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Abstract. This paper investigates the cost of solving systems of sparse poly-
nomial equations by homotopy continuation. First, a space of systems of

n-variate polynomial equations is specified through n monomial bases. The

natural locus for the roots of those systems is known to be a certain toric vari-
ety. This variety is a compactification of pCzt0uqn, dependent on the monomial

bases. A toric Newton operator is defined on that toric variety. Smale’s al-

pha theory is generalized to provide criteria of quadratic convergence. Two
condition numbers are defined and a higher derivative estimate is obtained in

this setting. The Newton operator and related condition numbers turn out to

be invariant through a group action related to the momentum map. A homo-
topy algorithm is given, and is proved to terminate after a number of Newton

steps which is linear on the condition length of the lifted homotopy path. This
generalizes a result from Shub (2009).
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1. Introduction

The solution of Smale’s 17th problem by Beltrán and Pardo (2009, 2011) and
Lairez (2016) was a tremendous breakthrough in the theory of solving polynomial
systems. Roughly, the cost of finding an approximate solution for a random system
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of n polynomial equations on n variables is bounded by a polynomial in the input
size.

Yet, several unanswered questions may prevent the immediate application of
those results and supporting algorithms. One of the main obstructions comes from
the way the input size was defined by Smale (1998). First the total degree di of
each equation fi is prescribed. Then,

A probability measure must be put on the space of all such f , for
each d “ pd1, . . . , dnq and the time of an algorithm is averaged over
the space of f . Is there such an algorithm where the average time
is bounded by a polynomial in the number of coefficients of f (the
input size)?

Usually, the probability measure is assumed to be the normal distribution with 0
average and identity covariance with respect to Weyl’s Upn ` 1q-invariant inner

product. The input size of such a system is therefore
řn
i“1

ˆ

di ` n
di

˙

.

Instead, a lot of the current numerical interest concentrates on systems of equa-
tions of the form

(1)

F1pZq “
ř

aPA1
fi,aZ

a1
1 Za22 ¨ ¨ ¨Zann

...
FnpZq “

ř

aPAn
fi,aZ

a1
1 Za22 ¨ ¨ ¨Zann ,

where each Ai is a finite set. The natural input size for those systems is
ř

i #Ai

which can be exponentially smaller than
řn
i“1

ˆ

di ` n
di

˙

.

One of the main reasons to find roots of a random system is to use them as a
starting point for a homotopy algorithm. Sometimes, only the ‘finite’ roots of a
sparse system are needed. Those are the roots in pCzt0uqn. A famous theorem by
Bernstein, Kushnirenko and Khovanskii(1976) bounds the number of such roots in
terms of the mixed volume of the convex hulls of the Ai. This bound is tighter
than Bézout’s Theorem. The bound is exact once the roots are taken in the proper
compactification of pCzt0uqn and counted with multiplicity. This compactification
is a particular toric variety. Properly detecting and finding ‘infinite’ roots in this
toric variety is also an interesting problem. Finding just one root of a random dense
system could be very expensive and would not necessarily provide a finite root of
the sparse target system, or even a legitimate ‘infinite’ root in the toric variety.
Those considerations lead to the following theoretical questions:

Problem A. Can a finite zero of a random sparse polynomial system as in equation
(1) be found approximately, on the average, in time polynomial in

ř

i #Ai with a
uniform algorithm?

Problem B. Can every finite zero of a random polynomial system as in equation
(1) be found approximately, on the average, in time polynomial in

ř

i #Ai with a
uniform algorithm running in parallel, one parallel process for every expected zero?

To simplify Problem B, one can assume that some preliminary information such
as a lower mixed subdivision is given as input to the algorithm. An algorithm to
find this mixed subdivision in time bounded in terms of mixed volumes and other
quermassintegrals was given by Malajovich (2016). Implementation issues were also



COMPLEXITY OF SPARSE POLYNOMIAL SOLVING 3

discussed. Jensen (TA) provides an alternative symbolic method which can also be
used to recover this mixed subdivision.

As a first step towards an investigation of problems A and B, this paper attempts
to develop a theory of homotopy algorithms for sparse polynomial systems by fol-
lowing a parallel with the theory for dense polynomial systems. A key result in the
theory was obtained by Shub (2009): the cost of homotopy is bounded above by
the condition length of the homotopy path (see Section 2). The aim of this paper
is to obtain a similar theorem for sparse polynomial systems.

One of the cornerstones of that theory is the concept of Upn`1q invariance (Shub
and Smale, 1993a; 1993b; 1993c; 1994; 1996; Blum et al., 1998; Shub, 2009;
Beltrán and Shub, 2009; Beltrán and Pardo, 2009; 2011; Bürgisser and Cucker,
2011; Dedieu et al., 2013). Unfortunately, unitary action does not preserve the
structure of equation (1). In this paper, the Upn ` 1q invariance will be replaced
by another group action explained in Section 3.

It is convenient to identify sparse polynomials to exponential sums. More for-
mally, let FAi be the set of expressions of the form fipzq “

ř

aPAi
fiae

az and let
f P FA1

ˆ ¨ ¨ ¨ ˆFAn . If fpzq “ 0 and ez “ Z P pCzt0uqn then Z is a finite zero
of equation (1). In section 3 we will construct the toric variety V as the Zariski
closure of a non-unique embedding of pCzt0uqn into PpF˚

A1
q ˆ ¨ ¨ ¨ ˆ PpF˚

An
q. Ac-

tual computations require the use of some local chart. We will use a system of
‘logarithmic coordinates’ rV s : M Ñ V where M is the quotient of the z-space Cn
that makes the embedding injective. To every point x P M we will associate the
local norm } ¨ }x induced by the pull-back of Fubini-Study metric from V . Another
possibility discussed in section 6 is to endow M with a Finsler structure. We will
also define a Newton operator on V which will actually operate on M as a (locally)
linear space. This will avoid all the technicalities associated to Newton iteration on
manifolds such as estimating covariant derivatives or approximating geodesics, as
required in previous work from Dedieu et al. (2003). However M is still a manifold,
with a metric structure associated to each point. We may estimate the distance
between two points x, z through the norm }x ´ z}x on the tangent space TxM .
The subtraction operator above is provided by the linear structure of Cn, and it is
assumed that representatives x and z in Cn minimize the norm.

In this paper, the solution variety is

S0 “

"

pf ,xq P PpFA1q ˆ ¨ ¨ ¨ ˆ PpFAnq ˆM : fpxq “ 0

*

We will define two condition numbers µ : PpFA1
q ˆ ¨ ¨ ¨ ˆ PpFAnq ˆM Ñ r1,8s

and ν : M Ñ r1,8s. Let Σ1 be the set of ill-posed pairs, that is the set of all pf ,xq
with µpf ,xqνpxq “ 8. The condition numbers induce a length structure on S0zΣ

1:
the condition length of a rectifiable path pft, ztqtPrt0,t1s is defined by

L
´

pft, ztq; t0, t1

¯

“

ż t1

t0

µpft, ztqνpztq
b

} 9ft}2ft ` } 9zt}2zt dt.

This gives S0zΣ
1 the structure of a path-metric space.

Main Theorem A. Let pft, ztqtPr0,T s be a rectifiable path in S0zΣ
1. Let x0 be an

approximation for z0, satisfying

1

2
µpf0, z0qνpz0q}z0 ´ x0}z0

ď u0
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for the constant u0 “
3´
?
7

2 » 0.090994 ¨ ¨ ¨ . Then, there is a time mesh 0 “ t0 ă
t1 ă ¨ ¨ ¨ ă tN “ T with

N ď

Q

38 L
´

pft, ztq; 0, T
¯U

so that the approximation

xi`1 “ Npfti ,xiq

produces y0 “ xN with

1

2
µpfT , zT qνpzT q}zT ´ y0}zT ď u0

for the same constant u0. Moreover, the sequence yi`1 “ NpfT ,yiq is well-defined
and satisfies

}yi ´ zT }zT ď 2´2i`1}y0 ´ zT }zT .

Main Theorem A is not effective, in the sense that the time mesh above is just
said to exist. One can get an adaptive criterion for the step size at the price of
increasing the complexity bound.

Main Theorem B. There are constants

α1 » 0.081239483 ¨ ¨ ¨ and u1 » 0.039745185 ¨ ¨ ¨

with the following properties: Let pft, ztqtPr0,T s be a rectifiable path in S0zΣ
1. Let

x0 be an approximation for z0, satisfying

1

2
µpf0, z0qνpz0q}z0 ´ x0}z0

ď u1.

Then one can define pxiq and ptiq recursively by
$

’

’

&

’

’

%

xi`1 “ Npfti ,xiq

ti`1 “ min
´

T, inf
!

t ą ti :

1
2µpft,xi`1qνpxi`1q}Nftpxi`1q ´ xi`1}xi`1 ě α1

)¯

.

Then, tN “ T for some N ď

Q

59L
´

pft, ztq; 0, T
¯U

. Moreover, the sequence y0 “

xN , yi`1 “ NfT pyiq is well-defined and satisfies for i ě 1

}yi ´ zT }zT ď 2´2i´1
´2}y0 ´ y1}.

The calculation of ti`1 requires a subroutine to find the smallest solution t ą ti
of the equation

1

2
µpft,xi`1qνpxi`1q}Nftpxi`1q ´ xi`1}xi`1

“ α1.

Obvious modifications in the algorithm allow for approximate computations in that
subroutine. Similar results were known for the dense setting (Beltrán, 2011; Dedieu
et al., 2013; Beltrán and Leykin, 2013). The constants in Main Theorem B are not
supposed to be sharp.

Last but not least, the methods in this paper may offer a better alternative than
projective Newton for approximating certain roots at ‘toric infinity’. We will show
this through an example.
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Running example, part 1. The family

(2) ftpX,Y q “

ˆ

tX ´ tXY ` Y 2 ´ t2Y 3

X `XY ´ Y 2 ´ Y 3.

˙

admits two ‘finite’ solutions on the toric variety V , namely pt´2, t´1q and p´ 1`t2

2t ,
´1q. When tÑ 0, both solutions converge to different points at toric ‘infinity’ and
those can be efficiently approximated. We will show in Section 3 that

L
´

pft, pxt, ytqq ; ε, 1
¯

P Θplogp1{εqq

where px, yq “ plogpXq, logpY qq. In comparison, we show in Section 2 that the
condition length L for the homogeneous setting as in (Shub, 2009) satisfies

L
´

pft, rXt : Yt : 1sq; ε, 1
¯

P Ωp1{εq.

This amounts to an exponentially worse bound on the number of homotopy steps,
due to the fact that in projective space the two solutions are the undistinguishable
on the limit. Indeed, limtÑ0rXt : Yt : 1s “ r1 : 0 : 0s for both curves.

This paper is organized as follows. Section 2 revisits known results about alpha-
theory, for reference and conceptual clarification. All the main results and con-
structs of this paper are contained in Section 3. Among them, the construction
of the toric variety, the Newton operator and the momentum map action. Main
theorems A and B are proved, but the proofs of intermediate results are postponed.
Section 4 contains distortion bounds that allow to switch between charts in M .
The remaining technical results are proved in Section 5.

In section 6 an alternative, more natural Finsler structure on the toric variety
V is introduced. All the theorems in this paper are also valid if the Hermitian
structure is replaced by this Finsler structure, and some bounds actually become
sharper. A short summary and some short remarks close the paper in section 7

Acknowledgements: The author would like to thank Carlos Beltrán, Bernardo
Freitas Paulo da Costa, Felipe Bottega Diniz and two anonymous referees for their
suggestions and improvements.

2. Projective Newton iteration revisited

In this section we revisit some classical results about Newton iteration, such as
Smale’s quadratic convergence theorems. Then we recall the corresponding results
for projective Newton iteration. By understanding projective Newton as an algo-
rithm operating on vector bundles, we highlight some subtle differences between
the gamma theorem which extends naturally to projective space, and the alpha
theorem.

2.1. Classical theorems. Let f : EÑ F be an analytic mapping between real or
complex Banach spaces. Whenever Dfpxq is invertible, Newton iteration is defined
by

Nf : E ÝÑ F
x ÞÝÑ x´Dfpxq´1fpxq

Smale’s invariants for Newton iterations are:

βpf ,xq “
›

›Dfpxq´1fpxq
›

› ,
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γpf ,xq “ max
kě2

ˆ

1

k!

›

›Dfpxq´1Dkfpxq
›

›

˙
1
k´1

and αpf ,xq “ βpf ,xqγpf ,xq. If Dfpxq fails to be surjective at x, then αpf ,xq “
βpf ,xq “ γpf ,xq “ 8. Recall also the teminology: a zero z of f is said to be
degenerate if Dfpzq is not surjective, otherwise it is non-degenerate. The domain of
f will be denoted Df and Bpx, rq will be the radius r ball around x. The following
two results are due to Smale (1986). The constant α0 below is due to Wang (1993).
Proofs can be found on textbooks or lecture notes such as (Blum et al., 1998;
Malajovich, 2011; 2013b).

Theorem 2.1.1 (γ-theorem). Let ζ P E be a non-degenerate zero of f . If x0 P E
satisfies

}ζ ´ x0}γpf , ζq ď
3´

?
7

2

and Bpζ, }ζ ´ x0}q Ď Df , then the sequence xi`1 “ Nf pxiq is well-defined and

}ζ ´ xi} ď 2´2i`1}ζ ´ x0}.

Theorem 2.1.2 (α-theorem). Let

α ď α0 “
13´ 3

?
17

4
,

r0 “
1` α´

?
1´ 6α` α2

4α
and r1 “

1´ 3α´
?

1´ 6α` α2

4α
.

If x0 P E satisfies αpf ,x0q ď α, and Bpx0, r0βpf ,x0qq Ď Df , then the sequence
defined recursively by xi`1 “ Nf pxiq is well-defined and converges to a limit ζ so
that fpζq “ 0. Furthermore,

(a) }xi ´ ζ} ď 2´2i`1}x1 ´ x0}

(b) }x0 ´ ζ} ď r0βpf ,x0q

(c) }x1 ´ ζ} ď r1βpf ,x0q.

