
ar
X

iv
:1

60
4.

04
05

4v
1 

 [
st

at
.M

L
] 

 1
4 

A
pr

 2
01

6

OPTIMAL RATES FOR REGULARIZATION OF STATISTICAL
INVERSE LEARNING PROBLEMS

GILLES BLANCHARD AND NICOLE MÜCKE

Abstract. We consider a statistical inverse learning problem, where we observe the
image of a function f through a linear operator A at i.i.d. random design points Xi,
superposed with an additive noise. The distribution of the design points is unknown and
can be very general. We analyze simultaneously the direct (estimation of Af) and the
inverse (estimation of f) learning problems. In this general framework, we obtain strong
and weak minimax optimal rates of convergence (as the number of observations n grows
large) for a large class of spectral regularization methods over regularity classes defined
through appropriate source conditions. This improves on or completes previous results
obtained in related settings. The optimality of the obtained rates is shown not only in the
exponent in n but also in the explicit dependency of the constant factor in the variance
of the noise and the radius of the source condition set.

1. Introduction

1.1. Setting. Let A be a known linear operator from a Hilbert space H1 to a linear space
H2 of real-valued functions over some input space X. In this paper we consider a random
and noisy observation scheme of the form

(1.1) Yi := g(Xi) + εi , g = Af , i = 1 , . . . , n

at i.i.d. data points X1, . . . , Xn drawn according to a probability distribution ν on X,
where εi are independent centered noise variables. More precisely, we assume that the
observed data (Xi, Yi)1≤i≤n are i.i.d. observations, with E[Yi|Xi] = g(Xi), so that the
distribution of εi may depend on Xi , while satisfying E[εi|Xi] = 0 . This is also commonly
called a statistical learning setting, in the sense that the data (Xi, Yi) are generated by some

external random source and the learner aims to infer from the data some reconstruction f̂n
of f , without having influence on the underlying sampling distribution ν. For this reason
we call model (1.1) an inverse statistical learning problem. The special case A = I is just
non-parametric regression under random design (which we also call the direct problem).
Thus, introducing a general A gives a unified approach to the direct and inverse problem.

In the statistical learning context, the relevant notion of convergence and associated

reconstruction rates to recover f concern the limit n → ∞ . More specifically, let f̂n be an
estimator of f based on the observed data (Xi, Yi)1≤i≤n. The usual notion of estimation
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error in the statistical learning context is the averaged squared loss for the prediction of
g(X) at a new independent sample point X :

(1.2) EX∼ν [(g(X)− Af̂n(X))2] =
∥∥∥A(f − f̂n)

∥∥∥
2

L2(ν)
.

In this paper, we are interested as well in the inverse reconstruction problem, that is, the
reconstruction error for f itself in the input space norm, i.e.

∥∥∥f − f̂n

∥∥∥
2

H1

.

Estimates in L2(ν)-norm are standard in the learning context, while estimates in H1-norm
are standard for inverse problems, and our results will present convergence results for a

family of norms interpolating between these two. We emphasize that
∥∥∥A(f − f̂n)

∥∥∥
2

L2(ν)
as

well as
∥∥∥f − f̂n

∥∥∥
2

H1

are random variables, depending on the observations. Thus the error

rates above can be estimated either in expectation or in probability. In this paper we
will present convergence rates for these different criteria, as n tends to infinity, both in
expectation (for moments of all orders) and with high probability.

1.2. Overview of the results. In this section we present a short, informal overview of the
results which will allow a comparison to other existing results in the next section. We start
to show that, under appropriate assumptions, we can endow Im(A) with an appropriate
reproducing kernel Hilbert space (RKHS) structure HK with reproducing kernel K, such
that A is a partial isometry from H1 onto HK . Through this partial isometry the initial
problem (1.1) can be formally reduced to the problem of estimating the function g ∈ HK

by some ĝ ; control of the error (g− ĝ) in L2(ν)-norm corresponds to the direct (prediction)
problem, while control of this difference in HK-norm is equivalent to the inverse (recon-
struction) problem. In particular, the kernel K completely encapsulates the information
about the operator A . This equivalence also allows a direct comparison to previous exist-
ing results for convergence rates of statistical learning using a RKHS formalism (see next
section). Let L : g ∈ HK 7→

∫
g(x)K(x, .)dν(x) ∈ HK denote the kernel integral operator

associated to K and the sampling measure ν. The rates of convergence presented in this
paper will be governed by a source condition assumption on g of the form ‖Lrg‖ ≤ R for
some constants r, R > 0 as well as by the ill-posedness of the problem, as measured by an
assumed power decay of the eigenvalues of L with exponent b > 1 . Our main upper bound
result establishes that for a broad class of estimators defined via spectral regularization
methods, for s ∈ [0, 1

2
] it holds both with high probability as well as in the sense of p-th

moment expectation that

‖Ls(g − ĝλn)‖HK
. R

(
σ2

R2n

) (r+s)
2r+1+1/b

,

for an appropriate choice of the regularization parameter λn . (Note that s = 0 corresponds
to reconstruction error, and s = 1

2
to the prediction error i.e. L2(ν) norm) . Here σ2 denotes
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noise variance (classical Bernstein moment conditions are assumed to hold for the noise.)
The symbol . means that the inequality holds up to a multiplicative constant that can
depend on various parameters entering in the assumptions of the result, but not on n, σ,
nor R . An important assumption is that the inequality q ≥ r + s should hold, where q is
the qualification of the regularization method, a quantity defined in the classical theory of
inverse problems (see Section 2.5 for a precise definition) .

This result is complemented by a minimax lower bound which matches the above rate not
only in the exponent in n , but also in the precise behavior of the multiplicative constant in
function of R and the noise variance σ2 . The obtained lower bounds come in two flavors,
which we call weak and a strong asymptotic lower bound (see Section 3).

1.3. Related work. The analysis of inverse problems, discretized via (noisy) observations
at a finite number of points, has a long history, which we will not attempt to cover in
detail here. The introduction of reproducing kernel Hilbert space based methods was a
crucial step forward in the end of the 1970s. Early references have focused, mostly, on
spline methods on [0, 1]d ; on observation point designs either deterministic regular, or
random with a sampling probability comparable to Lebesgue; and on assumed regularity
of the target function in terms of usual differentiability properties. We refer to [30] and
references therein for a general overview. An early reference establishing convergence rates
in a random design setting for (possibly nonlinear) inverse problems in a setup similar
to those delineated above and a Tykhonov-type regularization method is [23]. Analysis
of the convergence of fairly general regularization schemes for statistical inverse problems
under the white noise model were established in [5]. The white noise model is markedly
different from the setting considered in the present paper, in particular because it does
not involve randomly sampled observation points, though as a general rule one expects a
correspondence between optimal convergence rates in both settings.

We henceforth focus our attention on the more recent thread of literature concerning
the statistical learning setting, whose results are more directly comparable to ours. In this
setting, the emphasis is on general input spaces, and “distribution-free” results, which is
to say, random sampling whose distribution ν is unknown, quite arbitrary and out of the
control of the user. The use of reproducing kernel methods have enjoyed a wide popularity
in this context since the 1990s, mainly for the direct learning problem. The connections
between (the direct problem of) statistical learning using reproducing kernel methods, and
inverse problem methodology, were first noted and studied in [10, 15, 11]. In particular, in
[15] it was proposed to use general form regularization methods from the inverse problem
literature for kernel-based statistical learning. There is a vast recent literature relating
learning to regularization techniques for inverse problems (see [22], [31], [16] to mention
just a few), confirming the strong conceptual analogy of certain learning algorithms with
regularization algorithms. For example, Tikhonov regularization is known as regularized
least-squares algorithm or ridge regression, while Landweber iteration is related to L2-
boosting or gradient descent, see e.g. [32] and [6].

In [11], the more general setting of the random discretization of an inverse problem
defined by a Carleman operator is considered. This is essentially the setting we adopt in the
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present work. More precisely, we start with the assumption that the map (f, x) 7→ (Af)(x)
is continuous in f and measurable in x , which implies that A can be seen as a Carleman
operator from H1 to L2(ν) . Moreover, as mentioned in the previous section, we observe
that Im(A) can be endowed with a RKHS structure HK such that A is a partial isometry
from H1 onto HK . While we do not expect this result to considered a novelty, it was
not explicitly mentioned in [11] and in our opinion helps cement the equivalence between
inverse statistical learning and direct learning with reproducing kernels. In particular, it
makes a direct comparison possible between our results and previous results for the direct
(kernel) learning problem.

Concerning the history of upper rates of convergence in a RKHS setting, covering number
techniques were used in [8] to obtain (non-asymptotic) upper rates. In [10], [25], [26] these
techniques were replaced by estimates on integral operators via concentration inequalities,
and this is the path we follow in this paper.

We shall now briefly review previous results which are directly comparable to ours:
Smale and Zhou [26], Bauer et al. [1], Yao et al. [32], Caponnetto and De Vito [9] and
Caponnetto [7]. For convenience, we have tried to condense the most essential points in
Table 1. Compared with our more general setting, all of these previous references only
consider the special case A = I, but assume from the onset that H1 is a RKHS with given
kernel. Thus, in the first column of Table 1, A is the identity and g = f , and in the second
column H1 = HK . The more complicated form given in Table 1 is the reinterpretation in
our setting (see Section 2). The first three references ([26], [1], [32]) do not analyze lower
bounds and their upper bounds do not take into account the behaviour of the eigenvalues
of the integral operator L corresponding to the assumed RKHS structure. But all three
derive estimates on the error both in L2(ν)-norm and RKHS-norm. Only [1] considers a
general class of spectral regularization methods.

The last two papers [9] and [7] obtain fast upper rates (depending on the eigenvalues
of L) which are minimax optimal. The estimates, however, are only given in L2(ν)-norm.
Furthermore, only [7] goes beyond Tikhonov regularization to handle a general class of
spectral regularization methods. A closer look at Table 1 reveals that in treating general
spectral regularization methods, the results of [7] require for certain parameter configu-
rations (r < 1/2 − 1/2b) the availablility of additional unlabeled data from the sampling
distribution ν . This appears somewhat suboptimal, since this does not reproduce the
previously obtained result for Tikhonov in [9] which does not require unlabeled data.

To obtain these finer results (“fast rates” taking into account the spectral structure of
L), a crucial technical tool is to consider the effective dimension N(λ) = tr((L+ λ)−1L) ,
which determines the optimal choice of the regularization parameter. This idea of [9] and
[7] is fundamental for our approach, which extends and refines these previous results.

Furthermore, we recall from [9] that the effective dimension N(λ) seems to be just the
right parameter to establish an important connection between the operator theoretic and
spectral methods and the results obtained via entropy methods (see [12], [28]) since N(λ)
encodes via L crucial properties of the marginal distribution ν.

