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Abstract For a large class of fully nonlinear parabolic equations, which in-
clude gradient flows for energy functionals that depend on the solution gra-
dient, the semidiscretization in time by implicit Runge–Kutta methods such
as the Radau IIA methods of arbitrary order is studied. Error bounds are
obtained in the W 1,∞ norm uniformly on bounded time intervals and, with
an improved approximation order, in the parabolic energy norm. The proofs
rely on discrete maximal parabolic regularity. This is used to obtain W 1,∞

estimates, which are the key to the numerical analysis of these problems.
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1 Introduction

This paper is concerned with the stability and error analysis of implicit Runge–
Kutta time discretizations of nonlinear parabolic initial-boundary value prob-
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lems for u = u(x, t),

∂u

∂t
= ∇ · f(∇u, u), x ∈ Ω, 0 < t ≤ T, (1.1)

on a given bounded smooth domain Ω ⊂ Rd of arbitrary dimension d ≥ 1
and for a given final time T > 0, taken with homogeneous Dirichlet boundary
conditions u = 0 on ∂Ω × [0, T ] and with given initial data u(·, 0) = u0 on Ω.

The flux function f : Rd × R → Rd is assumed to be a smooth function
satisfying a local ellipticity condition: for every (p, u) ∈ Rd × R, the matrix

∂pf(p, u) ∈ Rd×d has a positive definite symmetric part. (1.2)

We do not require uniform ellipticity with respect to all (p, u) ∈ Rd×R: some
eigenvalues of the symmetric part 1

2 (∂pf(p, u) + ∂pf(p, u)T ) may tend to 0 or
+∞ as |(p, u)| → ∞.

We will, however, assume that the initial-boundary value problem admits
a sufficiently regular solution, and we ask for stability and rates of convergence
of numerical discretizations in this case.

For a solution to the initial-boundary value problem that is bounded in
W 1,∞(Ω) (that is, both the solution and its gradient are bounded with respect
to the maximum norm), we have uniform ellipticity along the exact solution
by compactness in the finite-dimensional space Rd ×R, but it is by no means
obvious that also the numerical approximation stays bounded in W 1,∞(Ω)
uniformly in the discretization parameters. Establishing such W 1,∞ bounds
for the numerical discretization is a main difficulty for this problem.

The problem (1.1) occurs in many applications, such as the following where
actually f(p, u) = f(p) does not depend on u:

– minimal surface flow [28,34] and the regularized models of total variation
flow [10,11,25], where

f(p) =
p√

λ2 + |p|2
.

– More generally, with f(p) = ∇pF (p) for a smooth convex function F :
Rd → R, (1.1) appears as the L2(Ω) gradient flow,

(∂tu, v)L2(Ω) = −E′(u)v for all v in a dense subspace of H1
0 (Ω),

for the energy functional E(u) =
∫
Ω
F (∇u)dx; see, e.g., [9, Section 9.6.3].

The problem (1.1) also includes quasilinear equations, where f(p, u) = A(u)p
with a positive definite matrix A(u), which may degenerate as |u| → ∞.

Due to the strong nonlinearity of the equation, existing works on error
estimates of the time discretization of (1.1) are very limited. Feng and Prohl
[11] have proved optimal-order convergence rate of the finite element solution
of the regularized total variation flow with an implicit Euler scheme, under the
time step size restriction τ = o(h2), which was used to control the numerical
solution in the W 1,∞ norm via the inverse inequality. Convergence of the nu-
merical solution was proved in [10] without time step size restriction, without
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explicit convergence rate. By using the methodology of [24], Li and Sun pre-
sented optimal-order L2-norm error estimates for the finite element solution of
the minimal surface flow with a linearized semi-implicit Euler scheme, without
restriction on the time step size [25]. Since their proof is based on the L2-norm
error estimate, they have assumed that the order of finite elements are greater
than one in order to control the W 1,∞ norm of the numerical solution via the
inverse inequality.

Existing works on the problem are all restricted to implicit Euler time
discretization, with the only exception of the paper by Ostermann and Thal-
hammer [32], where convergence properties of implicit Runge–Kutta semidis-
cretizations for a class of fully nonlinear parabolic equations are analyzed in
weighted Hölder spaces. While this is a very remarkable work, it is not ob-
vious that it applies to the class of problems considered here (especially in
higher dimensions), and even less so to full discretizations with finite element
approximations in space.

In this paper we study semidiscretization of (1.1) in time by implicit
Runge–Kutta methods such as the collocation methods based on the Radau
nodes, which have excellent stability properties, allow for arbitrarily high order
and can be implemented efficiently [15, Chapter IV]. To emphasize the basic
techniques and to keep the paper at a reasonable length, we do not include
the effect of space discretization by finite elements in our stability and error
analysis. We note, however, that in considering only time discretization we
cannot use inverse estimates, which are often convenient, but are restricted
to quasi-uniform meshes and moreover lead to restrictions as indicated in the
previous paragraph. It is thus of interest to develop techniques that do not rely
on inverse estimates. Our results are new even for the case of the backward
Euler time discretization. This paper may provide a foundation for further
analysis of fully discrete approximations of the problem.

In Section 2 we describe the temporal semidiscretization by implicit Runge–
Kutta methods and present our main results, which are error bounds in the
W 1,∞ norm and, with a higher approximation order, in the energy norm. The
proof of these results forms the remainder of the paper.

Section 3 presents a sequence of auxiliary results related to maximal Lp

regularity, which is the basic technique for obtaining our stability and error
bounds. Discrete maximal Lp regularity was shown for the backward Euler
method by Ashyralyev, Piskarev & Weis [4], for higher-order A-stable (and
A(α)-stable) multistep and Runge–Kutta time discretizations by Kovács, Li
& Lubich [18], and for the θ-scheme by Kemmochi [16] and Kemmochi & Saito
[17]. Discrete maximal Lp regularity up to a factor logarithmic in the step
size was given by Leykekhman & Vexler [21] for discontinuous Galerkin time
discretizations. The above-mentioned results relate to linear problems. Discrete
maximal Lp regularity was applied to the error analysis of time discretizations
of reaction-diffusion equations in [18], of Ginzburg-Landau equations in [22],
and of quasilinear parabolic equations in [2]. Discrete maximal Lp regularity of
semidiscrete finite element solutions of parabolic equations was investigated in
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[12,23,27], with applications to semilinear and quasilinear parabolic equations
in [13,26].