2.2. The case for projective Newton. Polynomial equations in Cn are poorly
conditionned when a root ‘approaches’ infinity. For instance, the affine system of
equations

"

εx´ 1 “ 0
y ´ 1 “ 0

has solution pε´1, 1q. A small perturbation of the first coefficient by (say) δ may
change the solution to ppε´δq´1, 1q. The absolute condition number is by definition
ˇ

ˇ

ˇ

B
Bδ |δ“0

1
ε´δ

ˇ

ˇ

ˇ
“ ε´2, while the relative condition number is the absolute condition

number divided by the limit value ε´1, namely ε´1.
This source of ill-posedness was noticed by Shub and Smale (1993a, section I-4).

In comparison, the theory was greatly simplified by homogenizing equations and
then performing Newton iteration on projective space. On the previous example,
the homogenized system is

"

εx´ z “ 0
y ´ z “ 0

and the solution
“

ε´1 : 1 : 1
‰

“ r1 : ε : εs has a well-defined limit as εÑ 0.
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Those ideas require the introduction of an appropiate Newton operator. One
possibility is to perform Newton iteration in Cn`1 using the Moore-Penrose pseudo-
inverse as Allgower and Georg (1993), or charts as Morgan (2009). However, the
projective Newton operator introduced by Shub (1993) allowed for a more natural
development of the theory.

2.3. The line bundle Opdq. Homogeneous polynomials do not have a well-defined
value on projective space Pn. A classical construction in algebraic geometry is to
represent homogeneous degree d polynomials as sections of the line bundle C Ñ

Opdq π
Ñ Pn with total space Opdq equal to the quotient of pCn`1zt0uq ˆ C by the

Cˆ group action
λpx, yq “ pλx, λdyq.

When no confusion can arise, we will use the same notation for a fiber bundle and
its total space. Through this paper, brackets denote the equivalence class under
a prescribed group action. For instance, rxs P Pn will be the equivalence class of
x P Cn`1zt0u with respect to scalings, and rx, ys P Opdq will be the equivalence
class of px, yq under the group action above. Under this notation, the projection
operator π : Opdq Ñ Pn is just rx, ys ÞÑ rxs.

To a homogeneous degree d polynomial f , one associates the section sf : rxs ÞÑ
rx, fpxqs. The reader should check that this is independent of the choice of the
representative x for rxs.

2.4. Systems of equations. Let d1, . . . , dn P N be fixed through this section. We
consider the vector bundle E “ Opd1q ‘ ¨ ¨ ¨ ‘Opdnq. Denoting also by E its total

space, we may write this bundle as Cn Ñ E
π
Ñ Pn. The total space E is the

quotient of pCn`1zt0uq ˆ Cn by the Cˆ group action

λpx, y1, . . . , ynq “ pλx, λd1y1, . . . , λ
dnynq.

The projection map takes rx,ys into rxs.
To a system pf1, . . . , fnq of homogeneous polynomials of degree pd1, . . . , dnq, one

associates the section of the vector bundle

spf1,...,fnq : Pn ÝÑ E
rxs ÞÝÑ rx, f1pxq, . . . , fnpxqs

.

The brackets on the right denote quotient with respect to the multiplicative group
action λpx, y1, . . . , ynq “ pλx, λd1y1, . . . , λ

dnynq. The tangent space of Pn at x is
the linear space xK Ă Cn`1 with the inner product }x}´2x¨, ¨y. We can define a
local map from TrxsPn into the fiber above rxs, namely

Sf ,x : TrxsPn “ xK ÝÑ π´1prxsq – Cn
9x ÞÝÑ f1px` 9xq, . . . , fnpx` 9xq

Since this Sf ,x is a function between linear spaces, we can define the local Newton
operator associated to sf as the Newton operator for Sf ,x:

Nf ,x : TrxsPn ÝÑ TrxsPn

9x ÞÝÑ 9x´
`

Dfpx` 9xq|xK
˘´1

fpx` 9xq

The projective Newton operator is

Nproj
f : Pn ÝÑ Pn

rxs ÞÝÑ rx`Nf ,xp0qs .
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Remark 2.4.1. Explicit expressions for the projective Newton operator are

Nproj
f prxsq “

”

x´Dfpxq´1
|xK

fpxq
ı

“

«

x´

ˆ

Dfpxq
x˚

˙´1ˆ
fpxq

0

˙

ff

.

2.5. Alpha theory. Smale’s invariants for the projective Newton operator are

βpf , rxsq “
1

}x}

›

›

›
Dfpxq´1

|xK
fpxq

›

›

›
,

γpf , rxsq “ }x}max
kě2

ˆ

1

k!

›

›

›
Dfpxq´1

|xK
Dkfpxq

›

›

›

˙
1
k´1

and of course αpf , rxsq “ βpf , rxsqγpf , rxsq.
We will denote by dprxs , rysq the Riemannian (Fubini-Study) distance in projec-

tive space and by dT prxs , rysq “ tan dprxs , rysq the ‘tangential distance’. This is
not a metric, since the triangle inequality fails. However, if 9x K x, then

dT prxs , rx` 9xsq “
} 9x}

}x}

is the norm in TrxsPn.

Theorem 2.5.1 (γ-theorem). Let rζs P Pn be a non-degenerate zero of f . If
rx0s P Pn satisfies

dT prζs , rx0sqγpf , rζsq ď
3´

?
7

2
,

then the sequence rxi`1s “ Nproj
f prxisq is well-defined and

dT prζs , rxisq ď 2´2i`1dT prζs , rx0sq.

This first appeared in the book by Blum et al. (1998, Th.1 p.263). Bürgisser
and Cucker (2011, Th.16.38) provided a refinement of this theorem, not necessary
for this paper. One can also state an alpha-theorem for the projective Newton
iteration, but the sharpest α0 constant seems to be unknown. Instead we can
apply Theorem 2.1.2 to the local Newton operator.

Theorem 2.5.2 (Tangential α-theorem). Let

α ď α0 “
13´ 3

?
17

4
.

Let

r0 “
1` α´

?
1´ 6α` α2

4α
and r1 “

1´ 3α´
?

1´ 6α` α2

4α
.

If rx0s P Pn satisfies αpf , rx0sq ď α, then the sequence defined recursively by

9x0 “ 0, 9xi`1 “ Nf ,xp 9xiq is well-defined and converges to a limit 9x˚ so that rζs
def
“

rx0 ` 9x˚s is a zero of f . Furthermore,

(a) } 9xi ´ 9x˚} ď 2´2i`1} 9x˚}

(b) dT prx0 ` 9xis , rζsq ď 2´2i`1dT prx0s , rζsq
(c) dT prx0s , rζsq ď r0βpf , rx0sq

(d) dT pN
proj
f prx0sq, rζsq ď r1βpf , rx0sq.

We will need to borrow Lemma 2(4) p.264 from Blum et al. (1998). Since I am
not satisfied with the published proof, I included an alternate one in the appendix.
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Lemma 2.5.3. Suppose that x,y, ζ P Cn`1 with ζ ´ x K x, y ´ x K x and
}y ´ ζ} ď }x´ ζ}. Then,

}πpyq ´ ζ}

}ζ}
ď
}y ´ ζ}

}x}

where πpyq “ }ζ}2

xy,ζyy is the radial projection onto the affine plane ζ ` ζK.

Proof of Theorem 2.5.2. Item (a) is Theorem 2.1.2 in x0 ` xK0 – Cn. Item (b) is a
particular case of the Lemma 2.5.3 above, namely

dT prx0 ` 9xis , rζsq “
}πpyq ´ ζ}

}ζ}
ď
}y ´ ζ}

}x}
“ } 9xi ´ 9x˚}{}x0}

for x “ x0, y “ x0 ` 9x1 and ζ “ x ` 9x˚. Items (c) and (d) follow from Theo-
rem 2.1.2(b,c) and from estimates

dT prx0s , rζqsq “ } 9x˚}{}x0} and dT prx1s , rζqsq ď } 9x1 ´ 9x˚}{}x0}

the last one as above with y “ x` 9x1 “ x1. �

2.6. Homotopy and the condition length. Let Hd be the complex space of
degree d homogeneous polynomials on n`1 variables, endowed with Weyl’s Upn`1q-
invariant inner product. Let Hpd1,...,dnq “ Hd1ˆ¨ ¨ ¨ˆHdn . The invariant condition
number µ : PpHpd1,...,dnqq ˆ Pn Ñ r

?
n,8s defined by Shub and Smale (1993a) is

(3) µpf ,xq “ }f}

›

›

›

›

›

›

›

Dfpxq´1
xK

¨

˚

˝

}x}d1´1
?
d1

. . .

}x}dn´1
?
dn

˛

‹

‚

›

›

›

›

›

›

›

with the operator 2-norm assumed. The minimum of µpf ,xq “
?
n is actually

attained for fipxq “
?
dix

di´1
0 xi at x “ e0. At this system, }fi} “ 1 in Weyl’s

metric and therefore }f} “
?
n. The main complexity result that we want to

emulate is:

Theorem 2.6.1. (Shub, 2009, Th.3) There is a constant C1 ą 0, such that: if
pft, ztq, t0 ď t ď t1 is a C1 path in S0 “ tprf s, rzsq : fpzq “ 0u, then

C1pmax diq
3{2

ż t1

t0

µpft, ztq
b

} 9ft}2ft ` } 9zt}2zt dt

steps of the projective Newton method are sufficient to continue an approximate zero
x0 of ft0 with associated zero z0 to an approximate zero x1 of ft1 with associated
zero zt1 .

In the context of dense polynomial systems, the condition length relates algo-
rithmic issues to geometrical properties of the solution variety (Beltrán and Shub,
2009; Boito and Dedieu, 2010; Beltrán et al., 2009; 2012). Adaptive algorithms
exploiting the condition length were presented by Beltrán and Leykin (2013) and
Dedieu et al. (2013). Hauenstein and Liddell (2016) obtained a similar algorithm
for constant term homotopy. This allowed them to replace the condition number by
Smale’s γ invariant in the definition of condition length. Armentano et al. (2016)
used the condition length complexity estimates to derive an average complexity
result. Condition metrics can also be studied for their own sake as in (Beltrán et
al., 2009; Criado del Rey, TA).
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Running example, part 2. We estimate now the condition length for the two solution
paths in the example of equation (2). Let Zt “ pXt, Yt, 1q so that

Z
p1q
t “

¨

˝

t´2

t´1

1

˛

‚ and Z
p2q
t “

¨

˝

´ t2`1
2t
´1
1

˛

‚.

In norms,

}Z
p1q
t }

2 “ t´4 ` t´2 ` 1 and }Z
p2q
t }

2 “
1

4
t´2 `

5

2
`

1

4
t2

The Weyl norm of ft satisfies }ft}
2 “ 13

6 `
1
2 t

2 ` t4. Instead of evaluating the norm

of pDftpZ
piqptqqpZpiqptqqKq

´1, we compute

DftpZ
p1q
ptqqDftpZ

p1q
ptqq˚ “

ˆ

t2 ´ 2t` 10´ 6t´1
` 5t´2 t` 5t´1

` 4t´2
` 2t´4

t` 5t´1
` 4t´2

` 2t´4 1` 2t´1
` 5t´2

` 8t´3
` 5t´4

` 2t´5
` t´6

˙

and

DftpZ
p2q
ptqqDftpZ

p2q
ptqq˚ “

ˆ

17
2
t4 ` 13t2 ` 5

2
2t3 ` 4t2 ` 3t` 2` t´1

2t3 ` 4t2 ` 3t` 2` t´1 1
2
t2 ` 2t` 3` 2t´1

` 1
2
t´2

˙

.

Since

pµpiqq2 “
´

µpiqpft,Z
piqptqq

¯2

“ 3}Zpiqptq}4}ft}
2

›

›

›

›

´

DftpZ
piqptqqDftpZ

piqptqq˚
¯´1

›

›

›

›

,

we first expand the inverse of

DftpZ
piqptqqDftpZ

piqptqq˚

into its Laurent series around zero using the Maxima computer algebra system

(Maxima, 2014). The condition length for paths pft,Z
p1q
t q and ,pft,Z

p2q
t q is computed

in Table 1. Overall, the condition length L satisfies

Lppft,Z
p1q
t q, ε, 1q “

ż 1

ε

µpft, ztq
b

} 9ft}2ft ` } 9zt}2zt dt P Θpε´2q

as claimed in the introduction. This is also the best known upper bound for the
number of projective Newton steps in a homotopy algorithm going from f1 to fε.

3. Toric Newton iteration, condition and homotopy

The two solution paths for equation (2) from the running example converge
to the same point in projective space. Indeed, the solution paths pt´2, t´1q and

p´ 1`t2

2t ,´1q correspond to solution paths r1 : t : t2s and r1 ` 2t2 : 2t : ´2ts in

P2. When t “ 0 they converge to the same point. In this section we will embed
the solution paths in P3 instead of P2. For instance, we consider the embedding
pX,Y q ÞÑ rX : XY : Y 2 : Y 3s. Under this embedding, the solution paths become
rt : 1 : t : 1s and r´p1` t2q : p1` t2q : 2t : 2ts. When tÑ 0, those solutions converge
to r0 : 1 : 0 : 1s and r´1 : 1 : 0 : 0s.

It turns out that sparse polynomial systems are better studied as spaces of expo-
nential sums with integer coefficients. This amounts to representing the solutions
in logarithmic coordinates. If s “ ´ logptq,

lim
sÑ8

1

s
log

ˆ

t´2

t´1

˙

“

ˆ

2
1

˙

s` opsq and lim
sÑ8

log

ˆ

´ 1`t2

2t
´1

˙

“

ˆ

1
0

˙

s` opsq.
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i 1 2

d1,2 3 3

}Zpiqptq}4 t´8 `Opt´6q 1
16 t

´4 `Opt´3q

}ft}
2 13

6 `Opt
2q 13

6 `Opt
2q

} pDftDf˚t q
´1
} t2 `Opt3q 2`Optq

pµpiqq2 13
2 t
´6 `Opt´5q 13

16 t
´4 `Opt´3q

›

›

B
Bt ft

›

›

2

ft

3
13 `Opt

2q 3
13 `Opt

2q
›

›

B
BtZ

piqptq
›

›

2

Zpiqptq
1`Opt2q 8`Opt2q

´

µpiq
›

›

B
Bt

`

ft,Z
piqptq

˘
›

›

pft,Zpiqptqq

¯2

8t´6 `Opt´5q 107
16 t

´4 `Opt´3q

µpiq
›

›

B
Bt

`

ft,Z
piqptq

˘
›

›

pft,Zpiqptqq

?
8t´3 `Opt´2q

b

107
16 t

´2 `Opt´1q

Lppft,Z
piq
t q; ε, 1q “

ş1

ε
µpiq} ¨ ¨ ¨ }dt

?
2ε´2 `Opε´1q

b

107
16 ε

´1 `Oplogpε´1qq

Table 1. Computation of the condition length in the homoge-
neous setting.