As delineated in Section 1.2, the main question adressed in this paper is that of minimax
optimal rates of convergence as n grows to infinity. Our contribution is to improve on
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∥∥∥A(f̂n − f)
∥∥∥
L2(ν)

∥∥∥f̂n − f

∥∥∥
HK

Assumptions Method
(q: qualification)

Smale/ Zhou [26]
(

1√
n

) 2r+1
2r+2

(
1√
n

) r
r+1

r ≤ 1
2 Tikhonov

Bauer et al. [1]
(

1√
n

) 2r+1
2r+2

(
1√
n

) r
r+1

r ≤ q − 1
2 General

Yao et al. [32]
(

1√
n

) 2r+1
2r+3

(
1√
n

) r

r+5
2 q = ∞ Landweber

Iteration

Caponnetto, De Vito [9]
(

1√
n

) (2r+1)

2r+1+1
b N/A r ≤ 1

2 Tikhonov

Caponnetto [7]
(

1√
n

) (2r+1)

2r+1+1
b N/A r ≤ q − 1

2 General

+unlabeled data
if 2r + 1

b < 1

Table 1. Upper rates available from earlier literature (for their applica-
bility to the inverse learning setting considered in the present paper, see
Section 2.4).

and extend the existing results presented above, aiming to present a complete picture.
We consider a unified approach which allows to simultaneously treat the direct and the
inverse learning problem, derive upper bounds (non-asymptotic and asymptotic) as well
as lower bounds, both for the L2(ν) and the H1 norm (as well as intermediate norms)
for a general class of regularization methods, without requiring additional unlabeled data.
In this generality, this is new. In addition, we present a refined analysis of (both strong
and weak) minimax optimal rates also investigating their dependence on the complexity of
the source condition and on the variance of the noise (our lower bounds come in slightly
different strong and weak versions leading to the natural notion of weak and strong minimax
optimality). To the best of our knowledge, this has never been done before.

We conclude this review by mentioning the recent work [19], which also concerns inverse
statistical learning (see also [20]), albeit in a quite different setting. In that work, the main
focus is on classification (Y only can take finitely many values or “classes”), and the inverse
problem is that the sampling distribution for X is transformed via a linear operator A. The
method analyzed there is empirical risk minimization using a modified loss which implicitly
includes an estimation of the original class-conditional distributions from the transformed
ones. In the present paper, we consider an (inverse) regression setting with a continuous
output variable, the nature of the inverse problem is different since the transformation is
applied to the regression function, and we also use a different methododological approach.

The outline of the rest of the paper is as follows. In Section 2, we fix notation and describe
our setting in more detail. In particular, we adopt the theory of Carleman operators from
the direct problem to our more general setting, including the inverse learning problem. We
describe the source conditions, the assumptions on the noise and prior classes, and finally
the general class of spectral regularization methods. Granted these preliminaries, we then
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present in Section 3 our main results (Theorem 3.4, Theorem 3.5 and Corollary 3.6).
In Section 4, we present a concluding discussion on some further aspects of the results.
Section 5 contains the proofs of the upper bounds, Section 6 is devoted to the proof of lower
bounds. In the Appendix we establish the concentration inequalities and a perturbation
result needed in Section 5 and give some supplementary technical lemmata needed in
section Section 6.

2. Notation and Preliminaries

In this section, we specify the mathematical setting and assumptions for the model (1.1)
and reduce it to an equivalent model.

2.1. Inverse Problems induced by Carleman Operators. We assume that the input
space X is a standard Borel space endowed with a probability measure ν, and the output
space Y is equal to R. Let A : H1 −→ H2 be a linear operator, were H1 is a infinite-
dimensional real separable Hilbert space andH2 some vector space of functions g : X −→ R.
We don’t assume any specific structure on H2 for now. However, as will become clear
shortly, the image Im(A) ⊂ H2 will be endowed with a natural Hilbert space structure as
a consequence of following key assumption:

Assumption 2.1. The evaluation functionals at a given point x ∈ X :

Sx : H1 −→ R

f 7−→ (Sx)(f) := (Af)(x)

are uniformly (w.r.t. x ∈ X) bounded, i.e., there exists a constant κ < ∞ such that for
any x ∈ X

|Sx(f)| ≤ κ ‖f‖
H1

.

For all x, the fact that Sx is continuous implies, by Riesz’s representation theorem, the
existence of an element Fx ∈ H1 such that

(Af)(x) = 〈f, Fx〉H1

with

‖Fx‖H1
= ‖Sx‖ ≤ κ ,

for any x ∈ X. Define the map

K : X× X −→ R

(x1, x2) 7−→ K(x1, x2) := 〈Fx1 , Fx2〉H1
,

which is by construction a positive semidefinite (p.s.d.) kernel over X associated to the
so-called feature space H1, and the feature map F· : x ∈ X 7→ Fx ∈ H1. Observe that for
any x ∈ X, we have the bound K(x, x) = ‖Fx‖2H1

≤ κ2 . A fundamental result (see [27],
Theorem 4.21) is that to every p.s.d. kernel can be associated a unique reproducing kernel
Hilbert space (RKHS). We reproduce this result here, adapted to the considered context:
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Proposition 2.2. (Unique RKHS associated to a psd kernel) The real-valued function
space

HK := {g : X −→ R | ∃ f ∈ H1 with g(x) = 〈f, Fx〉H1
= (Af)(x) ∀x ∈ X}

= Im(A) ⊂ H2,

equipped with the norm

‖g‖
HK

:= inf
{
‖f‖

H1
: f ∈ H1 s.t. ∀x ∈ X : g(x) = 〈f, Fx〉H1

= (Af)(x)
}

= inf
f∈A−1({g})

‖f‖
H1

is the unique RKHS for which K is a reproducing kernel. Moreover, the operator A is a
partial isometry from H1 to HK (i.e. an isometry on the orthogonal of its kernel), and

HK = Span{K(x, .), x ∈ X} .

From now on, we can therefore forget about the space H2 and consider A as an operator
from H1 onto HK = Im(A). As a consequence of A being a partial isometry onto HK , note
that this RKHS is separable, since we have assumed that H1 is. Additionally, we assume

Assumption 2.3. For any f ∈ H1, the map x 7→ (Af)(x) = 〈f, Fx〉H1
is measurable.

Equivalently, it is assumed that all functions g ∈ HK are measurable. Furthermore,
Assumption 2.1 implies that ‖Af‖∞ ≤ κ ‖f‖

H1
for all f ∈ H1, so that all functions in HK

are bounded in supremum norm. Therefore, HK is a subset of L2(X, ν) ; let ι denote the
associated canonical injection map HK →֒ L2(X, ν) .

Together, Assumptions 2.3 and 2.1 thus imply that the map F· : X −→ H1 is a bounded
Carleman map [18]. We define the associated Carleman operator, as

Sν : H1 −→ L2(X, ν)

f 7−→ Sνf := ι(Af) .

The operator Sν is bounded and satisfies ‖Sν‖ ≤ κ , since

‖Sνf‖2L2(ν) =

∫

X

|(Af)(x)|2 ν(dx) =
∫

X

|〈f, Fx〉H1 |2 ν(dx) ≤ κ2 ‖f‖2
H1

.

We give an illustrative example which is very classical.

Example 2.4. (Differentiating a real function) We consider estimation of a derivative of
a real function. To this end, we let H1 := {f ∈ L2[0, 1] : E[f ] = 0}, the subspace
of L2([0, 1], dt) consisting of functions with mean zero and H2 := C[0, 1], the space of
continuous functions on [0, 1]. Define A : H1 −→ H2 by

[Af ](x) =

∫ x

0

f(t) dt .

Then Af = g if and only if f = g′. It is easily checked that Assumption 2.1 is satisfied.
To identify the kernel of Im(A), the reader can easily convince himself that

[Af ](x) = 〈f, Fx〉L2 ,
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where Fx(t) = 1[0,x](t) − x. Thus, by definition K(x, t) = 〈Fx, Ft〉L2 = x ∧ t − xt and
Im(A) coincides with the real Sobolev space H1

0 [0, 1], consisting of absolutely continuous
functions g on [0, 1] with weak derivatives of order 1 in L2[0, 1], with boundary condition
g(0) = g(1) = 0. The associated Carleman operator is given by S = ι ◦ A with ι :
H1

0 [0, 1] →֒ L2[0, 1] and with marginal distribution ν = dt, the Lebesgue measure on [0, 1].

We complete this section by defining Bν := S⋆
νSν : H1 −→ H1. Then Bν is positive,

selfadjoint and satisfies ‖Bν‖ ≤ κ2 . The following Proposition summarizes the main
properties of the operators Sν , S

⋆
ν and Bν . Its proof can be found in the Appendix of [11]

(Proposition 19).

Proposition 2.5. Under Assumptions 2.1 and 2.3, the Carleman operator Sν : H1 −→
L2(X, ν) is a Hilbert-Schmidt operator with nullspace

ker(Sν) = Span{Fx : x ∈ support(ν)}⊥ .

The adjoint operator S⋆
ν : L2(X, ν) −→ H1 is given by

S⋆
νg =

∫

X

g(x)Fx ν(dx) ,

for any g ∈ L2(X, ν) and where the integral converges in H1- norm.
Furthermore, if Fx ⊗ F ⋆

x denotes the operator f ∈ H1 7→ 〈f, Fx〉H1
Fx ∈ H1, then

Bν =

∫

X

Fx ⊗ F ⋆
x ν(dx) ,

where the integral converges in trace norm.

It is natural to consider the inverse problem Sνf = g (rather than Af = g) as the
idealized population version (i.e. noise and discretization-free) of (1.1), since since the
former views the output of the operator in the geometry of L2(X, ν), which is the natural
population geometry when the sampling measure is ν . Multiplying on both sides by S⋆

ν ,
we obtain the inverse problem Bνf = S⋆

νg (called “normal equation” in the inverse problem
literature).

Since Bν is self-adjoint and compact, the spectral theorem ensures the existence of an
orthonormal set {ej}j≥1 such that

(2.1) Bν =
∞∑

j=1

µj〈·, ej〉H1ej

and
H1 = ker(Bν)⊕ Span{ej : j ≥ 1} .

The numbers µj are the positive eigenvalues of Bν in decreasing order, satisfying 0 <
µj+1 ≤ µj for all j > 0 and µj ց 0. In the special case where Bν has finite rank, the
above set of positive eigenvalue and eigenvectors is finite, but to simplify the notation we
will always assume that they are countably infinite; formally, we can accomodate for this
special situation by allowing that the decreasing sequence of eigenvalues is equal to zero
from a certain index on.
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Remark 2.6. The considered operators depend on the sampling measure ν and thus also
the eigenvalues (µj)j≥1 . For the sake of reading ease, we omit this dependence in the
notation; we will also denote henceforth S = Sν and B = Bν .

2.2. Discretization by random sampling. For discretization, we consider a sample
z = (x,y) = ((x1, y1), ..., (xn, yn)) ∈ (X × R)n and introduce the associated sampling
operator

S
x
: H1 −→ R

n

f 7−→ S
x
f ,

with (S
x
f)j = 〈f, Fxj

〉H1 , j = 1, ..., n and where R
n is equipped with the inner product of

the empirical L2 structure,

〈y,y′〉Rn =
1

n

n∑

j=1

yjy
′
j .

Formally, S
x
is the counterpart of Sν when replacing the sampling distribution ν by the

empirical distribution ν̂ := 1
n

∑n
i=1 δxi

, and identifying L2(X, ν̂) with R
n endowed with

the above inner product. Additionally, the sampled vector S
x
f is corrupted by noise

ε = (ǫ1, . . . , ǫn) to yield the vector of observed values y = (y1, ..., yn) ∈ R
n:

(2.2) yj = g(xj) + εj = (S
x
f)j + εj, j = 1, ..., n ,

which can be interpretet as the discretized and noisy counterpart of the population problem
Sνf = g . Replacing the measure ν with the empirical measure ν̂ in Proposition 2.5 gives
the following Corollary:

Corollary 2.7. The sampling operator S
x
: H1 −→ R

n is a Hilbert-Schmidt operator with
nullspace

ker(S
x
) = Span{Fxj

: j = 1, ..., n}⊥ .

