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LINEAR DIFFERENTIAL EQUATIONS AS A DATA-STRUCTURE

BRUNO SALVY

ABSTRACT. A lot of information concerning solutions of linear differential equations can
be computed directly from the equation. It is therefore natural to consider these equations
as a data-structure, from which mathematical properties can be computed. A variety of
algorithms has thus been designed in recent years that do not aim at “solving”, but at
computing with this representation. Many of these results are surveyed here.

1. INTRODUCTION

Computer algebra is a subfield of “foundations of computational mathematics” devoted
to exact mathematical objects: their effectivity (what can be computed or decided?) and
their complexity (how fast?). The first conference I am aware of that was devoted purely to
symbolic and algebraic computation was held in Washington in 1966. Since then, for more
than 50 years, numerous algorithms have been developed, many of which are available in
today’s popular computer algebra systems. This article presents a small fraction of the
recent work in this area dedicated to linear differential equations and biased towards my
own interests. It is mostly based on an invited talk at FOCM’17. The choice of presentation
is to outline the underlying ideas through simple examples or algorithms and not put too
much stress on proofs or general or formal statements, for which pointers to references are
given.

There are several motivations for exact computations with linear differential equations,
depending on the origin of these equations.
Special functions. Many classical elementary or special functions are solutions of linear
differential equations. This includes exponential, logarithm, rational functions, hyperge-
ometric functions or generalized hypergeometric functions in their many variants (Bessel
functions, Airy functions, Struve functions,. . . ), orthogonal polynomials, etc. In this case,
the differential equations have small order and the questions are to derive automatically
formulas that practitioners currently look up in dedicated encyclopedias [4, 115, 106].
Generating functions. Another source of linear differential equations is provided by gen-
erating functions in combinatorics. There, the equations annihilate a power series whose
nth coefficient counts the number of objects of interest of size n. The mere knowledge that
this power series satisfies a linear differential equation gives information on the possible
asymptotic behaviour of those coefficients. From the actual differential equation one can
often derive precise asymptotics. In this area, the linear differential equations are often of
high order. Their computation itself is difficult and requires efficient dedicated algorithms.
A spectacular recent example was the study of so-called Gessel walks by Alin Bostan and
Manuel Kauers [28]. These are walks confined to N2, starting from the origin and with
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steps restricted to {(—1,0),(=1,-1),(1,1),(1,0)}. The coefficient of #" in the generating
function is a polynomial in two extra variables x and y, where the coefficient of x’y/ is
the number of such walks of length n ending at the point with coordinates (i, j). In an
intermediate step of their proof that this generating function is algebraic, they construct a
linear differential equation of order 11 with coefficients that are polynomials of degree up
to 96 in ¢ and 78 in x and integer coefficients of up to 61 decimal digits. This is only for the
value at y = 0O of the generating function! Such a computation would be impossible with
straightforward algorithms.

Periods. Linear differential equations of potentially high order also arise in more geometric
contexts. The integral of a rational function in n + 1 variables over a cycle in C" satisfies
a linear differential equation in the remaining variable called a Picard-Fuchs equation.
Algebraic integrands can also be allowed without changing the class of integrals, since
algebraic functions can be expressed as residues of rational functions [61]. An early
example of a linear differential equation arising in this way is Euler’s computation of the
perimeter of an ellipse as a function of its eccentricity. More recently, the computation of
differential equations of this type has given rise to efficient algorithms for the computation
of multiple binomial sums (see § 15) and volumes of semi-algebraic sets [93].

. The following two simple definitions make many statements more compact and set the
notation for the sequel. There, as in the rest of this article, K denotes an arbitrary field of
characteristic 0, even though some of the statements hold more generally.

Definition 1.1. A power series S(z) € K[[z]] is called differentially finite, or in short,
D-finite, when there exist polynomials py(z), . . ., pm(z) in K[z] with p,, # 0 such that

(1) P(D)ST(2) + -+ + po(2)S(z) = 0.

Definition 1.2. A sequence (u,) of elements of K is called polynomially recursive, or in
short, P-recursive, when there exist polynomials ag(n), . . ., a,(n) in K[r] with a, # 0 such
that

2) ar(Mpr + -+ + ag(mu, =0, for all n € N.
A classical important observation relates these two families.

Proposition 1.3. The power series S(z) = 3,0 un2" € K[[z]] is differentially finite if and
only if the sequence (uy,) is polynomially recursive.

The computation of the recurrence from the differential equation or conversely are
straightforward. (An efficient algorithm is known for large orders and degrees [19, 23].)
Even such a simple proposition has nontrivial computational consequences.

Example 1. In order to compute the coefficient of XV in a high power like P = (1+X)N (1+
X +X?)N, an efficient method starts from the first-order linear differential equation satisfied
by this polynomial:

P N NQ2X +1)

P 1+X 1+X+X°
From there, the Proposition asserts the existence of a linear recurrence (of order 3 with
coeflicients of degree 1) for the coefficients of P. Using this recurrence makes it possible to
obtain the Nth coefficient efficiently, without computing the previous ones, by the methods
of Section 2.

The same reasoning extends to high-order coeflicients of high-order powers of arbitrary
polynomials, since the polynomial P¥ satisfies the linear differential equation Py’ —kP’y =
0, which is of order 1 with coefficients of degree at most deg P, leading to a linear recurrence
of order deg P with coefficients of degree 1.
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Ficure 1. Plan of the article

. The plan of this article consists in visiting Figure 1 from right to left. The central point is
that linear differential equations with polynomial coefficients provide a useful representation
for their solutions, even when the order or the degree of the coefficients of the equation
are large. From the equation and its initial conditions a lot of information concerning the
solution can be computed exactly and often efficiently as well. This is covered in Part I. An
important part of computer algebra that is not discussed here is the computation of closed-
form solutions of these equations using differential Galois theory [116]. An advantage of
having solutions in closed form is that these formula provide analytic continuation “for
free”. However, even when closed-forms are available, which is rare, they are often not so
appropriate for computations. Our approach will be to convert them into a linear differential
equation, to which the algorithms described here apply. Once it is clear that many operations
can be performed efficiently on linear differential equations, a natural objective is to design
algorithms that compute such equations to solve other problems. This is the topic of Part III
where differential equations are computed for algebraic functions, for multiple integrals
and for generating functions of sums.

I. Using Linear Differential Equations Exactly
2. NUMERICAL VALUES FROM LINEAR RECURRENCES

Numerical values can be considered as exact mathematical objects when a bound on the
approximation error is known and can be made arbitrarily small. It turns out that this can be
achieved for all solutions of linear differential equations, with a very good complexity with
respect to the desired precision, by exploiting linear recurrences and using only elementary
ideas.

2.1. Fast multiplication. In terms of complexity, the starting point is the Fast Fourier
Transform (FFT). The theoretical complexity for multiplying two n-digit integers is O(n log n log log n)
bit operations, with recent improvements [70, 80] decreasing this bound slightly. We use the
notation O(n) for such complexities, meaning that they are in O(n log® n) for some k. More
generally, O( f(n)) for a function f tending to +co means O(f(n)log* f(n)) for some k > 0.
We say that an algorithm is quasi-optimal when its complexity is O(n), for n the sum of the
sizes of its input and output.

In practice, two integers of a million decimal digits can be multiplied in much less than
one second on current laptops. Using Newton iteration, that same complexity of O(n) and
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similar timings are reached for the computation of n digits of reciprocals, square-roots and
many other operations [34].

2.2. Efficient computation of n!. Fast multiplication alone is not sufficient to compute
n! fast if one uses it naively. By Stirling’s formula, the bit size of k! grows roughly like
klogk, so that computing n! as ((1 x 2) x 3)--- would lead to a complexity in O(n?),
even if FFT is used. What happens is that all k! for k = 1,...,n are obtained during
intermediate computations and since the total bit size of those is O(n?), a lower bound in n?
is unavoidable.

However, n! can be computed more efficiently by a divide-and-conquer approach, using
the equation

nl=nx---X[n/2]x(n/2]-1)x---x1.

size O(nlogn) size O(nlogn)
By Stirling’s formula, each half product has size growing asymptotically like %n logn, so
that their product can be computed in O(n) bit operations. Applying the same divide-
and-conquer approach recursively leads to a so-called ‘product tree’, whose complete
computation is performed in O(n) bit operations [16]. For the special case of n!, it is even
possible to save some of the logarithms hidden in the O notation by looking at prime factors
of n [18], but this idea does not generalize as much as the product-tree technique.

2.3. Binary splitting. The computation of n! above does not make use of commutativity
and thus extends to the efficient computation of products of matrices of integers. Rewriting
a linear recurrence of order k over scalars into a first-order linear recurrence over vectors
of dimension k therefore extends this method to arbitrary linear recurrences.

Example 2. The sequence

1
3) en=. 7
k=0

is easily seen to satisfy the second-order linear recurrence e, = ﬁ((n + Dey1 — ensn),

n > 2, or equivalently
en | _ Ln+1 -1\ (en
en—1 n n 0 en2]’

N’
A(n)
Using the initial conditions leads to

; 1 1
o) =57 )

where A!(n) denotes the matrix factorial A(n)A(n — 1) - -- A(1). This product is computed
as above by a divide-and-conquer method, which gives the nth element e, in O(n) bit
operations, i.e., in a quasi-optimal way [33].

This reasoning leads to the following useful result.