The vectors

ˆ

2
1

˙

and

ˆ

1
0

˙

are outer normals to the support polygon, whose vertices

are p1, 0q,p1, 1q,p0, 2q and p0, 3q. See Fig. 1.

3.1. Spaces of complex fewnomials. The group action that we will introduce
in this section requires us to take an extra step. We are required to allow for
spaces of exponential sums with real exponents. All those spaces are particular
examples of a more general class of function spaces with an inner product, studied by
Malajovich (2013a) in connection with a generalization of the theorem by Bernstein
et al. (1976). We will need here the basic definitions and the reproducing kernel
properties.

Definition 3.1.1. A fewnomial space F of functions over a complex manifold M
is a Hilbert space of holomorphic functions from M to C, such that the evaluation
form

V : M ÝÑ F˚

x ÞÝÑ V pxq such that V pxqpfq “ fpxq

satisfies:

i. For all x P M , V pxq is a continuous linear form.
ii. For all x P M , V pxq is not the zero form.

The fewnomial space F is said to be non-degenerate if and only if,

iii. For all x P M , the composition of DV pxq with the orthogonal projection
onto V pxqK has full rank.

Fewnomial spaces are reproducing kernel spaces, with reproducing kernel Kpx,
yq “ V pxqpV pyq˚q. The pull-back of the Fubini-Study metric in PpF˚q defines a
Hermitian structure on M , denoted by x¨, ¨yF ,x. Below are a few examples.

Example 3.1.2 (Bergman space). Let M Ă Cn be open and bounded. Let ApM q

be the space of holomorphic functions defined on M with finite L 2 norm, endowed
with the L 2 inner product. Then ApM q is a non-degenerate fewnomial space.
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Example 3.1.3. Let M “ Cn`1zt0u. Let Hd be the space of homogeneous polyno-
mials on M of degree d, endowed with the Upn` 1q-invariant inner product. Then
Hd is a non-degenerate fewnomial space.

Example 3.1.4 (Sparse polynomials). Let A Ă Zn be finite and let ρ : A Ñ p0,8q
be arbitrary. Let M “ Cn. Let PA be the complex vector space spanned by mono-
mials xa, endowed with the Hermitian inner product that makes p. . . , ρaxa, . . . qaPA
an orthonormal basis. Then PA is a (possibly degenerate) fewnomial space.

Example 3.1.5 (Exponential sums, integer coefficients). Let A Ă Zn be finite and
let ρ : A Ñ p0,8q be arbitrary. Let M “ Cn mod 2π

?
´1 Zn. Let FA be the

complex vector space with orthonormal basis p. . . , ρae
ax, . . . qaPA Then FA is a

fewnomial space. Interest arises because if f “ fpzq PPA, then f ˝ exp P FA.

Example 3.1.6 (Exponential sums, real coefficients). Let A Ă Rn be finite and let
ρ : A Ñ p0,8q be arbitrary. Let M “ Cn. Let FA be the complex vector space
with orthonormal basis p. . . , ρae

ax, . . . qaPA

Remark 3.1.7. While in this paper we take the ρa as arbitrary, there is a natural
product operation on the set of all fewnomial spaces that induces specific choices,
see (Malajovich, 2013a).

3.2. Group actions and the momentum map. Arguably, the most important
tool in the theory of homotopy algorithms for homogeneous polynomial systems is
the invariance by Upn ` 1q-action. We cannot use this technique here. Thus we
need an alternative tool.

The additive group ppRnq˚,`q acts on the set of all exponential sums by

g,
ÿ

aPA

faρae
ax ÞÑ g

˜

ÿ

aPA

faρae
ax

¸

def
“

ÿ

aPA

faρae
pa´gqx “ e´gx

ÿ

aPA

faρae
ax.

This is equivalent to shifting the support of an exponential sum, sending FA to

FA´g where A´g
def
“ ta´g : a P Au. Shifting sends each basis vector ρae

ax of Fa

into a basis vector ρa1e
pa´gqx of FA´g. We require the ρa1 ’s to be proportional to

the ρa’s. This restriction amounts to say that the group acts by homothety. The
Hermitian structure in FA´g is therefore the same (up to a constant) than the
pull-forward of the Hermitian structure of Fa.

For each g P pRnq˚, define

Wg : Cn ÝÑ F˚

x ÞÝÑ Wgpxq “ e´gxV pxq

and notice that always rV pxqs “ rWgpxqs. The metric obtained by pulling Fubini-
Study metric from PpFAq or from PpFA´gq is exactly the same. From the point of
view of this paper, V and Wg and undistinguishable.

Remark 3.2.1. Properly speaking, a group acts on a set. Here, the set is the disjoint
union of all the complex fewnomial spaces over Cn.

A particular choice of g P pRnq˚ plays the rôle of the canonical basis in the
Upn ` 1q-invariant homogeneous theory. This particular choice is related to an
invariant of the toric action on Cn: each θ P pS1qn “ Rn mod Zn maps x to
x` 2πθ

?
´1. The reproducing kernel Kpx,xq is invariant through this action, and
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Figure 1. The momentum map for the two solutions of the run-
ning example between t “ 1 (center) and t “ 0 (on the boundary).

the Hermitian metric happens to be equivariant. The momentum map associated
to the toric action is

m : Cn ÝÑ ConvpAq Ď pRnq˚
x ÞÝÑ mpxq “ 1

2D logpKpx,xqq “ 1
}V pxq}2V pxq

˚DV pxq
.

At each point x, the momentum map mpxq is also a convex linear combination of
the points in A. Points at toric infinity map to points on the boundary of ConvpAq
(Figure 1).

At a fixed point x0 P Cn, we set g “ m
def
“mpx0q and W pxq

def
“ Wmpxq “

e´mxV pxq. The derivative of each rV pxqs at x0 can be written in normalized
coordinates as

DrV spx0q : Tx0Cn ÝÑ TrV px0qsF
˚

9x ÞÝÑ 1
}V px0q}

´

I ´ 1
}V px0q}2

V px0qV px0q
˚

¯

DV px0q 9x

while introducing W “Wm one has W˚px0qDW px0q “ 0 so

DrV spx0q “ DrW spx0q : 9x ÞÑ
1

}W px0q}
DW px0q 9x.

The Lemma below also allows us to assume without loss of generality that
mpx0q “ 0 at some special point x0.
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Lemma 3.2.2. On a neighborhood of x0, define m̂pxq “ 1
}W pxq}2W

˚pxqDW pxq.

Then m̂pxq “ mpxq ´mpx0q.

Proof. We use the formula mpxq “ 1
2D logpKpx,xqq. The reproducing kernel asso-

ciated to W is Kpx,xqe´2mpx0qRepxq so m̂pxq “ mpxq ´mpx0q. �

3.3. Systems of equations. From now on, we assume that each Fi “ FAi is a
finite dimensional space of exponential sums over Cn, with orthonormal basis

p. . . , ρae
ax, . . . qaPAi

where the coefficients ρa ą 0 are arbitrary. The evaluation map for each Fi will be
denoted by Vi and its reproducing kernel by Kipx,yq. Let V0 Ă PpF˚

1 qˆ¨ ¨ ¨ˆPpF˚
n q

be the image of rV s “ prV1s , . . . , rVnsq. Let V “ V 0 be the Zariski closure of V0.
Points at V zV0 are said to be at toric infinity.

Let x¨, ¨yx be the pull-back by rV s at x of the Fubini-Study Hermitian product
on V0 Ă PpF1q ˆ ¨ ¨ ¨ ˆ PpFnq. Namely,

x¨, ¨yx “ x¨, ¨y1,x ` ¨ ¨ ¨ ` x¨, ¨yn,x

and xu,uyi,x ď xu,uyx for all u, where x¨, ¨yi,x and } ¨ }i,x are the Hermitian inner
product and norm associated to the i-th space Fi. A metric structure on V is given
by the induced norm for the Hermitian inner product,

} ¨ }x “
a

x¨, ¨yx.

This is not the only possibility. In Section 6 we replace this norm on V with the
Finsler structure ~ ¨ ~ “ maxi } ¨ }x,i.

It is convenient to parameterize V0 Ă V through an isometric chart. Let Cn{rV s
be the quotient obtained by identifying two points of Cn whenever they have the
same image by rV s. Let M “ pCn{rV s, x¨, ¨yxq.

Lemma 3.3.1. M is a Hermitian manifold, isometric to V0.

Proof. Without loss of generality, assume that each Ai Q 0. Let N be the space
of all u P Cn such that au “ 0 for all a P Ai, i “ 1, . . . , n. Let W be such that
Cn “ N ‘W . Then Cn{rV s and W {rV s are the same.

Two points x and z P W share the same image by rV s if and only if there are
constants c1, . . . , cn P C so that for any i and for any a P Ai,

eapx´zq “ eci .

For all a P Ai we will have

apx´ zq ” ci mod 2π
?
´1

Since 0 P Ai, we can take ci “ 0.
By construction of W , there is a subset ta1, . . . ,aru of YAi that is a basis of W

as a complex vector space. Let WR “ tRepuq : u PW u be the real projection of W .
Since the aj are real vectors, the same subset of YAi is a basis of the real vector
space WR. As a consequence

Λ “ tu PW : au ” 0 mod 2πu

is an r-dimensional lattice. As a topological space, M is the quotient of W by the
equivalence relation

x ” y ô x´ y “ u
?
´1 for some u P Λ.
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Therefore M “ WR ˆWR{Λ is a smooth complex manifold of dimension r. The
isometry property follows from the construction of the inner product. �

Remark 3.3.2. Most theorems in this paper assume or imply the existence of non-
degenerate roots, so that the mixed volume V pConvpA1q, . . . ,ConvpAnqq does not
vanish. In particular there is a mixed cell. Above, we can make this mixed cell
to be in the form r0,a1s ˆ ¨ ¨ ¨ ˆ r0,ans so that pa1, . . . ,anq is a basis for W with
ai P Ai. In this case, M is a n-dimensional Hermitian manifold. See (Malajovich,
2016) for details and references on mixed volume, mixed cells and such.

Remark 3.3.3. The Lemma above can also be restated in terms of non-degenerate
fewnomial spaces. If one of the FAi is non-degenerate and 0 P Ai, then Ai contains
a basis for Rn, etc...

Remark 3.3.4. While M is also a smooth manifold, the closure V of V0 is not
necessarily smooth. Just consider the span of e3x, e2x and 1. Then V is the
projective curve Y 2Z ´X3 “ 0 which has a singularity at p0 : 0 : 1q.

As in the previous section, a system pf1, . . . , fnq P F1, . . . ,Fn does not have
a well-defined value at some prV pxqsq. Instead, it defines a section of the vector
bundle π : E Ñ PpF˚

1 q ˆ ¨ ¨ ¨ ˆ PpF˚
n q with total space

E “ rpF˚
1 zt0uq ˆ ¨ ¨ ¨ ˆ pF

˚
n zt0uq ˆ Cns

where the quotient is taken with respect to the Cnˆ-action

λpV,yq “ pλ1V1, . . . , λnVn, λ1y1, . . . , λnynq.

This bundle restricts to a vector bundle Cn Ñ π´1pV0q Ď E
π
Ñ V0, and pulls

back to a bundle Cn Ñ E0 “ π´1pV0q
rV s´1

˝π

ÝÝÝÑ M . The group ppRnq˚qn acts
coordinatewise on exponential sums: each M “ pm1, . . . ,mnq P ppRnq˚qn maps
FA1 ˆ ¨ ¨ ¨ ˆFAn into FA1´m1 ˆ ¨ ¨ ¨ ˆFAn´mn .

To define a local trivialization, fix an arbitrary x0 P M . Let U0 “ tx P M :
Vipxq M Vipx0qu. Also, let mi “ mipx0q be the momentum map at x0. Let
Wipxq “ e´mipx0qpxqVipxq. Then set

φx0
: U0 ˆ Cn ÝÑ E0

x,y ÞÝÑ rW pxq,ys

To each f P F1 ˆ ¨ ¨ ¨ ˆFn we associate the section

sf : U0 Ď M ÝÑ E0

x0 ` 9x ÞÝÑ φx0
px0 ` 9x, f ¨W px0 ` 9xqq

where the notation f ¨W stands for the map M Ñ Cn given by

f ¨W “

¨

˚

˝

f1 ¨W1

...
fn ¨Wn

˛

‹

‚

def
“

¨

˚

˝

W1pxqpf1q
...

Wnpxqpfnq

˛

‹

‚

.

The local function is now

Sf ,x0
: U0 Ď TxM ÝÑ Cn

9x ÞÝÑ π ˝ φ´1
x0
prWpx0 ` 9xq, f ¨Wpx0 ` 9xqsq
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where π2 is the projection onto the second coordinate. In normalized coordinates,

(4) Sf ,x0
p 9xq “

»

—

—

—

–

f1 ¨
´

1
}W1px0q}

W1px0 ` 9xq
¯

...

fn ¨
´

1
}Wnpx0q}

Wnpx0 ` 9xq
¯

fi

ffi

ffi

ffi

fl

The local Newton operator is

Nf ,x0 : Tx0M ÝÑ Tx0M
9x ÞÝÑ 9x´DSf ,x0

p 9xq´1Sf ,x0
p 9xq

.

In order to define a global Newton operator, one needs a map from TM onto M .
We will use the sum from Cn. The map px0, 9xq ÞÑ x0 ` 9x is the parallel transport
associated to the trivial (zero) connection on M . The global Newton operator on
M using that map is

Nf : M ÝÑ M
x0 ÞÝÑ x0 `Nf ,x0

p0q.

If Nf px0q RM we say that Nf px0q is not defined.

The group ppRnq˚qn acts coordinatewise on exponential sums: each M “ pm1,
. . . ,mnq P ppRnq˚qn maps FA1

ˆ ¨ ¨ ¨ ˆFAn into FA1´m1
ˆ ¨ ¨ ¨ ˆFAn´mn

. If we
are given some x0 P M , we can always assume without loss of generality that
mipx0q “ 0 for all i. This simplifies the formulas for V, Sf ,x0

and derivatives. For
instance,

DSf ,x0
p0q “

»

—

—

—

–

f1 ¨
´

1
}V1px0q}

DV1px0q

¯

...

fn ¨
´

1
}Vnpx0q}

DVnpx0q

¯

fi

ffi

ffi

ffi

fl

.

