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Abstract

This work considers the question: what convergence guarantees does the stochastic
subgradient method have in the absence of smoothness and convexity? We prove that
the stochastic subgradient method, on any semialgebraic locally Lipschitz function,
produces limit points that are all first-order stationary. More generally, our result
applies to any function with a Whitney stratifiable graph. In particular, this work
endows the stochastic subgradient method, and its proximal extension, with rigorous
convergence guarantees for a wide class of problems arising in data science—including
all popular deep learning architectures.

1 Introduction

In this work, we study the long term behavior of the stochastic subgradient method on
nonsmooth and nonconvex functions. Setting the stage, consider the optimization problem

min
x∈Rd

f(x),

where f : Rd → R is a locally Lipschitz continuous function. The stochastic subgradient
method simply iterates the steps

xk+1 = xk − αk
(
yk + ξk

)
with yk ∈ ∂f(xk). (1.1)
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Here ∂f(x) denotes the Clarke subdifferential [9]. Informally, the set ∂f(x) is the convex
hull of limits of gradients at nearby differentiable points. In classical circumstances, the
subdifferential reduces to more familiar objects. Namely, when f is C1-smooth at x, the
subdifferential ∂f(x) consists only of the gradient ∇f(x), while for convex functions, it re-
duces to the subdifferential in the sense of convex analysis. The positive sequence {αk}k≥0 is
user specified, and it controls the step-sizes of the algorithm. As is typical for stochastic sub-
gradient methods, we will assume that this sequence is square summable but not summable,
meaning

∑
k αk =∞ and

∑
k α

2
k <∞. Finally, the stochasticity is modeled by the random

(noise) sequence {ξk}k≥1. We make the standard assumption that conditioned on the past,
each random variable ξk has mean zero and its second moment grows at a controlled rate.

Though variants of the stochastic subgradient method (1.1) date back to Robbins-Monro’s
pioneering 1951 work [29], their convergence behavior is still largely not understood in non-
smooth and nonconvex settings. In particular, the following question remains open.

Does the (stochastic) subgradient method have any convergence guarantees on
locally Lipschitz functions, which may be neither smooth nor convex?

That this question remains unanswered is somewhat concerning as the stochastic subgradient
method forms a core numerical subroutine for several widely used solvers, including Google’s
TensorFlow [1] and the open source PyTorch [28] library.

Convergence behavior of (1.1) is well understood when applied to convex, smooth, and
more generally, weakly convex problems. In these three cases, almost surely, every limit
point x∗ of the iterate sequence is first-order critical [27], meaning 0 ∈ ∂f(x∗). More-
over, rates of convergence in terms of natural optimality/stationarity measures are avail-
able. In summary, the rates are E [f(xk)− inf f ] = O(k−1/2), E [‖∇f(xk)‖] = O(k−1/4), and
E
[
‖∇f1/(2ρ)(xk)‖

]
= O(k−1/4), for functions that are convex [26], smooth [18], and ρ-weakly

convex [13, 14], respectively. In particular, the convergence guarantee above for ρ-weakly
convex functions appeared only recently in [13,14], with the Moreau envelope f1/(2ρ) playing
a central role.

Though widely applicable, these previous results on the convergence of the stochastic
subgradient method do not apply to even relatively simple non-pathological functions, such as
f(x, y) = (|x|−|y|)2 and f(x) = (1−max{x, 0})2. It is not only toy examples, however, that
lack convergence guarantees, but the entire class of deep neural networks with nonsmooth
activation functions (e.g., ReLU). Since such networks are routinely trained in practice, it is
worthwhile to understand if indeed the iterates xk tend to a meaningful limit.

In this paper, we provide a positive answer to this question for a wide class of locally
Lipschitz functions; indeed, the function class we consider is virtually exhaustive in data
scientific contexts (see Corollary 5.11 for consequences in deep learning). Aside from mild
technical conditions, the only meaningful assumption we make is that f strictly decreases
along any trajectory x(·) of the differential inclusion ẋ(t) ∈ −∂f(x(t)) emanating from
a noncritical point. Under this assumption, a standard Lyapunov-type argument shows
that every limit point of the stochastic subgradient method is critical for f , almost surely.
Techniques of this type can be found for example in the monograph of Kushner-Yin [22,
Theorem 5.2.1] and the landmark papers of Benäım-Hofbauer-Sorin [2, 3]. Here, we provide
a self-contained treatment, which facilitates direct extensions to “proximal” variants of the
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stochastic subgradient method.1 In particular, our analysis follows closely the recent work
of Duchi-Ruan [17, Section 3.4.1] on convex composite minimization.

The main question that remains therefore is which functions decrease along the continuous
subgradient curves. Let us look for inspiration at convex functions, which are well-known
to satisfy this property [7, 8]. Indeed, if f is convex and x : [0,∞) → R is any absolutely
continuous curve, then the “chain rule” holds:

d
dt

(f ◦ x) = 〈∂f(x), ẋ〉 for a.e. t ≥ 0. (1.2)

An elementary linear algebraic argument then shows that if x satisfies ẋ(t) ∈ −∂f(x(t)) a.e.,
then automatically −ẋ(t) is the minimal norm element of ∂f(x(t)). Therefore, integrating
(1.2) yields the desired descent guarantee

f(x(0))− f(x(t)) =

∫ t

τ=0

dist2(0; ∂f(x(τ))) for all t ≥ 0. (1.3)

Evidently, exactly the same argument yields the chain rule (1.2) for subdifferentially regular
functions. These are the functions f such that each subgradient v ∈ ∂f(x) defines a linear
lower-estimator of f up to first-order; see for example [10, Section 2.4] or [31, Definition 7.25].
Nonetheless, subdifferentially regular functions preclude “downwards cusps”, and therefore
still do not capture such simple examples as f(x) = (1 − max{x, 0})2. It is worthwhile to
mention that one can not expect (1.3) to always hold. Indeed, there are pathological locally
Lipschitz functions f that do not satisfy (1.3); one example is the univariate 1-Lipschitz
function whose Clarke subdifferential is the unit interval at every point [6, 30].

In this work, we isolate a different structural property on the function f , which guar-
antees the validity of (1.2) and therefore of the descent condition (1.3). We will assume
that the graph of the function f admits a partition into finitely many smooth manifolds,
which fit together in a regular pattern. Formally, we require the graph of f to admit a so-
called Whitney stratification, and we will call such functions Whitney stratifiable. Whitney
stratifications have already figured prominently in optimization, beginning with the seminal
work [4]. An important subclass of Whitney stratifiable functions consists of semi-algebraic
functions [23] – meaning those whose graphs can be written as a finite union of sets each
defined by finitely many polynomial inequalities. Semialgebraicity is preserved under all
the typical functional operations in optimization (e.g. sums, compositions, inf-projections)
and therefore semi-algebraic functions are usually easy to recognize. More generally still,
“semianalytic” functions [23] and those that are “definable in an o-minimal structure” are
Whitney stratifiable [34]. The latter function class, in particular, shares all the robustness
and analytic properties of semi-algebraic functions, while encompassing many more exam-
ples. Case in point, Wilkie [36] famously showed that there is an o-minimal structure that

1Concurrent to this work, the independent preprint [24] also provides convergence guarantees for the
stochastic projected subgradient method, under the assumption that the objective function is “subdifferen-
tially regular” and the constraint set is convex. Subdifferential regularity rules out functions with downward
kinks and cusps, such as deep networks with the Relu(·) activation functions. Besides subsuming the sub-
differentially regular case, the results of the current paper apply to the broad class of Whitney stratifiable
functions, which includes all popular deep network architectures.
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contains both the exponential x 7→ ex and all semi-algebraic functions.2

The key observation for us, which originates in [16, Section 5.1], is that any locally
Lipschitz Whitney stratifiable function necessarily satisfies the chain rule (1.2) along any
absolutely continuous curve. Consequently, the descent guarantee (1.3) holds along any sub-
gradient trajectory, and our convergence guarantees for the stochastic subgradient method
become applicable. Since the composition of two definable functions is definable, it follows
immediately from Wilkie’s o-minimal structure that nonsmooth deep neural networks built
from definable pieces—such as quadratics t2, hinge losses max{0, t}, and log-exp log(1 + et)
functions—are themselves definable. Hence, the results of this paper endow stochastic sub-
gradient methods, applied to definable deep networks, with rigorous convergence guarantees.

Validity of the chain rule (1.2) for Whitney stratifiable functions is not new. It was
already proved in [16, Section 5.1] for semi-algebraic functions, though identical arguments
hold more broadly for Whitney stratifiable functions. These results, however, are somewhat
hidden in the paper [16], which is possibly why they have thus far been underutilized. In
this manuscript, we provide a self-contained review of the material from [16, Section 5.1],
highlighting only the most essential ingredients and streamlining some of the arguments.

Though the discussion above is for unconstrained problems, the techniques we develop
apply much more broadly to constrained problems of the form

min
x∈X

f(x) + g(x).

Here f and g are locally-Lipschitz continuous functions and X is an arbitrary closed set.
The popular proximal stochastic subgradient method simply iterates the steps

Sample an estimator ζk of ∂f(xk)

Select xk+1 ∈ argmin
x∈X

{
〈ζk, x〉+ g(x) + 1

2αk
‖x− xk‖2

} . (1.4)

Combining our techniques with those in [17] quickly yields subsequential convergence guar-
antees for this algorithm. Note that we impose no convexity assumptions on f , g, or X .

The outline of this paper is as follows. In Section 2, we fix the notation for the rest of
the manuscript. Section 3 provides a self-contained treatment of asymptotic consistency for
discrete approximations of differential inclusions. In Section 4, we specialize the results of
the previous section to the stochastic subgradient method. Finally, in Section 5, we verify
the sufficient conditions for subsequential convergence for a broad class of locally Lipschitz
functions, including those that are subdifferentially regular and Whitney stratifiable. In
particular, we specialize our results to deep learning settings in Corollary 5.11. In the final
Section 6, we extend the results of the previous sections to the proximal setting.

