COMPLEXITY OF SPARSE POLYNOMIAL SOLVING:
HOMOTOPY ON TORIC VARIETIES AND THE CONDITION
METRIC

GREGORIO MALAJOVICH

ABSTRACT. This paper investigates the cost of solving systems of sparse poly-
nomial equations by homotopy continuation. First, a space of systems of
n-variate polynomial equations is specified through n monomial bases. The
natural locus for the roots of those systems is known to be a certain toric vari-
ety. This variety is a compactification of (C\{0})", dependent on the monomial
bases. A toric Newton operator is defined on that toric variety. Smale’s al-
pha theory is generalized to provide criteria of quadratic convergence. Two
condition numbers are defined and a higher derivative estimate is obtained in
this setting. The Newton operator and related condition numbers turn out to
be invariant through a group action related to the momentum map. A homo-
topy algorithm is given, and is proved to terminate after a number of Newton
steps which is linear on the condition length of the lifted homotopy path. This

generalizes a result from |[Shub (2009).
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1. INTRODUCTION

The solution of Smale’s 17th problem by Beltran and Pardo (2009, [2011) and

Lairez (2016) was a tremendous breakthrough in the theory of solving polynomial
systems. Roughly, the cost of finding an approzimate solution for a random system
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of n polynomial equations on n variables is bounded by a polynomial in the input
size.

Yet, several unanswered questions may prevent the immediate application of
those results and supporting algorithms. One of the main obstructions comes from
the way the input size was defined by |[Smale (1998). First the total degree d; of
each equation f; is prescribed. Then,

A probability measure must be put on the space of all such £, for

eachd = (dy,...,d,) and the time of an algorithm is averaged over

the space of £. Is there such an algorithm where the average time

is bounded by a polynomial in the number of coefficients of £ (the

input size)?
Usually, the probability measure is assumed to be the normal distribution with 0
average and identity covariance with respect to Weyl’'s U(n + 1)-invariant inner

d;

Instead, a lot of the current numerical interest concentrates on systems of equa-
tions of the form

product. The input size of such a system is therefore Z?:l <di N n>

FUZ) = Xaea, fiaZi" 257 23
(1) :
Fu(Z) = Xaea, fiaZ" 257 - 23,

where each A; is a finite set. The natural input size for those systems is ), # A4,
d; +n

d;

One of the main reasons to find roots of a random system is to use them as a
starting point for a homotopy algorithm. Sometimes, only the ‘finite’ roots of a
sparse system are needed. Those are the roots in (C\{0})™. A famous theorem by
Bernstein, Kushnirenko and Khovanskii(1976) bounds the number of such roots in
terms of the mized volume of the convex hulls of the A;. This bound is tighter
than Bézout’s Theorem. The bound is exact once the roots are taken in the proper
compactification of (C\{0})™ and counted with multiplicity. This compactification
is a particular toric variety. Properly detecting and finding ‘infinite’ roots in this
toric variety is also an interesting problem. Finding just one root of a random dense
system could be very expensive and would not necessarily provide a finite root of
the sparse target system, or even a legitimate ‘infinite’ root in the toric variety.
Those considerations lead to the following theoretical questions:

which can be exponentially smaller than »}" |

Problem A. Can a finite zero of a random sparse polynomial system as in equation
be found approximately, on the average, in time polynomial in };, #A; with a
uniform algorithm?

Problem B. Can every finite zero of a random polynomial system as in equation
be found approximately, on the average, in time polynomial in ), #A; with a
uniform algorithm running in parallel, one parallel process for every expected zero?

To simplify Problem [B] one can assume that some preliminary information such
as a lower mixed subdivision is given as input to the algorithm. An algorithm to
find this mixed subdivision in time bounded in terms of mixed volumes and other
quermassintegrals was given by [Malajovich (2016). Implementation issues were also
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discussed. [Jensen (TA)) provides an alternative symbolic method which can also be
used to recover this mixed subdivision.

As a first step towards an investigation of problems[A]and [B] this paper attempts
to develop a theory of homotopy algorithms for sparse polynomial systems by fol-
lowing a parallel with the theory for dense polynomial systems. A key result in the
theory was obtained by [Shub (2009)): the cost of homotopy is bounded above by
the condition length of the homotopy path (see Section . The aim of this paper
is to obtain a similar theorem for sparse polynomial systems.

One of the cornerstones of that theory is the concept of U(n+1) invariance (Shub
and Smale, 1993a; | 1993b; | 1993c; | 1994} | 1996 Blum et al., 1998; [Shub, 2009}
Beltran and Shub, 2009; Beltran and Pardo, 2009; | 2011; Burgisser and Cucker,
2011} Dedieu et al., 2013)). Unfortunately, unitary action does not preserve the
structure of equation . In this paper, the U(n + 1) invariance will be replaced
by another group action explained in Section

It is convenient to identify sparse polynomials to exponential sums. More for-
mally, let #4, be the set of expressions of the form f;(z) = >4, fia€® and let
feFy x---xFa, . lf(z) =0and e* =Z e (C\{0})" then Z is a finite zero
of equation . In section (3| we will construct the toric variety ¥ as the Zariski
closure of a non-unique embedding of (C\{0})" into P(F} ) x --- x P(F} ). Ac-
tual computations require the use of some local chart. We will use a system of
‘logarithmic coordinates’ [V] : . # — ¥ where .# is the quotient of the z-space C"
that makes the embedding injective. To every point x € .# we will associate the
local norm | - |x induced by the pull-back of Fubini-Study metric from ¥. Another
possibility discussed in section [0] is to endow .# with a Finsler structure. We will
also define a Newton operator on ¥ which will actually operate on .# as a (locally)
linear space. This will avoid all the technicalities associated to Newton iteration on
manifolds such as estimating covariant derivatives or approximating geodesics, as
required in previous work from [Dedieu et al. (2003). However . is still a manifold,
with a metric structure associated to each point. We may estimate the distance
between two points x, z through the norm |x — z|x on the tangent space Tx.#.
The subtraction operator above is provided by the linear structure of C™, and it is
assumed that representatives x and z in C" minimize the norm.

