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Abstract

We study convergence of a mixed finite element–finite volume numerical scheme for the
isentropic Navier-Stokes system under the full range of the adiabatic exponent. We establish
suitable stability and consistency estimates and show that the Young measure generated by
numerical solutions represents a dissipative measure-valued solutions of the limit system. In
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1 Introduction

Time evolution of the density ̺ = ̺(t, x) and the velocity u = u(t, x) of a compressible barotropic
viscous fluid can be described by the Navier–Stokes system

∂t̺+ divx(̺u) = 0, (1.1)

∂t(̺u) + divx(̺u⊗ u) +∇xp(̺) = divxS(∇xu), (1.2)

S(∇xu) = µ

(

∇xu+∇t
xu− 2

3
divxuI

)

+ ηdivxuI. (1.3)
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We assume the fluid is confined to a bounded physical domain Ω ⊂ R3, where the velocity satisfies
the no-slip boundary conditions

u|∂Ω = 0. (1.4)

For the sake of simplicity, we ignore the effect of external forces in the momentum equation (1.2).
In the literature there is a large variety of efficient numerical methods developed for the com-

pressible Euler and Navier-Stokes equations. The most classical of them are the finite volume
methods, see, e.g., [8], [25], [29], the methods based on a suitable combination of the finite volume
and finite element methods [2], [9], [10], [16], [17], or the discontinous Galerkin schemes, e.g. [11],
[12] and the references therein. Although these methods are frequently used for many physical
or engineering applications, there are only partial theoretical results available concerning their
analysis for the compressible Euler or Navier-Stokes systems. We refer to the works of Tadmor
et al. [13], [28], [30] for entropy stability in the context of hyperbolic balance laws and to the
works of Gallouët et al. [16], [17] for the stability analysis of the mixed finite volume–finite element
methods based on the Crouzeix-Raviart elements for compressible viscous flows. In [20] Jovanović
and Rohde obtained the error estimate for entropy dissipative finite volume methods applied to
nonlinear hyperbolic balance laws under (a rather restrictive) assumption of the global existence
of a bounded, smooth exact solution.

Our goal in this paper is to study convergence of solutions to the numerical scheme proposed
originally by Karlsen and Karper [21], [22], [23], [24] to solve problem (1.1–1.4) in polygonal
(numerical) domains, and later modified in [4] to accommodate approximations of smooth physical
domains. The scheme is implicit and of mixed type, where the convective terms are approximated
via upwind operators, while the viscous stress is handled by means of the Crouzeix–Raviart finite
element method. As shown by Karper [24] and in [4], the scheme provides a family of numerical
solutions containing a sequence that converges to a weak solution of the Navier-Stokes system as
the discretization parameters tend to zero. Recently, Gallouët et al. [18] established rigorous error
estimates on condition that the limit problem admits a smooth solution. Numerical experiments
illustrating theoretical predictions have been performed in [6].

We consider the problem under physically realistic assumptions, where theoretical results are
still in short supply. In particular, our results cover completely the isentropic pressure–density
state equation

p(̺) = a̺γ, 1 < γ < 2. (1.5)

Note that the assumption γ < 2 is not restrictive in this context as the largest physically relevant
exponent is γ = 5

3
. Let us remark that the available theoretical results concerning global-in-time

existence of weak solutions cover only the case γ > 3
2
[7], see also the recent result by Plotnikov

and Weigant [27] for the borderline case in the 2D setting. Similarly, the error estimates obtained
by Gallouët et al. [18] provide convergence under the same conditions yielding explicit convergence
rates for γ > 3

2
and mere boundedness of the numerical solutions in the limit case γ = 3

2
.

Our goal is to establish convergence of the numerical solutions in the full range of the adiabatic
exponent γ specified in (1.5). The main idea is to use the concept of dissipative measure-valued
solution to problem (1.1–1.4) introduced recently in [3], [19]. These are, roughly speaking, measure-

3



valued solutions satisfying, in addition, an energy inequality in which the dissipation defect measure
dominates the concentration remainder in the equations. Although very general, a dissipative
measure-valued solution coincides with the strong solution of the same initial-value problem as
long as the latter exists, see [3]. Our approach is based on the following steps:

• We recall the numerical energy balance identified in Karper’s original paper.

• We use the energy estimates to show stability of the numerical method.

• A consistency formulation of the problem is derived involving numerical solutions and error
terms vanishing with the time step ∆t and the spatial discretization parameter h approaching
zero.

• We show that the family of numerical solutions generates a dissipative measure-valued solu-
tion of the problem. Such a result is, of course, of independent interest. As claimed recently
by Fjordholm et al. [14], [15] the dissipative measure-valued solutions yield, at least in the
context of hyperbolic conservation laws, a more appropriate solution concept than the weak
entropy solutions.

• Finally, using the weak–strong uniqueness principle established in [3], we infer that the
numerical solutions converge (a.a.) pointwise to the smooth solution of the limit problem as
long as the latter exists.

The paper is organized as follows. The numerical scheme is introduced in Section 2. In
Section 3, we recall the numerical counterpart of the energy balance and derive stability estimates.
In Section 4, we introduce a consistency formulation of the problem and estimate the numerical
errors. Finally, we show that the numerical scheme generates a dissipative measure-valued solution
to the compressible Navier–Stokes system and state our main convergence results in Section 5.

2 Numerical scheme

To begin, we introduce the notation necessary to formulate our numerical method.

2.1 Spatial domain, mesh

We suppose that Ω ⊂ R3 is a bounded domain. We consider a polyhedral approximation Ωh, where
Ωh is a polygonal domain,

Ωh = ∪Ej∈Eh
Ej, int[Ei] ∩ int[Ej] = ∅ for i 6= j,

where each Ej ∈ Eh is a closed tetrahedron that can be obtained via the affine transformation

Ej = hAEjẼ + aEj , AEj ∈ R3×3, aEj ∈ R3,
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where Ẽ is the reference element

Ẽ = co {[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]} ,

and where all eigenvalues of the matrix AEj are bounded above and below away from zero uniformly
for h → 0. The family Eh of all tetrahedra covering Ωh is called mesh, the positive number h is
the parameter of spatial discretization. We write

a
<∼ b⇔ a ≤ cb, c > 0 independent of h,

a
>∼ b⇔ a ≥ cb, c > 0 independent of h,

a = b⇔ a
<∼ b and a

>∼ b.

Furthermore, we suppose that:

• a non-empty intersection of two elements Ej , Ei is their common face, edge, or vertex;

• for all compact sets Ki ⊂ Ω, Ke ⊂ R3 \ Ω there is h0 > 0 such that

Ki ⊂ Ωh, Ke ⊂ R3 \ Ωh for all 0 < h < h0.

The symbol Γh denotes the set of all faces in the mesh. We distinguish exterior and interior
faces:

Γh = Γh,int ∪ Γh,ext, Γh,ext =
{

Γ ∈ Γh

∣
∣
∣ Γ ⊂ ∂Ωh

}

, Γh,int = Γh \ Γh,ext.

2.2 Function spaces

Our scheme utilizes spaces of piecewise smooth functions, for which we define the traces

vout = lim
δ→0

v(x+ δnΓ), v
in = lim

δ→0
v(x− δnΓ), x ∈ Γ, Γ ∈ Γh,int,

where nΓ denotes the outer normal vector to the face Γ ⊂ ∂E. Analogously, we define vin for
Γ ⊂ Γh,ext. We simply write v for vin if no confusion arises. We also define

[[v]] = vout − vin, 〈v〉Γ =
vout + vin

2
, 〈v〉Γ =

1

|Γ|

∫

Γ

v dSx.

