Chβ, which is nonnegative on
∂Ωǫ,h according to Step 1, to obtain

sup
Ω

(
uG − uǫh − C| lnh| bh

)− ≤ CE2ǫ+ CE1 + Chβ

where CE2ǫ + Chβ accounts for the estimate of the boundary values established
already in Step 1. Since |bh(x)| ≤ ǫ2, we infer that

sup
Ω

(
uG − uǫh

)− ≤ CE2ǫ + CE1 + Cǫ2| lnh|+ Chβ .

An estimate for sup
(
uG − uǫh

)+
can be proved in a similar fashion. This leads to

‖ uG − uǫh ‖L∞(Ω) ≤ C

(
ǫ1+α + ǫ2| lnh|+ hβ +

h2

ǫ2
| lnh|

)
.

Set ǫ1+α = Ch2/ǫ2 for C > 0 arbitrary and any α ≤ 1, that is ǫ = C2h
2/(3+α), and

recall that β ≥ (2 + 2α)/(3 + α) to deduce the asserted rate of convergence. �
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Remark 6.1 (linear rate is sharp). It is worth mentioning that the estimate of
Corollary 6.8 for α = β = 1 is quasi-optimal. To see this, we consider d = 1,
Ω = (−1, 1), the solution u(x) = x4 + x2 − 2 and f(x) = 2u′′(x) = 24x2 + 4; thus
A(x) = 2. Let Th be uniform and uG be the Galerkin projection of u. Then

Lǫ
huG(xi) =

(
−
〈
u′G, φ

′
i

〉
+
〈
IǫuG(xi), φi

〉)(∫

Ω

φi

)−1

=
1

2
fi + IǫuG(xi)

= fi +
1

2
(f(xi)− fi) + Iǫu(xi)−

1

2
f(xi) + IǫuG(xi)− Iǫu(xi).

Since u′′(x) = 12x2 + 2 is quadratic, a simple calculation based on Lemma 2.1
(approximation property of Iǫ) for α, k = 1 yields

Iǫu(xi)−
1

2
f(xi) ≥

{
2ǫ2 for xi ∈ Ωǫ,
0 for xi ∈ ωǫ.

Since uG is exactly the Lagrange interpolant Ihu for d = 1, we have that v := uG−u
vanishes at x = xi and v(x) ≥ (x− xi)(xi+1 − x) ≥ 0 for all x ∈ [xi, xi+1] because
u′′(x) ≥ 2 for x ∈ Ω. Using this expression for v we readily get

Iǫv(xi) ≥
{

h2

2ǫ2 for xi ∈ Ωǫ,
0 for xi ∈ ωǫ.

Moreover, using that f is quadratic and the symmetry of the integral below, we
note that

f(xi)− fi =

(∫

Ω

φi

)−1 ∫ h

−h

(
f(xi)− f(xi + s)

)
φi(s) ds

=

(∫

Ω

φ

)−1 ∫ h

−h

−1

2
δf(xi, s)φi(s) ds =

(∫

Ω

φ

)−1 ∫ h

−h

−24s2φi(s) ds;

hence |f(xi)− fi| ≤ Ch2. Therefore, for ǫ ≥ Ch we conclude that

Lǫ
h

[
uG − uǫh

]
(xi) ≥ 2ǫ2 +

h2

2ǫ2
− Ch2 ≥ 1

2

(
ǫ2 +

h2

ǫ2

)
=: E

because Lǫ
hu

ǫ
h(xi) = fi. For a > 0 to be chosen, let p(x) = min{0, aE(x2−(1−ǫ)2)}

and pG be its Galerkin projection. Since p(x) = 0 for 1− ǫ ≤ x ≤ 1, its interpolant
pG vanishes for all xi ∈ ωǫ. Moreover, Iǫ being exact for quadratics implies

Lǫ
hpG(xi) ≤

{
4aE(1 + h2

2ǫ2 ) for xi ∈ Ωǫ,
0 for xi ∈ ωǫ.