In this paper, the solution variety is

o = {(f,x) EP(Fy,) X - xP(Fa,) x M :f(x) = 0}

We will define two condition numbers p : P(F4,) X -+ x P(Fa,) X M — [1,0]
and v : # — [1,00]. Let ¥’ be the set of ill-posed pairs, that is the set of all (f,x)
with p(f, x)v(x) = co. The condition numbers induce a length structure on .7\
the condition length of a rectifiable path (f;,2)e[s,.¢,] is defined by

t1 "
Z ((ftazt)§toat1) = J (£, 2o )v(ze)\/ [£el17, + [12e]2, dt.
t

0

This gives .#\YX’ the structure of a path-metric space.
Main Theorem A. Let (f;,2:)icio,r) be a rectifiable path in #,\X'. Let xq be an

approximation for zg, satisfying

1
§u(f0, 20)v(20) |20 — X0z, < uo
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for the constant ug = 3_2ﬁ ~ 0.090994 - - -. Then, there is a time mesh 0 = ty <

by <<ty =T with

N < [38 &z ((ft,zt);o,T)]

so that the approximation
Xi+1 = N(ftl y xi)

produces yo = Xy with

1
§M(fTa zr)v(27)|27 — Yo|2s < uo

for the same constant ug. Moreover, the sequence y;+1 = N(fr,y;) is well-defined
and satisfies
lyi = 27|27 < 2_2Z+1HYO — 27 ||ar-

Main Theorem A is not effective, in the sense that the time mesh above is just
said to exist. One can get an adaptive criterion for the step size at the price of
increasing the complexity bound.

Main Theorem B. There are constants
a1 ~ 0.081239483 - - - and up ~ 0.039745185 - - -

with the following properties: Let (fi,2¢)iei0,7) be a rectifiable path in S5\Y'. Let
xXg be an approzimation for zg, satisfying

1
S u(fo, 20)v(20) 20 — X0z, < 1.

2
Then one can define (x;) and (t;) recursively by
xi+1 = N(f,,x;)
tiy1 = min(7T,inf{t>t;:

Su(f, % 1)V (Xig1)|INg, (Xig1) — Xig1

Xif1 = al}) .

Then, ty =T for some N < [59,2” ((ft,zt);O,Tﬂ. Moreover, the sequence yg =
XN, Yi+1 = Ng,. (y:) is well-defined and satisfies for i =1

lyi = 27]ar <272 2[yo —y1l.

The calculation of ;1 requires a subroutine to find the smallest solution ¢ > ¢;
of the equation

1

gﬂ(ftaXHl)V(Xi-&-l)Hth (Xit1) = Xit1lx,py = Q1

Obvious modifications in the algorithm allow for approximate computations in that
subroutine. Similar results were known for the dense setting (Beltran, 2011; Dedieu
et al., 2013; Beltran and Leykin, 2013). The constants in Main Theorem B are not
supposed to be sharp.

Last but not least, the methods in this paper may offer a better alternative than
projective Newton for approximating certain roots at ‘toric infinity’. We will show
this through an example.
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Running example, part 1. The family
tX —tXY +Y? —2Y3
(2) ft(XaY)* < X+XY—Y2—Y3.
1+¢2

admits two “finite’ solutions on the toric variety 7, namely (¢=2,¢t~%) and (— S
—1). When ¢ — 0, both solutions converge to different points at toric ‘infinity’ and
those can be efficiently approximated. We will show in Section [3| that

2 (8 (@1, 3)) 6 1) € ©10g(1/¢))

where (z,y) = (log(X),log(Y)). In comparison, we show in Section [2| that the
condition length L for the homogeneous setting as in (Shub, 2009)) satisfies

L ((ft, [X,: Y :1])e 1) e Q(1/e).

This amounts to an exponentially worse bound on the number of homotopy steps,
due to the fact that in projective space the two solutions are the undistinguishable
on the limit. Indeed, lim_,o[X: : Yz : 1] = [1 : 0 : O] for both curves.

This paper is organized as follows. Section [2| revisits known results about alpha-
theory, for reference and conceptual clarification. All the main results and con-
structs of this paper are contained in Section [8] Among them, the construction
of the toric variety, the Newton operator and the momentum map action. Main
theorems A and B are proved, but the proofs of intermediate results are postponed.
Section [ contains distortion bounds that allow to switch between charts in ..
The remaining technical results are proved in Section

In section [f] an alternative, more natural Finsler structure on the toric variety
¥ is introduced. All the theorems in this paper are also valid if the Hermitian
structure is replaced by this Finsler structure, and some bounds actually become
sharper. A short summary and some short remarks close the paper in section [7]

Acknowledgements: The author would like to thank Carlos Beltran, Bernardo
Freitas Paulo da Costa, Felipe Bottega Diniz and two anonymous referees for their
suggestions and improvements.

2. PROJECTIVE NEWTON ITERATION REVISITED

In this section we revisit some classical results about Newton iteration, such as
Smale’s quadratic convergence theorems. Then we recall the corresponding results
for projective Newton iteration. By understanding projective Newton as an algo-
rithm operating on vector bundles, we highlight some subtle differences between
the gamma theorem which extends naturally to projective space, and the alpha
theorem.

2.1. Classical theorems. Let f : E — F be an analytic mapping between real or
complex Banach spaces. Whenever Df(x) is invertible, Newton iteration is defined
by
N¢y: E — F
x — x-— Df(x)"f(x)
Smale’s invariants for Newton iterations are:

ﬁ(f,X) = HDf(X)ilf(x)Hv
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~(f,x) = max </€1' HDf(x)lef(X)H) o

k=2

and a(f,x) = B(f,x)y(f,x). If Df(x) fails to be surjective at x, then a(f,x) =
B(f,x) = ~v(f,x) = o0. Recall also the teminology: a zero z of f is said to be
degenerate if Df(z) is not surjective, otherwise it is non-degenerate. The domain of
f will be denoted D¢ and B(x,r) will be the radius r ball around x. The following
two results are due to|Smale (1986)). The constant ag below is due to[Wang (1993).
Proofs can be found on textbooks or lecture notes such as (Blum et al., 1998;
Malajovich, 2011} [ 2013b]).

Theorem 2.1.1 (y-theorem). Let ¢ € E be a non-degenerate zero of f. If zy € E
satisfies

I~ xall(£.¢) < 2V

and B(¢,||€ — xo|) € D¢, then the sequence x;+1 = N¢(x;) is well-defined and

16 =il < 272*1¢ = xol.
Theorem 2.1.2 (a-theorem). Let

13 — 3417

<aoag =
« (67} 1
14+ a—+1-—6a+a? 1—3a—+1—6a+a?
ro = and ry = .

da da

If xo € E satisfies a(f,x9) < «a, and B(xg,m08(f,x0)) S D¢, then the sequence
defined recursively by x;11 = Ng(x;) is well-defined and converges to a limit ¢ so
that £(¢) = 0. Furthermore,

(a) x; — ¢l <27+ x1 — xo
() llxo — €| < roB(f,x0)
(¢) %1 = ¢l < r1B(f,x0).

