arXiv:1608.06149v1 [math.AP] 22 Aug 2016

Convergence of a mixed finite element—finite volume scheme
for the isentropic Navier-Stokes system via dissipative
measure-valued solutions

Eduard Feireisl * Méria Lukécova-Medvid’ovd |

July 31, 2018

Institute of Maghematics of the Academy of Sciences of the Czech Republic
Zitna 25, CZ-115 67 Praha 1, Czech Republic

Institute of Mathematics, Johannes Gutenberg-University Mainz
Staudingerweg 6, 55 099 Mainz, Germany

Abstract

We study convergence of a mixed finite element—finite volume numerical scheme for the
isentropic Navier-Stokes system under the full range of the adiabatic exponent. We establish
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1 Introduction

Time evolution of the density o = o(t, z) and the velocity u = u(t, z) of a compressible barotropic
viscous fluid can be described by the Navier—Stokes system

0o + div,(ou) = 0, (1.1)
Oi(pu) +divy(ou®@u) + Voplo) = div,S(V,u),

2
S(V,u) = u (qu +Viu— gdivxuﬂ) + ndiv, ul. (1.3)



We assume the fluid is confined to a bounded physical domain Q C R?, where the velocity satisfies
the no-slip boundary conditions
ulspq = 0. (1.4)

For the sake of simplicity, we ignore the effect of external forces in the momentum equation (L.2]).

In the literature there is a large variety of efficient numerical methods developed for the com-
pressible Euler and Navier-Stokes equations. The most classical of them are the finite volume
methods, see, e.g., [8], [25], [29], the methods based on a suitable combination of the finite volume
and finite element methods [2], [9], [10], [16], [I7], or the discontinous Galerkin schemes, e.g. [11],
[12] and the references therein. Although these methods are frequently used for many physical
or engineering applications, there are only partial theoretical results available concerning their
analysis for the compressible Euler or Navier-Stokes systems. We refer to the works of Tadmor
et al. [13], [28], [30] for entropy stability in the context of hyperbolic balance laws and to the
works of Gallouét et al. [16], [I7] for the stability analysis of the mixed finite volume-finite element
methods based on the Crouzeix-Raviart elements for compressible viscous flows. In [20] Jovanovi¢
and Rohde obtained the error estimate for entropy dissipative finite volume methods applied to
nonlinear hyperbolic balance laws under (a rather restrictive) assumption of the global existence
of a bounded, smooth exact solution.

Our goal in this paper is to study convergence of solutions to the numerical scheme proposed
originally by Karlsen and Karper [21], [22], [23], [24] to solve problem (LIHL4) in polygonal
(numerical) domains, and later modified in [4] to accommodate approximations of smooth physical
domains. The scheme is implicit and of mixed type, where the convective terms are approximated
via upwind operators, while the viscous stress is handled by means of the Crouzeix—Raviart finite
element method. As shown by Karper [24] and in [4], the scheme provides a family of numerical
solutions containing a sequence that converges to a weak solution of the Navier-Stokes system as
the discretization parameters tend to zero. Recently, Gallouét et al. [18] established rigorous error
estimates on condition that the limit problem admits a smooth solution. Numerical experiments
illustrating theoretical predictions have been performed in [6].

We consider the problem under physically realistic assumptions, where theoretical results are
still in short supply. In particular, our results cover completely the isentropic pressure—density
state equation

plo) = ag”, 1 <v<2. (1.5)

Note that the assumption v < 2 is not restrictive in this context as the largest physically relevant
exponent is vy = g Let us remark that the available theoretical results concerning global-in-time
existence of weak solutions cover only the case v > % [7], see also the recent result by Plotnikov
and Weigant [27] for the borderline case in the 2D setting. Similarly, the error estimates obtained
by Gallouét et al. [I§] provide convergence under the same conditions yielding explicit convergence
rates for v > % and mere boundedness of the numerical solutions in the limit case v = %

Our goal is to establish convergence of the numerical solutions in the full range of the adiabatic
exponent 7y specified in (LH). The main idea is to use the concept of dissipative measure-valued

solution to problem (LIHL4) introduced recently in [3], [I9]. These are, roughly speaking, measure-



valued solutions satisfying, in addition, an energy inequality in which the dissipation defect measure
dominates the concentration remainder in the equations. Although very general, a dissipative
measure-valued solution coincides with the strong solution of the same initial-value problem as
long as the latter exists, see [3]. Our approach is based on the following steps:

We recall the numerical energy balance identified in Karper’s original paper.
We use the energy estimates to show stability of the numerical method.

A consistency formulation of the problem is derived involving numerical solutions and error
terms vanishing with the time step At and the spatial discretization parameter h approaching
Z€ero.

We show that the family of numerical solutions generates a dissipative measure-valued solu-
tion of the problem. Such a result is, of course, of independent interest. As claimed recently
by Fjordholm et al. [I4], [15] the dissipative measure-valued solutions yield, at least in the
context of hyperbolic conservation laws, a more appropriate solution concept than the weak
entropy solutions.

