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Abstract We prove exponential rates of convergence of ip-version finite element
methods on geometric meshes consisting of hexahedral elements for linear, second-
order elliptic boundary value problems in axiparallel polyhedral domains. We extend
and generalize our earlier work for homogeneous Dirichlet boundary conditions and
uniform isotropic polynomial degrees to mixed Dirichlet-Neumann boundary condi-
tions and to anisotropic, which increase linearly over mesh layers away from edges
and vertices. In particular, we construct H '-conforming quasi-interpolation operators
with N degrees of freedom and prove exponential consistency bounds exp(—b~/N)
for piecewise analytic functions with singularities at edges, vertices and interfaces of
boundary conditions, based on countably normed classes of weighted Sobolev spaces
with non-homogeneous weights in the vicinity of Neumann edges.
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1 Introduction

We prove exponential convergence estimates for conforming A p-version finite element
methods (FEMs) for the following elliptic boundary value problem in an open and
bounded polyhedron € C R? with mixed boundary conditions:

V- (AVu=f inQ c R, (1.1)
o) =0 onl', Co, teJp, (1.2)
y1(u) =0 onl, CIQ, 1€ Jn. (1.3)

The Lipschitz boundary I' = 92 is assumed to consist of a finite union of plane,
axiparallel faces T", indexed by ¢t € J. The faces I', are bounded, plane polygons
whose sides form the (open) edges of 2. The set {T', },¢ 7 is partitioned into a subset of
Dirichlet faces {I';},¢ 7,, and a subset of Neumann faces {I';},¢ 7, , with corresponding

(disjoint) index sets Jp and Jy, respectively (i.e., J = Jp U Jn). The diffusion
coefficient matrix A is assumed to be constant and symmetric positive definite. The
function f is a given forcing term, and the operators yp and y; denote the trace and
(co)normal derivative operators, respectively.

Upon introducing the Sobolev space V := {v € H' Q) : vlr, =0, t € Jp}, the
weak formulation of problem (1.1)—(1.3) is to find u € V such that

a(u, v) ::/ AVu -Vvdx =/ fvdx VveV, (1.4)
Q Q

where we understand the integral on the right-hand side in (1.4) as the duality pairing
in V* x V, with V* denoting the dual space of V. For every f € V*, problem (1.4)
admits a weak solution u € V. The solution is unique if Jp # ¢, and unique in the
factor space V/Rif Jp = ¥ (in which case we also require the compatibility condition
Jo fdx =0).

The hp-version of the finite element method for elliptic problems was proposed by 1.
Babuska, B. Q. Guo and coworkers, inspired by earlier exponential convergence results
in free-knot, variable-order spline interpolation (see [6,18]). One of its key features is
that it achieves exponential convergence rates for solutions with singularities in terms
of the total number of freedom N.

Specifically, for elliptic problems in polygonal domains 2 with piecewise ana-
Iytic data, Babuska and Guo proved exponential convergence bounds of the form
C exp(—bw ); see [1,2,13,14] and the references therein. Key ingredients in their
proof were geometric mesh refinement toward the singular set S of the solution
(being the finite set of vertices of €2) and nonuniform elemental polynomial degrees
which increase s-linearly with the elements’ distance from S. In addition to these
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approximation results, their papers also provide elliptic regularity results in countably
normed weighted spaces of the solutions. This constituted an essential advance with
respect to the earlier works in [6,11, 18], where only particular singular solutions had
been considered. Steps to extend the analytic regularity and the two-dimensional /p-
convergence analysis to three dimensions were undertaken in [3,12,15,16] and the
references therein. In the recent work [5], M. Costabel, M. Dauge and S. Nicaise
established a new analytic regularity shift in scales of anisotropically and non-
homogeneously weighted Sobolev spaces for variational solutions for a class of
second-order, linear elliptic boundary value problems with constant coefficients. Their
analytic regularity result will be the basis of our exponential convergence proof. We
also mention the work [8,9], where exponentially accurate non-conforming /- p spec-
tral element methods to solve elliptic problems in three dimensions were proposed
and analyzed.

The present paper builds on and extends our work [20] on exponential convergence
for hp-FEMs in polyhedral domains. It also builds on our earlier work [23-25] on
hp-version discontinuous Galerkin (DG) methods for second-order elliptic boundary
value problems in polyhedra. More precisely, in [20], we considered the boundary
value problem (1.1) with the homogeneous Dirichlet boundary conditions in (1.2)
imposed on the entire boundary 9<2. For axiparallel configurations, we then used the
non-conforming hp-version interpolation operators constructed in [24] in conjunction
with suitable polynomial jump liftings to prove exponential rates of convergence in
terms of the number of degrees of freedom for conforming ~p-FEM discretizations
on appropriate combinations of geometrically and anisotropically refined meshes and
for the uniform and isotropic polynomial degree p > 1.

The principal contribution of the present work is the construction of exponen-
tially convergent conforming hp-FE quasi-interpolation operators on axiparallel,
o-geometric mesh patches with variable and anisotropic polynomial degree distri-
butions for the mixed second-order problem (1.1)—(1.3) (and generalizations thereof).
Our main result shows the H '-norm convergence rate estimate C exp(—b~/N), where
b, C > 0 are independent of N. While asymptotically of the same form as the rate
in [20], the univariate s p-approximation results [6,11,18] suggest that the use of vari-
able and, in particular, of anisotropic polynomial degree distributions will significantly
reduce the number of degrees of freedom required to reach a prescribed accuracy of
approximation. This is further corroborated in preliminary numerical results in three
space dimensions.

Loosely speaking, our construction and convergence proof combine the arguments
in [25] to define non-conforming base projectors with exponential convergence in
broken norms with the constructions of polynomially stable polynomial trace jump
liftings in [20]. However, the lower regularity of the solutions and the more general
hp-finite element spaces under consideration entail several significantly new technical
difficulties which are addressed in this work.

First, the mixed boundary conditions in (1.2), (1.3) are considerably more involved
than the pure Dirichlet conditions analyzed in [20]. Indeed, with the regularity theory
from [5], solutions of problem (1.1)—(1.3) with piecewise analytic data belong to
countably normed Sobolev spaces N ,’Bn (2) with non-homogeneous weights. In [25],
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the non-homogeneous structure of the weights was dealt with by using L>-projections,
by splitting the errors in edge-perpendicular and edge-parallel contributions and by
bounding these two contributions separately. While this construction ensured stability
with respect to element anisotropy (up to algebraic losses in the polynomial degrees) in
the context of discontinuous Galerkin discretizations, it is not sufficient for conforming
hp-FEMs. Indeed, finding stable liftings of the polynomial jumps introduced by the L>-
projections in edge-parallel direction over edge-perpendicular faces between highly
anisotropic elements along the same edge seems to be an open problem.

The first principal contribution of the paper thus is to overcome this difficulty
by a novel construction of non-conforming hp-version base projectors. Our con-
struction employs L>-projections in edge-perpendicular directions and nodally exact
H '-projections in edge-parallel direction along anisotropic elements appearing in edge
and in corner—edge neighborhoods. The nodal exactness property in parallel direction
then removes the need for liftings over the critical faces mentioned above, while still
allowing to split the errors in edge-perpendicular and edge-parallel contributions as
in [25]. The non-conforming hp-base projectors presented in the this paper are well
defined on H!(Q) (in contrast to those in [20]) and converge exponentially in bro-
ken norms. The proof follows along the lines of that in [25], with a few relevant
modifications. For the sake of completeness, we outline the proof in Appendix 8.

Second, we consider in this paper the s-linear polynomial degree distributions
introduced in [23], which increase linearly and anisotropically away from edges and
corners with a slope parameter s > 0. While such degree distributions can be relatively
easily accommodated by the discontinuous Galerkin approaches in [23-25], enforc-
ing conformity for variable polynomial degrees and irregular mesh refinement is not
straightforward. To do so, we introduce suitable zp-version elemental basis functions
with respect to nodal, edge, face and interior degrees of freedom in combination with
a minimum rule approach for edge and face polynomial degrees in the spirit of [7].
The second principal contribution of this paper then is the construction of conforming
approximations in the presence of s-linear polynomial degree distributions and irregu-
lar meshes. Starting from the /p-base projectors, we generalize the averaging strategy
in [28] to anisotropic elements, in order to assign unique nodal, edge and face values
while retaining exponential convergence estimates. This yields intermediate approx-
imations which are continuous across all regularly matching faces and which satisfy
the homogeneous Dirichlet boundary conditions. Finally, we introduce polynomial
edge and face jump liftings along the lines of our previous work [20] to remove dis-
continuities over all irregular faces. Our liftings admit bounds which are independent
of element aspect ratios, with algebraic growth in the elemental polynomial degree,
thereby preserving the exponential convergence estimates of the 2p-version base pro-
jectors. Here, we emphasize again that in our averaging and lifting approaches, the
partial conformity of the base projectors is essential in the handling of anisotropic
elements.

The present analysis is in particular applicable to the pure Dirichlet problem, i.e.,
when Jy = ¥, and extends to results in [20] to s-linear and anisotropic polynomial
degree distributions. However, the scope of the paper is beyond the elliptic model
problem (1.1)—(1.3): Our exponential convergence proofs apply directly to hp-FEMs
for more general and vector-valued second-order elliptic boundary value problems
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which admit analytic regularity shifts in the function classes of [5]. Moreover, we
also provide an exponential L>-norm consistency bound for L?-projections under the
weak N é (2)-regularity (see Theorem 4.3). This may be of independent interest for
approximations of the pressure in mixed #p-FEMs for the (Navier—)Stokes equations
in polyhedra as considered in [21,22,27].

The outline of the article is as follows: In Sect. 2, we recapitulate the countably
normed weighted spaces from [5]. In Sect. 3, we introduce the Ap-version finite element
methods and state our main result (Theorem 3.4), with an outline of its proof provided
in Sect. 3.4. The new base projectors with partial conformity are introduced in Sect. 4.
Details of their convergence properties can be found in Appendix 8. Finally, in Sects. 5
and 6, we complete the constructions of conforming approximations with the help of
averaging and lifting operators, respectively.

Our notation employed throughout the paper is kept consistent with [23-25]. We
shall use the notations “<” or “~" to denote an inequality or an equivalence containing
generic positive multiplicative constants which are independent of the discretization
and regularity parameters, as well as of the geometric refinement level, but which may
depend on the parameters ¢ and s.

2 Regularity

We review the countably normed classes of weighted spaces from [5].

2.1 Subdomains and Weights

We denote by C the finite set of corners ¢, and by & the finite set of (open) edges e
of 2. The singular set of €2 is then given by

S::CUE:(Uc)U(Ue)CF. @.1)

ceC ecf

Forc e C,e € £, and x € 2, we define the following distance functions:
re(x) =|x —cl, re(x) = ;Ig lx = yl,  pee(x) =re(x)/re(x). (2.2)

For each corner ¢ € C, we denote by & :={e € £ : ¢Ne # A} the set of all edges
of © which meet at ¢. Similarly, for any e € &, the set of corners of e is given by
Co:={ceC: cnNe#@}. Then, fore >0,c € C, e € &, respectively, e € &, we
define the neighborhoods

we ={x €Q 1 re(x) <& A pee(x) >¢ Veect},
wWe={x€Q : re(x) <e A re(x)>e YVeel,}, 2.3)
Wee ={x €Q 1 re(x) <& A pee(x) <€}
For Tl
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Without loss of generality as in [23], the domain €2 can be partitioned into four disjoint

subdomains, Q = Q¢ U Qg U Qeg U Qo, referred to as corner, edge, corner—edge
and interior neighborhoods of €2, respectively, where Q2o := Q\Qc U Q¢ U Qcge and

Qc = Uwc, Qe = U We, Qee = U U Wee - 2.4)

ceC ec& ceCec&,

We distinguish between Dirichlet and Neumann edges by setting
Ep={ec&:JeIpwithenT, #0}, Ev:=E\Ep. (2.5)

Edges in £p abut on at least one Dirichlet face I', for ¢t € Jp. Note that we possibly
have Ey = 0.

2.2 Weighted Sobolev Spaces

To each ¢ € C and e € £ we associate a corner and an edge exponent S, S, € R,
respectively. We collect these quantities in the weight exponent vector § = {B; :
ceClU{Be : e € &) € RICIHIEL Inequalities of the form B < 1 and expressions
like B £ s, where s € R, are to be understood componentwise.

We choose local coordinate systems in w, and w¢e, forc € Cande € &, such that the
edge e corresponds to the direction (0, 0, 1). Then, we indicate quantities transversal
to e by (-)*, and quantities parallel to e by (-)Il. In particular, if @ = (a1, @2, @3) €
Ng is a multi-index of order || = o) + ay + a3, then we write @ = (oL, alh
with et = (a1, ap) and al = a3, and denote the partial derivative operator D* by
D* = D"f D“’l‘“, where D"l‘l and D‘ﬁ‘“ signify derivatives in edge-perpendicular and
edge-parallel directions, respectively. We further denote by D the gradient operator
in edge-perpendicular direction, and set D = D\]I‘

The solution u of problem (1.1)—(1.3) belongs to scales of countably normed
weighted Sobolev spaces; cf. [5]. The present exponential convergence results will be
based on the weighted spaces N ]/; (£2) with anisotropic and non-homogeneous weight-
ing at all corners ¢ € C and edges e € &; they are an extremal case of the families of
spaces considered in [5]. For an order k > 0 and weight exponent 8, we introduce the
semi-norm |u| NA(®) by:

g = 3 {101 + 5 DR,

la|=k ceC
{Be+|at].0} 2
+y e - D%u|;2,) (2.6)
ecE

max{Be+lec|,0} max{Be+|et| .0}y 12
FY S [mteraol oul,, |
ceC ecENE
FoCT
LI o
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For m > kg, with
kg := — min{min B, min B}, 2.7
ceC ecf
we write N ;3” (2) for the space of functions u such that ||u|| Ny (@) < 09, with the norm
2 . 2 :
IIuIIN;;l(Q) =i |”|Nk(9)~ For subdomains ' €  we shall denote by | - INE(Q,)

and || - || Ng (@) the semi-norm (2.6) and norm as above with all domains of integration

replaced by their intersections. We note that M ;]” (R CN E‘ (2), where M /’3” () is the
weighted Sobolev space with homogeneous weights considered in [5,20] for the pure
Dirichlet problem.

2.3 Analytic Regularity

We adopt the analytic function classes of [5].

Definition 2.1 For a domain Q' C €, the class Bg () consists of all functions u
such that u € Nﬁ () form > kg, with kg as in (2.7), and such that there exists a

constant C,, > 0 with |”|N§(§2/) < Cblf“F(k + 1) forall k > kg.

The analytic regularity shifts of [5, Corollary 7.1] in (for Ep = &), [5, Theorem 7.3]
(for0 Cc Ep C £) and in [5, Theorem 7.4] (for £p = ) for variational solutions u of
problem (1.1)—(1.3) (with constant coefficients) can be summarized as follows.

Proposition 2.2 There are bounds bg,bc > 0 (depending on 2, the coefficient
matrix A and the set Ep) such that for weight exponent vectors b with

0<be <be, 0<b < bg, cel,ecé, (2.8)

such that for piecewise analytic f as specified in [5], the weak solution u € V
defined (1.4) of problem (1.1)—(1.3) belongs to B_1_p(S2).

Remark 2.3 As in [25, Remark 2.5], we assume that in (2.8) there holds
O<b. <1, 0<b, <, celC, ecé. 2.9)

Then, kg = k_1—p € (1,2) in (2.7). In addition, we shall assume that, for any
polyhedron €2 and right-hand side f in the class of problems considered here, there
exists some 6 € (0, 1) such that the weak solution u € V belongs to H'*%(Q). For
weight exponents b, € (1/2,1), b, € (0, 1), this follows from [5, Remark 6.2(ii)]
and [15, Theorem 3.5]. We also refer to the discussion in [25, Remark 2.5].

3 Finite Element Discretization and Exponential Convergence
3.1 Geometric Meshes
We review geometric mesh constructions from [23,24].

FoC'T
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3.1.1 Geometric Mesh Patches

We partition the domain €2 into a finite number ‘B3 of open, axiparallel and hexahedral
patches {Qy } _; Which constitute the patch mesh M©O. In the axiparallel setting,

each Oy € /\/lo is an affine orthogonal image Q, = Gy (Q) of the reference patch
Q = (=1, 1)3. We assume M to be regular i.e., the intersection Qp N Qp/ of any
two patches Qp, Op’ € MO p £ p’, is either empty, a vertex, an entire edge, or
an entire face of both patches. Without loss of generality we assume that (the closure
of) each patch intersects with at most one corner ¢ € C, and with either none, one or
several edges e € £ meeting in ¢. In addition, we shall always assume that boundary
faces on the patch Oy belong to exactly one boundary plane T',.

With each patch Q€ MO, we associate a geometric reference mesh patch M P
on Q We recall from [23, Section 3.3] that the geometric mesh patches are gener-
ated recursively by iterating four basic geometric refinement operations, the so-called
hp-extensions (Ex1)-(Ex4) on Q, resulting in four geometric mesh patch types
t € {c, e, ce, int}. That is, we take

M, € RP = (M5, MEe, ML, ME™ = (M5 Yeereeceiny- (31

Whenever Q) abuts at the singular set S, we assign to M p (asuitably rotated and ori-
ented version) of the geometrically refined reference mesh patches shown in Fig. 1 and
denoted by M€ (corner patch), M%¢ (edge patch), and M%¢ (corner—edge patch),
respectively. We implicitly allow for simultaneous geometric refinements toward sev-
eral edges in the corner—edge patch M’:€¢, which corresponds to an overlap of at most
three rotated versions of the basic corner—edge patch; see Fig. 3. The geometric refine-
ments in these reference patches are characterized by (i) a fixed parameter o € (0, 1)
defining the subdivision ratio of the geometric refinements and (ii) the index ¢ defin-
ing the number of refinements. For interior patches Qp € MO, which have empty
intersection with S, we assign to /\/lp a geometric reference mesh patch MZ int on Q,

which comprises only finitely many regular refinements and does not introduce irregu-
lar faces in Q In the refinement process, the reference mesh Me int is kept unchanged
and is independent of the refinement level £. As different interior patches can be
refined differently, without loss of generality the notation ./\/lf;im is to be understood
in a generic fashion.