2.2. The case for projective Newton. Polynomial equations in C™ are poorly
conditionned when a root ‘approaches’ infinity. For instance, the affine system of

equations
ex—1 = 0
y—1 = 0

has solution (e~%,1). A small perturbation of the first coefficient by (say) § may
change the solution to ((e—§)~%, 1). The absolute condition number is by definition
)%I §=0 ﬁ‘ = €2, while the relative condition number is the absolute condition
number divided by the limit value e~!, namely e~ 1.

This source of ill-posedness was noticed by |Shub and Smale (1993al section I-4).
In comparison, the theory was greatly simplified by homogenizing equations and
then performing Newton iteration on projective space. On the previous example,

the homogenized system is
ex—z = 0
y—z = 0

and the solution [ :1:1] = [1: €: €] has a well-defined limit as e — 0.
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Those ideas require the introduction of an appropiate Newton operator. One
possibility is to perform Newton iteration in C**! using the Moore-Penrose pseudo-
inverse as [Allgower and Georg (1993), or charts as |[Morgan (2009). However, the
projective Newton operator introduced by [Shub (1993) allowed for a more natural
development of the theory.

2.3. The line bundle O(d). Homogeneous polynomials do not have a well-defined
value on projective space P™. A classical construction in algebraic geometry is to
represent homogeneous degree d polynomials as sections of the line bundle C —
O(d) 5 P™ with total space O(d) equal to the quotient of (C"*1\{0}) x C by the
Cy group action
Ax,y) = (Ax, A%y).

When no confusion can arise, we will use the same notation for a fiber bundle and
its total space. Through this paper, brackets denote the equivalence class under
a prescribed group action. For instance, [x] € P™ will be the equivalence class of
x € C"™1\{0} with respect to scalings, and [x,y] € O(d) will be the equivalence
class of (x,y) under the group action above. Under this notation, the projection
operator 7 : O(d) — P™ is just [x,y] — [x].

To a homogeneous degree d polynomial f, one associates the section sy : [x]| —
[x, f(x)]. The reader should check that this is independent of the choice of the
representative x for [x].

2.4. Systems of equations. Let dy,...,d, € N be fixed through this section. We
consider the vector bundle & = O(d;) @ - -- ® O(d,). Denoting also by & its total
space, we may write this bundle as C* — & 5> P". The total space & is the
quotient of (C"*1\{0}) x C™ by the Cy group action

)\(X, Yi, .- 7yn) = ()\X7 )‘dlylﬂ ey )\dny’n)'
The projection map takes [x,y] into [x].

To a system (fy,..., fn) of homogeneous polynomials of degree (dy,...,d,), one
associates the section of the vector bundle

S(frynf) 0 BT &
x] — [x i), )]
The brackets on the right denote quotient with respect to the multiplicative group
action A(X,91,...,¥n) = (Ax, Ay, ..., Ady,). The tangent space of P" at x is
the linear space x* < C"*! with the inner product |x|~2(:,-). We can define a
local map from Tj,P™ into the fiber above [x], namely
Sf’x : T[X]E’m =xt — Wﬁl([x]) ~Cn
x — fi(x+x%),..., falx+x%)

Since this St x is a function between linear spaces, we can define the local Newton
operator associated to s¢ as the Newton operator for St x:

Nex: TP — TP
%X — x— (DE(x+ %)) f(x+%)
The projective Newton operator is
NPl pr — Ppm
[x] — [x+Nex(0)].
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Remark 2.4.1. Explicit expressions for the projective Newton operator are

NF(x]) = [x = DL G0 = [x - (%) B (fﬁ;‘))] .

2.5. Alpha theory. Smale’s invariants for the projective Newton operator are

6(fv X xL X) ’

‘Df |

(£ [x) = |x|max< e D kf(x))kll

and of course a(f, [x]) = B(f, [x])v(f, [x])-

We will denote by d([x], [y]) the Riemannian (Fubini-Study) distance in projec-
tive space and by dr([x], [y]) = tand([x], [y]) the ‘tangential distance’. This is
not a metric, since the triangle inequality fails. However, if x 1 x, then

dr([x], [x+x]) = —
is the norm in 77, P".
Theorem 2.5.1 (v-theorem). Let [¢] € P™ be a non-degenerate zero of f. If
[x0] € P satisfies
ar(1€]. rae. [¢)) < 20

then the sequence [x;11] = NP ([x,]) is well-defined and

dr([¢], [xi]) <272 "'dr([¢], [xo))-

This first appeared in the book by Blum et al. (1998, Th.1 p.263). [Biirgisser
and Cucker (2011, Th.16.38) provided a refinement of this theorem, not necessary
for this paper. One can also state an alpha-theorem for the projective Newton
iteration, but the sharpest ag constant seems to be unknown. Instead we can
apply Theorem to the local Newton operator.

Theorem 2.5.2 (Tangential a-theorem). Let

13 - 3v17

a <y =

4
Let
1+a—+1-—6a+ a? 1-3a—+1-6a+a?
ro = and ry = .
4o da
If [x0] € P™ satisfies a(f,[x0]) < «, then the sequence defined recursively by

xo = 0, X;41 = Ngx(X;) is well-defined and converges to a limit x* so that [{] = def

[x0 + x*] is a zero 0f f. Furthermore,

() [k —%*] <272 5|

(b) dr([xo + %], [¢]) < 27* *'dr([xo], [€])
(¢) dr([xo],[C]) < roB(f, [x0])

(d) dr(Ng™ ([x0]), [¢]) < r1B(f, [x0])-

We will need to borrow Lemma 2(4) p.264 from Blum et al. (1998]). Since I am
not satisfied with the published proof, I included an alternate one in the appendix.
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Lemma 2.5.3. Suppose that x,y,( € C*™ with ¢ —x L x, y —x L x and
ly =<l < [x =] Then,
I=(y) =<l _ Iy =<l
9 x|
_ ler?

where 7(y) = oY is the radial projection onto the affine plane ¢ + CJ‘.