Finally, using the weak-strong uniqueness principle established in [3], we infer that the
numerical solutions converge (a.a.) pointwise to the smooth solution of the limit problem as
long as the latter exists.

The paper is organized as follows. The numerical scheme is introduced in Section In
Section B we recall the numerical counterpart of the energy balance and derive stability estimates.
In Section Ml we introduce a consistency formulation of the problem and estimate the numerical
errors. Finally, we show that the numerical scheme generates a dissipative measure-valued solution
to the compressible Navier—Stokes system and state our main convergence results in Section

2

Numerical scheme

To begin, we introduce the notation necessary to formulate our numerical method.

2.1

Spatial domain, mesh

We suppose that 2 C R? is a bounded domain. We consider a polyhedral approximation €2, where
), is a polygonal domain,

O = Ugsep, B7, int[E'] Nint[E7] = 0 for i # j,

where each E7 € E}, is a closed tetrahedron that can be obtained via the affine transformation

F' = hAg E + aps, Ap; € B3, ag € R,
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where F is the reference element
E =c0{[0,0,0],[1,0,0],[0,1,0],[0,0,1]},

and where all eigenvalues of the matrix Ag; are bounded above and below away from zero uniformly
for h — 0. The family F) of all tetrahedra covering €2, is called mesh, the positive number A is
the parameter of spatial discretization. We write

a~be a<ch ¢>0 independent of h,
a” b a>ch, ¢>0 independent of h,
a=b<a~band a0

Furthermore, we suppose that:

e a non-empty intersection of two elements E’, E’ is their common face, edge, or vertex;
e for all compact sets K; C Q, K, C R® \ﬁ there is hg > 0 such that

K; CQ,, K.C R*\Qforall 0<h < hy.

The symbol I', denotes the set of all faces in the mesh. We distinguish exterior and interior
faces:
D = T U Thexts Trost = {T € Tn | T €0}, T = T\ Thexs

2.2 Function spaces

Our scheme utilizes spaces of piecewise smooth functions, for which we define the traces

0" = limv(x + dnr), v™ = limv(z — dnr), 2 €T, T € Ty,
6—0 6—0

where np denotes the outer normal vector to the face I' C dE. Analogously, we define v™ for
[' C T exi. We simply write v for ™ if no confusion arises. We also define

,Uout + Um

7
, (V)yp = — [ vdS,.
2 < >F ‘F| r

Next, we introduce the space of piecewise constant functions

[[o] = ™ =™, {v)p =

Qn(y) = {v c L'() ‘ v|g = const € R for any E € Eh} :

with the associated projection

Hg : Ll(Qh) — Qh(Qh)a Hg[v] = <’U>E = % /E’U dr, F € Ej,.



We shall occasionally write
M7 [0] = (v).

Finally, we introduce the Crouzeix—Raviart finite element spaces

Vi(Qp) = {v € L*() ‘ v|p = affine function E € Ej, /vi“ ds, = /UO‘” dS, forI' € Fh,int} ,
r r

Vbﬁ(Qh) = {U € Vh(Qh) ‘ /’Uin de =0for[ € Fh,ext} ,
I

along with the associated projection

Iy - W Q) — Vi), /H,Y[U] ds, = /v dS, for any I' € T,
r r

We denote by Vv, div,v the piecewise constant functions resulting from the action of the corre-
sponding differential operator on v on each fixed element in FEj,,

Vv € Qn(Qn; R?), Vv = Vo for E € By, divyv € Qu(S,), divye = div,w for E € B,

2.3 Discrete time derivative, dissipative upwind

k—1
L, at a

For a given time step At > 0 and the (already known) value of the numerical solution v
given time level t;_; = (k — 1)At, we introduce the discrete time derivative

k k-1
Up — Uy,

Dt'Uh = At

to compute the numerical approximation vf at the level t, = t;,_; + At.

To approximate the convective terms, we use the dissipative upwind operators introduced in
[4] (see also [5]), specifically,

Ublr w] = {ra) (e m)y 5 max {5 ] (we - mhe [} ]

conveci?i:ze part dissipagirvo part
2.1
__ .out — in + ha <uh : n>1" ( )
= )] G ) [ (),
standara,upwind
where
0 for z < —1,
(2) = z+1if —1<2<0,
XE=Y 1-z2ifo<z <1,
0 for z > 1.



2.4 Numerical scheme

Given the initial data
Oh € Qn(), wp € Vou(; R), (2.2)

and the numerical solution
oyt € Qu(Q), uf Tt € Vou(u R?), k> 1,

the value [0, uf] € Qu() x Vou(Q; R?) is obtained as a solution of the following system of
equations:

Didho dr— 3" [ Unleh,ul] (o]) d5. =0 (2.3

Qh Fth,int r

for any ¢ € Qn();

/Q Dy (cf (up)) ¢ dz— /F Uplof; (ujy) ,uwy] - [[()]] dS, — /Q p(of)divy,é do
h T'ely int h (2.4>

y / Vit s Vag da + (g + n) / divyuldivyd de =0
Qp Qp

for any ¢ € Vj,(Q; R?). The specific form of the viscous stress in ([2.4) reflects the fact that the
viscosity coefficients are constant.