7 T T

Fig. 1 Three geometric reference mesh patches on Q with o = 0.5: corner patch Mf,c (left), edge patch
/\75” (center), and corner—edge patch /\715’“ (right)

Fo C 'ﬂ
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The geometric reference mesh patch Mp e RP introduces_the corresponding
patch partition M, = Gy (./\/lp) ={K:K =Gy (K) K € ./\/lp }on Qy . Inter-
patch continuity of hp-approximations will be ensured by the following hypothesis;
cf. [20, Assumption 3.1]. Here and in the sequel, we denote by 11, (-) the d-dimensional
Lebesgue measure.

Assumption 3.1 For p # p', let O, Qp € M©O be two distinct patches with
Tppri= Qp N Qs # Pand either my(Tpp) > 0or ma(Typr) =0,m(Tpy) > 0.
Then the parametrizations induced by the patch maps on the patch interfaces 'y, are
assumed to coincide “from either side”: Gy o ( ! |r ) Gpro ( Gt |rpp, ) In
addition, the mesh patches My , My, are assumed to 001n01de onlyp.

3.1.2 Geometric Meshes

For fixed parameters o € (0, 1) and £ € N, a o-geometric mesh on €2 is now given by
the disjoint union

M= M, =UF_ M, (32)

If we denote by K = (—1,1)% the reference cube, then each K € M is the image
of K under an element mapping P : :K —> K, given as the composition of the corre-
sponding patch map G with an anisotropic dilation—translation. To achieve a proper
geometric refinement toward corners and edges of 2 without violating Assumption 3.1,
the geometric refinements M, in the patches O}, have to be suitably selected and ori-
ented. For a fixed subdivision ratio o € (0, 1), we call the sequence 91, = {./\/lf,}gZ]
of geometric meshes a o-geometric mesh family; see [23, Definition 3.4]. As before,
we shall refer to the index ¢ as refinement level.

Without loss of generality as in [24, Section 5.1.4], every element K € M can be
assumed to be a Cartesian product of the form

K=K"x Kl =0,h)? x 0, 1)), (3.3)

with 7y < hg( We call K € MY isotropic if hy ~ hﬂ( >~ hg uniformly in ¢;
otherwise, the element K is anisotropic. Elements in corner and interior patches are
isotropic, whereas elements in edge and corner—edge patches may be anisotropic. We
also note that the elemental diameters hk and h% are related to the relative distances
of element K to the edge e and corner ¢ located nearest to K ; cf. [24, Proposition 3.2].

3.1.3 Vertices, Edges and Faces

For an axiparallel hexahedral element K, we denote by AV (K), £(K) and F(K) the

sets of its elemental vertices, its elemental edges and its elemental faces, respectively.

If E € £&(K) and F € F(K), we write N (E) C N(K) and N (F) C N(K) for the

vertices of E and F, respectively, £(F) C F(K) for the four elemental edges of F
and F(E) C F(K) for the two elemental faces sharing E.

FoE'ﬂ
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Let M = M be a geometric mesh. The set of all vertex nodes of M is

NM) = U N(K) . (3.4)
KeM

The subset Np (M) of all Dirichlet nodes consists of all N € AN/ (M) with N € T,
for some index ¢ € Jp. The node N is called regular if N € NV (K) for all K € M
with NN'K # (J; otherwise, it is called irregular.

The non-trivial two-dimensional intersection F' = F g of the elemental faces of
two distinct neighboring elements K, K’ € M is called an interior face of M. Note
that Fx g/ = Fk_ k. For our class of geometric meshes and possibly after reordering
the tuple (K, K'), we can always assume that F = Fk g’ is an elemental face of K
and a non-vanishing subset of an elemental face of K’. That is, we have

FeF(K) and F C F'for F' € F(K') withmy(FNF') > 0, (3.5)

where we recall that m; (-) denotes the two-dimensional Lebesgue measure. The face F
is called regular if F € F(K) and F € F(K'); otherwise, it is said to be irregular.
Furthermore, the non-empty and two-dimensional intersection F' = Fk r, of an ele-
mental face of K € M with a Dirichlet plane I, for « € Jp is a Dirichlet boundary
face of M. We always have Fx r, € F(K). Neumann boundary faces are defined cor-
respondingly. However, as Neumann boundary conditions are enforced naturally, they
will only play a minor role in our analysis. We write F; (M), Fp(M) and Fy (M)
for the sets of interior, Dirichlet and Neumann boundary faces of M, respectively, and
set Fip(M) := Ff(M) U Fp(M).

The non-trivial one-dimensional intersection E = Er s of two neighboring faces
F, F' € F(M)iscalled an edge of M. The edge E is called regularin Mif E € £(K)
whenever ENK # ; otherwise, we call it irregular. Note that an edge E can be located
in a Dirichlet or Neumann face I';, as well as on a Dirichlet or Neumann edge e €
Ep U En; in these cases, we call it a Dirichlet or Neumann boundary edge of M.
Moreover, the non-trivial one-dimensional intersection £ = Ep, of F € F(M)
with e € Ep U Ey is also called a Dirichlet or Neumann boundary edge. Edges of
this form are always elemental edges of an element K. The set of all edges is denoted
by £(M), and the sets of all Dirichlet and Neumann boundary edges by £p (M) and
EN (M), respectively.

For a piecewise smooth function v, we define the jump of v over Fg g € Fj(M),
respectively over Fx r, € Fp(M) by

[[v]]FK.K’ = v|g —v|g’ respectively by [vlFgp, = vlk- 3.6)

For F € F(K), we denote by hJ[g » the height of K in direction perpendicular to F.
We then introduce the trace mesh size function by

1. . |min {hg pohg ) F=Fkg € Fr(M),
h,L(yF, F =Fkr, € Fp(M),
Elol:;ﬂ
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with F € F(K’) as in (3.5). The bounded variation property in [23, Section 3.3.2]
implies hp ~ hJIE F hJI;, - for interior faces Fg g € Fi (M).

3.2 Finite Element Spaces

We next introduce discontinuous and continuous finite element spaces with anisotropic
and s-linear degree distributions.

3.2.1 Local Finite Element Spaces

Let M = M[ be a geometric mesh. With each K € M and in accordance with (3.3),
we assign an anzsotropzc polynomial degree vector py = (p+ e p ) with degrees
P ¥ > land p K > lin cdgc—pcrpcndlcular and edge-parallel directions, respectively.

We may and will always assume that p ¥ = p K, cf. [24, Section 3]. For K € M, the
elemental tensor-product polynomial space is

Qp (K) :={v e LK) : vk oDk € Qp, (K) ), (3.8)

where Ok : K — K is the element mappmg and Qp, (K ) the anisotropic tensor-
product polynomial space on K=13with] = (—1,1):

Qp (K):=Q,. (P, () =P, (H®P, DOF, D). (9

with [P, (1) denoting the univariate polynomials of degree less than or equal to p on

an interval /. The polynomial degree vector p g is called isotropic if pk = pll‘< = pk.

In this case, we write Q,, (K) in place of Qp, (K).

The elemental polynomial degree vectors py are combined into the polynomial
degree distribution p ={pg: K e M}on M. Weset |p| :=maxger |Pgl, with
|px| = max{px % p } We then introduce the generic discontinuous space

VoM, p)i={v e LX) : vk € Qp(K), Ke M) (310)

The hp-extensions (Exl):(Ex4) introduced in [23] provide s-linear panomial
degree distributions p,(M&5*) on the geometric reference mesh patches M.t for
t € {c, e, ce, int}, which increase s-linearly and possibly anisotropically away from
singularities for a slope parameter s > 0; see [23, Section 3] for more details. By con-
struction, the patchwise distributions p, (M%) induce a s-linear polynomial degree
distribution on a geometric mesh M, which we denote by p,(M?).

3.2.2 Face and Edge Polynomial Degrees

Let M = MY be a geometric mesh and p a polynomial degree distribution on M.

To define conforming spaces, we introduce edge and face polynomial degrees in con-
junction with a suitable minimum rule over neighboring edges and faces; cf. [7].

FoE'ﬂ
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Let K € M and let px = (pi, plll() denote the elemental degree vector. For
E € &(K)and F € F(K), wedenote by px g € Nand pg p = (p}(’F, p%(,F) e N?
the polynomial degrees induced by px on E and F in local coordinates, respectively.
In agreement with (3.5), we further introduce the set

Sk.pi=1{K €M :3IF € F(K') withma(FNF') > 0}. 3.11)

Notice that K € g, r and that the cardinality of ¢, r is bounded uniformly in £.
For F € F(K), the minimum face degree is

Px.pi= min pg peN? (3.12)

K'edk F

where theset F’ € F(K')isasin (3.11) and where the minimum in (3.12) is understood
componentwise and with consistent orientation of the elemental degrees with respect
to F.If E € £(K), we define the minimum edge degree as

D ‘= min p , 3.13
DK,E FG}_(E)pK,F,E (3.13)

where pg g g is the degree induced by pg r along E. This definition ensures that
the minimum edge degrees are always equal to or smaller than the corresponding
minimum face degrees.

Remark 3.2 In the axiparallel setting considered here and under Assumption 3.1, for
any distinct axiparallel elements K, K’ € M which share a common edge E or an
interior face F g, the traces of the elemental polynomial spaces on E and Fk g’ in
local coordinates induced by the corresponding elemental maps coincide. Therefore,
for E € £(K) and F € F(K), the edge and face polynomial spaces P5, , (E) and
Qpy p (F) are well defined.

3.2.3 Finite Element Spaces

On an axiparallel element K € M, we consider polynomial functions v|g € Qp, (K)
which can be expanded into basis functions as

vk = v[I0 4 |5y piface y)int (3.14)

FolCT
s
@ Springer |03



Found Comput Math (2018) 18:595-660 607

where, with the minimum degrees pg r in (3.12) and pg  in (3.13),

nod __ NsN
vlk D KPR

NeN(K)
pre-l '
Ura D DD DI (3.15)
EcE(K) =1
P F.ijx F,
face _ i, J(b i, ]
ik FE;K) 121: Z

with coefficients ¥, ci’ and c,i"’j . Here, the function ®¥ € Q;(K) denotes the

trilinear nodal shape function on K with the property that CIJN (N Y=68yn forN' e

N(K). For E € £(K), the edge shape functions {®%’ }lp'(lE on K are polynomials
of degree py  along the edge E tensorized with linear blending functions in the two
directions perpendicular to E. They vanish at the end points N € N (E), on the other
elemental edges E’ # E, as well as on faces F € F(K) with F ¢ F(E). Restricted
to E, they span the space P5,. . (E)N H(} (E). Similarly, for F € F(K), the face shape

PK.E

functions {CD?Z’] }i,j are anisotropic polynomials of vector degree p r on the face F,
tensorized with linear blending functions in the direction perpendicular to F. They
vanish at the nodes N € N/ (F),ontheedges E € £(F) and on the remaining elemental
faces F’ # F. Restricted to F, they span the space Qpy (F) N H& (F). Finally, the
interior part v|lnt in (3.14) is a polynomial bubble function in Qp, (K) N HO1 (K); as
it will be left unchanged in the subsequent analysis, we will not further specify it. For
empty ranges of the indices in (3.15), the corresponding sums are understood as zero.
We refer the reader to [7, Section 2.3] for an explicit construction of shape functions
asin (3.14), (3.15). Shape functions are pushed forward from the reference element K
to K with the element map Pk .

For K € M, we collect the face and edge degrees in (3.12), (3.13) in the vector pg,
and define the elemental polynomial space

Spy (K) :={vlk € Qp, (K) : vk is of the form (3.14), (3.15) }. (3.16)
Thus, a polynomial v € S5, (K) satisfies

v|E EP?K.E

(E), E€&(K) and vlr € Qp, (F), F € F(K). (3.17)
We then introduce the minimum rule hp-finite element spaces

VoM, p) = {veLz(Q) vk € Sp, (K), KeM}, (3.18)
VIM, p):={veV :v|g €Sp(K), K e M}; (3.19)

cf. [7]. By construction, VO(M, p) S VOM, p).
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3.3 Conforming hp-FEM and Exponential Convergence

For parameters o € (0,1) and s > 0, let 9, = {/\/lf,}gzl be a o-geometric mesh
family on  and {p,(M?)}¢>1 the corresponding s-linear polynomial degree distri-
butions. We consider the sequence of conforming s p-version finite element spaces

Vil = vIiME, pa M), e>1, (3.20)

and introduce its non-conforming counterparts by setting

VD= VoML, poMY)), Vit =V ML, paMY)), =1 (3:21)

Remark 3.3 The fact that the conforming spaces Vfgl define proper linear spaces will
follow from our construction of conforming approximations in Sects. 5 and 6 ahead.
In the pure Neumann case (where Jp = ), we note that the constant function belongs
to V(fﬁl , which will lead to well-defined factor spaces Vﬁ’ﬁl /R.

The hp-version Galerkin discretization of the variational formulation (1.4) reads
as usual: Find u’ € V(fsl such that

a(®,v) = / fvdx  Yve V!, (3.22)
Q

where we implicitly use the corresponding factor spaces V(fjsl /R in the pure Neumann
case. Forevery ¢ > 1, the discrete variational problem (3.22) admits a unique solution
ut e stl which is quasi-optimal: There exists a constant C > 0 (only depending

on £2, the coefficient matrix A and the set £p) such that

lu = u @) < € inf fu—vlyig - (3.23)

veEVss

The main result of this paper is the H'-norm exponential convergence of hp-FE
approximations (3.22) for problem (1.1)—(1.3) with weak solutions u € B_j_3(S2).
This follows from the quasi-optimality (3.23) and the following approximation prop-
erty of the hp-version finite element spaces V(fgl

Theorem 3.4 Let b be a weight exponent vector satisfying (2.9). For parameters
o € (0,1), s > 0, consider the sequence V(fﬁl of H'-conforming hp-version finite
element spaces in (3.20). Then there exist quasi-interpolants nﬁ;ﬁ V- V(fsl such
that for functions u € V withu € B_1_p(2) N H'* () for some 6 € (0, 1) there
holds

lu— TS Lull gy < Cexp(—=be) ,  £>2, (3.24)

with constants b, C > 0 independent of £, but depending on the parameters o, s,
the macro-mesh MO with its associated patch maps, the minimum weight exponent
FolCT
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in (2.9), the exponent 0, and on u through the analytic regularity constant C, in
Definition 2.1.

In particular, if the variational solution u € V of problem (1.1)—(1.3) belongs to
B_1_p(2) N H(Q) for some 6 € (0, 1), cf Sect. 2.3, then the conforming finite

element approximations u® € V(fsl in (3.22) converge exponentially:
e — ull 1) < Cexp (—bf/ﬁ) : (3.25)

where the constants b, C > 0 are independent of N = dim(V(f,’s1 ), the number of
degrees of freedom of the hp-FE discretization.

Remark 3.5 The quasi-interpolation operators Hf,i- in (3.24) constructed ahead are
well defined on the space V C H L(Q). This is in contrast to the interpolants used
in [20] for homogeneous Dirichlet boundary conditions. They require H>-regularity in
each coordinate direction in the interior of €2, and are set to zero on elements abutting
at corners and edges of .

Remark 3.6 The global hp-version qua31 interpolants I1 U 5 in (3.24) are assembled
from hp-patch quasi-interpolants Hg, s P We write formally

B,
Moe=) _ Mos’, (3.26)
with restrictions to patches p € [1, ..., 3 ] implied in I"If;L and where inter-patch

continuity follows from Assumptlon 3.1. The hp- patch quasi-interpolants l'I(,’ L-’p

in (3.26), in turn, are obtained from four families {1'[0 s }e>1 of hp-reference patch
quasi-interpolants on the geometric reference mesh patches M ,t €{c, e, ce,int},
which are transported to the patches O, C €2 via the patch maps Gp . While no liftings
are necessary for interior patches (i.e., for t = int), for patches of type t € {c, e, ce},
our construction yields jump liftings with stability bounds in the H'! (Qyp )-norm which
grow algebraically in | p|.

Furthermore, the exponential consistency in H! (Q) of Hf;ﬁt on the reference
patch O can be readily verified for solutions u € V of (1.1)-(1.3) whose pullbacks
from the mesh patch Qy, to Q satisfy the analytic patch regularity

Up = ulg, oGy € Bt(é), 1<p <P, tefce,ce,int}, (3.27)

where By (é) is an analytic regularity reference class on é with weighting toward
corners or edges of Q depending on the refinementtype t € {c, e, ce, int}; see also [20,
Section 4.4] for analytic reference classes A¢ (O) in the pure Dirichlet case. For t €
{c, ce}, we additionally require in (3.27) that &, € H'*?(Q); cf. Remark 2.3. All
exponential convergence rate estimates in the present paper apply verbatim to any
solution u € H'(Q) which, in local patch coordinates, exhibit the above analytic
patch regularity (3.27).

FoE'ﬂ
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Remark 3.7 The results of Theorem 3.4 remain valid for
VIME, p)i={veV i vk eQupK), Ke ML), =1,  (3.28)

with uniform, isotropic polynomial degree p, > 1. For these spaces, the minimum
rules in Sect. 3.2.2 are trivially satisfied. The exponential convergence bounds (3.24)
and (3.25) follow in this case as well, provided that p, = max{1, |s¢]}, albeit with a
generally smaller constant b > 0 (depending on s).

Remark 3.8 The bounds (3.24) and (3.25) hold true in the pure Neumann case. This
follows readily from Remark 3.3 and since Hf;:L reproduces constant functions.

Remark 3.9 The exponential convergence results in this paper apply verbatim to
conforming hp-FEMs for second-order and possibly vector-valued elliptic problems
which allow for analytic regularity shifts in the function classes in Definition 2.1.
In particular, they are valid for stress—strain formulations of the equations of linear
elasticity (with constant material parameters); see [5, Section 7].