The proof of the error bound in the W 1,∞ norm is given in Section 4, that
of the improved error bound in the energy norm in Section 5.

2 Runge–Kutta time discretization and statement of the main
results

We consider the time discretization of (1.1) with constant step size τ > 0 (this
could be relaxed to a fixed number of changes of the step size) by an implicit
Runge-Kutta method with properties that are, in particular, satisfied by the
s-stage Radau IIA method [15, Section IV.5], which is the collocation method
at the Radau nodes (with right-most node cs = 1) and can also be viewed as
a fully discretized discontinuous Galerkin method in time [3]. We require the
following properties (cf. [15, Section IV.3] for these notions):

The Runge–Kutta method is A-stable,
it has an invertible coefficient matrix (aij)

s
i,j=1 (2.1)

and its weights satisfy bj = asj (j = 1, . . . , s).

We let tn = nτ for n ≥ 0 (as long as tn does not exceed the final time T ) and
set tn,i = tn + ciτ , where ci =

∑s
j=1 aij are the nodes of the Runge–Kutta

method, with cs = 1 so that tn+1 = tn,s.
We denote by un,i (i = 1, . . . , s) the internal stages and by un the solution

approximation at the grid point tn. The last condition in (2.1) ensures that

un+1 = un,s. (2.2)

The time discretization of (1.1) is then determined by the equations

un,i = un + τ

s∑
j=1

aij∇ · f(∇un,j , un,j) (i = 1, . . . , s) (2.3)

together with the Dirichlet boundary conditions un,i = 0 on ∂Ω. These equa-
tions are to be solved subsequently for n = 0, 1, 2, . . .

Remark 2.1 Further finite element discretization of (2.3) can be done in the
following way: find uhn,i in the finite element space Sh such that

(uhn,i, vh) = (uhn, vh)− τ
s∑
j=1

aij

(
f(∇uhn,j , uhn,j),∇vh

)
∀ vh ∈ Sh,

and uhn+1 = uhn,s. For the efficient implementation of the fully discrete Runge–
Kutta equations, using systems of linear equations of just the dimension of Sh,
we refer to [15, Section IV.8]. In this paper, we focus on the time discretization
(2.3).
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We recall the notion of stage order, cf. [15, p. 226]: The Runge–Kutta
method has stage order k if for each i = 1, . . . , s,

s∑
j=1

aijc
l−1
j =

cli
l
, l = 1, . . . , k. (2.4)

In particular, the stage order of the s-stage Radau IIA method (as of any
collocation method with polynomials of degree s) is k = s.

The stage order determines to what order the internal stages un,i approx-
imate the exact solution values u(tn,i), and to what order the derivative ap-
proximations

u̇n,j := ∇ · f(∇un,j , un,j), j = 1, . . . , s, (2.5)

approximate the exact solution derivatives ∂tu(tn,j), provided the solution is
sufficiently regular in time.

To simplify the notation, we define the following vectors:

un := (un,i)
s
i=1, u̇n := (u̇n,i)

s
i=1, (2.6)

u(tn) := (u(tn,i))
s
i=1, tn := (tn,i)

s
i=1. (2.7)

We can now state our first main result, which in particular controls the
W 1,∞(Ω) norm of the internal stages uniformly over the bounded time interval.

Theorem 2.1 Consider a Runge–Kutta method of stage order k that satisfies
(2.1), such as the Radau IIA method with s = k stages. Assuming that the
solution u of (1.1) is sufficiently regular, i.e.,

u ∈ Ck+1
(
[0, T ];Lq(Ω)

)
∩ C

(
[0, T ];W 2,q(Ω)

)
, for some q > d, (2.8)

there exists a positive constant τ̄ (depending on f , T , ‖u‖Ck+1([0,T ];Lq(Ω)) and
‖u‖C([0,T ];W 2,q(Ω))) such that for 0 < τ < τ̄ the discrete problem (2.3) admits
a unique solution that satisfies

max
0≤n≤N

(
‖un − u(tn)‖L∞(Ω)s + ‖∇un −∇u(tn)‖L∞(Ω)ds

)
≤ Cτk,

(2.9a)( N∑
n=0

τ‖u̇n − ∂tu(tn)‖pLq(Ω)s +

N∑
n=0

τ‖un − u(tn)‖pW 2,q(Ω)s

) 1
p

≤ Cp,qτk,

(2.9b)

for all 1 < p <∞.

The constants C and Cp,q are independent of τ and N with Nτ ≤ T .
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The proof of Theorem 2.1 is based on discrete maximal parabolic regularity
and will be presented in Section 4. For simplicity, we carry out the proof for the
special case f(∇u, u) = f(∇u). The proof for the general case is similar but
contains additional lower order terms, which do not pose substantial difficulties
in the analysis but clutter the formulas.

Using Theorem 2.1 together with energy estimates, the order of approxi-
mation can be improved to k+1 in the energy norm provided that the Runge-
Kutta method satisfies the following two extra conditions:

- The method is algebraically stable, that is,

the weights bi are all positive and
the s× s matrix with entries biaij + bjaji − bibj is positive semidefinite.

(2.10)
- The quadrature formula with weights bi and nodes ci has at least order

k + 1:
s∑
i=1

bic
l−1
i =

1

l
, l = 1, . . . , k + 1. (2.11)

This is satisfied for the Radau IIA methods with s ≥ 2 stages since they satisfy
equations (2.11) for l ≤ 2s − 1 and are algebraically stable; see [15, Section
IV.12]. We will prove the following result in Section 5.