Proof of Theorem[2.5.9. Item (a) is Theorem in xg +xg = C". Ttem (b) is a
particular case of the Lemma [2.5.3| above, namely

- 7)<l _ Iy =<l _ . .
dr([xo0 +xi],[C]) = < = [xi = x*[/lIxol
<l [l
for x = xg, y = X0 + %1 and ¢ = x + x*. Items (c) and (d) follow from Theo-
rem b,c) and from estimates

dr([xol, [O]) = I%*I/Ixol  and  dr([x1],[O)]) < %1 — %[/l

the last one as above with y = x + x1 = x3. O

2.6. Homotopy and the condition length. Let J7; be the complex space of
degree d homogeneous polynomials on n+1 variables, endowed with Weyl’s U (n+1)-
invariant inner product. Let (g, . 4,) = a4, x -+ x A, . The invariant condition
number p : P(Hq, ... 4,)) X P* — [\/n, 0] defined by [Shub and Smale (1993a)) is

x4tV

(3) p(f,x) = |£]| | DE(x)

x|t/ dn,
with the operator 2-norm assumed. The minimum of p(f,x) = /n is actually
attained for fi(x) = V/dix@'x; at x = ep. At this system, |f;| = 1 in Weyl’s
metric and therefore |[f|| = y/n. The main complexity result that we want to
emulate is:

Theorem 2.6.1. (Shub, 2009, Th.3) There is a constant C; > 0, such that: if
(f1,20), to <t <ty is a C! path in S = {([f],[z]) : £f(z) = 0}, then

t1 -
Culmaxd:)® |tz IR + )3, e

to
steps of the projective Newton method are sufficient to continue an approximate zero
xo of fi, with associated zero zy to an approzimate zero x1 of fi, with associated
ZET0 Zt, .

In the context of dense polynomial systems, the condition length relates algo-
rithmic issues to geometrical properties of the solution variety (Beltran and Shub,|
[2009; Boito and Dedieu, 2010} Beltrdn et al., 2009} | 2012). Adaptive algorithms
exploiting the condition length were presented by Beltran and Leykin (2013)) and
Dedieu et al. (2013). Hauenstein and Liddell (2016)) obtained a similar algorithm
for constant term homotopy. This allowed them to replace the condition number by
Smale’s v invariant in the definition of condition length. |Armentano et al. (2016
used the condition length complexity estimates to derive an average complexity
result. Condition metrics can also be studied for their own sake as in
lal., 2009; |Criado del Rey, TA).
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Running example, part 2. We estimate now the condition length for the two solution
paths in the example of equation . Let Z; = (X¢,Y:,1) so that

12 241
2¢
Zgl) — |+ and Z§2) _ 7
1 1
In norms,
1 5 1
1ZO)P =t 4241 and |Z7)? = R

The Weyl norm of f; satisfies |[£;|? = 13 + 142 + ¢*. Instead of evaluating the norm
of (DE,(ZD () (ze)(1y)2) ", We compute

2 a1 —2 -1 -2 —4
DE(ZD (1)) DE(ZD (1) = (t 2t 4+ 10— 6t~ " + 5t t+ 567+ 472 + 2t )

t+5t7 4724 2078 14267 +5t7 248345t 42475 +¢76
and

1744 2, 5 3 2 -1
th(z(z)(t))th(Z(Q)(t))*:( St + 137 + 3 2° + 487 +3t+2+1 )

20 + 47 + 3L+ 24+t P+ 2+ 3+ 27 4 3177

Since

(W) = (46, 29))” = 3129 O] 182

, , -1
(Df(29 () DE (29 (1)) * ) H
we first expand the inverse of

DF(Z (1)) DE(Z)(¢))*

into its Laurent series around zero using the Maxima computer algebra system
(Maxima, 2014). The condition length for paths (f;, Zgl)) and ,(f;, Z,EQ)) is computed
in Table[l] Overall, the condition length L satisfies

1
L((]. ZM), e, 1) = f (2 IR + [, dt e ©(c?)

€
as claimed in the introduction. This is also the best known upper bound for the
number of projective Newton steps in a homotopy algorithm going from f; to f..

3. TOrRIC NEWTON ITERATION, CONDITION AND HOMOTOPY

The two solution paths for equation from the running example converge
to the same point in projective space. Indeed, the solution paths (t72,¢t7!) and
(71352,71) correspond to solution paths [1 : ¢ : t?] and [1 + 2¢% : 2t : —2t] in
P2. When t = 0 they converge to the same point. In this section we will embed
the solution paths in P? instead of P2. For instance, we consider the embedding
(X,Y) — [X : XY : Y2 :Y?]. Under this embedding, the solution paths become
[t:1:¢t:1] and [—(1+¢2): (1+¢2): 2t : 2t]. When ¢ — 0, those solutions converge
to[0:1:0:1]and [-1:1:0:0].

It turns out that sparse polynomial systems are better studied as spaces of expo-
nential sums with integer coefficients. This amounts to representing the solutions
in logarithmic coordinates. If s = —log(¢),

i Mos (1 2 4 limlog [~ 55 1
Jim ~log <t1> = (1> s+o(s) an Jim og( 2 ) = (0) s+ o(s).
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[ i [ 1 \ 2 ]
d1 2 3 3
12 (1) * o) Lt 4+ 0(t79)
£ 13 + o(t?) 1By o)
| (DEDEF) | £ 4+ o) 2+ 0(t)
(n9)? 13t S +0(t™) it +0(1®)
HE tHfﬁ 13 +0(t?) % + O(t?)
H%Z(z) t) Hz(n(t) 1+ 0(t?) 8+0(t?)
. - 2 = — —
(“(l) & (£,20(1)) H(ft,zu)(t))) 8t° +0(t™?) Tt o)
pD |2 (£, Z01)) (8,2 (1) V8t3 + O(t7?) D=2+ O(t™1)
L((f, Z);e,1) = §L p@ -t || V262 + O(e™?) | 4/ 22 + Olog(e ™))

TABLE 1. Computation of the condition length in the homoge-
neous setting.

are outer normals to the support polygon, whose vertices
3). See Fig.

3.1. Spaces of complex fewnomials. The group action that we will introduce
in this section requires us to take an extra step. We are required to allow for
spaces of exponential sums with real exponents. All those spaces are particular
examples of a more general class of function spaces with an inner product, studied by
Malajovich (2013a) in connection with a generalization of the theorem by Bernstein
et al. (1976). We will need here the basic definitions and the reproducing kernel
properties.

? and (1)
1),(0,2) and (0,

The vectors

are (1,0),(1,

Definition 3.1.1. A fewnomial space .# of functions over a complex manifold .#
is a Hilbert space of holomorphic functions from .# to C, such that the evaluation

form
° Ve 4 — ZF*
x +— V(x) such that V(x)(f) = f(x)

satisfies:

i. For all x € ., V(x) is a continuous linear form.
ii. For all x € .#, V(x) is not the zero form.