3.4 Outline of the Proof

The proof of Theorem 3.4 follows along the general lines of [20, Section 3.4], but is
significantly more involved due to the appearance of the non-homogeneously weighted
Sobolev spaces and the anisotropic and variable polynomial degree distributions. In
this section, we outline the key steps. From now on we will frequently use the short-
hand notation “S,,” for inequalities which hold up to algebraic losses in | p|:

x Spy ¢ x S |pl*y forsomea eN. (3.29)

~

3.4.1 Base Projectors with Partial Conformity

We first introduce (non-conforming) base projectors nﬁg 5 with partial conformity and
exponential convergence estimates in broken norms.
To discuss the partial conformity, let M = MY be a geometric mesh. For a set

F' C Frp(MY) of faces, we define

jmpeful ==Y bt Il s gy (3.30)
FeF'

Then, to avoid the need for jump liftings over edge-perpendicular faces between highly

anisotropic elements, we construct base projectors 7/ . which are conforming across

certain sets F fD (M) C Fip(M) of edge-perpendicular faces, and generally non-

conforming edge-parallel faces F € F 1” pM) == Fip(M\F fD (M), which can be
characterized by the property that

FCF eF(K): hp~hg > hy uniformly in £. (3.31)
FolCTM
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If we write K as in (3.3), then (possibly after mapping) a face F satisfying (3.31) can
be assumed to be of the form

F = (0, k%) x (0, ) uniformly in ¢ . (3.32)

Note that faces with (3.31), (3.32) appear (i) between isotropic elements and (ii) in
edge-parallel direction between anisotropic elements in edge or corner—edge patches.
To state exponential convergence estimates in broken norms, we set

Nl oy = D Mulfag (3.33)
KeM'

and introduce the broken H!-norms

Yholul? = Y NP, Yhlul?:= > Npul, (3.34)
KeM' KeM’

for any set M’ C M of axiparallel elements, with elemental norms defined by

Nglul® := (hg) 2 ull32 4, + VU3,

L% (K) (K)’

(3.35)
N[l = () 2l 3o ) + IV 0324

Evidently, we have
NP S Ngtwl®, K eM, (3.36)

whereas N ,J(-[u] ~ N}l( [u] for isotropic elements K.

Proposition 3.10 For all parameters o € (0, 1), s > O there are tensor projectors

L,
wlo=nbtteril H (@ - V., (3.37)
and sets TIJ‘D (./\/lf,) C f[D(Mﬁ) of edge-perpendicular faces such that: (i) 71555 is
conforming over faces F € fID(Mf;); (ii) 7'[5’5 is generally non-conforming over
faces F € F) (ML) := Fip(MINFi5, (ML); (iii) the faces F € F) (ML)
satisfy (3.31), (3.32).

Moreover, for functions u withu € B_1_p(2) N H*(Q) for some 6 € (0, 1) as

in Theorem 3.4 and for the error 775 5 = U — nf 4l, we have the H'-norm bound

Ty 15,01 < Cexp(=2b0), (3.38)
as well as the jump bound
imp 1 e[, ]? < Cexp(=2b0), (3.39)
with constants b, C > 0 independent of £ > 2, but depending o and s.

FoC'T
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We will show the estimate (3.38) for a more general class of tensor projectors
on H'(Q) in Sect. 4, see Theorem 4.3, with most parts of the proof relegated to
Appendix 8. The jump bound in (3.39) will be established for the specifically chosen
projectors in (3.37) under smoothness requirements which are slightly stronger than
ue HY(Q);in particular, u € B__p(S2) is sufficient.

In the following, we shall also split the sets F, 1” D (Mg) into interior and Dirichlet
boundary faces, i.e., .7-"I”D(Mf;) = 5’-'1“ (/\/lf;) U Fg(/\/lﬁ).

3.4.2 Discontinuous hp-Version Base Spaces

To exploit the approximation properties for the non-conforming base projectors nﬁy SU

. .. .. . —¢.0 . .
in Proposition 3.10 for the minimum rule finite element spaces V ;' in (3.21), we intro-

duce discontinuous hp-base spaces as follows. For axiparallel K € ./\/lf; we introduce
the subsets F+(K) and F!I(K) of elemental faces of F(K), which are perpendicular
and parallel, respectively, to the nearest singular edge. For K € FI(K), we write

Pr.r=( pk, plll() to distinguish the perpendicular and parallel components p g .

Lemma 3.11 Let p (M) be a s-linear degree distribution on M’. For K € M¢,
let the face degrees p  be defined in (3.12). Then there exists u € (0, 1] depending
only on s > 0 such that
YK e FNK):  wpk <Pk <Pk WPk <Pkr S Pk (340)
VK € FI(K): upk < Pk.p < PE. WPk <Py <Pk (34D
Proof These properties follow from the construction of the s-linear degree distribu-

tions and their properties of bounded variation; cf. [23, Section 3.2 and Remark 3.9].
O

On K € MY, we then introduce the base degree vector py = (P, pv‘ll{) e N? as

5L - Cl 2 | S
= min min , . = min .
P = min (min{pg.p Pkpl)  Pxi= min Py (3.42)
Hence,
Qp, (K) SSp,(K), K eM. (3.43)

From Lemma 3.11, we further have ,upk < [5# and ,up‘,l( < [5‘}( As a consequence,

the base degree vectors { P g } k< p¢ give rise to a -linear polynomial degree distribu-
tion py (./\/lfz,), for a base slope parameter § with 0 < 5 < s and only depending on s.
Hence, the discontinuous hp-base spaces V(f’g thus constructed satisfy

0 — 740
5

vl v, ..

a,

(3.44)

We point out that for the uniform and isotropic spaces in (3.28), the construction of
discontinuous ip-base spaces is not necessary and can be omitted.
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3.4.3 Averaging Over Regular Vertices, Edges and Faces

We denote by Vﬁﬁ‘ the subspace of functions in Vﬁ’g which are conforming over
F IlD (M) and possibly non-conforming over F 1” D (Mf; ). We then adopt the approach
of [28] to assign to v € Vﬁ’g’l vertex, edge and face values which are obtained by
averaging over regularly matching vertices, edges and faces.

. . —,0,L —£,0, L
Theorem 3.12 There are linear averaging operators .Af; sV -V such

0,5 0,5
that the following holds: (i) Af;ﬁﬁ (v) is continuous over regular faces in the interior of
each mesh patch; (ii) Af;ﬁs(v) vanishes on all Dirichlet boundary faces; (iii) Af;’g(v)
is continuous across adjacent mesh patches, (iv) Ag’ s() =v forv e Vf”ﬁl s (v) for

all v € V2" and with jmp as in (3.30), there holds the stability bound
Vi [0 = A s )P +5mp sy e [AG s Sp Jmper o0 [0 (345)

Remark 3.13 The construction of Aﬁ’s(v) in Theorem 3.12 is carried out on each
element K € /\/lf; separately, by adding averaged values associated with elemental
vertices N € N(K), elemental edges E € £(K) and elemental faces F € F(K).
As a consequence, .Af;’  can (in principle) be obtained from corresponding reference
averaging operators on é as in Remark 3.6, with inter-patch continuity being ensured
by Assumption 3.1.

Theorem 3.12 will be established in Sect. 5.
3.4.4 Polynomial Jump Liftings

The averaged approximations Af,’s(v) in Theorem 3.12 are non-conforming over
irregular faces in the interior of mesh patches. Our proof then proceeds as in [20]
by introducing suitable polynomially stable jump liftings on Mf; which preserve sta-
bility bounds as in (3.45). This leads to the following result.

Theorem 3.14 Let Af;’ s be the averaging operator from Theorem 3.12. Then there
exist linear operators [,ﬁ’ 5 - range(Ag 5) — ijﬁl such that the following holds: (i)
£§’5(v) =vforv e stl ; (ii) we have the stability bound

Yo [0 = Loa@] Sp imp gy ppe 0, (3.46)

forall v € range(A ) C Vf;:(;’J-

Remark 3.15 Since functions in v € range(Af;’ﬁ) have non-vanishing jumps only
over irregular faces in the interior of mesh patches, upon mapping it is sufficient to
construct Ef;’  on the reference mesh patches ./\/lf;'t of type t € {c, e, ce, int}; inter-
patch continuity will again follow from Assumption 3.1; cf. [20]. This observation
EOE';W
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along with Remark 3.15 allows us to assemble Hﬁ’; from reference patch quasi-
interpolants as discussed in Remark 3.6.

The proof of Theorem 3.14 will be detailed in Sect. 6.

Remark 3.16 The bounds (3.45) and (3.46) involve relatively large algebraic losses
in the polynomial order |p|. As in [20], this is due to the use of polynomial trace
liftings which are linear in one or more directions. The algebraic losses can be possibly
improved by employing polynomial liftings of higher order, but are inconsequential
in establishing the exponential convergence rate (3.25).

3.4.5 Proof of Theorem 3.4

To prove (3.24), consider u € V. Let 715 U e Vf’g be the base projection of u defined

in (3.37) into the hp-base space Vf’go constructed in Sect. 3.4.2, for the base slope

parameter § > 0. By Proposition 3.10 and the inclusion (3.44), we have J'r( (U €

—t, 0
Vs .Inaddition, the broken H !_norms of the interpolation errors n g = u— ne g

converge exponentially by (3.38), albeit with respect to the base slope 5. We then
define

My o) = (Ly g0 Ay oml (u) € Vo, (3.47)
with the operators Ag_’ 5 and Eﬁ’ , from Theorems 3.12 and 3.14. Clearly, the quasi-
interpolation operator I'If;’, L is well defined. It is linear, reproduces constant functions

and can readily be seen to be idempotent on a subspace of Vaes,1
We now set v = ne SUs of = .Ae (), and V¢ = Lf,’ﬁ(vf). With the triangle
inequality and property (3 36), we obtain

lu = T Lul g S Thy U TR SV Rl L v C o

The bounds (3.45) and (3.46) imply
Vi [ =P+ Y 0" = 0P Sp jmpy e [T

Since v = Jff Ju and [[ullp =0 for F € ]-"ID(./\/lf,), we conclude that

2 : 2
flu — HasMHHl(Q) Sp T” [’75,31 +Jmp.7—‘1”D(M,€)[nfr,§] ~

Referring to (3.38), (3.39) in Proposition 3.10 yields (3.24) for u piecewise analytic
as in Theorem 3.4. The error bound (3.25) follows from (3.23) and (3.24) by noting
that N >~ £5 + O(¢*).

4 Non-conforming Base Projectors

We prove exponential convergence in broken norms for non-conforming and tensorized
hp-base projectors, and establish Proposition 3.10.

Fo C 'ﬂ
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4.1 Tensor Projectors

We introduce a class of anisotropic tensor projectors on the reference cube K.

To this end, let 1= (—1, 1) be the reference interval. For p > 0, we denote by 77, o
the univariate L2- prOJectron onto P (I ). For p > 1, we further introduce the univariate
H'-projector 7,1 : H'(I) — P (I) by

&
@) = A=) + / Fp1.08) (mdn: @.1)

cf. [26, Theorem 3.14]. The projector satisfies (77p,1%)" = 7,—1,0(w’) and
(ﬁpylit\)(:l:l) =u(*E1). “4.2)

Some /ip-version approximation properties of 7 Zp. pand 7 d7)p, 1 arecollectedin Sect. 8.1.1.

We con51der next the reference cube K =13 withT = (—1, 1). In analogy to (3.3),
we write K = K+ x Kl =72 x T. Let p = (p*, p!) be an anisotropic polynomial
degree vector, and r € {0, 1} a conformity index in edge-parallel direction. For a
function® : K — R, we define the tensor projector 77, into Q,, (K) = Q1 (KHe
P,i(K') by

wpe= (7)) 070 @70 Ya=(7h 07 )@ 43)

where the univariate projector nl(,), acts in direction X;, and where we write ﬁ;l 0

and 7! ol to denote the projectors in edge-perpendicular and in edge-parallel direc-
tion, respectrvely The projector Tp,0 is the (tensor-product) L?-projection which is
well defined for @ € L%(K), whereas 7 Tp,1 1S an anisotropic projector which is well
defined for u € L2(K He H! (K H) and nodally exact in edge-parallel direction; cf.
property (4.2). Note that H' (K) C Lz(KL) ® H (K”). In Sect. 8.1.2 we derive
approximation properties for 77 , in (4.3), with the aid of tensor-product arguments
and consistency bounds for the univariate projectors 7, o and 7 1.

4.2 Exponential Convergence in Broken Norms

We next establish exponential convergence bounds in broken norms for the families
of tensor projectors obtained in (4.3).

4.2.1 Families of Projectors

Consider the discontinuous spaces Vf,’g in (3.21) on a geometric mesh M = M’ €
M, and for a s-linear degree distribution p,(M) = {pglxerm. To each K € M,
we assign an elemental conformity index rg € {0, 1}. We then investigate the tensor
FoE'ﬂ
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projectors 7w : H'(Q) — V(fjg? given by
wulg = Tp g (UlK), K e M, 4.4)

where the elemental projectors 7y, : HYK) > Qp, (K) are

Tprc WlK) = (Tpyr g 0 D))o 4.5)
with7p -, definedin (4.3) and @ : K — K the clement mapping. As the projectors

e — I — KLy xl 2_nroiecti
T py.ri ENSONIZE MO Ty -y = ! 0®np” e o0 K = K- x K" and L~-projections
. k-

are used in perpendicular direction, we simply write
rulg =y @ mlulg. (4.6)
Foru € H! (R2), we consider the error terms
n=u—nu, ny=u—mnzgu, nl=u—nxlu, 4.7
and note that

n=w-— noLu) + noL(u — n”u) = nd‘ —i—noln”. 4.8)

In the above notation, we generally omit the dependence on rg in edge-parallel direc-
tion. However, if rx = r € {0, 1} for all K € ./\/lg, we write 77, = 71&- ® 71,” for the
projectors resulting in (4.4), (4.6), as well as n,, nﬂ for the errors in (4.7). In particular,
Ty = 710L ® ng CLA(Q) — V(f,’g,o is the usual L>-projection. A specific choice of con-
formity indices rg leading to n(f’ 5 in Proposition 3.10 will be introduced in Sect. 4.3
below.

4.2.2 Error Bounds

We show that the full errors 7 can be bounded in terms of the errors 7~ and n! in
edge-perpendicular and in edge-parallel directions, in appropriate norms and except
for corner elements; cf. [25].

We first establish the following stability result.

Lemma 4.1 Let K = K+ x K € M be of the form (3.3) and p# > 1. Then
IDLGT o gsy S PRID LU G2 gry  w € HIKD).  (49)
Furthermore, for the element errors in (4.7) and any rx € {0, 1}, we have

2 12 2
||77||L2(K) 5 ”’70 ||L2(K) + ||77”||L2(K)7
DLl gy S UDL 174y + PROHIDLA T2 ) (4.10)
DI k) S IDWIG 152 k) + 1D 132 -
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Proof Since both sides of the inequalities in (4.9) and (4 10) scale in the same way,
it is sufficient to prove them for the reference element K = K+ x K. To show “4.9)
on K J‘, note that

N o~ ® ~1l ~ a1 N o~ o~ o~
Di(m@ 1 Oﬁ) =Di(@ ot — 7o oﬁ) =D, 0(” - 770_074\))- (4.11)
PK, PK» ’ PK, ’

The inverse inequality in [26, Theorem 4.7.6, eq. (4.6.5)], the L>-stability of ﬁ; o
e

and standard approximation properties for ﬁ(io yield (4.9) due to

4 1L =~ 2
||DL(7T L OA)”LZ RL) ~ < (PK) ||7T L 0 _770 ()M)”Lz (RL)

S P T = Rl gy S (PR IDLRI L 2o

The L?-norm bound in (4.10) follows from the splitting (4 8) with the aid of the
triangle inequality and the L2-stability of the L>-projection np - . The second estimate
in (4.10) is a consequence of (4.8), the triangle inequality and the p-dependent stability
bound (4.9) in perpendicular direction. The third estlmate in (4.10) is again obtained
from (4.8), by employing the commutativity of D jand T Tt ko ,as well as the L?-stability

of 7t |
pg.0°

To exclude corner elements, for ¢ € C, we set Tg,c ={KeM, : Knc#0)
and define
Too=UTe Moo= M\Toe (4.12)
ceC

Here, we will always assume that the initial patch mesh M? is sufficiently fine so that
TE . and T, are disjoint for ¢ # ¢'.

Lemma 4.2 Let u € H'(Q) and let mu = JTOL ® 7llu be the base projector in (4.4)
for any conformity indices rx € {0, 1}. For the error terms in (4.7), we have

Tha 1P Sp Y P+ P40y @13

o,C a,C

Moreover, let u € L*(Q2) and let mou = n’d‘ ® ngu be the Lz—projection obtained
in (4.4) by taking rx = 0 forall K € ./\/lf;. Then we have

Im00 52 0tg) =08 Wty + 000 2nge y + 0N ozt - (414)
Proof These bounds follow from Lemma 4.1 and the inequality (3.36). O
FoE'ﬂ
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4.2.3 Exponential Convergence

With (4.13), (4.14), we now state the following exponential convergence rates in broken
norms. Note that these bounds do not imply the jump estimate (3.39); this result will
be shown in Sect. 4.3.6 ahead.

Theorem 4.3 Let b be a weight exponent vector satisfying (2.9). For parame-
ters o € (0, 1) and s > 0, consider the sequence th”s of discontinuous finite element
spaces (3.21).

Let u € B_i_3(Q) N H'T(Q) for some 6 € (0, 1), cf. Sect. 2.3, and let mu =
7{0l Qnlu : HY(Q) — V(f,’g be the non-conforming family of tensor projectors in (4.4),
for any elemental conformity indices rx € {0, 1}. Then, for the errors n, n(J)‘ and n
in (4.7), we have

T 17 Sp g 06+ Ty P+ g, I = Cexp(=2b0), (419)

with constants b, C > 0 independent of £ > 2.
In addition, letu € B_p(Q)NH?(Q) for some 6 € (0, 1), and let mou = 7'[0L ®7T(|)|u
be the L*-projection obtained in (4.4) by taking rg = 0 for all K € Mf,. For the

errors 1o, né‘ and r;(l)l, we have

1007200 S W1 122 0q0 oy + 00520y + 00520 ) < € exp(=2b0),

(4.16)
with constants b, C > 0 independent of £ > 2.

Note that upon adjusting the constants b, C to absorb the algebraic loss in |p], the
bound (4.15) implies
TM 11 < C exp(—=2b0), 4.17)

with b, C > 0 independent of £ > 2.

Remark 4.4 For simplicity, our proof of Theorem 4.3 is based on univariate hp-
approximation bounds for 7, o and 7, in (4.1) which require p > 1; cf. (8.1)
and (8.3). Alternatively, the proof of the L2-bound (4.16) could be solely based on
the L2-norm estimates for the L2-projection in [26, Theorem 3.11], thereby allowing

elemental polynomial degrees p}( >0, pll‘( > 0in (4.16).