Next, we introduce the space of piecewise constant functions

Qh(Ωh) =
{

v ∈ L1(Ωh)
∣
∣
∣ v|E = const ∈ R for any E ∈ Eh

}

,

with the associated projection

ΠQ
h : L1(Ωh) → Qh(Ωh), Π

Q
h [v] = 〈v〉E =

1

|E|

∫

E

v dx, E ∈ Eh.
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We shall occasionally write
ΠQ

h [v] = 〈v〉 .
Finally, we introduce the Crouzeix–Raviart finite element spaces

Vh(Ωh) =

{

v ∈ L2(Ωh)
∣
∣
∣ v|E = affine function E ∈ Eh,

∫

Γ

vin dSx =

∫

Γ

vout dSx for Γ ∈ Γh,int

}

,

V0,h(Ωh) =

{

v ∈ Vh(Ωh)
∣
∣
∣

∫

Γ

vin dSx = 0 for Γ ∈ Γh,ext

}

,

along with the associated projection

ΠV
h : W 1,1(Ωh) → Vh(Ωh),

∫

Γ

ΠV
h [v] dSx =

∫

Γ

v dSx for any Γ ∈ Γh.

We denote by ∇hv, divhv the piecewise constant functions resulting from the action of the corre-
sponding differential operator on v on each fixed element in Eh,

∇hv ∈ Qh(Ωh;R
3), ∇hv = ∇xv for E ∈ Eh, divhv ∈ Qh(Ωh), divhv = divxv for E ∈ Eh.

2.3 Discrete time derivative, dissipative upwind

For a given time step ∆t > 0 and the (already known) value of the numerical solution vk−1
h at a

given time level tk−1 = (k − 1)∆t, we introduce the discrete time derivative

Dtvh =
vkh − vk−1

h

∆t

to compute the numerical approximation vkh at the level tk = tk−1 +∆t.
To approximate the convective terms, we use the dissipative upwind operators introduced in

[4] (see also [5]), specifically,

Up[rh,uh] = {rh} 〈uh · n〉Γ
︸ ︷︷ ︸

convective part

−1

2
max{hα; | 〈uh · n〉Γ |} [[rh]]
︸ ︷︷ ︸

dissipative part

= routh [〈uh · n〉Γ]− + rinh [〈uh · n〉Γ]+
︸ ︷︷ ︸

standard upwind

−h
α

2
[[rh]]χ

(〈uh · n〉Γ
hα

)

,

(2.1)

where

χ(z) =







0 for z < −1,
z + 1 if − 1 ≤ z ≤ 0,
1− z if 0 < z ≤ 1,
0 for z > 1.
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2.4 Numerical scheme

Given the initial data
̺0h ∈ Qh(Ωh), u

0
h ∈ V0,h(Ωh;R

3), (2.2)

and the numerical solution

̺k−1
h ∈ Qh(Ωh), u

k−1
h ∈ V0,h(Ωh;R

3), k ≥ 1,

the value [̺kh,u
k
h] ∈ Qh(Ωh) × V0,h(Ωh;R

3) is obtained as a solution of the following system of
equations:

∫

Ωh

Dt̺
k
hφ dx−

∑

Γ∈Γh,int

∫

Γ

Up[̺kh,u
k
h] [[φ]] dSx = 0 (2.3)

for any φ ∈ Qh(Ωh);

∫

Ωh

Dt

(
̺kh
〈
uk
h

〉)
· φφφ dx−

∑

Γ∈Γh,int

∫

Γ

Up[̺kh
〈
uk
h

〉
,uk

h] · [[〈φφφ〉]] dSx −
∫

Ωh

p(̺kh)divhφφφ dx

+ µ

∫

Ωh

∇hu
k
h : ∇hφφφ dx+

(µ

3
+ η
)∫

Ωh

divhu
k
hdivhφφφ dx = 0

(2.4)

for any φφφ ∈ V0,h(Ωh;R
3). The specific form of the viscous stress in (2.4) reflects the fact that the

viscosity coefficients are constant.
It was shown in [24] (see also [5, Part II]) that system (2.3), (2.4) is solvable for any choice of

the initial data (2.2). In addition, ̺kh > 0 whenever ̺0h > 0. In general, the solution [̺kh,u
k
h] may

not be uniquely determined by [̺k−1
h ,uk−1

h ] unless the time step ∆t is conveniently adjusted by a
CFL type condition. We make more comments on this option in Remark 4.3 below.

As shown in [4] (see also [5, Part II]), the family of numerical solutions converges, up to a
suitable subsequence, to a weak solution of the Navier-Stokes system (1.1–1.4) as h→ 0 if

• the time step is adjusted so that ∆t ≈ h;

• the viscosity coefficients satisfy µ > 0, η ≥ 0,

• the pressure satisfies
p(̺) = a̺γ + b̺, a, b > 0, γ > 3.

If the limit solution of the Navier–Stokes system is smooth, then qualitative error estimates can
be derived on condition that p satisfies (1.5) with γ ≥ 3/2, see Gallouët et al. [18]. Unfortunately,
many real world applications correspond to smaller adiabatic exponents, the most popular among
them is the air with γ = 7/5. It is therefore of great interest to discuss convergence of the scheme
in the physically relevant range 1 < γ < 2.
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3 Stability - energy estimates

It is crucial for our analysis that the numerical scheme (2.2–2.4) admits a certain form of total
energy balance. For the pressure potential

P (̺) =
a

γ − 1
̺γ , P ′′(̺) =

p′(̺)

̺
= aγ̺γ−2,

the total energy balance reads
∫

Ωh

Dt

[
1

2
̺kh|
〈
uk
h

〉
|2 + P (̺kh)

]

dx+

∫

Ωh

[
µ|∇hu

k
h|2 + (µ/3 + η)|divhuk

h|2
]

dx

= −1

2

∫

Ωh

P ′′(skh)

(
̺kh − ̺k−1

h

)2

∆t
dx−

∫

Ωh

∆t

2
̺k−1
h

∣
∣
∣
∣
∣

〈
uk
h

〉
−
〈
uk−1
h

〉

∆t

∣
∣
∣
∣
∣

2

dx

− hα

2

∑

Γ∈Γh,int

∫

Γ

[[
̺kh
]] [[

P ′(̺kh)
]]
χ

(〈
uk
h · n

〉

Γ

hα

)

dSx

− 1

2

∑

Γ∈Γh

∫

Γ

P ′′(zkh)
[[
̺kh
]]2 |

〈
uk
h · n

〉

Γ
| dSx

− hα

2

∑

Γ∈Γh,int

∫

Γ

{
̺kh
}
·
[[〈

uk
h

〉]]2
χ

(〈
uk
h · n

〉

Γ

hα

)

dSx

− 1

2

∑

Γ∈Γh,int

∫

Γ

(
(̺kh)

in[
〈
uk
h · n

〉

Γ
]+ − (̺kh)

out[
〈
uk
h · n

〉

Γ
]−
) [[〈

uk
h

〉]]2
dSx,

(3.1)

with
skh ∈ co{̺kh, ̺k−1

h }, zkh ∈ co{(̺k)in, (̺kh)out},
see [5, Chapter 7, Section 7.5.4]. As the numerical densities are positive, all terms on the right-hand
side of (3.1) representing numerical dissipation are non-positive. For completeness, we remark that
the scheme conserves the total mass, specifically,

∫

Ωh

̺kh dx =

∫

Ωh

̺0h dx, k = 1, 2, . . . (3.2)