Take the constant a sufficiently small so that 4a(1 + h2

2ǫ2 ) ≤ 1 to get Lǫ
h

[
uG − uǫh −

pG
]
(xi) ≥ 0. Since uG − uǫh − pG = 0 on ∂Ω, applying Corollary 3.2 (discrete

maximum principle), we then infer that uG − uǫh − pG ≤ 0 in Ω, whence

sup
Ω

(
uǫh − uG

)− ≥ sup
Ω
p−G ≥ C

(
ǫ2 +

h2

ǫ2

)
≥ Ch,

for any choice of ǫ.
This example shows that, even for smooth u, A and f , we can not expect the

optimal rate of convergence to be better than order one.
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6.7. Convergence rates for piecewise C2,α-solutions. We have already men-
tioned in Section 1 that there are fundamental obstructions for the development of
a PDE theory for (1.1) with general discontinuous coefficients. In the absence of
general supporting theory, we dwell now on a practically significant case of discon-
tinuous coefficients A across a (d− 1)-dimensional manifold Σ; we refer to [27, 38]
for partial existence and uniqueness results of strong solutions. We assume that
the domain Ω splits into a finite union of disjoint Lipschitz subdomains Ωj

Ω = ∪J
j=1Ωj , Ωj ∩ Ωi = ∅ j 6= i,

and denote the discontinuity set by Σ

Σ := ∪J
j=1∂Ωj ∩Ω.

We further make the following assumptions: there exists 1/d ≤ α ≤ 1 such that

(6.16)



∑

ωi⊂Ωj

∫

ωi

∣∣A(x)− Ā(xi)
∣∣d dx




1/d

≤ C(A)hβ for all 1 ≤ j ≤ J

with 2α
2+α ≤ β ≤ α, and there exists a solution u ∈W 2

∞(Ω) of (1.1) satisfying

(6.17) u ∈ C2,α(Ωj) for all 1 ≤ j ≤ J.

We now exploit that operator consistency is measured in Ld(Ω) rather than L∞(Ω),
according to Theorem 5.1 (discrete ABP estimate), to explore the consequences of
(6.16)-(6.17). We do not require that Σ is aligned with the mesh Th.

Corollary 6.9 (convergence rate for piecewise C2,α-solutions). Let Th satisfy (3.5)
and let A and u satisfy (6.16) and (6.17) with 2α

2+α ≤ β ≤ α. If the two scales h

and ǫ satisfy ǫ = C3

(
h2| lnh|

)d/(1+2d)
with C3 > 0 arbitrary, then

‖ u− uǫh ‖L∞(Ω) ≤ C
(
h2| lnh|

) 1
1+2d

where the constant C is proportional to the constant C(σ,Ω, d, λ) in Theorem 5.1
(discrete ABP estimate), |u|W 2

∞Ω), |u|C2,α(Ωj)
for 1 ≤ j ≤ J , and the constant

C(A) in (6.16).

Proof. We divide the domain Ω into two subdomains Ω \ Σǫ and Σǫ, where

(6.18) Σǫ := {x ∈ Ω : dist (x,Σ) ≤ Qǫ}, ⇒ |Σǫ| ≤ Cǫ

because ∂Ωj is at least Lipschitz for all j. We study these sets separately. If
xi ∈ Ω \ Σǫ, then Lemma 6.4 (estimate of error equation) yields

Lǫ
h[uG − uǫh − C| lnh| bh](xi) ≤ Cα(u,A)

(
ǫα + hβ +

h2

ǫ2
| lnh|

)
≤ Cα(u,A)ǫ

α,

where we have used (6.16) and (6.17) in each Ωj as well as the relations
2α
2+α ≤ β ≤ α

and ǫ = C
(
h2| lnh|

) d
1+2d ≥ C

(
h2| lnh|

) 1
2+α to derive the last inequality.

Let now xi ∈ Σǫ. Lemma 6.3 (estimate of T1) gives T1 ≤ C| ln h|
(

h2

ǫ2 + Lǫ
hbh(xi)

)
.

Since u ∈ W 2
∞(Ω) and A is bounded, we get T3, T4 ≤ C. Moreover, a simple variant

of Lemma 2.1 (approximation property of Iǫ) implies
∣∣Iǫu(xi) −

(
Ā(xi) − λ

2 I
)
:

D2u(xi)
∣∣ ≤ C for xi ∈ Σǫ, whence T2 ≤ C. Altogether, we have

Lǫ
h[uG − uǫh − C| lnh| bh](xi) ≤ C for xi ∈ Σǫ
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Upon applying Theorem 5.1 (discrete ABP estimate) we obtain

sup
Ω

(
uG − uǫh − C| ln h| bh

)− ≤ C




∑

xi∈Ω\Σǫ

ǫαd|ωi|+
∑

xi∈Σǫ

|ωi|




1/d

.