Remark 4.5 If u € HY(Q)/R, respectively u € L%(Q)/R in Theorem 4.3, the
bounds (4.15), (4.17), respectively (4.16) remain true over the factor space v(f;Q /R.
This follows from the fact that the elemental interpolants 7y, . in (4.4) reproduce
constant functions.

Remark 4.6 The L%-norm bound (4.16) is of independent interest in the context of
mixed hAp-FEMs for the (Navier—)Stokes equations or for linear elasticity in mixed
form under B_p (£2)-regularity assumptions on the multipliers (although corresponding
regularity shifts do not seem to be available in the literature). We refer to [21,22,27]
and the references therein.
FoCT
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As in [25, Section 7], by superposition and due to the structure of the patch map-
pings, it is sufficient to provide the proof of the exponential convergence bounds in
Theorem 4.3 for a reference corner—edge configuration on é as shown in Fig. 1,
which involves a single corner ¢ € C and a single edge e € & emanating from it.
In this setting, the proof of the bound (4.17) follows the lines of [24, Section 7.2],
albeit with essential modifications. For completeness, we review it in Appendix 8, and
detail the relevant changes as compared to [24, Section 7.2]. The proof of the L2-norm
bound (4.16) is similar and will be outlined simultaneously.

4.3 The Base Projectors ]1,'  with Partial Conformity

We introduce and analyze particular tensor-product projectors of the form (4.4), which
lead to the base projectors JT , and the sets .7-" D (./\/l‘Z ), F ,H D (/\/le ) in Proposition 3.10.

4.3.1 Base Projectors for Corner, Edge and Interior Patches

We define reference base projectors 7¢ on each reference mesh /\/l‘Zt fort e
{c, e, ce, int} with respect to the linear polynomial degree distribution ps(/\/le 4.
Recall that the elemental polynomial degree vectors p are isotropic for t € {c, int}
and generally anisotropic for t € {e, ce}. For reference patches ./\/llZ t of type
t € {c, e, int}, we take the reference base projectors 77, as

Tpe.0UlK), K e ML, t e {e,int),

6 (4.18)
JTPK’](M|K), KGMg,ea

Te(ulk) =

with the nodally exact projector in (4.1) applied in edge-parallel direction.

4.3.2 Base Projectors for Corner—Edge Patches with Refinement Along One Edge

We next consider the corner—edge reference mesh patch /\/1[ ¢ with refinement along
one edge e € &, for a corner c. Following [20], we partition /\/ll ¢ a

Mbee = Mbeet G Mbeel | 0>, (4.19)

where the mesh Mﬁ’“’l is a corner-patch-type mesh of elements which are isotrop-

ically refined into the corner ¢. The mesh /ﬁﬁ’ce‘ll consists of a sequence of £ — 1
geometrically scaled edge-patch meshes, translated along the edge e:

./\/16 cell _ U gt “’(M@ €y, £>72, (4.20)
Z/

where W<€ s a translation with respect to the edge-parallel variable x| combined
with a dilation by a factor only depending on o, ¢, ¢/, and where the mesh MY € is a

FoE'ﬂ
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/K6 Kg

~ \\\ \ _fi 7
Dlcel nik Ky

\ \\\\ \\ K, 5 K é % i
\\
\ /

Ki Ky Ky

. /
N |

/23 0
Fle

Kl K2

Fig. 2 Left patch decomposition (4.19)—(4.22) foro = 0.5 and £ = 5 The diagonal elements are shaded.
Right the scaled edge-patch blocks \ie,’ce(ﬂ €) and B¢’ 1.ce (./\/l 1€y for ¢ = 0.5 and ¢ = 5. The
diagonal elements K4, K¢ and K}, K, é belong to D(l; “¢ and ’Df; -L €€ respectively

reference edge mesh patch on @ with £/ + 1 mesh layers. In Fig. 2 (left), a schematic
illustration of the patch decomposition (4.19), (4.20) is provided in which the scaled
edge-patch blocks are highlighted in boldface. In Fig. 2 (right), we show two adjacent
edge-patch meshes as in (4.20) along the edge e.

A particular role will be played by the subset De € C My""" of the elements in
the outermost layer of each scaled mesh-patch block. It also consists of £ — 1 layers:

e,

4
Bieesm | JBUwe, 22 @2n
=2

Elements in De “¢ are referred to as diagonal elements of Me el ; cf. [20]. They are
isotropic and are illustrated in Fig. 2. The isotropic mesh /\/ll ¢, js decomposed into

MZ ce, J_ r}:@ c U Dl ce, J_ (422)

where Tf ¢ is given by the eight elements nearest to ¢, and where the remaining
elements are collected in the mesh D‘Z ¢e.L We then choose the reference base projector
on the reference corner—edge mesh as

e Rpcel
Tp.0lK), K e ‘Iﬁ’” UDf,’“’ U Dg’”,

A S (4.23)
ﬂPK,l(u|K), K € ./\/lg’ce’“\pg,ce’

Tee(ulg) =

where in 7, 1 the nodally exact projectors in (4.1) are applied in direction of e.

Fo C 'ﬂ
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/KG /{é’ /Kﬁ /(é,’

K(/;H /Ké K(/;H /Ké
/ /

zﬁ# Ky £

K
KZ; / Kﬁ /

Ky K] K3 K, Ky K] Ky

K

K K, K K"

Fig. 3 Scaled edge-patch blocks for o = 0.5 and £ = 5. Left refinement along two edges with diag-
onal elements K1, K4, K¢ and K i K 4", Ké. Right refinement along three edges with diagonal elements
K1, K4, Kg and K{, Ki, Ké

4.3.3 Base Projectors for Corner—Edge Patches with Refinements Along Two or
Three Edges

For a corner—edge patch /\75“ with refinement along two edges e, e, meeting at a
common vertex ¢ and isotropic refinement in perpendicular direction as illustrated in
Fig. 3 (left), we write

M"’gce — Mvg,ce,l U (Mg,091,|| U M"’gcez,\l)’ {>2, (4.24)

with two sequences of £ — 1 scaled edge-patch meshes as in (4.20) and an isotropic
corner-type mesh /\/lf;'“’J- perpendicular to e, e>. The latter mesh is again decom-
posed as

rlce. L . Fle ) Jt.ce, L

MGeo— =T U Do, (4.25)
where %ﬁ“ is the same set of corner elements as in (4.22) and 55?“‘L the set of
all remaining elements. We denote by D5 M5! the diagonal elements
of f,’cei'l‘ defined as above; cf. Fig. 3 (left). We then set

(4.26)

= N o (~L.ce ~L.ce
~ | mpolk), K € T U OLeet U (D U Dy ),
Tee(Ut| ) = ;

~t.ce|\ lcei .
Tpea(ulg), K e MDDy i=1,2,

where again the univariate projectors (4.1) are employed along e; fori =1, 2.

Remark 4.7 The elements in Df;’ €I act as isotropic buffer zones and allow us to unam-
biguously assign different directions in MGl ang MGl

Finally, if Mﬁ’“ is refined along three edges e1, e>, €3 meeting at a common ver-

tex ¢, as depicted in Fig. 3 (right), we analogously write

A’;l“g,ce — %ﬁc U (J\’}l’gcel,ll U _/’\}l’g,cez,\l U j\}l“f;cemll)’ (4.27)
FoC'T
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now with three sequences of £ — 1 scaled edge-patch blocks. The set 52,&,- C /ﬁf;’ce' o
denotes the diagonal elements of Mf;’cei"l. With (4.27), we define

~ . <t ce:
nPK,O(u|K)» K e Tg’c U (UiS:I Dace )7

) o I ap 428
Tpea(ulg),  KeMyerh\Die 1<i<3, (4:28)

Tee(u|g) ==

once more with the nodally exact projectors applied in the direction e;.
4.3.4 The Base Projectors nﬁ’ 5

The reference base projectors 7y in (4.18), (4.23), as well as the variants in (4.26)

and (4.28), give rise to the (non-conforming) base tensor projectors nﬁy s = nﬁjé‘ ®

nﬁ:ﬁ cHYQ) - V(f,’g in (3.37) in Proposition 3.10. The bound (4.17) resulting from

Theorem 4.3 then yields the broken norm error bound (3.38) there. Next, we define
the sets ff‘D (Mf;), f,l‘D(Mf;) and prove the jump bound (3.39).

4.3.5 Partial Conformity

We first consider edge-perpendicular interfaces I'y, ,,» of two mesh patches M, , My,
along the same edge e. Recall that the interface I'y, ,» consists of £ + 1 mesh layers,
cf. [23, Section 3.2], and that the patches coincide on the interfaces due to Assump-
tion 3.1. The definition of n(f,ﬁ and the nodal exactness property (4.2) imply the
following results.

Lemma 4.8 For u € V, there holds: (i) if My, My are two adjacent edge mesh

patches along the same edge, then nﬁ’ LU s continuous across all layers of the inter-

ace Ty oy (it) if My is an edge mesh patch and M, an adjacent corner—edge
pp p 8 p p J 4

patch along the same edge, then 7T§ 4l is continuous across the inner layers of the

interface 'y, but is generally discontinuous across the outermost layer of I'y .

Remark 4.9 Conformity properties analogous to those in Lemma 4.8 hold on edge-
perpendicular boundaries of edge or corner—edge mesh patches which are situated on
a Dirichlet boundary face I', for ¢t € Jp. On the corresponding elemental boundaries,

the projection 7/ 4u vanishesif u € V.

Next, we analyze the continuity within different edge-patch blocks W€ (/\75;“0)
in (4.20) and as appearing in the representations (4.19), (4.24) and (4.27).

Lemma 4.10 Foru € V and3 < £/ < £, let ¢ ~1c¢(AfU—1.¢) gng T -ce (ML)
be two adjacent edge-patch blocks along the same edge. Then nf’ SU is continuous
across perpendicular faces between Wt ~1-¢¢ (Mf;/_l’e) and Wt'-ce (Mf;,’e), except for
the faces between the diagonal elements in Dﬁ’—m and the corresponding elements
in Btee(MLe).

To illustrate Lemma 4.10, we note that 7T£’ 4u 1s generally non-conforming across
the isotropic faces F k. k) F KL K] in Fig. 2 (right), and across the isotropic faces
FK{ K FKLKZ’ FKg,Ké” FKé,Kg’ in Fig. 3 (left).
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The partial conformity in Lemma 4.8, Remark 4.9 and Lemma 4.10 allows us
to identify sets D(/\/lz) and }',”D(M[) = }'” (/\/lz) U }'” (./\/lg) over which

nl su is conforming and non-conforming, respectively. The faces F' € F ,” D (M)

satlsfy (3.31), (3.32), as claimed in Proposition 3.10.
4.3.6 Polynomial Face Jump Bounds

Next, we bound the face jumps of n(f,ﬁu over the faces F € ]-"IHD(M) for M = /\/lf;,
and show the estimate (3.39).

To this end, we first recall the anisotropic trace inequality from [23, Lemma 4.2]
(with t = 2).

Lemma4 11 ForF € }"IHD(M) with F C F’ € F(K) andu € HY(K), there holds
-2 L 2

Next, we establish the following variant of the jump estimate of [25, Section 5.5],
which is essential for controlling the jumps of nf, 41U over anisotropic faces of M. Due

to the appearance of H'-projectors in edge-parallel direction, we require in this bound
a local smoothness assumption which is slightly stronger than H !-regularity.

Lemma 4.12 Consider an edge-parallel face F = Fk, g, € F ,” (M) shared by two
axiparallel elements K1 = Kf- x Kl and Ky = Kj- x K as in (3.3), with K =
(0, 1y in parallel direction and with K- and K2L two shape-regular and possibly
non-matching rectangles of diameters h%l ~ hJIgz ~ h'lin perpendicular direction,

for parameters h'- < hl. Let the elemental polynomial degrees be given by p K =
—1, =1

(piJ', p”). Let u € Hl((Kl UKy)) ® HY(Ky and mulg;, = 710 ® n1u|K =

npK_,l(u|Ki)f0ri = 1, 2. For the error terms 1y = u — muU, né‘ =u— né‘u and

n! =u— JT”u as in (4.7), we have the bound

2
D Nl e 12y Sp 2 (ID115 132k + 1D I )- (4.29)
i=1

Similarly, let F = Fg r, € ]:ﬁ”) (M), 1 € Jp, be an edge-parallel Dirichlet face of
K = K+ x Kl with K = (0, "y and K+ a shape-regular rectangle ofdtameter ht,
for h* < hll. Let the elemental polynomial degrees be given by Pk = (pt, p". Let

ue H' (KT @ H' (K with ulr = 0 and mu|x = 75 @ nlulx = mp, 1(ulg).
Then we have the bound

e Ml e 132y Sp IDLG 1720y + DL I ) (4.30)

Proof Note that the setting is such that property (3.31) is fulfilled with hr ~ hi_ ~
ht.Onelement K;,i = 1,2, we have

n(J)‘ — n&‘né‘ =u— nd‘u) — nd‘(u — nd‘u) =u— n&‘u = n(J)‘. 4.31)

FoE'ﬂ
@ Springer L|.. jO E|



624 Found Comput Math (2018) 18:595-660

Then, we note thatn”u|,< € HI(KJ-) ®]P’p||(K”) c HY(K) fori = 1 2. Hence,

(711” ulk,))lF = ( ulk,)|F in L>(F). With this identity and since 775 and 711 commute,
we conclude that

2 2
”[[”lu]]F”LZ(F) = ””lu'Kl _n1u|K2”L2(F)
2
1 I I 2
rg Z ”7T0 ®7T1M|Kl- —7T1M|K,- ||L2(F) Z ||7T 770 |K ||L2(F)

We then consider element K; fori = 1, 2. With Lemma 4.11, we have
P0G k132 ey S k) T2 ng 132, + IDLGT{ I -

Property (4.31) and standard A-version approximation results for 71({- in perpendicular
direction yield

||7T 7)0 ||L2(K) = ||(7T 770)_770 (7T TIO)”LZ(K) ~ (hl ) ”Dl(ﬂ 77())||L2(K)

Therefore,

e I L 1 2y S IDLGE 1) 132 W)

< ”DJ_((]T] - 770)770 )||L2(K ) + ”DJ_(T[ 77() )||L2(K )"
We next bound the two terms in the second line of (4.32). We write the first term as
(711” _n(\)l)nd_ _ (nll _ H)u —nol(n” _ H)u
—no(n u—u) ( (71 u—u)).

With the triangle inequality and the stability bound (4.9) for JTOL, we find that

IDL (Gt} = g ) 22,y S (POIDL (g G = ) 132 -

. L - .
Then, since DY and n(l)l commute, the L>-stability of the L>-projection 7, implies

||DL((771 - 77())7]())”L2(K) ~ (P, )4”DL7’ ||L2(K)

To estimate the second term in (4.32), we invoke the L2-stability of n(l)l as before to
obtain

”DJ_(T’:()”O )||L2(K1) ~ ||DJ_77() ||L2(K1)

Combining these arguments yields (4.29).
The proof of (4.30) for a Dirichlet boundary face F is obtained analogously, by
noting that (n1u|K)|F =0in L2(F). O
FoE'ﬂ
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Lemma 4.13 Letu € B_|_p(2) and let JT(, & = 7'[0 s ®n§ L-I be the hp-base projectors

introducedin Sect. 4.3.4. With the error terms defined asin (4.7), i.e., nf;‘s =u —nﬁ)su

£,
nf,é‘ =u— nf j‘u and ngl =u-— ngﬂu we have the bound

L2 I 6142 I 2
Jmp 1 gy 1ol Sp T Il + Ve Iolsl + Y, D17 (433)

Proof Anisotropic faces F in F; I D (MZ) arise in (mapped) edge patches ./ﬁz ¢

in the innermost £’ layers of edge-patch blocks pl'ce (/\/l‘Z *¢) of (mapped) corner—
edge patches /\/le ¢ (with refinement along one, two or three edges); see Sects. 4.3.2
and 4.3.3. All these faces are edge-parallel and do not abut at corners. Hence, the
jumps of nf, s u over such faces can be bounded by the estimates in Lemma 4.12, upon
noting that the same polynomial degrees are employed in edge-parallel direction and
that, for u € B_;_p(2), the smoothness assumptions in Lemma 4.12 are satisfied;
see (2.6). The remaining faces in F 1” D(/\/lﬁ) are isotropic and the jumps over them
can by bounded by isotropic versions of the trace inequality in Lemma 4.11, along
with the stability bounds in Lemma 4.1. O

Lemma 4.13 along with estimate (4.15) for JT , then establishes the bound (3.39)
for jmp Flome )[flg +], which completes the proof of Proposition 3.10.
1D o ’

5 Averaging Operators

. —00,L —£0,L
We construct the averaging operators Af,’ sV -V

e 0.5 inTheorem 3.12 over
; — MY
geometric meshes M = M.

5.1 Sets of Adjacent Elements

Let K € M.For N e N(K), E € £(K) and F € F(K), we introduce the following
sets of elements which regularly share N, E and F, respectively:

Agn:={K' eM : NeNK} 5.1)
Akgp:={K eM: Ec&K)}, (5.2)
Akr:={K eM: FeFK)}. (5.3)

Clearly, we have K € Ax N, K € Ag g and K € Agr C 6k r, with 8k F
introduced in (3.11), respectively. Then, card(Ag y) > 1, card(Ag g) > 1, and
card(Ag r) € {1, 2}. There holds

N e N(E) : Ak g € Ag N and Ee&(F): Ak, F € Ak.E- 5.4
Moreover, the sets defined in (5.1)—(5.3) have the property that

Ag N = Ak N, K' € Ak N, (5.5

FoE'ﬂ
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Ak g = Ag E, K' € Ak E, (5.6)
Akx.Fr=Ag' F, K e Ak F. 5.7

In the following, we denote by Np(K) C N(K), Ep(K) C E(K) and Fp(K) C
F(K), the sets of elemental nodes, edges and faces, respectively, which are situated
on a Dirichlet boundary face T, fort e Jp.