Furthermore, the adjoint operator S⋆
x
: Rn −→ H1 is given by

S⋆
x
y =

1

n

n∑

j=1

yjFxj
,

and the operator B
x
:= S⋆

x
S
x
: H1 −→ H1 is given by

B
x
=

1

n

n∑

j=1

Fxj
⊗ F ⋆

xj
.

With this notation, the normal equation associated to (2.2), obtained by multiplying
both sides by S⋆

x
, reads S⋆

x
y = B

x
f + S⋆

x
ǫ ; it is the discretized and noisy counterpart

of the population normal equation introduced in the previous section. The advantage of
looking at the normal equations is that both the population and the empirical version act
on the same space H1 , so that the latter can be considered as a perturbation of the former
(both for the operator and the noise term), an observation which is central to the theory
[10].
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2.3. Statistical model, noise assumption, and prior classes. We recall the consid-
ered setting of inverse learning, the sampling is assumed to be random i.i.d., where each
observation point (Xi, Yi) follows the model Y = Af(X) + ε . More precisely, (Xi, Yi) are
i.i.d. with Borel probability distribution ρ on X × R . For (X, Y ) having distribution ρ,
denoting ν the marginal distribution of X , we assume:

Assumption 2.8. The conditional expectation wrt. ρ of Y given X exists and it holds
for ν-almost all x ∈ X :

(2.3) Eρ[Y |X = x] = Afρ(x) = Sxfρ , for some fρ ∈ H1 .

Furthermore, we will make the following Bernstein-type assumption on the observation
noise distribution:

Assumption 2.9. There exists σ > 0 and M > 0 such that for any integer m ≥ 2:

(2.4) E[ |Y − Afρ(X)|m | X ] ≤ 1

2
m! σ2Mm−2 ν − a.s.

It is a generally established fact that given any estimator f̂ of fρ, one can construct a

probability measure ρ on X×R such that the rate of convergence of f̂ to fρ can arbitrarily
slow (see e.g. [17]). Thus, to derive nontrivial rates of convergence, we concentrate our
attention on specific subsets (also called models) of the class of probability measures. We
will work with the same type of assumptions as considered by [9] and introduce two sets
of conditions concerning, on the one hand, the marginal distribution ν of X , and on the
other hand, the conditional distribution ρ(.|.) of Y given X .

Let P denote the set of all probability distributions on X. We define classes of sampling
distributions by introducing decay conditions on the eigenvalues µi of the operator Bν

defined in Section 2.1.
For b > 1 and α, β > 0 , we define

P<(b, β) := {ν ∈ P : µj ≤ β/jb ∀j ≥ 1} ,

P>(b, α) := {ν ∈ P : µj ≥ α/jb ∀j ≥ 1}
and

P>
strong(b, α) := {ν ∈ P>(b, α) : ∃γ > 0 , j0 ≥ 1 s.th.

µ2j

µj

≥ 2−γ ∀j ≥ j0} .

In the inverse problem literature, such eigenvalue decay assumptions are related to the
so-called degree of ill-posedness of the inverse problem Bνf = S⋆g . In the present setting,
the ill-posedness of the problem is reflected by the eigenvalues of Bν and depends both of
the fixed operator A and the sampling distribution ν.

Example 2.10. Coming back to our example 2.4 the degree of ill-posedness is determined
by the decay of the eigenvalues (µj)j of the positive selfadjoint integral operator LK =
SS⋆ : L2[0, 1] −→ L2[0, 1]

[LKf ](x) =

∫ 1

0

K(x, t)f(t) dt .
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Elementary calculations show that the SVD basis is given by ej(x) =
√
2 sin(πjx) with

corresponding singular values µj =
1

π2j2
. Thus, b = 2 and P<(2, 1

π2 ) ∩ P>(2, 1
π2 ) as well as

P<(2, 1
π2 ) ∩ P>

strong(2,
1
π2 ) are not empty.

For a subset Ω ⊆ H1, we let K(Ω) be the set of regular conditional probability distribu-
tions ρ(·|·) on B(R)× X such that (2.3) and (2.4) hold for some fρ ∈ Ω. (It is clear that
these conditions only depend on the conditional ρ(.|.) of Y given X .) We will focus on a
Hölder-type source condition, which is a classical smoothness assumption in the theory of
inverse problems. Given r > 0, R > 0 and ν ∈ P, we define

(2.5) Ων(r, R) := {f ∈ H1 : f = Br
νh, ‖h‖H1

≤ R}.
Note that for any r ≤ r0 we have Ων(r0, R) ⊆ Ων(r, κ

2(r0−r)R), for any ν ∈ P. Since Bν is
compact, the source sets Ων(r, R) are precompact sets in H1.

Then the class of models which we will consider will be defined as

(2.6) M(r, R,P′) := { ρ(dx, dy) = ρ(dy|x)ν(dx) : ρ(·|·) ∈ K(Ων(r, R)), ν ∈ P′ } ,

with P′ = P<(b, β), P′ = P>(b, α) or P′ = P>
strong(b, α) .

As a consequence, the class of models depends not only on the smoothness properties of
the solution (reflected in the parameters R > 0, r > 0), but also essentially on the decay
of the eigenvalues of Bν .

2.4. Equivalence with classical kernel learning setting. With the notation and set-
ting introduced in the previous sections, we point out that the “inverse learning” problem
(1.1) can, provided Assumptions (2.1) and (2.3) are met, be reduced to a classical learning
problem (hereafter called “direct” learning) under the setting and assumptions of repro-
ducing kernel based estimation methods. In the direct learning setting, the model is given
by (1.1) (i.e. Yi = g(Xi) + εi) and the goal is to estimate the function g. Kernel methods
posit that g belongs to some reproducing kernel Hilbert space1 HK with kernel K and
construct an estimate ĝ ∈ HK of g based on the observed data. The reconstruction error
(ĝ − g) can be analyzed in L2(ν) norm or in HK-norm.

Coming back to the inverse learning setting (Yi = (Af)(Xi) + εi), let HK be defined as
in the previous sections and assume f ∈ ker(A)⊥ (we cannot hope to recover the part of f
belonging to kerA anyway, and might as well make this assumption. It is also implied by
any form of source condition as introduced in Section 2.3).

Consider applying a direct learning method using the reproducing kernel K; this returns

some estimate ĝ ∈ HK of g. Now defining f̂ := A−1ĝ , we have
∥∥∥f̂ − f

∥∥∥
2

H1

=
∥∥A−1ĝ − f

∥∥2
H1

= ‖ĝ −Af‖2
HK

= ‖ĝ − g‖2
HK

,

by the partial isometry property of A as an operator H1 7→ HK (Proposition 2.2). Note

that f̂ is, at least in principle, accessible to the statistician, since A (and therefore A−1)
is assumed to be known. Hence, a bound established for the direct learning setting in

1This can be extended to the case where g is only approximated in L2(ν) by a sequence of functions in
HK . For the sake of the present discussion, only the case where it is assumed g ∈ HK is of interest.
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the sense of the HK-norm reconstruction ‖ĝ − g‖2
HK

also applies to the inverse problem

reconstruction error
∥∥∥f̂ − f

∥∥∥
2

H1

. Furthermore, it is easy to see that the eigenvalue decay

conditions and the source conditions involving the operator Bν introduced in Section 2.3
are, via the same isometry, equivalent to similar conditions involving the kernel integral
operator in the direct learning setting, as considered for instance in [1, 9, 7, 26]. It fol-
lows that estimates in HK-norm available from those references are directly applicable to
the inverse learning setting. However, as summarized in Table 1, for the direct learning
problem the results concerning HK-norm rates of convergence are far less complete than
in L2(ν)-norm. In particular, such rates have not been established under consideration of
simultaneous source and eigenvalue decay conditions, and neither have the corresponding
lower bounds. In this sense, the contribution of the present paper is to complete the picture
in Table 1, with the inverse learning setting as the underlying motivation.

2.5. Regularization. In this section, we introduce the class of linear regularization meth-
ods based on spectral theory for self-adjoint linear operators. These are standard methods
for finding stable solutions for ill-posed inverse problems, see e.g. [13] or [15].

Definition 2.11 (Regularization function). Let g : (0, 1] × [0, 1] −→ R be a function
and write gλ = g(λ, ·). The family {gλ}λ is called regularization function, if the following
conditions hold:

(i) There exists a constant D < ∞ such that

sup
0<t≤1

|tgλ(t)| ≤ D,

for any 0 < λ ≤ 1.
(ii) There exists a constant E < ∞ such that

(2.7) sup
0<t≤1

|gλ(t)| ≤
E

λ
,

for any 0 < λ ≤ 1.
(iii) Defining the residual

(2.8) rλ(t) = 1− gλ(t)t ,

there exists a constant γ0 < ∞ such that

sup
0<t≤1

|rλ(t)| ≤ γ0,

for any 0 < λ ≤ 1.

Definition 2.12 (Qualification). The qualification of the regularization {gλ}λ is the
maximal q such that for any 0 < λ ≤ 1

sup
0<t≤1

|rλ(t)|tq ≤ γqλ
q.

for some constant γq > 0 .
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The next lemma provides a simple inequality (see e.g. [21], Proposition 3 ) that shall be
used later.

Lemma 2.13. Let {gλ}λ be a regularization function with qualification q. Then, for any
r ≤ q and 0 < λ ≤ 1:

sup
0<t≤1

|rλ(t)|tr ≤ γrλ
r,

where γr := γ
1− r

q

0 γ
r
q
q .

We give some examples which are common both in classical inverse problems [13] and
in learning theory [1].

Example 2.14. (Spectral Cut-off) A very classical regularization method is spectral
cut-off (or truncated singular value decomposition), defined by

gλ(t) =

{
1
t

if t ≥ λ
0 if t < λ .

In this case, D = E = γ0 = γq = 1. The qualification q of this method can be arbitrary.

Example 2.15. (Tikhonov Regularization) The choice gλ(t) = 1
λ+t

corresponds to
Tikhonov regularization. In this case we have D = E = γ0 = 1. The qualification of this
method is q = 1 with γq = 1.

Example 2.16. (Landweber Iteration) The Landweber Iteration (gradient descent algo-
rithm with constant stepsize) is defined by

gk(t) =
k−1∑

j=0

(1− t)j with k = 1/λ ∈ N .

We have D = E = γ0 = 1. The quailfication q of this algorithm can be arbitrary with
γq = 1 if 0 < q ≤ 1 and γq = qq if q > 1.

Given the sample z = (x,y) ∈ (X×R)n, we define the regularized approximate solution
fλ
z
of problem (2.2), for a suitable a-priori parameter choice λ = λn, by

(2.9) fλn
z

:= gλn(κ
−2B

x
)κ−2S⋆

x
y = gλn(B̄x

)S̄⋆
x
y ,

where we have introduced the shortcut notation B̄x := κ−2B
x
and S̄

x
:= κ−2S

x
. Note that

gλ(B̄x
) is well defined since

∥∥B̄
x

∥∥ ≤ 1 .