2 Preliminaries

Throughout, we will mostly use standard notation on differential inclusions, as set out for
example in the monographs of Borkar [5], Clarke-Ledyaev-Stern-Wolenski [10], and Smirnov

2The term “tame” used in the title has a technical meaning. Tame sets are those whose intersection with
any ball is definable in some o-minimal structure. The manuscript [20] provides a nice exposition on the role
of tame sets and functions in optimization.
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[32]. We will always equip the Euclidean space Rd with an inner product 〈·, ·〉 and the
induced norm ‖x‖ :=

√
〈x, x〉. The distance of a point x to a set Q ⊂ Rd will be written as

dist(x;Q) := miny∈Q ‖y− x‖. The indicator function of Q, denoted δQ, is defined to be zero
on Q and +∞ off it. The symbol B will denote the closed unit ball in Rd, while Bε(x) will
stand for the closed ball of radius of ε > 0 around x. We will use R+ to denote the set of
nonnegative real numbers.

2.1 Absolutely continuous curves

Any continuous function x : R+ → Rd is called a curve in Rd. All curves in Rd comprise the
set C(R+,Rd). We will say that a sequence of function fk converges to f in C(R+,Rd) if fk
converge to f uniformly on compact intervals, that is, for all T > 0, we have

lim
k→∞

sup
t∈[0,T ]

‖fk(t)− f(t)‖ = 0.

Recall that a curve x : R+ → Rd is absolutely continuous if there exists a map y : R+ → Rd

that is integrable on any compact interval and satisfies

x(t) = x(0) +

∫ t

0

y(τ) dτ for all t ≥ 0.

Moreover, if this is the case, then equality y(t) = ẋ(t) holds for a.e. t ≥ 0. Henceforth,
for brevity, we will call absolutely continuous curves arcs. We will often use the observation
that if f : Rd → R is locally Lipschitz continuous and x is an arc, then the composition f ◦x
is absolutely continuous.

2.2 Set-valued maps and the Clarke subdifferential

A set-valued map G : X ⇒ Rm is a mapping from a set X ⊆ Rd to the powerset of Rm. Thus
G(x) is a subset of Rm, for each x ∈ X . We will use the notation

G−1(v) := {x ∈ X : v ∈ G(x)}

for the preimage of a vector v ∈ Rm. The map G is outer-semicontinuous at a point x ∈ X
if for any sequences xi

X−→ x and vi ∈ G(xi) converging to some vector v ∈ Rm, the inclusion
v ∈ G(x) holds.

The most important set-valued map for our work will be the generalized derivative in the
sense of Clarke [9] – a notion we now review. Consider a locally Lipschitz continuous function
f : Rd → R. The well-known Rademacher’s theorem guarantees that f is differentiable
almost everywhere. Taking this into account, the Clarke subdifferential of f at any point x
is the set [10, Theorem 8.1]

∂f(x) := conv
{

lim
i→∞
∇f(xi) : xi

Ω−→ x
}
,

where Ω is any full-measure subset of Rd such that f is differentiable at each of its points.
It is standard that the map x 7→ ∂f(x) is outer-semicontinuous and its images ∂f(x) are
nonempty, compact, convex sets for each x ∈ Rd; see for example [10, Proposition 1.5 (a,e)].
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Analogously to the smooth setting, a point x ∈ Rd is called (Clarke) critical for f
whenever the inclusion 0 ∈ ∂f(x) holds. Equivalently, these are the points at which the
Clarke directional derivative is nonnegative in every direction [10, Section 2.1]. A real number
r ∈ R is called a critical value of f if there exists a critical point x satisfying r = f(x).

3 Differential inclusions and discrete approximations

In this section, we discuss the asymptotic behavior of discrete approximations of differential
inclusions. All the elements of the analysis we present, in varying generality, can be found
in the works of Benäım-Hofbauer-Sorin [2,3], Borkar [5], and Duchi-Ruan [17]. Out of these,
we most closely follow the work of Duchi-Ruan [17].

3.1 Functional convergence of discrete approximations

Let X be a closed set and let G : X ⇒ Rd be a set-valued map. Then an arc x : R+ → Rd is
called a trajectory of G if it satisfies the differential inclusion

ẋ(t) ∈ G(x(t)) for a.e. t ≥ 0. (3.1)

Notice that the image of any arc x is automatically contained in X , since arcs are continuous
and X is closed. In this work, we will primarily focus on iterative algorithms that aim to
asymptotically track a trajectory of the differential inclusion (3.1) using a noisy discretization
with vanishing step-sizes. Though our discussion allows for an arbitrary set-valued map G,
the reader should keep in mind that the most important example for us will be G = −∂f ,
where f is a locally Lipschitz function.

Throughout, we will consider the following iteration sequence:

xk+1 = xk + αk(yk + ξk). (3.2)

Here αk > 0 is a sequence of step-sizes, yk should be thought of as an approximate evaluation
of G at some point near xk, and ξk is a sequence of “errors”.

Our immediate goal is to isolate reasonable conditions, under which the sequence {xk}
asymptotically tracks a trajectory of the differential inclusion (3.1). Following the work of
Duchi-Ruan [17] on stochastic approximation, we stipulate the following assumptions.

Assumption A (Standing assumptions).

1. All limit points of {xk} lie in X .

2. The iterates are bounded, i.e., supk≥1 ‖xk‖ <∞ and supk≥1 ‖yk‖ <∞.

3. The sequence {αk} is nonnegative, square summable, but not summable:

αk ≥ 0,
∞∑
k=1

αk =∞, and
∞∑
k=1

α2
k <∞.

4. The weighted noise sequence is convergent:
∑n

k=1 αkξk → v for some v as k →∞.
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5. For any unbounded increasing sequence {kj} ⊂ N such that xkj converges to some point
x̄, it holds:

lim
n→∞

dist

(
1

n

n∑
j=1

ykj , G(x̄)

)
= 0.

Some comments are in order. Conditions 1, 2, and 3 are in some sense minimal, though
the boundedness condition must be checked for each particular algorithm. Condition 4
guarantees that the noise sequence ξk does not grow too quickly relative to the rate at which
αk decrease. The key Condition 5 summarizes the way in which the values yk are approximate
evaluations of G, up to convexification.

To formalize the idea of asymptotic approximation, let us define the time points t0 = 0
and tm =

∑m−1
k=1 αk, for m ≥ 1. Let x(·) now be the linear interpolation of the discrete path:

x(t) := xk +
t− tk

tk+1 − tk
(xk+1 − xk) for t ∈ [tk, tk+1). (3.3)

For each τ ≥ 0, define the time-shifted curve xτ (·) = x(τ + ·).
The following result of Duchi-Ruan [17, Theorem 2] shows that under the above con-

ditions, for any sequence τk → ∞, the shifted curves {xτk} subsequentially converge in
C(R+,Rd) to a trajectory of (3.1). Results of this type under more stringent assumptions,
and with similar arguments, have previously appeared for example in Benäım-Hofbauer-
Sorin [2, 3] and Borkar [5].

Theorem 3.1 (Functional approximation). Suppose that Assumption A holds. Then for any
sequence {τk}∞k=1 ⊆ R+, the set of functions {xτk(·)} is relatively compact in C(R+,Rd). If
in addition τk →∞ as k →∞, all limit points z(·) of {xτk(·)} in C(R+,Rd) are trajectories
of the differential inclusion (3.1).

3.2 Subsequential convergence to equilibrium points

A primary application of the discrete process (3.2) is to solve the inclusion

0 ∈ G(z). (3.4)

Indeed, one can consider the points satisfying (3.4) as equilibrium (constant) trajectories of
the differential inclusion (3.1). Ideally, one would like to find conditions guaranteeing that
every limit point x̄ of the sequence {xk}, produced by the recursion (3.2), satisfies the desired
inclusion (3.4). Making such a leap rigorous typically relies on combining the asymptotic
convergence guarantee of Theorem 3.1 with existence of a Lyapunov-like function ϕ(·) for
the continuous dynamics; see e.g. [2,3]. Let us therefore introduce the following assumption.

Assumption B (Lyapunov condition). There exists a continuous function ϕ : Rd → R,
which is bounded from below, and such that the following two properties hold.

1. (Weak Sard) For a dense set of values r ∈ R, the intersection ϕ−1(r) ∩ G−1(0) is
empty.
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2. (Descent) Whenever z : R+ → Rd is a trajectory of the differential inclusion (3.1)
and 0 /∈ G(z(0)), there exists a real T > 0 satisfying

ϕ(z(T )) < sup
t∈[0,T ]

ϕ(z(t)) ≤ ϕ(z(0)).

The weak Sard property is reminiscent of the celebrated Sard’s theorem in real analysis.
Indeed, consider the classical setting G = −∇f for a smooth function f : Rd → R. Then
the weak Sard property stipulates that the set of noncritical values of f is dense in R. By
Sard’s theorem, this is indeed the case, as long as f is Cd smooth. Indeed, Sard’s theorem
guarantees the much stronger property that the set of noncritical values has full measure.
We will comment more on the weak Sard property in Section 4, once we shift focus to
optimization problems. The descent property, says that ϕ eventually strictly decreases along
the trajectories of the differential inclusion ż ∈ G(z) emanating from any non-equilibrium
point. This Lyapunov-type condition is standard in the literature and we will verify that it
holds for a large class of optimization problems in Section 5.

As we have alluded to above, the following theorem shows that under Assumptions A
and B, every limit point x̄ of {xk} indeed satisfies the inclusion 0 ∈ G(x̄). We were unable to
find this result stated and proved in this generality. Therefore, we record a complete proof in
Section 3.3. The idea of the proof is of course not new, and can already be seen for example
in [2, 17,22]. Upon first reading, the reader can safely skip to Section 4.

Theorem 3.2. Suppose that Assumptions A and B hold. Then every limit point of {xk}k≥1

lies in G−1(0) and the function values {ϕ(xk)}k≥1 converge.

3.3 Proof of Theorem 3.2

In this section, we will prove Theorem 3.2. The argument we present is rooted in the “non-
escape argument” for ODEs, using ϕ as a Lyapunov function for the continuous dynamics.
In particular, the proof we present is in the same spirit as that in [22, Theorem 5.2.1]
and [17, Section 3.4.1].

Henceforth, we will suppose that Assumptions A and B hold. We first collect two ele-
mentary lemmas.

Lemma 3.3. The equality limk→∞ ‖xk+1 − xk‖ = 0 holds.

Proof. From the recurrence (3.2), we have ‖xk+1 − xk‖ ≤ αk‖yk‖ + αk‖ξk‖. Assumption A
guarantees αk → 0 and {yk} are bounded, and therefore αk‖yk‖ → 0. Moreover, since the
sequence

∑n
k=1 αkξk is convergent, we deduce αk‖ξk‖ → 0. The result follows.