3.4. Condition number theory. Assume now that mpx0q “ 0, f ¨Vpx0q “ 0 and
DSf0,x0

is non-degenerate. The implicit function theorem asserts that there is a
smooth function G : U Ď PpF1q ˆ ¨ ¨ ¨ ˆ PpFnq ÑM with f ¨VpGpfqq ” 0, defined
on a neighborhood U Q f0. Its derivative at f0 is

DGpf0q 9f “ DSf0,x0
p0q´1 9fpxq.

Using the reproducing kernel notation and assuming 9fi K fi,

DGpf0q 9f “ DSf0,x0
p0q´1 }f1}

}K1p¨,xq}
K1p¨,xq

˚ ‘ ¨ ¨ ¨ ‘
}fn}

}Knp¨,xq}
Knp¨,xq

˚.

This motivates the following definition:

Definition 3.4.1. The toric condition number of f at x is

µpf ,xq “ }DGpfq}x “

›

›

›

›

›

›

›

DSf ,xp0q
´1

¨

˚

˝

}f1}
. . .

}fn}

˛

‹

‚

›

›

›

›

›

›

›

x

where the operator norm from Cn (with canonical inner product) into pM , } ¨ }xq
is assumed.
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Figure 2. Left: Unit circles for the Hermitian metric x¨, ¨yi,x from
the running example, at several points. The circles are centered at
mipxq and shrinked by a factor of 10 to fit in the picture. Right:
radius νi circles of the dual metric. Both pictures are independent
of the value of i.

The condition number is invariant through scaling of each of the fi. Therefore
we also write µprf s,xq “ µpf ,xq. Notice that because of the normalization,

(5) µpf ,xq ě 1

always.
A condition number theorem for µpf ,xq in terms of inverse distances is known.

In the language of this paper, it reads:

Theorem 3.4.2. (Malajovich and Rojas, 2004, Th.4) Let Σx “ tf : Sf ,xp0q “
0 and detDSf ,xp0q “ 0u. Then,

max
} 9f}ď}f}

min
i

›

›

›
DGpfq 9f

›

›

›

i,x
ď dP pf ,Σxq

´1 ď µpf ,xq

where dP is the projective (sine) metric.

The condition numbers νipxq defined below play an important rôle in this paper.

Definition 3.4.3. The } ¨ }i,x – circumscribed radius of ConvpAi ´mipxqq is

νipxq “ max
aPAi

sup
}u}i,xď1

|pa´mipxqqu|.

Also, we set

νpxq “ max
i
νipxq

Figure 2 shows the unit balls }u}i,x ď 1 from the running example at a few
points. It also shows the radius νipxq-balls from the dual metric.

Remark 3.4.4. There is no guarantee that the unit ball for a } ¨ }i,x is compact. If
Spanpa´mipxqq is a proper subspace of Rn, then any vector u can be decomposed
as u “ u1`u2 with u1 P Spanpa´mipxqq and u2 K Spanpa´mipxqq. In that case
}u}i,x “ }u1}i,x and pa´mipxqqu “ pa´mipxqqu1.
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The reader should check that 1 ď νipxq and that

(6) max
aPAi

sup
}u}xď1

|pa´mipxqqu| ď νipxq ď νpxq.

As mentioned before, we are avoiding to use geodesics and parallel transport to
move from one point to another. Instead, we use the trivial transport operator
u P TxM ÞÑ u P TyM . This operator is not isometric, but the distortion it
introduces can be bounded in terms of νpxq:

Lemma 3.4.5. Let s “ νpxq}y ´ x}x. Then for all i,

p2´ esq}u}i,x ď }u}i,y ď es}u}i,x.

Moreover,
p2´ esq}u}x ď }u}y ď es}u}x.

The exponential bounds above are not as inconvenient as they look. Typically,
s is small. If s ă 1, 1` s ď es ă 1{p1´ sq.

One of the main tools in recent homotopy papers such as (Shub, 2009; Beltrán
and Shub, 2009; Dedieu et al., 2013; Bürgisser and Cucker, 2011) is an estimate
on the sensitivity of the condition number. In this paper we will use the following
bound instead:

Theorem 3.4.6. Assume that θ “ p}x ´ y}x ` dP prf s, rgsqqµpf ,xqνpxq ă 1{5.
Then,

µpf ,xqνpxqp1´ 5θq ď µpg,yqνpyq ď
µpf ,xqνpxq

1´ 5θ
.

where dP is the multiprojective (sine) distance.

The multiprojective distance is defined by

dP prf s, rgsq
2 “

ÿ

i

inf
λPC

}fi ´ λgi}
2

}fi}2
.

In the definition of θ, the multiprojective distance can be replaced by the Riemann-
ian distance which is larger.

3.5. Quadratic convergence. The invariants for the toric Newton operator are:

βpf ,xq
def
“ }Nf pxq ´ x}x “ }DSf ,xp0q

´1Sf ,xp0q}x,

γpf ,xq
def
“ max

kě2

ˆ

1

k!

›

›DSf ,xp0q
´1DkSf ,xp0q

›

›

x

˙1{pk´1q

and of course αpf ,xq “ βpf ,xqγpf ,xq.
We assume that z is a non-degenerate zero of the line bundle section given by f .

All norms will be taken with respect to TzM .

Theorem 3.5.1 (γ-theorem). Let z P M be a non-degenerate zero of f . If x0 P M
satisfies

}x0 ´ z}z

˜

γpf , zq ` µpf , zqmax
i

sup
}u}zď1

|pmipzq ´mipxqqu|

¸

ď
3´

?
7

2
,

then the sequence xi`1 “ Nf pxiq is well-defined and

}xi ´ z}z ď 2´2i`1}x0 ´ z}z.
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A trivial bound for sup}u}zď1 |pmipzq ´ mipxqqu| is the circumscribed radius

νipzq. We will obtain a sharper bound in Theorem 4.1.1. Theorem 3.5.1 is proved
in Section 5.1.

Theorem 3.5.2 (α-theorem). Let

α ď α0 “
13´ 3

?
17

4
.

Let

r0 “
1` α´

?
1´ 6α` α2

4α
and r1 “

1´ 3α´
?

1´ 6α` α2

4α
.

If x0 P M satisfies αpf ,x0q ď α, then the sequence defined recursively by xi`1 “

x0`Nf ,x0
pxi´x0q is well-defined and converges to a zero ζ P M of f . Furthermore,

(a) }xi ´ ζ}x0
ď 2´2i`1}x1 ´ x0}x0

(b) }xi ´ ζ}ζ ď 2´2i`1}x1 ´ x0}x0

(c) }x0 ´ ζ}x0
ď r0βpf , rx0sq

(d) }x0 ´ ζ}ζ ď r0βpf , rx0sq

(e) }x1 ´ ζ}ζ ď r1βpf , rx0sq.

Proof. Items (a) and (c) are just Theorem 2.1.2(a,c) applied to Sf ,x0 : Tx0M “

TVpx0qV Ñ Cn. The proof of item (b) mimics the proof of Theorem 2.5.2(b). For
all 1 ď j ď n, we claim that

(7) } 9xi}j,x ď 2´2i`1} 9x˚}j,x.

Indeed, assume without loss of generality that mjpxq “ 0. Then we set vjpxq “
1

Vjpxq
Vjpxq, so that

Dvjpxq “
1

Vjpxq
DVjpxq.

By definition, }u}j,x “ }Dvjpxqu}. Moreover, Dvjpxqu K vjpxq. Let X “ vjpx0q,
Y “ vjpx0q `Dvjpx0q 9xi and Z “ Dvjpx0q 9x˚. By item (a), }Y ´ Z} ď }X ´ Z}.
Therefore, Lemma 2.5.3 implies that

}πpY q ´ Z}

}Z}
ď
}Y ´ Z}

}X}
ď 2´2i`1 }X ´ Z}

}X}

where π is the projection onto Z ` ZK. This establishes equation (7). Squaring,
adding for all j and taking square roots, one gets:

} 9xi}x ď 2´2i`1} 9x˚}x

The proof of items (d) and (e) is similar. �

3.6. The higher derivative estimate. A most important bound in modern ho-
motopy papers is the higher derivative estimate. While γ is an awkward invariant
to approximate, there is a convenient upper bound:

Theorem 3.6.1.

γpf ,xq ď
1

2
µpf ,xqνpxq

This can be compared to the classical bound γ0pf , ζq ď
D3{2

2 µnormpf , ζq for a
homogeneous degree D polynomial system and ζ P Pn, see for instance Blum et al.
(1998, Th. 2 Sec.14.2) or Bürgisser and Cucker (2011, Prop. 16.45). With some
further work, we will recover a more convenient version of Theorem 3.5.1:
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Theorem 3.6.2. There is a constant u0 » 0.090994609 ¨ ¨ ¨ with the following
property. Let z P M be a non-degenerate zero of f . If x0 P M satisfies

1

2
}x0 ´ z}zµpf , zqνpzq ď u0

then the sequence xi`1 “ Nf pxiq is well-defined and

}xi ´ z}z ď 2´2i`1}x0 ´ z}z.

Theorem 3.5.2 immediately becomes:

Theorem 3.6.3. Let

α ď α0 “
13´ 3

?
17

4
.

Let

r0 “
1` α´

?
1´ 6α` α2

4α
and r1 “

1´ 3α´
?

1´ 6α` α2

4α
.

If x0 P M satisfies 1
2βpf ,x0qµpf ,x0qνpx0q ď α, then the sequence defined recur-

sively by xi`1 “ x0`Nf ,x0
pxi´ x0q is well-defined and converges to a zero ζ P M

of f . Furthermore,

(a) }xi ´ ζ}x0
ď 2´2i`1}x1 ´ x0}x0

.

(b) }xi ´ ζ}ζ ď 2´2i`1}x1 ´ x0}x0

(c) }x0 ´ ζ}x0
ď r0βpf ,x0q

(d) }x1 ´ ζ}ζ ď r1βpf ,x0q.

Corollary 3.6.4. There is a constant α1 » 0.081239483 ¨ ¨ ¨ with the following
properties: If

1

2
µpf ,x0qνpx0qβpx0q ď α ď α1,

then the sequence xi`1 “ Nf pxiq is well defined, converges to a zero z of f , and
furthermore

}xi ´ z}z ď 2´2i´1
`1r1pαqβpf ,x0q.

When α “ α1, r1pαq » 0.110020136 ¨ ¨ ¨ .

Proof. Let α1 be the smallest positive root of

αr1pαq

1´ 10αr0pαq
“ u0

where u0 » 0.090094609 ¨ ¨ ¨ is the constant from Theorem 3.6.2. From Theo-
rem 3.5.2(e), there is a zero z of f such that

}x1 ´ z}z ď r1pαqβpf ,x0q.

Combining this with Theorem 3.4.6,

1

2
µpf , zqνpzq}x1 ´ z}z ď

αr1pαq

1´ 10αr0pαq
“ u0.

From Theorem 3.6.2, the rest of the sequence xi`1 “ Nf pxiq is well defined, con-
verges to z and

}xi ´ z}z ď 2´2i´1
`1}x1 ´ x2} ď 2´2i´1

`1r1pαqβpf ,x0q.

�
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Corollary 3.6.5. Let pftqtPr0,T s be a C1 path in PpF1q ˆ ¨ ¨ ¨ ˆ PpFnq. Assume

that the point x0 satisfies, for all t P r0, T s, that 1
2µpft,xqνpft,xtqβpft,xtq ď α ă

4{45 “ 0.0888 ¨ ¨ ¨ . Then for each t P r0, T s, the sequence x0ptq “ x0, xi`1ptq “
x0 `Nft,x0pxiptq ´ x0q converges uniformly to some C1 path ζptq,

Proof. By hypothesis µpft,x0q is bounded for t P r0, T s. Hence µpft,x0q ď µ̄ for
some finite µ̄. By Th. 3.6.3(c), u “ µpft,x0qνpft,x0q}x0 ´ ζ}x0 ď 2r0pαqα ă 1{5.
Thus, µpft, ζptqq ď µ̄{p1´ 5uq is finite. By construction of the condition number,

›

›

›

›

B

Bt
ζptq

›

›

›

›

ζptq

ď
µ̄

1´ 5u

›

›

›

›

B

Bt
rfts

›

›

›

›

rfptqs

which is finite by compactness of the path pftqtPr0,T s. �

3.7. The cost of homotopy. Recall that the solution variety is

S0 “

"

pf , zq P PpFA1
q ˆ ¨ ¨ ¨ ˆ PpFAnq ˆM : fpzq “ 0

*

and that Σ1 is the set where µpf ,xqνpxq “ 8. The condition length was defined as

L ppft, ztq : t0, t1q “

ż t1

t0

µpft, ztqνpztq
b

} 9ft}2ft ` } 9zt}2zt dt.

We will need below the auxiliary quantity

L1ppft, ztq : t0, t1q “

ż t1

t0

µpft, ztqνpztq
´

} 9ft}ft ` } 9zt}zt

¯

dt.

that relates to the condition length by

L ppft, ztq : t0, t1q ď L1ppft, ztq : t0, t1q ď
?

2L ppft, ztq : t0, t1q

Proof of Main Theorem A. Assume that 0 ă u ď u0 “
3´
?
7

2 is given. Set t0 “ 0
and for i “ 0, . . . , N ´ 2 choose ti`1 so that L1pti, ti`1q “ δ for some constant δ to
be determined. Then set tN “ T , and L ptN´1, tN q ď δ.

We consider the following induction hypothesis:

(8)
1

2
µpfti , ztiqνpztiq}zti ´ xi}zti ď u

which is already satisfied for i “ 0. Theorem 3.6.2 implies that xi`1 “ Npfti ,xiq
satisfies:

1

2
µpfti , ztiqνpztiq}zti ´ xi`1}zti ď u{2

To simplify notations, let µ “ µpfti , ztiq, ν “ νpztiq, µ
1 “ µpfti`1

, zti`1
q and ν1 “

νpzti`1
q. Let r “ maxtiďtďti`1

dSpft, ftiq`}zt´zti}zti . Assume that the maximum
is attained for t “ t˚, ti ď t˚ ď ti`1. Then,

µ ν r ď µ ν

ż t˚

ti

›

›

›

›

B

Bt
rfts

›

›

›

›

rfts

`

›

›

›

›

B

Bt
zt

›

›

›

›

zt

dt

ď
1

1´ 5µνr
L1pti, t

˚q

ď
1

1´ 5µνr
L1pti, ti`1q
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Hence,

µνrp1´ 5µνrq ď δ.