Theorem 2.2 Consider a Runge–Kutta method of stage order k that satisfies
(2.1), (2.10) and (2.11), such as the Radau IIA method with s = k ≥ 2 stages.
Assume that the solution u of (1.1) is sufficiently regular, i.e., satisfies (2.8)
and

u ∈ Hk+1
(
0, T ;H1

0 (Ω)
)
∩Hk+2

(
0, T ;H−1(Ω)

)
. (2.12)

Then, for 0 < τ < τ̄ (with τ̄ from Theorem 2.1) the solution of the discrete
problem (2.3) satisfies

max
1≤n≤N

‖un − u(tn)‖L2(Ω) +

( N∑
n=0

τ‖∇un −∇u(tn)‖2L2(Ω)ds

) 1
2

≤ C2τ
k+1.

(2.13)

The constant C2 is independent of τ and N with Nτ ≤ T .

3 Auxiliary results related to maximal Lp regularity

The key to the error bounds of Theorems 2.1 and 2.2 is to control the W 1,∞(Ω)
norm of the numerical solution. In this paper, this is done using the space-
time Sobolev inequality, for 2/p + d/q < 1 and v ∈ W 1,p(0, T ;Lq(Ω)) ∩
Lp(0, T ;W 2,q(Ω)) such that v(0) = 0,

‖v‖L∞(0,T ;W 1,∞(Ω)) ≤ cp,q(‖∂tv‖Lp(0,T ;Lq(Ω)) + ‖v‖Lp(0,T ;W 2,q(Ω))) (3.1)
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with a constant cp,q that is independent of T , together with the observation
that the norm on the right-hand side is what is controlled by maximal Lp regu-
larity for the solution of a linear parabolic problem with a second-order elliptic
differential operator. Maximal Lp regularity is characterized by Weis [35] in
terms of the R-boundedness of the resolvent on a sector, a property that also
yields discrete maximal `p regularity for the Runge–Kutta time discretization
uniformly in the step size [18]. In this section we present some results from
this range of ideas and techniques. These results follow by suitably combining
various results scattered in the literature. They will be important in the proof
of Theorem 2.1 and are also of independent interest.

3.1 A Sobolev embedding

Lemma 3.1 If 2/p+ d/q < 1, then the following embeddings hold:

W 1,p(R+;Lq(Ω)) ∩ Lp(R+;W 2,q(Ω)) ↪→ L∞(R+;W 1,∞(Ω)), (3.2)

W 1,p(0, T ;Lq(Ω)) ∩ Lp(0, T ;W 2,q(Ω)) ↪→ L∞(0, T ;W 1,∞(Ω)), (3.3)

where the second embedding is compact.

Remark 3.1 The first embedding in Lemma 3.1 implies the bound (3.1) with
cp,q independent of T , for all v ∈ W 1,p(0, T ;Lq(Ω)) ∩ Lp(0, T ;W 2,q(Ω)) such
that v(0) = 0 (one can extend v to W 1,p(R+;Lq(Ω)) ∩ Lp(R+;W 2,q(Ω)) by
reflection on [T, 2T ] and zero extension on [2T,∞)).

Proof Via Sobolev embedding, we have

W 1,p(R+;Lq(Ω)) ∩ Lp(R+;W 2,q(Ω))

↪→ L∞(R+; (Lq(Ω),W 2,q(Ω))1−1/p,p) see [31, Proposition 1.2.10]

= L∞(R+;B2−2/p;q,p(Ω)) by the definition of Besov spaces [1, §7.32].
(3.4)

Hence, W 1,p(R+;Lq(Ω))∩Lp(R+;W 2,q(Ω)) is continuously embedded into the
following space:

X := {u ∈ L∞(R+;B2−2/p;q,p(Ω)) : ∂tu ∈ Lp(R+;Lq(Ω))}. (3.5)

If 2/p+d/q < 1, then there exists a small ε > 0 such that 2/p+ε+d/q < 1, and
so [1, Theorem 7.34] implies that B2−2/p−ε;q,p(Ω) is continuously embedded
into W 1,∞(Ω). This proves the first embedding in Lemma 3.1.

For any fixed T , the functions in W 1,p(0, T ;Lq(Ω))∩Lp(0, T ;W 2,q(Ω)) can
be boundedly extended to W 1,p(R+;Lq(Ω))∩Lp(R+;W 2,q(Ω)) (via reflection
on [T, 2T ], multiplied by a smooth cut-off function χ(t) such that χ(t) = 1
for t ∈ [0, T ] and χ = 0 for t ≥ 2T ). Consequently, the second embedding in
Lemma 3.1 is a consequence of the first embedding. The compactness of the
second embedding can be seen as follows.
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Since W 2,q(Ω) is compactly embedded into W 1,∞(Ω) (cf. [1, Theorem 6.3])
and

B2−2/p;q,p(Ω) = (B2−2/p−ε;q,p(Ω),W 2;q(Ω))θ,p, with θ =
ε

2/p+ ε
,

the Lions–Peetre theorem ([29, Chapter V, Theorem 2.2], see also [7]) im-
plies that B2−2/p;q,p(Ω) is also compactly embedded into W 1,∞(Ω). Since
B2−2/p;q,p(Ω) is compactly embedded into W 1,∞(Ω) and W 1,∞(Ω) is con-
tinuously embedded into Lq(Ω), the Aubin–Lions–Simon lemma [5, Theorem
II.5.16] implies that X is compactly embedded into L∞(0, T ;W 1,∞(Ω)). �

3.2 An R-boundedness result

We begin by recalling the notion of R-boundedness on Lq-spaces; see [20, for-
mula (2.7)]. A collection T of operators on Lq(Ω) is R-bounded if and only if
there is a constant CR, called an R-bound of T , such that any finite subcol-
lection of operators T1, . . . , Tl ∈ T satisfies∥∥∥∥( l∑

j=1

|Tjvj |2
) 1

2
∥∥∥∥
Lq(Ω)

≤ CR
∥∥∥∥( l∑

j=1

|vj |2
) 1

2
∥∥∥∥
Lq(Ω)

, ∀ v1, v2, ..., vl ∈ Lq(Ω).

We will need the following result.