For N € N(K)\Np(K), respectively N € Np(K), we define

Fl(Ak N) :={F = Fx.xr € FI(M) : K" € Ag.N\(K}},

(5.8)
Fl(AkN) = {F =Fgrr, € FA(M) : K' € Agyandt e Jp .
Similarly, for E € £(K)\Ep(K), respectively E € Ep(K), we set
Fl Ak g) :={F = Fxx € FI(M) : K € Ag g\K}}, 59)
FI(Ak E) = {F = Fgrr, € Fl(M) : K' € Ag g and t € Tp} .
Finally, if F € F(K)\Fp(K), respectively F € Fp(K), we introduce
Fl(Ak,p) = {F = Fx g € FJ(M) : K' € Ag p\[K} ), 5.10)
Fl (A F):={F = Fgr, e Fl (M) : K' € Ag.pandi € Jp} . '
We further define
Flp(Ax.N) = F} (Ag.8) UFp(Ak.N), (5.11)
Flp(Akp) = F} (Ak.p) UF)(Ak E), (5.12)
Flp(Ak p) = F} (Ag.p) UF)(Ax ). (5.13)

Notice that any of the sets in (5.8)—(5.13) could be empty.

5.2 Averaging Over Ag N

Letv e Vﬁ;‘i’L be fixed. We first construct an approximation v" € Vf,’;”l by modify-
ing v at possibly all elemental vertices. For K € M and N € N (K), we define the
averaged vertex value Ak n(v) by averaging v over all elements of Ag n in (5.1):

1
S (N), N eN(EK)\Np(K),
card(Ag.N) K,EXA;(,NWK( ) NI (5.14)

0. N € Np(K).

Ag N() =

Elol:;ﬂ
o

@ Springer thog



Found Comput Math (2018) 18:595-660 627

The averaged value Ax n(v) in (5.14) is well defined irrespective of whether N €
N(K) gives rise to a regular or irregular node in A'(M). With (5.5), we have

Agk N(W) =Ag N(), K € Agn. (5.15)

Hence, the values Ag ny assign a unique vertex value on the elements in Ak y which
match regularly at the vertex N.

For K € M and N € N (K), we denote by Lx n(v) € Q;(K) the unique polyno-
mial vertex lifting with the property that, for N’ € N'(K),

v[g(N) —Ag n(v)  N'=N,

Lk .n@)(N') = 0 N' % N.

(5.16)

Lemma 5.1 For K € M and N € N(K), let the vertex lifting Lk n(v) be defined
by (5.16) with the averages Ak n(v) in (5.14). Then there holds

NglLk NP S Ipglimpgy o o7 (5.17)

with F) (Mg n) in (5.11) and jmp z[v] defined in (3.30). If F) ,(Ak.N) = @, the
sum on the right-hand side of (5.17) is understood as zero.

Proof From the definition (5.14) and anisotropic scaling, we readily find that

1Lk N @25, S B R [l (V) = Ak v )], (5.18)

The univariate inverse estimate in [26, Theorem 3.91], applied in each direction and
combined with anisotropic scaling (employing that hJIE < h” , pr =P K) yields the
anisotropic inverse inequality

”VU”LZ(K) S (P ) (hl) 2||v||L2(K)’ v e @pK(K) . (519)
From (5.19) (recalling that Lx_x € Q1(K)) and (5.18), we obtain

NELk NP S ) 2Lk N2 ) S Rk oIk (N) — Ak @), (5.20)

We proceed by estimating |v|x (N) — Ax n(v)| in (5.20). We consider first the case

where N € N (K) is a node of N'(K)\Np(K). Then the triangle inequality, the fact

that card(A g )~ ! is bounded uniformly in £, and the partial conformity of v € V 0 -
imply

FoE'ﬂ
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2 1 2
N)—A < N) — (N
[Vl (V) = Akn @S card(Ag N)? K/eAZ\{K} ) =l )
K,N

S ) e W)

K'eAg n\{K}

) ) (5.21)
~ Z ”[[U]]FK,K/”LOO(FK‘K/)

K'eAg N\{K}

SR Y [ 1) P [

FeF)(Ak.N)

If the sets Ax ¥ \{K} or .7-'1H (Ag.n) are empty, then the right-hand side of (5.21) is
understood as zero; then we have v|x (N) = Ag N (V).

Second, let N € Np(K). Consider a Dirichlet boundary face F = Fg , with
N € N(F), F € F(K'), for K’ € Ak y and ¢t € Jp. We may assume that F €

}'l“)(AK,N); otherwise, we have v|x (N) =0, Ax. v (v) = 0and Lx n(v) = 0 by the
conformity properties of v and definitions (5.14), (5.16), respectively. Therefore,

2
Ik (V) = Ak NO < TlFl ey = Y. I0DFI e (5:22)
FeF)(Ax.N)
Combining (5.20), (5.21) and (5.22) gives

NEILk NP Sh Y Iolel e p) (5.23)
FeF) (Ag.n)

To bound the L°°-norms of the jumps of v in (5.23), we recall from [26, Theo-
rems 3.92] the following univariate inverse inequality: let / = (a, b) be an interval of
sizeh = b — a. Then

lg@P +1g®F < lali=gy S PR alljagy » a € Pp(d), (5.24)

for all polynomials ¢ € P,(I). A face F' € ]-"IHD(AK,N) can be written in the
form (3.32). Applying (5.24) in the two directions on F’ (see also [23, Lemma 4.3(b)])
and the definition of the face polynomial degrees pg p in (3.12) yield

M0 ey S 1P 1) ™ Gl ™ 0D E 1 2 - (5.25)

The bound (5.17) follows from (5.23) and (5.25) using that hyp =~ hk by (3.31). O

For K € M, we introduce the full vertex lifting

L% W) = E Lk.nW) € Qi(K). (5.26)
NeN(K)
FoCT
e B
@Sprmger mCE!
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We further define the approximation v" € Sz, (K) as
vk = vk — Lk (), K e M. (5.27)
The function v"| g has assigned vertex values at all elemental vertex nodes:
Vg (N) = Ag . n(v), N e N(K). (5.28)

Note also that, in the expansion (3.14), (3.15), only the nodal parts of v"|x and v|g
differ, while the edge, face and interior parts of v"|x and v|g coincide.

Proposition 5.2 For K € M, let v"|g be defined in (5.27). Then, v" € Vﬁ”g’L and

the’e hOldS
( vV—1U 2 + ']ll[) v 2 < P ’Ill[) v 2. 5.29

Proof The function v € vf;;) L is continuous over all faces F € ‘7:IJ_D (M). Prop-

erty (5.15) and definition (5.16) then imply that the liftings L‘;( (v) yield conforming
approximations over the same faces. Since v"|x = v|g — L% (v), the approxima-

tion v" is continuous over these faces as well, and thus, v™ € Vﬁ”g’J‘. The bound for
’Y‘j\;{[v — v"]% in (5.29) follows immediately by summing (5.17) over all elements
K € Mand N € N(K). To bound the L2-norms of the jumps of v", consider an
interior face F' = Fkx g € F ,” p(M). The definition (5.27), the triangle inequality
and the trace inequality in Lemma 4.11 (noting that hr ~ hk) yield

np I E Ny S B ITVDEIZ gy + NEICR @1 + N [ Lk )1

A corresponding bound holds for Dirichlet faces F € F g (M). Summing these esti-
mates over all ' € F 1” p (M) and again applying (5.17) gives the desired bound for

Jmpzt g [0 in (5.29). -

5.3 Averaging Over Ak g

With (3.17) and since L} (v) in (5.26) is trilinear, the approximation v" € Vﬁ’g’J‘ from
Sect. 5.2 satisfies

")l € Py, (),  KeM, Ee&K), (5.30)

with the minimum edge degree pg p > 1in (3.13). For K € M and E € £(K), we
next average v" over the set Ax g in (5.2) and define:

1
— Vg )le, E € EK\Ep(K),
Ag g (") = card(Ag k) K’GXA;QE( w)le P (5.31)

0, E € Ep(K).
EOE';W
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By (5.30), the function Ax g(v") is a polynomial in IP’pK 2 (E).

Lemma 5.3 Let K € M and E € E(K). Then, Ag g(v") = Ag/ g(V") for K’ €
Ak g. Moreover, for N € N (E), we have Ag g(v")(N) = v"|g (N).

Proof The first assertion follows from (5.6). Then, with (5.4), (5.15), there holds
Ag' n(v) = Ak N(v) for K’ € Ak . In combination with (5.31) and (5.28), this
property yields

1
AK,E(UH)(N)—W Z Agr N (V)

K'eAg
1
TV Z kN W) = Ak N () = V" [k (N).
K'eAg
The second assertion follows. O

For K € M and E € £(K), we denote by Lg (V") € Sp, (K) the unique
polynomial lifting which satisfies

Lk W= " k)le— Ak ") € P5 (E) onE, (5.32)

and which is given by linear blending functions in the two directions orthogonal to E.
With Lemma 5.3, there holds

Lx rWH(N)=0, N e N(E). (5.33)

The lifting Lk g(v) vanishes on the remaining elemental edges E’ # E, as well as
on faces F € F(K) with E ¢ F(E).

Lemma 5.4 For K € M and E € E(K), let the edge lifting Lk g (V") be defined
by (5.32) with the averages Ak g (V") in (5.31). Then there holds

NglCk p @ < IpxlGmper (x0T (5.34)

with F)(Ag.g) in (5.12). If F) (Ak £) = 0, the sum on the right-hand side is
understood as zero.

Proof We denote by hg the length of E € £(K). Then, by (3.3), either hgp >~ hk or
hg ~ hg{ From the definition of (5.32) and anisotropic scaling, we see that

hghl 0"k — Ak E<v“)||L2(E), hp =~ h,

(5.35)
(h)P "k = Ak e 2y, hE = h.

ny 2
||£K,E(v )||L2(K) 5

Fo C 'ﬂ
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Hence, the inverse inequality (5.19) implies

NglLk (™)1
()~ b o — AR EOI 2y hE =hg.  (536)

S leklt
10"k = Ak EGMIs he = hy.

We continue by bounding [[v"|x — v®|kx ||L2(E). First, we consider the case E €
E(K)\Ep(K). From the definition (5.31), the triangle inequality, the uniform bound-

edness of card(Ag, £) 72, and the fact that v" € Vﬁg (cf. Proposition 5.2), we obtain

1
"1k — Ak W) B2 S — vk — vk II?
FE Y card(Mg,p)? K’eA%\{K} e
S e o e,
K'eAg \{K}
SIS | (T PPy (5.37)
FeFl(Ak k)

Again, if the sets Ax g\{K}or F € F 1” (A, ) are empty, then the right-hand side

of (5.37) is understood as zero, in which case we have (v"|x)|g = Ak E(V").
Second, let E € Ep(K) be a Dirichlet edge. Then, consider a boundary face F =

Fgrp, with E € E(F), F € F(K'), for K' € Ak g andt € Jp. As before, we may

assume F € .7-'% (Ak . E), otherwise, Lx g (v"™) = 0 due to the partial conformity of v"
and (5.31), (5.32). We find that

10"k = Ak EQ) 2 < IV TFI2 e S D I IEI g (5:38)
FeF) Ak )

For F € F 1” p(Ak, ) written in the form (3.32), the inequality (5.24) applied on
E C F in direction perpendicular to E implies

PP I TF 12,y hE = I,

I 1E 72 ) S -
BE S pg PO ey he = h.

(5.39)

Therefore, combining the inequalities in(5.36), (5.37), (5.38) and (5.39) gives the
desired bound (5.34). O

We define the full edge lifting

L5 = > Lxr® eSp (K)., KeM, (5.40)
Ec&(K)

FoC T

@Springer ,_ﬁjo'}



632 Found Comput Math (2018) 18:595-660

and introduce the approximation v° € Sz, (K) by

Vo g = 0"k — LY, K e M. (5.41)

The definition (5.41) only affects the edge parts of v"| g in (3.14), (3.15), while nodal,
face and interior parts of v"| g are not modified. By construction and Lemma 5.3, there
holds

(v°1k) e = Ak, (™), E € £(K), (5.42)
v |g (N) = v"|g (N), N € N(K). (5.43)

The analog of Proposition 5.2 reads as follows.

Proposition 5.5 For K € M, let v®|g be defined in (5.41). Then, v° € Vﬁ’g’l and

there holds

L o — R €2 < [n(l0: 2 544
M= gmp g [T S 1P mp g ) Y] (5.44)

Proof By construction, it follows that v® € Vﬁ’g’J‘. Then, by proceeding as in the
proof of Proposition 5.2, the estimate (5.34) yields

TJ_ n__,e2 e12 < 6 : n 2.
Mt =V jmp [V S P gmp gy [0

The triangle inequality and the bound (5.29) now show (5.44). O

5.4 Averaging Over Ak, r

With (3.17) and the definition of the minimum edge degrees in (3.13), the approxima-

tion v° € Vf;’g’l' satisfies:
°IK)F € Qp, (F), KeM, FeFK), (5.45)

with the minimum face degree pg r € N2 in (3.12). We average v° over Ak rin(5.3):

1
— Wk)IF, F e F(K\Fp(K),
Ag.r (%) = { card(Ak.F) K/EXA;(,F o ? (5.46)

0, F € Fp(K).

By (5.45), the function Ax r(v°®) is a polynomial in QﬁK,F (F).

Lemma 5.6 Let K € M and F € F(K). Then, Ax r(v®) = Ak p(v°) for K' €

Ak, F. Moreover, if E € E(F) is an edge of F, we have Ax r(V°)|E = (v°|k)|E.
Elol:;ﬂ
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Proof The first property follows from (5.7). To show the second property, consider
x € E € £(K). With (5.4) and Lemma 5.3, A p (V") = Ag g (V") for K’ € Ak F.
Employing (5.46) and (5.42) then yields

1
A (S - A , n
k) = e K/GZAj KB ()
1
=— Ag e (x) = Ag E(")(x) = v°[g (%),
card(Ag. F) K,EZAK .
which completes the proof. O

For K € M and F € F(K), we denote by Lk r(v°) € Sg, (K) the unique
polynomial lifting which is given by

Lk r)|F = °g)|F — Ag F(v°) € Qp, . (F) onF, (5.47)

and by a linear blending function in direction orthogonal to F. With Lemma 5.6, there
holds

Lk r)|g =0, E € E(F). (5.48)
Therefore, the lifting L 7 (v®) vanishes on all other elemental faces F' € F(K) with
F' #£F.

Lemma 5.7 For K € M and F € F(K), let the face lifting Lk r(v°) be defined
by (5.47) with Ak r(v®) in (5.46). Then there holds

NilCk rOP S Ipglimpgy o 0T, (5.49)

with -7:1HD(AK,F) in (5.13). I]‘f,l‘D(AK,F) = ), the sum on the right-hand side is
understood as zero.

Proof Let first F € F(K)\Fp(K). We have card(Ag r) € {1, 2}. If card(Ag.r) =
1, then F is irregular in F (M) or a Neumann boundary face in Fy (M). In this case,

we find that Lx r(v®) = 0 and .7-'1”D(A1<,p) = (. Hence, (5.49) is satisfied. Next,
let card(A g, r) = 2. Then there is K’ € Ak r such that F = Fg g € Fr(M)is a

regular face. We may assume that F € F 1” (M); otherwise, we have Lk r(v®) = 0

since v°® € Vf;’;”% The properties (3.31), (3.32), anisotropic scaling and the inverse
inequality (5.19) yield
Ngllk,r)P S Ikl hp 10k — Ak r 01725,

B (5.50)
Sk TR -

Second, consider F € Fp(K). Then, F = Fk r, € Fp(M) is a Dirichlet face for
t € Jp. Again, we may assume F' € F % (M). Proceeding as before, we obtain

Nl r P S 1kl 0z T TF 72 - (5.51)
EOE';W
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Referring to the bounds (5.50), (5.51) and the definition of the sets F 1” p(Ak.F)
in (5.13) implies (5.49). O

For K € M, we define the full face lifting by

L) = Y Lgr(®) €Sy (K). (5.52)
FeF(K)

and introduce v’ € Vﬁ’g’l by setting
vk = 0%k — L (%) € S5, (K), K e M. (5.53)

The definition (5.53) only affects the face parts of v®|x in (3.14), (3.15), while the
other parts of v¢|g are left unchanged. In particular, the interior part of v'|g is equal
to that of v|g. By construction, the function vf is conforming over all faces F €
F ILD (MYUF g (M) and over all regularly matching interior faces F € F IH (M). With
Lemmas 5.3 and 5.6, there holds

(V'1k)lF = Ak, F (09, F € F(K), (5.54)
(1) lE = @°l0)lE, E e £(K), (5.55)
vk (N) = vk (N), N e N(K). (5.56)

We are now ready to establish Theorem 3.12 in Sect. 3.4.

. —£.0.L ¢ o f =601
Proof of Theorem 3.12 Givenv € V, /=, we define A; ((v) := v' withv' € V '
as introduced above. Clearly, Aﬁg . is linear. By construction, the function v' is con-

forming over all faces F € F ILD (/\/lﬁ) UF g (/\/lﬁ) and over all regularly matching
interior faces F € F) (MY). With Assumption 3.1, this implies items (i), (ii), (iii) in
Theorem 3.12. In addition, if v € V(f,’; , all liftings constructed in this section are zero,

which implies item (iv). Similarly to the proofs of Propositions 5.2 and 5.5, it follows
from (5.49) that

TJ‘ e 12, f12 < 4 e 2‘
MmVT = v gmp gy [V S P gmp g [V

Hence, the triangle inequality and the bounds (5.29), (5.44) yield

Yiglo = v P +jmp gy 0P S 1P jmp gy 0P (557)
which is the bound (3.45) in Theorem 3.12. O

FolCT

I_I o
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6 Polynomial Jump Lifting Operators

4

We construct the operators L; .

and prove Theorem 3.14. Throughout this section,

: —0.0.L . .
we fix vf = A’ .(v) for v € V. While conforming across regular faces and

over different mesh patches, the approximations v! are generally discontinuous over

irregular faces between different mesh layers in the interior of mesh patches. By
construction of our meshes, it is sufficient to consider three types of irregular mesh
configurations in the context of the reference mesh patches.

6.1 Anisotropic Faces

Anisotropic irregular faces arise in the generic geometric situation illustrated in Fig. 4
along an edge e (i.e., in direction of x).