3.1 Dissipative terms and the pressure growth

It is easy to check that

P ′′(z)(̺1 − ̺2)
2 ≥ aγ(̺

γ/2
1 − ̺

γ/2
2 )2 whenever z ∈ co{̺1, ̺2}, ̺1, ̺2 > 0, 1 < γ < 2. (3.3)

Indeed it is enough to assume 0 < ̺1 ≤ z ≤ ̺2; whence

P ′′(z)(̺1 − ̺2)
2 ≥ aγ̺γ−2

2 (̺1 − ̺2)
2,
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and (3.3) reduces to showing

̺
γ/2−1
2 (̺2 − ̺1) ≥ (̺

γ/2
2 − ̺

γ/2
1 ) or, equivalently, ̺1̺

γ/2−1
2 ≤ ̺

γ/2
1 ,

where the last inequality follows immediately as ̺1 ≤ ̺2, 1 < γ < 2.
Consequently, the terms on the right-hand side of (3.1) representing the numerical dissipation

and containing P ′′ satisfy

1

2

∫

Ωh

P ′′(skh)

(
̺kh − ̺k−1

h

)2

∆t
dx ≥ aγ

2

∫

Ωh

(
(̺kh)

γ/2 − (̺k−1
h )γ/2

)2

∆t
dx,

hα

2

∑

Γ∈Γh,int

∫

Γ

[[
̺kh
]] [[

P ′(̺kh)
]]
χ

(〈
uk
h · n

〉

Γ

hα

)

dSx ≥ aγhα

2

∑

Γ∈Γh,int

∫

Γ

[[
(̺kh)

γ/2
]]2

χ

(〈
uk
h · n

〉

Γ

hα

)

dSx,

1

2

∑

Γ∈Γh

∫

Γ

P ′′(zkh)
[[
̺kh
]]2 |

〈
uk
h · n

〉

Γ
| dSx ≥ aγ

2

∑

Γ∈Γh

∫

Γ

[[
(̺kh)

γ/2
]]2 |

〈
uk
h · n

〉

Γ
| dSx.

(3.4)

In particular, the energy balance (3.1) gives rise to

∫

Ωh

Dt

[
1

2
̺kh|
〈
uk
h

〉
|2 + P (̺kh)

]

dx+

∫

Ωh

[
µ|∇hu

k
h|2 + (µ/3 + η)|divhuk

h|2
]

dx

+ a

∫

Ωh

(
(̺kh)

γ/2 − (̺k−1
h )γ/2

)2

∆t
dx+∆t

∫

Ωh

̺k−1
h

∣
∣
∣
∣
∣

〈
uk
h

〉
−
〈
uk−1
h

〉

∆t

∣
∣
∣
∣
∣

2

dx

+ a
∑

Γ∈Γh

∫

Γ

[[
(̺kh)

γ/2
]]2

max
{
hα; |

〈
uk
h · n

〉

Γ
|
}

dSx

+ ahα
∑

Γ∈Γh,int

∫

Γ

{
̺kh
}
·
[[〈

uk
h

〉]]2
χ

(〈
uk
h · n

〉

Γ

hα

)

dSx

+
∑

Γ∈Γh,int

∫

Γ

(
(̺kh)

in[
〈
uk
h · n

〉

Γ
]+ − (̺kh)

out[
〈
uk
h · n

〉

Γ
]−
) [[〈

uk
h

〉]]2
dSx

<∼ 0.

(3.5)

4 Consistency

Our goal is to derive a consistency formulation for the discrete solutions satisfying (2.3), (2.4). To
this end, it is convenient to deal with quantities defined on R× Ωh. Accordingly, we introduce

̺h(t, ·) = ̺0h for t < ∆t, ̺h(t, ·) = ̺kh for t ∈ [k∆t, (k + 1)∆t), k = 1, 2, . . . , (4.1)

uh(t, ·) = u0
h for t < ∆t, uh(t, ·) = uk

h for t ∈ [k∆t, (k + 1)∆t), k = 1, 2, . . . , (4.2)
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and

Dtvh =
v(t, ·)− v(t−∆t, ·)

∆t
, t > 0. (4.3)

For the sake of simplicity, we keep the time step ∆t constant, however, a similar ansatz obviously
works also for ∆t = ∆tk adjusted at each level of iteration.

A suitable consistency formulation of equation (2.3) reads

−
∫

Ωh

̺0hϕ(0, ·) dx =

∫ T

0

∫

Ωh

[̺h∂tϕ+ ̺huh · ∇xϕ] dx dt+O(hβ), β > 0, (4.4)

for any test function ϕ ∈ C∞
c ([0,∞) × Ωh), where β denotes a generic positive exponent, and,

accordingly, the remainder term O(hβ), that may depend also on the test function ϕ, tends to zero
as h→ 0. Similarly, we want to rewrite (2.4) in the form

−
∫

Ωh

̺0h
〈
u0
h

〉
·ϕϕϕ(0, ·) dx =

∫ T

0

∫

Ωh

[

̺h 〈uh〉 ∂tϕϕϕ+ ̺h 〈uh〉 ⊗ uh : ∇xϕϕϕ+ p(̺h)divxϕϕϕ
]

dx dt

−
∫ T

0

∫

Ωh

[

µ∇huh : ∇xϕϕϕ+ (µ/3 + η)divhuh · divxϕϕϕ
]

dx dt +O(hβ)

(4.5)

for any ϕϕϕ ∈ C∞
c ([0,∞)× Ωh;R

3).

4.1 Preliminaries, some useful estimates

We collect certain well-known estimates used in the subsequent analysis. We refer to [5, Part II,
Chapters 8,9] for the proofs.

4.1.1 Discrete negative and trace estimates for piecewise smooth functions

The following inverse inequality

‖v‖Lp(Ωh)
<∼ h3(

1
p
−

1
q )‖v‖Lq(Ωh), 1 ≤ q ≤ p ≤ ∞, (4.6)

holds for any v ∈ Qh(Ωh).
The trace estimates read

‖v‖Lp(Γ)
<∼ h1/p‖v‖Lp(E) whenever Γ ⊂ ∂E, 1 ≤ p ≤ ∞ (4.7)

for any v ∈ Qh(Ωh).
Finally, we report a discrete version of Poincaré’s inequality

‖v − 〈v〉 ‖L2(E) ≡ ‖v − ΠQ
h [v]‖L2(E)

<∼ h‖∇hv‖L2(E) for any v ∈ Vh(Ωh). (4.8)
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4.1.2 Sobolev estimates for broken norms

We have

‖v‖2L6(Ωh)
<∼
∑

Γh,int

∫

Γ

[[v]]2

h
dSx + ‖v‖2L2(Ωh)

(4.9)

for any v ∈ Qh(Ωh). In particular, we may combine the negative estimates (4.6) with (4.9) to
obtain

‖̺h‖L∞(Ωh) =

(∥
∥
∥̺

γ/2
h

∥
∥
∥
L∞(Ωh)

)2/γ
<∼ h−1/γ

(∥
∥
∥̺

γ/2
h

∥
∥
∥

2

L6(Ωh)

)1/γ

<∼ h−1/γ




∑

Γh,int

∫

Γ

[[
̺γ/2

]]2

h
dSx





1/γ

+ h−1/γ
(∥
∥̺γ/2

∥
∥
2

L2(Ωh)

)1/γ

<∼ h−
2+α
γ




∑

Γh,int

∫

Γ

hα
[[
̺γ/2

]]2
dSx





1/γ

+ h−1/γ ‖̺‖Lγ(Ωh)

(4.10)

Next, we have the discrete variant of Sobolev’s inequality

‖v‖2L6(Ωh)
<∼
∑

E∈Eh

‖∇hv‖2L2(E;R3) ≡ ‖∇hv‖2L2(Ωh;R3) (4.11)

for any v ∈ V0,h(Ωh).
Finally, we recall the projection estimates for the Crouzeix–Raviart spaces
∥
∥ΠV

h [v]− v
∥
∥
Lq(Ωh)

+ h
∥
∥∇hΠ

V
h [v]−∇xv

∥
∥
Lq(Ωh;R3)

<∼ hj‖∇jv‖Lq(Ωh;R3j), j = 1, 2, 1 ≤ q ≤ ∞.