3. Main results: upper and lower bounds on convergence rates

Before stating our main results, we recall some basic definitions in order to clarify what
we mean by asymptotic upper rate, lower rate and minimax rate optimality. We want to
track the precise behavior of these rates not only for what concerns the exponent in the
number of examples n, but also in terms of their scaling (multiplicative constant) as a
function of some important parameters (namely the noise variance σ2 and the complexity
radius R in the source condition). For this reason, we introduce a notion of a family of rates
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over a family of models. More precisely, in all the forthcoming definitions, we consider an
indexed family (Mθ)θ∈Θ , where for all θ ∈ Θ , Mθ is a class of Borel probability distributions
on X×R satisfying the basic general assumption 2.8. We consider rates of convergence in
the sense of the p-th moments of the estimation error, where p > 0 is a fixed real number.

Definition 3.1. (Upper Rate of Convergence)
A family of sequences (an,θ)(n,θ)∈N×Θ of positive numbers is called upper rate of conver-
gence in Lp for the interpolation norm of parameter s ∈ [0, 1

2
] , over the family of models

(Mθ)θ∈Θ , for the sequence of estimated solutions (f
λn,θ
z )(n,θ)∈N×Θ , using regularization pa-

rameters (λn,θ)(n,θ)∈N×Θ , if

sup
θ∈Θ

lim sup
n→∞

sup
ρ∈Mθ

Eρ⊗n

[
‖Bs

ν(fρ − f
λn,θ
z )‖pH1

] 1
p

an,θ
< ∞ .

Definition 3.2. (Weak and Strong Minimax Lower Rate of Convergence)
A family of sequences (an,θ)(n,θ)∈N×Θ of positive numbers is called weak minimax lower
rate of convergence in Lp for the interpolation norm of parameter s ∈ [0, 1

2
] , over the

family of models (Mθ)θ∈Θ , if

inf
θ∈Θ

lim sup
n→∞

inf
f•

sup
ρ∈Mθ

Eρ⊗n

[
‖Bs

ν(fρ − f
z
)‖p

H1

] 1
p

an,θ
> 0 ,

where the infimum is taken over all estimators, i.e. measurable mappings f• : (X×R)n −→
H1 . It is called a strong minimax lower rate of convergence in Lp if

inf
θ∈Θ

lim inf
n→∞

inf
f•

sup
ρ∈Mθ

Eρ⊗n

[
‖Bs

ν(fρ − f
z
)‖p

H1

] 1
p

an,θ
> 0 .

The difference between weak and strong lower rate can be summarily reformulated in
the following way: if rn denotes the sequence of minimax errors for a given model and
reconstruction error, using n observations, then an = O(rn) must hold if an is a strong
lower rate, while an being a weak lower means that rn = o(an) is excluded.

Definition 3.3. (Minimax Optimal Rate of Convergence)

The sequence of estimated solutions (f
λn,θ
z )n using the regularization parameters (λn,θ)(n,θ)∈N×Θ

is called weak/strong minimax optimal in Lp for the interpolation norm of parameter
s ∈ [0, 1

2
], over the model family (Mθ)θ∈Θ, with rate of convergence given by the se-

quence (anθ
)(n,θ)∈N×Θ, if the latter is a weak/strong minimax lower rate as well as an upper

rate for (f
λn,θ
z )n,θ.

We now formulate our main theorems.

Theorem 3.4. Consider the modelMσ,M,R := M(r, R,P<(b, β)) (as defined in Section 2.3),
where r > 0, b > 1 and β > 0 are fixed, and (R,M, σ) ∈ R

3
+ (remember that (σ,M) are

the parameters in the Bernstein moment condition (2.4), in particular σ2 is a bound on
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the noise variance.) Given a sample z = (x,y) ∈ (X× R)n, define fλ
z
as in (2.9), using a

regularization function of qualification q ≥ r + s, with the parameter sequence

(3.1) λn,(σ,R) = min

((
σ2

R2n

) b
2br+b+1

, 1

)
.

Then for any s ∈ [0, 1
2
], the sequence

(3.2) an,(σ,R) = R

(
σ2

R2n

) b(r+s)
2br+b+1

is an upper rate of convergence in Lp for all p > 0, for the interpolation norm of pa-

rameter s, for the sequence of estimated solutions (f
λn,(σ,R)
z ) over the family of models

(Mσ,M,R)(σ,M,R)∈R3
+
.

Theorem 3.5. Let r > 0, R > 0, b > 1 and α > 0 be fixed. Let ν be a distribution on X

belonging to P>(b, α). Then the sequence (an,(σ,R)) defined in (3.2) is a weak minimax lower
rate of convergence in Lp for all p > 0 , for the model family MR,M,σ := M(r, R, {ν}) ,
(R,M, σ) ∈ R

3
+ . If ν belongs to P>

strong(b, α), then the sequence an,(σ,R) is a strong minimax
lower rate of convergence in Lp for all p > 0 , for the model family MR,M,σ .

Finally, we have as a direct consequence:

Corollary 3.6. Let r > 0, b > 1, β ≥ α > 0 be fixed and assume P′ = P<(b, β)∩P>(b, α) 6=
∅ . Then the sequence of estimators f

λn,(σ,R)
z as defined in (2.9) is strong minimax optimal

in Lp for all p > 0, under the assumptions and parameter sequence (3.1) of Theorem 3.4 ,
over the class MR,M,σ := M(r, R,P′) , (R,M, σ) ∈ R

3
+ .

4. Discussion

We conclude by briefly discusssing some specific points related to our results.
Non-asymptotic, high probability bounds. The results presented in Section 3 are asymp-

totic in nature and concern moments of the reconstruction error. However, the main under-
lying technical result is an exponential deviation inequality which holds non-asymptotically.
For simplicity of the exposition we have chose to relegate this result to the Appendix
(Proposition 5.8 there). Clearly, this is thanks to such a deviation inequality that we are
able to handle moments of all orders of the error. Furthermore, while the asymptotics
considered in the previous section always assume that all parameters are fixed as n → ∞ ,
going back to the deviation inequality one could in principle analyze asymptotics of other
nonstandard regimes where some parameters are allowed to depend on n .

Adaptivity. For our results we have assumed that the crucial parameters b, r, R concern-
ing the eigenvalue decay of the operator Bν as well as the regularity of the target function
are known, and so is the noise variance σ ; these parameters are used in the choice of reg-
ulatizing constant λn . This is, of course, very unrealistic. Ideally, we would like to have a
procedure doing almost as good without knowledge of these parameters in advance – this
is the question of adaptivity. While this topic is outside of the scope of the present paper,
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in work in progress we study such an adaptive procedure based on Lepski’s principle for
the oracle selection of a suitable regularizing constant λ – this is again a situation where
an exponential deviation inequality is a particularly relevant tool.

Weak and strong lower bounds. The notion of strong and weak lower bounds introduced
in this work (corresponding respectively to a lim inf and lim sup in n) appear to be
new. They were motivated by the goal to consider somewhat minimal assumptions on the
eigenvalue behavior, i.e. only a one-sided power decay bound, to obtain lower minimax
bounds under source condition regularity. It turns out a one-sided power decay bound is the
main driver for minimax rates, but excluding arbitrarly abrupt relative variations µ2j/µj

appears to play a role in distinguishing the weak and strong versions. Such a condition is
also called one-sided regular variation, see [4] for extensive considerations on such issues.
We believe that this type of assumption can be relevant for the analysis of certain inverse
problems when the eigenvalues do not exhibit a two-sided power decay.

Smoothness and source conditions. In considering source conditions (2.5) in terms of the
operator Bν as measure of regularity of the target f , we have followed the general approach
adopted in previous works on statistical learning using kernels, itself inspired by the setting
considered in the (deterministic) inverse problem literature. It is well-established in the
latter literature that representing the target function in terms of powers of the operator to
be inverted is a very natural way to measure its regularity; it can be seen as a way to relate
noise and signal in a geometry that is appropriate for the considered ill-posed problem. In
our setting, one can however wonder why a measure of regularity of the target function
should depend on the sampling distribution ν . A high-level answer is that the sampling
can itself be seen as a source of noise (or uncertainty), and that it is natural that it enters
in the ill-posedness of the problem. For instance, regions in space with sparser sampling
will result in more uncertainty. On the other hand, if, say, the support of ν is contained
in a low-dimensional manifold, the problem becomes intrinsically lower-dimensional, being
understood that we must abandon any hope of estimating outside of the support, and
this should also be reflected in the measure of regularity. A more detailed analysis of
such issues, and relations to more common notions of regularity, is out of the scope of the
present work but certainly an interesting future perspective.

5. Proof of Upper Rate

We recall the shortcut notation B̄x := κ−2B
x
, S̄

x
:= κ−2S

x
and similarly define B̄ :=

κ−2B . Recall that we denote ‖A‖ the spectral norm of an operator A between Hilbert
spaces; additionally we will denote ‖A‖HS the Hilbert-Schmidt norm of A (assuming it is
well-defined).

All along the proof, we will use the notation Ca to denote a positive factor only depending
on the quantity a. The exact expression of this factor depends on the context and can
potentially change from line to line.
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5.1. Concentration Inequalities. We introduce the effective dimension N(λ), appearing
in [9] in a similar context. For λ ∈ (0, 1] we set

(5.1) N(λ) = tr( (B̄ + λ)−1B̄ ) .

Since by Proposition 2.5 the operator B is trace-class, N(λ) < ∞. Moreover, we have the
following estimate (see [9], Proposition 3):

Lemma 5.1. Assume that the marginal distribution ν of X belongs to P<(b, β) (with b > 1
and β > 0). Then the effective dimension N(λ) satisfies

N(λ) ≤ βb

b− 1
(κ2λ)−

1
b .

Furthermore, for λ ≤ ||B̄||, since B̄ is positive

N(λ) =
∑

µj≥κ2λ

µj

µj + κ2λ
+
∑

µj<κ2λ

µj

µj + κ2λ
≥ min

µj≥κ2λ

{
µj

µj + κ2λ

}
≥ 1

2
,

since the first sum has at least one term. The following propositions summarize important
concentration properties of the empirical quantities involved. The proofs are given in
Appendix A.

Proposition 5.2. For n ∈ N, λ ∈ (0, 1] and η ∈ (0, 1], it holds with probability at least
1− η :

∥∥(B̄ + λ)−
1
2

(
B̄

x
fρ − S̄⋆

x
y
) ∥∥

H1
≤ 2 log(2η−1)κ−1

(
M

n
√
λ
+

√
σ2N(λ)

n

)
.

Also, it holds with probability at least 1− η:

∥∥B̄
x
fρ − S̄⋆

x
y
∥∥
H1

≤ 2 log(2η−1)κ−1

(
M

n
+

√
σ2

n

)
.

Proposition 5.3. For any n ∈ N, λ ∈ (0, 1] and η ∈ (0, 1), it holds with probability at
least 1− η :

∥∥(B̄ + λ)−1(B̄ − B̄
x
)
∥∥
HS

≤ 2 log(2η−1)

(
2

nλ
+

√
N(λ)

nλ

)
.

Proposition 5.4. Let η ∈ (0, 1). Assume that λ ∈ (0, 1] satisfies

(5.2)
√
nλ ≥ 8 log(2η−1)

√
max(N(λ), 1) .

Then, with probability at least 1− η :

(5.3)
∥∥(B̄

x
+ λ)−1(B̄ + λ)

∥∥ ≤ 2 .

Proposition 5.5. For any n ∈ N and 0 < η < 1 it holds with probability at least 1− η :
∥∥B̄ − B̄

x

∥∥
HS

≤ 6 log(2η−1)
1√
n
.
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5.2. Some operator perturbation inequalities.

Proposition 5.6. Let B1, B2 be two non-negative self-adjoint operators on some Hilbert
space with ‖Bj‖ ≤ a, j = 1, 2, for some non-negative a.