Lemma 3.2 Let the elliptic operator A : W 2,q(Ω) ∩W 1,q
0 (Ω) → Lq(Ω) with

1 < q <∞ be defined by

Aϕ =

d∑
i,j=1

αij∂i∂jϕ, (3.6)

where the coefficient functions αij : Ω → R (i, j = 1, . . . , d) (which can be
assumed symmetric: αij = αji) satisfy the following assumptions for some
positive constants K and κ:

(A1) The coefficients are bounded in a Hölder norm (with exponent µ > 0):

‖αij‖Cµ(Ω) ≤ K ;

(A2) The symmetric coefficient matrix (αij) satisfies the uniform ellipticity
condition

d∑
i,j=1

αij(x)ξiξj ≥ κ
d∑
j=1

ξ2
j ∀x ∈ Ω, ∀ ξ = (ξj) ∈ Cd . (3.7)

Then, the collection of operators {z(z − A)−1 : | arg z| < θ} is R-bounded on
Lq(Ω) for some θ ∈ (π/2, π). Both the R-bound and the angle θ depend only
on µ, K, κ, Ω and q.
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Proof We argue by compactnesss. Fix K, µ, κ, q ∈ (d,∞), and an angle
θ ∈ (π/2, π). We denote by M the set of all symmetric coefficient matrices
(αij) on Ω satisfying conditions (A1) and (A2). Clearly, M is convex and
closed in ‖ · ‖Cµ(Ω) but also in the sup norm on Ω. By the Arzela-Ascoli
theorem, M is compact in sup norm.

For any coefficient matrix (αij) ∈ M , the corresponding operator A gen-
erates an analytic semigroup by [31, Subsection 3.1.1]. This semigroup is pos-
itive, so max Reσ(A) is an eigenvalue. By [14, Theorem 9.15] the half line
[0,∞) belongs to the resolvent set of A. Thus A is invertible and generates
a bounded analytic semigroup. Moreover, for some θA ∈ (π/2, π), the set
{z(z − A)−1 : | arg z| < θA} is R-bounded with R-bound R(A) (see [33], [19,
Theorem 1.1] or [20, 7.18]).

If (α̃ij) ∈ M is another coefficient matrix with corresponding operator Ã,
then

‖(Ã−A)u‖Lq(Ω) ≤ max
ij
‖α̃ij − αij‖L∞(Ω)‖u‖W 2,q(Ω)

≤ CA max
ij
‖α̃ij − αij‖L∞(Ω)‖Au‖Lq(Ω)

since A is invertible and D(A) = D(Ã) = W 2,q(Ω) ∩W 1,q
0 (Ω), note that CA

depends on A. By the perturbation theorem for R-sectorial operators ([20,
Theorem 6.5]) we find ηA > 0 such that (α̃ij) ∈M , ‖α̃ij−αij‖∞ < ηA implies

that for the operator Ã corresponding to (α̃ij) the set {z(z − Ã)−1 : | arg z| <
θA} is R-bounded with R-bound ≤ 2R(A). By compactness of M we thus find
finitely many matrices (αlij) with corresponding operators Al, l ∈ F , such that
for each coefficient matrix (αij) ∈ M with corresponding operator A there is
l ∈ F with ‖αij −αlij‖∞ < ηAl . We conclude that, for θ := minl∈F θAl , the set

{z(z −A)−1 : | arg | < θ} is R-bounded with R-bound ≤ 2 maxl∈F R(Al). �

3.3 Maximal Lp regularity

Lemma 3.3 Under the conditions of Lemma 3.2, the operator A has maximal
Lp regularity for 1 < p < ∞: for every f ∈ Lp(0, T ;Lq(Ω)) (with arbitrary
T > 0), the solution u of the linear parabolic problem

∂u

∂t
−Au = f in Ω,

u = 0 on ∂Ω,

(3.8)

with zero initial values is bounded by

‖∂tu‖Lp(0,T ;Lq(Ω)) + ‖u‖Lp(0,T ;W 2,q(Ω)) ≤ Cp,q‖f‖Lp(0,T ;Lq(Ω)), (3.9)

where the constant Cp,q depends only on µ, K, κ, Ω and p and q.
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Proof By Lemma 3.2, the operator-valued Mikhlin multiplier theorem used
in Weis’ characterization of maximal Lp regularity [35, Theorem 4.2] yields
the maximal Lp regularity

‖∂tu‖Lp(0,T ;Lq(Ω)) + ‖Au‖Lp(0,T ;Lq(Ω)) ≤ Cp,q‖f‖Lp(0,T ;Lq(Ω)),

where Cp,q depends only on p, q and the R-bound of Lemma 3.2.
Since αij ∈ Cµ(Ω), [6, Theorem 6.1 of Chapter 3] implies that the elliptic

operator A : W 2,q(Ω) ∩W 1,q
0 (Ω)→ Lq(Ω) is invertible and

‖u‖W 2,q(Ω) ≤ Cq‖Au‖Lq(Ω), (3.10)

where Cq depends only on K, κ, Ω and q. This yields the result. �

3.4 Discrete maximal `p regularity for Runge–Kutta methods

As is shown in [18, Theorem 5.1], A-stable Runge–Kutta methods with an
invertible coefficient matrix preserve maximal Lp regularity, uniformly in the
step size. Before we formulate the Runge–Kutta analog of Lemma 3.3, we need
to introduce further notation.

For any Banach space X and any sequence (vn)Nn=1 with entries in X we
denote, for a given step size τ > 0,

∥∥(vn)Nn=1

∥∥
Lp(X)

:=
( N∑
n=1

τ‖vn‖pX
)1/p

,

which is the Lp(0, Nτ ;X) norm of the piecewise constant function that equals
vn on the time interval (tn−1, tn]. We use the same notation also for sequences
(vn)Nn=0, replacing n = 1 by n = 0 in the sum.

Considering the piecewise linear interpolant of a sequence (vn)Nn=1 inW 2,q(Ω)
and the starting value v0 = 0, the inequality (3.1) gives, for 2/p+ d/q < 1,

‖(vn)Nn=1‖L∞(W 1,∞(Ω))

≤ cp,q

(∥∥∥∥(vn − vn−1

τ

)N
n=1

∥∥∥∥
Lp(Lq(Ω))

+ ‖(vn)Nn=1‖Lp(W 2,q(Ω))

)
.