It was shown in [24] (see also [5, Part II]) that system (23)), ([2.4) is solvable for any choice of
the initial data [Z2). In addition, ¢f > 0 whenever ¢? > 0. In general, the solution [0}, uf] may
not be uniquely determined by [gi_l, uﬁ_l] unless the time step At is conveniently adjusted by a
CFL type condition. We make more comments on this option in Remark below.

As shown in [4] (see also [5, Part II]), the family of numerical solutions converges, up to a

suitable subsequence, to a weak solution of the Navier-Stokes system (ILIHL4) as h — 0 if
e the time step is adjusted so that At =~ h;
e the viscosity coefficients satisfy p > 0, n > 0,

e the pressure satisfies
p(o) = a0’ + bo, a,b>0, v > 3.

If the limit solution of the Navier—Stokes system is smooth, then qualitative error estimates can
be derived on condition that p satisfies (LH) with v > 3/2, see Gallouét et al. [I8]. Unfortunately,
many real world applications correspond to smaller adiabatic exponents, the most popular among
them is the air with v = 7/5. It is therefore of great interest to discuss convergence of the scheme
in the physically relevant range 1 < v < 2.



3 Stability - energy estimates

It is crucial for our analysis that the numerical scheme ([22H24) admits a certain form of total
energy balance. For the pressure potential

the total energy balance reads

1 .
/Q D, {§Qﬁ| (up) |+ P(gﬁ)} dx +/Q (LI VRul? + (/3 + n)|diveuy?] da
h h

S L[ A g [ () ) -

-5 3 [ e () e

32 [ P (11 ok . 1)
3 [ ) e

) 32 ;/ ((oh) (Gt m) ] = (o)™ [ - ), 7) [[(uf)]]” 0.

with
s, € co{dh, op '} 2 € cof (&)™, (k)Y
see [0, Chapter 7, Section 7.5.4]. As the numerical densities are positive, all terms on the right-hand

side of (BI]) representing numerical dissipation are non-positive. For completeness, we remark that
the scheme conserves the total mass, specifically,

/ oF dx:/ o) dr, k=1,2,... (3.2)
Qp Qp,

3.1 Dissipative terms and the pressure growth

It is easy to check that

P"(2)(01 — 02)> > av(0]”* — 0)/*)? whenever z € co{p1, 02}, 01,00 >0, 1 <~ < 2. (3.3)

Indeed it is enough to assume 0 < p; < z < po; Whence
P"(2)(01 — 02)* > CWQ;{_2(91 — 02)%,
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and (B3] reduces to showing

v/2-1

0] (92 - Ql) ( v/2 v/2 v/2—1 < QY/Q

0, — 0{'") or, equivalently, 00,

Y

where the last inequality follows immediately as 01 < 09, 1 < v < 2.
Consequently, the terms on the right-hand side of (B.1) representing the numerical dissipation
and containing P” satisfy

o k—1)2 kNv/2 _ ( k—1yy/2)2
1/ P”(Sg) (Qh oy, ) dz > ﬂ ((Qh) (Qh ) )
Qp

5 N =5 /), A7 dz,
7,2 /F P (M) s> 5 [t (S e,
= Z /P// Zh Qh |<uh n>F| dS > — ay Z / 7/2 |<u£ . n>F| de
© ) (3.4)

In particular, the energy balance (B.]) gives rise to
1 .
Dy [Qd‘il (i) [+ P(@ﬁ)] da + / [V rag 2+ (/3 + )| divyug|?]

/Q; Qpn
E\Y/2 _ (k=1yy/2)2 k=1
—|—a/ ((Qh) (Qh ) ) dx+At/ Qﬁ 1 <U-h> <uh >
Qh Qh

1

At
—I—aZ/ ”/2 max{ha;|<uﬁ-n>r|} ds, (3.5)
v 3 [ ) (00 () s
o 5 [ et ) ()

4 Consistency

Our goal is to derive a consistency formulation for the discrete solutions satisfying (2.3)), (2.4]). To
this end, it is convenient to deal with quantities defined on R x €2,. Accordingly, we introduce

on(t,-) = o) for t < At, on(t,-) = of for t € [kAt, (k+1)AL), k=1,2,..., (4.1)

w,(t,-) =) for t < At, w,(t,-) =} for t € kAL, (k+1)At), k=1,2,..., (4.2)



and
v(t,) —o(t — At,-)

At
For the sake of simplicity, we keep the time step At constant, however, a similar ansatz obviously
works also for At = At; adjusted at each level of iteration.
A suitable consistency formulation of equation (23)) reads

Dy, = ,t>0. (4.3)

T
—/qﬁﬂm)m:/n/[%%ﬂwvaw]M&+OW%5>Q (4.4)
Qp 0 Qpn

for any test function ¢ € C®([0,00) x Q4,), where 3 denotes a generic positive exponent, and,
accordingly, the remainder term O(h?), that may depend also on the test function ¢, tends to zero
as h — 0. Similarly, we want to rewrite (2.4]) in the form

T
—/ Q?L <u2> . <p(0, ) de = / / |:Qh <uh) 0t<p + On <uh) X uy : thp + p(Qh)divxtp} dz dt
Qp 0 Qp

T
— / / [,uvhuh : Ve + (/3 + n)divyuy, - divxcp] dz dt + O(R?)
0o Jao,
(4.5)

for any ¢ € C°([0,00) x Qp; R?).