Lemma 3.4. Equalities hold:

liminf
t→∞

ϕ(x(t)) = liminf
k→∞

ϕ(xk) and limsup
t→∞

ϕ(x(t)) = limsup
k→∞

ϕ(xk). (3.5)

Proof. Clearly, the inequalities ≤ and ≥ hold in (3.5), respectively. We will argue that the
reverse inequalities are valid. To this end, let τi → ∞ be an arbitrary sequence with x(τi)
converging to some point x∗ as i→∞.
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For each index i, define the breakpoint ki = max{k ∈ N : tk ≤ τi}. Then by the triangle
inequality, we have

‖xki − x∗‖ ≤ ‖xki − x(τi)‖+ ‖x(τi)− x∗‖ ≤ ‖xki − xki+1‖+ ‖x(τi)− x∗‖

Lemma 3.3 implies that the right-hand-side tends to zero, and hence xki → x∗. Continuity
of ϕ then directly yields the guarantee ϕ(xki)→ ϕ(x∗).

In particular, we may take τi → ∞ to be a sequence realizing liminft→∞ ϕ(x(t)). Since
the curve x(·) is bounded, we may suppose that up to taking a subsequence, x(τi) converges
to some point x∗. We therefore deduce

liminf
k→∞

ϕ(xk) ≤ lim
i→∞

ϕ(xki) = ϕ(x∗) = liminf
t→∞

ϕ(x(t)),

thereby establishing the first equality in (3.5). The second equality follows analogously.

Lε

L2ε

z

xij xej

Figure 1: Illustration of the non-escape argument

The proof of Theorem 3.3 will follow quickly from the following proposition.

Proposition 3.5. The values ϕ(x(t)) have a limit as t→∞.

Proof. Without loss of generality, suppose 0 = liminft→∞ ϕ(x(t)). For each r ∈ R, define the
sublevel set

Lr := {x ∈ Rd : ϕ(x) ≤ r}.

Choose any ε > 0 satisfying ε /∈ ϕ(G−1(0)). Note that by Assumption B, we can let ε > 0
be as small as we wish. By the first equality in (3.5), there are infinitely many indices k such
that ϕ(xk) < ε. The following elementary observation shows that for all large k, if xk lies in
Lε then the next iterate xk+1 lies in L2ε.

Claim 1. For all sufficiently large indices k ∈ N, the implication holds:

xk ∈ Lε =⇒ xk+1 ∈ L2ε.

9



Proof. Since the sequence {xk}k≥1 is bounded, it is contained in some compact set C ⊂ Rn.
From continuity, we have

cl (Rd \ L2ε) = cl (ϕ−1(2ε,∞)) ⊆ ϕ−1[2ε,∞).

It follows that the two closed sets, C ∩ Lε and cl (Rd \ L2ε), do not intersect. Since C ∩ Lε
is compact, we deduce that it is well separated from Rd \ L2ε; that is, there exists α > 0
satisfying:

min{‖w − v‖ : w ∈ C ∩ Lε, v /∈ L2ε} ≥ α > 0.

In particular dist(xk;Rd \ L2ε) ≥ α > 0, whenever xk lies in Lε. Taking into account
Lemma 3.3, we deduce ‖xk+1 − xk‖ < α for all large k, and therefore xk ∈ Lε implies
xk+1 ∈ L2ε, as claimed.

Let us define now the following sequence of iterates. Let i1 ∈ N be the first index
satisfying

1. xi1 ∈ Lε,

2. xi1+1 ∈ L2ε \ Lε, and

3. defining the exit time e1 := min{e ≥ i1 : xe /∈ L2ε \ Lε}, the iterate xe1 lies in Rd \ L2ε.

Then let i2 > i1 be the next smallest index satisfying the same property, and so on. See
Figure 1 for an illustration. The following claim will be key.

Claim 2. This process must terminate, that is {xk} exits L2ε only finitely many times.

Before proving the claim, let us see how it immediately yields the validity of the theorem.
To this end, observe that Claims 1 and 2 immediately imply xk ∈ L2ε for all large k. Since
ε > 0 can be made arbitrarily small, we deduce limk→∞ ϕ(xk) = 0. Equation (3.5) then
directly implies limt→∞ ϕ(x(t)) = 0, as claimed.

Proof of Claim 2. To verify the claim, suppose that the process does not terminate. Thus
we obtain an increasing sequence of indices ij ∈ N with ij →∞ as j →∞. Set τj = tij and
consider the curves xτj(·) in C(R+,Rd). Then up to a subsequence, Theorem 3.1 shows that
the curves xτj(·) converge in C(R+,Rd) to some arc z(·) satisfying

ż(t) ∈ G(z(t)) for a.e. t ≥ 0.

By construction, we have ϕ(xij) ≤ ε and ϕ(xij+1) > ε. We therefore deduce

ε ≥ ϕ(xij) ≥ ϕ(xij+1)+(ϕ(xij)−ϕ(xij+1)) ≥ ε+[ϕ(xij)−ϕ(z(0))]−[ϕ(xij+1)−ϕ(z(0))]. (3.6)

Recall xij → z(0) as j → ∞. Lemma 3.3 in turn implies ‖xij − xij+1‖ → 0 and therefore
xij+1 → z(0) as well. Continuity of ϕ then guarantees that the right-hand-side of (3.6) tends
to ε, and hence ϕ(z(0)) = limj→∞ ϕ(xij) = ε. In particular, z(0) is not an equilibrium point
of G. Hence, Assumption B yields a real T > 0 such that

ϕ(z(T )) < sup
t∈[0,T ]

ϕ(z(t)) ≤ ϕ(z(0)) = ε.

10



In particular, there exists a real δ > 0 satisfying ϕ(z(T )) ≤ ε− 2δ.
Appealing to uniform convergence on [0, T ], we conclude

sup
t∈[0,T ]

|ϕ(z(t))− ϕ(xτj(t))| < ε,

for all large j ∈ N, and therefore

sup
t∈[0,T ]

ϕ(xτj(t)) ≤ sup
t∈[0,T ]

ϕ(z(t)) + sup
t∈[0,T ]

|ϕ(z(t))− ϕ(xτj(t))| ≤ 2ε.

Hence, for all large j, all the curves xτj map [0, T ] into L2ε. We conclude that the exit time
satisfies

tej > τj + T for all large j.

We will show that the bound ϕ(z(T )) ≤ ε − 2δ yields the opposite inequality tej ≤ τj + T ,
which will lead to a contradiction.

To that end, let
`j = max{` ∈ N | τj ≤ t` ≤ τj + T},

be the last discrete index before T . Because αk → 0 as k →∞, we have that `j ≥ ij + 1 for
all large j. We will now show that for all large j, we have

ϕ(x`j) < ε− δ,

which implies tej < t`j ≤ τj + T . Indeed, observe

‖x`j − xτj(T )‖ = ‖xτj(t`j − τj)− xτj(T )‖ ≤ ‖x`j − x`j+1‖ → 0.

Hence x`j → z(T ) as j → ∞. Continuity of ϕ then guarantees limj→∞ ϕ(x`j) = ϕ(z(T )).
Consequently, the inequality ϕ(x`j) < ε− δ holds for all large j, which is the desired contra-
diction.

The proof of the lemma is now complete.

We can now prove the main convergence theorem.

Proof of Theorem 3.2. Let x∗ be a limit point of {xk} and suppose for the sake of contra-
diction that 0 /∈ G(x∗). Let ij be the indices satisfying xij → x∗ as j →∞. Let z(·) be the

subsequential limit of the curves xtij (·) in C(R+,Rd) guaranteed to exist by Theorem 3.1.
Assumption B guarantees that there exists a real T > 0 satisfying

ϕ(z(T )) < sup
t∈[0,T ]

ϕ(z(t)) ≤ ϕ(x∗).

On the other hand, we successively deduce

ϕ(z(T )) = lim
j→∞

ϕ(xtij (T )) = lim
t→∞

ϕ(x(t)) = ϕ(x∗),

where the last two equalities follow from Proposition 3.5 and continuity of ϕ. We have thus
arrived at a contradiction, and the theorem is proved.
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4 Subgradient dynamical system

Assumptions A and B, taken together, provide a powerful framework for proving subse-
quential convergence of algorithms to a zero of the set-valued map G. Note that the two
assumptions are qualitatively different. Assumption A is a property of both the algorithm
(3.2) and the map G, while Assumption B is a property of G alone.

For the rest of our discussion, we apply the differential inclusion approach outlined above
to optimization problems. Setting the notation, consider the optimization task

min
x∈Rd

f(x), (4.1)

where f : Rd → R is a locally Lipschitz continuous function. Seeking to apply the techniques
of Section 3, we simply set G = −∂f in the notation therein. Thus we will be interested in
algorithms that, under reasonable conditions, track solutions of the differential inclusion

ż(t) ∈ −∂f(z(t)) for a.e. t ≥ 0, (4.2)

and subsequentially converge to critical points of f . Discrete processes of the type (3.2)
for the optimization problem (4.1) are often called stochastic approximation algorithms.
Here we study two such prototypical methods: the stochastic subgradient method in this
section and the stochastic proximal subgradient in Section 6. Each fits under the umbrella
of Assumption A.

Setting the stage, the stochastic subgradient method simply iterates the steps:

xk+1 = xk − αk(yk + ξk) with yk ∈ ∂f(xk), (4.3)

where {αk}k≥1 is a step-size sequence and {ξk}k≥1 is now a sequence of random variables (the
“noise”) on some probability space. Let us now isolate the following standard assumptions
(e.g. [5, 22]) for the method and see how they immediately imply Assumption A.

Assumption C (Standing assumptions for the stochastic subgradient method).

1. The sequence {αk} is nonnegative, square summable, but not summable:

αk ≥ 0,
∞∑
k=1

αk =∞, and
∞∑
k=1

α2
k <∞.

2. Almost surely, the stochastic subgradient iterates are bounded: supk≥1 ‖xk‖ <∞.

3. {ξk} is a martingale difference sequence w.r.t the increasing σ-fields

Fk = σ(xj, yj, ξj : j ≤ k).

That is, there exists a function p : Rd → [0,∞), which is bounded on bounded sets, so
that almost surely, for all k ∈ N, we have

E[ξk|Fk] = 0 and E[‖ξk‖2|Fk] ≤ p(xk).