The fewnomial space .% is said to be non-degenerate if and only if,

iii. For all x € .#, the composition of DV (x) with the orthogonal projection
onto V(x)* has full rank.

Fewnomial spaces are reproducing kernel spaces, with reproducing kernel K (x,
y) = V(x)(V(y)*). The pull-back of the Fubini-Study metric in P(.#*) defines a
Hermitian structure on .#, denoted by (-, ) x. Below are a few examples.

Ezxample 3.1.2 (Bergman space). Let .# < C" be open and bounded. Let A(.#)
be the space of holomorphic functions defined on .# with finite .#? norm, endowed
with the .#? inner product. Then A(.#) is a non-degenerate fewnomial space.
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Ezample 3.1.3. Let .# = C""1\{0}. Let 2 be the space of homogeneous polyno-
mials on . of degree d, endowed with the U(n + 1)-invariant inner product. Then
£y is a non-degenerate fewnomial space.

Ezample 3.1.4 (Sparse polynomials). Let A < Z™ be finite and let p: A — (0,00)
be arbitrary. Let .# = C". Let &4 be the complex vector space spanned by mono-
mials x?, endowed with the Hermitian inner product that makes (..., paX®,... )aca
an orthonormal basis. Then &4 is a (possibly degenerate) fewnomial space.

Ezample 3.1.5 (Exponential sums, integer coefficients). Let A < Z™ be finite and
let p: A — (0,00) be arbitrary. Let .# = C" mod 2m/—1 Z™. Let Z4 be the
complex vector space with orthonormal basis (..., pae®™,...)aca Then Z4 is a
fewnomial space. Interest arises because if f = f(z) € P4, then foexpe .Za.

Ezample 3.1.6 (Exponential sums, real coefficients). Let A — R™ be finite and let
p: A— (0,00) be arbitrary. Let .# = C". Let %4 be the complex vector space
with orthonormal basis (..., pa€®, ... )aca

Remark 3.1.7. While in this paper we take the p, as arbitrary, there is a natural
product operation on the set of all fewnomial spaces that induces specific choices,
see (Malajovich, 2013a).

3.2. Group actions and the momentum map. Arguably, the most important
tool in the theory of homotopy algorithms for homogeneous polynomial systems is
the invariance by U(n + 1)-action. We cannot use this technique here. Thus we
need an alternative tool.

The additive group ((R™)*, +) acts on the set of all exponential sums by

g, Z fapaeax —g (Z fapaeax> déf 2 fapae(afg)x — o 8% 2 fapaeax'

acA acA acA acA

This is equivalent to shifting the support of an exponential sum, sending .4 to

Fa_g where A—g def {a—g:ae A}. Shifting sends each basis vector p,e®* of %,

into a basis vector pae(2=8% of F a—g. We require the pa’s to be proportional to
the pa’s. This restriction amounts to say that the group acts by homothety. The
Hermitian structure in #4_g is therefore the same (up to a constant) than the
pull-forward of the Hermitian structure of .%,.

For each g € (R™)*, define

Wg: C* — F*
X — We(x) = e ¥V (x)

and notice that always [V (x)] = [Wg(x)]. The metric obtained by pulling Fubini-
Study metric from P(.%#4) or from P(#4_g) is exactly the same. From the point of
view of this paper, V and W and undistinguishable.

Remark 3.2.1. Properly speaking, a group acts on a set. Here, the set is the disjoint
union of all the complex fewnomial spaces over C".

A particular choice of g € (R™)* plays the role of the canonical basis in the
U(n + 1)-invariant homogeneous theory. This particular choice is related to an
invariant of the toric action on C": each 6 € (S')" = R™ mod Z" maps x to
x + 2m0+/—1. The reproducing kernel K (x,x) is invariant through this action, and
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I
First root
3 --Y3- . Second root B
Conv(A) boundary —@—
oL y2 ]
1+ K ]
t=0
O S F PO . X ........... —
1 1

FIGURE 1. The momentum map for the two solutions of the run-
ning example between ¢ = 1 (center) and ¢ = 0 (on the boundary).

the Hermitian metric happens to be equivariant. The momentum map associated
to the toric action is
m: C* — Conv(A)c (R")*
x +— m(x) = 3Dlog(K(x,x)) = WV(X)*DV(X) :

At each point x, the momentum map m(x) is also a convex linear combination of
the points in A. Points at toric infinity map to points on the boundary of Conv(A)
(Figure [1)).

At a fixed point xg € C", we set g = mdifm(xo) and W(x) def Wm(x) =
e ™MXV/(x). The derivative of each [V(x)] at xo can be written in normalized
coordinates as

D[V](x0): Tx,C" — Ty Z*
X — v (I_ uwionPV(XO)V(XO)*) DV (xo)x

while introducing W = Wy, one has W*(x¢)DW (xg) = 0 so

DIV](xa) = DWJ(x0) 5 s DIW (o)

The Lemma below also allows us to assume without loss of generality that
m(xg) = 0 at some special point xg.
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Lemma 3.2.2. On a neighborhood of xq, define m(x) = WW*(X)DW(X).
Then m(x) = m(x) — m(xg).

Proof. We use the formula m(x) = 1 Dlog(K(x,x)). The reproducing kernel asso-

ciated to W is K (x,x)e™2mx0)Re(x) g0 m(x) = m(x) — m(xo). O
3.3. Systems of equations. From now on, we assume that each .%;, = %4, is a
finite dimensional space of exponential sums over C™, with orthonormal basis

(eesPa€™, . Jaca,

where the coefficients p, > 0 are arbitrary. The evaluation map for each .%; will be
denoted by V; and its reproducing kernel by K;(x,y). Let %5 < P(Z]) x---xP(Z}F)
be the image of [V] = ([V4],...,[V,]). Let ¥ = ¥, be the Zariski closure of %.
Points at ¥\ ¥ are said to be at toric infinity.

Let (-, -)x be the pull-back by [V] at = of the Fubini-Study Hermitian product
on ¥y c P(F) x -+ x P(£#,). Namely,

<.’ .>x = <.7 .>17x 4+ o+ <.7 .>n7x
and {u, w); x < {u,u)x for all u, where ¢-,-); x and || - |; x are the Hermitian inner
product and norm associated to the i-th space .%#;. A metric structure on ¥ is given
by the induced norm for the Hermitian inner product,

|- = A/ Cs e

This is not the only possibility. In Section [f] we replace this norm on V with the
Finsler structure || - || = max; | - [x,-

It is convenient to parameterize ¥ < ¥ through an isometric chart. Let C"/[V]
be the quotient obtained by identifying two points of C™ whenever they have the
same image by [V]. Let 4 = (C"/[V],{-, )x).

