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Abstract

We introduce and analyze a framework for function interpolation using compressed sensing.
This framework – which is based on weighted `1 minimization – does not require a priori bounds
on the expansion tail in either its implementation or its theoretical guarantees, and in the absence
of noise leads to genuinely interpolatory approximations. We also establish a new recovery
guarantee for compressed sensing with weighted `1 minimization based on this framework. This
guarantee has several key benefits. First, unlike existing results, it is sharp (up to constants
and log factors) for large classes of functions regardless of the choice of weights. Second, by
examining the measurement condition in the recovery guarantee, we are able to suggest a good
overall strategy for selecting the weights. In particular, when applied to the important case
of multivariate approximation with orthogonal polynomials, this weighting strategy leads to
provably optimal estimates on the number of measurements required, whenever the support set
of the significant coefficients is a so-called lower set. Finally, this guarantee can also be used
to theoretically confirm the benefits of alternative weighting strategies where the weights are
chosen based on prior support information. This provides a theoretical basis for a number of
recent numerical studies showing the effectiveness of such approaches.

1 Introduction

Many problems in science and engineering require the approximation of smooth, multivariate func-
tions from finitely-many pointwise samples. Although a classical problem of approximation theory,
recently there has been a renewed focus in this area, driven in part by applications in uncertainty
quantification. Problems in this area are typically high dimensional and place severe limitations
on the number of measurements that can be acquired. At the same time, developments in the
field of compressed sensing (CS) have shown that it is often possible to recover high-dimensional
vectors possessing certain low-dimensional structures from substantially reduced sets of linear mea-
surements [9, 16]. It is known that smooth, high-dimensional functions have approximately sparse
expansions in certain orthogonal systems (e.g. tensor Chebyshev or Legendre polynomials). Hence,
in recent years there has been an increasing focus on applying the theory and techniques of CS to
accurately compute such expansions [17, 23, 27, 32, 33, 35, 36, 37, 44, 45].

However, the application of CS to function approximation raises several issues. First, stan-
dard CS concerns itself primarily with the recovery of sparse vectors in finite-dimensional vector
spaces. Functions, on the other hand, live in infinite-dimensional spaces. Whilst they may be well
approximated by finite sums in certain orthogonal polynomial systems, their expansion in a such
system is typically infinite. As one might expect, this mismatch presents a number of key practical
and theoretical issues. Second, the coefficients of a function in a polynomial basis are not just
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sparse, but tend to possess additional structure. This raises questions about how to exploit such
structure in the reconstruction process, and the expected theoretical benefits of doing so. Third,
it is well-known that näıve approximations of high-dimensional functions suffer from the curse of
dimensionality. Therefore, a question of singular interest is whether, and the extent to which, CS
provides a means to avoid this crucial issue.

In this paper we introduce a framework and series of recovery guarantees for the use of CS
in approximating multivariate functions from limited numbers of pointwise samples. Unlike most
existing approaches to this problem – which can loosely be described as discretizing first – in our
framework the recovery problem is first formulated as a (weighted) `1 minimization problem in an
infinite-dimensional space, and then discretized. This brings a number of benefits. First, our tech-
niques do not require a priori estimates for the expansion tail, as is common in other approaches.
Second, in the absence of noise, our techniques lead to exactly interpolating approximations; a de-
sirable property in general as well as for certain applications. Third, much like our techniques, our
theoretical results do not assume a priori estimates for the expansion tail, as has been necessary in
previous works. Since infinite expansions are handled faithfully, continuing a line of investigation
initiated in [2], we refer to this framework as infinite-dimensional compressed sensing.

In order to exploit the structure of polynomial coefficients of smooth functions we use a weighted
`1 minimization approach. Incorporating weights into the reconstruction problem has received
some attention of late, especially for polynomial approximations, due to its potential for enhancing
accuracy; see [1, 33, 45], as well as [37] for some theoretical analysis. In this paper, we introduce a
new recovery guarantee for CS for very general choices of optimization weights. For the special case
of unweighted `1 minimization, our guarantees reduce to those introduced previously in [23, 36, 44]
(although our theorems avoid the issues surrounding infinite expansions mentioned above). For
weighted `1 minimization, a corollary of our main result yields guarantees similar to those in [37].
As we demonstrate, however, the guarantees of [37] are not sharp for a large class of functions and
weights. Fortunately, by returning to our abstract result we derive an improved recovery guarantee
which is sharp for this class.

We next use our main result to identify a good overall weighting strategy, in the sense that
minimizes the number of measurements required in our recovery guarantee. Similarly to recent work
[12], we show that this choice of weights yields a reconstruction procedure for tensor Chebyshev and
Legendre polynomial expansions that mitigates the curse of dimensionality to a substantial extent.
This is on the proviso that the coefficients of the function being approximated possess a particular
type of structured sparsity defined by so-called lower sets, which is a reasonable assumption in
applications of interest (see [11, 12, 14, 15, 29, 30] and references therein). Finally, we apply our
abstract recovery guarantee to assess an alternative strategy where the weights are chosen based
on prior support information; a strategy which has been advocated in a number of recent works
[33, 45]. When the weights our chosen in this way, our recovery guarantee provides a theoretical
basis for the empirically-observed benefits of this approach.

The outline of the remainder of this paper is as follows. In §2 we present relevant background
material on CS for function approximation, and give an overview of our main contributions in
this paper. We give some preliminary notation in §3. In §4 we introduce the infinite-dimensional
weighted `1 minimization problem, and in §5 we present the main examples that will be used to
demonstrate the our results. Our main abstract recovery guarantee is presented in §6, and in §7
we discuss various consequences of it, including its application to high-dimensional approximation
using polynomials. Finally, in §8 we present the proof of our main result.
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2 Background and overview

In this section, we first give an overview previous work on CS for function approximation and then
present a summary of the main results of this paper.

2.1 Previous work

In recent years, numerous works have sought to apply the techniques of CS to multivariate function
approximation. Theoretical guarantees for recovery of sparse polynomial expansions via unweighted
`1 minimization were first presented in [36] for the univariate case and [44] for the multivariate
case. Weighted `1 minimization was proposed in [33, 45], and theoretical results based on weighted
sparsity were presented in [37]. For theoretical results on lower sets related to this paper, see [12].
Applications of CS techniques to uncertainty quantification have been pursued numerous works,
including [17, 27, 33, 45] and references therein. Besides random sampling (from appropriate
continuous measures) several works have also proposed new sampling strategies for CS that aim
to improve reconstruction quality. These include coherence-based sampling [23], preconditioning
[24, 31], deterministic sampling [43] and subsampling from deterministic Gaussian quadratures [39].
Outside of CS theory, worst-case recovery guarantees for weighted `1 minimization for deterministic
sampling were presented in [1], demonstrating near-optimal performance for general scattered data.

2.2 Compressive function approximation

Let {φi}i∈N an orthonormal basis of functions (e.g. polynomials) and consider a function f =∑
i∈N xiφi. Suppose that {ti}mi=1 is a finite set of points, typically chosen randomly from an ap-

propriate distribution, and consider the measurements y = {f(ti)}mi=1. In order to approximate
f , it suffices to approximate its coefficients x from the measurements y. However, x is typically
an infinite vector, meaning that some sort of discretization is required. In a majority of previous
works, this discretization is performed first; that is, prior to formulating the optimization prob-
lem. Specifically, one introduces a fixed N ≥ m and seeks to approximate the first N coefficients
x1, . . . , xN of x by solving the following inequality-constrained (weighted) `1 minimization problem:

min
z∈CN

‖z‖1,w subject to ‖Az − y‖ ≤ δ. (2.1)

Here δ ≥ 0, ‖z‖1,w =
∑N

i=1wi|zi| is the `1w-norm on CN with weights wi > 0 (we discuss the

issue of weights next) and A = {φj(ti)}m,Ni=1,j=1 ∈ Cm×N . The parameter δ is an artefact of the

discretization, and is chosen so that the exact coefficients {xi}Ni=1 are feasible for (2.1), i.e.∥∥∥∥∥f −
N∑
i=1

xiφi

∥∥∥∥∥
L∞

≤ δ. (2.2)

If x̂ is a minimizer of (2.1), then one defines the corresponding approximation to f as f̃ =
∑N

i=1 x̂iφi.
As discussed in [1], the error committed by the approximation f̃ will depend on the choice

of δ. Hence a good estimation of the norm of the expansion tail is important to ensure accurate
results [45]. Herein lies a problem. In general, this tail error is unknown. Whilst techniques such
as cross validation [17, 33, 45] have been used to provide practical estimations for δ, these are both
computationally expensive and wasteful in terms of the data. A key element of the framework we
develop in this paper is that it does not require knowledge of δ, and thus allows one to avoid this
estimation step.
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In addition to this practical issue, from a theoretical perspective all existing CS recovery guar-
antees for (2.1) (see [12, 17, 23, 35, 36, 37, 44]) assume a priori knowledge of ‖f −

∑N
i=1 xiφi‖L∞ .

Whilst this is not a problem when f is itself a polynomial of known degree N , such guarantees
are less informative about the approximation capabilities of weighted `1 minimization for objects
with infinite expansions, i.e. functions. The theoretical guarantees we present in this paper seek to
overcome this limitation.

2.3 Weighted `1 minimization

In a number of recent works it has been observed empirically that unweighted `1 minimization (i.e.
with wi = 1, ∀i) often gives relatively poor approximations, and that better results are possible
if slowly growing weights wi are introduced [33, 37, 45]. For deterministic samples {ti}mi=1, this
was explained recently in [1]. Therein it was shown that unweighted `1 minimization is in general
unsuitable for function approximation, since it suffers from a so-called aliasing phenomenon stem-
ming from the infinite-dimensionality of the problem. In the unweighted case, there are solutions
x̂ = {x̂i}∞i=1 to the optimization problem with nonzero coefficients far out in the expansion tail. The
corresponding approximation f̃ =

∑
i∈N x̂iφi fits the data, but oscillates rapidly in between the data

points, due to nonzero high-frequency modes. The introduction of slowly growing weights removes
this phenomenon, however, since high-frequency modes are penalized by increasing weights.

The focus of this paper is on samples {ti}mi=1 drawn randomly from an appropriate distribution.
Unlike for deterministic samples, approximations computed by solving the unweighted `1 minimiza-
tion problem do converge (with high probability) as the number of samples increases. Yet adding
weights generally leads to a more rapidly-decreasing approximation error in this setting [33, 45, 37];
see Fig. 1 for an illustration. A central contribution of this paper is to understand and quantify this
benefit theoretically. Our basis for this is a new recovery guarantee for weighted `1 minimization.