Theorem 2.1. [48, Thm. 6.1] If the sequence (uy) is given by a linear recurrence with
polynomial coefficients in Q[n] and initial conditions in Q, all numerators and denominators
of the rational numbers occurring in the initial conditions and in the coefficients of the
recurrence being bounded by a fixed K, then as N — oo, the Nth element uy is a rational
number whose numerator and denominator have bit size bounded by O(N log N) and can
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be computed in O(N log® N) bit operations. The result also holds for initial conditions as
large as O(N log N) bits.

Note that in the worst case, this computation is much faster than simply writing down
all of ug, . . ., un (not to mention their computation), which would require a number of bits
of order N?log N.

This theorem gives the complexity of computing the value ux as an unreduced rational
number. If it is necessary to reduce the result to lowest terms, the final gcd between
numerator and denominator and subsequent divisions also fit within this complexity bound
using a fast algorithm for the ged. If what is needed is not a rational number but a numerical
estimate, then by classical techniques based on Newton iteration, one can also obtain as
many as O(N log? N /log log N) digits of the decimal expansion within the same complexity
bound.

A more precise estimate of the size and complexity in this theorem, taking into account
the degree of the polynomial coefficients of the recurrence, the bound K on the integers
and the order of the recurrence can be obtained without any extra difficulty [23, chap. 15].
This method is very powerful and much more complicated sums than the truncation (3)
of exp(1) can be computed efficiently that way.

Example 3. In particular, all recent record computations of 7 use the following formula
discovered in 1989 by the Chudnovsky’s [49]:

1 12 < (=1)"(6n)!/(A + nB)
T 32 nZ:O (3n)!n3C3n

with A = 13591409, B = 545140134 and C = 640320. This series gives roughly 14 digits
per term. That observation alone is not sufficient to yield a fast algorithm, which is
obtained by observing that the summands satisfy a linear recurrence of order 1 which
can be subjected to binary splitting. (The final division and square-root are handled by
Newton iteration.) In theory, the techniques based on the arithmetic-geometric mean give
an algorithm that is faster by a factor of log N for the computation of N decimal digits, but
that method is more delicate to implement and thus binary splitting is preferred, even for
record computations [17, 78, 11].

)

3. NUMERICAL VALUES FROM LINEAR DIFFERENTIAL EQUATIONS

As the example above suggests, this efficient method for computing the Nth element of
polynomially recursive sequences extends to give a fast algorithm for the numerical evalua-
tion of differentially finite functions. If f is differentially finite, (f,,) are the coefficients of
its Taylor expansion at the origin and x is a rational number inside the disk of convergence
of f, then the value of f(x) is the limit of the sequence

n
F,(x) = Z fnx™, n — co.
m=0

From a linear recurrence of order k for (f;,,), one deduces a linear recurrence of order k + 1
for F,(x), whose nth element can be computed efficiently using a product tree for the
the matrix factorial as above [10, 48]. Example 2 illustrates this idea on the differential
equation y’ — y = 0 with y(0) = 1 that, in our context, defines the exponential.

Rough estimates show that in all cases, the tail of the power series ) ,,,,, fmx"" decreases
sufficiently fast for O(n) terms to be sufficient for the computation of n digits of f(x). In
order to deduce from this method an algorithm for numerical evaluation, it is thus sufficient
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Ficure 2. Analytic continuation of arctan from 0 to 2 +i, using automat-
ically selected intermediate points with small bit size inside the disk of
convergence centered at the previous point. The circles of convergence
of the successive power series are given, with the same color as their
center.

to provide effective bounds on that tail. This can be achieved by using the linear recurrence
on the coefficients (f;,,) to produce a majorant series whose speed of convergence is under
control [82, 104].

3.1. Analytic continuation. The same approach that gives arbitrarily precise estimates
for the value of a differentially finite power series at a rational point inside its disk of
convergence also applies to the case of a complex point with rational real and imaginary
parts. It also applies to the first derivatives of the power series at such a point. Thus one can
compute arbitrarily precise initial conditions for the same differential equation translated
at such a point. From there, applying the same process again makes it possible to compute
numerical approximations at any point given by a polygonal path starting from the origin,
using only points with (preferably small) rational coordinates as vertices and avoiding the
(finitely many) singularities of the equation. This method produces numerical evaluation
at precision N in quasi-optimal complexity O(N). Again, the whole computation only
involves rational numbers and no round-off errors occur.

Low complexity relies on a precise control over the integers occurring in intermediate
computations. When the differential equation is translated at a point with large rational real
or imaginary part, then the linear recurrence that results inherits large rational coefficients
that weigh on its evaluation. If the point where the evaluation is required itself has small
rational real and imaginary parts, then it is always possible to find intermediate points of
the same kind in the analytic continuation path and the complexity remains moderate.

Example 4. Figure 2 displays the domains of convergence of the series obtained at the
intermediate points taken by M. Mezzarobba’s ore_algebra_analytic package [103] to
evaluate arctan(2 + i) starting from the origin, using this strategy with further refinements
regarding the choice of intermediate points so that their bit size remains small.

3.2. Bit burst. When the targeted evaluation point is not a rational number but is known
only via an approximation (e.g., ) then one can use analytic continuation again. Even if
the point is inside the disk of convergence, this makes it possible to trade integer size for
number of terms in the power series by a technique called bit burst [48]. For instance, in
order to evaluate at 7 a function given by its differential equation and initial conditions
using this method, one would use as intermediate points the first rational numbers in the
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sequence (|_22i7rj Z_Zi) . While the size of the numerators and denominators of these
i>

rational numbers grows with i, the number of terms of the power series needed to obtain
the desired accuracy decreases. These results are summarized in the following theorem.

Theorem 3.1. [48, Thm. 5.2] If the power series y(z) is given by a linear differential
equation with polynomial coefficients in Q[z] and initial conditions, all numerators and
denominators of the rational numbers occurring in the coefficients of the equation being
bounded by 10X, and all initial conditions being given at precision 107K, then given a
point { inside the disk of convergence of y(z) at precision 107K, the value of y(¢) at
precision 107K can be evaluated in O(K) bit operations.

More precise estimates can be derived in terms of all the parameters, with refinements
for special cases and generalizations to singular points [48, 50, 83, 84, 102, 23].

4. LOCAL AND ASYMPTOTIC EXPANSIONS

By the Picard-Lindelof theorem (that we call Cauchy-Lipschitz in France), the linear
differential equation (1) admits a basis of analytic solutions in the neighborhood of any point
that is not a zero of its leading coefficient p,,(z). For those solutions, Taylor expansions can
be computed to arbitrary order efficiently using the linear recurrence that the coefficients
satisfy.

4.1. Singular behavior. In a neighborhood of a zero a of the leading coefficient, the
Picard-Lindelo6f theorem does not hold and the equation may present singular solutions. A
classification of the possible behaviors of solutions is known. An important part is played
by the indicial polynomial of the equation at a. This polynomial in K(a)[s] is obtained
as the leading coefficient of the power series obtained by evaluating the linear differential
equation at (x — a)® for a formal s and multiplying by (x — a)~*. It is equal, up to an integer
shift of s, to the leading coefficient of the recurrence satisfied by power series solutions of
the differential equation at a. In the case of an ordinary point, i.e., when p,,(a) # 0, the
indicial polynomial is simply s(s — 1) - - - (s — m + 1). More generally, when the degree of
the indicial polynomial at a is equal to the order of the differential equation, the point a is
called a regular singular point or a Fuchsian singularity. It is called an irregular singular
point otherwise.

Theorem 4.1. [65] If a is a regular singular point, then Eq. (1) admits a basis of formal
solutions of the form

4) (z-a)® (¢o(z) +¢1(2)log(z —a) + - - - + ¢y (z) logh(z - a))

where a (called an exponent at the singularity a) is a root of the indicial polynomial and
the coefficients ¢; are power series in K(a)[[z — al]. When a is an irregular singular point,
then Eq. (1) admits a basis of formal solutions of the form

gP(l/(Z_a)l/q)(Z -a)® (q)o(z) +¢1(2)log(z — a) + -+ + ¢i(z) logh (z - a)) ,

where P is a polynomial, q a nonnegative integer and the rest as in the regular singular
case, except that the power series are now in powers of (z — a)'/4.

(The behavior in the neighborhood of the point oo is obtained from the above by changing
the variable z into 1/z in the equation and considering a = 0.)

The meaning of formal in this theorem is that these expressions satisfy the equation
formally, but no convergence to an actual analytic solution is claimed. The formal aspects
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of this classical theory [86, 57, 113, 126] have been transformed into computer algebra
algorithms and code in the 1980’s [60, 122] and are now easily accessible. The analytic
aspects are more delicate. In the regular singular case, Frobenius showed that the power
series converge in a neighborhood of a. In the irregular singular case, they are gener-
ally divergent. Numerical sense can still be made of these expansions by resummation
procedures [9, 105, 96, 59].

A combination of these formal tools and those of the previous sections forms the basis of
our Dynamic Dictionary of Mathematical Functions (DDMF) [13], an on-line encyclopedia’
in the same spirit as the NIST DLMF? with two major differences: only solutions of linear
differential equations are handled in the DDMF and all the human expertise has been
replaced by algorithms that provide an interactive access to the information, together with
computer-generated proofs.