The figure displays the elemental face F € F(K) of the outer element K, which
is subdivided into two irregular faces F| := Fk, ¢ € F(K1) and F» := Fk, x €
F(K»), for two refined elements K1, K> in the inner layer. The corresponding irregu-
lar edge E! on F is an elemental edge of K1, K>, but EIl ¢ £(K). All elements belong
to the same mesh patch of the underlying geometric mesh. The elements {K, K1, K>}
and the faces {F, F|, F} are possibly anisotropic; their edge-parallel lengths are thus
denoted by the generic parameter A!l. The edge-perpendicular diameters of the ele-
ments involved are shape-regular and of size hi ~ hi_ ~ ht fori = 1,2, with
h* < hll. The precise locations of the elements in edge-perpendicular direction are
determined by the parameters al{ azL, bll, b, whose values only depend on o. The
setting is such that the irregular faces F, F; satisfy (3.31), (3.32). The configuration
shown in Fig. 4 is prototypical as it appears along edges in reference edge mesh
patches A’de or in the scaled edge-patch blocks Mﬁ’ce’” introduced in (4.19), (4.20)
for reference corner—edge mesh patches /\/lf;’“. We note that two rotated and super-
imposed configurations of this type can overlap over one of the smaller elements K
or K»; cf. Fig. 1 and [20, Figure 2].

In Fig. 4, we have El = {(alJ-, 0, x: xIl e (0, h”)}. We further introduce the par-

allel elemental edges Ell‘ EQ € £(K) given by Ell‘ = {(0,0,x1 : xI € (0,nl}

Fig. 4 Interface between K and zl
K1, K> foro = 0.5 and e
length hll. The anisotropic £l —
irregular faces Fy, F», the :
irregular edge E I'and the
elementaledges I A 27
Ef E Ef E) of K are :
illustrated. The highlighted
nodes are regular vertex nodes -zt
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and Eg = {(aj-,O,x”) - xl e (o, h”)}. In the reference mesh patches these
edges always appear as regular edges. With (5.4), the nodes highlighted in Fig. 4
are then regular vertex nodes. We further denote by Ei, E2L € &£(K) the perpen-
dicular elemental edges of K given by ElL = {(xll,O, 0) : xﬁ € (O a )} and
= {(x. 0,41 : xi € (0.ad)}. Accordingly, we have E; = Ej; U E;; for
i= 1, 2, with EZJJ- € S(KJ) irregular in £(M). Upon writing pg p = (ﬁk’F, ﬁ|1|< 7)
and ﬁKj,Fj = (ﬁJ[EjVFjv ﬁg(j,]«‘j) and since AK,F = {K7 K17 KZ}, AKJ',FJ' = {K]7 K}7
the definitions (3.12) and (3.13) imply
-1 =l =l =l - <5 1<i i<?
PX.F = PK;F;»  PKF =PkjFp PKES=PKES <i,j=<2
6.1
With (6.1) and noting that (v/|g)] 1 € Ps . (Ei) and (v|g)F € Qp, ,(F), it
follows that L

W'0)lgs €Bp,  (ED. Olole € Qpe p (F), 150j <2 (62)

pKE

The face approximation v' is generally discontinuous across the irregular face F s we
then recall from (3.6) that [[v] F; = vk i v|x . The properties in (6.2) imply

(005 )t € Pry 0 (B I'Dr, € Qg (F. J =12 (63)

For a function v, we define the jump [v]r over F=F UF, piecewise as
(IlP)lF, = [vlF.  j=1.2. (6.4)

Lemma 6.1 In the configuration of Fig. 4, we have [v' ]y € C°(F), as well as
[v'lF =0on E! and on Eg

Proof By Theorem 3.12, the approximation v’ is continuous across the regular face
Fk, k,, which implies v'1r € COCF). Since E lll and EQ are regular edges, then

{K,K;} C AK’E}! = AKLEL!; see (5.6). The second assertion follows now from the

construction of vf; cf. (5.42) and (5.55). O

To remove non-vanishing jumps of v’ over the perpendicular elemental edge E IL

Lo
of K, we introduce the polynomial edge jump lifting /35 i (v") by

[o lF(xi, 0,0)0(1 —x3 /b (1 — xI/nl),  on Ky, K2,

F.E:
Lo =
¢ @) 0, on K.

(6.5)
F.E} ¢ 0= | = . . FEf, ¢ .
Due to Lemma 6.1, £, (v') € C°(K| U Kj3). With (6.3) and since L, (v') is

1
linear in directions oij- andx”,wehaveﬁf’E' (vf)|Kj € Sp, . (Kj)forj =1,2.The
J

Fo C 'ﬂ
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lifting reproduces [v'] 7 on E f and vanishes on the planes le = bf-, xl = nl, aswell
as on the edges E {l , Eg Moreover, it vanishes identically if £ 11_ is a Dirichlet boundary

1
edge. A corresponding lifting ﬁf 2 (v') can be constructed for the edge E2l In the
geometry of Fig. 4, we then introduce the full edge lifting

2
LFEQD) = Zcf’E"L(vf). (6.6)
i=1

Lemma 6.2 For j = 1,2, there holds

Nig [£8F DT < 1p b I TF 172 (6.7)

Proof The proof follows along the lines of Lemma 5.4: The definition (6.5) yields

F.E+
ICe™™ WHITak,) S RNV DA 172 - (6.8)
LY

Then, the inequality (5.24) applied on EJJ' CF j in edge-parallel direction implies
||[[vfﬂpj||iz(E$) < PG THIE 172 - (6.9)
The inverse estimate (5.19), the above bounds and employing that 2+ ~ h F; give

F,E+ _ F.E+ _
N ILe ™ @OP S IpF 720 ™ WD T2k, S 1P IV A 172 -
(6.10)
This implies (6.7). m]

Remark 6.3 The lifting LeF’E(vf) does not generally vanish on x! = 0 and xl = Al.
However, with Assumption 3.1 the constructions of corresponding liftings in adjacent
elements will lead to conformity of v'*#*F across x| = 0 and x| = &l in edge-
perpendicular direction. This will be detailed in Sect. 6.3.

Next, we introduce the auxiliary function

3 F.E
f.F.E Ut—ﬁe (Uf)’ on Ky, K3,

v = 6.11
vf, on K. ( )

Then, o7 e CO(K, U K>) and v""Flg, € Sp, (K;). With (6.1) and as in
‘/ —
Lemma 6.1, we have [[vf’F’E]]F/. € Qp, , (Fj) and [v"FE]r € CO(F). By con-
J0

struction,

"7l =0on EF, "7 Flr=0onE!, =12 (6.12)
EOE';W
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Moreover, we have

([[vf,F,E]]Fj)|EH c Pfkj,EH (EN, ji=1,2, (6.13)

since Py, g1 = P, , by 313, ') p € Py (EDand Py p < Py 7 by 6.1).
Following [20, Section 5.2.1], we introduce the lifting associated with F by

[t FENp(xi, 0, x) (1 — x3-/b),  on Ky, Ko,

6.14
0, on K, ( )

Lf(vf) = i

with v"FF in (6.11). Clearly, £LF (") € C°(K; U K3). Due to (6.12), (6.13),
Ef(vf)h(j € S?Kj (Kj) for j = 1,2, and ﬁf(vf)|p = [w"FE7 . Moreover, the

lifting Ef(vf) vanishes on the planes xj- = bi, xll =0, xf- = aé‘, and x! = 0,
I — pl
xh=hl,

Lemma 6.4 For j = 1,2, there holds
Nig [£e 0DF < P10 110 5, 152 (6.15)

Proof As in (5.49), we have

L pF o fy12 4o~y £,F,E 2
Nig, L8 @OF S 1p1 0 I 15 12 (6.16)
Then, the trace inequality in Lemma 4.11 implies
B I F 8, 172 ) S Bp) I DR 172 + Nig LL5F (0D1
Referring to (6.7) completes the proof. O

To analyze the lifting (6.14), we introduce the piecewise polynomial function

er v = L8FN - £F 0N, on Ky, Ko,
=1 (6.17)
vt on K,
We have v € CO(K| UK>) and v"-F|g; € S;Kj (Kj)forj=1,2.

f,

Lemma 6.5 The function v©F in (6.17) is continuous across F.

Proof Consider x € F; for j = 1, 2. Then, with the definitions in (6.6), (6.14),
0" 1r, ) = ['F ) — L5 F 0Dk, (0) = " FE g, (),

with v"%F in (6.11). Since [v"-FF ], (x) = [0 17, (0) — LoF (1) [, (x), it follows

that [v" "7 (x) = [v"F1F, x) =0. o
Elol:;ﬂ
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6.2 Isotropic Faces

Isotropic irregular faces appear by subdivision of elemental faces into either four or
two isotropic faces.

6.2.1 Refinement of One Elemental Face into Four Faces

First, we consider the generic configuration in Fig. 5 where the elemental face F €
F(K) of the outer element K is subdivided into four irregular faces F; = Fg K €
F(Kj),1 < j <4, withfourelements K1, K3, K3, K4 in the inner layer. All elements
and faces involved are in the same mesh patch and are isotropic of mesh size h. As
such, the faces F' and F; satisfy (3.31), (3.32). As before, the parameters ay, az, by
and c1, ¢y only depend on o. We further denote by E1, E>, E3, E4 the elemental edges
of K on xp = 0; cf. Fig. 5. The elemental vertices of K on x, = 0 always appear
as regular vertex nodes in A (M). This conﬁg}}ratlon arises in reference corner mesh
patches Mz ¢ or in corner-type submeshes M€+ of reference corner—edge mesh
patches ./\/lE ¢ with refinement along one or two edges; cf. Fig. 1 and [20, Figures 4, 8
and 10]. Again, two rotated and superimposed configurations of this type can overlap
over two of the elements in {K1, K>, K3, K4}; cf. Fig. 1 and [20, Figure 4].
From (3.12), we see that

Pk.r <Pk, P <Pk 1 Sis4 (6.18)

Therefore, as in (6.1), we have

WOIE € Qoo (Fp). 1D € Qg , (F), 1=j<4 (619

Fig. 5 Interface between K and , T3
K1, K>, K3, K4 foro =0.5.
The isotropic irregular faces co
F1, F», F3 and the elemental Ky Ks
edges Eq, E5 of K are c1

indicated. The highlighted nodes
are regular vertex nodes b1 F3

E>
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As in Sect. 6.1, we define the jump [v ]| piecewise as
(IR =0 lr,  1<j<4 (6.20)

Lemma 6.6 In the configuration of Fig. 5, there holds: (i) [v'1r € CO(F); (ii)
[[vf]]F(Ni) = 0 at the four elemental vertices N1 = (0,0,0), Ny = (a2,0,0),
N3 = (a2,0, ¢2), and N4y = (0,0, 2).

Proof By Theorem 3.12, the approximation v' in (5.53) is continuous over the regular
faces Fg, k,, Fk,, k3> Fk3, k4 and Fk, k,. As aconsequence, we have il e Co(f).
Since (K, K} € Ag N = AK,-,N (see (5.5)), the second assertion follows again from
the construction of v! and property (5.56). O

We introduce edge liftings associated with the elemental edges Ep, E», E3, E4
of K. We focus in detail on edge E1 = {(x1,0,0) : x; € (0, az)} € £(K) intersecting
with Fy, F> and K, K». By writing Ey = Ej1 UEjp with E1j € E(K), j = 1,2,it
follows from (3.13), (6.18) that Pk.E = ﬁK,—,Eljv j =1, 2. Therefore,

f f .
W K)lE,; € ]P’ﬁKj_Elj (Erj).  (v'1F)E,; € PﬁKjYElj(Elj)v j=12
(6.21)
We then introduce the polynomial edge jump lifting associated with E by

[vTF(x1,0,0)(1 — x2/b1)(1 — x3/c1), on Ky, K2,

cEE ol =
W) 0, on K3, K4.

6.22)

From Lemma 6.6, Lf’E‘(vf) € CO(U‘;ZIFJ-). Due to (6.19), (6.21) and since
LEE1 vl is linear in directions of x2, x3, we have £fF! (vf)|Kj € Sp, (Kj) for
J
1 < j < 4. The lifting reproduces [vi]F on E; and with Lemma 6.6 vanishes on
the other edges E», E3, E4. It also vanishes on x = by and x3 = cy. It vanishes
identically if E is a Dirichlet boundary edge. Corresponding liftings {L‘cF -Ei (v‘c)}f:2
can again be constructed for the other edges E», E3, E4. The full edge lifting is thus
defined as

4
LEEQD = Zz:f»Ef h). (6.23)
i=1

Proceeding as in Lemma 6.2 (with isotropic scaling) immediately yields the stability
bound ‘ .
Nig [LEE @D S IpIBe I r oy 17 <4 (624)

Remark 6.7 As will be discussed in Sect. 6.3, the conformity of Ef B (vf) across outer
boundaries of {K, K>, K3, K4} will follow from the constructions of corresponding
liftings in adjacent layers of elements; cf. Remark 6.3.

Elol:;ﬂ
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We next consider the piecewise polynomial function

f—rlPeh,  onkiy, K K3, K
Uf‘F’E — v c ( )5 1, A2, 3, 4, (6,25)

vf, on K.
Then, v"FF € CO(UI_ K ). and " F g, € Sy, (Kj). With (6.18), (6.19) and

similarly to Lemma 6.6, we have HFENp e Co(f) and [[vf’F’E]]Fj € @;Kjﬂ (Fj).

Moreover, the analog of property (6.12) holds:
WrElr=00nE;, 1<i<4. (6.26)

If E' € E&(Fj) with E‘'NE; =@ foralll <i <4 (e, E' € £(K}) is irregular
between K, K ; and situated in the interior of F), we further have

W " E M)l € Pry i (B, (6.27)

since, as in (6.13), ﬁKj,E/ = ﬁ’;(ijj foranindex k = 1,2, (Wf|x) g € PF'; F(E/) and

Pi.r = P, 5, dueto (6.18).
Following [20, Section 5.3.1], we then introduce the lifting over the face F' by

[ FENp(x1,0,x3)(1 — x2/b1), on K1, K2, K3, Ka,

A
e (V) 0, on K,

(6.28)

with v"F-F in (6.25). Then, £F (W) € CO(U‘}:]fj) and LI WD)k, € Sp, (K)),
(K

1 < j <4, in view of (6.26), (6.27). The lifting Lf(vf) vanishes on x = b; and
over the sets E; x (0, c¢1), | <i < 4. Proceeding as in proof of (6.15) (with isotropic
scaling) yields

N 1LE @D < 110 10 DA 12 1T <4 (6.29)
Analogously to (6.17), we introduce

r Uf_ﬁfsE(vf)_ﬁf(vf), on K, K7, K3, K4,
o [V (6.30)
na on K,

We have vf-f € CO(U‘}ZIEJ-) and vf'F|Kj € S?Kj (Kj)forl<j<4

The following variant of Lemma 6.5 holds true.

f,

Lemma 6.8 The approximation v in (6.30) is continuous across F.

FoC'T
H_h
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6.2.2 Refinement of Two Elemental Faces into Two Faces

Second, we consider the isotropic configuration depicted in Fig. 6. It involves an
element K where two adjacent elemental faces F, F' € F(K) are subdivided by
using isotropic versions of the irregular refinement in Fig. 4, thereby yielding the
elements K, K> and K1, K.

As in Sect. 6.1, we then introduce the irregular faces F; := F KK € F(K;) and

Fj:= Fy, g € F(K)) for j = 12. Then, F = F1 U F; and F =F,UF,. In

Fig. 6, we further illustrate the elements K lD , K 2D on the diagonal. We consider the
elemental edge E € £(K) given by

E:={(x1,0,0):0<x <a). (6.31)

All elements are situated in the same mesh patch. This geometry only arises in diagonal
elements of corner—edge mesh patches with simultaneous refinement along two or
three edges e;, with K, K ID and KZD corresponding to diagonal elements; cf. Fig. 3.
With (6.4) and the continuity properties of vf, we have [[vf]] F= |[fo 7 on E. However,
the edge liftings Lg’E(vf) over Of = {K, K1, K»} associated with F as in (6.5) and
Ef/’E(vf) over 05, =: {K, K|, K}} associated with F" are not necessarily continuous
across the regular faces FKI_’KJ_D and F 1 KD for j = 1, 2. To correct for this, we

introduce on {K P, K} the additional diagonal edge lifting

Lp@h) == [ r(x1,0,00(1 —x2/b1)(1 —x3/c1),  onKP, KP. (632

This lifting reproduces [v']7 on E. Since [v']r(N) = 0 for N = (0,0, 0) and

N = (ay, 0, 0), see Lemma 6.1, it vanishes on 8K1D N{x; = 0}and 8[(2D N{x; = a},

implying that it does not affect the values of v outside the configuration depicted in

Fig. 6. We also have £p(vf) € CO(Ky UKS) and Lph)lgp € S5, (KP) for
J j

Jj =1,2. Asin (6.24), the following (isotropic) stability bound holds:

Fig. 6 Two elemental faces

F, F' € F(K) are irregularly
subdivided as in Fig. 4. The
elements

K1, K2, K|, K5, KP KD, the
irregular faces Fy, Fz/ and the
elemental edge E € £(K) are
illustrated. The highlighted
nodes are regular vertex nodes

FolCT
s
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NiolLo@OP S 1PIBA I M2y J= 1.2 (6.33)

Similarly to (6.11) and in the geometry of Fig. 6, we then introduce the auxiliary
function

ol — 25 F @b, on K1, K>,

A AL O R Y < <

of D= . . S (6.34)
v — Lph), on K", K5,
vf, on K.

We have vi"P|g € Sy, (K) for K € {K1, K2, K{, K}, KlD, KZD}. Then, since the
faces Fy. gp and Fy, gp are regularly matching for i = 1,2, the function of is
conforming over these two faces due to Theorem 3.12. From the definition of the

liftings it then follows that
D 0= — — — —D =D

6.3 Superposition

We superimpose the constructions in Sects. 6.1 and 6.2. Upon employing the patch
maps Gpv, 1t is sufficient to consider the geometric reference mesh patches. For
M e {/\/l Y ele e ce,int}, We denote by Se(./\/l) and &(./\/l) the sets of all macro-
faces F appearing as in Figs. 4 and 5, respectively. We denote by DF {K, K1, K2},
respectively DF {K, K1, ..., Ka}, the sets of elements associated w1th these config-
urations. The geometry in Flg. 6 involves two isotropic versions of the configuration
in Fig. 4. We then denote by © (M) the set of all pairs D = {KP K 2D } of elements
appearing on the diagonal as in Fig. 6. . _

Let My = Gy (M) be a mesh patch and let M € {Mﬁ*f}te{c,e,w,im} be the
corresponding geometric reference mesh patch. The averaged approximations v’ | M,
in Theorem 3.12 restricted to the mesh patch M, can be pulled back to the reference
patch M and will be denoted by o' | 57- We now define v°| 5 as:

Tl =g Y. (LEEQH +Lfah)

FeFe(M)
_ F.E ~f F~f\) ~f (6.36)
doo(ehEah+cfah) - >0 Lo@h
FeFe(M) DeD (M)

Here, £eF’E(?)'f) and LeF (@) are the liftings in (6.5), (6.6) and (6.14) associated with
the face F and the elements in ?f. The liftings Ef E (@) and ck (¥") are given
in (6.22), (6.23) and (6.28) with respect to the set Df . Finally, £p @) are liftings
as in (6.32) over the element pairs D = {K ", KZD} depicted in Fig. 6.