2.4 Recovery guarantees

Standard CS theory states that one can recover a vector x of sparsity s, i.e.

s = |∆| =
∑
i∈∆

1, ∆ = {i : xi 6= 0}, (2.3)

using, up to log factors, m ≈ s appropriately-chosen measurements, regardless of the locations of
the nonzero entries of x. In practice, this can be achieved by solving an `1 minimization problem.
When considering weighted `1 minimization on the other hand, it was proposed in [37] to replace
sparsity (2.3) by the following weighted sparsity measure

s = |∆|w =
∑
i∈∆

w2
i , ∆ = {i : xi 6= 0},

corresponding to the optimization weights w = {wi}i∈N. The work of [37] has established a mea-
surement condition of the form

m ≈ |∆|w × log factors, (2.4)

for weighted `1 minimization with appropriate measurements.
Unfortunately, such guarantees do not explain the observed empirical performance of weighted

`1 minimization in some important cases. For example, suppose that ∆ = {1, . . . ,M}. That is, x
is nonzero in its first M entries, or more generally (for inexact sparsity), the largest M entries of
x are also its first M entries. This phenomenon is common in polynomial expansions of smooth
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Figure 1: Top row: The error ‖f − f̃‖L∞ (averaged over 50 trials) against m for Chebyshev (C) or Legendre
(L) polynomials with points drawn from the Chebyshev (C) or uniform (U) measure. Here f̃ =

∑
i∈IK x̂iφi,

where x̂ is a solution of (4.2) and IK = {0, . . . ,K}. The parameter K = 1000 was used and the weights were
taken to be wi = (i+ 1)α for various α ≥ 0. Bottom row: Chebyshev or Legendre coefficients of the function
f(t). In this and all other experiments in this paper, we use the SPGL1 package [41, 42] with a maximum
of 100,000 iterations.

functions, especially in lower-dimensional settings. Herein coefficients tend to exhibit decay (see
Fig. 1), with the largest M coefficients often coinciding with the first M , or more generally, the
first O (M). A simple example of this is an oscillatory function, for which the coefficients xi are
O (1) up to a certain resolution criterion, after which they are numerically zero (see Fig. 1).

Suppose for simplicity that the weights wi = iα are taken to be polynomially growing with
index α. Then the recovery guarantee (2.4) reduces to

m ≈M2α+1 × log factors. (2.5)

In other words, more rapidly-growing weights seemingly require more measurements to recover x.
However, this conclusion is at odds with numerical results shown in Fig. 1, wherein it is observed
that increasing the weights in fact decreases the error to a moderate degree, and certainly does not
worsen it. This example is representative of quite general behaviour of weighted `1 minimization.

Fortunately, it transpires that (2.5) is not sharp. A corollary of our main result gives an estimate
for this example which is both independent of the weights, in certain cases, and provably sharp.

2.5 Contributions

Our main contribution is a general result on infinite-dimensional CS for function interpolation based
on weighted `1 minimization. A simplified version (see Remark 2.3) of our main result is as follows:

Theorem 2.1. Let 0 < ε < e−1, D ⊆ Rd be a domain with a probability measure ν, {φi}i∈N be an
orthonormal system in L2

ν(D) with ui = ‖φi‖L∞ <∞ for all i ∈ N, w = {wi}i∈N, wi > 0 be weights
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and f =
∑

i∈N xiφi with x = {xi}i∈N ∈ `1w(N). Let K ∈ N and ∆ ⊆ {1, . . . ,K} be a subset with
mini∈{1,...,K}\∆{wi} ≥ 1 and suppose that t1, . . . , tm are drawn independently from the measure ν,
where

m &

(
|∆|u + sup

i∈{1,...,K}\∆
{u2

i /w
2
i }|∆|w

)
· log(ε−1) · log(|∆|wK). (2.6)

Then, by solving a weighted `1 minimization problem of size m ×K with weights w, it is possible
to approximate x (and therefore f) from the data y = {f(ti)}mi=1 up to an error proportional to∑

i/∈∆

wi|xi|+ TK,w(x),

with probability 1− ε, where TK,w(x) is the truncation error (6.2). Furthermore, in the absence of
noise the resulting approximation interpolates the data {f(ti)}mi=1.

This result highlights the main contributions of this paper:

1. Removal of a priori tail estimates. Theorem 2.1, unlike recovery guarantees based on (2.1),
completely avoids the need for a priori knowledge of the expansion tail. In particular, it applies
to arbitrary functions, not just finite expansions in the system {φi}i∈N. This result of this is the
additional truncation term TK,w(x) in the error estimate. But, as we explain in §6, this term can
be estimated and is typically negligible for large enough K.

2. A weights-independent recovery guarantee. As in §2.4, let ∆ = {1, . . . ,M} and wi = iα. It is
reasonable to assume that ui = O

(
iβ
)

as i→∞ for some β > 0. If α ≥ β, then (2.6) reduces to

m &M2β+1 · log(ε−1) · log(M2α+1K).

In contrast to (2.5), this condition is independent of the weights parameter α. In particular, for the
recovery of Chebyshev polynomial expansions, where β = 0, it reduces to m = O (M) (up to log
factors) and for Legendre polynomial expansions, in which case β = 1/2, we obtain m = O

(
M2
)
.

Both results are essentially sharp:

Remark 2.2 Clearly the result for Chebyshev polynomials is sharp up to log factors, since it is
linear in the number of unknowns M . In [1], using results from [3, 34], it was shown that no robust
method can recover the first M Legendre polynomial coefficients using asymptotically fewer than
m � M2 measurements when the samples are exactly equidistributed (as opposed to randomly
drawn) according to the uniform measure.

3. Identifying good weights. Log factors aside, the number of measurements stipulated by (2.6) is
dependent on the factor

|∆|u + sup
i∈{1,...,K}\∆

{u2
i /w

2
i }|∆|w.

Note that the first term is independent of the optimization weights, and depends only on the the
intrinsic weights u. Therefore, in the absence of any further assumptions on ∆ (see below for this
case), a good weighting strategy would seek to make the second term equal to the first. This can
be achieved by setting

wi = ui, ∀i, (2.7)
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which leads to the following recovery guarantee for `1u minimization:

m & |∆|u · log(ε−1) · log(|∆|uK).

Note that, beside constants and log factors, this is strictly smaller than the recovery guarantee

m &

(
|∆|u + max

i=1,...,K
{u2

i }|∆|
)
· log(ε−1) · log(|∆|uK),

for unweighted `1 minimization, and may be substantially smaller depending on the support of ∆.

4. Overcoming the curse of dimensionality. In the case of polynomial approximations in high dimen-
sions, the weighting strategy (2.7) leads to a substantially smaller recovery guarantee for certain
structured sparse support sets ∆; specifically, so-called lower sets (see Definition 7.4). These sets
are known to be good models for the support sets of polynomial coefficients in high dimensions (see
[11, 12, 14, 15, 29, 30] and references therein). For example, with tensor Chebyshev polynomials
and points drawn randomly from the tensor Chebyshev measure the recovery guarantee (2.6) yields

m & 2ds× log factors, if wi = 1, ∀i,

where s = |∆|. However, if ∆ is also a lower set, one has

m & slog(3)/ log(2) × log factors, if wi = ui, ∀i.

Log factors aside (see Remarks 7.8 and 7.9), the latter does not suffer from the curse of dimension-
ality and agrees with the best known estimates for least-squares approximation in lower sets [11].
Similarly, for tensor Legendre polynomials with points drawn randomly from the uniform measure,
the recovery guarantee (2.6) yields

m & s2 × log factors, if wi = ui, ∀i,

for lower sets ∆ (this result is essentially sharp – recall Remark 2.2), whereas the unweighted
guarantee grows exponentially with the dimension of the truncated polynomial space. We refer to
§7.3 for further details.

5. Support estimation via weighted `1 minimization. Since our recovery guarantee applies to any
choices of weights wi, it can be used to explain why the strategy of choosing weights based on a
priori knowledge of part of the support set of the coefficients reduces the number of measurements
required. Our main result in this setting, detailed in §7.4, shows that if over half of the support set
is correctly estimated, then such a weighting strategy leads to a strictly smaller recovery guarantee
than that of the unweighted case.

Remark 2.3 Theorem 2.1 makes several simplifications for illustrative purposes that are not nec-
essary in our main result, Theorem 6.1. First, the measurements t1, . . . , tm can be drawn from a
different measure µ than the orthogonality measure ν of the functions {φi}i∈N. Second, the mea-
surements can be noisy. In our main result we also allow for indexing over arbitrary countable sets
I, which is particularly useful in the case of multivariate polynomial approximations.
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3 Preliminaries

Throughout this paper, D ⊆ Rd will be a domain and ν will be an integrable nonnegative weight
function on D. We write L2

ν(D) for the space of complex-valued weighted square-integrable
functions on D, with norm ‖·‖L2

ν
and inner product 〈·, ·〉L2

ν
. Given D and ν, we let {φi}i∈I ⊆

L2
ν(D) ∩ L∞(D) be a set of functions that are orthonormal with respect ν, where I is an index set

that is at most countable. For a function f ∈ span{φi : i ∈ I} we let x = {xi}i∈I ∈ `2(I) be its
coefficients in the system {φi}i∈I , i.e.

f =
∑
i∈I

xiφi, xi = 〈f, φi〉L2
ν
.

Our goal throughout this paper is to recover the coefficients x from a small number of pointwise
evaluations of f .

Several other pieces of standard notation will also be used. The space of square-summable
sequences indexed over I will be denoted by `2(I), with its norm and inner product given by ‖·‖
and 〈·, ·〉 respectively. The set {ei}i∈I denotes the canonical basis of `2(I) and, if ∆ ⊆ I, we write
P∆ for the orthogonal projection onto span{ei : i ∈ ∆}. Whenever convenient, we will also regard
P∆ for finite ∆ as a mapping with range C|∆|. Similarly, we will consider a vector x ∈ Ran(P∆)
interchangeably as a sequence x ∈ `2(I) supported on the set ∆ and as a vector in C|∆|.

3.1 Weighted spaces and sparsity

For the remainder of this paper, w = {wi}i∈I will be a set of positive weights used in the optimiza-
tion problem. Define the space of weighted summable sequences by

`1w(I) =

{
x = {xi}i∈I : ‖x‖1,w :=

∑
i∈I

wi|xi| <∞

}
.

Note that we may write the norm as ‖x‖1,w = ‖Wx‖1, where

W = diag(w1, w2, . . .), (3.1)

is the infinite diagonal matrix of weights and ‖·‖1 is the standard unweighted `1 norm. For a set
∆ ⊆ I we also define its weighted cardinality by

|∆|w =
∑
i∈∆

(wi)
2.

If wi = 1, ∀i ∈ I, then we merely write |∆| for the corresponding unweighted cardinality of ∆.

3.2 Sampling points and the operator U

Given ν and {φi}i∈I let µ be a probability measure on D satisfying

sup
t∈D

√
ν(t)/µ(t)|φi(t)| <∞, ∀i ∈ I, (3.2)

and define

ui := max

{
1, sup
t∈D

√
ν(t)/µ(t)|φi(t)|

}
, ∀i ∈ I. (3.3)
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Note that we do not require the sequence u = {ui}i∈I to be uniformly bounded in i. Given such
a probability measure µ, we assume from now on that the sampling points t1, . . . , tm are drawn
independently from µ.