4.2. Proofs of non-D-finiteness. The classification of the formal behavior of solutions of
linear differential equations also provides an easy-to-use criterion to prove that a power
series is not a solution of a linear differential equation with polynomial coeflicients, or, by
passing to generating functions, that a sequence is not the solution of a linear recurrence
with polynomial coefficients. For instance, tan(z) cannot be a solution of such an equation,
since it has infinitely many poles, while the singularities of solutions of linear differential
equations can only lie at the roots of the leading coefficient. In an analogous way, the
classical Bernoulli numbers, that are present in Stirling’s formula or in the Euler-Maclaurin
formula, have generating function z/(exp(z) — 1) which has poles at all 2kni, k € Z \ {0}
and thus cannot satisfy a linear recurrence with polynomial coefficients. Exploiting not
only the number of singularities but the classification of the local behavior given above is a
natural way to prove that no linear recurrence with polynomial coefficients can be satisfied
by sequences [66, 67] like

logn, +n, p, (the nth prime number), eV e TmV2),. ..

4.3. Arithmetic properties. Many generating functions f € Q[[x]] arising in combina-
torics possess the property of being globally bounded: f has positive radius of convergence
and there exist a and b in N \ {0} such that af(bx) € Z[[x]].

Theorem 4.2. [88, 6, 47] If F € Q[[x]] is differentially finite and globally bounded, then
it satisfies a Fuchsian equation (all the singular points, including oo, are regular) and all
the exponents are rational numbers.

This result also can be used to dismiss the possibility that a given sequence satisfies a
linear recurrence.

Example 5. Many sequences arising in the enumeration of walks in the quarter plane
can be proved not to satisfy a linear recurrence with polynomial coefficients [31]. A
typical example is the number of walks on N X N using 7n steps, all taken in the set
{(-1,0),(0,1),(1,0),(1,-1),(0,—1)}, as pictured in Figure 3. Using recent results con-
necting the asymptotic growh of this sequence to the first eigenvalue of the Laplacian on
a spherical triangle, we obtained that this asymptotic growth is of the form Cp""n® with
@ = —1+m/arccos(u), u a zero of 8u> —8u”+6u—1 so that @ ¢ Q, leading to a contradiction.

! Available at http://ddmf.msr-inria.inria.fr.
2https://dlmf.nist.gov
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FiGure 3. A walk starting from (0,0), remaining in N? and using 200
steps taken from {(—1,0), (0, 1),(1,0),(1,-1),(0,—1)}. The number of
such walks with n steps can be proved not to satisfy a linear recurrence
with polynomial coefficients.

Ficure4. A view of the first Fibonacci number (left) and Catalan number
(right) in the complex plane. (The colors indicate the argument of the
integrand.)

5. SINGULARITY ANALYSIS

The asymptotic growth of a sequence (a,) can often be analyzed by considering its

generating function
A(z) = Z a, 7"

n>0
in the complex plane. When the radius of convergence is positive, the starting point is

Cauchy’s formula

a, = L AR) dz
n - 2 Zn+1 ?

where the contour encloses the origin but no singularity of A(z).

Example 6. Figure 4 displays the absolute value of the integrand for the cases whenn = 1
and A(z) = 1/(1 = z — z%) (left) or (1 — V1 — 4z)/(22) (right).

The value at 0 is infinite due to the division by z"*!, which is shown by a sort of
“chimney” in the middle of the pictures where the graph is truncated. As n increases,
the “chimney” grows and the value of the integral concentrates in a neighborhood of
the singularity of smallest modulus. This leads to a 3-step method called singularity
analysis [68, 69]: (i) locate the singularities of minimal modulus; (ii) compute the local
behavior of the generating function there; (iii) translate into the asymptotic behavior of the
sequence. In view of the previous two theorems, the following is the most useful result for
polynomially recursive sequences from combinatorics.
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Theorem 5.1. [87] Let A(z) = 3,50 an2" be a differentially finite power series with positive
radius of convergence p. Assume that the only singularity of A(z) of modulus p is at 7 = p
and that

[

“ 1
A(z)~c(l —E) log"" ——, 7 - p-
P p

with @ ¢ N, then

—-a-1

I'(—a)

anp ~cp " logn, n— .

Full asymptotic expansions are available as well and the case of several singularities on
the circle of convergence can be dealt with too [69].

In the case of a polynomially recursive sequence, the linear differential equation gives
the value of p as a root of minimal modulus of its leading coefficient. The computation
of @ and m can be obtained from the differential equation as mentioned before. The last
point is the computation of the constant factor c¢: the initial conditions for the differential
equation are known at the origin as the first elements of the sequence (a, ) and we need to
express this solution as a linear combination of a basis of possible behaviors at p. In most
cases, these constants can then be obtained numerically by analytic continuation (proving
that one of the coefficients in this linear combination is O is a problem for which we only
have a semi-decision algorithm).

Example 7. Pélya’s random walk in Z¢ starts at the origin and repeatedly moves one step
along one of the axes with uniform probability. The question is to compute the probability p4
that the walk returns to the origin. It is a famous result of Pélya’s that p, = 1. For higher
dimension the probability is smaller than 1. Here is how it can be computed numerically
with arbitrary precision. The steps are given for dimension 3 and that approach has been
used up to dimension 15 (where 100 digits are obtained in 1 min.):

(1) the probability u,, that the walk returns to the origin in 2n steps satisfies
(2n +3)2n + 1)(n + Duy — 220 + 3)(100% + 301 + 23)une1 + 36(n + 2 upn = 0

(this step is not trivial);
(2) from there one could compute a,, := >}/ ux which converges to ¢ := 1/(1 - p3),
but the convergence is slow, due to a singularity of the generating function at 1;
(3) instead, given ay, aj, a», Mezzarobba’s code mentioned above takes .4 sec. to
produce 100 digits of c, ¢, c3 such that

A(z)zc( +~~-)+C3(1+-~-),

1 1
+ |+
1-z ) (\/ -z
from there, the theorem above with @ = —1,m = 0 gives ¢ and then p3 follows.

In dimension 3, it turns out that a nice expression is available [127, 74]:

c:ﬁririrlrg’
32n3 \24 24 24 24
which can be used to check our computations. In higher dimension, only the numerical
values seem available currently [81].
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6. PROOFS OF IDENTITIES

6.1. Confinement and closure properties. One way to prove that two power series are
equal is to show that they are both solutions of a common linear differential equation, with
the same initial conditions. Thus the computation is reduced to finitely many operations.

Example 8. Here is how one can prove that
sin?(x) + cos?(x) = 1

with very little computation.

First, sin and cos are defined by a second order linear differential equation y”’ + y = 0.
Next, the square of a solution to this equation is also solution of a linear differential
equation. Indeed, using the differential equation to rewrite y”’ as —y shows that the Q-
vector space generated by {y?, yy’, %} is closed under differentiation. Thus if & = y?,
then (h, h’, h'’, h'’") are four vectors in a vector space of dimension at most 3, which implies
that they must be linearly dependent. A linear dependency between them is precisely a
linear differential equation satisfied by y2. If needed, it is computed as the left kernel of
the matrix

1 0 O
0o 2 0
-2 0 2
0 -8 0

that gives the coordinates of (h, i/, k", i’"") on (y2, yy’, y%). This shows that 4" + 4k’ = 0.
However, at this stage, it is sufficient to know that this equation exists. Since this reasoning
does not make use of the initial conditions, that same 3rd order differential equation is
satisfied by sin’ and cos? and, by linearity, by their sum.

The constant —1 is solution of a trivial first-order linear differential equation y’ = 0, so
that for any 4 as above, (h—1, k', h"/, h'", h® ) are five vectors in a vector space of dimension
at most 4 generated by (—1, i, &', h’"), implying the existence of a linear differential equation
of order at most 4, with constant coefficients, satisfied by w := sin? + cos? —1.

Now, using the initial conditions for sin and cos to compute

sin(x) + cos?(x) — 1 = O(x*)
concludes the proof by the Picard-Lindelof theorem: the initial conditions defining w

are (0,0,0,0).

In summary, confining a power series and all its derivatives inside a finite-dimensional
vector space makes it possible to use simple linear algebra for the proof of non-linear
identities involving products of power series. A similar reasoning applies to solutions of
linear recurrences.

Example 9. It is a simple exercise to prove Cassini’s identity

Fn+1Fn—l - F,% = (_l)n’
where F,, denotes the nth Fibonacci number along exactly the same lines, with the recur-
rence F,.» = F41 + F, playing the role of y” + y = 0.

With the same arguments one can prove the following classical result.

Theorem 6.1. [119, Thm. 6.4.9] The set of power series solutions of linear differential
equations with coefficients in K[x] is a K-algebra. So is the set of sequences solutions of
linear recurrences with polynomial coefficients in K[n].
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More advanced example: Mehler’s identity on the Hermite polynomials.

du(xy-u(x*+y?))
2 ( T—4u? )

V1 — 4u?

The starting point of the automatic proof of this identity is to “define” the Hermite polyno-
mials. It will be sufficient here to use the fact that they satisfy a linear recurrence of order 2.
Next, the existence of this recurrence implies that all the sequences H,, 1 (X)Hy 11 (¥)/(n+k)!
for integer k € N are generated over Q(x, y, n) by

Hn(x)Hn(y) Hn+1(x)Hn(y) Hn(-x)Hn+l(y) Hn+1(x)Hn+1(y)
n! ’ n! n! ’ n! ’

(o] un
(5) ZO Hy(x0)Hy(y)— =

bl

so that the summand in the left-hand side of Eq. (5) satisfies a linear recurrence of order at
most 4. That recurrence can then be translated directly into a linear differential equation
satisfied by the generating function.