12



The following is true.

Lemma 4.1. Assumption C guarantees that almost surely Assumption A holds.

Proof. Suppose Assumption C holds. Clearly A.1 and A.3 hold vacuously, while A.2 follows
immediately from C.2 and local Lipschitz continuity of f . Assumption A.5 follows quickly
from the fact the ∂f outer-semicontinuous and compact-convex valued; we leave the details
to the reader. Thus we must only verify A.4, which follows quickly from standard martingale
arguments. Indeed, notice from Assumption C, we have

E [ξk | Fk] = 0 ∀k and
∞∑
i=0

α2
iE
[
‖ξi‖2 | Fi

]
≤

∞∑
i=0

α2
i p(xi) <∞.

Define the L2 martingale Xk =
∑k

i=1 αiξi. Thus the limit 〈X〉∞ of the predictable compen-
sator

〈X〉k :=
k∑
i=1

α2
iE
[
‖ξi‖2 | Fi

]
,

exists. Applying [15, Theorem 5.3.33(a)], we deduce that almost surely Xk converges to a
finite limit.

Thus applying Theorem 3.1, we deduce that under Assumption C, almost surely, the
stochastic subgradient path tracks a trajectory of the differential inclusion (4.2). As we
saw in Section 3, proving subsequential convergence to critical points requires existence of a
Lyapunov-type function ϕ for the continuous dynamics. Henceforth, let us assume that the
Lyapunov function ϕ is f itself. Section 5 is devoted entirely to justifying this assumption
for two broad classes of functions that are virtually exhaustive in data scientific contexts.

Assumption D (Lyapunov condition in unconstrained minimization).

1. (Weak Sard) The set of noncritical values of f is dense in R.

2. (Descent) Whenever z : R+ → Rd is trajectory of the differential inclusion ż ∈ −∂f(z)
and z(0) is not a critical point of f , there exists a real T > 0 satisfying

f(z(T )) < sup
t∈[0,T ]

f(z(t)) ≤ f(z(0)).

Some comments are in order. Recall that the classical Sard’s theorem guarantees that
the set of critical values of any Cd-smooth function f : Rd → R has measure zero. Thus
property 1 in Assumption D asserts a very weak version of a nonsmooth Sard theorem.
This is a very mild property, there mostly for technical reasons. It can fail, however, even
for a C1 smooth function on R2; see the famous example of Whitney [35]. Property 2 of
Assumption D is more meaningful. It essentially asserts that f must locally strictly decrease
along any subgradient trajectory emanating from a noncritical point.

Thus applying Theorem 3.2, we have arrived at the following guarantee for the stochastic
subgradient method.

Theorem 4.2. Suppose that Assumptions C and D hold. Then almost surely, every limit
point of stochastic subgradient iterates {xk}k≥1 is critical for f and the function values
{f(xk)}k≥1 converge.
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5 Verifying the descent condition

In light of Theorems 3.2 and 4.2, it is important to isolate a class of functions that au-
tomatically satisfy Assumption D.2. In this section, we do exactly that, focusing on two
problem classes: (1) subdifferentially regular functions and (2) those functions whose graphs
are Whitney stratifiable. We will see that the latter problem class also satisfies D.1.

The material in this section is not new. In particular, the results of this section have
appeared in [16, Section 5.1]. These results, however, are somewhat hidden in the paper [16]
and are difficult to parse. Moreover, at the time of writing [16, Section 5.1], there was no
clear application of the techniques, in contrast to our current paper. Since we do not expect
the readers to be experts in variational analysis and semialgebraic geometry, we provide here
a self-contained treatment, highlighting only the most essential ingredients and streamlining
some of the arguments.

Let us begin with the following definition, whose importance for verifying Property 2 in
Assumption D will become clear shortly.

Definition 5.1 (Chain rule). Consider a locally Lipschitz function f on Rd. We will say
that f admits a chain rule if for any arc z : R+ → Rd, equality

(f ◦ z)′(t) = 〈∂f(z(t)), ż(t)〉 holds for a.e. t ≥ 0.

The importance of the chain rule becomes immediately clear with the following lemma.

Lemma 5.2. Consider a locally Lipschitz function f : Rd → R that admits a chain rule. Let
z : R+ → Rd be any arc satisfying the differential inclusion

ż(t) ∈ −∂f(z(t)) for a.e. t ≥ 0.

Then equality ‖ż(t)‖ = dist(0, ∂f(z(t))) holds for a.e. t ≥ 0, and therefore

f(z(0))− f(z(t)) =

∫ t

0

dist2 (0; ∂f(z(τ))) dτ, ∀t ≥ 0. (5.1)

In particular, property 2 of Assumption D holds.

Proof. Fix a real t ≥ 0 satisfying (f ◦ z)′(t) = 〈∂f(z(t)), ż(t)〉 . Observe then the equality

0 = 〈∂f(z(t))− ∂f(z(t)), ż(t)〉. (5.2)

To simplify the notation, set S := ∂f(z(t)), W := span(S − S), and y := −ż(t). Appealing
to (5.2), we conclude y ∈ W⊥, and therefore trivially we have

y ∈ (y +W ) ∩W⊥.

Basic linear algebra implies ‖y‖ = dist(0; y + W ). Noting ∂f(z(t)) ⊂ y + W , we deduce
‖ż(t)‖ ≤ dist(0; ∂f(z(t))) as claimed. Since the reverse inequality trivially holds, we obtain
the claimed equality, ‖ż(t)‖ = dist(0; ∂f(z(t))).

Since f admits a chain rule, we conclude for a.e. τ ≥ 0 the estimate

(f ◦ z)′(τ) = 〈∂f(z(τ)), ż(τ)〉 = −‖ż(τ)‖2 = −dist2 (0; ∂f(z(τ))) .
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Since f is locally Lipschitz, the composition f ◦z is absolutely continuous. Hence integrating
over the interval [0, t] yields (5.1).

Suppose now that the point z(0) is noncritical. Then by outer semi-continuity of ∂f , the
exists T > 0 such that z(τ) is noncritical for any τ ∈ [0, T ]. It follows immediately that the
value

∫ t
0

dist2 (0; ∂f(z(τ))) dτ is strictly increasing in t ∈ [0, T ], and therefore by (5.1) that
f ◦ z is strictly decreasing. Hence item 2 of Assumption D holds, as claimed.

Thus property 2 of Assumption D is sure to hold as long as f admits a chain rule. In
the following two sections, we identify two different function classes that indeed admit the
chain rule.

5.1 Subdifferentially regular functions

The first function class we consider consists of subdifferentially regular functions. Such func-
tions play a prominent role in variational analysis due to their close connection with convex
functions; we refer the reader to the monograph [31] for details. In essence, subdifferential
regularity forbids downward facing cusps in the graph of the function; e.g. f(x) = −|x| is
not subdifferentially regular. We now present the formal definition.

Definition 5.3 (Subdifferential regularity). A locally Lipschitz function f : Rd → R is
subdifferentially regular at a point x ∈ Rd if every subgradient v ∈ ∂f(x) yields an affine
minorant of f up to first-order:

f(y) ≥ f(x) + 〈v, y − x〉+ o(‖y − x‖) as y → x.

The following lemma shows that any locally Lipschitz function that is subdifferentially
regular indeed admits a chain rule.

Lemma 5.4 (Chain rule under subdifferential regularity). Any locally Lipschitz function
that is subdifferentially regular admits a chain rule and therefore item 2 of Assumption D
holds.

Proof. Let f : Rd → R be a locally Lipschitz and subdifferentially regular function. Consider
an arc x : R+ → Rd. Since, x and f ◦ x are absolutely continuous, both are differentiable
almost everywhere. Then for any such t ≥ 0 and any subgradient v ∈ ∂f(x(t)), we conclude

(f ◦ x)′(t) = lim
r↘0

f(x(t+ r))− f(x(t))

r
≥ lim

r↘0

〈v, x(t+ r)− x(t)〉+ o(‖x(t+ r)− x(t)‖)
r

= 〈v, ẋ(t)〉.

Instead, equating (f ◦ x)′(t) with the left limit of the difference quotient yields the reverse
inequality (f ◦ x)′(t) ≤ 〈v, ẋ(t)〉. Thus f admits a chain rule and item 2 of Assumption D
holds by Lemma 5.2.

Thus we have arrived at the following corollary. For ease of reference, we state subsequen-
tial convergence guarantees both for the general process (3.2) and for the specific stochastic
subgradient method (4.3).
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Corollary 5.5. Let f : Rd → R be a locally Lipschitz function that is subdifferentially regular
and such that its set of noncritical values is dense in R.

• (Stochastic approximation) Consider the iterates {xk}k≥1 produced by (3.2) and
suppose that Assumption A holds with G = −∂f . Then every limit point of the iterates
{xk}k≥1 is critical for f and the function values {f(xk)}k≥1 converge.

• (Stochastic subgradient method) Consider the iterates {xk}k≥1 produced by the
stochastic subgradient method (4.3) and suppose that Assumption C holds. Then almost
surely, every limit point of the iterates {xk}k≥1 is critical for f and the function values
{f(xk)}k≥1 converge.

Though subdifferentially regular functions are widespread in applications, they preclude
“downwards cusps”, and therefore do not capture such simple examples as f(x, y) = (|x| −
|y|)2 and f(x) = (1−max{x, 0})2. The following section concerns a different function class
that does capture these two nonpathological examples.

5.2 Stratifiable functions

As we saw in the previous section, subdifferential regularity is a local property that implies
the desired item 2 of Assumption D. In this section, we instead focus on a broad class
of functions satisfying a global geometric property, which eliminates pathological examples
from consideration.

Before giving a formal definition, let us fix some notation. A set M ⊂ Rd is a Cp

smooth manifold if there is an integer r ∈ N such that around any point x ∈ M , there is a
neighborhood U and a Cp-smooth map F : U → Rd−r with ∇F (x) of full rank and satisfying
M ∩ U = {y ∈ U : F (y) = 0}. If this is the case, the tangent and normal spaces to M at x
are defined to be TM(x) := Null(∇F (x)) and NM(x) := (TM(x))⊥, respectively.

Definition 5.6 (Whitney stratification). A Whitney Cp-stratification A of a set Q ⊂ Rd

is a partition of Q into finitely many nonempty Cp manifolds, called strata, satisfying the
following compatibility conditions.