(i) If 0 ≤ r ≤ 1, then

‖Br
1 − Br

2‖ ≤ Cr ‖B1 − B2‖r ,
for some Cr < ∞.

(ii) If r > 1, then

‖Br
1 −Br

2‖ ≤ Ca,r ‖B1 −B2‖ ,
for some Ca,r < ∞.

Proof. (i) Since t 7→ tr is operator monotone if r ∈ [0, 1], this result follows from
Theorem X.1.1 in [2] for positive matrices, but it the proof applies as well to positive
operators on a Hilbert space.

(ii) The proof follows from Proposition B.1 in Appendix B.
�

Proposition 5.7 ([2], Theorem IX.2.1-2). Let A,B be to self-adjoint, positive operators
on a Hilbert space. Then for any s ∈ [0, 1]:

(5.4) ‖AsBs‖ ≤ ‖AB‖s .
Note: this result is stated for positive matrices in [2], but it is easy to check that the

proof applies as well to positive operators on a Hilbert space.

5.3. Proof of Theorem 3.4. The following proposition is our main error bound and the
convergence rate will follow.

Proposition 5.8. Let s ∈ [0, 1
2
], r > 0, R > 0, M > 0 . Suppose fρ ∈ Ων(r, R) (defined in

(2.5)) . Let fλ
z
be defined as in (2.9) using a regularization function of qualification q ≥ r+s

and put γ̄ := max(γ0, γq) . Then, for any η ∈ (0, 1), λ ∈ (0, 1] and n ∈ N satisfying

(5.5) n ≥ 64λ−1max(N(λ), 1) log2 (8/η) ,

we have with probability at least 1− η:
(5.6)
∥∥Bs(fρ − fλ

z
)
∥∥
H1

≤ Cr,s,D,E log(8η−1)κ2sλs

(
γ̄κ2rR

(
λr +

1√
n

)
+ κ−1

(
M

nλ
+

√
σ2N(λ)

nλ

))
.

Proof. We start with a preliminary inequality. Assumption (5.5) implies that (5.2) holds
with η replaced by η/4 . We can therefore apply Proposition 5.4 and obtain that, with
probability at least 1 − η/4, inequality (5.3) holds. Combining this with (5.4), we get for
any u ∈ [0, 1]:
(5.7)∥∥B̄u(B̄

x
+ λ)−u

∥∥ =
∥∥B̄u(B̄ + λ)−u(B̄ + λ)u(B̄

x
+ λ)−u

∥∥ ≤
∥∥(B̄ + λ)(B̄

x
+ λ)−1

∥∥u ≤ 2.
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From this we deduce readily that, with probability at least 1− η/4, we have

(5.8)
∥∥Bs(fρ − fλ

z
)
∥∥
H1

≤ 2κ2s
∥∥(B̄

x
+ λ)s(fρ − fλ

z
)
∥∥
H1

.

We now consider the following decomposition

fρ − fλ
z
= fρ − gλ(B̄x

)S̄⋆
x
y

= (fρ − gλ(B̄x
)B̄

x
f) + gλ(B̄x

)(B̄
x
f − S̄⋆

x
y)

= rλ(B̄x
)f + gλ(B̄x

)(B̄
x
fρ − S̄⋆

x
y) ,(5.9)

where rλ is given by (2.8). We now upper bound
∥∥(B̄

x
+ λ)s(fρ − fλ

z
)
∥∥
H1

by treating

separately the two terms corresponding to the above decomposition.
Step 1: First term: since fρ ∈ Ων(r, R), we have

∥∥(B̄
x
+ λ)srλ(B̄x

)fρ
∥∥
H1

≤ κ2rR
∥∥(B̄

x
+ λ)srλ(B̄x

)B̄r
∥∥ .

We now concentrate on the operator norm appearing in the RHS of the above bound, and
distinguish between two cases. The first case is r ≥ 1, for which we write

(5.10) (B̄
x
+ λ)srλ(B̄x

)B̄r = (B̄
x
+ λ)srλ(B̄x

)B̄r
x
+ (B̄

x
+ λ)srλ(B̄x

)(B̄r − B̄r
x
).

The operator norm of the first term is estimated via
∥∥(B̄

x
+ λ)srλ(B̄x

)B̄r
x

∥∥ ≤ sup
t∈[0,1]

(t + λ)strrλ(t)

≤ sup
t∈[0,1]

ts+rrλ(t) + λs sup
t∈[0,1]

trrλ(t)

≤ 2γ̄λs+r,(5.11)

by applying (twice) Lemma 2.13 and the assumption that the qualification q of the regu-
larization is greater than r + s ; we also introduced γ̄ := max(γ0, γq) . The second term in
equation (5.10) is estimated via
∥∥(B̄

x
+ λ)srλ(B̄x

)(B̄r − B̄r
x
)
∥∥ ≤

∥∥(B̄
x
+ λ)srλ(B̄x

)
∥∥ ∥∥B̄r − B̄r

x

∥∥ ≤ 2γ̄Cr λ
s
∥∥B̄ − B̄

x

∥∥ .
For the first factor we have used the same device as previously for the first term based
on Lemma 2.13, and for the second factor we used Proposition 5.6 (ii). Finally using
Proposition 5.5 to upper bound

∥∥B̄ − B̄
x

∥∥, collecting the previous estimates we obtain
with probability at least 1− η/2:

(5.12)
∥∥(B̄

x
+ λ)srλ(B̄x

)fρ
∥∥
H1

≤ γ̄Crκ
2rR log

(
4η−1

)(
λr +

1√
n

)
λs .

We turn to the case r < 1, for which we want to establish a similar inequality. Instead of
(5.10) we use:

∥∥(B̄
x
+ λ)srλ(B̄x

)B̄r
∥∥ =

∥∥(B̄
x
+ λ)srλ(B̄x

)(B̄
x
+ λ)r(B̄

x
+ λ)−rB̄r

∥∥

≤ 2
∥∥(B̄

x
+ λ)r+srλ(B̄x

)
∥∥

≤ 8γ̄λr+s,
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where we have used the (transposed version of) inequality (5.7) (valid with probability at
least 1 − η/4); and, for the last inequality, an argument similar the one leading to (5.11)
(using this time that (t+ λ)r+s ≤ 2(tr+s + λr+s) for all t ≥ 0 since r+ s ≤ 2 in the case we
are considering). This implies a fortiori, that inequality (5.12) holds in the case r < 1 as
well (also with probability at least 1− η/2).

Step 2: Bound on
∥∥(B̄

x
+ λ)sgλ(B̄x

)(B̄
x
fρ − S̄⋆

x
y)
∥∥
H1
.

We further split by writing

(B̄
x
+ λ)sgλ(B̄x

)(B̄
x
fρ − S̄⋆

x
y) = H(1)

x
·H(2)

x
· hλ

z
(5.13)

with

H(1)
x

:= (B̄
x
+ λ)sgλ(B̄x

)(B̄
x
+ λ)

1
2 ,

H(2)
x

:= (B̄
x
+ λ)−

1
2 (B̄ + λ)

1
2 ,

hλ
z

:= (B̄ + λ)−
1
2 (B̄

x
fρ − S̄⋆

x
y)

and proceed by bounding each factor separately.
For the first term, we have (for any λ ∈ (0, 1] and x ∈ Xn), and remembering that

s ≤ 1/2:

∥∥ H(1)
x

∥∥ ≤ sup
t∈[0,1]

(t+ λ)s+
1
2gλ(t)

≤ λs+ 1
2 sup
t∈[0,1]

gλ(t) + sup
t∈[0,1]

∣∣∣ts+ 1
2gλ(t)

∣∣∣

≤ Eλs− 1
2 +

(
sup
t∈[0,1]

|tgλ(t)|
)s+ 1

2
(

sup
t∈[0,1]

|gλ(t)|
) 1

2
−s

≤ Eλs− 1
2 +Ds+ 1

2E
1
2
−sλs− 1

2 = Cs,D,Eλ
s− 1

2 ,(5.14)

where we have used Definition 2.11 (i), (ii).

The probabilistic bound on H
(2)
x follows from Proposition 5.4, which we can apply using

assumption (5.5), combined with Proposition 5.7. This ensures with probability at least
1− η/4

(5.15)
∥∥H(2)

x

∥∥ ≤ 2 .

Finally, the probabilistic bound on hλ
z
follows from Proposition 5.2: with probability at

least 1− η/4, we have

(5.16)
∥∥hλ

z

∥∥
H1

≤ 2 log(8η−1)κ−1

(
M

n
√
λ
+

√
σ2N(λ)

n

)
.
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As a result, combining (5.14), (5.15) and (5.16) with (5.13) gives with probability at
least 1− η/2

(5.17) ‖(B
x
+ λ)sgλ(Bx

)(B
x
f − S⋆

x
y)‖

H1
≤ Cs,D,E log(8η−1)κ−1λs

(
M

nλ
+

√
σ2N(λ)

nλ

)
,

We end the proof by collecting (5.8), (5.9), (5.12) and (5.17) and finally obtain bound
(5.6) holding with probability at least 1− η . �

Corollary 5.9. Let s ∈ [0, 1
2
], σ > 0,M > 0, r > 0, R > 0, β > 0, b > 1 and assume

the generating distribution of (X, Y ) belongs to M(r, R,P<(b, β)) (defined in Section 2.3) .
Let fλ

z
be the estimator defined as in (2.9) using a regularization function of qualification

q ≥ r + s and put γ̄ := max(γ0, γq) . Then, there exists n0 > 0 (depending on the above
parameters), so that for all n ≥ n0, if we set

(5.18) λn = min

((
σ

R
√
n

) 2b
2br+b+1

, 1

)
,

then with probability at least 1− η :

∥∥Bs(f − fλn
z
)
∥∥
H1

≤ Cr,s,b,β,γ,D,E,κ log(8η−1)R

(
σ

R
√
n

) 2b(r+s)
2br+b+1

,

provided log η−1 ≤ Cb,β,κ,σ,Rn
br

2br+b+1 .

Remark: In the above corollary, n0 can possibly depend on all parameters , but the
constant in front of the upper bound does not depend on R, σ, nor M . In this sense, this
result tracks precisely the effect of these important parameters on the scaling of the rate,
but remains asymptotic in nature: it cannot be applied if, say, R, σ of M also depend on n
(because the requirement n ≥ n0 might then lead to an impossiblity.) If some parameters
are allowed to change with n , one should go back to the nonasymptotic statement of
Theorem 5.8 for an analysis of the rates.

Proof. We check that the assumptions of Proposition 5.8 are satisfied provided n is big
enough. Concerning assumption (5.5), let us recall that by Lemma 5.1:

(5.19) N(λ) ≤ Cb,β,κλ
−1/b ,

for some Cb,β,κ > 0. Consequently, (5.5) is ensured by the sufficient condition

(5.20) n ≥ Cb,β,κ log
2(8η−1)λ− 1

b
−1 ⇐ log η−1 ≤ Cb,β,κ,σ,Rn

br
2br+b+1 .