(3.11)

We now consider the Runge–Kutte time discretization of the linear parabolic
problem (3.8) with step size τ ,

un,i = un + τ

s∑
j=1

aij
(
Aun,j + fn,j

)
(i = 1, . . . , s), (3.12)

and un+1 = un,s for a Runge–Kutta method with (2.1). We use again the
vector notation of (2.6), un = (un,i)

s
i=1 and fn = (fn,i)

s
i=1. We then have the

following time-discrete analog of Lemma 3.3.
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Lemma 3.4 Consider a Runge–Kutta method that satisfies (2.1), such as the
s-stage Radau IIA method. Under the conditions of Lemma 3.2, there is dis-
crete maximal Lp regularity for 1 < p < ∞ uniformly in the step size τ > 0:
for every sequence (fn)Nn=0 with entries in Lq(Ω)s (with arbitrary N ≥ 1), the
numerical solution defined by (3.12) with zero initial value u0 = 0 satisfies the
bound, with u−1 = 0,∥∥∥∥(un − un−1

τ

)N
n=0

∥∥∥∥
Lp(Lq(Ω)s)

+
∥∥(un)Nn=0

∥∥
Lp(W 2,q(Ω)s)

≤ Cp,q
∥∥(fn)Nn=0

∥∥
Lp(Lq(Ω)s)

, (3.13)

where the constant Cp,q depends only on K, κ, Ω and p and q. In particular,
Cp,q is independent of N and τ .

Proof In view of Lemma 3.2, [18, Theorem 5.1] gives the bound, with u̇n =
(u̇n,j)

s
j=1 for u̇n,j = Aun,j + fn,j ,

‖(u̇n)Nn=0‖Lp(Lq(Ω)s) + ‖(Aun)Nn=0‖Lp(Lq(Ω)s) ≤ C̃p,q
∥∥(fn)Nn=0

∥∥
Lp(Lq(Ω)s)

,

where C̃p,q depends only on p, q and the R-bound of Lemma 3.2.

For the second term on the left-hand side we recall (3.10). For the first
term we note that (3.12) yields∥∥∥∥(un,i − unτ

)s
i=1

∥∥∥∥
Lq(Ω)s

≤ γ
∥∥(u̇n,j)sj=1

∥∥
Lq(Ω)s

,

where γ is the norm of the Runge–Kutta coefficient matrix (aij). Writing

un,i − un−1,i = (un,i − un) + (un − un−1)− (un−1,i − un−1)

and noting that un−un−1 = un−1,s−un−1, we find that the above inequality
(for n and n− 1) yields∥∥∥∥un − un−1

τ

∥∥∥∥
Lq(Ω)s

≤ γ
∥∥(u̇n,j)sj=1

∥∥
Lq(Ω)s

+ 2γ
∥∥(u̇n−1,j

)s
j=1

∥∥
Lq(Ω)s

,

which completes the proof of the result. �

Combining Lemma 3.4 and (3.11), we thus obtain the bound∥∥(un)Nn=0

∥∥
L∞(W 1,∞(Ω)s)

≤ Ĉp,q
∥∥(fn)Nn=0

∥∥
Lp(Lq(Ω)s)

, (3.14)

with Ĉp,q = cp,qCp,q. This W 1,∞ bound of the numerical solution is the key
to proving Theorem 2.1.
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3.5 Nonautonomous linear parabolic problems

Let the time-dependent elliptic operators A(t) : W 2,q(Ω)∩W 1,q
0 (Ω)→ Lq(Ω)

for 0 ≤ t ≤ T be defined by

A(t)ϕ =

d∑
i,j=1

αij(·, t)∂i∂jϕ, (3.15)

where the coefficient functions αij(·, t) : Ω → R (i, j = 1, . . . , d) satisfy condi-
tions (A1) and (A2) of Lemma 3.2 uniformly for 0 ≤ t ≤ T and additionally
the Lipschitz condition

‖αij(·, t)− αij(·, s)‖L∞(Ω) ≤ L |t− s|, 0 ≤ s, t ≤ T. (3.16)

Lemma 3.5 In the above situation of time-dependent elliptic operators A(t),
the solution of the nonautonomous linear problem (3.8) is bounded by (3.9),
where the constant Cp,q depends additionally on L and T .

Proof For 0 ≤ t ≤ t̄ ≤ T , we rewrite the differential equation as

∂tu(t) = A(t̄)u(t)−
(
A(t̄)−A(t)

)
u(t) + f(t)

and apply Lemma 3.3 for the operator A(t̄) to bound

‖∂tu‖Lp(0,t̄;Lq(Ω)) + ‖u‖Lp(0,t̄;W 2,q(Ω)) ≤ Cp,q‖
(
A(t̄)−A(·)

)
u‖Lp(0,t̄;Lq(Ω))

(3.17)

+ Cp,q‖f‖Lp(0,t̄;Lq(Ω)).

We denote

η(t̄) = ‖u‖pLp(0,t̄;W 2,q(Ω)).

By the Lipschitz condition (3.16) and by integration by parts we obtain∫ t̄

0

‖
(
A(t̄)−A(t)

)
u(t)‖pLq(Ω) dt ≤ Lp

∫ t̄

0

(t̄− t)p‖u(t)‖pW 2,q(Ω) dt

= Lpp

∫ t̄

0

(t− t)p−1η(t) dt.

Hence we have from (3.17)

η(t̄) ≤ C
∫ t̄

0

(t− t)p−1η(t) dt+ C‖f‖pLp(0,t̄;Lq(Ω)), 0 ≤ t̄ ≤ T,

and a Gronwall inequality yields

η(T ) ≤ C ′‖f‖pLp(0,T ;Lq(Ω)),

which combined with (3.17) yields the result. �
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3.6 Runge–Kutta discretization of nonautonomous linear problems

With Lemma 3.4, the previous result for the nonautonomous linear problem
extends to its Runge–Kutta time discretization

un,i = un + τ

s∑
j=1

aij
(
A(tn,j)un,j + fn,j

)
(i = 1, . . . , s), (3.18)

and un+1 = un,s for a Runge–Kutta method with (2.1).