(4.12)

4.1.3 Upwind consistency formula

We report the universal formula
∫

Ωh

ru · ∇xφ dx =
∑

Γ∈Γh,int

∫

Γ

Up[r,u] [[F ]] dSx

+
hα

2

∑

Γ∈Γh,int

∫

Γ

[[r]] [[F ]]χ

(〈u · n〉Γ
hα

)

dSx

+
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(F − φ) [[r]] [〈u · n〉Γ]− dSx

+
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

φr
(

u · n− 〈u · n〉Γ
)

dSx +

∫

Ωh

r(F − φ)divhu dx

(4.13)

for any r, F ∈ Qh(Ωh), u ∈ V0,h(Ωh;R
3), φ ∈ C1(Ωh), see [5, Chapter 9, Lemma 7].
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4.2 Consistency formulation of the continuity method

Our goal is to derive the consistency formulation (4.4) of the discrete equation of continuity (2.3).

4.2.1 Time derivative

We consider test functions of the form ψ(t)φ(x) to obtain

∫ T

0

∫

Ωh

Dt(̺h) 〈ψφ〉 dx dt =

∫ T

0

ψ

∫

Ωh

Dt(̺h)φ dx dt

= −
∫ T

0

∫

Ωh

ψ(t+∆t)− ψ(t)

∆t
̺hφ dx dt− 1

∆t

∫ 0

−∆t

∫

Ωh

̺0hψ(t+∆t)φ dx dt

whenever the function ψ ∈ C∞
c [0, T ) and ∆t is small enough so that the interval [T − ∆t,∞) is

not included in the support of ψ. By means of the mean-value theorem we get that

∫ T

0

∫

Ωh

Dt(̺h) 〈ψφ〉 dx dt = −
∫ T

0

∫

Ωh

∂tψ̺hφ dx dt−
∫

Ωh

̺0hψ(0)φ dx+O(hβ) (4.14)

for any φ ∈ C(Ωh), ψ ∈ C∞
c [0, T ). Note that the O(h) term depends on the second derivative of

ψ.

4.2.2 Convective term - upwind

Relation (4.13) evaluated for r = ̺kh, u = uk
h, F = 〈φ〉, φ ∈ C1(Ωh) gives rise to

∫

Ωh

̺khu
k
h · ∇xφ dx =

∑

Γ∈Γh,int

∫

Γ

Up[̺kh,u
k
h] [[〈φ〉]] dSx

+
hα

2

∑

Γ∈Γh,int

∫

Γ

[[
̺kh
]]
[[〈φ〉]]χ

(〈
uk
h · n

〉

Γ

hα

)

dSx

+
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(〈φ〉 − φ)
[[
̺kh
]]

[
〈
uk
h · n

〉

Γ
]− dSx

+
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

φ̺kh

(

uk
h · n−

〈
uk
h · n

〉

Γ

)

dSx +

∫

Ωh

̺h(〈φ〉 − φ)divhu
k
h dx.

(4.15)

Using an elementary inequality

|̺1 − ̺2| ≤
∣
∣(̺1)

γ/2 − (̺2)
γ/2
∣
∣
∣
∣(̺1)

1−γ/2 + (̺2)
1−γ/2

∣
∣ , 1 ≤ γ ≤ 2 (4.16)
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we get

hα

2

∣
∣
∣
∣
∣
∣

∑

Γ∈Γh,int

∫

Γ

[[
̺kh
]]

[[〈φ〉]]χ
(〈

uk
h · n

〉

Γ

hα

)

dSx

∣
∣
∣
∣
∣
∣

<∼ h1+α‖φ‖C1(Ωh)

∣
∣
∣
∣
∣
∣

∑

Γ∈Γh,int

∫

Γ

[[
̺kh
]]

dSx

∣
∣
∣
∣
∣
∣

<∼ h1+α‖φ‖C1(Ωh)




∑

Γ∈Γh,int

∫

Γ

[[
(̺kh)

γ/2
]]2

dSx +
∑

Γ∈Γh,int

∫

Γ

{
(̺kh)

1−γ/2
}2

dSx



 ,

where, by virtue of (3.5),

h1+α‖φ‖C1(Ωh)

∑

Γ∈Γh,int

∫

Γ

[[
(̺kh)

γ/2
]]2

dSx ≤ c(φ)hgk, ∆t
∑

k

gk <∞,

and, in accordance with (3.2) and the trace estimates (4.7),

h1+α‖φ‖C1(Ωh)

∑

Γ∈Γh,int

∫

Γ

{
(̺kh)

1−γ/2
}2

dSx
<∼ hαc(φ)

∑

E∈Eh

∫

E

(̺kh)
2−γ dx

<∼ hα.

We may infer that

hα

2

∥
∥
∥
∥
∥
∥

∑

Γ∈Γh,int

∫

Γ

[[̺h]] [[〈φ〉]]χ
(〈uh · n〉Γ

hα

)

dSx

∥
∥
∥
∥
∥
∥
L1(0,T )

= O(hβ), β > 0 whenever α > 0. (4.17)

Next, using (3.5) again, we deduce
∣
∣
∣
∣
∣

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(〈φ〉 − φ)
[[
̺kh
]]

[
〈
uk
h · n

〉

Γ
]− dSx

∣
∣
∣
∣
∣

<∼ h‖φ‖C1(Ωh)

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

|
[[
(̺kh)

γ/2
]]
| |
{
(̺kh)

1−γ/2
}
| |
〈
uk
h · n

〉

Γ
| dSx

<∼ h

(
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

[[
(̺kh)

γ/2
]]2 |

〈
uk
h · n

〉

Γ
| dSx

)1/2(
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(̺kh)
2−γ |uk

h| dSx

)1/2

<∼ h1/2

(
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

[[
(̺kh)

γ/2
]]2 |

〈
uk
h · n

〉

Γ
| dSx

)1/2(
∑

E∈Eh

∫

E

(̺kh)
2−γ| 〈uh〉 | dx;

)1/2

whence, using (4.10) to control the last term, we conclude
∥
∥
∥
∥
∥

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(〈φ〉 − φ) [[̺h]] [〈uh · n〉Γ]− dSx

∥
∥
∥
∥
∥
L2(0,T )

= O(hβ). (4.18)
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Furthermore,
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

φ̺kh

(

uk
h · n−

〈
uk
h · n

〉

Γ

)

dSx =
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(φ− 〈φ〉Γ) ̺kh
(

uk
h · n−

〈
uk
h · n

〉

Γ

)

dSx,

where, by virtue of Poincaré’s inequality and the trace estimates (4.7),
∣
∣
∣
∣
∣

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(φ− 〈φ〉Γ) ̺kh
(

uk
h · n−

〈
uk
h · n

〉

Γ

)

dSx

∣
∣
∣
∣
∣

<∼ h‖∇xφ‖L∞(Ωh)

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

̺kh
∣
∣uk

h · n−
〈
uk
h · n

〉

Γ

∣
∣ dSx

<∼
∑

E∈Eh

∫

E

̺kh
∣
∣uk

h · n−
〈
uk
h · n

〉

Γ

∣
∣ dx

<∼ h
∑

E∈Eh

‖∇hu
k
h‖L2(E)‖̺kh‖L2(E)

<∼ h‖∇hu
k
h‖L2(Ωh)‖̺kh‖L2(Ωh)

<∼ h‖∇hu
k
h‖L2(Ωh)‖̺kh‖

1/2
L∞(Ωh)

.