Remark 6.9 The liftings ££ ("), £F (0") and £ (") in (6.36) are locally supported
and vanish at the patch interfaces of M. Hence, they do not affect inter-patch continuity.

FoE'ﬂ
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For M, = G, (M), we then ieot vMm, = Vg0 G;l lg, - This gives rise to
a finite element function v° € V.. The approximation v belongs in fact to the

. l.1 .
conforming space Vs, as we show in two steps.

Lemma 6.10 The approximation v¢ vanishes on all Dirichlet boundary faces and is
continuous across adjacent mesh patches.

Proof Since o' and the liftings Ef E (T)'f), Lf E (T)’f) in (6.36) vanish on patch faces cor-
responding to Dirichlet boundary faces, it follows with Remark 6.9 that v vanishes on
Dirichlet boundary faces. The approximation v’ is conforming across adjacent mesh
patches; see Theorem 3.12. Similarly, from Assumption 3.1 and the continuity prop-
erties of vf, we conclude that mapped versions of the liftings Ef E (@) and Ef E @
in (6.36) yield conforming approximations over the corresponding mesh layers across
two matching irregular configurations of two adjacent mesh patches. With Remark 6.9,
this implies inter-patch continuity. O

We next establish the inner-patch continuity of v°.

Lemma 6.11 On each mesh patch My, the approximation v°| M, s continuous
across all faces within My, .

Proof Since My = Gy (M) for M € {Mﬁ’t}te{c,e,ce,im}, upon mapping it is suffi-
cient to verify separately the continuity of v¢ in (6.36) for each reference mesh patch
type. Note that 7' is continuous over all regular faces where no additional jump liftings
are necessary; cf. Theorem 3.12.

Interior patches: By construction, only regular faces arise in an interior patch ./\/1 =
ML, That is, Fe(M) = §c(M) = D(M) = @ in (6.36). Hence, 7°| g7 = '
and the inner-patch continuity follows. »

Edge patches: For M= /\/l , we have Se(/\/l) # () and SC(M) DM) =0.
In each of the £ — 1 outermost layers of the patch, the definition (6.36) involves two
rotated and overlapping versions of the anisotropic irregular configurations in Fig. 4,
along a common edge corresponding to £ I or E, Vin Fig. 4; cf. Fig. 1 and [20, Figure 2].
Let then F be an irregular face in the patch. By the properties of the liftings ,CF E @
and LF(T)'f) the jump [V°]F coincides with [[v F1 g, where v 5 F is defined in (6.17)
over the elements DF associated with F'. Then Lemma 6.5 ensures the conformity
across the irregular face F. . »

Corner patches: For M = Mﬁ'”, there holds §e (M) = D(M) = . As before, in
each of the £ — 1 outermost layers in the patch, the definition (6.36) yields three rotated
and superimposed versions of the geometry in Fig. 5, along edges corresponding to
E; in Fig. 5; cf. Fig. 1 and [20, Figure 4]. If two geometries are superposed over such
an edge E;, the continuity properties of o' imply that the corresponding edge liftings
Ef Ei (") defined as in (6.22) from within each of the two configurations coincide on
E;;cf. [20, Lemma 5. 10]. If F is now an irregular face in the patch, then [v°] ¢ is equal
to [3%-F 1, where 3% is defined in (6.30) in terms of liftings £{ = (%) and £F (")
over the elements DF associated with F'. Lemma 6.8 yields conformity across F.

Corner—edge patches with refinement along one edge: Note that ’D(./\/l) =0
in (6.36). We then use the representation (4.19)—(4.22) in Sect. 4.3.2. In each edge-
patch block 'ce (./\/lf;/’”), 2 < ¢’ < ¢, the definition (6.36) activates the edge-patch

Fo C 'ﬂ
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liftings /.15 E (@) and L’f (?") as above; thereby ensuring conformity across irregular
faces F within each of these blocks due to Lemma 6.5. In edge-perpendicular direc-
tion, the isotropic mesh D%-¢¢-L U DL consists of two sequences of £ — 1 irregular
and overlapping configurations as in Fig. 5, with the smallest configuration extending
into the corner mesh T:¢; see Fig. 2. The approximation 7° in (6.36) then invokes the
corner-patch liftings Ef £ (@) and Lf (@), which, as in the corner patch case, enforce
the continuity across irregular faces in 5£’”’L U ﬁff and from ﬁf;“’l into %ﬁ& cf.
Lemma 6.8. The edge jump liftings Ef ’E(Uf) and Ef ’E(Uf) result in approximations
which are conforming across edge-perpendicular faces of diagonal elements into the
corresponding elements of Mﬁ’ce’ I (for example, across the regular faces f K} K] and
f K, K. in Fig. 2 (right)). Similarly, they yield continuous approximations from corner
elements in ‘IZ ¢ into elements in W<€ (./\/t2 ).

Corner—edge patches with refinement along two edges: We now have O (./\/l) # 0,
as the refinements toward two edges introduce the geometric situation analyzed in
Fig. 6 over the diagonal elements in D ' N D52 (e.g., over K¢, K{ in Fig. 3 (left)).
We use the representation (4.24), (4.25) in Sect. 4.3.3. In the submeshes ./{/lvf;’ce' I'and
/\7,@“’2’ H, the liftings EeF ’E('f)'f) and Ef (Bf) are again activated and ensure the conti-
nuity over edge-parallel anisotropic faces. Similarly, the liftings Ef E (@) and ck @)
yield continuity across the irregular faces in }Sf; ce.l (ﬁ{’cel U 5([;,0:22) in perpendicu-
lar direction and from 55f;ce L into the corner elements in ‘Eﬁ‘ In addition to £5 B @5,
£ — 1 versions of the liftings Lp @) in (6.32) are invoked in (6.36) (e.g., from K¢ into

= {K}, K¢} in Fig. 3 (left), where element K (unlabelled in the figure) is situated
underneath element K¢). In the configuration closest to ¢, these liftings extend into two
corner elements of %f;*”. With (6.35), this procedure ensures continuity over diagonal
elements along the edges. In perpendicular direction, the edge jump liftings L',f E D)
and 55 E (¥") give conforming approximations across faces of diagonal elements into
the corresponding elements in the edge-patch blocks (e.g., across the regular faces
F K| K] Of F K} K] in Fig. 3 (left)), as well as from TZ into elements in W2-¢ei (./\/l2 iy
fori = =1,2.

Corner—edge patches with refinement along three edges: Clearly, D(M) # .
With (4.27), the geometric situation in Fig. 6 now appears along three edges on the
diagonal elements in DLcernpleer pheer aphees and DL N DL e (e.g., over the
element pairs {K1, K{}, {K4, K} and {K¢, K} in Fig. 3 (right)). Isotropic irregular
faces as in Fig. 5 are not present in this case (i.e., 30(/\7) ). Hence, in (6.36), only
the liftings L:F E( ), L:F( ) and Lp (@") in (6.32) are active. The liftings £p (v")
extend into the corner elements in Ke €. Property (6.35) then ensures the continuity
over diagonal elements and into Tl ¢ O

We now complete the proof of Theorem 3.14 in Sect. 3.4.

Proof of Theorem 3.14 We set L} (") := v°, with v° defined above. By construc-
tion, Lf;’ , 18 linear and reproduces functions in ijsl . Lemmas 6.11 and 6.10 imply

FoE'ﬂ
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v e stl From (6.36) and the properties of the liftings, we further find that

THEE =TS D0 (T lLe GO + p £ T)))
FeFe(M)
+ > (YLl F@OP+YGILl @)+ Y0 YplLo@HP,
FeFe(M) DeD (M)

for any geometric reference mesh patch M. The stability estimates (6.7), (6.15) for
LEE @) and £F @), the estimates (6.24), (6.29) for ££E (3F) and £F (), and the
bound (6.33) for £p(?") finally yield

L ~f ~cq12 10; ~f12
Tﬂ[v -0 < |p] Jmp]_.ln(f\;[)[v] , (6.37)

where F I” (/ﬁ) denotes the interior faces on M which satisfy (3.31), (3.32). After
mapping to the physical patches and summing over all patches, this implies the
bound (3.46). O

7 Conclusions

We established the H '-norm exponential convergence rate exp(—b~/N) of conforming
hp-FEMs in axiparallel polyhedral domains € C R3. The FE spaces are based on o -
geometric mesh families 91, of hexahedral elements containing, in general, irregular
faces and edges. Geometric meshes M € 9, are obtained as finite unions of four
types t € {c, e, ce, int} of o-geometric reference geometric mesh patches /\/lf;’t. The
hp-version FE spaces allow for anisotropic elemental polynomial degree distributions
with s-linear growth in terms of the logarithmic element distance to the singularity
set S of Q. General subdivision ratios 0 < o < 1 and slope parameters s > 0 are
admitted (the analysis extends in a straightforward fashion also to directional slope
parameters s! and s*). Inter-patch mesh compatibility is ensured by a compatibility
requirement on the patch maps, and inter-element continuity is ensured by a minimum
degree rule on the local polynomial spaces.

Our principal technical contributions are the constructions of ip-version quasi-
interpolation operators, which can be assembled from four types of reference patch
quasi-interpolants ﬁg s Wwhich are well defined on H (é) and exponentially con-
sistent in the H _norm for functions 7% belonging to an analytic reference class
By (Q) with weighting toward corners and edges of Q according to the patch type
t € {c, e, ce, int}. Analogous L>-norm error bounds for L>-projections for the approx-
imation of solutions in B_j(£2) are also obtained.

We considered the particular, second-order model elliptic problem (1.1)—(1.3) for
which analytic regularity was established in [5]. The presently proved exponential
convergence rate estimates are, however, independent of the particular PDE and apply
to any elliptic problem which admits an analytic regularity shift in the analytic classes
B_1_p(R2) in Definition 2.1. The present results extend also to hp-FE spaces which
enforce conformity by the maximum degree rule. They also imply exponential bounds
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dyv (K, X) < exp(—b«s/ﬁ ) on the Kolmogorov N-widths dy (K, X) of the analytic
classes K = B_j_p(Q N H 140 (€2) which are compact subsets of the Hilbert space
X = H'(Q). This bound is of interest in connection with reduced basis approxima-
tions generated by greedy algorithms in X'. We refer to [4] for theory, and to [17] for
recent developments for elliptic problems.

8 Appendix: Proof of Theorem 4.3

We outline the major steps of the proof of Theorem 4.3.

8.1 Approximation Results
We first establish auxiliary approximation results.
8.1.1 Univariate Approximation Properties

The following consistency bound holds for the H'-projector 7Tp,1 in (4.1) on I =
(—1, 1); see [26, Corollary 3.15].

Lemma8.1 Letp>1,u € Hs ! (T) and 0 < s < p. Then there holds

~_ &~ =~ ~s+D2
||M 7[[),1““1_11(1) 5 lI/p,.&‘”l't ”LZ(I)' (81)
Here,
r 1—r
MPSRLAC el (8.2)
'(g+1+r)

where I' is the Gamma function satisfying I'(m + 1) = m! for any m € Ny.

The subsequent H '-norm error bound holds for the L2-projection 7Tp,0 (seealso [26,
Theorem 3.11] for p-optimal bounds).

Lemma8.2 Letp>1,u € Hs ! (T) and O < s < p. Then there holds
I = Tp0tll 1 gy < PPV TV 5 - 8.3)
Proof We recall from [25, Lemma 5.1] that
IGp.0 Nl 2y S max{L, py* @9 27, p=0.5>0. (84

With (8.4) and for p > 1, we find that

& — 7p,0ull g1 7y < Nt = Tp 1@l g1 7y + 1T p,0@ — Tp 1 |l 1 ()
2~ A~
< PRIE = Fpa@ll .
Referring to (8.1) yields (8.3). O
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8.1.2 Approximation Properties of TTp.

We next derive approximation results for the tensor projectors in (4.3). On K =1,
we introduce the tensor-product space
L 17 L7 1
Hyix (K) 1= Hy K @ H'(K) = H' D@ H' (D@ H' (D). (8.5)

endowed with the standard (tensor-product) norm || - || HL (R Let K = K+ ® K+

be an axiparallel element, px = ( P X p ) an elemental degree vector and rg €
{0, 1} an elemental conformity index in edge-parallel direction. For u : K — R, we
denote by # := u o Ok the pullback to the reference element K. In this setting, the

tensor projection T ., U = 7t ut 0®n L u defined in (4.3) satisfies the subsequent
K

bounds.
Proposition 8.3 The errorﬁé‘ =u-— ;‘ Ou in edge-perpendicular direction satisfies
K>
T2 2 S (P, ot B (K ), (8.6)

forany 0 < sf(‘ < pi, with

542
L Ih— I
ERKiw = Y Y ) P a DY O i, - 87
let|=s+1 all=0,1

The error 7l = — ﬁp” rKTiin edge-parallel direction satisfies
K-

1D DY 2 RS R (1 S e[+ i (8.8)

Lz(K) NP u”Lz(K)’

foranyrg =0, 1, et >0, al =0, 1, and0<s <p||

Proof We have
=~ =~ = =(2) 7= )] A(l) ~_ =02 =~
oy =1u npé’0®np#0u_ JTLOA)~|- <u ”lo)'

Hence, by the triangle inequality and the stability property (8.4) of the univariate

=(1)

L?-projector np Lo We find

2

1.4 PP ORPN
B3 &) S PR (D 1E -7 Al ) -

i=1
FoE'ﬂ
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The univariate approximation properties (8.3) in Lemma 8.2 now imply

1y~ 2
195121 2y S PRP W, (D0 IDORHer a2, o

050[5‘,0{”51

1y~ 2
+ Y petsape, oY,

0<ai,all<1

for any 0 < sf(- < pk and where we write D* = D@1-22.93) for a multi-index
a = (ay, a2, 3). This bound and a scaling argument as in [24, Section 5.1.4] yield
the desired bound (8.6) for ﬁOL

The bound for 7! is an immediate consequence of the consistency bounds (8.1)
(rxk = 1) and (8.3) (rx = 0) applied in edge-parallel direction, combined again with
a scaling argument as in [24, Section 5.1.4]. O

8.1.3 Weighted Norm Estimates in Plane Domains

In plane domains perpendicular to edges, we shall use estimates in weighted spaces
analogous to those in [13, Section 3]. To state them, let & be an axiparallel and
shape-regular Arectan%le of diameter 1z which is affinely equivalent to the refer-
ence square 8 = Let ¢ be a corner of K and set r(x) = |x — ¢|. For a
weight exponent § € [0, 1), we denote by L%(ﬁ) the weighted L>-space endowed

with the weighted norm ”””Lz(ﬁ) = ||rﬁu||L2(ﬁ) For m = 1,2, the weighted

Sobolev space H ™ (R) is defined as the completion of all C*> (R)-functions with

respect to the norm ||u||i1m,m = |ul? + |u|il,,,,m
B B

* H"=1(R) (8 (R
ZI al=m D% u | 12(8)" We denote by T[p,() the L2-projection onto the tensor-product

, where |”|H;;“"’ =

polynomial space Q, () obtained by mapping 3127’0 on .

Lemma 8.4 Let B € [0, 1) be a weight exponent. For u € Hé’l(ﬁ) and p > 0, there
holds

B2 . (8.9)

— 72 ul? <
= oulliz ) S g el g

Similarly, for u € Hé’z(ﬁ) and p > 1, there holds

42/3 2
I =5, 0l 2 gy BRIV = 5 00Ny S P Pl (8:10)

The implied constants depend on the aspect ratio of K.

Proof To prove (8.9), we apply the triangle inequality and the stability of the L>-
projection 711% o to obtain
e =702 gl 2y S M =75 gull 20y + I p o = 75 ) L2y S Nt = 75 gull 25y

The proof of (8.9) for p = 0 can then be found in [19, Proposition 27].
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To show (8.10), upon scahng it is sufficient to consider the reference square A=
(=1, 1)>. We denote by p1 o the L?-projection onto the polynomial space IP; (ﬁ) With
the stability bound (8.4), it follows that

llw — 7Tp Ou”H'(R) lluw — p1,0||H1(§) + ||7Tp,0(u - p1,0m||H1(§)
4~ =) D
S p ||I/t - pl,OM”Hl(ﬁ)'

Hence, it suffices to prove (8.10) for ’[5%0: We claim that there is a constant C > 0
independent of % such that

IlﬁllHé,z(ﬁ) (IMIsz +1IP7 otill 2 3)) - (8.11)

The bound (8.11) follows with standard arguments from the Peetre—Tartar lemma
(see [10, Lemma A.38]) and the fact that the embedding H (ﬁ) — H! (ﬁ) is

compact (see [13, Lemma 3.4]). Invoking (8.11) for u — p1 0” and notmg that
P ottl W) = 0, P71 (@ —P7 yit) = 0, results in || — P71 W@ < Clal 2@
which finishes the proof. O

8.1.4 Edge-Parallel Interpolation

We construct univariate sp-projectors and establish exponential convergence bounds
for univariate geometric refinements on the interval w = (0, 1) toward x = 0. These
results will be used for the ~p-approximations along edges e € £, toward corners ¢ €
C.