In that case, knowing only the order of the recurrence equation is not sufficient anymore.
Fortunately, the linear-algebra based algorithms that compute recurrences or differential
equations for sums and products of solutions of recurrences or differential equations have
been implemented in several packages [118, 97, 89]. Here, we use Maple’s gfun. In this
computation, the nth Hermite polynomial in the variable x is denoted H,(n) instead of the
usual H,(x). We first define the Hermite polynomials:
> R[1] := {H[x]@®) = 1, H[x](1) = 2*x,

H[x](n+2) = (-2*n-2)*H[x](M)+2*H[x] (n+1)*x};
Ry :={H(0) = 1,H(1) =2x,Hy(n + 2) = (-2n — 2)H(n) + 2H(n + 1)x}

> R[2] := subs(x =y, R[1]);
Ry :={H,(0) = 1,H,(1) =2y, Hy(n +2) = (-2n - 2)H,(n) + 2Hy(n + 1)y}
The final term of the product, 1/n!, is defined by the recurrence (n + 1)v,+1 = v,. Next,
we compute the recurrence satisfied by the product H,,(x)H,(y)/n!:
> R[3] := gfun:-poltorec(H[x](n)*H[y] (n)*v(n),
[R[1], R[2], {v(n+D*(n+1) = v(n), v(1) = 1}],
[H[x](m), Hlyl(m), v ], c(m));

R; := {(16n +16)c(n) — 16xyc(n + 1) + (8x> + 8y> — 8n — 20)c(n + 2)
—4dxyc(n+3)+ (n+4)c(n +4),
32

c(0) = 1,¢(1) = 4xy, c(2) = 8x%y* —4x> —4y* +2,¢(3) = ?)c3y3 —16x%y —16xy> +24xy,

32
c(4) = ?x4y4 —32x*y? = 32x%y* 4 8x* + 96x2y% + 8y* — 24x% —24y% + 6}

The first element of that set is the recurrence, without the ‘= 0’ part. The other ones
give the corresponding initial conditions. This recurrence is then translated into a linear
differential equation for the right-hand side of Eq. (5):
> gfun:-rectodiffeq(R[3], c(n), f(u));

{(=16u*xy + 1607 + 8ux* + 8uy® — 4xy — 4u) f (u) + (16u* — 8u* + 1) f'(u), £(0) = 1}

Again, the ‘= (’ part is omitted from the first equation. At this stage, it is straightforward
to solve this first-order equation and retrieve the desired result:
> dsolve(%,f(u)) assuming O<u,u<l/2;
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_ 4xyu—x2—y2
e Qu-DQu+l) l
fu) = \/
€

—x2-y? Qu+1)(—2u+1)

6.2. Application to continued fractions. Recently, we applied the same approach to
the computation of explicit formulas for continued fractions by a guess-and-prove ap-
proach [99]. A typical example is provided by the continued fraction for tan z. Starting
from its definition by the Riccati equation y’ = 1 + y? with initial condition y(0) = 0, it is
easy to compute the first 15 coeflicients of its Taylor expansion at 0. From there, repeatedly
subtracting the first term, factoring out the next one and inverting the rest leads to the
continued fraction
Z

22/3
Z%/15
7%/63
72/99
- 24
1—-...

From there, rational interpolation guesses automatically that the partial numerators are
given by the formula

tanz =
1-—

1-

Z2

—_— >2).
a3y =%
This formula was the basis for Lambert’s proof that 7 is irrational in 1761.
The next step is to obtain an automatic proof that the continued fraction defined by these
elements a,(z) converges to the unique solution of the Riccati equation with y(0) = 0.

Defining
P ’ P 2
H, = ﬁ = -1-(==] 1.
() - ()

where P, /Q,, is the nth convergent of the continued fraction gives a polynomial in P,, Q,, P;, O;,.
A fundamental result in the theory of continued fractions is that the linear recurrence

Uy = Up—1 + anUy—y is satisfied by both P, and Q,,, with different initial conditions. In view

of our candidate a,,, we deduce that all H,,,; for k € N can be rewritten as linear combina-
tions of Py+iPpj, Qn+iQn+j» P i Onejs P,,+iQ;l+j, for i and j in {0, 1}. It follows that the
sequence H,, satisfies a linear recurrence that can be computed. The computation produces

a linear recurrence of order 4 obtained without taking into account the initial conditions

for P, and Q,,. Using the actual sequences makes it possible to guess the simpler

ZZ

Qn+nfﬂ’
which is then proved by Euclidean division of the recurrence operators (see §10). Thus H,, =
O(z*") tends to 0 as a power series, which concludes the proof of the formula (6) without
any human intervention.
This method has been applied to all explicit C-fractions in the recent compendium by
Cuyt et alii [58], starting from one of

(6) a(z) =z an(z) =

Hyy =

e a Riccati equation: y’ = A(z) + B(2)y + C(2)y*;
e a g-Riccati equation: y(gz) = A(z) + B(z)y(z) + C(2)y(2)y(qz);
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o adifference Riccati equation: y(s + 1) = A(s) + B(s)y(s) + C(s)y(s)y(s + 1).
The surprising observation is that this method works in all cases, including Gauss’s classical
continued fraction for the quotient of contiguous hypergeometric series, its g-analogue
due to Heine, Brouncker’s continued fraction for the Gamma function. In all cases, the
corresponding sequence H,, satisfies a linear recurrence of small order that is sufficient to
prove the convergence. Work is in progress to explain why this method works so well and
classify the formulas it yields [100].
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I1. Conversions

This short second part is devoted to the middle part of Figure 1: conversions from linear
differential equations to linear recurrences. It also serves as an introduction to the operator
formalism used in the next part.

7. ORE POLYNOMIALS

The differentiation operator D, and the operator x of multiplication by x act on power
series in x and obey the commutation law D,x = xD, + 1, where 1 denotes the identity
operator. This is an operator view of the usual relation (xf)" = xf’ + f.

Similarly, the shift operator S,, and the operator n of multiplication by n act on sequences
indexed by n, with commutation S,n = (n + 1)S, reflecting the relation (nu,)|, .1 =
(n+ Dutpsr.

The analogy between these operators and polynomials has been observed at least since the
1830s [95, 32]. The modern point of view was introduced by Ore a century later [107, 108].

Definition 7.1. Let A be a ring with no zero divisor, o a ring endomorphism of A and ¢ a
o -derivation, which means that for all @, b in A, §(ab) = o(a)6(b) + 6(a)b. Then the skew
polynomial ring A{J; o, §) is the ring of polynomials in d with coefficients in A with usual
addition and a product defined by associativity from the commutation

Yae A, 0da=o0(a)d+da).
The elements of A{J; o, &) are called Ore polynomials.

Special cases are the classical polynomial ring A[x] = A(x;Id, 0); the ring of linear
differential operators K(x)(D,) := K(x){Dy;Id, d/dx); the ring of difference operators
Kn){A,) = K{An; (a(n) — a(n + 1)), (a(n) — a(n + 1) — a(n)) ; its close relative the
ring of recurrence operators K(n)(S,) := K(n){(S,; (a(n) — a(n + 1)),0). In cases like
this last one, where § = 0 and o is invertible, it is also natural to consider the ring of
Laurent-Ore polynomials in S,,, denoted K(n){S,, S,'), with the obvious commutations
S ta(n) = a(n-1)S;! and S,,S;! = S;1S, = 1 [131].

Ore polynomials have played an increasing role in the design of algorithms in computer
algebra since their introduction in this area around 20 years ago [35].

8. TAYLOR MORPHISM

In this setting, the correspondence between linear differential equations and linear re-
currence satisfied by the sequences of coefficients of their power series solutions becomes
a ring morphism between Q[x, x~'|(D,) and Q[n](S,, S;!), defined by

(7 Dy — (n+ 1)S,, x-S
(See, e.g., [36, p. 58] for a more general statement.)

Example 10. The Airy function Ai(x) is defined by the equation

v B ,on . V3T(2/3)
y'=xy=0, y(O)—3F(2/3), y(O)——T~

The Taylor morphism applied to differential operator D2 — x yields
D> — x>+ 1)S,(n+1)S, - S;' =(n+1)(n+2)S2-8,",
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Ficure 5. Truncations of Taylor expansions (left) and Chebyshev expan-
sions (right) to arctan, with the corresponding errors

the last operator being obtained by the commutation S,,(n + 1) = (n + 2)S,,. This recovers
the recurrence

(n+ 1)+ 2unsz = tn-1
from which one deduces the classical Taylor expansion

\3/_

3 Z x3n ~ 32/3 x3n+1
3TQ2/3) 44 T +2/3)9"n! 9 4 T(n+4/3)9"n!’

Ai(x) =

9. CHEBYSHEV EXPANSIONS

Taylor expansions converge well inside their disk of convergence, but when the aim
is to approximate a function on a real interval, it is usually preferable to use Chebyshev
expansions [43, 98, 123]. This is exemplified on the case of the function arctan on the
interval [—1, 1] in Figure 5. On the left, the graphs of S,(x) and of arctan x — S,,(x) are
displayed forn = 0,...,4, with

3 5 2n+1

R Y
Sp(x) = x 3+5+ +(1)2n+1

the truncation of the Taylor expansion. On the same scale, the graphs of C,(x) and
arctan x — C,(x) are displayed on the right, with

(—1)”(\/§ _ 1)2n+l
MY
where T;(x) denotes the ith Chebyshev polynomial of the first kind, defined for instance
by T;(cos x) = cos(ix). Already for C, the difference with the next ones and with arctan
cannot be seen on the graph. The graphs of differences show how the error is spread out
more uniformly over the interval in the Chebyshev expansions.