Going back to (4.10) we observe that the right-hand side is controlled as soon as

1− 2 + α

2γ
> 0 meaning α < 2(γ − 1). (4.19)

Finally, it is easy to check that the last integral in (4.15) can be handled in the same way. Thus
we conclude that the consistency formulation (4.4) holds for any test function ϕ ∈ C∞

c ([0,∞)×Ωh)
as long as α > 0, γ > 1 are interrelated through (4.19).

4.3 Consistency formulation of the momentum method

Our goal is to take ΠV
h [φφφ], φφφ ∈ C∞

c (Ωh;R
3) as a test function in the momentum scheme (2.4). To

begin, observe that
∫

Ωh

∇huh : ∇hΠ
V
h [φφφ] dx =

∫

Ωh

∇huh : ∇xφφφ dx,

∫

Ωh

divhuhdivhΠ
V
h [φφφ] dx =

∫

Ωh

divhuhdivxφφφ dx

∫

Ωh

p(̺h)divhΠ
V
h [φφφ] dx =

∫

Ωh

p(̺h)divxφφφ dx,

see [5, Chapter 9, Lemma 8].

4.3.1 Time derivative

We compute
∫

Ωh

Dt(̺
k
h

〈
uk
h

〉
) · φφφ dx =

∫

Ωh

Dt(̺
k
h

〈
uk
h

〉
) · ΠV

h [φφφ] dx

+

∫

Ωh

̺k−1
h

〈
uk
h

〉
−
〈
uk−1
h

〉

∆t
·
(
φφφ− ΠV

h [φφφ]
)

dx

+

∫

Ωh

̺kh − ̺k−1
h

∆t

〈
uk
h

〉
·
(
φφφ− ΠV

h [φφφ]
)

dx,

(4.20)
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where
∣
∣
∣
∣
∣

∫

Ωh

̺k−1
h

〈
uk
h

〉
−
〈
uk−1
h

〉

∆t
·
(
φφφ− ΠV

h [φφφ]
)

dx

∣
∣
∣
∣
∣

<∼ h2‖φ‖C2(Ωh)

∫

Ωh

̺k−1
h

∣
∣
∣
∣
∣

〈
uk
h

〉
−
〈
uk−1
h

〉

∆t

∣
∣
∣
∣
∣
dx

<∼ h2
(∫

Ωh

̺k−1
h dx

)1/2




∫

Ωh

̺k−1
h

(〈
uk
h

〉
−
〈
uk−1
h

〉

∆t

)2

dx





1/2

<∼ h2(∆t)−1/2



∆t

∫

Ωh

̺k−1
h

(〈
uk
h

〉
−
〈
uk−1
h

〉

∆t

)2

dx





1/2

,

where the most right integral is controlled in L2(0, T ) by the numerical dissipation in (3.5).
As for the remaining integral, we may use inequality (4.16) to obtain

∣
∣
∣
∣

∫

Ωh

̺kh − ̺k−1
h

∆t

〈
uk
h

〉
·
(
φφφ−ΠV

h [φφφ]
)

dx

∣
∣
∣
∣

<∼ h2
∫

Ωh

|̺kh − ̺k−1
h |

∆t
|
〈
uk
h

〉
| dx

<∼ h2(∆t)−1‖uk
h‖L6(Ωh;R3) sup

k
‖̺kh‖L6/5(Ωh)

<∼ h2(∆t)−1h−1/2‖uk
h‖L6(Ωh;R3) sup

k
‖̺kh‖L1(Ωh)

Finally, we may repeat the same argument as in Section 4.2.1 to conclude that

∫ T

0

∫

Ωh

ψDt(̺h 〈uh〉)ΠV
h [φφφ] dx dt

= −
∫ T

0

∫

Ωh

̺h 〈uh〉 · φφφ∂tψ dx dt−
∫

Ωh

ψ(0)̺0h
〈
u0
h

〉
· φ dx+O(hβ)

(4.21)

provided ψ ∈ C∞
c [0, T ), φφφ ∈ C∞

c (Ωh;R
3).

4.3.2 Convective term - upwind

Applying formula (4.13) we obtain
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∫

Ωh

̺kh
(〈
uk
h

〉
⊗ uk

h

)
: ∇xφφφ dx−

∑

Γ∈Γh,int

∫

Γ

Up[̺kh
〈
uk
h

〉
,uk

h] ·
[[〈

ΠV
h [φφφ]

〉]]
dSx

=
hα

2

∑

Γ∈Γh,int

∫

Γ

[[
̺kh
〈
uk
h

〉]]
·
[[〈

ΠV
h [φφφ]

〉]]
χ

(〈
uk
h · n

〉

Γ

hα

)

dSx

+
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(〈
ΠV

h [φφφ]
〉
− φφφ

)
·
[[
̺kh
〈
uk
h

〉]]
[
〈
uk
h · n

〉

Γ
]− dSx

+
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

̺khφφφ ·
〈
uk
h

〉 (

uk
h · n−

〈
uk
h · n

〉

Γ

)

dSx

+

∫

Ωh

̺kh
〈
uk
h

〉
·
(〈
ΠV

h [φφφ]
〉
− φφφ
)
divhu

k
h dx.

(4.22)

We proceed in several steps.

Step 1

Applying (4.12) we get

∣
∣
∣
∣
∣
∣

hα

2

∑

Γ∈Γh,int

∫

Γ

[[
̺kh
〈
uk
h

〉]]
·
[[〈

ΠV
h [φφφ]

〉]]
χ

(〈
uk
h · n

〉

Γ

hα

)

dSx

∣
∣
∣
∣
∣
∣

<∼ h1+α
∑

Γ∈Γh,int

∫

Γ

∣
∣
[[
̺kh
〈
uk
h

〉]]∣
∣ χ

(〈
uk
h · n

〉

Γ

hα

)

dSx,

where
[[
̺kh
〈
uk
h

〉]]
= (̺kh)

out
[[〈

uk
h

〉]]
+
〈
uk
h

〉 [[
̺kh
]]
. (4.23)

Consequently

∣
∣
∣
∣
∣
∣

hα

2

∑

Γ∈Γh,int

∫

Γ

[[
̺kh
〈
uk
h

〉]]
·
[[〈

ΠV
h [φφφ]

〉]]
χ

(〈
uk
h · n

〉

Γ

hα

)

dSx

∣
∣
∣
∣
∣
∣

<∼ h1+α




∑

Γ∈Γh,int

∫

Γ

{
̺kh
} [[〈

uk
h

〉]]2
χ

(〈
uk
h · n

〉

Γ

hα

)

dSx





1/2


∑

Γ∈Γh,int

∫

Γ

̺kh dSx





1/2

+ h1+α
∑

Γ∈Γh,int

∫

Γ

∣
∣
〈
uk
h

〉 [[
̺kh
]]∣
∣ dSx,
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where the first integral on the right-hand side is controlled by the numerical dissipation in (3.5)
and the trace estimates.