1. Frontier condition: For any two strata L and M , the implication

L ∩ clM 6= ∅ =⇒ L ⊂ clM holds.

2. Whitney condition (a): For any sequence of points zk in a stratum M converging
to a point z̄ in a stratum L, if the corresponding normal vectors vk ∈ NM(zk) converge
to a vector v, then the inclusion v ∈ NL(z̄) holds.

A function f : Rd → R is Whitney Cp-stratifiable if its graph admits a Whitney Cp-stratification.

The definition of the Whitney stratification invokes two conditions, one topological and
the other geometric. The frontier condition simply says that if one stratum L intersects the
closure of another M , then L must be fully contained in the closure clM . In particular, the
frontier condition endows the strata with a partial order L �M ⇔ L ⊂ clM . The Whitney
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condition (a) is geometric. In short, it asserts that limits of normals along a sequence xi in
a stratum M are themselves normal to the stratum containing the limit of xi.

The following discussion of Whitney stratifications follows that in [4]. Consider a Whitney
Cp-stratification {Mi} of the graph of a locally Lipschitz function f : Rd → R. Let {Mi} be
the manifolds obtained by projecting {Mi} on Rd. An easy argument using the constant rank
theorem shows that the partition {Mi} of Rd is itself a Whitney Cp-stratification and the
restriction of f to each stratum {Mi} is Cp-smooth. Whitney condition (a) directly yields
the following consequence [4, Proposition 4]. For any stratumM and any point x ∈M, we
have

(v,−1) ∈ NM(x, f(x)) for all v ∈ ∂f(x), (5.3)

and
∂f(x) ⊂ ∇g(x) +NM(x), (5.4)

where g : Rd → R is any C1-smooth function agreeing with f on a neighborhood of x inM.
The following theorem, which first appeared in [4, Corollary 5], shows that Whitney

stratifiable functions automatically satisfy the weak Sard property of Assumption D. We
present a quick argument here for completeness. It is worthwhile to mention that such a
Sard type result holds more generally for any stratifiable set-valued map; see the original
work [19] or the monograph [21, Section 8.4].

Lemma 5.7 (Stratified Sard). The set of critical values of any Whitney Cd-stratifiable locally
Lipschitz function f : Rd → R has zero measure. In particular, item 1 of Assumption D holds.

Proof. Let {Mi} be the strata of a Whitney Cd stratification of the graph of f . Let πi : Mi →
R be the restriction of the orthogonal projection (x, r) 7→ r to the manifold Mi. We claim
that each critical value of f is a critical value (in the classical analytic sense) of πi, for
some index i. To see this, consider a critical point x of f and let Mi be the stratum of
gph f containing (x, f(x)). Since x is critical for f , appealing to (5.3) yields the inclusion
(0,−1) ∈ NMi

(x, f(x)) and therefore the equality πi (TMi
(x, f(x))) = {0} ( R. Hence

(x, f(x)) is a critical point of πi and f(x) its critical value, thereby establishing the claim.
Since the set of critical values of each map πi has zero measure by the standard Sard’s
theorem, and there are finitely many strata, it follows that the set of critical values of f also
has zero measure.

Next, we prove the chain rule for any Whitney stratifiable function.

Theorem 5.8. Any locally Lipschitz function f : Rd → R that is Whitney C1-stratifiable
admits a chain rule, and therefore item 2 of Assumption D holds.

Proof. Let {Mi} be the Whitney C1-stratification of gph f and let {Mi} be its coordinate
projection onto Rd. Fix an arc x : Rd → R. Clearly, both x and f ◦ x are differentiable at
a.e. t ≥ 0. Moreover, we claim that for a.e. t ≥ 0, the implication holds:

x(t) ∈Mi =⇒ ẋ(t) ∈ TMi
(x(t)). (5.5)

To see this, fix a manifold Mi and let Ωi be the set of all t ≥ 0 such that x(t) ∈ Mi, the
derivative ẋ(t) exists, and we have ẋ(t) /∈ TMi

(x(t)). If we argue that Ωi has zero measure,
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then so does the union ∪iΩi and the claim is proved. Fix an arbitrary t ∈ Ωi. There exists
a closed interval I around t such that x restricted to I intersects Mi only at x(t), since
otherwise we would deduce that ẋ(t) lies in TMi

(x(t)) by definition of the tangent space. We
may further shrink I such that its endpoints are rational. It follows that Ωi may be covered
by disjoint closed intervals with rational endpoints. Hence Ωi is countable and therefore zero
measure, as claimed.

Fix now a real t > 0 such that x and f ◦ x are differentiable at t and the implication
(5.5) holds. Let M be a stratum containing x(t). Since ẋ(t) is tangent to M at x(t), there
exists a C1-smooth curve γ : (−1, 1) → M satisfying γ(0) = x(t) and γ̇(0) = ẋ(t). Let
g : Rd → R be any C1 function agreeing with f on a neighborhood of x(t) in M. We claim
that (f ◦ x)′(t) = (f ◦ γ)′(0). Indeed, letting L be a Lipschitz constant of f around x(t), we
deduce

(f ◦ x)′(t) = lim
r→0

f(x(t+ r))− f(x(t))

r
= lim

r→0

f(x(t+ r))− f(γ(r)) + f(γ(r))− f(γ(0))

r

= lim
r→0

f(x(t+ r))− f(γ(r))

r
+ (f ◦ γ)′(0).

Notice |f(x(t+r))−f(γ(r))|
r

≤ L
∥∥∥x(t+r)−x(t)+γ(0)−γ(r)

r

∥∥∥→ L‖ẋ(t)− γ̇(0)‖ = 0 as r → 0. Thus

(f ◦ x)′(t) = (f ◦ γ)′(0) = (g ◦ γ)′(0) = 〈∇g(x), γ̇(0)〉 = 〈∂f(x(t)), ẋ(t)〉,

where the last equality follows from (5.4).

Putting together Theorems 3.2, 4.2, 5.8 and Lemma 5.7, we arrive at the main result of
our paper. Again for ease of reference, we state subsequential convergence guarantees both
for the general process (3.2) and for the specific stochastic subgradient method (4.3).

Corollary 5.9. Let f : Rd → R be a locally Lipschitz function that is Cd-stratifiable.

• (Stochastic approximation) Consider the iterates {xk}k≥1 produced by (3.2) and
suppose that Assumption A holds with G = −∂f . Then every limit point of the iterates
{xk}k≥1 is critical for f and the function values {f(xk)}k≥1 converge.

• (Stochastic subgradient method) Consider the iterates {xk}k≥1 produced by the
stochastic subgradient method (4.3) and suppose that Assumption C holds. Then almost
surely, every limit point of the iterates {xk}k≥1 is critical for f and the function values
{f(xk)}k≥1 converge.

Verifying Whitney stratifiability is often an easy task. Indeed, there are a number of well-
known and easy to recognize function classes, whose members are automatically Whitney
stratifiable. We now briefly review such classes, beginning with the semianalytic setting.

A closed set Q is called semianalytic if it can be written as a finite union of sets, each
having the form

{x ∈ Rd : pi(x) ≤ 0 for i = 1, . . . , `}

for some real-analytic functions p1, p2, . . . , p` on Rd. If the functions p1, p2, . . . , p` in the
description above are polynomials, then Q is said to be a semialgebraic set. A well-known
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result of  Lojasiewicz [23] shows that any semianalytic set admits a Whitney C∞ stratification.
Thus, the results of this paper apply to functions with semianalytic graphs. While the class of
such functions is broad, it is sometimes difficult to recognize its members as semianalyticity
is not preserved under some basic operations, such as projection onto a linear subspace. On
the other hand, there are large subclasses of semianalytic sets that are easy to recognize.

For example, every semialgebraic set is semianalytic, but in contrast to the semianalytic
case, semi-algebraic sets are stable with respect to all boolean operations and projections onto
subspaces. The latter property is a direct consequence of the celebrated Tarski-Seidenberg
Theorem. Moreover, semialgebraic sets are typically easy to recognize using quantifier elim-
ination; see [12, Chapter 2] for a detailed discussion. Importantly, compositions of semial-
gebraic functions are semialgebraic.

A far reaching axiomatic extension of semialgebraic sets, whose members are also Whitney
stratifiable, is built from “o-minimal structures”. Loosely speaking, sets that are definable in
an o-minimal structure share the same robustness properties and attractive analytic features
as semialgebraic sets. For the sake of completeness, let us give a formal definition, following
Coste [11] and van den Dries-Miller [34].

Definition 5.10 (o-minimal structure). An o-minimal structure is a sequence of Boolean
algebras Od of subsets of Rd such that for each d ∈ N:

(i) if A belongs to Od, then A× R and R× A belong to Od+1;

(ii) if π : Rd × R→ Rd denotes the coordinate projection onto Rd, then for any A in Od+1

the set π(A) belongs to Od;

(iii) Od contains all sets of the form {x ∈ Rd : p(x) = 0}, where p is a polynomial on Rd;

(iv) the elements of O1 are exactly the finite unions of intervals (possibly infinite) and
points.

The sets A belonging to Od, for some d ∈ N, are called definable in the o-minimal structure.

As in the semialgebraic setting, any function definable in an o-minimal structure admits
a Whitney Cp stratification, for any p ≥ 1 (see e.g. [34]). Beyond semialgebraicity, Wilkie
showed that that there is an o-minimal structure that simultaneously contains both the
graph of the exponential function x 7→ ex and all semi-algebraic sets [36].

A corollary for deep learning

Since the composition of two definable functions is definable, we conclude that nonsmooth
deep neural networks built from definable pieces—such as ReLU, quadratics t2, hinge losses
max{0, t}, and SoftPlus log(1 + et) functions—are themselves definable. Hence, the results
of this paper endow stochastic subgradient methods, applied to definable deep networks,
with rigorous convergence guarantees. Due to the importance of subgradient methods in
deep learning, we make this observation precise in the following corollary which provides
a rigorous convergence guarantee for a wide class of deep learning loss functions that are
recursively defined, including convolutional neural networks, recurrent neural networks, and
feed-forward networks.
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Corollary 5.11 (Deep networks). For each given data pair (xj, yj) with j = 1, . . . , n, recur-
sively define:

a0 = xj, ai = ρi(Vi(w)ai−1) ∀i = 1, . . . , L, f(w;xj, yj) = `(yj, aL),

where

1. Vi(·) are linear maps into the space of matrices.

2. `(·; ·) is any definable loss function, such as the logistic loss `(y; z) = log(1 + e−yz),
the hinge loss `(y; z) = max{0, 1− yz}, absolute deviation loss `(y; z) = |y− z|, or the
square loss `(y; z) = 1

2
(y − z)2.