With ν, {φi}i∈I , µ and {ti}mi=1 in hand, we define the infinite matrix U as follows:

U =
{
φj(ti)

√
ν(ti)/µ(ti)

}m,∞
i=1,j=1

. (3.4)

We shall view U interchangeably as an infinite matrix and also an operator. The following lemma
identifies an appropriate domain for U to be bounded:

Lemma 3.1. Let u = {ui}i∈I and U be as in (3.3) and (3.4) respectively. Then the operator
U : `1u(I)→ Cm is bounded.

Proof. Let x ∈ `1u(I). Then |(Ux)i| =
∑

j∈I |xj ||φj(ti)|
√
ν(ti)/µ(ti) ≤

∑
j∈I uj |xj | = ‖x‖1,u.

4 Infinite-dimensional weighted `1 minimization

In this section, we introduce the infinite-dimensional weighted `1 minimization formulation that
will be used throughout this paper.

Given a function f and sampling points {ti}mi=1, the measurements will be of the form

f(ti) + ẽi, i = 1, . . . ,m,

where ẽi are noise terms satisfying the weighted estimate

m∑
i=1

ν(ti)

µ(ti)
|ẽi|2 ≤ η2,

for some known noise parameter η. Define the scaled noise vector

e = {ei}mi=1, ei =
√
ν(ti)/µ(ti)ẽi, ‖e‖ ≤ η,

and note that the measurements y = {yi}mi=1 can be expressed as

y = Ux+ e, yi =
{√

ν(ti)/µ(ti)f(ti) + ei

}m
i=1

,

where U is as in (3.4). Suppose now that w = {wi}i∈I are weights. As in [1], we consider the
optimization problem

inf
z∈`1w(I)

‖z‖1,w subject to ‖Uz − y‖ ≤ η. (4.1)

Note that in the absence of noise, i.e. η = 0, solutions of the problem exactly interpolate the
function f at the points t1, . . . , tm. Moreover, unlike (2.1) there is no need to know bounds for the
expansion tail in order to formulate (4.1).

Unfortunately, this problem cannot be solved numerically, since it involves minimizing over an
infinite-dimensional space. To overcome this, we need to truncate (4.1) in such a way so that we
retain the important properties of (4.1) noted above. We do this as follows. For K = 1, 2, . . . let
IK ⊆ I be a subset of I of finite cardinality and let PK = PIK denote the projection onto IK . We
shall assume that the sequence of projections {PK}K∈N converges strongly to the identity operator
on `2(I), i.e.

PKx→ x, ∀x ∈ `2(I).

9



Note that we do not require the sets IK to be nested, although this will often be the case in practice.
Given the subsets IK , we now replace (4.1) with the following problem:

min
z∈PK(`1w(I))

‖z‖1,w subject to ‖UPKz − y‖ ≤ η. (4.2)

This problem is equivalent to a minimization problem on CK , and therefore numerically solvable.
In particular, the space PK(`1w(I)) is isomorphic to CK and UPK is equivalent to an m×K matrix
formed by the columns of U with indices in IK . Importantly, however, (4.2) retains the key features
of (4.1). Namely, there is no need to know the expansion tail, and in the absence of noise solutions
of (4.2) interpolate f exactly at the data points.

A key issue for (4.2) is the choice of the truncation parameter K. Loosely speaking, K should
be taken sufficiently large such that the additional error induced by solving (4.2) instead of (4.1) is
small. It is important, however, that this criterion be independent of the function f to approximate,
i.e. it should not involve the expansion tail

∑
i∈I\IK xiφi, since a priori estimates for this term are

generally unknown (recall §2.2). Fortunately, as we demonstrate in §6, this is indeed possible.

5 Main examples: tensor Chebyshev and Legendre polynomials

To illustrate the main results of this paper, we consider the case of tensor products of Chebyshev and
Legendre polynomials on the unit hypercube D = (−1, 1)d. Recall that one-dimensional Legendre
and Chebyshev polynomials are orthogonal with respect to the measures

ν(t) = 1/2 and ν(t) =
1

π
√

1− t2
, t ∈ (−1, 1),

respectively. In the hypercube, the corresponding orthogonality measures are

ν(t) = 2−d and ν(t) =

d∏
j=1

1

π(1− t2j )1/2
, t = (t1, . . . , td) ∈ (−1, 1)d.

If φ0, φ1, . . . are the univariate polynomials of Chebyshev or Legendre type, we define the multi-
variate system via tensor products:

φi(t) =
d∏
j=1

φij (tj), t = (t1, . . . , td) ∈ (−1, 1)d, i = (i1, . . . , id) ∈ Nd0.

Within this setup, we shall address the following three specific sampling scenarios, all of which are
permissible under the condition (3.2):

Tensor Chebyshev polynomials, random sampling from the Chebyshev measure. In this case, the
measures are given by ν(t) = µ(t) =

∏d
j=1

1
π(1−t2j )1/2

. Since univariate Chebyshev polynomials

satisfy |φ0(t)| = 1 and supt∈(−1,1) |φi(t)| =
√

2 otherwise we find that

ui = sup
t∈D
|φi(t)| = 2|i|0/2, (5.1)

for this example, where |i|0 = |{j : ij 6= 0}| for i = (i1, . . . , id) ∈ Nd0.
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Tensor Legendre polynomials, random sampling from the uniform measure. In this case, ν(t) =
µ(t) = 2−d. Since the univariate Legendre polynomial satisfies supt∈(−1,1) |φi(t)| =

√
2i+ 1, i ∈ N0,

it follows that (3.2) holds with

ui = sup
t∈(−1,1)d

|φi(t)| =
d∏
j=1

√
2ij + 1. (5.2)

Tensor Legendre polynomials, random sampling from the Chebyshev measure. In this case, ν(t) =
2−d and µ(t) =

∏d
j=1

1
π(1−t2j )1/2

. Hence

ui = max

1, sup
t∈(−1,1)d

(π/2)d/2
d∏
j=1

(1− t2j )1/4|φij (tj)|

 .

It is known that univariate Legendre polynomials satisfy (1− t2)1/4|φ0(t)| ≤ 1 and

|φi(t)|(1− t2)1/4 < 2/
√
π, t ∈ [−1, 1], i ∈ N, (5.3)

(see Remark 5.1). Therefore we have

ui ≤ (π/2)d/2(2/
√
π)|i|0 , i ∈ Nd0. (5.4)

Unlike the previous cases this bound is not exact for each i. However, it is known that the constant
in (5.3) cannot be improved. Hence the bound (5.4) is sharp when taken over all i ∈ Nd0.

Remark 5.1 Let P0, P1, . . . be the classical univariate Legendre polynomials, i.e. with normaliza-
tion Pi(1) = 1, so that φi(t) =

√
2i+ 1Pi(t). These polynomials satisfy the following inequality [4]

(see also [26] and [20])

(sin θ)1/2|Pi(cos(θ))| <
(

2

π

)1/2

(i+ 1/2)−1/2, 0 ≤ θ ≤ π. (5.5)

Substituting φi and writing t = cos(θ) immediately gives (5.3). Note that (5.5) was first proved
by Bernstein with the factor i−1/2 instead of (i + 1/2)−1/2 on the right-hand side (see [38, Thm.
7.3.3]). This weaker inequality has been used several times in the analysis of CS for function
approximation [23, 36]. The sharper bound (5.5) allows one to obtain stronger results in the
high-dimensional setting for the case of Legendre polynomials with sampling from the Chebyshev
measure. See Corollary 7.7.

In order to formulate (4.2), we also need to choose the finite index sets IK . We shall consider the
following three standard constructions. First, the tensor product index set

ITPK =
{
i ∈ Nd0 : |i|∞ ≤ K

}
,

where |i|∞ = max{i1, . . . , id}. Note that |ITPK | = (K + 1)d. Although this indexing is arguably
the simplest, for moderate d the cardinality of ITPK is often too large for computations. A common
alternative is the so-called total degree space

ITDK =
{
i ∈ Nd0 : |i|1 ≤ K

}
,

11



where |i|1 = i1 + . . .+ id [32]. Note that |ITDK | =
(
K + d
d

)
. We shall also consider the (isotropic)

hyperbolic cross space

IHCK =

i ∈ Nd0 :

d∏
j=1

(ij + 1) ≤ K

 .

The exact cardinality of this space is harder to quantify, but it is known to satisfy the upper bound

|IHCK | ≤ min
{

2K34d, e2K2+log2(d)
}
. (5.6)

The first inequality is due to [10, Thm. 3.7] (using parameters T = K, s = d, a = 1 and δ = 1/2),
and the second follows from the proof of Theorem 4.9 in [25]. See also [12].

At this point, we stress that our main result (Theorem 6.1) is general, and applies to arbitrary
function systems. We consider Legendre and Chebyshev polynomials with the above samplings
since they are popular examples in the literature. But other cases could also be considered within
our framework; for example, Jacobi polynomials. Our framework and theoretical guarantees also
allow for nonpolynomial systems, e.g. spherical harmonics or piecewise polynomials.

6 Main results

We now present our main results. For this, we now introduce the notation A & B or A . B to
mean that there exists a constant C > 0 independent of all relevant parameters such that A ≥ CB
or A ≤ CB respectively. In particular, the constant C is independent of the weights used.

6.1 General recovery guarantee

To state our results we require two quantities. First, for weights w = {wi}i∈I and u = {ui}i∈I and
a finite set ∆ ⊆ I, we define

M(∆;u,w) = |∆|u + max
i∈IK\∆

{u2
i /w

2
i }max{|∆|w, 1}. (6.1)

This quantity will play a crucial role in our estimates for the number of measurements required.
Second, for weights w = {wi}i∈I and x ∈ `1w(I), we define

TK,w(x) = min
{
‖x− x̄‖1,w : x̄ ∈ PK(`1w(I)), ‖UPK x̄− y‖ ≤ η

}
. (6.2)

Loosely speaking, this term determines the additional error incurred due to truncation; that is, in
solving the computable minimization problem (4.2) rather than (4.1).

Theorem 6.1. Let K ∈ N, 0 < ε < e−1, w = {wi}i∈I be weights, x ∈ `1w(I) and ∆ ⊆ IK , ∆ 6= ∅,
be any set with mini∈IK\∆{wi} ≥ 1. Let t1, . . . , tm be drawn independently from the measure µ.
Then, for all minimizers x̂ of (4.2) we have

‖x− x̂‖ . λ
√
|∆|w

(
η/
√
m+ ‖x− PKx‖1,u

)
+ ‖x− P∆x‖1,w + TK,w(x), (6.3)

with probability at least 1− ε, provided

m &M(∆;u,w) · log(ε−1) · log
(

2N max
{√
|∆|w, 1

})
, (6.4)

where N = |IK |, u = {ui}i∈I and M(∆;u,w) are as in (3.3) and (6.1) respectively, and λ =

1 +

√
log(ε−1)

log
(

2N
√

max{|∆|w,1}
) .
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We discuss the consequences of this theorem in detail in the following subsections. However,
let us first note that (6.3) differs from more standard error bounds in CS in two respects, both of
which arise from the truncation. The first is the term ‖x−PKx‖1,u and the second is the truncation
term TK,w(x). Whilst the first term is small for all sufficiently large K, the second term needs to
be estimated. In fact, and much related to this issue, it cannot be taken for granted that (4.2) even
has a solution for all K, since Ux may not lie in the range of UPK . This is only true in general if
x is supported on IK , which is typically not the case in practice.