Finally, applying the inequality (4.6), trace inequality (4.7) and Sobolev’s inequality (4.11), we
obtain

h1+α
∑

Γ∈Γh,int

∫

Γ

∣
∣
〈
uk
h

〉 [[
̺kh
]] ∣
∣ dSx

<∼ h1+α
∑

Γ∈Γh,int

∫

Γ

|
〈
uk
h

〉
|
∣
∣
∣

{
̺kh
}1−γ/2

∣
∣
∣

∣
∣
[[
(̺kh)

γ/2
]]∣
∣ dSx

<∼ h1+α
∑

Γ∈Γh,int

(∫

Γ

[[
(̺kh)

γ/2
]]2

dSx

)1/2

‖
〈
uk
h

〉
‖L6(Γ)

∥
∥(̺kh)

1−γ/2
∥
∥
L3(Γ)

<∼ h
1+α
2

∑

E∈Eh

(

hα
∫

∂E

[[
(̺kh)

γ/2
]]2

dSx

)1/2

‖
〈
uk
h

〉
‖L6(E)

∥
∥(̺kh)

1−γ/2
∥
∥
L3(E)

<∼ h
1+α
2 ‖∇huh‖L2(Ωh)

∥
∥(̺kh)

1−γ/2
∥
∥
L3(Ωh)

,

where we have used the numerical dissipation in (3.5). Thus, in order to complete the estimates
we have to control

∥
∥(̺kh)

1−γ/2
∥
∥
L3(Ωh)

uniformly in k. As 1 < γ < 2, it is enough to consider the critical case γ = 1, for which the inverse
inequality (4.6) gives rise to

∥
∥(̺kh)

1/2
∥
∥
L3(Ωh)

=
(∥
∥(̺kh)

∥
∥
L3/2(Ωh)

)1/2 <∼ h−1/2‖̺kh‖1/2L1(Ωh)
.

Step 2

Using (4.23) we deduce

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(〈
ΠV

h [φφφ]
〉
− φφφ
)
·
[[
̺kh
〈
uk
h

〉]]
[
〈
uk
h · n

〉

Γ
]− dSx

=
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(〈
ΠV

h [φφφ]
〉
− φφφ

)
·
(

(̺kh)
out
[[〈

uk
h

〉]]
+
〈
uk
h

〉 [[
̺kh
]] )

[
〈
uk
h · n

〉

Γ
]− dSx

,

where, furthermore,
∣
∣
∣
∣
∣

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(〈
ΠV

h [φφφ]
〉
− φφφ
)
(̺kh)

out
[[〈

uk
h

〉]]
[
〈
uk
h · n

〉

Γ
]− dSx

∣
∣
∣
∣
∣

<∼ h2‖φφφ‖C2(Ωh;R3)

(
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

−(̺kh)
out
[[〈

uk
h

〉]]2
[
〈
uk
h · n

〉

Γ
]− dSx

)1/2

×

×
(
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(̺kh)
out|
〈
uk
h

〉
| dSx

)1/2

,
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where the former integral in the product on the right-hand is controlled by the numerical dissipation
in (3.5), while

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(̺kh)
out|
〈
uk
h

〉
| dSx

<∼ h−1‖uk
h‖L6(Ωh;R3)‖̺kh‖L6/5(Ωh)

,
<∼ h−3/2‖uk

h‖L6(Ωh;R3)‖̺kh‖L1(Ωh).

Finally,

∣
∣
∣
∣
∣

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

(〈
ΠV

h [φφφ]
〉
− φφφ
)
·
〈
uk
h

〉 [[
̺kh
]]

[
〈
uk
h · n

〉

Γ
]− dSx

∣
∣
∣
∣
∣

<∼ h2
∑

E∈Eh

∑

ΓE⊂∂E

‖
〈
uk
h

〉
‖2L6(Γ)‖̺kh‖L3/2(Γ)

<∼ h‖uk
h‖2L6(Ωh)

‖̺kh‖L3/2(Ωh)
<∼ h3−3/γ‖uk

h‖2L6(Ωh)
‖̺kh‖Lγ(Ωh),

where the exponent 3− 3/γ > 0 as soon as γ > 1.

Step 3

We write

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

̺khφφφ ·
〈
uk
h

〉(

uk
h · n−

〈
uk
h · n

〉

Γ

)

dSx

=
∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

̺kh(φφφ− 〈φφφ〉Γ) ·
〈
uk
h

〉 (

uk
h · n−

〈
uk
h · n

〉

Γ

)

dSx,

where, by virtue of the trace inequality (4.7) and Poincaré’s inequality (4.8),

∣
∣
∣
∣
∣

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

̺kh(φφφ− 〈φφφ〉Γ) ·
〈
uk
h

〉 (

uk
h · n−

〈
uk
h · n

〉

Γ

)

dSx

∣
∣
∣
∣
∣

<∼ h

∥
∥
∥
∥

√

̺kh

∥
∥
∥
∥
L∞(Ωh)

∑

E∈Eh

∑

ΓE⊂∂E

∫

ΓE

√

̺kh|
〈
uk
h

〉
|
∣
∣
∣u

k
h · n−

〈
uk
h · n

〉

Γ

∣
∣
∣ dSx

<∼ h

∥
∥
∥
∥

√

̺kh

∥
∥
∥
∥
L∞(Ωh)

‖
√

̺kh
〈
uk
h

〉
‖L2(Ωh)‖∇hu

k
h‖L2(Ωh;R3),

where, in view of (4.10)

∥
∥
∥
∥

√

̺kh

∥
∥
∥
∥
L∞(Ωh)

<∼ h−
2+α
2γ , with

2 + α

2γ
< 1 or 0 < α < 2(γ − 1).

Step 4
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Finally,
∣
∣
∣
∣

∫

Ωh

̺kh
〈
uk
h

〉
·
(〈
ΠV

h [φφφ]
〉
− φφφ
)
divhu

k
h dx

∣
∣
∣
∣

<∼ h2
∥
∥
∥
∥

√

̺kh

∥
∥
∥
∥
L∞(Ωh)

‖
√

̺kh
〈
uk
h

〉
‖L2(Ωh)‖∇hu

k
h‖L2(Ωh;R3);

whence the rest of the proof follows exactly as in Step 3.
Summing up the previous observations, we obtain the consistency formulation of the momentum

method (4.5).

Remark 4.1. As ϕϕϕ has compact support, equation (4.5) is satisfied also on the limit domain Ω
for all h small enough.

Thus we have shown the following result.