Lemma 3.3.1. .# is a Hermitian manifold, isometric to 7.

Proof. Without loss of generality, assume that each A; 3 0. Let N be the space
of all u € C” such that au = 0 for all a € A;, i = 1,...,n. Let W be such that
C*=N@®W. Then C*/[V] and W/[V] are the same.

Two points x and z € W share the same image by [V] if and only if there are
constants ¢y, ..., ¢, € C so that for any ¢ and for any a € A;,

ea(xfz) — Ci

For all a € A; we will have
a(x—2z)=c¢; mod 2mv—1
Since 0 € A;, we can take ¢; = 0.
By construction of W, there is a subset {aj,...,a,} of UA; that is a basis of W
as a complex vector space. Let Wg = {Re(u) : u € W} be the real projection of W.

Since the a; are real vectors, the same subset of UA; is a basis of the real vector
space Wg. As a consequence

A={ueW:au=0 mod 27}

is an r-dimensional lattice. As a topological space, M is the quotient of W by the
equivalence relation

X=y < x—y =uy—1 for some ue€ A.
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Therefore .# = Wg x Wg/A is a smooth complex manifold of dimension r. The
isometry property follows from the construction of the inner product. ([

Remark 3.3.2. Most theorems in this paper assume or imply the existence of non-
degenerate roots, so that the mixed volume V(Conv(A4;),...,Conv(A4,)) does not
vanish. In particular there is a mixed cell. Above, we can make this mixed cell
to be in the form [0,a1] x -+ x [0,a,] so that (a1,...,a,) is a basis for W with
a; € A;. In this case, # is a n-dimensional Hermitian manifold. See (Malajovich,
2016) for details and references on mixed volume, mixed cells and such.

Remark 3.3.3. The Lemma above can also be restated in terms of non-degenerate
fewnomial spaces. If one of the F4, is non-degenerate and 0 € A;, then A; contains
a basis for R™, etc...

Remark 3.3.4. While .# is also a smooth manifold, the closure ¥ of ¥#; is not
necessarily smooth. Just consider the span of €3, €2 and 1. Then ¥ is the
projective curve Y2Z — X2 = (0 which has a singularity at (0:0: 1).

As in the previous section, a system (f1,...,fn) € F1,...,%, does not have
a well-defined value at some ([V(x)]). Instead, it defines a section of the vector
bundle 7 : & - P(F}F) x -+ x P(F}¥) with total space

& = [(FIN{0}) x - x (F7\{0}) x C"]
where the quotient is taken with respect to the C%-action
A(V, y) = (/\1‘/17 ceey AnVny /\1y1, ceey Anyn)

This bundle restricts to a vector bundle C* — 7=1(%) < & 5 ¥, and pulls

[V] tor
back to a bundle C* — & = 7 (%) —— #. The group ((R")*)" acts
coordinatewise on exponential sums: each M = (mj,...,m,) € ((R™)*)™ maps

Fa, XX Fya, into Fa,m XX FA,—m,-

To define a local trivialization, fix an arbitrary xo € .#. Let Uy = {x € .4 :
Vi(x) &£ Vi(xg)}. Also, let m; = m;(xo) be the momentum map at xo. Let
Wi(x) = e ™i(x0))V(2). Then set

¢x0 : Uo x C" —s éao
Xy — [W(X)’Y]
To each f € %] x --- x %, we associate the section
sg: Ugc — &
Xg+x +— ¢XO(X0 +5(,f~W(Xo +X))

where the notation f - W stands for the map .# — C™ given by

fi-Wq Wi (x)(f1)
£ W= . def .

fo- W () (£2)

S

The local function is now

Stxy: Uo S Txd —> Co
% mo ol ([Wixo +%), £ W(xo + %))
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where 7 is the projection onto the second coordinate. In normalized coordinates,

£+ (et Wi (xo + %))
(4) St xo (X) = :
fo- (s W0 + %))

The local Newton operator is

Nf,xO: Txo'// —_—> Tmo.ﬂ
X > X — DS (%) 718k 5, (%)

In order to define a global Newton operator, one needs a map from T.# onto .Z .
We will use the sum from C™. The map (xq,X) — Xo + x is the parallel transport
associated to the trivial (zero) connection on .#. The global Newton operator on
A using that map is

Nf: % — .///
X9 — X0+ Ngx,(0).

If N¢(xo) ¢ .# we say that N¢(xg) is not defined.

The group ((R™)*)™ acts coordinatewise on exponential sums: each M = (my,
cooomy) € (R™)*)™ maps Fa, X -+ X Fa, into Fu,—m, X+ X Fa, —m,. I we
are given some X € .#, we can always assume without loss of generality that
m;(xg) = 0 for all i. This simplifies the formulas for V, S¢ , and derivatives. For
instance,

fi- (7\\V1(1x0)\\DV1(X0>)
DSf,xU (0) = .

fu (mDme))

3.4. Condition number theory. Assume now that m(xg) =0, f-V(xg) = 0 and
DSg, x, is non-degenerate. The implicit function theorem asserts that there is a
smooth function G : U € P(%#) x - -+ x P(#,) — A with £- V(G(f)) = 0, defined
on a neighborhood U 3 fj. Its derivative at fj is

DG(fo)f = DSg, x,(0) " f(x).

Using the reproducing kernel notation and assuming £ 1 fi,

~ T 5]
DG(fo)f = DSgy 5 (0) ' — K1 (,X)* @ D — K, (+, ).
({0)f = D00 Oy g K207 @ @ g 1 gy Fn (%)

This motivates the following definition:

Definition 3.4.1. The toric condition number of f at x is
£l
u(f,x) = |[DG()|x = | DSex(0)~"
If2ll/

where the operator norm from C" (with canonical inner product) into (.7, || - |x)
is assumed.



COMPLEXITY OF SPARSE POLYNOMIAL SOLVING 17

FIGURE 2. Left: Unit circles for the Hermitian metric (-, -); x from
the running example, at several points. The circles are centered at
m;(x) and shrinked by a factor of 10 to fit in the picture. Right:
radius v; circles of the dual metric. Both pictures are independent
of the value of i.