Fortunately, both issues can be readily addressed:

Theorem 6.2 ([1]). For all sufficiently large K, we have Ran(U) = Ran(UPK). In particular,
(4.2) has a solution for all large K. Moreover, suppose that rank(U) = r ≤ m and K is sufficiently
large so that rank(UPK) = r. If x ∈ `1w̃(I) then

TK,w(x) ≤ (1 + ‖PKw‖/σr) ‖x− PKx‖1,w,

where σr is the rth singular value of UPK .

These results imply the following. Provided K is chosen sufficiently large such that 1/σr is small
and finite, then the truncated problem (4.2) not only has a solution but the additional error TK,w(x)
due to truncation is bounded by the tail error ‖x− PKx‖1,w multiplied by ‖PKw‖. Crucially, the
condition 1/σr < ∞ is independent of x (and therefore f) and depends only on the data sample
points {ti}mi=1 and the system {φi}i∈I . It can also be easily checked numerically. For theoretical
guarantees relating K to the number of samples m to ensure this condition, we refer to [1].

Remark 6.3 Note that the term ‖PKw‖‖x − PKx‖1,w → 0 as K → ∞ given some additional
summability of the coefficients x. For example, suppose that I = N, IK = {1, . . . ,K} and the
weights wi are nondecreasing. Then it is straightforward to see that ‖PKw‖‖x − PKx‖1,w ≤
‖x− PKx‖1,w̃, where w̃i =

√
iw2

i . Hence this term tends to zero as K →∞ provided x ∈ `1w̃(N).

Remark 6.4 In the language of CS, Theorem 6.1 in an example of a nonuniform recovery guarantee
[18]. For uniform guarantees, we refer to [12, 37]. Note that the guarantees in [12, 37] allow the
error to be estimated in the stronger norm `1w-norm, whereas in (6.3) uses the weaker `2-norm.
This is a standard discrepancy between uniform and nonuniform-based CS analyses [18]. On the
other hand, nonuniform recovery arguments are more flexible, in the sense that they can be used
to derive recovery guarantees for arbitrary support sets ∆ without specifying a sparsity model (e.g.
sparsity or weighted sparsity). See [6, 13] for related work in this direction. It is this flexibility
that allows us to derive the bound (6.4). As is also typical, our nonuniform guarantee (6.4) involves
fewer log factors than corresponding uniform guarantees.

Remark 6.5 The considerations of the previous remark aside, the conditions of Theorem 6.1 are
also more general than those of [12, 37]. Specifically, we do not require the weights to satisfy
wi ≥ ui [37] or wi = ui [12], and we do not impose a priori estimates on the expansion tail (recall
the discussion in §2.2 and §2.5).

6.2 A weighted sparsity recovery guarantee

In the absence of noise, Theorem 6.1 states that x is recovered up to an error proportional ‖x −
P∆x‖1,w, i.e. the norm of the coefficients of x lying outside ∆, provided the number of measurements
is, up to log factors, proportional to

M(∆;u,w) = |∆|u + max
i∈IK\∆

{u2
i /w

2
i }max{|∆|w, 1}.

13



This bound may at first sight appear rather obscure, since it does not depend solely on the
(weighted) sparsity of x. However, the generality of this bound will be useful in subsequent sections
to analyze the performance of weighted `1 minimization in different scenarios (recall §2.5). First,
though, we note that Theorem 6.1 immediately implies a weighted sparsity recovery guarantee,
similar to that introduced in [37]:

Corollary 6.6. Let w = {wi}i∈I be weights satisfying wi ≥ ui, ∀i ∈ I, where u = {ui}i∈I is as in
(3.3) with µ = ν, i.e. ui = ‖φi‖L∞. Let 0 < ε < e−1, K ∈ N, x ∈ `1w(I) and suppose that t1, . . . , tm
are drawn independently from the measure µ. Suppose that

m & s · log(ε−1) · log(2N
√
s), (6.5)

where N = |IK |. Then, for all minimizers x̂ of (4.2), we have

‖x− x̂‖ . λ
√
s
(
η/
√
m+ ‖x− PKx‖1,u

)
+ σs,K(x)1,w + TK,w(x),

with probability at least 1− ε, where λ = 1 +

√
log(ε−1)

log(2N
√
s)

, TK,w(x) is as in (6.2) and

σs,K(x)1,w = min {‖x− P∆x‖1,w : ∆ ⊆ IK , |∆|w ≤ s} , (6.6)

is the best weighted s-sparse approximation error.

Proof. Let ∆ ⊆ IK , |∆|w ≤ s be such that ‖x − P∆x‖1,w = σs,K(x)1,w. Since wi ≥ ui we have
|∆|u ≤ |∆|w andM(∆;u,w) ≤ 2|∆|w. The result now follows immediately from Theorem 6.1.

This result shows that (4.2) attains the best weighted nonlinear approximation error σs,K(x)1,w,
up to a constant, using a number of measurements m scaling linearly with s. Note that Corollary
6.6 is similar to results found in [37], except for the differences mentioned in Remarks 6.4 and 6.5.

Remark 6.7 The reader will have noticed that (6.6) is not the true best weighted s-sparse ap-
proximation error, but rather the best weighted s-sparse approximation error up to some finite
range IK . Since coefficients outside IK do not form part of the optimization problem (4.2), this
definition is natural (in fact, it has been implicitly assumed in all prior theoretical analysis of CS
for function approximation). More fundamentally, one cannot expect to stably recover arbitrary
s-sparse vectors whose coefficients can range over the whole of I (a countable index set) when
taking only a finite number of samples. This lack of instance optimality in infinite dimensions is
discussed in [2, 7].

Having said this, suppose that the weights wi are increasing in the sense that mini∈I\IK{wi} →
∞ as K → ∞. Then this condition can be removed since sets of weighted cardinality |∆|w ≤ s
cannot have arbitrary range. In particular, if K is chosen so that mini∈I\IK{wi} ≥

√
s then one

can replace σs,K(x)1,w with the true best weighted s-sparse approximation error

σs(x)1,w = min {‖x− P∆‖1,w : ∆ ⊆ I, |∆|w ≤ s} .

7 Consequences of Theorem 6.1

In this section, we discuss the main consequences of Theorem 6.1 as listed in §2.5.
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7.1 Recovery guarantees for linear models

As discussed in §2.4, it may be the case that the most significant coefficients of a given function are
located at the lowest indices with respect to some ordering. Suppose for simplicity that ∆ = {j :
xj 6= 0} = IM for some M . Then, according to the weighted sparsity recovery guarantee (Corollary
6.6), the number of measurements needed to recover x is, up to log factors, proportional to

|IM |w =
∑
i∈IM

w2
i .

However, this condition depends on the optimization weights w and deteriorates as they increase.
Conversely, the following is a straightforward corollary of Theorem 6.1 gives a sharper estimate:

Corollary 7.1. Let w = {wi}i∈I be any weights satisfying

max
i∈IR
{wi/ui} � inf

i∈I\IR
{wi/ui} � Rυ, R→∞, (7.1)

for some υ ≥ 0, where u = {ui}i∈I is as in (3.3). Let 0 < ε < e−1, K ∈ N, x ∈ `1w(I) and suppose
that t1, . . . , tm are drawn independently from the measure µ. If IM ⊆ IK , mini∈IK\IM {wi} ≥ 1 and

m & |IM |u · log(ε−1) ·
(

log
(

2N
√
|IM |u

)
+ ν log(M)

)
, (7.2)

then, for any minimizer x̂ of (4.2), we have

‖x− x̂‖ . λ
√
|IM |w

(
η/
√
m+ ‖x− PKx‖1,u

)
+ ‖x− PMx‖1,w + TK,w(x), (7.3)

with probability at least 1− ε, where λ = 1 +

√
log(ε−1)

log(2N
√
|IM |w)

.

Proof. We use Theorem 6.1 with ∆ = IM . Observe that |IM |w .M2ν |IM |u and

max
i∈IK\IM

{u2
i /w

2
i }max {|IM |w, 1} .M−2ν max

{
M2ν |IM |u, 1

}
. |IM |u,

where in the final step we use the fact that ui ≥ 1, ∀i. The result now follows immediately.

Observe that (7.2) depends only on the intrinsic weights u and is independent of the optimization
weights w, provided these weights satisfy (7.1). Loosely speaking, this means that the wi’s must
grow at least as fast as the ui’s.

Example 7.2 Let d = 1, I = N and IM = {1, . . . ,M} for M ∈ N. As mentioned in §2.4, an
oscillatory function (with frequency of oscillation O (M)) typically has xi = O (1) for i = 1, . . . ,M
and xi ≈ 0 for i > M . Hence a good approximation of such a function occurs only if the first M
coefficients are accurately recovered. Suppose now that the weights wi = iα for some α > 0. Then
according to Corollary 6.6 the number of measurements needed is roughly M2α+1. Thus, more
measurements are apparently required for more rapidly growing weights, at odds with the results
shown in Fig. 1. Suppose now that the intrinsic weights ui � iβ as i→∞ for some β ≥ 0. If α ≥ β
then Corollary (7.1) (with ν = α− β) gives that the number of measurements is proportional (up
to log factors) to |IM |u �M2β+1, regardless of α.

In the case of univariate Chebyshev or Legendre polynomials with sampling from the Chebyshev
measure – in which case the ui’s are uniformly bounded (see §5) and therefore β = 0 – this result
gives a linear scaling of m with M , up to log factors, regardless of the choice of α. Similarly,
for Legendre polynomials with sampling from the uniform measure (in which case β = 1/2), one
deduces a quadratic scaling of m with M . Both results are essentially optimal; see Remark 2.2.
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)
Figure 2: The error ‖f − f̃‖L∞ (averaged over 50 trials) against m for Chebyshev (C) or Legendre (L)
polynomials with points drawn from the Chebyshev (C) or uniform (U) measure. A total degree index
set of degree K was used, where (d,K) = (2, 44), (3, 17), (4, 10), and the weights were taken to be either

wi =
∏d
j=1(ij + 1)α (top row) or wi = (|i|1 + 1)α (bottom row) for various α ≥ 0.

Corollary 7.1 can also be used to assert similar results in higher dimensions. For example,
suppose that the coefficients xi satisfy

|xi| �
d∏
j=1

(ij + 1)−β,

for some β > 0, as is reasonable in some cases [40]. Then the significant coefficients lie in a
hyperbolic cross IM = IHCM . Suppose now that the weights wi are chosen as wi = ui

∏d
j=1(ij + 1)α.

Then (7.1) holds with ν = α, leading to a measurement condition proportional to |IHCM |u. As in
Example 7.2, this is independent of the parameter α. Similarly, if the coefficients |xi| � ρ−|i|1 for
some ρ > 1 then one may take IM = ITDM to be a total degree index set. If the weights are chosen as
wi = ui(|i|1 + 1)α then Corollary 7.1 gives a measurement condition proportional to |ITDM |u, which
is once more independent of α.