Proposition 4.2. Let the pressure p satisfy (1.5), with 1 < γ < 2. Suppose that [̺h,uh] is a
family of numerical solutions given through (4.1), (4.2), where [̺kh,u

k
h] satisfy (2.2–2.4), where

∆t ≈ h, 0 < α < 2(γ − 1). (4.24)

Then

−
∫

Ωh

̺0hϕ(0, ·) dx =

∫ T

0

∫

Ωh

[̺h∂tϕ+ ̺huh · ∇xϕ] dx dt +O(hβ), β > 0,

for any test function ϕ ∈ C∞
c ([0,∞)× Ωh),

−
∫

Ωh

̺0h
〈
u0
h

〉
·ϕϕϕ(0, ·) dx =

∫ T

0

∫

Ωh

[

̺h 〈uh〉 ∂tϕϕϕ+ ̺h 〈uh〉 ⊗ uh : ∇xϕϕϕ+ p(̺h)divxϕϕϕ
]

dx dt

−
∫ T

0

∫

Ωh

[

µ∇huh : ∇xϕϕϕ+ (µ/3 + η)divhuh · divxϕϕϕ
]

dx dt+O(hβ), β > 0,

(4.25)

for any ϕϕϕ ∈ C∞
c ([0,∞)× Ωh;R

3).
Moreover, the solution satisfies the energy inequality

∫

Ωh

[
1

2
̺h| 〈uh〉 |2 + P (̺h)

]

(τ, ·) dx+

∫ τ

0

∫

Ωh

µ|∇huh|2 + (µ/3 + η)|divhuh|2 dx dt

≤
∫

Ωh

[
1

2
̺0h|
〈
u0
h

〉
|2 + P (̺0h)

]

dx

(4.26)

for a.e. τ ∈ [0, T ].
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Remark 4.3. A close inspection of the previous discussion shows that the same method can be
used to handle a variable time step ∆tk adjusted for each step of iteration by means of a CFL-type

condition, such as ||uk−1
h + ck−1

h ||L∞(Ω)∆tk/h ≤ CFL. Here CFL ∈ (0, 1] and ck−1
h ≡

√

p′(ρk−1
h )

denotes the sound speed. Though this condition is necessary for stability of time-explicit numerical
schemes, it still may be appropriate even for implicit schemes for areas of high-speed flows. Note
that the only part that must be changed in the proof of Proposition 4.2 is Section 4.3.1, where the
time derivative in the momentum method is estimated.

5 Measure-valued solutions

Our ultimate goal is to perform the limit h→ 0. For the sake of simplicity, we consider the initial
data

̺0 ∈ L∞(R3), ̺0 ≥ ̺ > 0 a.a. in R3, u0 ∈ L2(R3).

With this ansatz, it is easy to find the approximation [̺0h,u
0
h] such that

̺0h → ̺0 in Lγ
loc(Ω), ̺

0
h > 0,

∫

Ωh

̺0hφ dx→
∫

Ω

̺0φ dx for any φ ∈ L∞(R3),

̺0h
〈
u0
h

〉
→ ̺0u0 in L2

loc(Ω;R
3),

∫

Ωh

̺0h
〈
u0
h

〉
· φ dx →

∫

Ω

̺0u0 · φ dx for any φ ∈ L∞(R3;R3),

∫

Ωh

[
1

2
̺0h|
〈
u0
h

〉
|2 + P (̺0h)

]

dx →
∫

Ω

[
1

2
̺0|u0|2 + P (̺0)

]

dx as h→ 0.

(5.1)

5.1 Weak limit

Extending ̺h by ̺ > 0 and uh to be zero outside Ωh, we may use the energy estimates (4.26) to
deduce that, at least for suitable subsequences,

̺h → ̺ weakly-(*) in L∞(0, T ;Lγ(Ω)), ̺ ≥ 0

〈uh〉 , uh → u weakly in L2((0, T )× Ω;R3),

where u ∈ L2(0, T ;W 1,2
0 (Ω)), ∇huh → ∇xu weakly in L2((0, T )× Ω;R3×3),

̺h 〈uh〉 → ̺huh weakly-(*) in L∞(0, T ;L
2γ
γ+1 (Ω;R3)),

see [4] or [5, Part II, Section 10.4].

Remark 5.1. Note that, by virtue of Poincaré’s inequality (4.8) and the energy estimates (4.26),

‖uh − 〈uh〉 ‖L2(0,T ;L2(K;R3))
<∼ h for any compact K ∈ Ω,

in particular, the weak limits of uh, 〈uh〉 coincide in Ω.
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In addition, the limit functions satisfy the equation of continuity in the form

−
∫

Ω

̺0ϕ(0, ·) dx =

∫ T

0

∫

Ω

[̺∂tϕ+ ̺u · ∇xϕ] dx dt (5.2)

for any test function ϕ ∈ C∞
c ([0,∞) × Ω). It follows from (5.2) that ̺ ∈ Cweak([0, T ];L

γ(Ω));
whence (5.2) can be rewritten as

[∫

Ω

̺ϕ(τ, ·) dx

]t=τ

t=0

=

∫ τ

0

∫

Ω

[̺∂tϕ + ̺u · ∇xϕ] dx dt (5.3)

for any 0 ≤ τ ≤ T and any ϕ ∈ C∞([0, T ]× Ω).

5.2 Young measure generated by numerical solutions

The energy inequality (3.1), along with the consistency (4.4), (4.5) provide a suitable platform for
the use of the theory of measure-valued solutions developed in [3]. Consider the family [̺h,uh].
In accordance with the weak convergence statement derived in the preceding part, this family
generates a Young measure - a parameterized measure

νt,x ∈ L∞((0, T )× Ω;P([0,∞)×R3)) for a.a. (t, x) ∈ (0, T )× Ω,

such that
〈νt,x, g(̺,u)〉 = g(̺,u)(t, x) for a.a. (t, x) ∈ (0, T )× Ω,

whenever g ∈ C([0,∞)×R3), and

g(̺h,uh) → g(̺,u) weakly in L1((0, T )× Ω).

Moreover, in view of Remark 5.1, the Young measures generated by [̺h,uh] and [̺, 〈uh〉] coincide
for a.a. (t, x) ∈ (0, T )× Ω.

Accordingly, the equation of continuity (5.3) can be written as

[∫

Ω

̺ϕ(τ, ·) dx

]t=τ

t=0

=

∫ τ

0

∫

Ω

[̺∂tϕ+ 〈νt,x, ̺u〉 · ∇xϕ] dx dt (5.4)

In order to apply a similar treatment to the momentum equation (4.25), we have to replace
the expression ̺h 〈uh〉 ⊗ uh in the convective term by ̺h 〈uh〉 ⊗ 〈uh〉. This is possible as

‖̺h 〈uh〉 ⊗ uh − ̺h 〈uh〉 ⊗ 〈uh〉‖L1(Ωh;R3×3) = ‖̺h 〈uh〉 ⊗ (uh − 〈uh〉)‖L1(Ωh;R3×3)

<∼ h‖√̺h 〈uh〉 ‖L2(Ωh);R3)‖∇huh‖L2(Ωh;R3×3)‖
√
̺h‖L∞(Ωh),

where, by virtue of (4.10),

h‖√̺h‖L∞(Ωh)
<∼ h1−

2+α
2γ ,
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where the exponent is positive as soon as (4.24) holds, specifically, 0 < α < 2(γ − 1). Moreover,
we have

̺h 〈uh〉 ⊗ 〈uh〉+ p(̺h)I → {̺u⊗ u+ p(̺)I} weakly-(*) in [L∞(0, T ;M(Ω))]3×3 ;

whence letting h→ 0 in (4.25) gives rise to

−
∫

Ω

̺0u0 ·ϕϕϕ(0, ·) dx =

∫ T

0

∫

Ω

[

〈νt,x; ̺u〉 ∂tϕϕϕ+ {̺u⊗ u+ p(̺)I} : ∇xϕϕϕ
]

dx dt

−
∫ T

0

∫

Ωh

[

µ∇u : ∇xϕϕϕ + (µ/3 + η)divu · divxϕϕϕ
]

dx dt

or, equivalently,

[∫

Ω

〈νt,x; ̺u〉 ·ϕϕϕ(0, ·) dx

]t=τ

t=0

=

∫ τ

0

∫

Ω

[

〈νt,x; ̺u〉 · ∂tϕϕϕ+ {̺u⊗ u+ p(̺)I} : ∇xϕϕϕ
]

dx dt

−
∫ τ

0

∫

Ω

[

µ∇u : ∇xϕϕϕ+ (µ/3 + η)divu · divxϕϕϕ
]

dx dt

(5.5)

for any 0 ≤ τ ≤ T , ϕ ∈ C∞
c ([0, T ]× Ω;R3), where we have set

ν0,x = δ[̺0(x),u0(x)].