3. ρi are definable activation functions applied coordinate wise, such as those whose do-
main can be decomposed into finitely many intervals on which it coincides with log t,
exp(t), max(0, t), or log(1 + et).

Let {wk}k≥1 be the iterates produced by the stochastic subgradient method on the deep neural
network loss f(w) :=

∑n
j=1 f(w;xj, yj), and suppose that the standing assumption C holds.3

Then almost surely, every limit point w∗ of the iterates {wk}k≥1 is critical for f , meaning
0 ∈ ∂f(w∗), and the function values {f(wk)}k≥1 converge.

6 Proximal extensions

In this section, we extend most of the results in Sections 4 and 5 on unconstrained problems
to a “proximal” setting and comment on sufficient conditions to ensure boundedness of the
iterates. The arguments follow quickly by combining the techniques developed by Duchi-
Ruan [17] with those presented in Section 5. Consequently, all the proofs are in Appendix A.

Setting the stage, consider the composite optimization problem

min
x∈X

ϕ(x) := f(x) + g(x), (6.1)

where f : Rd → R and g : Rd → R are locally Lipschitz functions and X is a closed set. As
is standard in the literature on proximal methods, we will say that x ∈ X is a composite
critical point of the problem (6.1) if the inclusion holds:

0 ∈ ∂f(x) + ∂g(x) +NX (x). (6.2)

Here, the symbol NX (x) denotes the Clarke normal cone to the closed set X ⊆ Rd at x ∈ X .
We refer the reader to Appendix A for a formal definition. We only note that when X is a
closed convex set, NX reduces to the normal cone in the sense of convex analysis, while for a
C1-smooth manifold X , it reduces to the normal space in the sense of differential geometry.
It follows from [31, Corollary 10.9] that local minimizers of (6.1) are necessarily composite
critical. A real number r ∈ R is called a composite critical value if equality, r = f(x) + g(x),
holds for some composite critical point x.

3In the assumption, replace xk with wk, since we now use wk to denote the stochastic subgradient iterates.
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Thus we will be interested in an extension of the stochastic subgradient method that
tracks a trajectory of the differential inclusion

ż(t) ∈ −(∂f + ∂g +NX )(z(t)) for a.e. t ≥ 0, (6.3)

and subsequentially converges to a composite critical point of (6.1). Seeking to apply the
techniques of Section 3, we can simply set G = −∂f − ∂g − NX in the notation therein.
Note that G thus defined is not necessarily a subdifferential of a single function because
equality in the subdifferential sum rule [31, Corollary 10.9] can fail when the summands are
not subdifferentially regular.

We now aim to describe the proximal stochastic subgradient method for the problem
(6.1). There are two ingredients we must introduce: a stochastic subgradient oracle for f
and the proximity map of g + δX , where δX is the indicator function of X . We describe the
two ingredients in turn.

Stochastic subgradient oracle Our model of the stochastic subgradient oracle follows
that of the influential work [25]. Fix a probability space (Ω,F , P ) and equip Rd with the
Borel σ-algebra. We suppose that there exists a measurable mapping ζ : Rd × Ω → Rd

satisfying:
Eω [ζ(x, ω)] ∈ ∂f(x) for all x ∈ Rd.

Thus after sampling ω ∼ P , the vector ζ(x, ω) can serve as a stochastic estimator for a true
subgradient of f .

Proximal map Standard deterministic proximal splitting methods utilize the proximal
map of g + δX , namely:

z 7→ argmin
x∈X

{g(x) + 1
2α
‖x− z‖2}.

Since we do not impose convexity assumptions on g and X , this map can be set-valued. Thus
we must pass to a measurable selection. Indeed, supposing that g is bounded from below
on X , the result [31, Exercise 14.38] guarantees that there exists a measurable selection
T(·)(·) : (0,∞)× Rd → Rd, such that

Tα(z) ∈ argmin
x∈X

{
g(x) + 1

2α
‖x− z‖2

}
for all α > 0, z ∈ Rd.

We can now formally state the algorithm. Given an iterate xk ∈ X , the proximal stochas-
tic subgradient method performs the update{

Sample ωk ∼ P

xk+1 = Tαk
(xk − αkζ(xk, ωk)).

}
. (6.4)

Here {αk}k≥1 is a positive control sequence. We will analyze the algorithm under the fol-
lowing two assumptions, akin to Assumptions C and D of Section 4. Henceforth, define the
set-valued map G : X ⇒ Rd by

G(x) = −∂f(x)− ∂g(x)−NX (x). (6.5)
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Assumption E (Standing assumptions for the proximal stochastic subgradient method).

1. X is closed, f and g are locally Lipschitz, and g is bounded from below on X .

2. There exists a function L : Rd → R, which is bounded on bounded sets, satisfying

L(x) ≥ sup
z:g(z)≤g(x)

g(x)− g(z)

‖x− z‖
.

3. The sequence {αk}k≥1 is nonnegative, square summable, but not summable:

αk ≥ 0,
∞∑
k=1

αk =∞, and
∞∑
k=1

α2
k <∞.

4. Almost surely, the iterates are bounded: supk≥1 ‖xk‖ <∞.

5. There exists a function p : Rd → R+, that is bounded on bounded sets, such that

Eω [ζ(x, ω)] ∈ ∂f(x) and Eω
[
‖ζ(x, ω)‖2] ≤ p(x) for all x ∈ X .

6. For every convergent sequence {zk}k≥1, we have

Eω
[
sup
k≥1
‖ζ(zk, ω)‖

]
<∞.

Assumption F (Lyapunov condition in proximal minimization).

1. (Weak Sard) The set of composite noncritical values of (6.1) is dense in R.

2. (Descent) Whenever z : R+ → X is an arc satisfying the differential inclusion

ż(t) ∈ −(∂f + ∂g +NX )(z(t)) for a.e. t ≥ 0,

and z(0) is not a composite critical point of (6.1), there exists a real T > 0 satisfying

ϕ(z(T )) < sup
t∈[0,T ]

ϕ(z(t)) ≤ ϕ(z(0)).

Let us make a few comments. Properties E.1, E.3, E.4, and E.5 are mild and completely
expected in light of the results in the previous sections. Property E.6 is a technical condition
ensuring that the expected maximal noise in the stochastic subgradient is bounded along
any convergent sequence. Finally, property E.2 is a mild technical condition on function g
that we allow. In particular, it holds for any convex, globally Lipschitz, or coercive locally
Lipschitz function. We record this observation in the following lemma.

Lemma 6.1. Consider any function g : Rd → R+ that is either convex, globally Lipschitz,
or locally Lipschitz and coercive. Then g satisfies property 2 in Assumption E.
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Proof. Fix a point x and a point z satisfying g(z) ≤ g(x). Let us look at each case and upper
bound the error g(x)− g(z). Suppose first that g is convex. Then for the vector v ∈ ∂g(x)
of minimal norm, we have

g(x)− g(z) ≤ 〈v, x− z〉 ≤ ‖v‖‖x− z‖ = L(x) · ‖x− z‖.

where L(x) := dist(0, ∂g(x)). If f is globally Lipschitz, then clearly we have

g(x)− g(z) ≤ L(x) · ‖x− z‖.

where L(x) is identically equal to the global Lipschitz constant of g. Finally, in the third
case, suppose that g is coercive and locally Lipschitz. We deduce

g(x)− g(z) ≤ L(x) · ‖x− z‖,

where L(x) is the Lipschitz modulus of g on the compact sublevel set [g ≤ g(x)]. Since g
is locally Lipschitz continuous, in all three cases, the function L(·) is bounded on bounded
sets.

Under the two assumptions, E and F, we obtain the following subsequential convergence
guarantee. The argument in the appendix is an application of Theorem 3.2. To this end, we
show that Assumption E implies Assumption A almost surely, while Assumption F is clearly
equivalent to Assumption B.

Theorem 6.2. Suppose that Assumptions E and F hold. Then almost surely, every limit
point of the iterates {xk}k≥1 produced by the proximal stochastic subgradient method (6.4) is
composite critical for (6.1) and the function values {ϕ(xk)}k≥1 converge.

Finally, we must now understand problem classes that satisfy Assumption F. To this end,
analogously to Definition 5.1, we say that X admits a chain rule if for any arc z : R+ → X ,
equality holds

〈NX (z(t)), ż(t)〉 = 0 for a.e. t ≥ 0.

Whenever X is Clarke regular or Whitney stratifiable, X automatically admits a chain
rule. Indeed, the argument is identical to that of Lemma 5.4 and Theorem 5.8. As in the
unconstrained case, Assumption F.2 is true as long as f , g, and X admit a chain rule.

Lemma 6.3. Consider the optimization problem (6.1) and suppose that f , g, and X admit
a chain rule. Let z : R+ → X be any arc satisfying the differential inclusion

ż(t) ∈ G(z(t)) for a.e. t ≥ 0.

Then equality ‖ż(t)‖ = dist(0, G(z(t))) holds for a.e. t ≥ 0, and therefore we have the
estimate

ϕ(z(0))− ϕ(z(t)) =

∫ t

0

dist2 (0;G(z(τ))) dτ, ∀t ≥ 0. (6.6)

In particular, property 2 of Assumption F holds.

We now arrive at the main result of the section.

Corollary 6.4. Suppose that Assumption E holds and that f , g, and X are definable in
an o-minimal structure. Let {xk}k≥1 be the iterates produced by the proximal stochastic
subgradient method (6.4). Then almost surely, every limit point of the iterates {xk}k≥1 is
composite critical for the problem (6.1) and the function values {ϕ(xk)}k≥1 converge.
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6.1 Comments on boundedness

Thus far, all of our results have assumed that the subgradient iterates {xk} satisfy supk≥1 ‖xk‖ <
∞ almost surely. One may enforce this assumption in several ways, most easily by assuming
the constraint set X is bounded. Beyond boundedness of X , proper choice of regularizer
g may also ensure boundedness of {xk}. Indeed, this observation was already made by
Duchi-Ruan [17, Lemma 3.15]. Following their work, let us isolate the following assumption.