Numerical illustrations of these results are given in Fig. 1 (the univariate case) and Fig. 2 (the
multivariate case).

7.2 The choice 1 ≤ wi ≤ ui

In this and the following two subsections we turn our attention to using Theorem 6.1 to understand
the benefits that weights convey, as opposed to just showing that they lead to no deterioration in
the recovery guarantee. We commence with the following straightforward result:
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Proposition 7.3. Let wi = (ui)
θ for some 0 ≤ θ ≤ 1. Then

|∆|u + max
i∈IK
{u2

i /w
2
i }|∆|w ≤ |∆|u + max

i∈IK
{u2

i }|∆|.

Proof. We have maxi∈IK{u2
i /w

2
i }|∆|w ≤ maxi∈IK{u

2(1−θ)
i }maxi∈IK{u2θ

i }|∆| = maxi∈IK{u2
i }|∆|, as

required.

This result shows that choosing weights wi scaling with the ui’s cannot worsen the recovery
guarantee (except possibly in the log factor) over that of the unweighted (θ = 0) case. Of particular
interest is the extreme case θ = 1, in which case we have

|∆|u + max
i∈IK
{u2

i /w
2
i }|∆|w = 2|∆|u, wi = ui.

We expect this to be significantly smaller than the corresponding estimate for the unweighted case

|∆|u + max
i∈IK
{u2

i /w
2
i }|∆|w = |∆|u + max

i∈IK
{u2

i }|∆|, wi = 1,

whenever support set ∆ does not contain too many high indices, so that the weighted cardinality
|∆|u is not too large in comparison to the maximum of the ui’s over the range IK . In the next
subsection we will see several concrete examples of this in the case of polynomial approximation.

7.3 Recovery guarantees for tensor Chebyshev and Legendre expansions

We now specialize our focus to the case of tensor Chebyshev and Legendre polynomial expansions.
Following on from the previous subsection, we consider the cases wi = 1 and wi = ui respectively.
Throughout we let I = Nd0 and for the truncated spaces we consider total degree spaces IK = ITDK .

It will also be useful to first recall the definition of a lower set:

Definition 7.4. A set ∆ ⊆ Nd0 is lower if whenever i = (i1, . . . , id) ∈ ∆ and i′ = (i′1, . . . , i
′
d) ∈ Nd0

satisfies i′j ≤ ij, j = 1, . . . , d, then i′ ∈ ∆.

Lower (or sometimes referred to as downwards closed) sets are well-known constructions in mul-
tivariate polynomial approximation, since in practice that the support sets of polynomial coefficients
are often described by such sets. See [11, 12, 14, 15, 29, 30] and references therein.

Tensor Chebyshev polynomials, random sampling from the Chebyshev measure.

Corollary 7.5. Let ν(t) = µ(t) =
∏d
j=1

1
π(1−t2j )1/2

. Then, for any ∆ ⊆ IK with |∆| ≤ s we have

M(∆;u, 1) ≤ 2min{d,K}+1s, (7.4)

provided IK = ITDK is the total degree index set. If ∆ ⊆ IK is also a lower set then

M(∆;u, u) ≤ 2slog(3)/ log(2), (7.5)

regardless of the choice of IK . In other words, lower sets of cardinality s can be recovered via
weighted `1 minimization with weights wi = 2|i|0/2 from a number of measurements that is indepen-
dent of d for large d and proportional to slog(3)/ log(2).

Proof. The weights ui are given by (5.1) in this case. Since ∆ is a subset of the total degree space,
we have |i|0 ≤ min{d,K} for i ∈ ∆. The first result now follows from (5.1) and the definition of
M. For the second we note that

∑
i∈∆ 2|i|0 ≤ |∆|log(3)/ log(2) for any lower set [11].
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Figure 3: The error ‖f − f̃‖L∞ (averaged over 50 trials) against m for f(t) = exp(−(t1 + . . .+ td)/(2d)) and
Chebyshev polynomials with points drawn from the Chebyshev measure. A total degree index set of degree
K was used, where (d,K) = (3, 24), (5, 10), (10, 5). The weights were taken to be wi = (ui)

α for various α,
where ui is as in (5.1).

This result demonstrates the advantage of setting the weights wi = ui. In high dimensions, one
can recover lower sets of coefficients using a number of measurements that is (up to log factors)
independent of the dimension. Note that the scaling log(3)/ log(2) is sharp in the sense that it
agrees with the best known estimates for recovering a fixed, known lower set via discrete least-
squares [11]. A numerical illustration of this result is given in Fig. 3. In all dimensions, setting
the weights as wi = (ui)

α for some α > 0 leads to a smaller approximation error, with the choice
wi = ui giving amongst the smallest. This is in good agreement with the above corollary.

We remark that (7.4) was first obtained in [44] (see also [23]) and (7.5) has also been presented
in [12]. Although our main condition is the same, our analysis improves on both results by removing
the requirement for a priori tail estimates (recall §2.2). As discussed, our recovery guarantees also
exhibit fewer log factors (see Remark 6.4).

Tensor Legendre polynomials, random sampling from the uniform measure.

Corollary 7.6. Let ν(t) = µ(t) = 2−d. Then, for any ∆ ⊆ IK with |∆| ≤ s we have

M(∆;u, 1) ≤ 2× 3Ks, (7.6)

provided IK = ITDK is the total degree space of degree K. Conversely, if ∆ ⊆ IK is a lower set then

M(∆;u, u) ≤ 2s2, (7.7)

regardless of the choice of IK .

Proof. Note that the weights ui satisfy (5.2). For (7.6) we recall from [44] that u2
i ≤ 3K , i ∈ IK ,

whenever IK is the total degree space. For (7.7), we recall that |∆|u ≤ s2 for lower sets [11].

As in the previous case, this result clearly illustrates the benefits of choosing weights wi = ui.
Note that (7.6) was first obtained in [44] (see also [23]) and (7.7) has also been given in [12]. We
remark in passing that the estimate (7.6) is sharp when d > K, but ceases to be sharp when d ≤ K.
For a better bound in this regime, see [23]. Also as in the previous setting, we note that the bound
(7.7) is sharp in the sense it agrees with the best known estimates for recovery of a fixed lower set
via discrete least squares [11].
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Figure 4: The error ‖f − f̃‖L∞ (averaged over 50 trials) against m for f(t) = exp(−(t1 + . . . + td)/d) and
Legendre polynomials with points drawn from the uniform measure. A total degree index set of degree K
was used, where (d,K) = (3, 24), (5, 10), (10, 5). The weights were taken to be wi = (ui)

α for various α,
where ui is as in (5.2).

Numerical verification of this result is given in Figure 4. It is worthwhile noting that a somewhat
smaller error in this case can often be be achieved by taking larger weights of the form wi = (ui)

α

with α > 1. However, this effect decreases somewhat in higher dimensions.

Tensor Legendre polynomials, random sampling from the Chebyshev measure.

Corollary 7.7. Let ν(t) = 2−d and µ(t) =
∏d
j=1

1
π(1−t2j )1/2

. Then, for any ∆ ⊆ IK with |∆| ≤ s

we have
M(∆;u, 1) ≤ 2× (π/2)d(4/π)min{K,d}s, (7.8)

provided IK = ITDK is the total degree space of degree K. Conversely, if ∆ ⊆ IK is a lower set then

M(∆;u, u) ≤ 2 min
{

2ds, (π/2)dslog(1+4/π)/ log(2)
}
, (7.9)

regardless of the choice of IK .

Proof. Recall that the weights satisfy (5.4) in this case. The first result follows immediately from
this bound. For the second, we note first that

|∆|u ≤ (π/2)dK(∆), K(∆) =
∑
i∈∆

(4/π)|i|0 .

We now claim that K(∆) ≤ |∆|log(1+4/π)/ log(2) for any lower set, thus yielding (7.9). To establish
this claim we shall adapt arguments given in [28]. We use induction on n = |∆|. If n = 0 then
∆ = {0} (since ∆ is lower) and the claim trivially holds. Now assume the result holds for n and
let ∆ be lower with |∆| = n + 1. Without loss of generality, i1 6= 0 for some i ∈ ∆. Let J be the
maximal value of i1 for i = (i1, . . . , id) ∈ ∆ and define the sets

∆k =
{
î = (i2, . . . , id) : (k, i2, . . . , id) ∈ ∆

}
⊆ Nd−1.

Notice each ∆k is a lower set and we have the inclusions ∆J ⊆ ∆J−1 ⊆ · · · ⊆ ∆0. Since J ≥ 1 we
also have |∆k| < |∆| for any k, hence the induction hypothesis gives

K(∆) = K(∆0) + 4/π
J∑
k=1

K(∆k) ≤ |∆0|β + 4/π
J∑
k=1

|∆k|β, (7.10)
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where β = log(1 + 4/π)/ log(2) > 1. We now claim the following. For a0 ≥ a1 ≥ · · · ≥ an > 0 it
holds that

(a0 + . . .+ an)β ≥ aβ0 + 4/π(aβ1 + . . .+ aβn).

Proof of this claim follows identical steps to that of [28, Lem. 2.3]. Returning to (7.10)

K(∆) ≤

(
J∑
k=0

|∆k|

)β
= |∆|β,

as required.

As in the previous examples, this proposition shows that setting the weights wi = ui improves
the recovery guarantee for lower sets. To the best of our knowledge, this result has not appeared
previously elsewhere.

Remark 7.8 Besides the quantityM(∆;u,w), the main estimate (6.4) also involves the log factor
log(2N max{

√
|∆|w, 1}) (there is also a second log factor depending on the failure probability ε,

but this is independent of N and ∆ and hence will not discussed further). In the unweighted case
wi = 1, since |∆| = s ≤ N this reduces to a log factor proportional to log(2N). Conversely, in the
case wi = ui one has the log factor

log(2N
√
|∆|u) = log

(
N
√

2M(∆;u, u)
)
.

Corollaries 7.5–7.7 can therefore be used to estimate the right-hand side. In particular, if ∆ is
lower, then Corollaries 7.5 and 7.6 give a resulting log factor proportional to log(2N) for the CC
and LU cases, since M(∆;u, u) is polynomial in s independently of d in these cases, whereas for
the LC case Corollary 7.7 gives a factor proportional to d+ log(2N).

Remark 7.9 When ∆ is lower and the weights are chosen as wi = ui, the estimates forM(∆;u, u)
in Corollaries 7.5–7.7 are independent of the choice of truncated space IK (provided ∆ ⊆ IK). This
choice only affects the parameter N = |IK |, which, as discussed in the previous remark, arises only
as a log factor in the measurement condition. While we have used a total degree space in our
numerical experiments for simplicity, a viable alternative (introduced in [12]) involves taking IK to
be the union of all lower sets of cardinality s. This is precisely the hyperbolic cross IHCs of order
s. Estimates for N in this case are given in (5.6), and lead to a bound for the logarithmic factor of
the form log(2N) . min {log(2s) + d, log(d) log(2s)}.

7.4 Support estimation via weighted `1 minimization

We now turn our attention to a different use of weights: namely, to improve recovery performance
when prior information about the support of x is available. As mentioned, a number of recent
works have empirically demonstrated the benefits of this strategy in multivariate polynomial ap-
proximation. In this section, we provide theoretical support to this work.