Invoking (6.18) yields
∑

xi∈Σǫ
|ωi| ≤ C|Σǫ| ≤ Cǫ, whence

sup
Ω

(
uG − uǫh − C| ln h| bh

)− ≤ C
(
ǫαd + ǫ

)1/d ≤ Cǫ1/d

because αd ≥ 1. Since | lnh| |bh(x)| ≤ ǫ2| lnh| ≤ ǫ1/d, we deduce

sup
Ω

(
uG − uǫh

)− ≤ Cǫ1/d = C
(
h2| lnh|

)1/(1+2d)
,

which is the desired lower bound. We can finally obtain the upper bound in a
similar fashion, and complete the proof. �

7. Numerical experiments

In this section, we discuss the implementation of the two-scale method for d =
2 and present numerical experiments that explore convergence rates for smooth
solutions, discontinuous coefficients, and C2,α-solutions within and beyond theory.

7.1. Implementation. The change of variables y = ǫM(x)z transforms the inte-
gral operator (1.14), or its modification (2.4) near the boundary, into

Iǫv(x) =

∫

B1(0)

δv(x, ǫθM(x)z)

ǫ2θ2
ϕ(z) dz,

where B1(0) is the unit ball in R
d. We recall that, to preserve the essential prop-

erties of the scheme, a quadrature formula of the form

Qǫv(x) =
∑

k

wk
δv(x, ǫθM(x)qk)

ǫ2θ2
ϕ(qk)

must satisfy the three conditions in subsection 3.2. We thus use a quadrature
formula for the integral in B1(0) and d = 2 with the following weights {wk}6k=1 and
nodes {qk}6i=1 = {(ρk, θk)}6k=1 (in polar coordinates) [49]:

wk =
π

6
, ρk =

√
2

2
, θk =

πk

3
.

This formula is exact for cubic polynomials because it is exact for quadratics and
is also symmetric.

If uǫh =
∑

j Ujφj where φj is the hat function at node xj , then we have

Qǫu
ǫ
h(xi) =

∑

k,j

wkUj
δφj(xi, ǫθM(xi)qk)

ǫ2θ2
ϕ(qk) =

∑

j

MijUj

for all xi ∈ Nh, where

Mij =
∑

k

wk
δφj(xi, ǫθM(xi)qk)

ǫ2θ2
ϕ(qk)

We implement the two-scale method within the MATLAB package FELICITY
[50]. To evaluate φj

(
xi+ ǫθM(xi)qk

)
, we resort to the search routine in FELICITY

to find all the elements containing the quadrature points yk = xi + θǫM(xi)qk,
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namely for each node xi we find the basis functions φj which are non-zero at yk,
and evaluate them at yk.

Remark 7.1 (meshes). The domains are rectangles and the meshes are made of right
triangles obtained from cutting cartesian rectangles along their main diagonal.

7.2. Example 1: smooth solution. We consider the domain Ω = [0, 1]2, solution
u, and anisotropic matrix A with moderate aspect ratio of size 5 given by

u(x, y) =
y

2
sin(2πx) +

y

5
sin(5πy), A(x, y) =

(
3 −2
−2 3

)
.(7.1)

We take ǫ = 1
2

√
h, as suggested by Corollary 6.8. Figure 7.2 displays a linear

asymptotic convergence rate. This validates Corollary 6.8 and also complements
Remark 6.1, thereby showing that the two-scale method cannot be better than
first-order also for dimension d = 2. In addition, we stress that the PDE (1.1a) can
be written in divergence form as div (A∇u) = f , but the use of monotone FEMs
with weakly acute meshes is prohibitive with aspect ratio 5.

h

10 -2 10 -1

E
rr

or

10 -2

10 -1

‖u− uh‖L∞(Ω)

Ch1

Figure 7.1. Example 1: smooth solution u and anisotropicA with
aspect ratio 5. The choice ǫ = 1

2

√
h yields a linear asymptotic rate

which is consistent with both Corollary 6.8 and Remark 6.1.

We point out that on average, it takes about 30% of the computing time to
assemble the matrix, mostly due to the FELICITY search routine to evaluate second
differences. It takes about 50% of the computing time to solve the (non-symmetric)
linear systems using MATLAB backslash. However, solving the system requires
significantly more time than assembling the matrix for finer meshes. The finest
meshsize is h = 2−9, which corresponds to about 2.6× 105 degrees of freedom and
a relative pointwise error of about 0.3%.