Applying Proposition 5.8, Lemma 5.1 again, and folding the effect of the parameters we
do not intend to track precisely into a generic multiplicative constant, we obtain that with
probability 1− η:
(5.21)
∥∥Bs(fρ − fλ

z
)
∥∥
H1

≤ Cr,s,κ,γ̄,D,E,b,β log(8η−1)λs

(
R

(
λr +

1√
n

)
+

(
M

nλ
+

σ√
n
λ− b+1

2b

))
.
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Observe that the choice (5.18) implies that n− 1
2 = o(λr

n). Therefore, up to requiring n
large enough and multiplying the front factor by 2 , we can disregard the term 1/

√
n in

the second factor of the above bound. Similarly, by comparing the exponents in n, one can
readily check that

M

nλn

= o

(√
1

n
λ
− b+1

b
n

)
,

so that we can also disregard the term (nλn)
−1 for n large enough (again, up multiplying

the front factor by 2) and concentrate on the two remaining main terms of the upper bound

in (5.21), which are Rλr and σλ− b+1
2b n− 1

2 . The proposed choice of λn balances precisely
these two terms and easy computations lead to the announced conclusion. �

Proof of Theorem 3.4. We would like to “integrate” the bound of Corollary 5.9 over η to
obtain a bound in Lp norm (see Lemma C.1 in the Appendix), unfortunately the condition
on η prevents this since very large deviations are excluded. To alleviate this, we first derive
a much coarser “fallback” upper bound which will be valid for all η ∈ (0, 1). To this aim,
we revisit shortly the proof of Proposition 5.8 . We recall the decomposition (5.9)

Bs(fρ − fλ
z
) = Bs

(
rλ(B̄x

)f + gλ(B̄x
)(B̄

x
fρ − S̄⋆

x
y)
)
.

A rough bound on the first term using (2.8), and fρ ∈ Ω(r, R) is

(5.22)
∥∥Bsrλ(B̄x

)fρ
∥∥
H1

≤ γ0κ
2(r+s)R .

For the second term, using (2.7) and the second part or Proposition 5.2 , we obtain that
with probability at least 1− η ,
(5.23)
∥∥Bsgλ(B̄x

)(B̄
x
fρ − S̄⋆

x
y)
∥∥
H1

≤ 2κ2s−1 log(2η−1)
E

λ

(
M

n
+

√
σ2

n

)
≤ Cκ,E,M,σ

1

λ
√
n
log(2η−1) .

For the rest of this proof, to simplify notation and argument we will adopt the following
conventions:

• the dependence of multiplicative constants C on various parameters will (generally)
be omitted, except for σ,M,R, η and n which we want to track precisely .

• the expression “for n big enough” means that the statement holds for n ≥ n0 , with
n0 potentially depending on all model parameters (including σ,M and R), but not
on η .

From (5.22) and (5.23) , we conclude that

P

[ ∥∥Bs(fρ − fλ
z
)
∥∥
H1

≥ a′ + b′ log η−1
]
≤ η ,

for all η ∈ (0, 1) , with a′ := Cσ,M,R max
(

1
λ
√
n
, 1
)

and b′ :=
Cσ,M

λ
√
n
. On the other hand,

Corollary 3.6, ensured that

P

[∥∥Bs(fρ − f
λn,(σ,R)
z )

∥∥
H1

≥ a+ b log η−1
]
≤ η , for log η−1 ≤ log η−1

0 := Cσ,Rn
br

2br+b+1 ,
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with a = b := CR
(

σ
R
√
n

) 2b(r+s)
2br+b+1

= Can,(σ,R) , provided that n is big enough.

We can now apply Corollary C.2 in the appendix, which encapsulates some tedious
computations, to conclude that for any p ≤ 1

2
log η−1

0 , and n big enough:

E

[∥∥Bs(fρ − f
λn,(σ,R)
z )

∥∥p
H1

]
≤ Cp

(
apn,(σ,R) + η0

(
(a′)p + 2(b′ log η−1

0 )p
))

.

Now for fixed σ,M,R , and p , the quantities a′, b′ are powers of n , while η0 = exp(−Cσ,rn
νb,r)

for νb,r > 0 . The condition p ≤ 1
2
log η−1

0 is thus satisfied for n large enough and we have

lim sup
n→∞

sup
ρ∈Mσ,M,R

Eρ⊗n

[∥∥Bs(fρ − f
λn,(σ,R)
z )

∥∥p
H1

] 1
p

an,(σ,R)

≤ C ,

(where we reiterate that the constant C above may depend on all parameters including p ,
but not on σ,M nor R.). Therefore taking the supremum over (σ,M,R) yields the desired
conclusion. �

6. Proof of Lower Rate

Consider a model P = {Pθ : θ ∈ Θ} of probability measures on a measurable space
(Z,A) , indexed by Θ. Additionally, let d : Θ×Θ −→ [0,∞) be a (semi-) distance.

For two probability measures P1, P2 on some common measurable space (Z,A), we recall
the definition of the Kullback-Leibler divergence between P1 and P2

K(P1, P2) :=

∫

X

log

(
dP1

dP2

)
dP1 ,

if P1 is absolutely continuous with respect to P2. If P1 is not absolutely continuous with
respect to P2, then K(P1, P2) := ∞. One easily observes that

K(P⊗n
1 , P⊗n

2 ) = n K(P1, P2) .

In order to obtain minimax lower bounds we briefly recall the general reduction scheme,
presented in Chapter 2 of [29]. The main idea is to find Nε parameters θ1, ..., θNε ∈ Θ,
depending on ε < ε0 for some ε0 > 0 , with Nε → ∞ as ε → 0, such that any two of
these parameters are ε-separated with respect to the distance d, but that the associated
distributions Pθj =: Pj ∈ P have small Kullback-Leibler divergence to each other and are
therefore statistically close. It is then clear that

(6.1) inf
θ̂
sup
θ∈P

Eθ[d
p(θ̂, θ)]

1
p ≥ ε inf

θ̂
sup
θ∈P

Pθ[d(θ̂, θ) ≥ ε] ≥ ε inf
θ̂

max
1≤j≤Nε

Pj [d(θ̂, θj) ≥ ε] ,

where the infimum is taken over all estimators θ̂ of θ. The above RHS is then lower
bounded through the following proposition which is a consequence of Fano’s lemma, see
[29], Theorem 2.5:

Proposition 6.1. Assume that N ≥ 2 and suppose that Θ contains N+1 elements θ0, ..., θN
such that:

(i) For some ε > 0 , and for any 0 ≤ i < j ≤ N , d(θi, θj) ≥ 2ε ;
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(ii) For any j = 1, ..., N , Pj is absolutely continuous with respect to P0, and

(6.2)
1

N

N∑

j=1

K(Pj , P0) ≤ ω log(N) ,

for some 0 < ω < 1/8.

Then

inf
θ̂

max
1≤j≤N

Pj( d(θ̂, θj) ≥ ε ) ≥
√
N

1 +
√
N

(
1− 2ω −

√
2ω

log(N)

)
> 0 ,

where the infimum is taken over all estimators θ̂ of θ.

6.1. Proof of Theorem 3.5. We will apply the above general result to our target distance
ds : Ων(r, R)× Ων(r, R) −→ R+, given by

ds(f1, f2) = ‖Bs(f1 − f2)‖H1
,

with s ∈ [0, 1
2
] and ν ∈ P>(b, α) . We will establish the lower bounds in the particular

case where the distribution of Y given X is Gaussian with variance σ2 (which satisfies the
Bernstein moment condition (2.4) with M = σ) . The main effort is to construct a finite
subfamily belonging to the model of interest and suitably satisfying the assumptions of
Proposition 6.1; this is the goal of the forthcoming propositions and lemmata.

Proposition 6.2. Let ν ∈ P>(b, α), for b > 1, α > 0. Assume that r > 0, R > 0. To each
f ∈ Ων(r, R) and x ∈ X we associate the following measure:

(6.3) ρf (dx, dy) := ρf(dy|x)ν(dx) , where ρf (dy|x) := N(Af(x), σ2) .

Then:

(i) The measure ρf belongs to the class M(r, R,P>(b, α)), defined in (2.6).
(ii) Given f1, f2 ∈ Ων(r, R), the Kullback-Leibler divergence between ρ1 and ρ2 satisfies

K(ρ1, ρ2) =
1

2σ2

∥∥√B(f1 − f2)
∥∥2
H1

.

Proof. Point (i) follows directly from the definition of the class M(r, R,P>(b, α)) . For
point (ii), note that the Kullback-Leibler divergence between two Gaussian distributions
with identical variance σ2 and mean difference ∆ is ∆/2σ2 . Since ρ1, ρ2 have the same
X-marginal ν, it holds

K(ρ1, ρ2) = E[K(ρ1(.|X), ρ2(.|X))] =
1

2σ2

∫
(A(f1 − f2)(x))

2 dν(x)

=
1

2σ2
‖S(f1 − f2)‖2L2(ν) =

1

2σ2

∥∥√B(f1 − f2)
∥∥2
H1

.

�

The following lemma is a variant from [9], Proposition 6, which will be useful in the
subsequent proposition.
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Lemma 6.3. For any m ≥ 28 there exist an integer Nm > 3 and π1, ..., πNm ∈ {−1,+1}m
such that for any i, j ∈ {1, ..., Nm} with i 6= j it holds

(6.4) log(Nm − 1) >
m

36
>

2

3
,

and

(6.5)

m∑

l=1

(πl
i − πl

j)
2 ≥ m,

where πi = (π1
i , ..., π

m
i ).

Proposition 6.4. Assume ν ∈ P>(b, α) . Let 0 ≤ s ≤ 1/2, R > 0 and r > 0. For any
ε0 > 0 there exist ε ≤ ε0, Nε ∈ N and functions f1, ..., fNε ∈ H1 satisfying

(i) fi ∈ Ων(r, R) for any i = 1, ..., Nε and

‖ Bs(fi − fj) ‖2H1
> ε2 ,

for any i, j = 1, ..., Nε with i 6= j.
(ii) Let ρi := ρfi be given by (6.3). Then it holds

K(ρi, ρj) ≤ Cb,r,s R
2σ−2

( ε

R

) 2r+1
r+s

,

for any i, j = 1, ..., Nε with i 6= j .

(iii) log(Nε − 1) ≥ Cα,b,r,s

(
R
ε

) 1
b(r+s) .

If ν belongs to the subclass P>
strong(b, α), then the assertions from (i), (ii) and (iii) are

valid for all ε > 0 small enough (depending on the parameters r, R, s, α, b as well as j0, γ
coming from the choice of ν in P>

strong(b, α) ; the multiplicative constants in (ii), (iii) then
also depend on γ .)

Proof. We first prove the proposition under the stronger assumption that ν belongs to
P>
strong(b, α). We recall from (2.1) that we denote (el)l≥1 an orthonormal family of H1 of

eigenvectors of B corresponding to the eigenvalues (µl)l≥1 , which satisfy by definition of
P>
strong(b, α):

(6.6) ∀l ≥ 0 : µl ≥ αl−b

and

(6.7) ∀l ≥ l0 : µ2l ≥ 2−γµl ,

for some l0 ∈ N and for some γ > 0. For any given ε < R2−γ(r+s)
(

α1/b

max(28,l0)

)b(r+s)

we pick

m = m(ε) := max{ l ≥ 1 : µl ≥ 2γ(εR−1)
1

r+s }. Note that m ≥ max(28, l0), following
from the choice of ε and from (6.6).

Let Nm > 3 and π1, ..., πNm ∈ {−1,+1}m be given by Lemma 6.3 and define

(6.8) gi :=
ε√
m

2m∑

l=m+1

π
(l−m)
i

(
1

µl

)r+s

el .