The largest possible value of µνr should therefore satisfiy the quadratic equation
µνrp1´ 5µνrq “ δ. Solving the equation, we deduce that

µνr ď Rpδq
def
“

1

10

´

1´
?

1´ 20δ
¯

“ δp1` op1qq.

Now we bound

1

2
µ1ν1}xti`1

´ zti`1
}zti ď

1

2
µ1ν1

`

}xti`1
´ zti}zti ` }zti`1

´ zti}zti
˘

ď
1

1´ 5δ

ˆ

u

2
`
Rpδq

2

˙

and from Lemma 3.4.5,

1

2
µ1ν1}xti`1 ´ zti`1}zti`1

ď
eRpδq

1´ 5δ

ˆ

u

2
`
Rpδq

2

˙

The induction hypothesis (8) is guaranteed to hold for i` 1 as long as

(9)
eRpδq

1´ 5δ

ˆ

u

2
`
Rpδq

2

˙

ď u.

When u “ u0 “
3´
?
7

2 we obtain numerically the largest solution for this inequal-

ity, that is δ » 0.037391 ¨ ¨ ¨ . In particular, N “ r 1δL1p0, T qs ď r
?
2
δ L p0, T qs ď

r38L p0, T qs. �

Before proving Main Theorem B, we need an extra result. Its proof is postponed.

Proposition 3.7.1. Let u ă 1{10. Assume that fpzq “ 0 and 1
2µpf , zqνpf , zq}z ´

x}z ă u. Then,
1

2
µpf ,xqνpxqβpf ,xq ď ue2u

1´ u

ψpuqp1´ 10uq

Proof of Main Theorem B. Let u1 » 0.003974518 ¨ ¨ ¨ be the smallest root of

ue2u
1´ u

ψpuqp1´ 10uq
“ α1.

Solving (9) for u “ u1 and δ by δ1 “ 0.024210342 ¨ ¨ ¨ in the proof of the Main
Theorem A, Proposition 3.7.1 implies that for all ti ď t ď ti`1,

1

2
µpft,xi`1qνpxi`1qβpft,xi`1q ď α0.

We replace the time mesh 0 “ t0 ď t1 ď ¨ ¨ ¨ by the one in Main Theorem B.
In that case L ppft, ztq, ti, ti`1q ě δ{

?
2 so the number of steps is still bounded

above by rL ppft, ztq, 0, T q
?

2{δsď 59L ppft, ztq, 0, T q. Corollary 3.6.5 guarantees
that each xi is indeed an approximate root of fti associated to zti . Corollary 3.6.4
then guarantees that the sequence y0 “ xN ,yi`1 “ NfT pyiq converges quadrati-
cally to zptq and satisfies

}yi ´ z}z ď 2´2i´1
`1 ˆ 0.100015909 βpfT ,y0q ď 2´2i´1

´2βpfT ,y0q.

�
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Figure 3. Logarithmic plot for the invariants associated to each
of the solution paths, in the toric setting.

Running example, part 3. Recall that Zpiqptq “ pXpiqptq, Y piqptqq, i “ 1, 2 are the
two roots for ft in the running example (2). Let zpiqptq “ log Zpiqptq coordinatewise,
and let gpiq “ gpzpiqq be the metric matrix for x¨, ¨y1,2.

In order to obtain an approximation for the integral L , we first compute the
Taylor series of the Hermitian matrix

M piq “ 2}Vpzpiqptq}´2

ˆ

}f1}
´1 0

0 }f2}
´1

˙

pft ¨DVpzpiqptqq g
piq
t

pft ¨DVpzpiqptqq˚
ˆ

}f1}
´1 0

0 }f2}
´1

˙

.

The factor of 2 comes from the fact that we use the product metric x¨, ¨y “ x¨, ¨y1 `

x¨, ¨y2 in the definition of µ and } 9z}. Then, µpiq “
a

p}M´1}q. The square of νpiq is
the largest diagonal entry of the matrix

N piq “

¨

˚

˚

˝

A´

¨

˚

˚

˝

1
1
1
1

˛

‹

‹

‚

mpzpiqq

˛

‹

‹

‚

gpiq

¨

˚

˚

˝

A´

¨

˚

˚

˝

1
1
1
1

˛

‹

‹

‚

mpzpiqq

˛

‹

‹

‚

T

,

where A “

¨

˚

˚

˝

1 0
0 2
1 1
0 3

˛

‹

‹

‚

encodes the support and m is the momentum map. Computa-

tions for µpiq, νpiq and the speed vector are displayed in Table 2. Actual values of
the invariants appear in Figure 3 We obtain in both cases that

L ppft, z
piq
t q; ε, 1q “

ż 1

ε

µpiqνpiq} ¨ ¨ ¨ }dt “ 2 logpε´1q `Op1q.

4. Distortion bounds

Newton iteration is usually generalized to manifolds through the use of geodesics
and of the exponential map. Given a function or a vector field f defined on a
manifoldM , the Newton vector field at this point evaluates to w “ ´Dfpxq´1fpxq P
TxM . Then Nf ,x is usually defined to be expxpwq, where expxpt}w}

´1wq is the
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i 1 2

}pf1qt}
2 pt2 ` 1q2 pt2 ` 1q2

}pf2qt}
2 4 4

}Vpzpiqptqq}2i 2t´6 `Opt´4q 1
2 t
´2 `Op1q

gpiqptq

ˆ

1
4 ´ 1

2
´ 1

2 1` t2 `Opt4q

˙ ˆ

4t2 ´8t2

´8t2 1
4 ` 16t2

˙

`Opt4q

f ¨DVpzpiqq

ˆ

´t´2 ` t´1 t´2 ´ 3t´1

t´3 ` t´2 ´t´3 ´ t´2

˙ ˆ

´1´ t2 3
2 `

5
2 t

2

0 1
2 t
´1 ` 1` t{2

˙

M piq

ˆ

1
4 `

1
2 t ´ 1

2 t
´ 1

2 t
1
4 `

1
2 t

˙

`Opt2q

ˆ

1
4 ´ 1

2 t
´ 1

2 t
1
4 ` t

˙

`Opt2q

pµiq2 4`Optq 4`Optq

pνpiqq2 t´2 ` 1 1
4 t
´2 ` 3

2 `
1
4 t

2

›

›

B
Bt

`

ft, z
piqptq

˘
›

›

2

pft,zpiqptqq
1´ 2t2 `Opt4q 4´ 56t2 `Opt4q

´

µpiqνpiq
›

›

B
Bt

`

ft, z
piqptq

˘
›

›

pft,zpiqptqq

¯2

4t´2 `Opt´1q 4t´2 `Opt´1q

µpiqνpiq
›

›

B
Bt

`

ft, z
piqptq

˘
›

›

pft,zpiqptqq
2t´1 `Op1q 2t´1 `Op1q

L ppft, z
piq
t q; ε, 1q “

ş1

ε
µpiqνpiq

b

} 9ft}2ft ` } 9zt}2zt dt 2 logpε´1q `Op1q 2 logpε´1q `Op1q

Table 2. Computation of the condition length in the toric setting.

geodesic passing at x for t “ 0 with tangent vector w{}w} and constant unit
speed. This point can be found by solving the geodesic differential equation, or by
integrating it. Dedieu et al. (2003) generalized Smale’s invariants to this context
using high order covariant derivatives and parallel transport. A sharper analysis for
equations defined by fiber bundles on a manifold was carried out by Li and Wang
(2008).

Unfortunately, computing geodesics can be as hard as solving systems of equa-
tions. Indeed, let f : M Ñ Cn be a holomorpic map from an n-dimensional complex
manifold onto Cn, and assume that the Hermitian structure of M is the pull-back
by f of the canonical Hermitian structure. If x0 P M is an arbitrary point and
y0 “ fpx0q, then the segment ry0, 0s Ă Cn pulls back to a minimizing geodesic xptq
with 9xp0q “ ´Dfpx0q

´1y0 and fpxp1qq “ 0. Of course, one may be able to com-
pute efficiently geodesics on the sphere, on projective space and many interesting
manifolds. No easy formula seems to be known for geodesics on toric varieties.

In this paper we traded the geodesics for straight lines in a unique canonical
chart. This is topologically equivalent outside toric infinity, and is geometrically
equivalent up to order 1. The Newton operator is much easier to compute, and no
covariant derivatives are needed. There is a price to pay for bypassing geodesics.
Parallel transport is not available any more. Each point has a different Hermitian
structure associated to it. In this section we bound the distortion introduced by
this trivial transport operator. As usual, the momentum map is the key to bound
this distortion.

4.1. The momentum map. Since the momentum map mipxq plays such an im-
portant rôle in the theory, we need to estimate how fast it changes with respect to
x. The theorem below shows that the momentum is locally Lipschitz, and allows
to compute local Lipschitz constants.
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Theorem 4.1.1. Let 1 ď i ď n be fixed. Let x,y P M . If νipxq}y´x}i,x ď s then

(a) For any w P Rn, |pmipyq ´mipxqqw| ď }w}i,xpe
2s ´ 1qee

2s
´1´2s.

(b) Let d be the Riemannian distance in pM , } ¨ }i,xq. Then }mipyq ´mipxq}2 ď
2 diampConvpAiqq dpy,xq.

Before proving the statement, we should point out an immediate consequences of
Theorem 4.1.1(b). A point v P V is said to be at toric infinity if it has no preimage
in M .

Corollary 4.1.2. Let x P M and let δ be the minimum over all i of the Euclidean
distance from mipxq to BConvpAiq, divided by the diamater of ConvpAiq. Then,
the open ball BprVpxqs, δ{2q Ă V contains no point at toric infinity.

By dividing the induced Fubini-Study volume form by the total volume of V ,
one makes V into a probability space. The momentum map is volume preserving,
up to a constant. Therefore,

Corollary 4.1.3. The probability that v P V is at distance at most δ{2 from a
point at toric infinity is at most

δ
n
ÿ

i“1

diampConvpAiqqVolpBConvpAiqq

VolpConvpAiqq
.

Proof of Theorem 4.1.1. Assume without loss of generality that mipxq “ 0. Since
the momentum mipyq depends only on the real part of y, assume also that x and
y are real. For k ě 1, define

Skpyq “ 2k´1
ÿ

aPAi

ρ2ae
2ay ab ¨ ¨ ¨ b a

looooomooooon

k times

.

The momentum map is given by the formula

mipyq “ ´
1

2
φpyqS1pyq

with φpyq “ ´2{}Vi}
2 “ ´2{

ř

aPAi
|ρae

ay|2. The derivation rules for φ and Sk are:

Dφpyq “ φpyq2S1pyq

DSkpyq “ Sk`1pyq

The first derivatives of mpyq are

Dmipyq “ ´
1

2

ˆ

φpxqS2pyq ` φpyq
2S1pyq

2

˙

D2mipyq “ ´
1

2
Avg

ˆ

φpyqS3pyq ` 3φpyq2S2pyqS1pyq ` φpyq
3S1pyq

3

˙

D3mipyq “ ´
1

2
Avg

ˆ

φpyqS4pyq ` 4φpyq2S3pyqS1pyq ` 3φpyq3S2pyqS2pyq

`6φpyq3S2pyqS1pyq
2 ` φpyq4S1pyq

4

˙

where average is taken over all permutations acting on the arguments of the j ` 1-
linear form within parentheses. Recall that Djmipyq “ Dj`1 1

2 logKpy,yq so
it should be a symmetric tensor. The averaging above can be understood as
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a symmetrization operator. It is convenient to represent each term of the form
Avg

`

φpyqkSi1pyq ¨ ¨ ¨Sikpyq
˘

by the Young diagram for the partition j ` 1 “ i1 `
i2 ` ¨ ¨ ¨ ik. For instance when j “ 3 we write

D3mipyq “ ´
1

2

¨

˚

˚

˚

˝

` 4 ` 3 ` 6 `

˛

‹

‹

‹

‚

.

The coefficients to each Young diagram are the number of ways to partition a set of
j`1 labeled elements into the corresponding partition. Indeed, the ‘derivative’ of a
Young diagram is obtained by adding one box into every possible row, for instance

D

¨

˝

˛

‚“ ` ` ` “ ` 2 `

Using this notation,

Djmipyq “ ´
1

2

ÿ

Y

cY Y

where the sum ranges over all Young diagrams with j ` 1 boxes. A coarse bound
for the norm of Djmpyq is }Djmpyq} ď 1

2$j`1 max }Y }, where $j`1 “
ř

Y cY is
the number of partitions of a set with j`1 labelled elements, known as the j`1-th
Bell number, see Sloane’s OEIS (2016, BELL sequence) and Knuth’s book (2005).

However we are actually bounding }Djmpxq} under the assumption that mpxq “
0. In particular, S1pxq “ 0 and Young diagrams with at least one length one row
should not be counted. The number $1j of Young diagrams with j boxes and no row
of length one is also known as the number of complete rhyming schemes (Sloane,
2016, sequence A000296), (Knuth, 2005) and has exponential generating function

cptq “ ee
t
´1´t. The first values for $1j are

$10 “ 1 $11 “ 0 $12 “ 1 $13 “ 1 $14 “ 4 $15 “ 11 $16 “ 41 $17 “ 162

By using the fact that

xw1,w2yi,x “ xDrVispxqw1, DrVispxqw2y “ }Vipxq}
´2

ÿ

a

ρae
2axpaw1qpaw2q,

each Sk can be bounded as follows:

|Skpxqpw1,w2,w3, . . . ,wkq| “ 2k´1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

ρ2ae
2axpaw1qpaw2qpaw3q ¨ ¨ ¨ pawkq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2k´1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

ρ2ae
2axpaw1qpaw2q

ˇ

ˇ

ˇ

ˇ

ˇ

max
a
|aw3| ¨ ¨ ¨ |awk|

ď 2k´1}Vipxq}
2 |xw1,w2yi,x|max

a
|aw3| ¨ ¨ ¨ |awk|

ď 2k´1}Vipxq}
2}w1}i,x}w2}i,x max

a
|aw3| ¨ ¨ ¨ |awk|

Hence,

(10) |Skpw1, . . . ,wkq||φpxq| ď 2k}w1}i,x}w2}i,x

ˆ

max
aPA

|aw3| ¨ ¨ ¨ |awk|

˙
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If Y is a Young diagram, let rpY q be its number of rows. Let w be an arbitrary
vector. Adding over all the Young diagrams with j ` 1 cases and no row of length
one,

|Djmipxqpw,y ´ x, . . . ,y ´ xq| ď

ď 2j}w}i,x
ÿ

Y

}y ´ x}
2rpY q´1
i,x

ˆ

max
aPAi

|apy ´ xq|

˙j`1´2rpY q

ď 2j$1j`1}w}i,x}y ´ x}i,x

ˆ

max
aPAi

|apy ´ xq|

˙j´1

where the last inequality uses that }y ´ x}i,x ď maxaPAi |apy ´ xq|. Recall that
mipxq “ 0. The Taylor series of mipyqw around x is:

mipyqpwq “ Dmipxqpw,y ´ xq `
ÿ

jě2

1

j!
Djmipxqpw, py ´ xqjq.