To do this, we shall assume for simplicity that ui = 1, ∀i, although what follows extends to
general ui’s. Let ∆ ⊆ I be the set of coefficients we wish to recover and suppose that Γ ⊆ I is an
estimate for ∆ based on prior information. In order to exploit this knowledge, we choose weights

wi =

{
γ i ∈ Γ
1 i /∈ Γ

, (7.11)

20



where 0 < γ < 1 is a fixed quantity based on the confidence of our estimate. Define scalars

ρ =
|∆ ∩ Γ|
|Γ|

, σ =
|Γ|
|∆|

, (7.12)

and observe that ρ, σ → 1 as the accuracy of Γ increases. Then:

Corollary 7.10. Let ∆,Γ ⊆ I, |∆| = s, and suppose that ui = 1, ∀i, and w = {wi}i∈I is as in
(7.11). Then, if M is as in (6.1), we have

M(∆; 1, 1) = 2s,

and
M(∆ ∪ Γ; 1, w) = (2 + σ(1 + γ − 2ρ)) s,

where ρ and σ are as in (7.12). In particular, if

ρ >
1 + γ

2
,

then
M(∆ ∪ Γ; 1, w) <M(∆; 1, 1).

Proof. Since wi = 1 for i /∈ ∆ ∪ Γ we have

M(∆ ∪ Γ; 1, w) = |∆ ∪ Γ|+ |∆ ∪ Γ|w
= |Γ|+ 2|∆\Γ|+ γ|Γ|
= |Γ|+ 2|∆| − 2|∆ ∩ Γ|+ γ|Γ|
= (σ + 2− 2ρσ + γσ) s

= (2 + σ(1 + γ − 2ρ)) s,

as required.

This result implies the following. If γ is sufficiently small and if over half of the support set ∆
is correctly guessed, then the above weighting strategy leads to a smaller measurement condition
than in the unweighted case. In other words, weighting based on sufficiently good prior coefficient
estimates can reduce the number of measurements required.

Remark 7.11 Weighted `1 minimization with prior support information has been been explored
in a number of works [5, 19, 46]. The setup we consider above is based on that of Friedlander et
al. [19]. In most prior works, the measurements are usually taken to be of random Gaussian type,
which leads to stronger guarantees than ours. We are aware of no works that consider prior support
information for random sampling of orthonormal systems of functions. In passing, we note that the
improved recovery guarantee of Theorem 6.1 is critical to this analysis, since it allows for arbitrary
weights wi.
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8 Proof of Theorem 6.1

We now give the proof of Theorem 6.1. As is standard, we first renormalize the problem (4.2) as
follows. Define the infinite matrix A

A =
1√
m

{
φj(ti)

√
ν(ti)/µ(ti)

}m,∞
i=1,j=1

=
1√
m
U. (8.1)

Much like U , A is a bounded operator from `1u(N) to Cm whenever the weights are as in (3.3) (recall
Lemma 3.1). Note also that

E((A∗A)ij) =
1

m

m∑
k=1

E
(
φi(tk)φj(tk)ν(tk)/µ(tk)

)
=

∫
D
φi(t)φj(t)ν(t) dt = δij , i = 1, . . . ,m, j ∈ I.

It follows that (4.2) is equivalent to

min
z∈PK(`1w(I))

‖z‖1,w subject to ‖APKz − y‖ ≤ η/
√
m, (8.2)

where y = Ax+ e, x are the coefficients of f in the basis {φi}i∈I and e is a noise vector satisfying
‖e‖ ≤ η/

√
m. We consider this problem from now on.

The proof now follows a similar route to prievious nonuniform recovery guarantees in CS,
although with some significant modifications. We first show that Theorem 6.1 follows from the
existence of a certain dual certificate (Lemma 8.1), and then construct the dual certificate using a
variant of the golfing scheme of D. Gross [21]. Technical lemmas required for this construction are
presented in §8.2. Our argument involves two key novelties. First, the handling of infinite tails – an
issue that does not arise in most previously-considered (i.e. finite-dimensional) CS setups. Second,
the additional complications, and correspondingly refined estimates leading to (6.4), due to the
presence of the weights in the optimization problem.

8.1 Dual certificate

Lemma 8.1. Let w = {wi}i∈I be positive weights and ∆ ⊆ IK be such that mini∈IK\∆{wi} ≥ 1.
Suppose that

(i) : ‖P∆A
∗AP∆ − P∆‖ ≤ α, (ii) : max

i∈IK\∆
{‖Aei‖/wi} ≤ β,

and that there exists a vector ρ = W−1PKA
∗ξ ∈ PK(`2(I)) for some ξ ∈ Cm, where W =

diag(w1, w2, . . .), such that

(iii) : ‖W (P∆ρ− sign(P∆x))‖ ≤ γ, (iv) : ‖P⊥∆ρ‖∞ ≤ θ, (v) : ‖ξ‖ ≤ λ
√
|∆|w,

for constants 0 ≤ α, θ < 1 and β, γ, λ ≥ 0 satisfying
√

1+αβγ
(1−α)(1−θ) < 1. Let x ∈ `1w(I), y = Ax+ e with

‖e‖ ≤ η and suppose that x̂ is a minimizer of the problem

min
z∈PK(`1w(I))

‖z‖1,w subject to ‖APKz − y‖ ≤ η.

If x̄ ∈ PK(`1w(I)) is feasible for this problem, i.e. ‖APK x̄− y‖ ≤ η, then the estimate

‖x̂− x‖ ≤
(
C1 + C2λ

√
|∆|w

)
(2η + ‖x− PKx‖1,u) + C2 (2‖x− P∆x‖1,w + ‖x− x̄‖1,w) , (8.3)

holds, where C1 =
(

1 + γ
1−θ

)
C0, C2 = β

1−θ

(
1 + γ

1−θ

)
C0 + 1

1−θ and C0 =
(

1−
√

1+αβγ
(1−α)(1−θ)

)−1 √
1+α

1−α .
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Proof. Let v = x̂− PKx ∈ PK(`2(I)). Then P∆A
∗AP∆v = P∆A

∗Av − P∆A
∗AP⊥∆v. By (i)

‖(P∆A
∗AP∆)−1‖ ≤ 1

1− α
,

and
‖P∆A

∗‖2 = ‖AP∆‖2 = ‖P∆A
∗AP∆‖ ≤ 1 + α.

Thus

‖P∆v‖ ≤
1

1− α
‖P∆A

∗‖‖Av‖+
1

1− α
‖P∆A

∗AP⊥∆v‖ ≤
√

1 + α

1− α

(
‖Av‖+ ‖AP⊥∆v‖

)
.

Observe that ‖Av‖ = ‖Ax̂−APKx‖ ≤ 2η + ‖A(x− PKx)‖, and therefore by Lemma 3.1

‖Av‖ ≤ 2η + ‖x− PKx‖1,u. (8.4)

Hence

‖P∆v‖ ≤
√

1 + α

1− α

(
2η + ‖x− PKx‖1,u + ‖AP⊥∆v‖

)
.

The third term can be estimated as follows:

‖AP⊥∆v‖ ≤
∑
i/∈∆

|vi|‖Aei‖ ≤ β‖P⊥∆v‖1,w,

where the latter inequality is due to (ii). Hence we get

‖P∆v‖ ≤
√

1 + α

1− α

(
2η + ‖x− PKx‖1,u + β‖P⊥∆v‖1,w

)
. (8.5)

We shall return to this inequality later, but let us now consider x̂.

‖x̂‖1,w = ‖P∆x̂‖1,w + ‖P⊥∆ x̂‖1,w
≥ Re 〈P∆Wx̂, sign(P∆x)〉+ ‖P⊥∆v‖1,w − ‖P

⊥
∆x‖1,w

= Re 〈P∆Wv, sign(P∆x)〉+ ‖P∆x‖1,w + ‖P⊥∆v‖1,w − ‖P
⊥
∆x‖1,w

= Re 〈P∆Wv, sign(P∆x)〉+ ‖x‖1,w + ‖P⊥∆v‖1,w − 2‖P⊥∆x‖1,w. (8.6)

Now let x̄ ∈ CK be feasible. Then ‖x̂‖1,w ≤ ‖x̄‖1,w and we get

‖x̄‖1,w ≥ Re 〈P∆Wv, sign(P∆x)〉+ ‖x‖1,w + ‖P⊥∆v‖1,w − 2‖P⊥∆x‖1,w,

which after rearranging gives

‖P⊥∆v‖1,w ≤ |〈P∆Wv, sign(P∆x)〉|+ 2‖P⊥∆x‖1,w + ‖x− x̄‖1,w. (8.7)

We next estimate |〈P∆Wv, sign(P∆x)〉|. We have

|〈P∆Wv, sign(P∆x)〉| ≤ |〈P∆Wv, sign(P∆x)− P∆ρ〉|+ |〈Wv, ρ〉|+ |〈P⊥∆Wv,P⊥∆ρ〉|.

Note that
|〈P∆Wv, sign(P∆x)− P∆ρ〉| ≤ γ‖P∆v‖,
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and also that
〈Wv, ρ〉 = 〈v,Wρ〉 = 〈v,A∗ξ〉 = 〈Av, ρ〉.

Hence, (8.4) and (v) give

|〈Wv, ρ〉| ≤ ‖Av‖λ
√
s ≤ (2η + ‖x− PKx‖1,u)λ

√
|∆|w.

Finally, by (iv), we have

|〈P⊥∆Wv,P⊥∆ρ〉| ≤ ‖P⊥∆ρ‖∞‖P⊥∆v‖1,w ≤ θ‖P⊥∆v‖1,w.

Hence

|〈P∆Wv, sign(P∆x)〉| ≤ γ‖P∆v‖+ (2η + ‖x− PKx‖1,u)λ
√
|∆|w + θ‖P⊥∆v‖1,w,

and substituting into (8.7) and rearranging yields

(1− θ)‖P⊥∆v‖1,w ≤ γ‖P∆v‖+ (2η + ‖x− PKx‖1,u)λ
√
|∆|w + 2‖P⊥∆x‖1,w + ‖x− x̄‖1,w.

Applying (8.5) now gives

‖P∆v‖ ≤
√

1 + α

1− α

[
2η + ‖x− PKx‖1,u

+
β

1− θ

(
γ‖P∆v‖+ (2η + ‖x− PKx‖1,u)λ

√
|∆|w + 2‖P⊥∆x‖1,w + ‖x− x̄‖1,w

)]
,

and therefore

‖P∆v‖ ≤
(

1−
√

1 + αβγ

(1− α)(1− θ)

)−1 √
1 + α

1− α

(
1 +

β

1− θ
λ
√
|∆|w

)
(2η + ‖x− PKx‖1,u)

+

(
1−

√
1 + αβγ

(1− α)(1− θ)

)−1 √
1 + αβ

(1− α)(1− θ)

(
2‖P⊥∆x‖1,w + ‖x− x̄‖1,w

)
= C0

(
1 +

β

1− θ
λ
√
|∆|w

)
(2η + ‖x− PKx‖1,u) + C0

β

1− θ

(
2‖P⊥∆x‖1,w + ‖x− x̄‖1,w

)
.