4.1 Preliminaries, some useful estimates

We collect certain well-known estimates used in the subsequent analysis. We refer to [0, Part II,
Chapters 8,9] for the proofs.

4.1.1 Discrete negative and trace estimates for piecewise smooth functions

The following inverse inequality

11
loll oy = B2 [ollagy), 1< g <p < oo, (4.6)
holds for any v € Qp, ().
The trace estimates read
vl Lo ry N hY?||v|| o) whenever T C OF, 1 < p < oo (4.7)

for any v € Qx().
Finally, we report a discrete version of Poincaré’s inequality

v — ) |20y = v — T2 ]| 20y = 2| Vvl 2wy for any v € Vi (). (4.8)

10



4.1.2 Sobolev estimates for broken norms

We have )
< [[v]
olEsy Y [ 5L dS. + ol (19
1—‘h,int r
for any v € Qn(2,). In particular, we may combine the negative estimates (A6 with (£9) to
obtain
/2 2/ - 1 /2 2 1/~
o= () 5
lonllz=cu) ( HL"O Qh)) ( o LG(QA))
) )
X 1y
<Y e -1 /2|2
h,int
1/
#he af[ /2112 ~1/y
~h Sl ase | +h T el

T'nint
Next, we have the discrete variant of Sobolev’s inequality
< _
||UH%6(Q;L) ~ Z thv||2L2(E;R3) = thv||2L2(Qh;R3) (4.11)
EcEy,
for any v € Vo ().

Finally, we recall the projection estimates for the Crouzeix—Raviart spaces

|11} [o] + || VAL [v] = V UHLqQ ) Nhj||vju||Lq(Qh;jo), j=1,2,1<¢q< 0.

(4.12)

_UHL‘I(Qh)

4.1.3 Upwind consistency formula

We report the universal formula

/Q,L - Veg de= ) / Uplr,u] [[F]] dS,

Iel'y ing r

S / (] [[F]]x(“,;f%) s,

1ﬂGFh int

+ Y Z/ ] [(u-n)]~ dS,

EeE, I'pCOFE

+>> / ¢r(u-n— (u-n); )dSm+/ r(F — ¢)divsu do

E€E), TzCOE Qn

(4.13)

for any r, F' € Qu(Q), u € Vo (Qn; R?), ¢ € C*(Q), see [B, Chapter 9, Lemma 7).

11



4.2 Consistency formulation of the continuity method

Our goal is to derive the consistency formulation (£4) of the discrete equation of continuity (Z.3).

4.2.1 Time derivative

We consider test functions of the form v (t)¢(x) to obtain

T T
| [ Do we) awat= [ v [ Dios ar ar
o Ja, 0

Qp

o / $(t + A1) — (1)
o At

0
on¢ dr dt — Ai/ / op(t + At)g dz dt
t —At JQp

whenever the function ¢ € C2°[0,7T") and At is small enough so that the interval [T"— At, 00) is
not included in the support of ). By means of the mean-value theorem we get that

T T
/ Dulon) () da dt = — / Drbond da i — / BH(0)d dr+ O (4.14)
0 Qp 0 Qp Qp

for any ¢ € C(Q,), ¥ € C°[0,T). Note that the O(h) term depends on the second derivative of
Y.

4.2.2 Convective term - upwind

Relation ([EI3) evaluated for r = of, u =uf, F = (¢), ¢ € C1(Q,) gives rise to

| chu- 9o ae= 3 [ Upleh il ) o,

Tely im T

+§ng / [[ek]] H<¢>Hx(<“%—f*> as,
S [ o) = o) [1eh)] Kk ), - s,
EeEhrEcaE I'e

Y Y / o0} (u —<u§i-n>r)dsx+ /Q onl{6) — d)aivinf

EcE, TpCOE
(4.15)
Using an elementary inequality
|01 — 02 < ‘(91)7/2 - (Qz)wz‘ ‘(91)1_7/2 + (Qz)lﬂp‘ , 1<y <2 (4.16)

12



we get

v > /F [[ar]] H<¢>Hx<<u"h'a“>F> dS;| = ) elleay | D /F [[¢8]] ds.
SR [P 1) ( Z / Wl 2 dS, + Z /{ )= '7/2} dS)

where, by virtue of ([B.3),
2
Sl Y /H(QQ)WQH dS, < c(¢)hgr, At gp < 0,
Fth,int k
and, in accordance with (3.2]) and the trace estimates (A1),
h1+a||¢||01(ﬂh Z /{ o) 7/2} dS, Nha Z / oz dr < he.
TEl), nt E€E,

We may infer that

> [l (M) as,

Telp int r

he

= O(h?), 8 > 0 whenever o > 0. (4.17)

L1(0,T)