Obviously, the situation would be even more contrasted on an interval [—c, ¢c] with ¢ > 1,
where the Taylor expansion does not converge anymore due to the logarithmic singularities
at +i, while the Chebyshev expansion

_n@bwl
(8) Z(l)( )

n>0

Cu(x) = 2(V2 = DTy (x) + - -- Tons1(x),

ZT12 Tons1(x/c)
still converges very well.

Both expansions have the property that their coefficients satisfy a linear recurrence that
can be computed automatically from the linear differential equation. While the case of
Taylor expansions uses Ore polynomials, that of Chebyshev expansions can be computed
using Ore fractions, that we now discuss.
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10. ORE FRACTIONS

By design, the degree of the product of two Ore polynomials is the sum of their degrees.
(In particular, there are no zero divisors.) Next, for two Ore polynomials A and B with
coefficients in a field, a right Euclidean division A = QB + R can be defined and computed
as for commutative polynomials, except that all multiplications of B take place on the left.
From there, Euclid’s algorithm for the greatest common right divisor of A and B follows,
as well as the extended version that computes the cofactors. Moreover, performing a final
iteration of this extended Euclidean algorithm provides least common left multiples.

Theorem 10.1. [108] Given two Ore polynomials A and B in a skew-polynomial ring
K(0;0,06) over a field K, the Euclidean algorithm produces polynomials u,v,G,U,V
in K{9; o, 6) such that

uA+vB=G, UA+VB=0,

G is a greatest common right divisor (gcrd) of A and B and UA is a least common left
multiple (Iclm) of them.

Now, as in the commutative case, fractions are equivalence classes of pairs of polynomi-
als. For our purpose, they are written with the denominator on the left. Two fractions B~' A
and D~!C are equal when uA = vC where u and v are such that uB = vD = Iclm(B, D).
(Proceeding formally gives B"'A = B™'u='uA = (uB)"'uA = (vD)"'vC = D™v"lvC =
D~'C, which explains where this formula comes from.) It is then a simple exercise to
determine the algorithms for addition and multiplication:

B'A+D7!C = lcim(B, D)™\ (uA + vC) where uB = vD = Iclm(B, D),
B'AD™'C = uB)'vC where uA =vD = Iclm(A, D).

These operations turn the set of fractions into a (non-commutative) field [108].

11. AppLICATION TO CHEBYSHEV EXPANSIONS

The Taylor morphism (7) is a reflection of the action of d/dx and x on the basis (x™*):
(x™) = nx"and x(x") = x"**!. Basic trigonometric identities give the analogous relations

&) ZXTn(x) = Tn+l(x) + Tn—l(x)v 2(1 - xz)Tn,(x) = _nTn+1(x) + nTn—l(x)

for the Chebyshev polynomials. The first one indicates that x should be mapped to X :=
(S, + S,')/2. The factor (I — x?) in the second one prevents such a direct translation.
Proceeding formally in terms of operators suggests that d/dx should be mapped to the Ore
fraction D := (1 — X?)"'n(S, — S, 1)/2. Indeed, if L(x, d/dx) cancels a sufficiently smooth
function f, then any numerator of the Ore fraction L(X, D) cancels the coefficients of its
Chebyshev expansion [15]. This approach sheds new light on previous algorithms in this
area [109, 94, 117].

Example 11. For arctan(cx), A. Benoit’s package GFS (for Generalized Fourier Series) [12]
produces:

> deq := (cr2*xA2+1D)*(diff(y(x),x,x))+2*cA2*x*(diff(y(x),x));

> diffeqToGFSRec(deq,y(x),u(n), functions=ChebyshevI(n,x));

nu(n) + 2(c? + 2)(n + 2u(n +2) + A(n + Hu(n + 4)

Together with initial conditions, this leads to the formula for the Chebyshev expansion (8).
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The numerical use of these recurrences is delicate: generally, as in this example, the
characteristic polynomial of the leading coefficient in n, here ¢ + 2(c? + 1)X + ¢2X?,
is reciprocal, which implies that its asymptotically dominant solutions tend to infinity,
while the coefficients of Chebyshev expansions tend to 0. Thus, when unrolling the
recurrence naively, any numerical round-off error is eventually amplified exponentially.
Nonetheless, a recent work of Benoit, Joldes and Mezzarobba shows how these recurrences
can be exploited, leading to an efficient algorithm in the context of validated numerical
evaluation [14].

II1. Computing Linear Differential Equations (Efficiently)

The previous parts have shown how information can be extracted from linear differential
equations. This motivates the search of algorithms computing linear differential equations
in different contexts.

12. ALGEBRAIC SERIES AND QUESTIONS OF SIZE

12.1. Algebraic series can be computed fast. A power series Y(X) with coefficients in K
is called algebraic when it is a zero of a nonzero polynomial P(X,Y) € K[X,Y].

Theorem 12.1. Algebraic power series are differentially finite.

This is an old result that appears in notes of Abel’s [, p. 287] and was rediscovered
many times [56, 79, 121]. It implies for instance that the first N coefficients of the power
series solutions of such polynomials can be computed in O(N) arithmetic operations in K
(by unrolling the recurrence).

The proof is a nontrivial but not exceedingly complicated algorithm. Without loss of
generality, P can be assumed irreducible and we denote by D its degree. Differentiating
the polynomial equation implies

Px(X,Y(X)) + Py(X,Y(X))Y'(X) = 0,

where Px and Py denote the partial derivatives of P with respect to X and Y. Being
irreducible, P is relatively prime to its derivative Py. Using the (commutative) extended
Euclidean algorithm produces two polynomials U and V in K(X)[Y] such that

UPy +VP =1.

This is the standard way of computing the inverse U of Py modulo P. Denoting by RI'l the
remainder of the Euclidean division of —U Px by P gives

Y'(X) = RM(X, Y(X)),

with R a polynomial in K(X)[Y] of degree in Y smaller than D. Differentiating again
gives
y” = R+ Ry = RUV 4 RURIT = 0, P 4 RIZ),

the last term being a Euclidean division. Evaluating at Y(X) implies that Y"(X) =
RI(X,Y(X)), with Rl a polynomial in K(X)[Y] of degree in Y smaller than D. It-
erating this process shows that all the power series YX)(X) for k € N belong to the
finite-dimensional vector space over K(X) generated by (1,Y, ..., Y¢"!). This proves that Y
satisfies a linear differential equation of order at most D that can be obtained by linear
algebra.

The same argument shows that for any F solution of a linear differential equation and
any algebraic Y, F(Y(X)) is also solution of a linear differential equation.
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nice recurrence

/minimal recurrence
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differential equations corresponding recurrences

Ficure 6. Differential equations and recurrences for algebraic series

12.2. Order-Degree curve. The differential equation obtained by the algorithm described
above has minimal order, but the degree of its coefficients may be large. If D is also
the degree of P with respect to X, then the coefficients of the differential equation have
degree O(D?) and that bound is tight in general. This implies that the linear recurrence
that can be deduced for the coefficients of the power series has order O(D?). Conversely,
the minimal order recurrence can be shown to have order only O(D?) with coefficients
of degree also O(D?), thus again, the cost of looking for minimality is a size of O(D*)
coefficients for the equation. If instead, one relaxes the constraint on the order of the
differential equation, then there always exists a linear differential equation of order O(D)
and coefficients of degree only O(D?) [25], leading to a non-minimal recurrence of order
only O(D?) with coefficients of degree O(D), which brings efficiency improvements when
it needs to be unrolled. These observations are summarized in Figure 6.

The large degree of the coefficients of the minimal order linear differential equation is
a general phenomenon that goes beyond the algebraic case. It is due to the presence of
numerous apparent singularities, that are zeros of the leading coefficient of the differential
equation, but not singularities of any of its solutions (e.g., xe* is a nonzero solution of a 1st
order linear differential equation, but with y(0) = 0, which means that the Picard-Lindel6f
theorem cannot apply at 0). Left multiples of the differential operator let those apparent
singularities disappear and a precise analysis of the “order-degree curve” is possible [39].
The apparent singularities can all be removed algorithmically [124], but the resulting
equation can have arbitrarily large order (e.g., xy’ — 1000y = 0 has for solution x'°% and
the only way to get rid of 0 as an apparent singularity is to go to order 1000.) Instead, recent
work has been considering ways to trade order for degree without necessarily looking for
minimal degree [21, 40].

13. CREATIVE TELESCOPING

Creative telescoping is a method introduced by Zeilberger in the 1990s [5, 132, 133]
that computes definite integrals or sums with a free parameter, in the sense that it produces
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linear differential or recurrence equations for them. From there, the algorithms of the
previous parts can be used to compute information concerning the sum or the integral.