Since wi ≥ 1, i ∈ IK\∆, we have ‖P⊥∆v‖ ≤ ‖P⊥∆v‖1 ≤ ‖P⊥∆v‖1,w, and hence

‖v‖ ≤‖P∆v‖+ ‖P⊥∆v‖1,w

≤
(

1 +
γ

1− θ

)
‖P∆v‖+

1

1− θ
(2η + ‖x− PKx‖1,u)λ

√
|∆|w +

1

1− θ

(
2‖P⊥∆x‖1,w + ‖x− x̄‖1,w

)
≤
[(

1 +
γ

1− θ

)
C0

(
1 +

β

1− θ
λ
√
|∆|w

)
+

1

1− θ
λ
√
|∆|w

]
(2η + ‖x− PKx‖1,u)

+

[
C0β

1− θ

(
1 +

γ

1− θ

)
+

1

1− θ

](
2‖P⊥∆x‖1,w + ‖x− x̄‖1,w

)
,

as required.
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8.2 Technical lemmas

For the dual certificate construction in §8.3 we first require the following four technical lemmas:

Lemma 8.2. Let ∆ ⊆ I, 1 ≤ |∆| <∞, 0 < ε < 1, δ > 0 and u = {ui}i∈I be as in (3.3). Then

‖P∆A
∗AP∆ − P∆‖ ≤ δ,

with probability at least 1− ε, provided

m ≥ |∆|u · log (2|∆|/ε) ·
(
2δ−2 + 2δ−1/3

)
.

Proof. Let Yi = {
√
ν(ti)/µ(ti)φj(ti)}j∈∆ and observe that

P∆A
∗AP∆ − P∆ =

m∑
i=1

Xi,

where Xi = 1
m (YiY

∗
i − I) ∈ C|∆|×|∆| satisfies E(Xi) = 0. Note that

‖Yi‖2 =
∑
j∈∆

ν(ti)

µ(ti)
|φj(ti)|2 ≤

∑
j∈∆

u2
j = |∆|u.

Hence
‖Xi‖ = sup

‖x‖=1
|〈Xix, x〉| = m−1 sup

‖x‖=1

∣∣|〈Yi, x〉|2 − 1
∣∣ ≤ m−1|∆|u,

where in the last step we use the fact that |∆|u ≥ |∆| ≥ 1. Also

E(X2
i ) = m−2E

(
(‖Yi‖2 − 2)YiY

∗
i + I

)
,

Since E(YiY
∗
i ) = I we have

|〈E(X2
i )x, x〉| ≤ m−2|∆|u‖x‖2,

and therefore ∥∥∥∥∥
m∑
i=1

E(X2
i )

∥∥∥∥∥ = sup
‖x‖=1

∣∣∣∣∣
m∑
i=1

〈E(X2
i )x, x〉

∣∣∣∣∣ ≤ m−1|∆|u.

The result now follows immediately from the matrix Bernstein inequality [18, Cor. 8.15].

Lemma 8.3. Let ∆ ⊆ I, 1 ≤ |∆| < ∞, 0 < ε < e−1, δ > 0, u = {ui}i∈I be as in (3.3) and
z ∈ `2(I). Then

‖(P∆A
∗AP∆ − P∆)z‖ ≤ δ‖z‖,

with probability at least 1− ε, provided

m ≥ |∆|u · log(ε−1) ·
(
8δ−2 + 28δ−1/3

)
.

Proof. Let ‖z‖ = 1 without loss of generality. As in the previous proof, write P∆A
∗AP∆ − P∆ =

m−1
∑m

i=1(YiY
∗
i − I) so that

‖(P∆A
∗AP∆ − P∆)z‖ =

∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥,
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where Zi = m−1(YiY
∗
i − I)z. Observe that E(Zi) = 0 and the Zi are independent copies of a single

random vector. Arguing as in the previous lemma, we note that

‖Zi‖ ≤ m−1|∆|u,

and
E‖Zi‖2 ≤ m−2 max{|∆|u, 1}, sup

‖x‖=1
E|〈Zi, x〉|2 ≤ m−2|∆|u.

Suppose that m ≥ 4|∆|uδ−2 so that
√
mE‖Zi‖2 ≤ δ/2. It now follows from [18, Cor. 8.45] that

P (‖(P∆A
∗AP∆ − P∆)z‖ > δ) ≤ exp

(
− m

max{|∆|u, 1}
δ2/8

1 + 7δ/6

)
,

which gives the result.

Lemma 8.4. Let 0 < ε < 1, δ > 0, w = {wi}i∈I be weights, ∆ ⊆ IK and suppose that
mini∈IK\∆{wi} ≥ 1. Then

max
i∈IK\∆

{‖Aei‖/wi} ≤
√

1 + δ, (8.8)

with probability at least 1− ε, provided

m ≥ 2 max
i∈IK\∆

{u2
i /w

2
i } · log (2N/ε) ·

(
δ−2 + δ−1/3

)
,

where N = |IK | and u = {ui}i∈I is as in (3.3).

Proof. Fix i ∈ IK\∆. Then

‖Aei‖2/w2
i = e∗iA

∗Aei/w
2
i =

1

m

m∑
j=1

ν(tj)

µ(tj)
|φi(tj)|2/w2

i ≤

∣∣∣∣∣∣
m∑
j=1

Xj

∣∣∣∣∣∣+ 1/w2
i ≤

∣∣∣∣∣∣
m∑
j=1

Xj

∣∣∣∣∣∣+ 1,

where Xj = m−1
(
ν(tj)
µ(tj)
|φi(tj)|2 − 1

)
/w2

i . Note that E(Xj) = 0 and the Xj ’s are independent.

Moreover,
|Xj | ≤ m−1u2

i /w
2
i ,

and

m∑
j=1

E(|Xj |2) =
1

mw4
i

∫
D

(
ν(t)

µ(t)
|φi(t)|2 − 1

)2

µ(t) dt

=
1

mw4
i

(∫
D

ν(t)2

µ(t)2
|φi(t)|4µ(t) dt− 1

)
≤ u2

i

mw2
i

.

Hence, by Bernstein’s inequality,

P(‖Aei‖/wi ≥
√

1 + δ) ≤ 2 exp

(
−1

κ

δ2/2

1 + δ/3

)
, ∀i ∈ IK\∆,

where κ = m−1 maxi∈IR\∆{u
2
i /w

2
i }. The result now follows from the union bound.
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Lemma 8.5. Let 0 < ε < 1, δ > 0, z ∈ `2(I), w = {wi}i∈I be weights and ∆ ⊆ IK . Then

‖PKP⊥∆W−1A∗AP∆z‖∞ ≤ δ‖z‖.

with probability at least 1− ε, provided

m ≥ 2

(
max
i∈IK\∆

{u2
i /w

2
i }δ−2 +

√
|∆|u max

i∈IK\∆
{ui/wi}δ−1/3

)
· log(2N/ε), (8.9)

where N = |IK | and u = {ui}i∈I is as in (3.3).

Proof. Let ‖z‖ = 1 without loss of generality. Observe that

‖PKP⊥∆W−1A∗AP∆z‖∞ = max
i∈IK\∆

|〈ei, A∗AP∆z〉|
wi

.

Fix i ∈ IK\∆. Then

|〈ei, A∗AP∆z〉|
wi

=

∣∣∣∣∣∣
m∑
j=1

Xj

∣∣∣∣∣∣ ,
where Xj is the random variable

Xj =
1

wim
φi(tj)

(∑
k∈∆

φk(tj)zk

)
ν(tj)

µ(tj)
.

Observe that the Xj are independent and E(Xj) = 0 since i /∈ ∆. Also

|Xj | ≤
ui
wim

∣∣∣∣∣∑
k∈∆

√
ν(tj)

µ(tj)
φk(tj)zk

∣∣∣∣∣ ≤ ui
wim

√
|∆|u,

and
m∑
j=1

E(|Xj |2) ≤
(

ui
wim

)2

m

∫
D

∣∣∣∣∣∑
k∈∆

φk(t)zk

∣∣∣∣∣
2

ν(t) dt =
u2
i

mw2
i

.

Therefore, by Bernstein’s inequality and the union bound,

P
(
‖PKP⊥∆W−1A∗AP∆z‖∞ > δ

)
≤ 2N exp

(
− mδ2/2

maxi∈IK\∆{u2
i /w

2
i }+ δ

√
|∆|u maxi∈IK\∆{ui/wi}/3

)
.

The result now follows immediately.

8.3 Construction of the dual certificate ρ

We are now ready to construct a dual certificate ρ satisfying the conditions of Lemma 8.1. For
parameters, we choose the following values:

α = 1/4, β =
√

5/4, γ = 1/8, θ = 1/2. (8.10)

Setup. Let L ∈ N and suppose that m1, . . . ,mL are such that m1 + . . . + mL = m. If U is as
in (3.4), then write U (1) ∈ Cm1×∞ for the submatrix of the first m1 rows, U (2) ∈ Cm2×∞ for the
submatrix of the first m2 rows, and so on. Define ρ(0) = 0,

ρ(l) = m−1
l W−1PK(U (l))∗U (l)P∆W

(
sign(P∆(x))− P∆ρ

(l−1)
)

+ ρ(l−1), l = 1, 2.
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and
v(l) = W

(
sign(P∆(x))− P∆ρ

(l)
)
, l = 0, 1, 2.

Let Θ(1) = {1} and Θ(2) = {1, 2}. For l = 3, . . . , L, we define Θ(l) as follows:

• If

‖(P∆ −m−1
l P∆(U (l))∗U (l)P∆)v(l−1)‖ ≤ al‖v(l−1)‖

‖m−1
l PKP

⊥
∆W

−1(U (l))∗U (l)P∆v
(l−1)‖∞ ≤ bl‖v(l−1)‖

for constants al and bl then set Θ(l) = Θ(l−1) ∪ {l} and

ρ(l) = m−1
l W−1PK(U (l))∗U (l)v(l−1) + ρ(l−1), v(l) = W

(
sign(P∆x)− P∆ρ

(l)
)
.

• Otherwise, set Θ(l) = Θ(l−1), ρ(l) = ρ(l−1) and v(l) = v(l−1).

We now define the events A1, A2, B1, B2, C,D as follows:

Al : ‖(P∆ −m−1
l P∆(U (l))∗U (l)P∆)v(l−1)‖ ≤ al‖v(l−1)‖, l = 1, 2,

Bl : ‖m−1
l PKP

⊥
∆W

−1(U (l))∗U (l)P∆v
(l−1)‖∞ ≤ bl‖v(l−1)‖, l = 1, 2,

C : |Θ(L)| ≥ R
D : ‖P∆A

∗AP∆ − P∆‖ ≤ 1/4,

E : sup
i/∈∆
{‖Aei‖/wi} ≤

√
5/4,

F : A1 ∩A2 ∩B1 ∩B2 ∩ C ∩D ∩ E,

where |Θ(L)| is the cardinality of Θ(L). If event F occurs, write Θ(L) = {τ(1), τ(2), . . . , τ(R), . . .},
where the function τ satisfies τ(l) ≥ l for all l, and define the dual certificate as ρ = ρ(τ(R)).