Let cptq “ ee
t
´1´t be the exponential generating function for the number of com-

plete rhyming schemes $1j . We can bound:

|mipyqw| ď }w}i,x}y ´ x}i,x
ÿ

jě1

2

j!
$1j`1 p2sq

j´1

ď
}w}i,x}y ´ x}i,x

s

ÿ

jě1

1

j!
$1j`1 p2sq

j

ď
}w}i,x}y ´ x}i,x

s
pc1p2sq ´$11q

ď }w}i,xc
1p2sq

because $11 “ 0 and }y ´ x}i,x ď νipxq}y ´ x}i,x “ s. Explicitly, c11ptq “ pet ´

1qee
t
´1´t so item (a) follows:

|mipyqw| ď }w}xpe
2s ´ 1qee

2s
´1´2s

In order to prove item (b), we apply the bound (10) to the formula Dmipyq “
´ 1

2φpyqS2pyq. One obtains:

|Dmipyqpw1,w2q| ď }w1}i,x}w2}i,x.

Let xptqtPr0,T s be a minimizing geodesic with respect to } ¨ }i,x with boundary
xp0q “ x and xpT q “ y. Then,

|pmipyq ´mipxqqpw2q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

Dmipxptqqp 9xptq,w2q

ˇ

ˇ

ˇ

ˇ

ˇ

dt

ď

ż T

0

2} 9xptq}i,xptq}w2}i,xptq dt

ď 2 maxp}w2}i,xptqq

ż T

0

} 9xptq}i,xptq dt

ď 2 maxp}w2}i,xptqqdipx, yq

ď 2}w2}diampConvpAiqqdipx,yq

where the last bound follows from the inequality }u}i,x ď }w}2diampConvpAiqq. �
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4.2. The local norms and the circumscribed radii.

Proof of Lemma 3.4.5. Assume without loss of generality that mipxq “ 0 for all i.
Write }w}i,y “ }Dvipyqw} where vipxq “ Vipxq{}Vipxq}. In that case,

Dvipyqw “ Dvipxqw `
ÿ

kě2

1

k ´ 1!
Dkvipw,y ´ x, ¨ ¨ ¨y ´ xq.

Also,

Dkvipxqpw,y ´ x, ¨ ¨ ¨ ,y ´ xq “
1

}Vipxq}

¨

˚

˚

˝

...
ρae

axpawqpapy ´ xqqk´1

...

˛

‹

‹

‚

so

›

›Dkvipxqpw,y ´ x, ¨ ¨ ¨ ,y ´ xq
›

› ď

›

›

›

›

›

›

›

›

1

}Vipxq}

¨

˚

˚

˝

...
ρae

axpawq
...

˛

‹

‹

‚

›

›

›

›

›

›

›

›

max
aPAi

|apy ´ xq|k´1

“ }DrVispxqw}max
aPAi

|apy ´ xq|k´1

Therefore,

}Dvipyqw ´Dvipxqw} ď }w}i,x
ÿ

kě2

pmaxaPAi |apy ´ xq|qk´1

k ´ 1!
ď }w}i,x pe

s ´ 1q .

Triangular inequality yields

p2´ esq}w}i,x ď }w}i,y ď es}w}i,x

so the first statement follows. The second statement is now obvious. �

The circumscribed radii νi were crucial in our previous bounds. For later use,
we also estimate their variation rate.

Lemma 4.2.1. Let 1 ď i ď n. Let x P M and νipxq}y ´ x}i,x ď s. Then,
´

νipxq ´ pe
2s ´ 1qee

2s
´1´2s

¯

e´s ď νipyq ď
´

νipxq ` pe
2s ´ 1qee

2s
´1´2s

¯ 1

2´ es
.

It follows immediately that if νpxq}y ´ x}x ď s,
´

νpxq ´ pe2s ´ 1qee
2s
´1´2s

¯

e´s ď νpyq ď
´

νpxq ` pe2s ´ 1qee
2s
´1´2s

¯ 1

2´ es

as well.

Proof. In the sequel we drop the i index so A “ Ai, ν “ νi, } ¨ }x “ }¨ }i,x, etc... We
introduce the notation νxpyq “ max}u}x“1 |pa ´mpyqqu| so νxpxq “ νpxq. From
triangular inequality,

νxpxq ´ }mpyq ´mpxq}x ď νxpyq ď νxpxq ` }mpyq ´mpxq}x

so
(11)

pνxpxq´max }mpyq´mpxq}xq
νypyq

νxpyq
ď νpyq ď pνxpxq`max }mpyq´mpxq}xq

νypyq

νxpyq
.
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From Lemma 3.4.5, p2´ esq}w}x ď }w}y ď es}w}x so

νypyq “ sup
}w}yď1

max
aPA

|pa´mpyqqw|

ď
1

2´ es
sup

}w}xď1

max
aPA

|pa´mpyqqw|

“
1

2´ es
νxpyq

and

νypyq “ sup
}w}yď1

max
aPA

|pa´mpyqqw|

ě
1

es
sup

}w}xď1

max
aPA

|pa´mpyqqw|

“
1

es
νxpyq

The last two bounds and Theorem 4.1.1(a) can be substituted into equation (11):
´

νpxq ´ pe2s ´ 1qee
2s
´1´2s

¯

e´s ď νpyq ď
´

νpxq ` pe2s ´ 1qee
2s
´1´2s

¯ 1

2´ es

�

4.3. The condition number. Toward the proof of Theorem 3.4.6, we will show
the following estimate. It should be compared to Bürgisser and Cucker (2011, Prop.
16.55). The extra factor 1`Opsq comes from the different local norms.

Theorem 4.3.1. Let rf s, rgs P PpF1q, . . . ,PpFnq. Let x P M . Assume that for all
i, νipxq}y ´ x}i,x ď s. If µpf ,xq pdP pf ,gq ` pe

s ´ 1qq ă 1, then

p2´ esqµpf ,xq

1` µpf ,xq pdP pf ,gq ` pes ´ 1qq
ď µpg,yq ď

esµpf ,xq

1´ µpf ,xq pdP pf ,gq ` pes ´ 1qq

where dP is the multiprojective (sine) distance.

In the proof of Theorem 4.3.1 we will need two well-known Lemmas about linear
mappings between normed spaces. The proofs are included for completeness.

Lemma 4.3.2. Let A and B be linear operators between finite dimensional normed
spaces. Let σpXq “ inf}u}ď1 }Xu} and let }X} denote the operator norm of X.
Then,

|σpAq ´ σpBq| ď }A´B}

Proof. Assume that σpAq “ }Au} with }u} “ 1. Triangular inequality yields

σpAq “ }Au} ě }Bu} ´ }pA´Bqu} ě σpBq ´ }A´B}.

Replacing A by B one obtains that σpBq ě σpAq ´ }A´B}. �

Lemma 4.3.3. Let A,B be invertible linear operators between finite dimensional
normed spaces. If }A´1}}A´B} ă 1, then

}A´1}

1` }A´1}}A´B}
ď }B´1} ď

}A´1}

1´ }A´1}}A´B}
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Proof. From the previous Lemma,

1

}A´1}
´ }A´B} ď

1

}B´1}
ď

1

}A´1}
` }A`B}.

Multiplying by }A´1}}B´1},

}B´1}p1´ }A´1}}A´B}q ď }A´1} ď }B´1}p1` }A´1}}A´B}q

and so
}A´1}

1` }A´1}}A´B}
ď }B´1} ď

}A´1}

1´ }A´1}}A´B}

�

Proof of Theorem 4.3.1. Assume without loss of generality that mipxq “ 0 for all
i. Also without loss of generality, scale the fi such that }f1} “ ¨ ¨ ¨ “ }fn} “ 1 and
the gi such that }fi´gi} is minimal, so dP pf ,gq “ }f´g}. Let vipxq “

1
}Vipxq}

Vipxq.

Because mipxq “ 0 for all i, we can write

µpf ,xq “
›

›pf ¨Dvpxqq´1
›

›

x

where f ¨ Dvpxq is an operator from pM , } ¨ }xq into Cn with the canonical norm
assumed.

From the previous Lemma,

µpf ,xq

1` µpf ,xqT
ď
›

›pg ¨Dvpyqq´1
›

›

x
ď

µpf ,xq

1´ µpf ,xqT

where T “ }f ¨Dvpxq ´ g ¨Dvpyq}x. We estimate T “ T 1 ` T 2 where

T 1 “ }f ¨Dvpxq ´ g ¨Dvpxq}x
ď sup

}w}xď1

}pf ´ gq ¨Dvpxqw}

ď sup
}w}xď1

b

ÿ

}fi ´ gi}2 max
i
}w}i,x

ď }f ´ g}

and

T 2 “ }g ¨Dvpxq ´ g ¨Dvpyq}x

“ sup
}w}xď1

d

ÿ

i

|gipDvipxq ´Dvipyqqw|2

ď sup
}w}xď1

d

ÿ

i

}gi}2 max
i
}pDvipxq ´Dvipyqqw}

ď sup
}w}xď1

max
i
}pDvipxq ´Dvipyqqw}

ď max
i

sup
}w}i,xď1

ÿ

kě2

1

k ´ 1!
}Dkvipxqpw,y ´ x, ¨ ¨ ¨ ,y ´ xq}

ď max
i

ÿ

kě2

1

k ´ 1!
νipxq

k´1}y ´ x}k´1
i,x

ď pes ´ 1q
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Therefore,

p2´ esqµpf ,xq

1` µpf ,xq p}f ´ g} ` pes ´ 1qq
ď µpg,yq ď

esµpf ,xq

1´ µpf ,xq p}f ´ g} ` pes ´ 1qq

�

We are ready to prove Theorem 3.4.6.

Proof of Theorem 3.4.6. Let s “ maxi νipxq}y ´ x}i,x and recall that µpf ,xqνpxq
p}y ´ x}x ` dP pf ,gqq ď θ. The right-hand sides of Lemma 4.2.1 can be bounded
above by

νpyq ď

´

νpxq ` pe2s ´ 1qee
2s
´1´2s

¯ 1

2´ es

ď νpxq
´

1` pe2θ ´ 1qee
2θ
´1´2θ

¯ 1

2´ eθ

using νpxq ě 1 and s “ νpxq}x ´ y}x ď θ. The right hand side of Theorem 4.3.1
satisfies

µpg,yq ď
esµpf ,xq

1´ µpf ,xq pdP pf ´ gq ` pes ´ 1qq

ď
esµpf ,xq

2´ eθ

using µpf ,xqpes´1q ď eµpf ,xqνpxq}x´y}x´1 and hence µpf ,xq pdP pf ´ gq ` pes ´ 1qq
ď eθ ´ 1. Putting all together,

µpg,yqνpyq ď µpf ,xqνpxqeu
1` pe2θ ´ 1qee

2θ
´1´2θ

p2´ eθq
2 ď

µpf ,xqνpxq

1´ 5θ
.

By a similar argument,

µpg,yqνpyq ě µpf ,xqνpxq
p1´ pe2θ ´ 1qee

2θ
´1´2θqp2´ eθq

e2θ
ě p1´ 5θqµpf ,xqνpxq.

�

5. Proof of the technical results

5.1. Proof of the toric γ-theorem. For the proof of Theorem 3.5.1 we will need
the following fact, which can be stated as a general result about the γ invariant.
Let κpXq “ }X}}X´1} be the Wilkinson condition number for a square matrix X,
where operator norms are assumed:

Lemma 5.1.1. Let z P Cn be fixed, and let f : U Ñ Cn with fpzq “ 0 be holomor-
phic on a neighborhood of z. Let m1, . . . ,mn P pCnq˚ and set gipxq “ e´mi¨xfipxq.
If fpzq “ 0 then

γpg, zq ď κpDfpzqqmax
i

sup
}w}zď1

|mipwq| ` γpf , zq.

Proof of Lemma 5.1.1. We differentiate gi to obtain

Dgipxq “ e´mi¨x pDfipxq ´ fipxqmiq .

Since g vanishes at z, we have Dgipzq “ e´mi¨zDfipzq. By induction,

Dkgipxq “ e´mi¨x
k
ÿ

l“0

p´1ql
ˆ

k
l

˙

Avg
`

Dk´lfipxq bmbl
i

˘
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where the average is taken over all the permutations of the covariant indices. In

order to bound γpg, zq, we will produce a bound for }Dgpzq´1Dkgpzq}z
k! . For clarity, we

examine first the case k “ 2. Assume that the operator norm of 1
2Dgpzq´1D2gpzq

is attained at unit vectors w1 and w2, that is
›

›

›

›

1

2
Dgpzq´1D2gpzq

›

›

›

›

z

“

›

›

›

›

1

2
Dgpzq´1D2gpzqpw1,w2q

›

›

›

›

z

where }w1}z “ }w2}z “ 1. Expand

1

2
Dgpzq´1D2gpzqpw1,w2q “

1

2
Dfpzq´1D2fpzqpw1,w2q

´
1

2
Dfpzq´1

»

—

–

m1 ¨w1

. . .

mn ¨w1

fi

ffi

fl

Dfpzqw2

´
1

2
Dfpzq´1

»

—

–

m1 ¨w2

. . .

mn ¨w2

fi

ffi

fl

Dfpzqw1.