7.3. Example 2: discontinuous coefficients. Let Ω = [−1, 1]2, the coefficient
matrix A exhibit the checkerboard structure

(7.2) A(x, y) =
(
2 1
1 2

)
if xy > 0, A(x, y) =

(
2 −1
−1 2

)
if xy ≤ 0,

with discontinuities across the axes, and the exact solution be given by

u(x, y) = φ(x)φ(y) where φ(x) = (xe1−|x| − x).(7.3)

A simple calculation yields

∇φ(x) =
(
1− |x|

)
e1−|x| − 1 and D2φ(x) =

(
x− 2 sgn(x)

)
e1−|x|.
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Since u ∈ W 3
∞(Ω \ Σ), A ∈ W 1

∞(Ω \ Σ) with discontinuity set Σ being the two
coordinate axes, we can take α = 1, choose ǫ = 0.5h4/5 and expect a convergence
rate 2/5 according to Corollary 6.9. Figure 7.2 (a) displays an experimental order
of convergence approximately 0.74, which is much higher than predicted. The finest

h

10 -2 10 -1

E
rr

or

10 -2
‖u− uh‖L∞(Ω)

Ch0.74

h

10 -2 10 -1

E
rr

or

10 -3

10 -2

‖u− uh‖L∞(Ω)

Ch1

Figure 7.2. Example 2. The figure on the left shows that when ǫ =
1
2
h4/5, the convergence rate is 0.74, better than the rate 2/5 predicted

in Corollary 6.9. The figure on the right shows that when ǫ = h1/2,
the convergence rate is 1. This example shows that the discrete ABP
estimate may overestimate the L∞-error when D2u is discontinuous.

meshsize is h = 2−7, which corresponds to about 6.5× 104 degrees of freedom and
a relative pointwise accuracy of about 1.3%.

To explain this better convergence rate, we note that the consistency error

Eǫ
h(xi) := fi − Lǫ

hIhu(xi) = Lǫ
h[u

ǫ
h − Ihu](xi)

is concentrated along the x and y-axis, where Ihu is the piecewise linear interpolant
of u on mesh Th. We have found computationally that the error eǫh := uǫh − Ihu
changes rapidly (of order O(1)) in the direction perpendicular to Σ and smoothly
(of order O(h2)) along Σ. In fact, if node xi belongs to the y-axis, we observe

(7.4)

∣∣δeǫh(xi, hv1)
∣∣

h2
= O(1),

∣∣δeǫh(xi, hv2)
∣∣

h2
= O(h2).

where v1 = (1, 0) and v2 = (0, 1). We see a similar behavior with v1 and v2
exchanged if xi belongs to the x-axis. We believe that the discrete ABP estimate
of Theorem 5.1 overestimates the pointwise error in this case.

In order to give a plausible explanation, we start with Proposition 5.1 (discrete
Alexandroff estimate) applied to eǫh

sup
Ω

(eǫh)
− ≤ C




∑

xi∈C
−

h
(eǫ

h
)

|∇eǫh(xi)|




1/2

.(7.5)

Applying the definition of sub-differential, we deduce ∇eǫh(xi) ⊂ R(xi) where

R(xi) = {w ∈ R
d, ± w · hv1 ≤ eǫh(xi ± hv1)− eǫh(xi)

and ± w · hv2 ≤ eǫh(xi ± hv2)− eǫh(xi)}
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It is easy to check that |R(xi)| =
∣∣δeǫh(xi,hv1)

∣∣ ∣∣δeǫh(xi,hv2)
∣∣

h2 which yields

|∇eǫh(xi)| ≤
∣∣δeǫh(xi, hv1)

∣∣ ∣∣δeǫh(xi, hv2)
∣∣

h2
.

Hence, since |ωi| ≈ h2 for d = 2, (7.5) yields

sup
Ω

(eǫh)
− ≤ C




∑

xi∈C
−

h
(eǫ

h
)

(
δeǫh(xi, hv1)

h2
+
δeǫh(xi, hv2)

h2

)2

|ωi|




1/2

,

because δeǫh(xi, hvj) ≥ 0 for xi ∈ C
−
h (e

ǫ
h) and j = 1, 2. We deal with meshes Th for

which the discrete Laplacian satisfies ∆hvh(xi) = δvh(xi,hv1)
h2 + δvh(xi,hv2)

h2 for any
piecewise linear function vh; see Remark 7.1. Consequently,

sup
Ω

(eǫh)
− ≤ C




∑

xi∈C
−

h
(eǫ

h
)

(∆he
ǫ
h(xi))

2|ωi|




1/2

≤ C




∑

xi∈C
−

h
(eǫ

h
)

(Lǫ
he

ǫ
h(xi))

2|ωi|




1/2

.