Next, using (3.5 again, we deduce

> % [0 - [[eh]] (fuk-m), I as,

EcE, TpCOFE
S hllSller, D Z o) P (en) 2 | (k)| dS,
EcE, I'pCOE
1/2
(x5 [l |<u;z-n>p|ds) (3 5 [ e
EcE, 'rCOE EcE, 'rCOFE
1/2 1/2
h1/2<z Z/ Wl \<uﬁ~n>r|d8m> (Z/ MR uh\d$>
EcE, T'rCOFE EcEy,

whence, using (£I0) to control the last term, we conclude

> 5 [ oo led - n) s,

EeFE, I'pCOE

= O(hP). (4.18)
12(0,7)
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Furthermore,

S 5 [ och(shon—(ubony) a8 = S ST [ (o= (@) (uhm (ufm), ) s,

EeE, I'pCOE EeE, I'pCOE

where, by virtue of Poincaré’s inequality and the trace estimates (7)),

S % [ om0 di(hon (w65,

EcE, TpCOFE
N R\ Vd|| Lo () Z Z / oF ‘uh n— <uh n>F‘ ds, Z / oy }uh n— <uh n> } dx
EcE), TzCOE EEE),
1/2
S 0O IVl lleillzwe ~ RIVauglzon okl 2@ ~ PIVausli) okl e o,
EcEy
Going back to ([£I0) we observe that the right-hand side is controlled as soon as
2
1— ;La > () meaning a < 2(y — 1). (4.19)
Y

Finally, it is easy to check that the last integral in (ZI5]) can be handled in the same way. Thus
we conclude that the consistency formulation (€4]) holds for any test function ¢ € C°([0, 00) x Q4)
as long as « > 0, v > 1 are interrelated through (ZI9]).

4.3 Consistency formulation of the momentum method

Our goal is to take I} [¢], ¢ € C°(Qy; R?) as a test function in the momentum scheme (Z4). To
begin, observe that

/ Vi, : Vil [¢] dz = / Viuy : Vo du, / divyu,div,I1) [¢] do = / div,updiv,e dz
Qp Qp, Qpn Qp,

/ pon)divaIlY 4] da — / p(on)divad da,

Qh Qh
see [5, Chapter 9, Lemma 8§].

4.3.1 Time derivative

We compute

[ it ()8 do= [ D ) 11710] o
uF) — (uF1
o[ g g e a (1.20)
k
+/QQhA (uf) - (¢~ 11} []) dr,

14




where

/Qh o (u}) _Aiu}l_ ) (¢—T11Y[g]) da (ujy) _Aiuh_ )

< —
Wl [ ok
Qp

v (uh) = (wp ™))’
<12 k-1 k-1 h h
" (fg o dz) /g o < At
k k-1 \ 2 2
<12 ~1/2 k—1 <uh>_<uh >
h*(At) At /Qh o ( A dz :

where the most right integral is controlled in L?(0, 7)) by the numerical dissipation in ([B3]).
As for the remaining integral, we may use inequality (LI0) to obtain

[ B o me) f <ne [ B

< - < 1, —
~ RHAY) T g e @5me) Sl}ipHQhHL‘iﬁ(Qh) ~ R (AG) TR || s re) SngQﬁllleh)

1/2

Finally, we may repeat the same argument as in Section EL2.1] to conclude that

/ YDy (on (up)IL) [p] da dt
s (4.21)

T
- / / on (un) - $p dar dt — / H0)e (ul) - 6 dz + O(H)
0 Qh Qh
provided ¢ € C°[0,T), ¢ € C=(; R?).

4.3.2 Convective term - upwind

Applying formula ([LI3) we obtain

15



/Q of ((uf) ®uf) : Vop do— Y /F Uploy (uy) > wy] - [(IL[8])]] dS.

Fel—Wh,int

0 [ Tt (S5 as

S [ - ) [l ()] [ -, as,
E€E, TpcdE“TE
+ Z Z /1“ ord - (uy) (uﬁ-n—<ufl-n>F) ds,
EE€E, TgcoE’ T E
[ ek () (7 1g)) — ) i
h (4.22)
We proceed in several steps.
Step 1
Applying [LI2]) we get
3 [ e () s,
s 3|k xS s,
where
[[eh (ui)]] = (eh)*™ [[Cui)]] + Cui) [[er]]- (4.23)
Consequently

3 [ e () .

Fth,int
<k > 1/2 1/2
u; - 1n
swa(z / {@z}[[<uz>u2x< L ) dsw> (z / Qﬁde)
TEl) int Tely int
whre S [l [[24]]] oS-,
Tl VT
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where the first integral on the right-hand side is controlled by the numerical dissipation in (3.0])

and the trace estimates.