Taking norms, } 12Dgpzq´1D2gpzqpw1,w2q}z ď γpf , zq ` κpDfpzqqmaxi }mi}z. The

general case is similar. Assume that the operator norm of 1
k!Dgpzq´1Dkgpzq is

attained at w1, . . . ,wk, namely
›

›

›

›

1

k!
Dgpzq´1Dkgpzq

›

›

›

›

z

“

›

›

›

›

1

k!
Dgpzq´1Dkgpzqpw1, . . . ,wkq

›

›

›

›

z

with }w1}z “ ¨ ¨ ¨ “ }wk}z. Then,

1

k!
Dgpzq´1Dkgpzqpw1, . . . ,wkq “

“
1

k!

k´1
ÿ

l“0

p´1ql
ˆ

k
l

˙

Avg
`

Dfpzq´1Mpw1, . . . ,wlqD
k´lfpzqpwl`1, . . . ,wkq

˘

with

Mpw1, . . . ,wlq
def
“

»

—

—

–

śl
j“1 m1 ¨wj

. . .
śl
j“1 mn ¨wj

fi

ffi

ffi

fl

.

Taking norms,

1

k!

›

›

›
Dgpzq´1Dkgpzq

›

›

›

z
ď

1

k!

k´1
ÿ

l“0

ˆ

k
l

˙

Avg
›

›Dfpzq´1Mpw1, . . . ,wlq

Dk´lfpzqpwl`1, . . . ,wkq

›

›

›

z

ď
1

k!

k´1
ÿ

l“0

ˆ

k
l

˙

Avg
›

›Dfpzq´1Mpw1, . . . ,wlqDfpzq
›

›

z

›

›

›
Dfpzq´1Dk´lfpzqpwl`1, . . . ,wkq

›

›

›

z

When l “ 0 we have
›

›Dfpzq´1Mpw1, . . . ,wlqDfpzq
›

›

z
“ 1. Otherwise, its value can be

bounded above by κpDfpzqqmaxi,jp|mi ¨ wj |q
l. Using the fact that κpDfpzqq ě 1, we
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bound

1

k!

›

›

›
Dgpzq´1Dkgpzq

›

›

›

z
ď

k´1
ÿ

l“0

1

l!
κpDfpzqqmax

i,j
p|mi ¨wj |q

l

›

›Dfpzq´1Dk´lfpzq
›

›

z

k ´ l!

ď

k´1
ÿ

l“0

ˆ

k ´ 1
l

˙

κpDfpzqqlpmax
ij
|mi ¨wj |q

lγpf , zqk´l´1

ď

ˆ

κpDfpzqqmax
ij
|mi ¨wj | ` γpf , zq

˙k´1

Taking k ´ 1-th roots, we obtain:

γpg, zq ď κpDfpxqqmax
ij
|mi ¨wj | ` γpf , zq.

�

We will need the following, well-known Lemma. Since the proof is short, it is
included for completeness.

Lemma 5.1.2. Let g : pE, } ¨ }q Ñ pF, } ¨ }q be a holomorphic map between Banach

spaces. Let u “ }z´ x}γpg, zq ă 1´
?
2
2 . Then, Dgpxq is invertible and

(12) }Dgpxq´1Dgpzq} ď
p1´ u2q

ψpuq

where ψpuq “ 1´ 4u` 2u2.

Proof.

}pDgpzqq´1Dgpxq ´ I} ď
ÿ

kě2

›

›pDgpzqq´1Dkgpzq
›

›

k ´ 1!
}x´ z}

k´1

ď
ÿ

kě2

kγpg, zqk´1}x´ z}k´1

“
1

p1´ uq2
´ 1.

Therefore Dgpzqq´1Dgpxq is invertible and

}Dgpxq´1Dgpzq} ď
1

1´
´

1
p1´uq2 ´ 1

¯ “
p1´ u2q

ψpuq

and equation (12) holds. �

Proof of Theorem 3.5.1. We assume without loss of generality that mipzq “ 0. For
each i, we use the i-th momentum map to produce an ‘integrating factor’ at x0:
Set Wipxq “ e´mipx0qpxqVipxq. Then

fi ¨
1

}Vipx0q}
PV Ki DVipx0q “ fi ¨

1

}Vipx0q}

ˆ

I ´
1

}Vipx0q}
2
Vipx0qVipx0q

˚

˙

DVipx0q

“ fi ¨
1

}Vipx0q}
DVipx0q ´ fi ¨

1

}Vipx0q}
Vipx0qmipx0q

“ emipx0qx0fi ¨
1

}Vipx0q}
DWipx0q

“ fi ¨
1

}Wipx0q}
DWipx0q
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The toric Newton operator takes x0 to x1 “ Nf px0q where

x1 “ x0 ´
`

f ¨ pI ´ PV px0qKqDVpx0q
˘´1

f ¨Vpx0q

“ x0 ´ pf ¨DWpx0qq
´1f ¨Wpx0q

Thus, the toric Newton operator at x0 is the same as the usual Newton operator
at x0 for the function gpxq “ f ¨ }Wpx0q}

´1Wpxq. This differs from the local
section by a ratio

gpxq “ Sf ,x0px´ zqe´mipx0qx

Also, gpzq “ 0.
From now on we use the metric structure of TzM . All norms, operator norms

and the invariant γ are computed with the norm } ¨ }z. Lemma 5.1.1 provides the
bound

γpg, zq “ κpDSf ,zp0qqmax
i
}mipx0q}z ` γpf , zq

where κpDSf ,zp0qq “ }DSf ,zp0q}z}DSf ,zp0q
´1}z ď µpf ,xq using operator norms.

Above, }mipx0q}z “ max}w}zď1 |mipx0qw| is the norm of mipx0q as a covector.
Since we took mipzq “ 0, }mipx0q}z “ }mipx0q ´mipzq}z. Therefore,

}x0 ´ z}zγpg, zq ď γpf , zq ` µpf , zq}}mipx0q ´mipzq}z ď
3´

?
7

2
.

By Theorem 2.1.1 applied to g one would achieve quadratic convergence yet for
a different Newton operator, namely x ÞÑ x´pf ¨PVpx0qKDVpxqq´1 ¨Vpxq. Instead,
we just claim that for x1 “ Nf px0q,

(13) }x1 ´ z}z ď }x0 ´ z}z
u

ψpuq

where u “ γpg, zq}x0 ´ z}z and ψpuq “ 1 ´ 4u ` 2u2. If we define the sequence
ui “ γpg, zq}xi ´ z}z, we deduce from (13) that

ui`1 ď
u2i
ψpuq

.

This is enough to deduce that the ui decrease faster than the iterates of t0 “ 0,

ti`1 “ Nhγ ptiq, for hγptq “ t´ γt2

1´γt , γ “ γpf , zq. This in turn implies that

ui ď 2´2i`1u0

and hence

}xi ´ z}z ď 2´2i`1}x0 ´ z}z.

It remains to prove (13). Set Wipxq “ e´mipx0qpxqVipxq. As before, u “

γpg, zq}x0 ´ z}. Then

x1 ´ z “ x0 ´ z´
`

f ¨ pI ´ PVpx0qKqDVpx0q
˘´1

f ¨Vpx0q

“ x0 ´ z´Dgpx0qq
´1gpx0q

“ pDgpx0qq
´1 pDgpx0qpx0 ´ zq ´ gpx0qq

“ pDgpx0qq
´1pDgpzqqpDgpzqq´1 pDgpx0qpx0 ´ zq ´ gpx0qq

For all vector w, we can expand

Dgpx0qw “ Dgpzqw `
ÿ

kě2

1

k ´ 1!
Dkgpzqppx0 ´ zqk´1,wq.
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Lemma 5.1.2 applied to g : pTzM , } ¨ }zq Ñ pCn, } ¨ }2q implies that

}Dgpx0q
´1Dgpzq}z ď

p1´ uq2

ψpuq

with ψpuq “ 1´ 4u` 2u2. It remains to bound

pDgpzqq´1 pDgpx0qpx0 ´ zq ´ gpx0qq “
ÿ

kě2

k ´ 1

k!
pDgpzqq´1Dkgpzqpx0 ´ zqk

by
›

›pDgpzqq´1p¨ ¨ ¨ q
›

›

z
ď

ÿ

kě2

pk ´ 1quk´1}x0 ´ z}z “
u}x0 ´ z}z
p1´ uq2

.

This shows that }x1 ´ z}z ď }x0 ´ z}z
u

ψpuq , establishing (13).

�

5.2. The higher derivative estimate.

Proof of Theorem 3.6.1. Assume without loss of generality that mipxq “ 0 for all
i.

1

k!

›

›DSf ,xp0q
´1DkSf ,xp0q

›

›

x
ď

ď
1

k!

›

›

›

›

›

›

›

DSf ,xp0q
´1

¨

˚

˝

}f1}
. . .

}fn}

˛

‹

‚

›

›

›

›

›

›

›

x

›

›

›

›

›

›

›

¨

˚

˝

1
}f1}

f1 ¨
1

}V1pxq}
DkV1pxq

...
1
}fn}

fn ¨
1

}Vnpxq}
DkVnpxq

˛

‹

‚

›

›

›

›

›

›

›

x

ď
1

k!
µpf ,xq

›

›

›

›

›

›

›

¨

˚

˝

1
}V1pxq}

DkV1pxq
...

1
}Vnpxq}

DkVnpxq

˛

‹

‚

›

›

›

›

›

›

›

x

ď
1

k!
µpf ,xqνpxqk´1

as in the proof of Lemma 3.4.5. Then use the fact that µpf ,xq ě 1 to bound the
expression above by

1

k!

›

›DSf ,xp0q
´1DkSf ,xp0q

›

›

x
ď

1

2k´1
µpf ,xqk´1νpxqk´1,

before taking k ´ 1-th roots. �

5.3. Proof of the modified gamma theorem.

Proof of Theorem 3.6.2. Assume that u “ 1
2}x0 ´ z}zµpf , zqνpzq ď

3´
?
7

2 . From
Theorem 3.6.1 we can bound

}x0 ´ z}zγpf , zq ď u

From Theorem 4.1.1(a) and bounding s ď 2u,

}x0 ´ z}zµpf , zqmax
i

sup
}w}z“1

|pmipzq ´mipxqqw| ď 2upe4u ´ 1qee
4u
´1´4u.

The inequality u`2upe4u´1qee
4u
´1´4u ď 3´

?
7

2 holds for u ď u0 “ 0.090994609 ¨ ¨ ¨ ,
where u0 was obtained numerically. �
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5.4. Proof of Proposition 3.7.1.

Proof. Since fpzq “ 0,

Dfpzq´1fpxq “ x´ z`
ÿ

kě2

1

k!
Dfpzq´1Dkfpzqpx´ zqk

so that

}Dfpzq´1fpxq}z ď }x´ z}z

˜

1`
ÿ

kě2

γpf , zqk´1}x´ z}k´1
z

¸

“
}x´ z}z

1´ γpf , zq}x´ z}z

Since }x´ z}zγpf , zq} ď u ď 1{10 ă 1´
?

2{2, Lemma 5.1.2 allows us to bound

}Dfpxq´1fpxq}z ď }Dfpxq´1Dfpzq}z}Dfpzq´1fpxq}z

ď
p1´ uq2

ψpuq

}x´ z}z
1´ γpf , zq}x´ z}z

with ψpuq “ 1´ 4u` 2u2. Theorem 3.6.1 and Lemma 3.4.5 with s ď 2u imply

βpf ,xq “ }Dfpxq´1fpxq}x ď e2u
1´ u

ψpuq
}x´ z}z

Also, Theorem 3.4.6 with θ ď 2u implies that

µpf ,xqνpxq ď
µpzqνpzq

1´ 10u

so
1

2
µpf ,xqνpxqβpf ,xq ď ue2u

1´ u

ψpuqp1´ 10uq

�

6. Finsler structure

The toric variety associated to an unmixed system of sparse polynomial equations
has n natural Hermitian metrics, each one induced by the support of one of the
equations. In Section 3.3 we added up all those Hermitian metrics to produce one
Hermitian metric, namely

x¨, ¨yx “ x¨, ¨y1,x ` ¨ ¨ ¨ ` x¨, ¨yn,x.

This metric cannot be a natural object. Each of the n Hermitian metrics is actually
induced by a Kahler symplectic form, and the mixed volume is the integral over the
toric variety of the wedge product of those n forms, up to a constant. By adding
the Hermitian metrics, information is lost. Instead, a formal linear combination

λ1x¨, ¨y1,x ` ¨ ¨ ¨ ` λnx¨, ¨yn,x

would preserve the mixed volume information, the mixed volume being propor-
tional to the coefficient in λ1 ¨ ¨ ¨λn of the total volume. Those linear combinations
are induced by a semigroup structure on the space of spaces of fewnomials, see
(Malajovich, 2013a) and the discussion therein.
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Therefore, it may be more natural to measure lengths on V and M in some way
that is invariant of the coefficients λ1, . . . , λn ą 0. Instead of using the Hermitian
norm

} ¨ }x “
a

x¨, ¨yx.

we can also use

~w~x “ max
i
}w}i,x “ max

i

b

xw,wyi,x.

This associates a norm to each x. Because each } ¨ }i,x is rescaling invariant, ~¨~x
is independent of the λi. We always have ~w~x ď }w}x. In the running example,

~w~x “
?
2
2 }w}x.

Remark 6.0.1. Most authors define a Finsler structure as a function F : TMÑ R
so that F px, ¨q is a norm and F px, 9xq is smooth or C1 for 9x ‰ 0. The norm ~x~ 9x

is only guaranteed to be continuous and subdifferentiable. Properly speaking, one
might call it a subdifferentiable Finsler structure.

Smale’s alpha-theory was originally stated for holomorphic mappings between
Banach spaces. The definition of invariants β, γ and α for a Newton operator
B Ñ B only uses the norm on B and the induced operator norm for multilinear
maps. In the context of this paper, the invariants become

βpf ,xq “ ~Nf pxq ´ x~x “
�

�DSf ,xp0q
´1Sf ,xp0q

�

�

x
,

γpf ,xq
def
“ max

kě2

˜

1

k!
sup

~w1~x,...,~wk~xď1

�

�DSf ,xp0q
´1DkSf ,xp0qpw1, . . . ,wkq

�

�

x

¸
1
k´1

and αpf ,xq “ βpf ,xqγpf ,xq.
The invariant µ is more delicate. It was defined as the operator norm of the map

DGpfq :
`

Trf1sPpF1q ˆ ¨ ¨ ¨ ˆ TrfnsPpFnq, } ¨ }x
˘

Ñ pTxM , } ¨ }xq

where the product norm was assumed in the domain of DGpfq. We redefine µ as
the operator norm of the same map between different spaces. In the manifold

PpF1q ˆ ¨ ¨ ¨ ˆ PpFnq

we also define a Finsler structure,
�

�

�

9f
�

�

�

rf s
“ max

i
} 9fi}rfis.