Example 12. Typical examples of formulas that can be computed or proved by this method
are [120, 75, 73, 115, 62, 7]:

S-S0 S

k=0 7=0
ek [J RN (r\[(n\(s+n—J- [n+r
v B (R - (M)(m )
+00 1
(12) /0 xJi(ax)I(ax)Yo(x)Ko(x) dx = ) In m,
L e P*T,(x)
13 —— " dx = (-1)"nL,(p),
(13) / s =)
(14) 0 U2 b?en(t) e
2ri Iy YT gy
( l)k (5k2—k)/2
15
() Z TGO Z G5 Dok @ Dok

They involve binomial coefficients, orthogonal polynomials, special functions and their
g-analogues. The aim of these algorithms is to prove such identities automatically and,
when the right-hand side does not itself involve a sum or an integral, compute it from the
left-hand side. In all cases, at least one free variable remains: » in (10); £,r,n, k, s in (11);
a in (12); n and p in (13); n and x in (14); n and ¢ in (15). This is important since the
algorithms start by computing linear recurrences or differential equations or g-equations in
these free variables.

This part of computer algebra has made a lot of progress in terms of generality and
efficiency and is still very active. We describe here the general context and a few of the
recent developments. More information can be found in recent surveys [53, 91].

The name “creative telescoping” appears in van der Poorten’s enjoyable account [114]
of Apéry’s proof of the irrationality of £(3). There, it was used to prove that the sum

z n\?(n+ k\*
(16) A, :=Zan,k, with an,kz(k)( i )

k=0

satisfies the linear recurrence
(n+ 1P A5 — B4n’ +510% +25n + 5)A, + n° A1 = 0.
For this, an intermediate sequence
bpx =420+ 1) (k(2k +1) - Q2n+ 1)2) ko

called the certificate of the identity was introduced. It is then sufficient to use simple
properties of the binomial coefficients to observe that

(n+ 1)3ap 6 — 340 + 510 + 250 + S)ap i + W an_1.x = by — b1

and sum over k, letting the right-hand side telescope.
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Example 13. For the much simpler example of the sum

U, :Zn:(Z) —(1+1)" =2",

k=0
the computation by this method produces
n+1 n+1 n+1 n n
U, = = — — 2
e Bl (G BRI [ RE
The summands above the braces telescope and the boxed parts sum to 0 by Pascal’s relation,
that the method has to synthesize somehow.

=2U,.

k

More generally, in order to compute equations satisfied by an integral or a sum, the
method takes as input a system of equations satisfied by the summand or integrand and
relies on two operations: integration (resp. summation) by parts and differentiation (resp.
difference) under the integral (resp. sum) sign. The first part gives the certificate, i.e., the
multivariate expression whose difference (or derivative) telescopes; the second part gives
the desired operator, called the telescoper.

14. TELESCOPING IDEAL

Since the skew polynomial ring A(d; o, §) does not have zero divisors when A does
not, one can iterate the construction of Ore polynomials and obtain multivariate Ore
polynomial rings A(0i;01,01)---(0r;06,). The case when moreover 0;0; = 0;0;
for all (i, j) is called an Ore algebra and denoted A{dy,...,d,;01,...,07,01,...,0,) OF
even A(dy, ..., d,) where the o;s and ¢;s are clear from the context. If O is such an algebra
and f a function on which its elements act, then the annihilator of f with respect to O,

Ann(f) :={P e O|P(f) =0},

is a left ideal in O. For example, the annihilator of sin x in Q(x)(D, ) is generated by D2 + 1.
More generally, in the case of operators in one variable over the rational functions, the ideals
are principal by Ore’s theorem (Thm. 10.1 above), thus the annihilator of a function f is
given by the greatest common right divisor of its elements, and rewriting on a basis of the
quotient O/Ann(f) is performed by Euclidean division. This is the univariate situation
considered in the previous parts.

14.1. O-finite ideals. The notions of D-finiteness or P-recursiveness generalize as follows.

Definition 14.1. A left ideal 7 in a multivariate Ore algebra O = K(x)(0) is called 0-finite
when the quotient O/ 7 is a finite dimensional vector space over K(x). A function whose
annihilator is 0-finite is called 9-finite too.

(We introduced this name with Frédéric Chyzak [55], but it was probably not such a
good idea, since it is pronounced like D-finite, leading to some confusion.)

These ideals are a non-commutative analogue of zero-dimensional ideals in polynomial
rings. Thus, like in the commutative case, Euclidean division and (right) gcd can be
replaced by Grobner bases [55], that provide an access to a basis of the finite-dimensional
vector space O/Ann(f) and to rewriting rules reducing any element of O/Ann( f) to a linear
combination of the elements of this basis. It is important to stress that the use of Grébner
bases does not raise any efficiency issue in these computations.

Instead of a formal definition of the Grobner basis of an ideal Ann( f), we use Figure 7 to
illustrate their main features. Each point with integer coordinates corresponds to a monomial
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Ficure 7. Illustration of Grobner bases and of Chyzak’s algorithm

in dy, dy, 9, with these coordinates as exponents. The red points, located ‘below’ the stairs,
correspond to a basis of the quotient O/Ann(f). Since the stairs are bounded, there are
finitely many red points, which shows that f is J-finite. The blue points indicate elements
of the Grobner basis: each corresponds to a rewriting rule expressing this monomial as a
linear combination of the red ones. Any monomial that is neither red nor blue is a multiple
of one of the blue ones and thus can also be reduced, possibly in several steps, to a linear
combination of the red points.

Example 14. The operators defining the Chebyshev polynomials of the first kind 7, (x),
namely

(1- xz)D)ZC —xDy +n%  nSp+ (1 -x*)Dy +nx

make it possible to reduce any polynomial in Q(x, n){Dy, S, ) to a linear combination of 1
and D, and constitute a Grobner basis of the ideal Ann(7},(x)) is this Ore algebra. In
other words, using this basis, any T,(ll_zk(x) (i, k nonnegative integers) rewrites as a linear
combination of 7,, and 7, with coefficients in Q(x, 7). (One could also have chosen the
operators corresponding to the equations (9). They also give a Grobner basis in this algebra,
for a different term order.)

Example 15. Using the basis of the previous example together with the operators defin-
ing eP*, namely (D, +x, D +p) that form a Grobner basis of Ann(e™"*)in Q(p, x){Dp, D),
simple manipulations like those used for the proofs of univariate identities (§6) reduce to
linear algebra in finite-dimensional vector space and show that the integrand in Eq. (13) is
annihilated by the operators

Dy +x, nS,—(x* 1Dy - (p(1-x*) —(n+ x),

a7
(1= xH)D3 — 2px® +3x = 2p)Dx — (p*x* + 3px —n® = p* + 1),
X 14 P p P p

which constitute a Grobner basis of the annihilator, showing that the quotient in this
example has dimension 2, being generated by 1 and Dy. In other words, if F;(p, x) denotes
the integrand of (13), all l%?;—;anJrk(p, x) for (i, j, k) € N> can be rewritten as linear
combinations of F,, and dF;,/dx, with coeflicients in Q(n, p, x).

14.2. Telescoping ideal. In this framework, let the Ore algebra O be K(x, t){dx, D;) with
X = (x1,...,x) and dx = (dy,...,d,) the corresponding Ore operators, while D, is the
differentiation with respect to . If the aim is to compute an integral of f with respect to
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the variable ¢, its representation is given by the telescoping ideal

T,(f) = (Ann(f) + DX (0 D)) 0 K0 -

— —_—
int. by parts diff. underf

Indeed, canceling the derivatives that are used during the successive integrations by parts
amounts to computing modulo the right ideal D,K(x,){d, D;). The situation in the
computation of sums is completely similar, with the differentiation operator D; replaced by
the difference operator Ay = Sg — 1.

Example 16. The ideal generated by the operators in Eq. (17) contains
P= pzDIZ7 +pDp +nDyS, + (px2 —nx — p)Dy + 2px — n* - p2 —n),
as can be checked by reduction with the Grobner basis. Rewriting this operator as
P= psz, +pDp, — (7 + p?) + Dy (nS, + (px*> — nx — p))

shows that p>D7 + pD), — (n* + p?) is an operator in Q(n, p)(Su, D) that belongs to the
telescoping ideal of the integrand of (13) with respect to x.

A major source of difficulty is that while 7;(f) is a left ideal, the sum of the left ideal
Ann(f) and the right ideal D,;O or A, O is not an ideal in general, so that new algorithms
are required to perform this computation or to find approximations (ie, subideals) of the
telescoping ideal.

Zeilberger’s slow algorithm. The first general approach was Zeilberger’s slow algorithm [132],
as he named it later. The idea is to restrict integration by parts by considering only the ideal
D,K(x){(dx, D;). Now D, commutes with all the elements of K(x){dx, D;), which makes
the computation easier. However, by restricting to a subideal, one may be led to compute
generators of much higher degree than necessary, or even fail to find any equation. This
last problem disappears when a sufficient condition called “holonomy” in D-module theory
holds. Holonomy was then a starting point for Zeilberger’s approach [132].

14.3. Towards a basis of the telescoping ideal. Generators of the telescoping ideal can
be obtained by looking for Ore polynomials of the form

(18) D cm®Im 48, Y- aij(x1)3'] € Ann(f),
m ij)eS
———
telescoper certificate
where, with the notations above, m = (my,...,m,),i = (i}, ..., i) and the multi-exponent

notation is 0™ = 61'"‘ .-+ 8" In this formula, the range of the first sum is a priori unknown
and that of the second one depends on the function f under consideration.