26 GILLES BLANCHARD AND NICOLE MÜCKE

We have by (6.7) and from the definition of m

‖gi‖2H1
=

ε2

m

2m∑

l=m+1

(
1

µk

)2(r+s)

≤ ε2µ
−2(r+s)
2m ≤ ε222γ(r+s)µ−2(r+s)

m ≤ R2 .

For i = 1, ..., Nm let fi := Brgi ∈ Ων(r, R), with gi as in (6.8). Then

‖ Bs(fi − fj) ‖2H1
=
∥∥ Br+s(gi − gj)

∥∥2
H1

=
ε2

m

2m∑

l=m+1

(πl−m
i − πl−m

j )2
(

1

µl

)2(r+s)

µ
2(r+s)
l ≥ ε2 ,

by (6.5) , and the proof of (i) is finished. For i = 1, ..., Nε, let ρi = ρfi be defined by (6.3).
Then, using the definition of m, the Kullback-Leibler divergence satisfies

K(ρi, ρj) =
1

2σ2

∥∥√B(fi − fj)
∥∥2
H1

=
1

2σ2

∥∥Br+1/2(gi − gj)
∥∥2
H1

=
ε2

2σ2m

2m∑

l=m+1

(πl−m
i − πl−m

j )2
(

1

µl

)2(r+s)

µ2r+1
l

≤ 2σ−2µ1−2s
m+1ε

2

≤ 21+γ(1−2s) σ−2R2
( ε

R

) 1+2r
r+s

,

which shows (ii). Finally, (6.4), (6.6), (6.7) and the definition of m imply

log(Nm − 1) ≥ m

36
≥ α1/b

36
µ−1/b
m ≥ α1/b

36
2−γ/bµ

−1/b
2m ≥ α1/b

36
2−2γ/b

(
R

ε

) 1
b(r+s)

,

thus (iii) is established.
We now assume that ν belongs to P>(b, α) and only satisfies condition (6.6). Let any

ε0 > 0 be given. We pick m ∈ N satisfying m ≥ 28 and the two following conditions:

(6.9) µm ≤ 2b+1(R−1ε0)
1

r+s ,

(6.10)
µ2m

µm

≥ 2−b−1 .

Since the sequence of eigenvalues (µm) converges to 0, condition (6.9) must be satisfied for
any m big enough, say m ≥ m0(ε0). Subject to that condition, we argue by contradiction
that there must exist m satisfying (6.10). If that were not the case, we would have by
immediate recursion for any l > 0, introducing m′ := 2lm0(ε0):

µm′ < 2−l(b+1)µm0(ε0) =

(
m′

m0(ε0)

)−b−1

µm0(ε0) = Cε0(m
′)−(b+1) ,
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which would (eventually, for l big enough) contradict (6.6) . Therefore, there must exist
an m > m0 satisfying the required conditions. Now put

(6.11) ε := 2−(b+1)(r+s)Rµr+s
m ≤ ε0 ,

where the inequality is from requirement (6.9). For i = 1, ..., Nm, we define gi as in (6.8).
Then ||gi||H1 ≤ R. Again, let fi := Brgi ∈ Ων(r, R) and the same calculations as above
(with γ replaced by b+ 1) lead to (i), (ii) and (iii). �

Now we are in the position to prove the minimax lower rate.

Proof of Theorem 3.5. Let the parameters r, R, s, b, α, σ be fixed for the rest of the proof,
and the marginal distribution ν ∈ P>(b, α) also be fixed.

Our aim is to apply Proposition 6.1 to the distance ds(f1, f2) := ‖Bs(f1 − f2)‖H1
(s ∈

[0, 1
2
] ), on the class Θ := Ων(r, R) , where for any f ∈ Ων(r, R) , the associated distribution

is Pf := ρ⊗n
f with ρf defined as from Proposition 6.2 (i) ; more precisely, we will apply this

proposition along a well-chosen sequence (nk, εk)k≥0 . From Proposition 6.4 , we deduce
that there exists a decreasing null sequence (εk) > 0 such that for any ε belonging to
the sequence, there exists Nε and functions f1, ..., fNε satisfying (i)-(ii)-(iii). In the rest
of this proof, we assume ε = εk is a value belonging to the null sequence. Point (i) gives
requirement (i) of Proposition 6.1. We turn to requirement (6.2). Let ρj = ρfj be given by
(6.3). Then by Proposition 6.4 (ii)-(iii) :

1

Nε − 1

Nε−1∑

j=1

K(ρ⊗n
j , ρ⊗n

Nε
) =

n

Nε − 1

Nε−1∑

j=1

K(ρj , ρNε)

≤ nCb,r,s R
2σ−2

( ε

R

) 2r+1
r+s

≤ nCα,b,r,s R
2σ−2

( ε

R

) 2br+b+1
b(r+s)

log(Nε − 1)

=: ω log(Nε − 1) .

Choosing n :=

⌊(
8Cα,b,r,s R

2σ−2 (εR−1)
2br+2r+1
b(r+s)

)−1
⌋
ensures ω ≤ 1

8
and therefore require-

ment (6.2) is satisfied. Then Proposition 6.1 entails:

inf
f̂•

max
1≤j≤Nε

ρ⊗n
j

( ∥∥Bs(f̂• − fj)
∥∥
H1

≥ ε

2

)
≥

√
Nε − 1

1 +
√
Nε − 1

(
1− 2ω −

√
2ω

log (Nε − 1)

)

≥ 1

2

(
3

4
−
√

3

8

)

> 0 .
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This inequality holds for any (nk, εk) for εk in the decreasing null sequence and nk given
by the above formula; we deduce that nk → ∞ with

εk ≥ Cα,b,r,sR

(
σ

R
√
nk

) 2b(r+s)
2br+b+1

.

Thus, applying (6.1) and taking the limsup gives the result.

Now suppose that that ν belongs to P>
strong(b, α). Define ε := R(8Cα,b,r,s)

− b(r+s)
2br+b+1

(
σ2

R2n

) b(r+s)
2br+b+1

,

then for any n sufficiently large, points (i)-(ii)-(iii) of Proposition 6.4 will hold. The same
calculations as above now hold for any n large enough; finally taking the liminf finishes
the proof. �

Proof of Corollary 3.6. The main point is only to ensure that the strong minimax lower
bound applies, for this we simply check that P>

strong(b, α) ⊃ P′ = P<(b, β) ∩ P>(b, α) . For

any ν ∈ P<(b, β) ∩ P>(b, α) , the eigenvalues of the operator Bν satisfy αj−b ≤ µj ≤ βj−b

for all j ≥ 1 . It follows that for any j ≥ 1 :

µ2j

µj
≥ α

β
2−b ,

so that the conditions for ν ∈ P>
strong(b, α) are met (with parameters γ := b+log2

β
α
, l0 = 1).

Since P′ is assumed to be nonempty, for any ν ∈ P′ the strong lower minimax bound of
Theorem 3.5 applies to the family MR,M,σ := M(r, R, {ν}) and a fortiori to the family
MR,M,σ := M(r, R,P′) whose models are larger. On the other hand since M(r, R,P′) ⊂
M(r, R,P<(b, β)) the upper bound of Theorem 3.4 applies and we are done. �

Appendix A. Proof of Concentration Inequalities

Proposition A.1. Let (Z,B,P) be a probability space and ξ a random variable on Z with
values in a real separable Hilbert space H. Assume that there are two positive constants L
and σ such that for any m ≥ 2

(A.1) E
[
‖ξ − E[ξ]‖m

H1

]
≤ 1

2
m!σ2Lm−2.

If the sample z1, ..., zn is drawn i.i.d. from Z according to P, then, for any 0 < η < 1, with
probability greater than 1− η

(A.2)
∥∥∥ 1
n

n∑

j=1

ξ(zj)− E[ξ]
∥∥∥
H
≤ δ(n, η),

where

δ(n, η) := 2 log(2η−1)

(
L

n
+

σ√
n

)
.
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In particular, (A.1) holds if

‖ξ(z)‖
H1

≤ L

2
a.s. ,

E
[
‖ξ‖2

H1

]
≤ σ2.

Proof. See [7], from the original result of [24] (Corollary 1) . �

Proof of Proposition 5.2. Define ξ1 : X× R −→ H1 by

ξ1(x, y) := (B̄ + λ)−1/2κ−2(y −Af(x))Fx ,

abusing notation we also denote ξ1 the random variable ξ1(X, Y ) where (X, Y ) ∼ ρ . The
model assumption (2.3) implies

E[ξ1] = κ−2(B̄ + λ)−1/2

∫

X

Fx

∫

R

(y − Afρ(x)) ρ(dy|x)ν(dx)

= (B + λ)−1/2

∫

X

Fx(Afρ(x)−Afρ(x)) ν(dx)

= 0 ,

and therefore

1

n

n∑

j=1

ξ1(xj , yj)− E[ξ1] =
1

n

n∑

j=1

(B̄ + λ)−1/2κ−2(yj −Afρ(xj))Fxj

= (B̄ + λ)−1/2κ−2S⋆
x
(y − S

x
fρ) .

= (B̄ + λ)−1/2
(
S̄⋆
x
y − B̄

x
fρ
)
.

Moreover, by assumption (2.4) , for m ≥ 2:

E[ ‖ξ1‖mH1
] =

∫

X×R

∥∥κ−2(y −Afρ(x))(B̄ + λ)−1/2Fx

∥∥m
H1

ρ(dx, dy)

=

∫

X

κ−2m
∥∥(B̄ + λ)−1/2Fx

∥∥m
H1

∫

R

|y − Afρ(x)|m ρ(dy|x)ν(dx)

≤ 1

2
m!σ2Mm−2κ−2m sup

x∈X

∥∥(B̄ + λ)−1/2Fx

∥∥m−2

H1

∫

X

tr
(
(B̄ + λ)−1Fx ⊗ F ⋆

x

)
ν(dx)

≤ 1

2
m!κ−mσ2Mm−2λ−m−2

2 tr

(
(B̄ + λ)−1/2κ−2

∫

X

Fx ⊗ F ⋆
x ν(dx)

)

=
1

2
m!
(
κ−1σ

√
N(λ)

)2(κ−1M√
λ

)m−2

.

As a result, Proposition A.1 implies with probability at least 1− η
∥∥(B̄ + λ)−1/2(B̄

x
fρ − S̄⋆

x
y)
∥∥
H1

≤ δ1 (n, η) ,

where

δ1(n, η) = 2 log(2η−1)κ−1

(
M

n
√
λ
+

σ√
n

√
N(λ)

)
.
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For the second part of the proposition, we introduce similarly ξ′1(x, y) := κ−2(y−Af(x))Fx ,
which satisfies

E[ξ′1] = 0 ;
1

n

n∑

j=1

ξ′1(xj , yj)− E[ξ′1] = S̄⋆
x
y − B̄

x
fρ ,

and

E
[
‖ξ′1‖mH1

]
≤ κ−m

E
[
|y − Af(x)|m

]
≤ 1

2
m!
(
κ−1σ

)2 (
κ−1M

)m−2
.

Applying Proposition A.1 yields the result.
�

Proof of Proposition 5.3. We proceed as above by defining ξ2 : X −→ HS(H1) (the latter
denoting the space of Hilbert-Schmidt operators on H1) by

ξ2(x) := (B̄ + λ)−1κ−2Bx ,

where Bx := Fx ⊗ F ⋆
x . We also use the same notation ξ2 for the random variable ξ2(X)

with X ∼ ν . Then,

E[ξ2] = (B̄ + λ)−1κ−2

∫

X

Bx ν(dx) = (B̄ + λ)−1B̄ ,

and therefore
1

n

n∑

j=1

ξ2(xj)− E[ξ2] = (B̄ + λ)−1(B̄ − B̄
x
) .