Now,
DGpfq : pTf1PpF1q ˆ ¨ ¨ ¨ ˆ TfnPpFnq,~¨~xq Ñ pTxM ,~¨ ¨ ¨~xq

and the norm on the domain is
�

�

�

9f
�

�

�

rf s
“ max

i
} 9fi}rfis.

An alternative formulation is

µpf ,xq “

�

�

�

�

�

�

�

DSf ,xp0q
´1

¨

˚

˝

}f1}
. . .

}fn}

˛

‹

‚

�

�

�

�

�

�

�

8,x

“

˜

inf
~w~i,xď1

max
i

|fi ¨DVipxqw|

}f}i
}Vipxq}

¸´1

.
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The expression above guarantees that µpf ,xq ě 1 always. The invariant ν is already
defined in terms of the } ¨ }i,x so it does not change.

In the proof of Theorem 4.1.1, only the inner products x¨, ¨yi,x appear, and this
is the only place in the proof of Main Theorems A and B where an Hermitian
structure is used.

The definition of the multiprojective metric in Theorem 3.4.6 should be modified
to be compatible with the Finsler structure. Now,

dP pf ,gq “ max
i

inf
λPC

}fi ´ λgi}

}fi}
.

As usual, dP pf ,gq ď dpf ,gq where d is the Finslerian distance from f to g.
The proofs of Theorem 4.3.1 and 3.6.1 must be modified because of the operator

norm ~¨~8,x.

Proof of Theorem 4.3.1 for the Finsler structure. We assume without loss of gener-
ality that mipxq “ 0 for all i, scale the fi such that }f}1 “ ¨ ¨ ¨ “ }fn} “ 1 and then
scale the gi such that }fi´gi} is minimal. The sine distance now is the sine distance
for the Finsler metric, that is dP pf ,gq “ maxi }fi ´ gi}. Let vipxq “

1
}Vipxq}

Vipxq.

Because mipxq “ 0 for all i, we can write

µpf ,xq “
�

�pf ¨Dvpxqq´1
�

�

8,x
.

Lemma 4.3.3 provides us with the inequality

µpf ,xq

1` µpf ,xqT
ď
›

›pg ¨Dvpyqq´1
›

›

x
ď

µpf ,xq

1´ µpf ,xqT

where now, T “ ~f ¨Dvpxq ´ g ¨Dvpyq~x,8. We estimate T “ T 1 ` T 2 where

T 1 “ ~f ¨Dvpxq ´ g ¨Dvpxq~x,8

ď sup
~w~xď1

max
i
|pfi ´ giq ¨Dvipxqw}

ď max
i
}fi ´ gi}

and

T 2 “ ~g ¨Dvpxq ´ g ¨Dvpyq~x,8

“ sup
~w~xď1

max
i
|gipDvipxq ´Dvipyqqw|

ď sup
~w~xď1

max
i
}pDvipxq ´Dvipyqqw}

ď sup
~w~xď1

max
i

ÿ

kě2

1

k ´ 1!
}Dkvipxqpw,y ´ x, ¨ ¨ ¨ ,y ´ xq}

ď max
i

ÿ

kě2

1

k ´ 1!
νipxq

k´1}y ´ x}k´1
i,x

ď pes ´ 1q

As before,

p2´ esqµpf, xq

1` µpf ,xq p}f ´ g} ` pes ´ 1qq
ď µpg,yq ď

esµpf ,xq

1´ µpf ,xq p}f ´ g} ` pes ´ 1qq

�



COMPLEXITY OF SPARSE POLYNOMIAL SOLVING 39

Proof of Theorem 3.6.1 for the Finsler structure. As before, assume without loss
of generality that mipxq “ 0 for all i.

1

k!

�

�DSf ,xp0q
´1DkSf ,xp0q

�

�

x
ď

ď
1

k!

�

�

�

�

�

�

�

DSf ,xp0q
´1

¨

˚

˝

}f1}
. . .

}fn}

˛

‹

‚

�

�

�

�

�

�

�

8,x

�

�

�

�

�

�

�

¨

˚

˝

1
}f1}

f1 ¨
1

}V1pxq}
DkV1pxq

...
1
}fn}

fn ¨
1

}Vnpxq}
DkVnpxq

˛

‹

‚

�

�

�

�

�

�

�

x,8

ď
1

k!
µpf ,xqmax

i
sup

~w1~x,...,~wk~xď1

ˇ

ˇ

ˇ

ˇ

1

}Vipxq}
DkVipxqpw1, . . . ,wkq

ˇ

ˇ

ˇ

ˇ

ď
1

k!
µpf ,xqνpxqk´1.

as in the proof of Lemma 3.4.5. We can still use µpf ,xq ě 1 to bound the expression
above by

1

k!

�

�DSf ,xp0q
´1DkSf ,xp0q

�

�

x
ď

1

2k´1
µpf ,xqk´1νpxqk´1,

and take k ´ 1-th roots. �

7. Conclusions and future work

The theory of condition numbers and homotopy for sparse systems proposed in
this paper shares many of the features of the theory of homotopy algorithms for
dense polynomial systems: there are effective criteria for quadratic convergence, a
Lipschitz condition number, a higher derivative estimate and the toric condition
length is an upper bound for the cost of homotopy algorithms.

This bound is possibly sharper from what we would obtain from the theory of
dense homogeneous or multi-homogeneous equations, as illustrated by the running
example. On the other hand, this theory has some distinctive features.

The higher derivative estimate for γpf ,xq is less sharp as x goes to toric infinity.
This is to be expected, since in the toric case ‘infinity’ means a supporting facet of
the support. Therefore it may be necessary to ‘switch charts’ at some point and
appromiate roots going to infinity by points at infinity. In the mean time, we are
left with the undesirable features of the non-homogenized, later discarded version
of the theory in Shub and Smale (1993a).

Nothing was said about implementation issues. Some of them may require ex-
perimentation. For instance, it is not clear if the extra sharpness provided by the
Finsler structure does offset the extra cost of computing it. This may depend on
how many variables appear on each polynomial.

Then we need a probabilistic analysis of the condition of sparse polynomial
systems. This may be a challenging problem. Previous results obtained by Mala-
jovich and Rojas (2004) depend on polynomial systems being unmixed or on a
mixed dilation which is only finite for nondegenerate fewnomial spaces as in Defini-
tion 3.1.1(iii). This is an inconvenient hypothesis. Removing it is a topic for future
research.
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Colóquio Brasileiro de Matemática., Instituto Nacional de Matemática Pura e Aplicada
(IMPA), Rio de Janeiro. Available at http://www.labma.ufrj/~gregorio.

. 2013a. On the expected number of zeros of nonlinear equations, Found. Comput.
Math. 13, no. 6, 867–884, DOI 10.1007/s10208-013-9171-y.

http://arxiv.org/abs/1501.04456
http://arxiv.org/abs/1501.04456
http://arxiv.org/abs/1601.02818
http://arxiv.org/abs/1601.02818
http://www.labma.ufrj/~gregorio


COMPLEXITY OF SPARSE POLYNOMIAL SOLVING 41

. 2013b. Newton iteration, conditioning and zero counting, Recent advances in real
complexity and computation, Contemp. Math., vol. 604, Amer. Math. Soc., Providence,
RI, pp. 151–185, DOI 10.1090/conm/604/12072.

. 2016. Computing mixed volume and all mixed cells in quermassintegral time,
Found. Comput. Math., DOI 10.1007/s10208-016-9320-1.

Malajovich, Gregorio and J. Maurice Rojas. 2004. High probability analysis of the condi-
tion number of sparse polynomial systems, Theoret. Comput. Sci. 315, no. 2-3, 524–555,
DOI 10.1016/j.tcs.2004.01.006.

Maxima. 2014. Maxima, a Computer Algebra System: Version 5.34.1. Available at http:
//maxima.sourceforge.net, last update: 2014.09.08.

Morgan, Alexander. 2009. Solving polynomial systems using continuation for engineering
and scientific problems, Classics in Applied Mathematics, vol. 57, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA. Reprint of the 1987 original; Pages
304–534: computer programs section, also available as a separate file online.

Shub, Michael. 1993. Some remarks on Bezout’s theorem and complexity theory, From
Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), Springer,
New York, pp. 443–455.

. 2009. Complexity of Bezout’s theorem. VI. Geodesics in the condition (number)
metric, Found. Comput. Math. 9, no. 2, 171–178, DOI 10.1007/s10208-007-9017-6.

Shub, Michael and Steve Smale. 1993a. Complexity of Bézout’s theorem. I. Geometric
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Appendix A. Proof of Lemma 2.5.3

We start with a real version of Lemma 2.5.3. This will be used to recover
the complex version. The notation x¨.¨y stands for the canonical Hermitian inner
product in Cn, and x¨.¨yRn is the real canonical inner product. Identifying Cn to
R2n we can write

Re px¨.¨yq “ x¨.¨yR2n .
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Since the same norm arises from those two inner products, we use the notation } ¨ }
for it. Here is the real Lemma:

Lemma A.0.1. Suppose that x,y, ζ P Rn`1 with ζ ´ x K x, y ´ x K x and
}y ´ ζ} ď }x´ ζ}. Then,

}πRpyq ´ ζ}

}ζ}
ď
}y ´ ζ}

}x}

where πRpyq “
}ζ}2

xy,ζyRn`1
y is the radial projection onto the real affine plane ζ ` ζK.

Proof. Rescaling the three vectors x,y and ζ simultaneously we can assume that
}x} “ 1. Then we can choose an orthonormal basis pe0, . . . , enq so that x “ e0, ζ
is in the span of e0 and e1 and y is in the span of e0, e1 and e2. In coordinates,

x “

¨

˚

˚

˚

˚

˚

˝

1
0
0
0
...

˛

‹

‹

‹

‹

‹

‚

, ζ “

¨

˚

˚

˚

˚

˚

˝

1
t
0
0
...

˛

‹

‹

‹

‹

‹

‚

and y “

¨

˚

˚

˚

˚

˚

˝

1
s
r
0
...

˛

‹

‹

‹

‹

‹

‚

.

We can further assume that t ě 0 and r ě 0. Squaring both sides of the hypothesis
}y ´ ζ} ď }x´ ζ} we obtain

r2 ` ps´ tq2 ď t2

that is

(14) r2 ď 2st´ s2

which implies s ě 0.
We claim first that

(15)
}πRpyq ´ ζ}

}y ´ ζ}
ď
}πRpxq ´ ζ}

}x´ ζ}
.

We compute

}πRpyq ´ ζ}2 “

`

t2 ` 1
˘ `

r2 t2 ` t2 ´ 2 s t` s2 ` r2
˘

ps t` 1q
2

}y ´ ζ}2 “ t2 ´ 2 s t` s2 ` r2

}πRpxq ´ ζ}2 “ t2
`

t2 ` 1
˘

}x´ ζ}2 “ t2

To show inequation (15), we just need to verify that

K “ }πRpyq ´ ζ}2}x´ ζ}2 ´ }πRpxq ´ ζ}2}y ´ ζ}2 ď 0

Using the Maxima computer algebra system (Maxima, 2014),

K “ ´
t3pt2 ` 1q

pst` 1q2
`

Ar2 `B
˘

with

A “ ps2 ´ 1qt` 2s and B “ spt´ sq2pst` 2q
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From the factorization above, K is negative if and only if Ar2 ` B ě 0. Clearly
B ě 0. If A ě 0 we are done, so assume A ă 0. Then multiplying both sides of
(14) by A, one obtains

Ar2 ě 2Ast´As2

and

Ar2 `B ě s2tp1` t2q ě 0.

This shows (15). Also,

}πRpxq ´ ζ}2

}x´ ζ}2
“ 1` t2 “

}ζ}2

}x}2
.

Taking square roots and combining with (15),

}πRpyq ´ ζ}

}ζ}
ď
}y ´ ζ}

}x}
.

�

Lemma 2.5.3. Suppose that x,y, ζ P Cn`1 with ζ ´ x K x, y ´ x K x and
}y ´ ζ} ď }x´ ζ}. Then,

}πpyq ´ ζ}

}ζ}
ď
}y ´ ζ}

}x}

where πpyq “ }ζ}2

xy,ζyy is the radial projection onto the affine plane ζ ` ζK.

Proof. We identify Cn`1 with R2n`2 and claim that

(16) }πpyq ´ ζ} ď }πRpyq ´ ζ}.

Since complex orthogonal vectors are also real orthogonal, inequation (16) and
Lemma A.0.1 imply

}πpyq ´ ζ}

}ζ}
ď
}πRpyq ´ ζ}

}ζ}
ď
}y ´ ζ}

}x}
.

To show (16) we choose coordinates so that

ζ “

¨

˚

˚

˚

˝

1
0
0
...

˛

‹

‹

‹

‚

and y “

¨

˚

˚

˚

˝

a` bi
c
0
...

˛

‹

‹

‹

‚

with c ě 0. A straight-forward computation gives

πpyq “

¨

˚

˚

˚

˝

1
c

a`bi

0
...

˛

‹

‹

‹

‚

and πRpyq “

¨

˚

˚

˚

˝

1` b
a i

c
a
0
...

˛

‹

‹

‹

‚

We have

}πpyq ´ ζ}2 “
c2

a2 ` b2
ď
b2

a2
`
c2

a2
“ }πRpyq ´ ζ}2

with equality if b “ 0. This finishes the proof. �



44 GREGORIO MALAJOVICH

Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Fed-

eral do Rio de Janeiro. Caixa Postal 68530, Rio de Janeiro RJ 21941-909, Brasil.

E-mail address: gregorio.malajovich@gmail.com


	1. Introduction
	2. Projective Newton iteration revisited
	3. Toric Newton iteration, condition and homotopy
	4. Distortion bounds
	5. Proof of the technical results
	6. Finsler structure
	7. Conclusions and future work
	References
	Appendix A. Proof of Lemma 2.5.3