The condition number is invariant through scaling of each of the f;. Therefore
we also write u([f],x) = u(f,x). Notice that because of the normalization,

(5) u(f,x) > 1

always.
A condition number theorem for u(f,x) in terms of inverse distances is known.
In the language of this paper, it reads:

Theorem 3.4.2. (Malajovich and Rojas, 2004, Th.4) Let ¥x = {f : Sgx(0) =
0 and det DSg x(0) = 0}. Then,

max min HDG(f)f

I ] < dP(f7 Zx)71 < ,U,(f, X)
Ifl<lfl

i,X

where dp is the projective (sine) metric.

The condition numbers v;(x) defined below play an important role in this paper.
Definition 3.4.3. The | - ||;x — circumscribed radius of Conv(A4; — m;(x)) is

v;(x) =max sup [|(a—m;(x))ul.
€A uf; x<1

Also, we set

v(x) = max v; (x)

Figure [2| shows the unit balls |uf;x < 1 from the running example at a few
points. It also shows the radius v;(x)-balls from the dual metric.

Remark 3.4.4. There is no guarantee that the unit ball for a | - |; x is compact. If
Span(a — m;(x)) is a proper subspace of R™, then any vector u can be decomposed
as u = u; +uy with u; € Span(a—m;(x)) and uy L Span(a—m;(x)). In that case
lafix = [uifix and (a —m;(x))u = (a — m;(x))u;.
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The reader should check that 1 < v;(x) and that

(6) max sup |(a—m;(x))u| < (%) < v(x).
€A Jul<1

As mentioned before, we are avoiding to use geodesics and parallel transport to
move from one point to another. Instead, we use the trivial transport operator
u e Ix# — u e Ty#. This operator is not isometric, but the distortion it
introduces can be bounded in terms of v(x):

Lemma 3.4.5. Let s = v(x)|y — x|x. Then for all i,

(2—¢)

< [ulli

iy <€’
Moreover,
(2= e)lulx < July < e’fulx.

The exponential bounds above are not as inconvenient as they look. Typically,
sissmall. f s <1,1+s<e® <1/(1—5s).

One of the main tools in recent homotopy papers such as (Shub, 2009; Beltran
and Shub, 2009} Dedieu et al., 2013} Biirgisser and Cucker, 2011) is an estimate
on the sensitivity of the condition number. In this paper we will use the following
bound instead:

Theorem 3.4.6. Assume that 0 = (||x — y|x + dp([f], [g]))u(f, x)v(x) < 1/5.

Then,
pf, x)v(x)

plEX)v(0)(1 = 56) < (g, y)wly) < 00

where dp is the multiprojective (sine) distance.

The multiprojective distance is defined by

Ifi — gil?
dp([f].[g])? = Ae(fc TIER

In the definition of @, the multiprojective distance can be replaced by the Riemann-
ian distance which is larger.

3.5. Quadratic convergence. The invariants for the toric Newton operator are:

B(f,x) € |Ng(x) — x|x = [ DSe.(0) " St.x(0) |,

dof o 1/(k—1)
~v(f,x) = max <k' HDSf’x D" S¢ (0 H )

and of course a(f,x) = ﬁ(f,x)’y(f, X).
We assume that z is a non-degenerate zero of the line bundle section given by f
All norms will be taken with respect to T,.Z .

Theorem 3.5.1 (y-theorem). Let z € .4 be a non-degenerate zero of £. If xg € M
satisfies

i ufL<1 2

Ix0 — 2|2 <v(f, z) + p(f, z) max sup |(m;(z) — mi(X))UI) <= ﬁ,

then the sequence x;+1 = Ng(x;) is well-defined and

Ix; — 2]z < 27+ [x0 — 2.
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A trivial bound for supj,, <1 [(mi(z) — m;(x))u| is the circumscribed radius
v;(z). We will obtain a sharper bound in Theorem Theorem is proved
in Section 511

Theorem 3.5.2 (a-theorem). Let

13 — 3v17

a <oy = 1
Let
l+a—+vV1—6a+a? 1—-3a—+1-6a+a?
rog = and ri = .
4o 4o

If xg € A satisfies a(f,xg) < «, then the sequence defined recursively by X411 =
x0+N¥ x, (X; —X0) is well-defined and converges to a zero § € A of f. Furthermore,

(@) Ixi = Cllxo <27 x1 — %0,

(b) xi = Clle < 272 x1 — %ol

(¢) %o = Clxo < 70, [x0])

(d) Ixo = Clle < roB(E, [%o])

(¢) [x1 = Clle < mB(E, [xo]).

Proof. Items (a) and (c) are just Theorem [2.1.2)(a,c) applied to S¢yx, : Txy# =
Ty (x)? — C". The proof of item (b) mimics the proof of Theorem b). For
all 1 < j < n, we claim that

(7) (b
Indeed, assume without loss of generality that m;(x) = 0. Then we set v;(x) =
V;(x), so that

< 2—2i+1H)~(*

lj,x lj.x-

1
V(%) )
Du;(x) = WDV](X)

By definition, |ul;x = |Dv,(x)uf. Moreover, Dvj(x)u L v;(x). Let X = v;(xo),
Y = v;(x0) + Dvj(x0)%; and Z = Duvj(xo)x*. By item (a), [Y — Z| < |X — Z].

Therefore, Lemma [2.5.3| implies that
=) = 2] _ Y — 2| _ -2ia|X —Z|
lzl -~ Ixl |1X]
where 7 is the projection onto Z + Z*. This establishes equation . Squaring,
adding for all j and taking square roots, one gets:

%l < 272 1%
The proof of items (d) and (e) is similar. O
3.6. The higher derivative estimate. A most important bound in modern ho-

motopy papers is the higher derivative estimate. While v is an awkward invariant
to approximate, there is a convenient upper bound:

Theorem 3.6.1.

1
(£,%) < Sulf x)r(x)

This can be compared to the classical bound ~y(f,{) < %munorm(f ,¢) for a
homogeneous degree D polynomial system and ¢ € P, see for instance |Blum et al.
(1998, Th. 2 Sec.14.2) or Burgisser and Cucker (2011, Prop. 16.45). With some
further work, we will recover a more convenient version of Theorem [3.5.1



20 GREGORIO MALAJOVICH

Theorem 3.6.2. There is a constant ug ~ 0.090994609--- with the following
property. Let z € M be a non-degenerate zero of £. If xg € M satisfies

30— 2lupi(f,2)v(z) < o
then the sequence x;+1 = Ng(x;) is well-defined and
Ixi = 2lls < 272+ 0 — 2|
Theorem immediately becomes:

Theorem 3.6.3. Let
13 — 3v/17

a <y = 1
Let
l1+a—+v1—6a+a? 1—-3a—+v1-—6a+ a2
ro = and ry = .