Zeilberger’s fast algorithm. Historically, the first algorithm in this family was Zeilberger’s
algorithm [133] for the definite summation of hypergeometric sequences. These are bi-
variate sequences (ie, r = 1) whose annihilator is generated by two recurrence operators
of the form S, — r(n, k) and Sy — t(n, k) with r and ¢ rational functions. Typical examples
are the binomial coefficients or Apéry’s sequence a, i from Eq. (16). Reducing any op-
erator in O := Q(n, k){S,, Sx) with these two first-order ones leads to rational functions
times the identity. In other words, the quotient O/Ann(f) is a vector space over Q(n, k)
of dimension 1. As a consequence, the set of indices in the second sum of Eq. (18) (with
0; = Ax = Sg — 1) can be taken as S = {(0,0)} without any loss. Thus the certificate is
reduced to one rational function. Zeilberger’s algorithm takes m € {0, ..., r} for increas-
ing r as the set of indices for the first sum. For each such r, it looks for the existence
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of rational ¢, ...,c, and ago by a variant of Gosper’s classical algorithm for indefinite
summation. If a solution is found, the algorithm stops and returns the generator of the
telescoping ideal Ty (f), which is principal since this is a univariate situation. Otherwise,
the failure to find a solution is actually a proof that none exists and the algorithm proceeds
to the next value of r. Necessary and sufficient conditions for the algorithm to terminate
are known [129, 2, 3]. Variants of this algorithm with quotients of dimension 1 have been
developed by Almkvist and Zeilberger [5] for integrals of hyperexponential functions (given
by two first order differential equations) and for integrals of functions that satisfy both a
first order linear recurrence and a first order linear differential equation.

Chyzak’s algorithm. A vast generalization of Zeilberger’s algorithm was designed by
Chyzak [52] for the case when the quotient O/Ann(f) is only required to have finite
dimension over K(x,1). A basis of the quotient gives the set of indices S to be used in
Eq. (18). Then, as in Zeilberger’s algorithm, Chyzak’s algorithm uses increasingly large
sets of monomials with unknown rational functions ¢, and one unknown rational func-
tion a; ; per element of this set S. Multiplying by d; on the left and reducing the resulting
expression on the basis of the quotients gives a set of linear differential equations if 9, is
a differentiation operator (or recurrence equations if it is a difference operator) for these
unknown functions. The generalization of Gosper’s algorithm is replaced by algorithms
for rational solutions for such systems.

Figure 7 suggests how the algorithm proceeds in a case with 3 variables where integration
(or summation) is performed with respect to z. During the execution of Chyzak’s algorithm,
an unknown rational function a;; is associated to each of the red points. The first sum
in Eq. (18) runs over more and more of the (small yellow) monomials in the remaining
variables d, and d,, by increasing order for the computation of a Grobner basis of the
telescoping ideal.

Example 17. For the integral in Eq. (13), the Grobner basis (17) leads to considering
operators of the form

D clm(n p)DEST + Dy (ao(n, p.x) +ai(n.p, x)Dx)
(k.m)

and finding rational functions ¢k, ao and a; so that they belong to Ann(F,(p, x)), or
equivalently so that they reduce to 0 by the Grobner basis.

The second part of the expression does not depend on the range of the first sum and
reduces to

0 0
2 agDy + a1 —D, + 4 ((pzx2 +3px —n? —p%) +(2px? +3x - 2p)Dx) .
ox 0x 1—x2
Next, each monomial Dk Syt reduces to a linear combination uf) + u(l) D,. Thus, by

canceling the coordlnates of 1 and D, in the sum, the problem is reduced to looking for
rational solutions of the inhomogeneous linear differential system

dag 2.2 22 (0)
6_x+ 1_xz(p X" +3px—n-—p))=- Z Cheymly_
(k,m)
Jday (1)
B + ay + (2px +3x-2p) = (;) CleymUy -

More precisely, the algorithm looks for values of rational c ,, such that the system admits
a rational solution. Several algorithms are available for this. A solution is to: decouple the
system; observe that the poles and their multiplicities in possible rational solutions ag, a;
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are dictated by the homogeneous part; use undetermined coefficients on the numerator to
reduce the problem to linear algebra over the coefficients of the numerator and the ¢y ;.

The first two cases when solutions are found is when the indices run over the sets
{(0,0),(0,1),(1,0)} and {(0, 0), (0, 1), (0, 2)}, giving

0F, B EF _ 0 Certy pzé)an +p[)ﬂ B
ap p " ox ’ op? dp

for two explicit functions Cert; and Cert,. These equations can be integrated from -1 to 1
and the left-hand sides provide a Grobner basis of the annihilator of the integral. These
can easily be checked to cancel the Bessel function I,,(p) multiplied by (—1)", and initial

conditions can be used to conclude the proof of Eq. (13).

19 Fun +

Infinite dimension. That same method also extends to cases where the dimension of the
quotient is not finite, by proceeding by increasing total degree. Again, termination of
the algorithm is problematic, but this method allows the automatic derivation of identities
for a much larger class of functions or sequences, including Stirling numbers, Bernoulli
numbers, the Beta function and the Hurwitz zeta function [54].

Multiple sums or integrals. Formally, the situation is very similar. The Ore algebra O is
K(x, t){0x, 0), withx = (x1,..., %), 0x = (Ox; - - -5 Ox, ), t = (t1, . . ., tm), O = (O, - - ., Ot,.).
The aim is to compute an integral (or sum or other depending on the Ore operators) of f
with respect to the variables t. The telescoping ideal becomes

Ti(f) = (AN + 6,06 (B 00 + -+ + 8, KX 00k 0 NGB,

Under a sufficient condition based on holonomy, Wilf and Zeilberger have given a gen-
eralization of Zeilberger’s slow algorithm and showed that it terminates [130]. This was
improved by Wegschaider [128].

Without restricting the integration by parts, proceeding with unknown rational functions
as above is also possible, but it leads to a system of linear partial differential equations for
which algorithms are still missing in general. In the case of a quotient of dimension 1,
Zeilberger’s fast algorithm for hypergeometric summation has been generalized [8, 72].
Another approach for multiple binomial sum is described below. In the general case, except
for special families mentioned below, one resorts to proceeding variable by variable, with
some optimizations [53].

15. CREATIVE TELESCOPING. NEW GENERATION

The certificate computed by these algorithms is sometimes necessary: if the integration
(or summation) domain is such that the integral (or sum) of a derivative (or a difference) is
not zero, then one needs to evaluate the certificate at the boundary of the domain. In many
cases however, it is useless. This is the case when integrating over a cycle in C"* or when
summing over Z" a product of binomial coefficients with finite support, provided it can be
ensured that the certificate does not present singularities on the domain of integration (or
summation) that were not present in the input. However, by their design, the algorithms
described above cannot avoid the computation of that certificate.

15.1. Certificates are big. Being formed of rational functions in more variables than the
telescoper, certificates tend to be bigger, which impacts the complexity.

Example 18. The double sum

(20) Cy = Z Z (—1yrHres (1:) (:) (n Jsr s) (n : r) (2n —nr - s)

r>0s>0
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satisfies the linear recurrence
21 (n+2)°Cpaa =220+ 3)(3n% + 91 + 7)Cps1 — (4n + 3)(4n + 4)(4n + 5)C,, = 0,
the corresponding certificate being 180kB large (approximately 2 pages of text).

Example 19. Similarly, the triple integral

_ 1+ l‘3)2 dtidtydt;
(22) I(Z) - % t1t2t3(1 + t3(1 + t]))(l + t3(1 + tz)) + Z(l + t])(l + tz)(l + t3)4

satisfies the linear differential equation

(1 +42)(1 —162)1""(z) + 3z(1 — 182 — 12822)1"(z)
— (11 = 40z — 4442%)I'(z) + 2(1 + 302)1(z) = 0,
with a certificate that fits in 12 pages.

Thus, for efficiency reasons, the design of a new generation of algorithms avoiding the
computation of the certificate has been an active research area recently.

15.2. Hermite reduction. The linear system of equations obtained by reducing Eq. (18)
modulo the annihilator of f has a fixed homogeneous part in the unknown rational coef-
ficients aj; and a variable inhomogeneous part coming from the telescoper. The idea of
algorithms based on Hermite reduction is to work modulo the image of the linear map
constituted by the homogeneous part. When a finite basis of the quotient by this image
is available, generalized Hermite reduction is the process of reducing (vectors of) rational
functions to this basis. This generalizes the classical Hermite reduction, which reduces
modulo the image of a derivation D.

This was first exploited in the case of dimension 1 for bivariate rational functions [21],
for hyperexponential functions [22], for bivariate hypergeometric terms [38, 85], for mixed
hypergeometric-hyperexponential functions [26]. Next, it was extended to algebraic func-
tions [42, 41], to Fuchsian functions [37], to solutions of differential systems [125] and
finally to the integration of J-finite functions [24].

A further simplification is brought by the use of adjoint operators. If L = ¢, D+ - -4¢o €
K(x){Dy), then its adjoint is defined as L™ = co+- - - + (=Dy)"¢,. Itis related to integration
by parts via Lagrange’s identity

uL(f) = L*(w)f = Dx(PL(f,u)),

satisfied for any u and f, with an explicit Pr. Thus, if f is a solution of L, any rational
function R in L*(K(x)) is such that R f is a derivative. Now, if, as in the case of Example 17,
all the other operators in the algebra rewrite as linear combinations of powers of D, (see
Eq. (17)), then all operations boil down to Hermite reductions of rational functions. This
specific form can always be achieved by the use of a so-called cyclic vector [51].

Example 20. The adjoint of the last operator in the basis (17) is
M = (x* = 1)D2 + (x = 2p(x* = 1))D, + (p*(x* = 1) = px — n?).