Assumption G (Regularizers that induce boundedness).

1. g is convex and β-coercive, meaning limk→∞ g(x)/‖x‖β =∞.

2. There exists λ ∈ (0, 1] such that g(x) ≥ g(λx) for x with sufficiently large norm.

A natural regularizer satisfying this assumption is ‖x‖β+ε for any ε > 0. The following
theorem, whose proof is identical to that of [17, Lemma 3.15], shows that with Assumption G
in place, the stochastic proximal subgradient methods produces bounded iterates.

Theorem 6.5 (Boundedness of iterates under coercivity). Suppose that Assumption G holds
and that X = Rd. In addition, suppose there exists L > 0 and ν < β − 1 such that
‖ζ(x, ω)‖ ≤ L(1 + ‖x‖ν) for all x ∈ Rd and ω ∈ Ω. Then supk≥1 ‖xk‖ <∞ almost surely.

We note that in the special (deterministic) case that ζ(x, ω) ∈ ∂f(x) for all ω, the
assumption on ζ(x, ω) reduces to supζ∈∂f(x) ‖ζ‖ ≤ L(1+‖x‖ν), which stipulates that g grows
more quickly than f .

A Proofs for the proximal extension

In this section, we follow the notation of Section 6. Namely, we let ζ : Rd × Ω → Rd be
the stochastic subgradient oracle and T(·)(·) : (0,∞) × Rd → Rd the proximal selection.
Throughout, we let xk and ωk be generated by the proximal stochastic subgradient method
(6.4) and suppose that Assumption E holds. Let Fk := σ(xj, ωj−1 : j ≤ k) be the sigma
algebra generated by the history of the algorithm.

Let us now formally define the normal cone constructions of variational analysis. For any
point x ∈ X , the proximal normal cone to X at x is the set

NP
X (x) := {λv ∈ Rd : x ∈ projX (x+ v), λ ≥ 0},

where projX (·) denotes the nearest point map to X . The limiting normal cone to X at x,
denoted NL

X (x), consists of all vector v ∈ Rd such that there exist sequences xi ∈ X and
vi ∈ NP

X (xi) satisfying (xi, vi)→ (x, v). The Clarke normal cone to X at x is then simply

NX (x) := cl convNL
X (x).
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A.1 Auxiliary lemmas

In this subsection, we record a few auxiliary lemmas to be used in the sequel.

Lemma A.1. There exists a function L : Rd → R+, which is bounded on bounded sets, such
that for any x, v ∈ Rd, and α > 0, we have

α−1‖x− x+‖ ≤ 2 · L(x) + 2 · ‖v‖,

where we set x+ := Tα(x− αv).

Proof. Let L(·) be the function from property E.2. From the definition of the proximal map,
we deduce

1
2α
‖x+ − x‖2 ≤ g(x)− g(x+)− 〈v, x+ − x〉 ≤ L(x) · ‖x+ − x‖+ ‖v‖ · ‖x+ − x‖.

Dividing both sides by 1
2
‖x+ − x‖ yields the result.

Lemma A.2. Let {zk}k≥1 be a bounded sequence in Rd and let {βk}k≥1 be a nonnegative
sequence satisfying

∑∞
k=1 β

2
k <∞. Then almost surely over ω ∼ P , we have βkζ(zk, ω)→ 0.

Proof. Notice that because {zk}k≥1 is bounded, it follows that {p(zk)} is bounded. Now
consider the random variable Xk = β2

k‖ζ(zk, ·)‖2. Due to the estimate

∞∑
k=1

E [Xk] ≤
∞∑
k=1

β2
kp(zk) <∞,

standard results in measure theory (e.g., [33, Exercise 1.5.5]) imply that Xk → 0 almost
surely.

Lemma A.3. Almost surely, we have αk‖ζ(xk, ωk)‖ → 0 as k →∞.

Proof. From the variance bound, E [‖X − E [X] ‖2] ≤ E [‖X‖2], and Assumption E, we have

E
[
‖ζ(xk, ωk)− E [ζ(xk, ωk) | Fk] ‖2 | Fk

]
≤ E

[
‖ζ(xk, ωk)‖2 | Fk

]
≤ p(xk).

Therefore, the following infinite sum is a.s. finite:

∞∑
i=1

α2
iE
[
‖ζ(xi, ωi)− E [ζ(xi, ωi) | Fi] ‖2 | Fi

]
≤

∞∑
i=1

α2
i p(xi) <∞.

Define the L2 martingale Xk =
∑k

i=1 αi(ζ(xi, ωi) − E [ζ(xi, ωi) | Fi]). Thus, the limit 〈X〉∞
of the predictable compensator

〈X〉k :=
k∑
i=1

α2
iE
[
‖ζ(xi, ωi)− E [ζ(xi, ωi) | Fi] ‖2 | Fi

]
,

exists. Applying [15, Theorem 5.3.33(a)], we deduce that almost surely Xk converges to a
finite limit, which directly implies αk‖ζ(xk, ωk) − E [ζ(xk, ωk) | Fk] ‖ → 0 almost surely as
k → ∞. Therefore, since αk‖E [ζ(xk, ωk) | Fk] ‖ ≤ αkE [‖ζ(xk, ωk)‖ | Fk] ≤ αk

√
p(xk) → 0

almost surely as k → 0, it follows that αk‖ζ(xk, ωk)‖ → 0 almost surely as k → 0.
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A.2 Proof Theorem 6.2

In addition to Assumption E, let us now suppose that Assumption F holds. Define the set-
valued map G : Q⇒ Rd by G = −∂f−∂g−NX . We aim to apply Theorem 3.2, which would
immediately imply the validity of Theorem 6.2. To this end, notice that Assumption F is
exactly Assumption B for our map G. Thus we must only verify that Assumption A holds
almost surely. Note that properties A.1 and A.3 hold vacuously. Thus, we must only
show that A.2, A.4, and A.5 hold. The argument we present is essentially the same as
in [17, Section 3.2.2] .

For each index k, define the set-valued map

Gk(x) := −∂f(x)− α−1
k · Eω [x− αkζ(x, ω)− Tαk

(x− αkζ(x, ω))]

Note that Gk is a deterministic map, with k only signifying the dependence on the deter-
ministic sequence αk. Define now the noise sequence

ξk := 1
αk

[Tαk
(xk − αkζ(xk, ωk))− xk]− 1

αk
[Eω [Tαk

(xk − αkζ(xk, ω))− xk])] .

Let us now write the proximal stochastic subgradient method in the form (3.2).

Lemma A.4 (Recursion relation). For all k ≥ 0, we have

xk+1 = xk + αk [yk + ξk] for some yk ∈ Gk(xk).

Proof. Notice that for every index k ≥ 0, we have

1
αk

(xk − xk+1) = 1
αk

[xk − Tαk
(xk − αkζ(xk, ωk))]

= Eω [ζ(xk, ω)] + 1
αk
Eω [xk − αkζ(xk, ω)− Tαk

(xk − αkζ(xk, ω))]

+ 1
αk

[Eω [Tαk
(xk − αkζ(xk, ω))]− Tαk

(xk − αkζ(xk, ωk))]

∈ −Gk(xk)− ξk,

as desired.

The following lemma shows that A.4 holds almost surely.

Lemma A.5 (Weighted noise sequence). The limit lim
n→∞

n∑
i=1

αiξi exists almost surely.

Proof. We first prove that {αkξk} is an L2 martingale difference sequence, meaning that for
all k, we have

E [αkξk | Fk] = 0 and
∞∑
k=1

α2
kE
[
‖ξk‖2 | Fk

]
<∞.

Clearly, ξk has zero mean conditioned on the past, and so we need only focus on the second
property. By the variance bound, E [‖X − E [X] ‖2] ≤ E [‖X‖2], and Lemma A.1, we have

E
[
‖ξk‖2 | Fk

]
≤ 1

α2
k

E
[
‖Tαk

(xk − αkζ(xk, ωk))− xk‖2 | Fk
]

≤ 4 · L(xk)
2 + 4 · E

[
‖ζ(xk, ωk)‖2 | Fk

]
.
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Notice that because {xk} is bounded a.s., it follows that {L(xk)} and {p(xk)} are bounded
a.s. Therefore, because

∞∑
k=1

α2
kE
[
‖ζ(xk, ωk)‖2 | Fk

]
≤

∞∑
k=1

α2
kp(xk) <∞,

it follows that
∑∞

k=1 α
2
kE [‖ξk‖2 | Fk] <∞, almost surely, as desired.

Now, define the L2 martingale Xk =
∑k

i=1 αiξi. Thus, the limit 〈X〉∞ of the predictable
compensator

〈X〉k :=
k∑
i=1

α2
iE
[
‖ξi‖2 | Fi

]
,

exists. Applying [15, Theorem 5.3.33(a)], we deduce that almost surely Xk converges to a
finite limit, which completes the proof of the claim.

Now we turn our attention to A.2.

Lemma A.6. Almost surely, the sequence {yk} is bounded.

Proof. Because the sequence {xk} is almost surely bounded and g is locally Lipschitz, clearly
we have

sup

{
‖v‖ : v ∈

⋃
k≥1

∂f(xk)

}
<∞,

almost surely. Thus, we need only show that

sup
k≥1

{∥∥∥∥ 1

αk
Eω [xk − αkζ(xk, ω)− Tαk

(xk − αkζ(xk, ω))]

∥∥∥∥} <∞,

almost surely. To this end, by the triangle inequality and Lemma A.1, we have for any fixed
ω ∈ Ω the bound∥∥∥ 1

αk
[xk − Tαk

(xk − αkζ(xk, ω))]
∥∥∥ ≤ 2 · L(xk) + 2 · ‖ζ(xk, ω)‖

Therefore, by Jensen’s inequality, we have that∥∥∥ 1
αk
Eω [xk − αkζ(xk, ω)− Tαk

(xk − αkζ(xk, ω))]
∥∥∥

≤ 2 · L(xk) + 3 · Eω [‖ζ(xk, ω)‖]
≤ 2 · L(xk) + 3 ·

√
p(xk),

which is almost surely bounded for all k. Taking the supremum yields the result.

As the last step, we verify Item A.5.