Lemma 3.6 Consider a Runge–Kutta method that satisfies (2.1), such as the
s-stage Radau IIA method. Under the conditions of Lemma 3.5, there is dis-
crete maximal Lp regularity for 1 < p < ∞ uniformly in the step size τ > 0:
for every sequence (fn)Nn=0 with entries in Lq(Ω)s (with arbitrary N ≥ 1), the
numerical solution defined by (3.18) with zero initial value u0 = 0 satisfies the
bound (3.13), where Cp,q is independent of N and τ with Nτ ≤ T , but depends
on T .

Proof The result follows from Lemma 3.4 in the same way as Lemma 3.5
follows from Lemma 3.3, using a summation by parts in place of the integration
by parts. �

4 Proof of Theorem 2.1

4.1 Defects and error equation

The exact solution values satisfy the Runge–Kutta relations up to a defect:

u(tn + ciτ) = u(tn) + τ

s∑
j=1

aij ∂tu(tn + cjτ) + dn,i,

where we note that dn,i is the quadrature error over the interval [tn, tn+ciτ ] of
the quadrature formula with weights aij and nodes cj . Using Taylor expansion
at tn and the definition of the stage order (2.4) and the regularity condition
(2.8), we can bound dn = (dn,i)

s
i=1 by

‖(dn)Nn=0‖Lp(Lq(Ω)s) ≤ Cτk+1.

We rewrite the above equation as

u(tn + ciτ) = u(tn) + τ

s∑
j=1

aij (∂tu(tn + cjτ)− rn,j), (4.1)

where rn = (rn,j)
s
j=1 is the solution of the linear system with the invertible

Runge–Kutta matrix (aij),

τ

s∑
j=1

aijrn,j = −dn,i, so that ρ := ‖(rn)Nn=0‖Lp(Lq(Ω)s) ≤ Cτk. (4.2)



14 Peer C. Kunstmann et al.

We rewrite the partial differential equation as

∂tu = ∇ · f(∇u) =

d∑
k,l=1

fk,l(∇u)∂k∂lu, with fk,l = ∂fk/∂pl. (4.3)

Comparing (2.3) and (2.5) with (4.1) and (4.3), we see that the errors

en,i := un,i − u(tn,i) and ėn,j := u̇n,j − ∂tu(tn,j) + rn,j (4.4)

satisfy the error equations (for i, j = 1, . . . , s)

en,i = en + τ

s∑
j=1

aij ėn,j , en+1 = en,s (4.5a)

ėn,j =

d∑
k,l=1

fk,l(∇u(tn,j))∂k∂len,j

+

d∑
k,l=1

(
fk,l(∇u(tn,j) +∇en,j)− fk,l(∇u(tn,j))

)
∂k∂l

(
u(tn,j) + en,j

)
+ rn,j .

(4.5b)

Clearly, en = (en,i) is a solution of the error equations (4.5) if and only if
(un,i) = (u(tn,i)+en,i) is a solution of the Runge–Kutta equations (2.2)-(2.3).

4.2 Error bound

We first show the error bound of Theorem 2.1 under the additional assumption
that the errors remain bounded by a small constant in the W 1,∞ norm. This
condition will be verified in the next subsection.

Lemma 4.1 In the situation of Theorem 2.1, suppose that the error equations
have a solution (en,i) for 0 ≤ n ≤ N and i = 1, . . . , s such that

max
0≤n≤N

max
1≤i≤s

‖en,i‖W 1,∞(Ω) ≤ µ (4.6)

with a sufficiently small constant µ (independent of τ and N with Nτ ≤ T ).
Then the O(τk) error bounds (2.9) are satisfied.

Proof If we consider gn = (gn,j) with

gn,j =

d∑
k,l=1

(
fk,l(∇u(tn,j) +∇en,j)− fk,l(∇u(tn,j))

)
∂k∂l

(
u(tn,j) + en,j

)
as an inhomogeneity in (4.5b), then Lemma 3.6 shows that∥∥∥∥(en − en−1

τ

)N
n=0

∥∥∥∥
Lp(Lq(Ω)s)

+
∥∥(en)Nn=0

∥∥
Lp(W 2,q(Ω)s)

(4.7)

≤ C
(∥∥(gn)Nn=0

∥∥
Lp(Lq(Ω)s)

+
∥∥(rn)Nn=0

∥∥
Lp(Lq(Ω)s)

)
.
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We bound, with a local Lipschitz constant L of fk,l,

‖gn,j‖Lq(Ω) ≤ L‖∇en,j‖L∞(Ω) ‖u(tn,j)‖W 2,q(Ω) +L‖∇en,j‖L∞(Ω) ‖en,j‖W 2,q(Ω)

(4.8)
so that∥∥(gn)Nn=0

∥∥
Lp(Lq(Ω)s)

≤ C1

∥∥(en)Nn=0

∥∥
Lp(W 1,∞(Ω)s)

+C2µ
∥∥(en)Nn=0

∥∥
Lp(W 2,q(Ω)s)

.

Using the bound

‖en‖W 1,∞(Ω)s ≤ µ‖en‖W 2,q(Ω)s + Cµ‖en‖Lq(Ω)s ,

we obtain∥∥(gn)Nn=0

∥∥
Lp(Lq(Ω)s)

≤ Cµ
∥∥(en)Nn=0

∥∥
Lp(W 2,q(Ω)s)

+ Cµ
∥∥(en)Nn=0

∥∥
Lp(Lq(Ω)s)

.

If µ is sufficiently small, then the first term on the right-hand side can be
absorbed in the left-hand side of (4.7), and we are left with∥∥∥∥(en − en−1

τ

)N
n=0

∥∥∥∥
Lp(Lq(Ω)s)

+
∥∥(en)Nn=0

∥∥
Lp(W 2,q(Ω)s)

≤ C
(∥∥(en)Nn=0

∥∥
Lp(Lq(Ω)s)

+
∥∥(rn)Nn=0

∥∥
Lp(Lq(Ω)s)

)
.