Finally, we introduce the concentration remainder

R = {̺u⊗ u+ p(̺)I} − 〈νt,x; ̺u⊗ u+ p(̺)I〉 ∈ [L∞(0, T ;M(Ω))]3×3

and rewrite (5.5) in the form

[∫

Ω

〈νt,x; ̺u〉 ·ϕϕϕ(0, ·) dx

]t=τ

t=0

=

∫ τ

0

∫

Ω

[

〈νt,x; ̺u〉 · ∂tϕϕϕ + 〈νt,x; ̺u⊗ u〉 : ∇xϕϕϕ+ 〈νt,x, p(̺)〉 divxϕϕϕ
]

dx dt

−
∫ τ

0

∫

Ω

[

µ∇u : ∇xϕϕϕ+ (µ/3 + η)divu · divxϕϕϕ
]

dx dt +

∫ τ

0

∫

Ω

R : ∇xϕ dx dt

(5.6)

for any 0 ≤ τ ≤ T , ϕ ∈ C∞
c ([0, T ]× Ω;R3).

Similarly, the energy inequality (4.26) can be written as

[∫

Ω

[
1

2

〈
νt,x; ̺|u|2 + P (̺)

〉
]

dx

]t=τ

t=0

+

∫ τ

0

∫

Ωh

µ|∇u|2 + (µ/3 + η)|divu|2 dx dt

+D(τ) ≤ 0

(5.7)
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for a.e. τ ∈ [0, T ], with the dissipation defect D satisfying

∫ τ

0

‖R‖M(Ω) dt
<∼
∫ τ

0

D(t) dt, D(τ) ≥ lim inf
h→∞

∫ τ

0

∫

Ωh

|∇huh|2 dx dt−
∫ τ

0

∫

Ω

|∇xu|2 dx dt,

(5.8)
cf. [3, Lemma 2.1].

At this stage, we recall the concept of dissipative measure valued solution introduced in [3].
These are measure–valued solutions of the Navier-Stokes system (1.1–1.4) satisfying the energy
inequality (5.7), where the concentration remainder in the momentum equation is dominated by
the dissipation defect as stated in (5.8) and the following analogue of Poincaré’s inequality holds:

lim
h→0

∫ τ

0

∫

Ωh

|uh−u|2 dx dt ≤ lim inf
h→∞

∫ τ

0

∫

Ωh

|∇huh|2 dx dt−
∫ τ

0

∫

Ω

|∇xu|2 dx dt(≤ D(τ)), (5.9)

where u is a weak limit of uh, or, equivalently, of 〈uh〉. Consequently, relations (5.4), (5.6–5.8)
imply that the Young measure {νt,x}t,x∈(0,T )×Ω represents a dissipative measure-valued solution of
the Navier-Stokes system (1.1–1.4) in the sense of [3] as soon as we check (5.9).

By standard Poincaré’s inequality in Ωh we get, on one hand,

∫

Ωh

|uh−u|2 dx =

∫

Ωh

|uh−ΠV
h [u]|2 dx+

∫

Ωh

|ΠV
h [u]−u|2 dx

<∼
∫

Ωh

|∇huh−∇hΠ
V
h u|2 dx+O(hβ).

On the other hand,

lim inf
h→∞

∫ τ

0

∫

Ωh

|∇huh|2 dx dt−
∫ τ

0

∫

Ω

|∇xu|2 dx dt = lim inf
h→∞

∫ τ

0

∫

Ωh

|∇huh −∇xu|2 dx dt.

Thus it is enough to observe that, by virtue of (4.12),

∇hΠ
V
h [u] → ∇xu (strongly) in L2(Ωh;R

3) whenever u ∈ W 1,2
0 (Ω;R3).

Seeing that validity of (5.6) as well as the bound on the dissipation remainder (5.8) can be
extended to the class of test functions ϕ ∈ C1([0, T ]×Ω;R3), ϕ|∂Ω = 0, we have shown the following
result.

Theorem 5.2. Let the pressure p satisfy (1.5), with 1 < γ < 2. Suppose that [̺h,uh] is a family
of numerical solutions given through (4.1), (4.2), where [̺kh,u

k
h] satisfy (2.2–2.4), where

∆t ≈ h, 0 < α < 2(γ − 1),

and the initial data satisfy (5.1).
Then any Young measure {νt,x}t,x∈(0,T )×Ω generated by [̺kh,u

k
h] for h→ 0 represents a dissipative

measure-valued solution of the Navier-Stokes system (1.1–1.4) in the sense of [3].
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Of course, the conclusion of Theorem 5.2 is rather weak, and, in addition, the Young measure
need not be unique. On the other hand, however, we may use the weak-strong uniqueness principle
established in [3, Theorem 4.1] to obtain our final convergence result.

Theorem 5.3. In addition to the hypotheses of Theorem 5.2, suppose that the Navier-Stokes
system (1.1–1.4) endowed with the initial data [̺0,u0] admits a regular solution [̺,u] belonging to
the class

̺, ∇x̺, u,∇xu ∈ C([0, T ]× Ω), ∂tu ∈ L2(0, T ;C(Ω;R3)), ̺ > 0, u|∂Ω = 0.

Then

̺h → ̺ (strongly) in Lγ((0, T )×K), uh → u (strongly) in L2((0, T )×K;R3)

for any compact K ⊂ Ω.

Indeed, the weak–strong uniqueness implies that the Young measure generated by the family
of numerical solutions coincides at each point (t, x) with the Dirac mass supported by the smooth
solution of the problem. In particular, the numerical solutions converge strongly and no oscillations
occur. Note that the Navier–Stokes system admits local-in-time strong solutions for arbitrary
smooth initial data, see e.g. Cho et al. [1] , and even global-in-time smooth solutions for small
initial data, see, e.g., Matsumura and Nishida [26], as soon as the physical domain Ω is sufficiently
smooth.

6 Conclusions

We have studied the convergence of numerical solutions obtained by the mixed finite element–finite
volume scheme applied to the isentropic Navier-Stokes equations. We have assumed the isentropic
pressure–density state equation p(̺) = a̺γ with γ ∈ (1, 2). Remind that this assumption is not
restrictive, since the largest physically relevant exponent is γ = 5/3. In order to establish the con-
vergence result we have used the concept of dissipative measure-valued solutions. These are the
measure-valued solutions, that, in addition, satisfy an energy inequality in which the dissipation
defect measure dominates the concentration remainder in the equations. The energy inequality
(3.1), along with the consistency (4.4), (4.5) gave us a suitable framework to apply the theory of
measure-valued solutions. As shown in Section 5.2 the numerical solutions [̺h,uh] generate a Young
measure - a parameterized measure {νt,x}t,x∈(0,T )×Ω, that represents a dissipative measure-valued
solution of the Navier-Stokes system (1.1–1.4), cf. Theorem 5.2. Finally, using the weak-strong
uniqueness principle established in [3, Theorem 4.1] we have obtained the convergence of the nu-
merical solutions to the exact regular solution, as long as the latter exists, cf. Theorem 5.3. The
present result is the first convergence result for numerical solutions of three-dimensional compress-
ible isentropic Navier-Stokes equations in the case of full adiabatic exponent γ ∈ (1, 2).
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