If one wants to reduce a polynomial with respect to M, the first step is to determine the
intersection of M(Q(x)) with Q[x]. Considering M (x*) for k € N shows that all polynomials
of degree at least 2 belong to M(Q(x)) N Q[x]. To prove that no other polynomial belong
to this set, it is sufficient to consider the singularities at +1 and observe that M increases
the orders of the poles there. Thus, 1 and x reduce to themselves with respect to M and the
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Hermite reduction of any polynomial is a linear combination of 1 and x with coefficients
in Q(n, p). In particular, using M (1) reduces x° to x/p + 1 + n*/p>.

This means first that F,, itself is not a derivative (or 1 would be reduced to 0), that no
linear combination of F, and 0 F},/dp is a derivative (since 1 and x are linearly independent).
Next, D), reduces to x by the Grobner basis, so DIZJ reduces to x2 and the Hermite reduction
of x? implies that

9*F, OF,
2 n n 2 2
— +p— —(n" + p°)F,
a7 P (" + p7)Fy
is a derivative, which recovers the second part of Eq. (19). Finally, rewriting the equation
for F,,+1 in the Grobner basis (17) by a Euclidean right division by D, gives

nSy — Dx(x*> = 1) + (px* + (n — Dx — p),
so that again, the Hermite reduction of x? helps conclude that

oF, B nF

op p "

is aderivative, which is the first part of Eq. (19), obtained without computing the certificates.

Fn+l+

15.3. Periods. Integrals of rational functions over cycles provide an important class of
multiple integrals where the computation of the certificate is unnecessary. What we call
period here is an integral of a rational function in Q(t) with t = (¢y,...,t,) over a cycle
in C™ that avoids the zero-set of the denominator. These numbers form an important
subclass of the countable class of periods considered by Kontsevich and Zagier [90], with
fewer constraints on the domain of integration.

If instead one integrates in C'™ a function F in Q(x, t) for an extra variable x and if the
denominator does not vanish in a neighborhood of the cycle of integration, then the period
is a function of x. Moreover, this function satisfies a linear differential equation, called a
Picard-Fuchs equation after early work by Picard [111] in the bivariate case.

Without loss of generality, F € Q(x,t) can be written P/Q¢ with Q a square-free
polynomial. An algorithm finding the Picard-Fuchs equation is obtained by a process
called Griffiths-Dwork reduction, which can be seen as a generalization of Hermite’s
reduction [76, 63, 45]. A first technicality is that in order to get a better control over the
degrees, one homogenizes the integrand by introducing a new variable #y. Next, a key step
is to introduce the ideal generated by the partial derivatives 990, . . ., ,,Q. The reduction
takes the remainder modulo (a Grobner basis of) this ideal of the numerators that appear
and use integration by parts: if P = r + vo3pQ + - - - + v;;,0,,Q and € > 1, then

P r 1 )

P Uy Vo Vi 1 Oovo+ -+ 0mVm
ol ol —-1\Tp1

+ ”+6me—1 +€_1 o1

Thus, modulo derivatives, P/Q¢ reduces to r/Qf and a rational function with denominator
only Q“~! on which the process is repeated until £ = 1 is reached. A result of Griffiths [76]
shows that, under some regularity condition, F is reduced to 0 by this process if and only
if the integral of F over cycles is 0. The computation of the Picard-Fuchs equation then
consists in computing the reductions of the successive derivatives with respect to the free
variable x and looking for a linear relation between the reductions, whose coefficients are
those of the differential equation. When the regularity conditions are not met, they can be
recovered by a perturbation method [63]. Counting dimensions carefully and using recent
efficient algorithms for the reduction stage leads to the following [29, 92].
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Theorem 15.1. Let F = P/Q be a rational function in Q(x, t) witht = (11, ..., t,m), let
N = max(deg, P+ m + 1,deg, Q) and d, = max(deg, P,deg, Q).

Then F admits a telescoper whose certificate is singular only where Q = 0. This telescoper
has order at most N™ and degree O(N>™d..). It can be computed in O(N¥"d..) arithmetic
operations in Q.

The bound on the order is tight. It is important to note that generically, the certificate
has a number of monomials growing like N n*/2 and thus cannot even be written within that
complexity.

Recent work has exploited these differential equations for the computation of volumes
of semi-algebraic sets [93] and of multiple binomial sums (see below).

16. DiAGONALS

Diagonals form an important class of such multiple integrals of rational functions. If
F(t) = G(t)/H(t) with t = (1, . . ., t;;,) is a multivariate rational function such that H(0) # 0,
then it admits a Taylor expansion

FO) =) at

ieN™
and its diagonal is the power series
AF(t) := Z Ck,k,__.’kl‘k.
keN

Example 21. The simplest example is the diagonal of Pascal’s triangle: the binomial
coefficients are the Taylor coefficients of f = 1/(1 — x — y) and the central binomial
coeflicients (z,f ) have for generating function Af. Less obvious are

i L (2K _ o 1-2x
k+1\k T =-x—-y)(1-x)

iAktk =A !
= I—t(1+x)(1+y)A+2)(1 +y+z+yz+xyz)

where the first one is the generating function of the Catalan numbers and the second one is
that of the Apéry numbers from Eq. (16).

Since diagonals can be rewritten as multidimensional residues

1\™! t dty - dtym
AF(t)=|— Flt,...,tm1, ,
() (Zﬂ'i) f‘ (1 mlll---lm_l AR |

the results of the previous section apply and lead to the following.

Theorem 16.1. [44] Diagonals of rational functions are differentially finite.

Moreover, if F has degree d, then, by Theorem 15.1, the differential equation satisfied
by the diagonal has order that grows like d™ and its coefficients have degree bounded
by d®™_ It can be computed in good complexity.

Much more is known about diagonals. Algebraic series are the diagonals of bivariate
rational functions [112, 71] (the degree of the polynomial may be large [27]); diagonals
are closed under sum, product and Hadamard product. They are globally bounded and
therefore satisfy the hypothesis of Theorem 4.2; Christol conjectures that the converse
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holds: all globally bounded D-finite power series would be diagonals. More information
on diagonals can be found in recent surveys [20, 46].

Also, for the most regular of those rational functions, the constant involved in the
asymptotic behavior of the coefficients of their diagonals, as discussed in §5, can sometimes
be computed explicitly and moreover algorithmically [110, 101].

17. MULTIPLE BINOMIAL SUMS
These are sums like that of Eq. (20). A more formal definition is the following.

Definition 17.1. The class of multiple binomial sums over K is the class of sequences of
elements of K obtained from: geometric sequences n — C" (for C € K\ {0}), binomial
coefficients (n, k) (Z) the Kronecker delta sequence n — ¢, (which is 1 at index »n and
0 everywhere else) using the operations of: addition, multiplication, multiplication by a
scalar, affine change of indices up + uay with A an affine map from 74 to Z¢ and indefinite

summation
n

(m, n) — Z Um k-

k=0

These sums are very closely related to diagonals, by the following not too difficult result,
whose proof is effective.

Theorem 17.2. [30] A sequence u : N — K is a multiple binomial sum if and only if the
generating function ., > unt" is the diagonal of a rational power series.

In order to compute a linear recurrence for a multiple binomial sum, it is actually not
necessary to rewrite it as a diagonal, and a residue expression is sufficient. This provides
a fast algorithm for single or multiple summation [30] that makes effective a classical
approach sometimes called the generating function method [64].

Example 22. Dixon’s classical identity
2n 3
2 3n)!
D (r) ey
= n!

is computed automatically by first expressing the generating function of the sum as the

integral of a rational function as follows. A starting point is to define (2) as the coefficient

of x* in (1 + x)", hence, by Cauchy’s formula, as

n _L?{(l+x)"ﬂ
k| 2mi xk x’

where the contour is a small circle (of radius smaller than 1) around the origin. Then the
summand has for integral representation

n
w1 - —1 \*dxydxydxs
—1)* = — 1+ x;)° ,
=D (k) (2mi)3 ,7{ (!:1[( %) ) (x1x2x3) X1X2X3
where the contour is the product of three of those small circles. Multiplying by 7" and
summing the geometric series over k and n finally gives the generating function of the sum

as
1 xixoxs — T, (1 + x;)?
(2rmi)3 jg 2.2.2 3 2 3 2 drrdxydxs.

(x1x2x3 — T, (1 4+ x0) ) (1 — T, (4 xy) )
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Next, the algorithm detects that the integral with respect to one of the variables, say x3, can
be obtained by residue computation, taking into account that as t+ — 0, the first factor of
the denominator has all its roots that remain small, while those of the second one do not
contribute. The integral is thus simplified to

1 % X1x2 dx1dxy
Qri S x2x2 = t(1+ x1)2(1 + x2)2(1 = x1x)?

From there, the algorithms of §15.3 produce the following linear differential equation for
the generating function:

t(1+27t)y” + (1 + 541)y’ + 6y = 0,
which in turn gives the linear recurrence
3(3n+2)(3n+ Dy + (n+ 1) 1 =0,

concluding the proof of Dixon’s formula after checking one initial condition. Actually, the
right-hand side is discovered automatically by this computation.

Example 23. From the double sum from Eq. (20), the rational function integrand of Eq. (22)
is obtained automatically. From there, the Picard-Fuchs equation is deduced and then by
direct translation into a recurrence, Eq. (21) follows.

And again, from the linear differential equation or linear recurrence, a lot of information
can be obtained for the sum by the methods of the first part.
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