Applying (7.4) gives

∆he
ǫ
h(xi) =

δeǫh(xi, hv1)

h2
+
δeǫh(xi, hv2)

h2
= O(1)

and
δeǫh(xi, hv1)

h2
δeǫh(xi, hv2)

h2
= O(h2)

for nodes xi ∈ Σǫ ∩ C
−
h (e

ǫ
h), where Σǫ is defined in (6.18). Therefore, setting

C
−
h := C

−
h (e

ǫ
h) and accounting for the correct contribution of Σǫ, (7.5) implies

∣∣∣ sup
Ω

(eǫh)
−
∣∣∣
2

≤ C
∑

xi∈C
−

h
\Σǫ

(Lǫ
he

ǫ
h(xi))

2|ωi|

+ C
∑

xi∈C
−

h
∩Σǫ

δeǫh(xi, hv1)

h2
δeǫh(xi, hv2)

h2
|ωi| ≤ C

((
ǫ2 +

h2

ǫ2

)2
+ h2ǫ

)
,

while the discrete ABP estimate overestimates supΩ (eǫh)
−. If we now choose ǫ =√

h, then the rate of convergence is order h which is consistent with Figure 7.2 (b)
The finest meshsize in such figure is h = 2−8, which leads to about 2.6×105 degrees
of freedom and a pointwise relative error of about 0.4%.

7.4. Example 3: C2,α-solution and C0,α-coefficients. We finally consider Ω =
(−1, 1)2 and the following solution u and coefficient matrix A

u(x) = |x|2+α and A(x) = I + |x|α x

|x| ⊗
x

|x|(7.6)

with 0 < α < 1; we choose α = 0.4. Since u ∈ C2,α(Ω) and A ∈ C0,α(Ω),
we take ǫ = 1.5h2/(2+α), and expect a convergence rate O(h2α/(2+α)) = O(h1/3)
according to Corollary 6.7. This prediction is verified in Figure 7.3 (a) which shows
an approximate rate 1/3. The finest meshsize is h = 2−8, which gives rise to about
2.6× 105 degrees of freedom and a relative pointwise accuracy of about 2.3%.

The error uǫh−uG in the L∞-norm is bounded by the operator consistency error

Eǫ
h(xi) := fi − Lǫ

huG(xi) = Lǫ
h[u

ǫ
h − uG](xi)
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Figure 7.3. Example 3: C2,α-solution and C0,α-coefficients. (a) If

ǫ = 1.5h2/(2+α), then the convergence rate is 1/3, which is consistent

with Corollary 6.7. (b) If ǫ = 1.5h2/(3+α), then the convergence rate is
about 0.86, which is better but is not supported by C2,α-regularity of u.

in the discrete Ld-norm, according to Theorem 5.1 (discrete ABP estimate). Since
u ∈ H3+α(Ω) and d = 2, we conjecture that the quantity

(
∑

xi∈Nh

∣∣Eǫ
h(xi)

∣∣2|ωi|
)1/2

= O

(
ǫ1+α +

h2

ǫ2

)
,

dictates the pointwise convergence rate of u−uǫh. Assuming this behavior, choosing

ǫ = O(h2/(3+α)), and applying Theorem 5.1, we deduce

‖ u− uǫh ‖L∞(Ω) ≤ O(h
2+2α
3+α ) ≈ O(h0.82)

which is faster than the rate from Corollary 6.7. In Figure 7.3 (b), we observe that
the computational order of convergence is about 0.86, which confirms this heuristic
explanation; we are currently exploring this issue [44]. The finest meshsize in Figure
7.3 (b) is h = 2−8, which leads to about 2.6×105 degrees of freedom and a pointwise
relative accuracy of about 0.23%.

Acknowledgements: We would like to thank L. Caffarelli for bringing up the
integro-differential approach of [11] to us, as well as C. Gutierrez for mentioning
the discrete ABP estimate of [34]. We would also like to thank Tengfei Su for
implementing the two-scale method and the referees for their incisive comments
and suggestions which led to a much better exposition of techniques and results.
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