Finally, applying the inequality (), trace inequality (1) and Sobolev’s inequality (ZI1I), we

obtain
pee S [ [h) | ase S S0 [y ek Ille) as,
,int 2 1j2h,int
S (A[Kdﬁﬂﬂ d&) I ey [1(@B) 72|

. ) 1/2
ity (h“/aE[[(ei)”/QH dsx) I Cab) Nz Nl @n)™" | oy

Eeby,

'S-’ hHTa ||thh||L2(Qh) }}(92)1_7/2“53((%) ’

where we have used the numerical dissipation in ([.3). Thus, in order to complete the estimates

we have to control
H(th)l_wzHLS(Qh)

uniformly in k. As 1 < v < 2, it is enough to consider the critical case v = 1, for which the inverse

inequality (4.6]) gives rise to
1) sy = (@Bl o)™ = Bk,

Step 2
Using ([£.23) we deduce

S X [ mie - ) [k (uh)]] - my) as,

EeE, I'pCOE

= 30 50 i ) (kL] + () (1] ) - m), ) s,

E€E, T'gCOFE

where, furthermore,

S50 [ i —6) e ()] (- m), ) s,

EcE), TpCOE
1/2
sh’2||¢||02(ﬂh;R3)<Z Z / —(Qz)out[[<Uﬁ>ﬂ2[<uﬁ~n>r]_ dSm> X
E€E,TpcoE e
1/2
X(Z > / (Qﬁ)"‘“I(uZHde) :
E€E, TpcoE’TE
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where the former integral in the product on the right-hand is controlled by the numerical dissipation

in (3.3), while

ou < g — < 4
>y / (o)™ (uf ) | dSe ~ B [l 2o mn) | 0l ors s ~ ™2kl 2o me) L0l 1 @) -
EcE,TrcoE Y E

Finally,

SN [ mie — ) (o) [h]] -] s,

EcE, TgCOE

< < < ;3-
~ h? Z Z | <uﬁ> ||2LG(I‘)HQ;€L||L3/2(F) ~ h““ﬁ”%é‘(gh)HQﬁHmﬂ(Qh) ~ h? 3/7Huﬁ||2LG(Q,L)||QZHLW(Q;L)7
E€E, Ty COE

where the exponent 3 — 3/ > 0 as soon as v > 1.
Step 3

We write

D /FEei¢-<ui>(ui-n—<ui-n>F)dsx

EcE, TpCOFE

=3 % [ e @G (hon - (o m), ) as,

EeE, I'pCOE

where, by virtue of the trace inequality (£7T) and Poincaré’s inequality (ZS]),

S 3 [ - @0t (ko (uhom), ) ds,

E€E, TgpCE” TE

V| S S [l ), fas,
L>(9Qn) EeEy, Tpcor Y I'e

<
<h H\/gz 12k (ab) sz |Vt Lz
)

where, in view of ([ZI0)

|

Sh

Le(Qp,

24+«

2
~ h 2W,Wi’chﬂ<101"O<a<2(7—1).
Lo (Qn) 2y

Step 4
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Finally,

/Q o (Y - (Y [6]) — 6) divd: da

I \ oh <“2> ||L2(Qh)||thﬁ||L2(Qh;R3);
)

<

Lo (€

whence the rest of the proof follows exactly as in Step 3.
Summing up the previous observations, we obtain the consistency formulation of the momentum

method ({H]).

Remark 4.1. As ¢ has compact support, equation (45 is satisfied also on the limit domain {2
for all h small enough.

Thus we have shown the following result.

Proposition 4.2. Let the pressure p satisfy (1.1), with 1 < v < 2. Suppose that [on,up] is a
family of numerical solutions given through {{.1), (7.3), where [of, u] satisfy (Z2{27), where

At~ h, 0<a<2(y—1). (4.24)

Then
T
—/ 2np(0,) dz = / / [010up + onay, - Vo] dzdt + O(R7), 5> 0,
Qp 0 Qp
for any test function ¢ € C2([0,00) x Qy),

T
—/ o {up) - (0,-) do = / / [Qh (up,) Oup + on (up,) @y, : Vo +p(gh)divwcp] dz dt
0 Qp,

Qh

T
— / / [,thuh : Ve + (1/3 + n)divyuy, - divmcp} dz dt + O(h?), B >0,
o Ja,

(4.25)
for any ¢ € C=([0,00) x Q; R?).
Moreover, the solution satisfies the energy inequality
1 i .
[ 5ot pleo) o a7 i@+ a3+ pldivi? as at
o 0 J8n (4.26)

1
S/ {—@2|<u2>lz+P(@2) da
Q, L2

for a.e. T €[0,T].
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Remark 4.3. A close inspection of the previous discussion shows that the same method can be
used to handle a variable time step At adjusted for each step of iteration by means of a CFL-type
condition, such as |[uy~" + ;|| o)Aty /h < CFL. Here CFL € (0,1] and ¢; ' = /p/(pj ")
denotes the sound speed. Though this condition is necessary for stability of time-explicit numerical
schemes, it still may be appropriate even for implicit schemes for areas of high-speed flows. Note
that the only part that must be changed in the proof of Proposition is Section [4.3.1], where the
time derivative in the momentum method is estimated.

5 Measure-valued solutions

Our ultimate goal is to perform the limit A — 0. For the sake of simplicity, we consider the initial
data
00 € L®(R?), ¢ > 0> 0aa. in R®, uy € L*(R%).