Such a bound holds not only for the final N , but for each n̄ ≤ N . We write en =
τ
∑n
m=0(em − em−1)/τ and use, for αj = 1

τ ‖ej − ej−1‖Lq(Ω)s , the inequality∥∥∥∥( m∑
j=0

αj

)n̄
m=0

∥∥∥∥
p

≤
n̄∑

m=0

∥∥∥(αj)
m
j=0

∥∥∥
p
, (4.9)

which is just the triangle inequality for the sum of vectors in Rn̄+1
0
...
0
α0

+


0
...
α0

α1

+ . . .+


0
α0

...
αn̄−1

+


α0

α1

...
αn̄

 .

We thus obtain, for 0 ≤ n̄ ≤ N ,∥∥∥∥(en − en−1

τ

)n̄
n=0

∥∥∥∥
Lp(Lq(Ω)s)

+
∥∥(en)n̄n=0

∥∥
Lp(W 2,q(Ω)s)

≤ C
(
τ

n̄∑
m=0

∥∥∥∥(en − en−1

τ

)m
n=0

∥∥∥∥
Lp(Lq(Ω)s)

+
∥∥(rn)n̄n=0

∥∥
Lp(Lq(Ω)s)

)
.

Applying a discrete Gronwall inequality then yields∥∥∥∥(en − en−1

τ

)N
n=0

∥∥∥∥
Lp(Lq(Ω)s)

+
∥∥(en)Nn=0

∥∥
Lp(W 2,q(Ω)s)

≤ C̃
∥∥(rn)Nn=0

∥∥
Lp(Lq(Ω)s)

,

(4.10)

and the result follows with the bound (4.2). �
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4.3 Existence of the numerical solution

In this subsection, we prove the existence of a solution en for (4.5) satisfy-
ing the error bound (4.10) by using Schaefer’s fixed point theorem via the
arguments of the proof of Lemma 4.1, which rely on the maximal regularity
properties of Section 3.

Lemma 4.2 (Schaefer’s fixed point theorem [9, Chapter 9.2, Theo-
rem 4]) Let X be a Banach space and let M : X → X be a continuous and
compact map. If the set{

φ ∈ X : φ = θM(φ) for some θ ∈ [0, 1]
}

(4.11)

is bounded in X, then the map M has a fixed point.

We define a map M : C([0, T ],W 1,∞(Ω)s) → C([0, T ],W 1,∞(Ω)s) in the
following way: for any given ϕ = (ϕj)

s
j=1 ∈ C([0, T ],W 1,∞(Ω)s), we define

e := Mϕ as the piecewise linear interpolation in time of the vectors en =
(en,i)

s
i=1 for n = 0, . . . , N (that is, interpolating linearly between en,i and

en−1,i for each i), where en = (en,i)
s
i=1 are the solution of the linear problem

en,i = en + τ

s∑
j=1

aij ėn,j , en+1 = en,s (4.12a)

ėn,j =

d∑
k,l=1

fk,l
(
∇u(tn,j)

)
∂k∂len,j (4.12b)

+

d∑
k,l=1

(
fk,l
(
∇u(tn,j) + β(ϕj(tn,j))∇ϕj(tn,j)

)
− fk,l

(
∇u(tn,j)

))
×

∂k∂l
(
u(tn,j) + en,j

)
+ rn,j ,

where

β(ϕ) = min
( √

ρ

‖ϕ‖W 1,∞(Ω)
, 1
)
,

which has the following properties:

‖β(ϕ)ϕ‖W 1,∞(Ω) ≤
√
ρ, (4.13a)

β(ϕ) = 1 if ‖ϕ‖W 1,∞(Ω) ≤
√
ρ. (4.13b)

Lemma 4.3 The map M : C([0, T ],W 1,∞(Ω)s) → C([0, T ],W 1,∞(Ω)s) is
well defined, continuous and compact.

Proof Following the lines of the proof of Lemma 4.1, with the only differ-
ence that ‖∇en,j‖L∞(Ω) is replaced with ‖β(ϕj(tn,j))∇ϕj(tn,j)‖L∞(Ω) ≤

√
ρ

in (4.8), it is seen thatM maps boundedly into the space W 1,p(0, T ;Lq(Ω)s)∩
Lp(0, T ;W 2,q(Ω)s), which is compactly embedded in C([0, T ],W 1,∞(Ω)s) by
Lemma 3.1. The continuity of M is also obtained by the arguments used in
the proof of Lemma 4.1. �
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To apply Schaefer’s fixed point theorem (Lemma 4.2), we assume that

ϕ = θMϕ for some θ ∈ [0, 1].

Then e := Mϕ is the piecewise linear interpolation of the solution of the
equations (4.12) with ϕj = θej . Using the same proof as that of Lemma 4.1,
it is now seen that e satisfies O(ρ) = O(τk) error bounds (2.9). This implies
that ‖ϕ‖W 1,∞(Ω)s ≤ Cρ for sufficiently small τ (note that then β(ϕj) = 1),
and hence Schaefer’s fixed point theorem yields the existence of a solution to
the error equations (4.5) satisfying (2.9). For sufficiently small τ , (2.9) implies
(4.6) (since µ is a constant independent of the step size τ).

4.4 Uniqueness of the numerical solution

In the last subsection, we have proved for sufficiently small τ , say 0 < τ < τ̄ ,
the existence of a numerical solution in a W 1,∞(Ω) neighbourhood of the PDE
solution with width µ, satisfying (2.9). The stability result of Lemma 4.1, that
is, the bound (4.10) used with rn = 0, implies the local uniqueness of the
Runge-Kutta solution in the W 1,∞(Ω) neighbourhood of width µ.

5 Proof of Theorem 2.2

The proof is similar to previous proofs of error bounds for Runge–Kutta time
discretizations of parabolic problems using energy estimates [30,8]. In partic-
ular, the same use is made of the algebraic stability condition (2.10). However,
the proof differs in that here we need to invoke the W 1,∞(Ω) error bounds
provided by Theorem 2.1.