Choice of the parameters. The idea of the proof is to choose L, R, m1, . . . ,mL, a1, . . . , aL and
b1, . . . , bL so that conditions (i)–(v) of Lemma 8.1 are fulfilled for the parameter choices (8.10). We
make the following choices for these parameters. Write s = |∆|w, s∗ = max{s, 1} and set

R = dlog2(8N
√
s∗)e, (8.11)

where N = |IK |,
L = 2 + dlog(7ε−1)e+ 10R, (8.12)

a1 = a2 =
1

2
√

log2(8N
√
s∗)

, al = 1/2, l = 3, . . . , L. (8.13)

b1 = b2 =
1

4
√
s
, bl =

log2(8N
√
s∗)

4
√
s

, l = 3, . . . , L. (8.14)

and
m1 = m2 =

m

4
, ml =

m

2(L− 2)
, l = 3, . . . , L.
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Claim: Event D implies conditions (i)–(v). Suppose that event D occurs. Immediately, events D
and E give that conditions (i) and (ii) hold with α = 1/4 and β =

√
5/4. Now consider condition

(iii). If τ(k − 1), τ(k) ∈ Θ(L) then note that

v(τ(k)) = W
(

sign(P∆(x))− P∆m
−1
τ(k)W

−1(U (τ(k)))∗U (τ(k))vτ(k−1) − P∆ρ
(τ(k−1))

)
=
(
P∆ −m−1

τ(k)P∆(U (τ(k)))∗U (τ(k))P∆

)
v(τ(k−1)). (8.15)

Hence

‖v(τ(k))‖ ≤ aτ(k)‖v(τ(k−1))‖ ≤ ‖v(0)‖
k∏
j=1

aτ(j) ≤
√
s

k∏
j=1

aτ(j). (8.16)

Observe that
k∏
j=1

aτ(j) =
1

2k log2(8N
√
s∗)
≤ 1

2k
. (8.17)

Hence setting k = R in (8.16) and noticing that

W (P∆u− sign(P∆x)) = W (P∆ρ
(τ(R)) − sign(P∆x)) = v(τ(R)),

gives that

‖W (P∆u− sign(P∆x))‖ ≤
√
s

R∏
j=1

aτ(j) =

√
s

2R
≤ 1

8
. (8.18)

Thus condition (iii) holds with γ = 1/8 as required. Now consider condition (iv). Observe that

P⊥∆ρ
(τ(k)) = m−1

τ(k)PKP
⊥
∆W

−1(U (τ(k)))∗U (τ(k))v(τ(k−1)) + P⊥∆ρ
(τ(k−1)).

Therefore

‖P⊥∆ρ(τ(k))‖∞ ≤ bτ(k)‖v(τ(k−1))‖+ ‖P⊥∆ρ(τ(k−1))‖∞ ≤
√
sbτ(k)

k−1∏
j=1

aτ(j) + ‖P⊥∆ρ(τ(k−1))‖∞,

where we use the convention that
∏k−1
j=1 aτ(j) = 1 when k = 1. Hence

‖P⊥∆u‖∞ ≤
√
s

R∑
k=1

bτ(k)

k−1∏
j=1

aτ(j). (8.19)

Substituting the values of al and bl into the right-hand side of (8.19) and using (8.17) gives

√
s

R∑
k=1

bτ(k)

k−1∏
j=1

aτ(j) ≤
1

4

(
1 +

1

2
+

1

4
+

1

8
+ . . .+

1

2R−1

)
≤ 1

2
.

Hence condition (iv) holds with θ = 1/2, as required.
Finally consider condition (v). Write ρ(τ(k)) = W−1PKA

∗ξ(τ(k)), where

ξ(τ(k)) =

√
m

mτ(k)
U (τ(k))v(τ(k−1)) + ξ(τ(k−1)).
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It follows that

‖ξ(τ(k))‖ ≤
√
m

mτ(k)
‖U (τ(k))vτ(k−1)‖+ ‖ξ(τ(k−1))‖. (8.20)

Consider the first term on the right-hand side. We have

m−1
τ(k)‖U

(τ(k))vτ(k−1)‖2 = m−1
τ(k)〈P∆(U (τ(k)))∗U (τ(k))P∆v

(τ(k−1)), v(τ(k−1))〉

= ‖v(τ(k−1))‖2 − 〈v(τ(k)), v(τ(k−1))〉
≤ ‖v(τ(k−1))‖2 + ‖v(τ(k−1))‖‖v(τ(k))‖,

where in the middle step we use (8.15). By (8.16), it now follows that

m−1
τ(k)‖U

(τ(k))vτ(k−1)‖2 ≤ s
(
aτ(k) + 1

)k−1∏
j=1

aτ(j)

2

,

and therefore, returning to (8.20) and summing over k = 1, . . . , R, we get

‖ξ‖ ≤
√
s

R∑
k=1

√
m

mτ(k)

√
aτ(k) + 1

k−1∏
j=1

aτ(j), (8.21)

where ξ = ξ(τ(R)) is such that u = W−1PKA
∗ξ. Now notice that√

m

mτ(k)

√
aτ(k) + 1 ≤

√
6, k = 1, 2,

and √
m

mτ(k)

√
aτ(k) + 1 ≤

√
3L k = 3, . . . , R.

It follows from (8.21) and (8.17) that

‖w‖ ≤
√
s

(
√

6(1 + 1/2) +
√

3L
R∑
k=3

1

2k log2(8N
√
s∗)

)
,

and therefore condition (v) holds with

λ . 1 +

√
log(γ−1)

log(2N
√

max{|∆|w, 1})
. (8.22)

8.4 Event F holds with high probability

We now derive conditions on m for event F to hold with probability at least 1−ε, where 0 < ε < e−1.
By the union bound, it suffices to prove that events A1, A2, B1, B2, C,D,E occur with probability
at least 1− γ, where γ = ε/7.

Events A1, A2 and B1, B2. We apply Lemma 8.3 with ε = γ, δ = 1/(2
√

log2(8N
√
s∗)) and m =

ml = m/4. This gives that P(Acl ) ≤ γ for l = 1, 2 provided m satisfies

m & |∆|u · log(γ−1) · log2(8N
√
s∗). (8.23)
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Similarly, for events B1 and B2 we apply Lemma 8.5 with ε = γ, δ = 1/(4
√
s) and m = ml = m/4.

This gives that P(Bc
l ) ≤ γ for l = 1, 2, provided

m &

(
|∆|w max

i∈IK\∆
{u2

i /w
2
i }+

√
|∆|u|∆|w max

i∈IK\∆
{ui/wi}

)
· log(2N/γ).

After simplifying, we see that it suffices that

m &

(
|∆|u + max

i∈IK\∆
{u2

i /w
2
i }|∆|w

)
· log(2N/γ). (8.24)

Event C. Define the random variables X1, . . . , XL−2 by

Xl =

{
1 v(l+2) 6= v(l+1)

0 otherwise
,

so that P(Cc) = P(|Θ(L)| < R) = P(X1 + . . .+XL−2 < R).1 Observe that

P

(
L−2∑
l=1

Xl < R

)
= E

(
P

(
XL−2 < R−

L−3∑
l=1

Xl|XL−3, . . . , X1

))
.

When conditioned on an instance of X1, . . . , XL−3 the variable XL−2 has a Bernoulli distribution
with some parameter p(X1, . . . , XL−3). If X is a Bernoulli random variable with parameter p, then
the function P(X < t) is a nonincreasing function of p for any fixed t ∈ R. It follows that

P

(
L−2∑
l=1

Xl < R

)
≤ P

(
X ′L−2 +

L−3∑
l=1

Xl < R

)
, (8.25)

where X ′L−2 is an independent Bernoulli random variable with parameter p′ satisfying

p′ ≤ min
x1,...,xL−3∈{0,1}

p(x1, . . . , xL−3).

We now wish to guarantee that p′ ≥ 9/10. Observe that XL−2 = 0 if, for l = L, either of the
following events occur:

C1 : ‖(P∆ −m−1
l P∆(U (l))∗U (l)P∆)v(l−1)‖ > al‖v(l−1)‖

C2 : ‖m−1
l PKP

⊥
∆W

−1(U (l))∗U (l)P∆v
(l−1)‖∞ > bl‖v(l−1)‖.

Applying Lemma 8.3 with m = mL, δ = 1/2, ε = 1/20 and Lemma 8.5 with m = mL, δ =
log2(8N

√
s∗)/(4

√
s) and ε = 1/20 we now see that p′ ≥ 9/10, provided m satisfies

mL & |∆|u,

and

mL &

(
|∆|w max

i∈IK\∆
{u2

i /w
2
i }+

√
|∆|u|∆|w max

i∈IK\∆
{ui/wi}

)
log(40K))/ log2(8N

√
s∗).

1In some of the first presentations of the golfing scheme [8, 21], it was assumed that these random variables were
independent, which is not the case in general. This issue was fixed in [2] via a more careful argument. Here we follow
the approach of [22].
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Since mL = m/(2(L− 2)), these now reduce to

m & |∆|u ·
(

log(ε−1) + log2(8N
√
s∗)
)
, (8.26)

and

m &

(
|∆|u + max

i∈IK\∆
{u2

i /w
2
i }|∆|w

)
· log(2N) · log(ε−1), (8.27)

respectively.
Assuming now that (8.26) and (8.27) hold, we have p′ ≥ 9/10. Moreover, repeating the same

arguments we can iterate the estimate (8.25) to obtain

P

(
L−2∑
l=1

Xl < R

)
≤ P

(
L−2∑
l=1

X ′l < R

)
,

where the X ′l are independent Bernoulli random variables with parameter 9/10. Following the
arguments of [2], we deduce that

P

(
L−2∑
l=1

Xl < R

)
≤ exp

(
−2(L− 2)

(
9

10
− R

L− 2

)2
)
.

By construction

2(L− 2)

(
9

10
− R

L− 2

)2

≥ 2 log(γ−1)

(
9

10
− 1

10

)2

> log(γ−1).

Hence

P(Cc) = P

(
L−2∑
l=1

Xl < R

)
≤ γ,

as required.

Events D and E. For event D, we apply Lemma 8.2 with ε = γ and δ = 1/4. This yields that if

m & |∆|u · log(2|∆|/γ), (8.28)

then P(Dc) ≤ γ. Similarly, suppose that

m & max
i∈IR\∆

{u2
i /w

2
i } · log(2N/γ), (8.29)

then Lemma 8.4 gives that P(Ec) ≤ γ.

8.5 Proof of Theorem 6.1

Recall that (4.2) is equivalent to (8.2). The estimate now follows from Lemma 8.1, provided
conditions (i)–(v) hold. As demonstrated in the previous section, (i)–(v) hold with probability at
least 1− ε and with λ given by (8.22), provided (8.23), (8.24), (8.26), (8.27), (8.28) and (8.29) hold.
However, due to the assumption on ε and the choice of γ, these are all implied by (6.4).
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