With this ansatz, it is easy to find the approximation [¢Y, u?] such that

0} — 0o in Ll (), 0y >0, /

0y¢ dw — / 00¢ dx for any ¢ € L™(R?),
Q Q

0 (uf) = oo in L3 (R, [

op(up) - ¢ do — / ooug - ¢ dx for any ¢ € L™(R* R?),
O Q

1 1
[ sty pah] s [ Jalul + i) oo
o Q

1

(5.1)

5.1 Weak limit

Extending g, by ¢ > 0 and uy, to be zero outside €2, we may use the energy estimates (£2G) to
deduce that, at least for suitable subsequences,

on — o weakly-(*) in L>(0,7; L7(€2)), 0 >0
(), w, — u weakly in L*((0,T) x ; R?),
where u € L*(0,T; Wy %(Q)), Viu, — Veu weakly in L2((0,T) x Q; R¥?),
on (us) = gy, weakly-(¥) in L(0,T; L>¥7 (€ RY)),
see [] or [5], Part II, Section 10.4].
Remark 5.1. Note that, by virtue of Poincaré’s inequality (48] and the energy estimates (£.20]),

lan, — (un) ||20,7:02(k;R3)) < h for any compact K € €,

in particular, the weak limits of uy,, (uy) coincide in €.
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In addition, the limit functions satisfy the equation of continuity in the form

T
- / 00p(0,) do = / / l00hp+ 7 - Vo] ddt (5.2)
Q 0 Q

for any test function ¢ € C°([0,00) x Q). It follows from ([E2) that o € Cyear([0,T7]; L7(Q));
whence (5.2) can be rewritten as

UQ 0p(7:) dx[;Z/OT/Q[@&sH@—u-vm dz dt (5.3)

for any 0 < 7 < T and any p € C>([0,T] x Q).

5.2 Young measure generated by numerical solutions

The energy inequality (B.0]), along with the consistency (£4), (43]) provide a suitable platform for
the use of the theory of measure-valued solutions developed in [3]. Consider the family [gj, up).
In accordance with the weak convergence statement derived in the preceding part, this family
generates a Young measure - a parameterized measure

Vie € L2((0,T) x Q;P([0,00) x R)) for a.a. (t,z) € (0,T) x Q,

such that

(Via, 9(0,0)) = g(o,u)(t, ) for a.a. (t,z) € (0,7) x £,
whenever g € C([0,00) x R?), and
g(on,up) — g(p,u) weakly in Ll((O,T) x Q).

Moreover, in view of Remark (5.1l the Young measures generated by [op, us] and [o, (u,)] coincide
for a.a. (t,x) € (0,7 x Q.
Accordingly, the equation of continuity (5.3]) can be written as

[/Q 0p(T,*) dl’]::;—:ATA[Qat¢+<yt7x’Qu>.Vx(p] de dt (5.4)

In order to apply a similar treatment to the momentum equation ([A25]), we have to replace
the expression g (1) ® uy, in the convective term by oy, (u;,) ® (uy). This is possible as

lon (an) @ an — on (W) @ (W)l 11 (o, poxsy = llon (W) @ (wn — (W)l 11 g, ooy
<
~ h|[v/on (un) || L2053 || Viun| L2, m33) [[Vor] L @n)

where, by virtue of (EI0),

24«

hllv/nll L=y ~ B2

21



where the exponent is positive as soon as ([A.24]) holds, specifically, 0 < o < 2(y — 1). Moreover,
we have

on () @ (wn) + p(on)l = {ou @ u+ p(o)I} weakly-(¥) in [L(0, T; M(Q)]*;
whence letting h — 0 in ([20]) gives rise to
T
~ [ p(0.) do= [ [ {5 0w) dp + {ou o u+ (o)1} Vagp] do
Q 0 Q
T
- / / [,uVu L Vo + ()3 + n)divu - divx<p} da dt
0 Qn

or, equivalently,

[/Q (Vw3 0a) - (0, ) de::/OT/Q [<Vt,w;9u>'&t‘P"‘{QlU@ll—i—p(Q)I[};Vﬂp] de dt

. (5.5)
— / / [,uVu : Ve + (1/3 + n)divua - divxgo] da dt
0o Jo
forany 0 <7 < T, p € C>([0,T] x Q; R*), where we have set
V0,0 = Oloo (@), uo(a)]-
Finally, we introduce the concentration remainder
R ={ou@u+p(o)l} — (i ou @ u+ p(o)l) € [L(0, T; M(Q))]*
and rewrite (B.5) in the form
t=1
|:/ <Vt,:c; Qu> ' SO(O> ) dl}
Q t=0
— [ [ [Graion) -0+ s oue ) : Vag ot pinple)) diveg] do dt (50
0o Jo
— / / [,uVu : Ve + (/3 + n)divua - divxcp] dz dt +/ /R : Ve dzdt
0o Ja 0 Jo
forany 0 <7 < T, ¢ € C>([0,T] x Q; R?).
Similarly, the energy inequality (4.20]) can be written as
1 2 o ’ 2 12
3 (Vs 0lu]? + P(o))| da + p|Vul® + (p/3 4+ n)|divul® dz dt
0 —0 Jo Ja, (5.7)



for a.e. 7 € [0,T], with the dissipation defect D satistying

/ R me) dt ~ / D(t) dt, D(r >h}1ln1nf/ / |Viu,|? dz dt—/ /|V u? dr dt,
—00 Q,

(5.8)
cf. [3 Lemma 2.1].