5.1 Defects

We denote the exact solution values u∗n,i = u(tn + ciτ), u̇∗n,i = ∂tu(tn + ciτ),
and u∗n = u(tn). Note that u∗n+1 = u∗n,s by our condition cs = 1. We denote
by dn,i and dn+1 the defects obtained on inserting the exact solution into the
Runge–Kutta equations,

u∗n,i = u∗n + τ

s∑
j=1

aij u̇
∗
n,j + dn,i, u∗n+1 = u∗n + τ

s∑
j=1

bj u̇
∗
n,j + dn+1.

The defects are thus quadrature errors. By Taylor expansion at tn and the
definition of the stage order (2.4) and by condition (2.11), the defects are of
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the form

dn,i = τk
∫ tn+1

tn

Ki

( t− tn
τ

)
u(k+1)(t) dt

dn+1 = τk+1

∫ tn+1

tn

K
( t− tn

τ

)
u(k+2)(t) dt

= −τk
∫ tn+1

tn

K ′
( t− tn

τ

)
u(k+1)(t) dt

with bounded Peano kernels Ki and K. Here we assume for simplicity that all
ci ∈ [0, 1], as is the case for all methods of interest. In the following we denote
by 〈·, ·〉 the duality pairing between H1

0 (Ω) and H−1(Ω), which restricted to
H1

0 (Ω)× L2(Ω) coincides with the L2(Ω) inner product. We further denote

| · | = ‖ · ‖L2(Ω), ‖ · ‖ = ‖ · ‖H1
0 (Ω), ‖ · ‖? = ‖ · ‖H−1(Ω).

We define δ ≥ 0 by setting

δ2 = τ

N∑
n=0

s∑
i=1

‖dn,i‖2 + τ

N∑
n=0

(
‖dn+1‖2 + ‖dn+1/τ‖2?

)
(5.1)

and note that by our regularity assumption and the above defect estimates we
have

δ ≤ Cτk+1.

5.2 Error equations

The errors en,i = un,i − u∗n,i, ėn,i = u̇n,i − u̇∗n,i, and en = un − u∗n satisfy the
error equations (written in the divergence form):

ėn,i=

d∑
k=1

∂k
(
fk(∇un,i)− fk(∇u∗n,i)

)
(5.2a)

en,i = en + τ

s∑
j=1

aij ėn,j − dn,i (5.2b)

en+1 = en + τ

s∑
i=1

biėn,i − dn+1. (5.2c)

5.3 Energy estimate using algebraic stability

Taking the square of the L2(Ω) norm in (5.2c) yields

|en+1|2 =
∣∣en + τ

s∑
i=1

biėn,i
∣∣2 − 2

〈
dn+1, en + τ

s∑
i=1

biėn,i
〉

+ |dn+1|2. (5.3)
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The three terms on the right-hand side will now be estimated separately. We
express en by (5.2b) to obtain

∣∣en + τ

s∑
i=1

biėn,i
∣∣2 = |en|2 + 2τ

s∑
i=1

bi〈ėn,i, en,i + dn,i〉

+ τ2
s∑
i=1

s∑
j=1

(bibj − biaij − bjaji) 〈ėn,i, ėn,j〉.

Here the last term is nonpositive by the algebraic stability condition (2.10).
We next estimate the second term on the right-hand side. We have by (5.2a)

〈ėn,i, en,i + dn,i〉 = −
d∑
k=1

〈
fk(∇un,i)− fk(∇u∗n,i), ∂ken,i + ∂kdn,i

〉
(5.4)

= −
d∑

k,l=1

〈(∫ 1

0

fk,l((1− θ)∇u∗n,i + θ∇un,i)dθ
)
∂len,i, ∂ken,i + ∂kdn,i

〉
,

where fk,l := ∂fk/∂pl. Under the regularity condition (2.8) about the exact
solution we have the bounds ‖u∗‖W 1,∞(Ω) ≤ R and ‖un,i‖W 1,∞(Ω) ≤ R as a
consequence of (2.9a), which is already proved in Theorem 2.1. Hence there
exists κR > 0 such that we have for all x ∈ Ω

d∑
k,l=1

(∫ 1

0

fk,l((1− θ)∇u∗n,i(x) + θ∇un,i(x))dθ

)
ξkξl ≥ κR

d∑
l=1

ξ2
l ,

∀ξ = (ξl) ∈ Rd,

and there is a positive constant KR such that for all x ∈ Ω∣∣∣∣ ∫ 1

0

fk,l((1− θ)∇u∗n,i(x) + θ∇un,i(x))dθ

∣∣∣∣ ≤ KR.

Hence (5.4) reduces to

〈ėn,i, en,i + dn,i〉 ≤ −κR‖en,i‖2 +KR‖en,i‖‖dn,i‖ ≤ −
κR
2
‖en,i‖2 + C‖dn,i‖2

(5.5)

with C = K2
R/(2κR).

With the same arguments, again invoking Theorem 2.1, we also obtain
from (5.2a) (with a different constant C)

‖ėn,i‖∗ ≤ C ‖en,i‖.

The second and third terms in (5.3) are estimated as (note that all bi > 0)

〈
dn+1, en + τ

s∑
i=1

biėn,i
〉
≤
√
τ‖dn+1/τ‖∗

√
τ‖en‖+

√
τ‖dn+1‖

√
τ

s∑
i=1

bi‖ėn,i‖∗,
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and

|dn+1|2 ≤
√
τ‖dn+1/τ‖∗

√
τ‖dn+1‖ ≤ 1

2τ ‖dn+1‖2 + 1
2τ ‖dn+1/τ‖2∗ ,

respectively.
Combining the above estimates (and noting that en = en−1,s) we obtain

|en+1|2 − |en|2 + 1
8κRτ

s∑
i=1

bi‖en,i‖2

≤ Cτ
s∑
i=1

‖dn,i‖2 + Cτ(‖dn+1‖2 + ‖dn+1/τ‖2∗).

Summing up these inequalities and recalling (5.1) yields

|en+1|2 + 1
8κRτ

n∑
m=0

s∑
i=1

bi‖em,i‖2 ≤ Cδ,

which completes the proof. �
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