Lemma A.7. Item 5 of Assumption A is true.
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Proof. It will be convenient to prove a more general statement, which is independent of the
iterate sequence {xk}, and instead only depends on the maps Gk. Namely, consider any
sequence {zk} ⊆ X converging to a point z ∈ X and an arbitrary sequence wfk ∈ ∂f(zk).
Let {nk} be an unbounded increasing sequence of indices. Observe that since G(z) is convex
and using Jensen’s inequality, we have

dist

(
1

n

n∑
k=1

(
−wfk −

1

αnk

Eω
[
zk − αnk

ζ(zk, ω)− Tαnk
(zk − αnk

ζ(zk, ω))
])

, G(z)

)

≤ 1

n

n∑
k=1

Eω
[
dist

(
−wfk −

1

αnk

[
zk − αnk

ζ(zk, ω)− Tαnk
(zk − αnk

ζ(zk, ω))
]
, G(z)

)]
.

Our goal is to prove that the right-hand-side tends to zero almost surely, which directly
implies validity of A.5

Our immediate goal is to apply the dominated convergence theorem to each term in the
above finite sum to conclude that each term converges to zero. To that end, we must show
two properties: for every fixed ω, each term in the sum tends to zero, and that each term is
bounded by an integrable function. We now prove both properties.

Claim 3. Almost surely in ω ∼ P , we have that

dist

(
−wfk −

1

αnk

[
zk − αnk

ζ(zk, ω)− Tαnk
(zk − αnk

ζ(zk, ω))
]
, G(z)

)
→ 0 as k →∞.

Proof of Subclaim 3. Optimality conditions [31, Exercise 10.10] of the proximal subproblem
imply

1
αnk

[
zk − αnk

ζ(zk, ω)− Tαnk
(zk − αnk

ζ(zk, ω))
]

= wgk(ω) + wXk (ω),

for some wgk(ω) ∈ ∂g(Tαnk
(zk − αnk

ζ(zk, ω))) and wXk (ω) ∈ NL
X (Tαnk

(zk − αnk
ζ(zk, ω))), and

where NL
X denotes the limiting normal cone. Observe that by continuity and the fact that∑∞

k=1 α
2
nk
<∞ and αnk

ζ(zk, ω)→ 0 as k →∞ a.e. (see Lemma A.2), it follows that

Tαnk
(zk − αnk

ζ(zk, ω))→ z.

Indeed, setting z+
k = Tαnk

(zk − αnk
ζ(zk, ω)), we have that by Lemma A.1,

‖zk − z+
k ‖ ≤ 2αnk

L(zk) + 2αnk
‖ζ(zk, ω)‖ → 0 as k →∞,

which implies that limk→∞ z
+
k = limk→∞ zk = z.

We furthermore deduce that wXk (ω) and wgk(ω) are bounded almost surely. Indeed, wgk(ω)
is bounded since g is locally Lipschitz and z+

k are bounded. Moreover, Lemma A.1 implies

‖wgk(ω) + wXk (ω)‖ =
∥∥∥ 1
αnk

[
zk − αnk

ζ(zk, ω)− z+
k

]∥∥∥ ≤ 2 · L(zk) + 3 · sup
k≥1
‖ζ(zk, ω)‖.

Observe that the right hand-side is a.s. bounded by item 6 of Assumption E. Thus, since
wgk(ω)+wXk (ω) and wgk(ω) are a.s. bounded, it follows that wXk (ω) must also be a.s. bounded,
as desired.
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Appealing to outer semicontinuity of ∂f, ∂g, and NL
X (e.g. [31, Propostion 6.6]), the

inclusion NL
X ⊂ NX , and the boundedness of {wfk}, {w

g
k(ω)}, and {wXk (ω)}, it follows that

dist(wfk , ∂f(z))→ 0; dist(wgk(ω), ∂g(z))→ 0; dist(wXk (ω), NX (z))→ 0,

as k →∞. Consequently, almost surely we have that

dist
(
−wfk − 1

αnk

[
zk − αnk

ζ(zk, ω)− Tαnk
(zk − αnk

ζ(zk, ω))
]
, G(z)

)
≤ dist(wfk , ∂f(z)) + dist(wgk(ω), ∂g(z)) + dist(wXk (ω), NX (z))→ 0,

as desired.

Claim 4. Let Lf := supk≥1 dist(0, ∂f(zk)) and Lg := supk≥1 L(zk). Then for all k ≥ 0, the
functions

dist
(
−wfk − 1

αnk

[
zk − αnk

ζ(zk, ω)− Tαnk
(zk − αnk

ζ(zk, ω))
]
, G(z)

)
are uniformly dominated by an integrable function in ω.

Proof of Subclaim 4. For each k, Lemma A.1 implies the bound∥∥∥ 1
αnk

[
zk − αnk

ζ(zk, ω)− Tαnk
(zk − αnk

ζ(zk, ω))
]∥∥∥ ≤ 2Lg + 3 · ‖ζ(zk, ω)‖.

Consequently, we have

dist
(
−wfk − 1

αnk

[
zk − αnk

ζ(zk, ω)− Tαnk
r(zk − αnk

ζ(zk, ω))
]
, G(z)

)
≤ Lf + 2Lg + 3 · ‖ζ(zk, ω)‖+ dist(0, G(z))

≤ Lf + 2Lg + 3 · sup
k≥1
‖ζ(zk, ω)‖+ dist(0, ∂f(z) + ∂g(z)),

which is integrable by Item 6 of Assumption E.

Applying the dominated convergence theorem, it follows that

Eω
[
dist

(
−wfk − 1

αnk

[
zk − αnk

ζ(zk, ω)− Tαnk
(zk − αnk

ζ(zk, ω))
]
, G(z)

)]
→ 0

as k → ∞. Notice the simple fact that for any real sequence bk → 0, it must be that
1
n

∑n
k=1 bk → 0 as n→∞. Consequently

dist

(
1

n

n∑
k=1

(
−wfk − 1

αnk
Eω
[
zk − αnk

ζ(zk, ω)− Tαnk
(zk − αnk

ζ(zk, ω))
])
, G(z)

)

≤ 1

n

n∑
k=1

Eω
[
dist

(
−wfk − 1

αnk

[
zk − αnk

ζ(zk, ω)− Tαnk
(zk − αnk

ζ(zk, ω))
]
, G(z)

)]
→ 0

as n→∞. This completes the proof.

We have now verified all parts of Theorem 3.1. Therefore, the proof is complete.
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A.3 Verifying Assumption F for composite problems

Proof of Lemma 6.3. The argument is nearly identical to that of Lemma 5.2, with one ad-
ditional subtlety that G is not necessarily outer-semicontinuous. Let z : Rd → X be an arc.
Since f , g, and X admit a chain rule, we deduce

(f ◦ z)′(t) = 〈∂f(z(t)), ż(t)〉 (g ◦ z)′(t) = 〈∂g(z(t)), ż(t)〉, and 0 = 〈NX (z(t)), ż(t)〉,

for a.e. t ≥ 0. Adding the three equations yields

(ϕ ◦ z)′(t) = −〈G(z(t)), ż(t)〉 for a.e. t ≥ 0.

Suppose now that z(·) satisfies ż(t) ∈ −G(z(t)) for a.e. t ≥ 0. Then the same linear algebraic
argument as in Lemma 5.2 yields the equality ‖ż(t)‖ = dist(0;G(z(t))) for a.e. t ≥ 0 and
consequently the equation (6.6).

To complete the proof, we must only show that property 2 of Assumption F holds. To
this end, suppose that z(0) is not composite critical and let T > 0 be arbitrary. Appealing
to (6.6), clearly supt∈[0,T ] ϕ(z(t)) ≤ ϕ(z(0)). Thus we must only argue ϕ(z(T )) < ϕ(z(0)).
According to (6.6), if this were not the case, then we would deduce dist(0;G(z(t))) = 0
for a.e. t ∈ [0, T ]. Appealing to the equality ‖ż‖ = dist(0;G(z(t))), we therefore conclude
‖ż‖ = 0 for a.e. t ∈ [0, T ]. Since z(·) is absolutely continuous, it must therefore be constant
z(·) ≡ z(0), but this is a contradiction since 0 /∈ G(z(0)). Thus property 2 of Assumption F
holds, as claimed.

Proof of Corollary 6.4. The result follows immediately from Lemma 6.2, once we show that
Assumption F holds. Since f and g are definable in an o-minimal structure, Theorem 5.8
implies that f and g admit the chain rule. The same argument as in Theorem 5.8 moreover
implies X admits the chain rule as well. Therefore, Lemma 6.3 guarantees that the descent
property of Assumption F holds. Thus we must only argue the weak Sard property of
Assumption F. To this end, since f , g, and X are definable in an o-minimial structure, there
exist Whitney Cd-stratifications Af , Ag, and AX of gph f , gph g, and X , respectively. Let
ΠAf and ΠAg be the Whitney stratifications of Rd obtained by applying the coordinate
projection (x, r) 7→ x to each stratum in Af and Ag. Appealing to [34, Theorem 4.8], we
obtain a Whitney Cd-stratification A of Rd that is compatible with (ΠAf ,ΠAg,AX ). That
is, for every strata M ∈ A and L ∈ ΠAf ∪ ΠAg ∪ AX , either M ∩ L = ∅ or M ⊆ L.

Consider an arbitrary stratum M ∈ A intersecting X (and therefore contained in X ) and
a point x ∈ M . Consider now the (unique) strata Mf ∈ ΠAf , Mg ∈ ΠAg, and MX ∈ AX
containing x. Let f̂ and ĝ be Cd-smooth functions agreeing with f and g on a neighborhood
of x in Mf and Mg, respectively. Appealing to (5.4), we conclude

∂f(x) ⊂ ∇f̂(x) +NMf
(x) and ∂g(x) ⊂ ∇ĝ(x) +NMg(x).

The Whitney condition in turn directly implies NX (x) ⊂ NMX (x). Hence summing yields

∂f(x) + ∂g(x) +NX (x) ⊂ ∇(f̂ + ĝ)(x) +NMf
(x) +NMg(x) +NMX (x)

⊂ ∇(f̂ + ĝ)(x) +NM(x),
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where the last inclusion follows from the compatibility M ⊂ Mf and M ⊂ Mg. Notice

that f̂ + ĝ agrees with f + g on a neighborhood of x in M . Hence if the inclusion, 0 ∈
∂f(x) + ∂g(x) +NX (x), holds it must be that x is a critical point of the Cd-smooth function
f + g restricted to M , in the classical sense. Applying the standard Sard’s theorem to each
manifold M , the result follows.
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