At this stage, we recall the concept of dissipative measure valued solution introduced in [3].
These are measure—valued solutions of the Navier-Stokes system ([LIHL4]) satisfying the energy
inequality (&), where the concentration remainder in the momentum equation is dominated by
the dissipation defect as stated in (5.8)) and the following analogue of Poincaré’s inequality holds:

lim/ / w, —uf? dz dtgnmmf/ / V2 d:):dt—/ /|qu|2 dz dt(< D(r)), (5.9)
h—0 0 Q h—o0 0 o 0 Q

where u is a weak limit of uy, or, equivalently, of (u;). Consequently, relations (&.4]), (G6HL.S])
imply that the Young measure {Vt’x}t@e(oﬂ“)xg represents a dissipative measure-valued solution of

the Navier-Stokes system (LIHL4) in the sense of [3] as soon as we check (5.9]).
By standard Poincaré’s inequality in €2, we get, on one hand,

/ luy, —ul? dx:/ [y, — 11} [u]|? dx—l—/ 11} [u] —u|? dz é/ IVow, — VI ul? dz+0O(h?).
Qp Qp Qpn

Qp

On the other hand,

hmmf/ / V|2 dxdt—/ /\V u? dz dt—hmmf/ / |Viu, — V,ul? dodt.
Qpn Qp

Thus it is enough to observe that, by virtue of ([£I2),
Vi) [u] = V,u (strongly) in L*(Qy; R®) whenever u € W,*(Q; R?).

Seeing that validity of (5.0) as well as the bound on the dissipation remainder (B.8) can be
extended to the class of test functions ¢ € C1([0,T]xQ; R?), ¢|sq = 0, we have shown the following
result.

Theorem 5.2. Let the pressure p satisfy (I3), with 1 < v < 2. Suppose that [on,up] is a family
of numerical solutions given through (7-1), [{-3), where [0}, u}] satisfy (Z2{27), where

Atx~h, 0 <a<2(y-—1),

and the initial data satisfy (21).
Then any Young measure {vy b1 ze(0.1)x0 generated by [of, uf] for h — 0 represents a dissipative
measure-valued solution of the Navier-Stokes system (LIHI-J]) in the sense of [3].
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Of course, the conclusion of Theorem is rather weak, and, in addition, the Young measure
need not be unique. On the other hand, however, we may use the weak-strong uniqueness principle
established in [3] Theorem 4.1] to obtain our final convergence result.

Theorem 5.3. In addition to the hypotheses of Theorem [2.3, suppose that the Navier-Stokes
system (LIHI.J) endowed with the initial data [0y, ug] admits a regular solution [p,u] belonging to
the class

0, Vo0, w,V,u€ C([0,T] x Q), du e L*(0,T;C( R?)), 0> 0, ulspg = 0.
Then
on — 0 (strongly) in L7((0,T) x K), w, — u (strongly) in L*((0,T) x K; R?)
for any compact K C ().

Indeed, the weak—strong uniqueness implies that the Young measure generated by the family
of numerical solutions coincides at each point (¢, z) with the Dirac mass supported by the smooth
solution of the problem. In particular, the numerical solutions converge strongly and no oscillations
occur. Note that the Navier-Stokes system admits local-in-time strong solutions for arbitrary
smooth initial data, see e.g. Cho et al. [I] , and even global-in-time smooth solutions for small
initial data, see, e.g., Matsumura and Nishida [26], as soon as the physical domain € is sufficiently
smooth.

6 Conclusions

We have studied the convergence of numerical solutions obtained by the mixed finite element—finite
volume scheme applied to the isentropic Navier-Stokes equations. We have assumed the isentropic
pressure—density state equation p(g) = ap” with 7 € (1,2). Remind that this assumption is not
restrictive, since the largest physically relevant exponent is v = 5/3. In order to establish the con-
vergence result we have used the concept of dissipative measure-valued solutions. These are the
measure-valued solutions, that, in addition, satisfy an energy inequality in which the dissipation
defect measure dominates the concentration remainder in the equations. The energy inequality
B1), along with the consistency (4.4)), (4.5 gave us a suitable framework to apply the theory of
measure-valued solutions. As shown in Section [5.2the numerical solutions [op,, u,] generate a Young
measure - a parameterized measure {v4}izc(0,m)x0, that represents a dissipative measure-valued
solution of the Navier-Stokes system (LIHL4]), cf. Theorem B2l Finally, using the weak-strong
uniqueness principle established in [3, Theorem 4.1] we have obtained the convergence of the nu-
merical solutions to the exact regular solution, as long as the latter exists, cf. Theorem 5.3l The
present result is the first convergence result for numerical solutions of three-dimensional compress-
ible isentropic Navier-Stokes equations in the case of full adiabatic exponent v € (1, 2).
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