In w and for 0 € (0, 1), we introduce geometric meshes 7 ¢ — = {I; with
elements given by /1 = (0, 0‘3) and /; = (U[+2_j, a“‘l_j) for2 < j 5 E + 1,
respectively. We introduce the local mesh sizes 4 := o and

e+l
i

hj =071 ~0), 2<j<t+1. (8.12)
Then, there is a constant k > 0 solely depending on o € (0, 1) with
K 'hi<|x|<khj, xelj,2<j<t+1. (8.13)

On the geometric mesh ’Z;l let pll = (p!, e peJr ) € N be an (edge-parallel)
polynomial degree vector with pH = max{l, [sj]}, fors > Oasin Sect. 3.2.1. We set

€+1

FAE max;; p | and introduce the space

voTt, ply = {v €L w) : vy € Py, j=1....+1 } (8.14)
J

For conformity indices r; € {0, 1}, we denote by 7 the projection onto VO(Tf, ph,
given on interval /; as the (scaled) univariate projector T, H"i(l;) — IF’pu ;).
J J
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@ Springer |_|_ :‘0 E|



Found Comput Math (2018) 18:595-660 651

For u € H'(w), we define the approximation errors 1 := u — wu, and set
12— 2 2 2
Lemma 8.5 For a weight exponent > 0, let u € H'(w) be such that
Hx I~ P H5u S oy < CIFIT G+ 1), s =2 (8.16)

Then, for any conformity indices rj € {0, 1}, there exist b, C > 0 independent of
€ > 1 such that Y15 Tj[n]> < C exp(—2b0).

Proof Fix I; € Té for2 < j < £+ 1. A straightforward scahng argument yields
T;[n] (h ]/2) ||n|| 1D where as usual we denote by v the pullback operator

from v| I; to the reference interval 7 = (—1,1). The bounds in (8.1) and (8.3) yield

) 14 (. )~ 1 ~sl4n 2
Tinl* < 1p"1* (hif2) L] e TR0 8

for any 1 < s}l < pL!, where we exclude s}l = 0in (8.1), (8.3) to ensure that s > 2

in (8.16). Scaling the right-hand side above back to element /; results in

Tyl < 1V (i)™ Wy D)2 (8.17)
AR / pls! L2(1)) :
Moreover, by the equivalence (8.13),
14 2428— 2(s”+1) 1— Iy I
AR PRy [ AT A PP C A 1)

By combining (8.17), (8.18) with the regularity assumption (8.16), we find that

) I I
T S 1p"1*h3P2" zw L1 B AT A VP
(8.19)

2 |
S |P”|4hjﬁ (Cu/2) 2 v Y\!F(S]” +2)°
77

for 1 < s; = p An interpolation argument as in [24, Lemma 5.8] shows that the

bound (8.19) holds for any real sj! e [l, pj].
Next, we sum the bound (8.19) over all intervals 2 < j < £ + 1. In view of (8.12),
we obtain

£+1 £+1 _ '
Z T;[n P < |p”| Zaz(ulﬂ)ﬂ min |:C25j \pp” S\!F(Sj + 2)2]
sfett.pl I
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By [24, Lemma 5.12], the bracket on the right-hand side above is exponentially small.
Adjusting the constants to absorb | p!l|* finishes the proof. O

Similarly, we obtain the following result.

Lemma 8.6 For a weight exponent > 0, let u € L*(w) be such that

x| AU 2y < CIFPT(s +2),  s=>1. (8.20)

For any conformity indices r; € {0, 1}, there exist b, C > 0 independent of £ > 1

such that y_'*} ||’7||Lz<1> < Cexp(—2b0).

Proof This follows as in Lemma 8.5 or [25, Proposition 5.5]. O

8.2 Reference Corner-Edge Mesh

We consider the reference corner—edge mesh patch MK ¢ on Q forc e Cande € &;
cf. Fig. 1 (right). As in [25, Section 7], it is sufficient to focus on the elements in Me ce
near the corner—edge pair. To this end, we introduce the submesh IC‘Z ce Mz € given
by

41

Kiee = | JJE. 8.21)

j=li=1

where the sets Elc]e stand for layers of elements with identical scaling properties with
respect to ¢ and e; cf. [24, Section 5.2.4]. The index j indicates the number of the
geometric mesh layers in edge-parallel direction along the edge e, whereas the index i
indicates the number of mesh layers in direction perpendicular to e. In agreement
with [25, Section 7.1], we split ICf,’ ‘€ into interior elements away from ¢ and e, boundary
layer elements along e (but away from c), and corner elements abutting at ¢. That is,
we have iﬁf;“ = 5ﬁe U ‘Z’ﬁ U ‘Eﬁ with

L+1 £+1 N N
= J L. U S, FL=2ll (8.22)
j=2i=2

Here, for 2 < i, j < £ + 1, interior elements K € Eﬁ:je satisfy

relg ~he ~o 1 g~ h‘ll( ~ g ttl=i, (8.23)

Similarly, boundary layer elements K € Eié satisfy

relk Shg ~ots g =hl =0T 2<j<e4l (8.24)

Finally, a corner element in the layer ‘ff = Elé is isotropic with re|x < hgx =~ o,

~

and r¢|g < hg ~ of. The sets Eié and Eig are in fact singletons, and without loss of
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generality K; € Eié can be written in the form
K,:KLXK}.', 2<j<l+1, (8.25)

cf. (3.3), where K- = (0, %)%, and the sequence {K l‘}ﬁz forms a one-dimensional

geometric mesh 7.* along the edge e as in Sect. 8.1.4. The s-linearly increasing poly-
nomial degree distributions on K% in (8.21) are given by

VK ef4:  px=(p.ph) > max{l, |si]}. max{l, [sjl}).  (8.26)

In the sequel, we introduce the domain ﬁﬁe = (U KeRbee f) °. Analogously to (2.6)

and for exponents 8 = { ﬁc, Be}, we introduce the non-homogeneous reference corner—
edge semi-norm on Q

n 2
r?ax{ﬁc+|a|‘o}p$ax{ﬂe+|a 1,0} D%y

L@t (8.27)

|M|Nk(Ql ) =

lo|=k

for any k > 0 and where r, and r, are the distances to ¢ and e, respgctivgly, and
Pee = te/Te. For m > kg as in (2.7), the weighted Sobolev spaces N’”(Qfe) are

defined as in Sect. 2.2 with respect to the norms | - N,,,(Q[ =Yl |Nk(Qg

corresponding analytic reference class Bg (Q w) consists of all functions u : Q¢ e — R
such that u € N’l;(Qfe) for k > kg and such that there is a constant d,, > 0 with

lul s @) < AT (k+1) V> kg. (8.28)

In the following, we restrict ourselves to the classes B_ 1—1;(?23) and B_p (ﬁﬁe) for
exponents b = {b, b} in (0, 1) asin Remark 2.3. In the first case, we have kg < (1, 2)
and the norms on the right-hand in (8.27) are given by

1Dl 75 g el = 0.1, Jor| =0, 1,
—1—be+

Ire DI gy el 22, et =01 (8.29)
— I

rbe vl bereipey 2 ol =2, Jert| = 2.

L2(88,)

Similarly, for the second analytic class B,b(ﬁf.e), we have kg € (0, 1) and the norms
on the right-hand side of (8.27) take the form

| =0, at| =0,

el =1, || =0, (8.30)

le| > 1, |at|> 1.

lu ||L2(Qz
_be+a DOC
” I l'Lzl(ch)
befbc+ot et | ~o
Iré D ul?, g5,
FoE'ﬂ
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In the axiparallel setting considered in the present paper, when functions u €
B_1_p(R) and u € B_p(R2) as in Theorem 4.3 are locahzed and scaled to ch,
they belong to the reference classes B_l_b(ch) and B_b(Q,_,e), respectively; cf. [20,
Section 3.4].

To prove Theorem 4.3 in the reference corner—edge framework, it is now enough

to bound the error contributions as in (3.34), (3.33) over /ZW = 55@ U %K U %ﬁ

Proposition 8.7 For b, b, e (0,1), let u € B_j_4(RL,) N Hl+9(sz‘Z ) for some
0 € (0,1), and let tu = rr ® lu be the base mterpolant 4.4) over IC/Z € for any
conformity indices rx € {0 1}. For the errors n, 170 nl in (4.7), we have

31+ T8, 17+ T Ing 1P+ T4 ' + YL 01 < Cexp(=200).

with b, C > 0 independent of £.

Moreover, for be, be € (0, 1), letu € B,b(ﬁﬁe) N Hg(ﬁﬁe)for some 0 € (0 1),

and let mou = nol ® ngu be the L*-projection over /Cf;“. For the errors 1, 170 n(l)l

in (4.7), we have
I 12 e, H IO e, HIMG 12 o)+ I g, + 0 ]2 0, < € exp(=2b0),

with b, C > 0 independent of £.

The remainder of this section is devoted to the proof of Proposition 8.7.

8.3 Proof of Proposition 8.7

We bound the errors in Proposition 8.7 separately for the set D (Proposi-
tions 8.9, 8.10), for Qé (Propositions 8.11, 8.12), and for TZ (Proposmon 8 13).

8.3.1 Convergence on 9,

We begin our analysis by recalling essential scaling properties; see [24, Section 5.1.4].

Lemma 8.8 Let K = (0,1 )2 x (0, hﬂ() be of the form (3.3). Let v : K — R, and
T=vo d>_1. Then:

M 11325, S B R 112, 2,

i) (i) 200l g0, + 1Py S %)™ (19172, + DD )

Gii) ()" 2[vl|2,, o 4 DLV, o S AL (112, o + 1D

L%(K) L%(K) N LZ(K) LZ(K))

We bound r/(J)- over Dﬁe as follows.

Proposition 8.9 Let u € B_1_b(§~2ﬁe), respectively u € B_ b(ﬁ o). Then there are
constants b, C > 0 independent of { such that T [n 1% < Cexp(—2bY), respec-

tively Ing 117, ¢ | < C exp(=2b0).
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Proof Letu € B,l,b(Q ). We consider an element K € £ | with 2 <j<{+1land
2 <i < j;see(8.22). With Lemma 8.8 (observing that hL < hH x)» the approximation
results for ﬁoi in Proposition 8.3 and (8.26), we conclude that

Niglng 1> < hh 17 <p MgV, S EL(K:w),

IIH. (®)

for1 < s < p , Where EJ- (K; u) is the expression in (8.7). Notice that here we

S

exclude the choice si = 0 to ensure that |e| > |ocJ-| >2in Ejl (K; u). Thanks to the
equivalences (8.24), we insert the appropriate weights as in (81.29) and obtain
(h )2bc 2be—2a (hj_)2+2be 2]t

I
”D“ a M”LZ(K)

be—betall —1-be+lat|yatqal 2
x [[rhebetel pZi=betlatipepaty 2,

for2 < sf +1< |ocl| < sl.L +2and ! = 0, 1. Hence, it follows that
sil+3

Nglng 1> Sp Wyo 1 (W)™ e i)™ )" lulf

(K7
k=siL+1

The analytic regularity (8.28) then implies the existence of C > 0 such that
_ L
Nl 1P Sp W o0 ()™ 2 (i)™ T (s + 477, (8.31)

forall 1 < s < p . Summing (8.31) over all layers in D . 10 (8.22) in combination
with (8.23) results in

041
€
D[ ] Sp Y o 2beboEri= n(zgzbe(ul ’)\1/ lCzs,. F(sf‘+4)2).
j=2 i=2
By interpolating to real parameters s e [1, pJ-] as in [24, Lemma 5.8], this sum

is of the same form as St in the proof of [24, Proposition 5.17], and the assertion
now follows from the arguments there and after adjusting the constants to absorb the
algebraic loss in | p]|.

Foru e B_b(flﬁe), we proceed similarly and note that

195 W2y S CRPPREITS I ) Sp (i) hig Wy o1 E (K ),
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for 1 < s < p . Hence, we obtain

S[L+3
12 [I'\2b¢—2b¢ (7, L\2b,
10 1726y Sp Wyt 5t Ui B D Il -
k=st+1
The second bound follows as before. O

Next, we establish the analog of Proposition 8.9 in edge-parallel direction.

Proposition 8.10 Ler u € B,l,b(ﬁﬁe), respectively u € B,b(ﬁfe). Then there are
constants b, C > 0 independent of £ such that Tgﬁe[nuf < Cexp(—2b¥), respec-

tively ||17 ||L2(D{ < Cexp(—2b{).
Proof Foru € B,l,b(ﬁfe), we claim that

Ny P Sp w1 (g )”’cnun2 L (832)
f_p (&)

forany K € 5£e and1 < s‘,l( < pK To prove (8.32), we start by employing Lemma 8.8
and the approximation property for 77! in Proposition 8.3:

_ _ I~y
12 )+ 1D 1y S i)™ Y ID A2
al=0,1

5! +l
Sp ¥ pl sl (h )k ID,* ||iz(K)

forany 1 < s‘II< < p K, where we again exclude the choice s = 0 so that || > 2. We
then insert suitable weights with the aid of (8.23), (8.29) to obtain

”DAK+1 (/’l” )2bc 2‘31(” —1- bc+ék+lD K+1

||L2(K) ||L2(K)

Hence,

(i) 2" 20, + 1D 720y Sp W0 1 i)™ lul?
MK @0

By proceeding similarly, we find that, for || = 1,

I
1D 0" 12y S Bk D IDY DY AR ¢

al=0,1

sK—H

I \2sh+2 ) pet 2
Sp qu‘l‘{’s‘[l((h ) K ”D ””L2(K)
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bc+S sK+1

Sp Wy 1 () e DI D Ul

<p ‘pru I (h )2h”|M| [
_p (K)

This establishes the bound (8.32).
For u € B_b(Qfe), we use analogous arguments based on Lemma 8.8, Proposi-
tion 8.3 and (8.30). This results in

” (h” )2?1(-5-2”DYK+l

2
||77 ||L2(K) 517 ||L2(K)

—betsh+1 sk
Sp Wy ()Pl U DK w72, (8.33)

2bv
SECSEUTN
N

Zp (K

Next, we sum the bounds in (8.32), (8.33) over all layers of 55ﬁe By notic-
ing (8.23), (8.26) and the analytic regularity (8.28), we conclude that

041
weBap@): Yg P Sy Yo, gt DhecT (sl 4 3)2,
“ j=2i=2
e+1
Q 2
ue B—b(Qﬁe) : ||77 ”Lz(De ) Sp ZZ‘I’ H \|U2(£+1 Nbec s/]"(s” +2)2.
j=2i=2

The terms in the sums above are independent of the inner index i. Interpolation to
non-integer differentiation orders sl e [1, p”] as in [24, Lemma 5.8], applying [24,
Lemma 5.12] and absorbing the algebraic loss in | p| complete the proof. O

8.3.2 Convergence on %ﬁ

We first consider edge-perpendicular elements.

Proposition 8.11 Let u € B_j_y(QL,), respectively u € B_y(Q2L,). Then there are
constants b, C > 0 independent of € such that T%z [17(}]2 < Cexp(—2bl), respectively

lIng- ”L%ﬂ < Cexp(—2bY).

Proof Let K = K; = K+ x K]” be an element of ‘Z’ﬁ as in (8.25). We claim that

) 2105 W2k, + 1D L0 I S o™t i ) (8.34)
IDymo- ||L2(K) < g 2minfbe, be}e|u| s (8.35)

15 172y S 0™ bf}‘f|u|N1 & (8.36)
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To show (8.34), let s = |oci| = 0, 1. Applying the bound (8.10) with 8 = 1 — b,
(noting that p? = max{l, s} by (8.26)) and from (8.24), (8.29), we see that

_ 1
) VIDY g 1132, S ()PP llrg~PeDull3

(K) ~ (K)’
—2(be—b¢) (1,1.\2be || ,-be—bc . 1—=be 2 112
S (hl) 72Cemb () 2oe | pbePer} =0 DR w2, o,
1 . . .
where |D2Lv|2 = Z\ai|=2 D% v|%. Thus, combining these estimates and expressing
the mesh sizes in terms of o, see (8.24), we have
< O-2bc([+1 J)+2be(j— 1)|M|

(hk)2(571) ”D(!

Mo W72y S 1y (K)

< 2min{be,be}l 2
~ 0 |M|N317b(l()’
which yields (8.34). To prove (8.35), we similarly conclude that

1Dy 172 x) S )2 llrg DI Dyull7a

5 (hu() 2—2be+2b (hJIE)2+2be ”rcbe—bc+lrel—be DiD”u ”%42([()

< o_2min{bc‘be}€ u 2 )
~ | |Nil,,,<1<>

For the bound (8.36), we employ an analogous argument based on (8.9) (with
B =1 —b,). Indeed, with (8.24) and (8.30), we conclude that

12 120, 1-b, 2
”770 ||L2(K) S (hK) e”re eDlu”LZ(K)
Il \2b.—2b 1\2b be—b¢ . 1—b 2
S () (hg) e llrge ™" re 7 Diully,
< aZmin{bc,be}E

~

(K)
|M|Nl (Ql )

which is (8.36).
The assertions now follow by summing the estimates (8.34), (8.35) and (8.36) over
all elements K € Se (i.e.,over2 < j < £+ 1) and by suitably adjusting the constants.
O

A similar estimate holds for the approximation errors in direction parallel to e.
Proposition 8.12 Ler u € B_l_b(ﬁﬁe), respectively u € B_b(ﬁﬁe). Then there are
constants b, C > 0 independent of £ such that T%I:S[UH]Z < Cexp(—2b¥), respectively

lIng IILZ(TZ < Cexp(=2b0).

Proof Foru € B_j_p(QL,) and || = 1, we have u, Dju, DY Tu e L*(2¢,) due
to (8.28), and there holds

”r—l—bc—Hx” a”u”LZ(Qe < Ca”_HF(Ol“ + 1, a” > 2,
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lrs ' DE'D Lull g, < € 2T @) +2), ol > 1.
Similarly, for u € B_y(2%,) it follows with (8.30) that u € L2($2¢,) and
—be+all ! - al+1pe,l [
llre Dj ull2@e,), =C* "' +1), o =L

In view of (8.24), (8.25), these properties correspond to the one-dimensional analytic
regularity assumptions considered in (8.16) and (8.20), respectively. Moreover, due
to (8.26), the polynomial degrees plll( along the edge e are s-linearly increasing away
from the corner ¢. Hence, Lemma 8.5, respectively Lemma 8.6 along with the tensor-
product structure of the elements yield the assertions. O

8.3.3 Convergence on %ﬁ

It remains to show exponential convergence on ‘Iﬁ

Proposition 8.13 Ler u € H1+9(S~2ﬁe), respectively u € H’ (ﬁﬁe) for some 6 €
(0, 1). Then there exist constants b, C > 0 independent of £ such that T%( n? <

C exp(—2b0), respectively [10]17,z,, < C exp(=2b0).

Proof The element K € ' is isotropic with kg =~ o'*; cf. (8.22). Standard /-version
2
H1+9(K)3
1001122y S 13 11230 .

approximation properties then show that N y([n]2 < h%f”u” respectively
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