Furthermore, since B̄x is of trace class and (B̄+λ)−1 is bounded, we have using Assumption
2.1

‖ξ2(x)‖HS ≤
∥∥(B̄ + λ)−1

∥∥κ−2 ‖Bx‖HS ≤ λ−1 =: L2/2 ,

uniformly for any x ∈ X. Moreover,

E
[
‖ξ2‖2HS

]
= κ−4

∫

X

tr
(
Bx(B̄ + λ)−2Bx

)
ν(dx)

≤
∥∥(B̄ + λ)−1

∥∥κ−4

∫

X

‖Bx‖ tr
(
(B̄ + λ)−1Bx

)
ν(dx)

≤ N(λ)

λ
=: σ2

2 .

Thus, Proposition A.1 applies and gives with probability at least 1− η
∥∥(B̄ + λ)−1(B̄ − B̄

x
)
∥∥
HS

≤ δ2(n, η)

with

δ2(n, η) = 2 log(2η−1)

(
2

nλ
+

√
N(λ)

nλ

)
.

�
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Proof of Proposition 5.4. We write the Neumann series identity

(B̄
x
+ λ)−1(B̄ + λ) = (I − S̄

x
(λ))−1 =

∞∑

j=0

S̄j
x
(λ) ,

with

S̄
x
(λ) = (B̄ + λ)−1(B̄ − B̄

x
) ;

it is well known that the series converges in norm provided that
∥∥S̄

x
(λ)
∥∥ < 1. In fact,

applying Proposition 5.3 gives with probability at least 1− η :

∥∥S̄
x
(λ)
∥∥ ≤ 2 log(2η−1)

(
2

nλ
+

√
N(λ)

nλ

)
.

Put Cη := 2 log(2η−1) > 1 for any η ∈ (0, 1) . Assumption (5.2) reads
√
nλ ≥ 4Cη

√
max(N(λ), 1) ,

implying
√
nλ ≥ 4Cη ≥ 4 and therefore 2

nλ
≤ 1

2
√
nλ

≤ 1
8Cη

, hence

Cη

(
2

nλ
+

√
N(λ)

nλ

)
≤ Cη

(
1

8Cη
+

1

4Cη

)
<

1

2
.

Thus, with probability at least 1− η:
∥∥(B̄

x
+ λ)−1(B̄ + λ)

∥∥ ≤ 2 .

�

Proof of Proposition 5.5. Defining ξ3 : X −→ HS(H1) by

ξ3(x) := κ−2Fx ⊗ F ⋆
x = κ−2Bx

and denoting also, as before, ξ3 for the random variable ξ3(X) (with X ∼ ν) , we have
E[ξ3] = B̄ and therefore

1

n

n∑

j=1

ξ3(xj)− E[ξ3] = (B̄
x
− B̄) .

Furthermore, by Assumption 2.1

‖ξ3(x)‖HS = κ−2 ‖Fx‖2 ≤ 1 =:
L3

2
a.s. ,

also leading to E[‖ξ2‖2HS] ≤ 1 =: σ2
3 . Thus, Proposition A.1 applies and gives with proba-

bility at least 1− η
∥∥B̄ − B̄

x

∥∥
HS

≤ 6 log(2η−1)
1√
n
.

�
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Appendix B. Perturbation Result

The estimate of the following proposition is crucial for proving the upper bound in case
the source condition is of Hölder type r with r > 1. We remark that for r > 1 the function
t 7→ tr is not operator monotone. One might naively expect estimate (B.1) to hold for
a constant C given by the Lipschitz-constant of the scalar function tr. As shown in [3],
this is false even for finite dimensional positive matrices. The point of Proposition B.1 is
that (B.1) still holds for some larger constant depending on r and the upper bound of the
spectrum. We do not expect this result to be particularly novel, but tracking down a proof
in the literature proved elusive, not to mention that occasionally erroneous statements
about related issues can be found. For this reason we here provide a self-contained proof
for completeness sake.

Proposition B.1. Let B1, B2 be two non-negative self-adjoint operators on some Hilbert
space with ||Bj|| ≤ a, j = 1, 2, for some a > 0. Assume the Bj belong to the Schatten class
Sp for 1 ≤ p ≤ ∞. If 1 < r, then

(B.1) ||Br
1 −Br

2||p ≤ Cra
r−1 ||B1 − B2||p ,

for some Cr < ∞. This inequality also holds in operator norm for non-compact bounded
(non-negative and self-adjoint) Bj.

Proof. We extend the proof of [14], given there in the case r = 3/2 in operator norm. We
also restrict ourselves to the case a = 1. On D := {z : |z| ≤ 1}, we consider the functions
f(z) = (1− z)r and g(z) = (1− z)r−1. The proof is based on the power series expansions

f(z) =
∞∑

n≥0

bnz
n and g(z) =

∞∑

n≥0

cnz
n ,

which converge absolutely on D. To ensure absolute convergence on the boundary |z| = 1,
notice that

cn =
1

n!
g(n)(0) =

(−1)n

n!

n∏

j=1

(r − j) ,

so that all coefficients cn for n ≥ r have the same sign s := (−1)⌊r⌋ (if r is an integer these
coefficients vanish without altering the argument below) implying for any N > r :

N∑

n=0

|cn| =
⌊r⌋∑

n=0

|cn|+ s

N∑

n=⌊r⌋+1

cn =

⌊r⌋∑

n=0

|cn|+ s lim
zր1

N∑

n=⌊r⌋+1

cnz
n

≤
⌊r⌋∑

n=0

|cn|+ s lim
zր1

(
g(z)−

⌊r⌋∑

n=0

cn

)

=2

⌊r/2⌋∑

i=0

|c⌊r⌋−2i| .
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A bound for
∑

n |bn| can be derived analogously. Since f(1−Bj) = Br
j , we obtain

‖Br
1 −Br

2‖p ≤
∞∑

n=0

|bn| ‖(I − B1)
n − (I − B2)

n‖p .

Using the algebraic identity T n+1−Sn+1 = T (T n−Sn)+(T−S)Sn , the triangle inequality
and making use of ‖TS‖p ≤ ‖T‖ ‖S‖p for S ∈ Sp, T bounded, the reader can easily convince
himself by induction that

• for j = 1, 2, Bj ∈ Sp imply (I −B1)
n − (I −B2)

n ∈ Sp and
• ‖(I − B1)

n − (I − B2)
n‖p ≤ n‖B1 − B2‖p.

From f ′(z) = −rg(z) we have the relation |bn| = r
n
|cn−1|, n ≥ 1. Collecting all pieces leads

to

‖Br
1 −Br

2‖p ≤ ‖B1 − B2‖p
∞∑

n=0

n|bn| = r‖B1 − B2‖p
∞∑

n=0

|cn| .

�

Appendix C. Auxiliary technical lemmata

Lemma C.1. Let X be a nonnegative real random variable such that the following holds:

(C.1) P[X > F (t)] ≤ t , for all t ∈ (0, 1] ,

where F is a monotone nonincreasing function (0, 1] → R+ . Then

E[X ] ≤
∫ 1

0

F (u)du .

Proof. An intuitive, non-rigorous proof is as follows. Let G be the tail distribution function
of X , then it is well known that E[X ] =

∫
R+

G . Now it seems clear that
∫
R+

G =
∫ 1

0
G−1 ,

where G−1 is the upper quantile function for X . Finally F is an upper bound on G−1 .
Now for a rigorous proof, we can assume without loss of generality that F is left contin-

uous: replacing F by its left limit in all points of (0, 1] can only make it larger since it is
nonincreasing, hence (C.1) is still satisfied, moreover since a monotone function has an at
most countable number of discontinuity points, this operation does not change the value
of the integral

∫ 1

0
F . Define the following pseudo-inverse for x ∈ R+ :

F †(x) := inf {t ∈ (0, 1] : F (t) < x} ,

with the convention inf ∅ = 1 . Denote Ũ := F †(X) . From the definition of F † and the
monotonicity of F it holds that F †(x) < t ⇒ x > F (t) for all (x, t) ∈ R+ × (0, 1] . Hence
for any t ∈ (0, 1]

P[Ũ < t] ≤ P[X > F (t)] ≤ t ,

implying that for all t ∈ [0, 1] , P[Ũ ≤ t] ≤ t , i.e. Ũ is stochastically larger than a
uniform variable on [0, 1]. Furthermore, by left continuity of F , one can readily check

that F (F †(x)) ≥ x if x ≤ F (0) . Since P[X > F (0)] = 0 , we can replace X by X̃ :=



34 GILLES BLANCHARD AND NICOLE MÜCKE

min(X,F (0)) without changing its distribution (nor that of Ũ). With this modification,

in then holds that F (Ũ) = F (F †(X̃)) ≥ X̃ . Hence

E[X ] = E[X̃ ] ≤ E[F (Ũ)] ≤ E[F (U)] =

∫ 1

0

F (u)du ,

where U is a uniform variable on [0, 1], and the second equality holds since F is nonin-
creasing. �

Corollary C.2. Let X be a nonnegative random variable and t0 ∈ (0, 1) such that the
following holds:

(C.2) P[X > a+ b log t−1] ≤ t , for all t ∈ (t0, 1] , and

(C.3) P[X > a′ + b′ log t−1] ≤ t , for all t ∈ (0, 1] ,

where a, b, a′, b′ are nonnegative numbers. Then for any p ≤ 1
2
log t−1

0 :

E[Xp] ≤ Cp

(
ap + bpΓ(p+ 1) + t0

(
(a′)p + 2(b′ log t−1

0 )p
))

,

with Cp := max(2p−1, 1) .

Proof. Let F (t) := 1{t ∈ (t0, 1]}(a + b log t−1) + 1{t ∈ (0, t0]}(a′ + b′ log t−1) . Then F is
nonnegative, nonincreasing on (0, 1] and

P[Xp > F p(t)] ≤ t

for all t ∈ (0, 1] . Applying Lemma C.1 , we find

(C.4) E[Xp] ≤
∫ t0

0

(a′ + b′ log t−1)pdt+

∫ 1

t0

(a + b log t−1)pdt .

Using (x+y)p−1 ≤ Cp(x
p−1+yp−1) for x, y ≥ 0 , where Cp = max(2p−1, 1) , we upper bound

the second integral in (C.4) via
∫ 1

t0

(a+ b log t−1)pdt ≤ Cp

(
ap + bp

∫ 1

0

(log t−1)pdt

)
= Cp (a

p + bpΓ(p+ 1)) .

Concerning the first integral in (C.4), we write similarly
∫ t0

0

(a′ + b′ log t−1)pdt ≤ Cp

(
t0(a

′)p + (b′)p
∫ t0

0

(log t−1)pdt

)

= Cp

(
t0(a

′)p + (b′)pΓ(p+ 1, log t−1
0 )
)
,

by the change of variable u = log t−1 , where Γ is the incomplete gamma function. We use
the following coarse bound: it can be checked that t 7→ tpe−

t
2 is decreasing for t ≥ 2p ,

hence, putting x := log t−1
0 ,

Γ(p, x) =

∫ ∞

x

tpe−tdt ≤ xpe−
x
2

∫ ∞

x

e−
t
2dt = 2xpe−x = 2t0(log t

−1
0 )p ,

provided x = log t−1
0 ≥ 2p . Collecting all the above pieces we get the conclusion. �
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