4o 4o
If xg € M satisfies $8(f,x0)u(f,x0)v(x0) < @, then the sequence defined recur-
sively by X;+1 = Xo + Nr x, (Xi —X0) is well-defined and converges to a zero { € A
of £. Furthermore,
(@) Ixi = Cllxg < 272 1 = %0 -
(b) Ixi — €l <272 " x1 = xo]x
() |x0 = Clxo < T0B(£, x0)
(d) |lx1 = Clle < r1B(f, x0).
Corollary 3.6.4. There is a constant oy ~ 0.081239483--- with the following
properties: If
1
Sl x0)r(%0)B(x0) < @ < e,

then the sequence x;+1 = Ng(x;) is well defined, converges to a zero z of £, and
furthermore

i—1
Ixi — 2|, <272 Tlri(a)B(f, %o).

When o = aq, m1(a) =~ 0.110020136 - - - .

Proof. Let a1 be the smallest positive root of
ary(a)

1 — 10aro(a)
where ug =~ 0.090094609--- is the constant from Theorem [3.6.2] From Theo-
rem Me), there is a zero z of f such that

Ix1 — 2zl < ri(a)B(£, x0).

Combining this with Theorem [3.4.6]

ary (@)
1 — 10ary ()
From Theorem the rest of the sequence x;1 = Ng(x;) is well defined, con-
verges to z and

1
SH(E.2)v(2)x — 7], < — o,

i—1 i—1
Ixi —zlz <272 THxg — %2 <27 ey (@) B(EF, x0).
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Corollary 3.6.5. Let (f;)ic[0,r) be a C* path in P(F1) x - x P(F,). Assume
that the point xo satisfies, for all t € [0,T], that %M(ft,x)y(ft,xt)ﬁ(ft,xt) <ac<
4/45 = 0.0888---. Then for each t € [0,T], the sequence xo(t) = Xq, X;11(t) =
x0 + N, x, (x:(t) — x0) converges uniformly to some C' path (t),

Proof. By hypothesis u(ft,xo) is bounded for ¢ € [0,T]. Hence u(f,x¢) < i for

some finite . By Th. [3.6.3|(c), u = pu(fy,x0)v(f;,%0)[%0 — llx, < 2ro(a)a < 1/5.
Thus, u(f, ¢(t) < p/(1 — 5u ) is finite. By construction of the condition number,

[l <sla
0] [£()]

i
f
P
which is finite by compactness of the path (f;):c[o,77- |

T 1-5u

3.7. The cost of homotopy. Recall that the solution variety is
S = {(f,z) EP(F4,) X xP(Fa,) x M :{(z) = O}

and that X' is the set where p(f, x)v(x) = 0. The condition length was defined as
L) tot) = [ ey 1005, +

We will need below the auxiliary quantity

Al(z) tortr) = | wtzwten) (Jhls + L) de
t

that relates to the condition length by
f((fhzt) : to,t1) < 31((ft,zt) : to,tl) < \/i?((fhzt) : to,tl)

0

t1

0

Proof of Main Theorem A. Assume that 0 < u < ug = 3*2*ﬁ is given. Set t5 = 0
and for i = 0,..., N — 2 choose ;41 so that % (¢;,t;+1) = 0 for some constant § to
be determined. Then set ty =T, and L (tn_1,tn) < 9.

We consider the following induction hypothesis:

1
(8) §u(ft7, ) Zti)y<zt1',)HZti -

which is already satisfied for ¢ = 0. Theorem implies that x;41 = N(ft,,x;)
satisfies:

Zt, Su

SHEes 2 v (2e,) |20, — Xiva]z, < u/2

To simplify notations, let p = u(fy,,2,), v = v(zy,), ' = p(fs,,,,2¢,,,) and v/ =
v(2y,,, ). Let r = maxy, <i<s,,, ds(ft, £1,)+ |zt — 2t 2., - Assume that the maximum
is attained for ¢t = t*, ¢; < t* < t;11. Then,

¥

0 0
prr < p,VJ- —[ft] +'zt dt
o 106 gy 108,
1 *
< mgl(t“t )
1
< L (tistiva)

1—b5puvr
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Hence,

pvr(l = 5pvr) < 6.
The largest possible value of pvr should therefore satisfiy the quadratic equation
uvr(1l — 5uvr) = §. Solving the equation, we deduce that

jwr < R(8) < % (1 - VI 208) = 5(1 + o(1).

Now we bound

1 I < 1 1o
nv thi+1 T 2t Hzti = 2/’6 v (”XtiJrl — 2y, Hzti + ”th'+1 — Z, Hzti)

2
1 u  R(0)
< -4+ —
1-55\2 2
and from Lemma [3.4.5

1,, efO) fu R(6)
—puv HXf — Zy < +

9 it+1 71+1‘Zt,,;+1 \1—5(5 5 9
The induction hypothesis is guaranteed to hold for ¢ + 1 as long as

eR@) u R(6)
©) 1—55(2+ 2 )gu

When u = ug = B_T*ﬁ we obtain numerically the largest solution for this inequal-
ity, that is 6 ~ 0.037391---. In particular, N = [$+.%1(0,T)] < [%f(O,T)] <
[38Z£(0,7)]. O

Before proving Main Theorem B, we need an extra result. Its proof is postponed.

Proposition 3.7.1. Let u < 1/10. Assume that £(z) = 0 and $u(f,z)v(f,z)|z —
X|z < u. Then,
1—u
P(u)(1 — 10u)
Proof of Main Theorem B. Let u; ~ 0.003974518 - -- be the smallest root of

1—u
2v - = .
Y1 —10u0) — M
Solving @D for u = u; and § by §; = 0.024210342 - -- in the proof of the Main
Theorem A, Proposition implies that for all ¢; <t < t;41,

1
iu(ft>xi+1)y(xi+1)6(ft7Xi+1) < ap.

%u(f, x)v(x)B(f, x) < ue**

We replace the time mesh 0 = ty < ¢t; < --- by the one in Main Theorem B.
In that case Z((f:, 2¢),ti,tix1) = 6/+/2 so the number of steps is still bounded
above by [Z((ft,2),0,T)v2/8]< 59Z((ft,2:),0,T). Corollary |3.6.5 guarantees
that each x; is indeed an approximate root of f;, associated to z;,. Corollary @
then guarantees that the sequence yg = xn,yi+1 = Ng.(y;) converges quadrati-
cally to z(t) and satisfies

lys —z], <272+ x 0.100015909 B(fr,y0) < 272 ~2B(fr, y0).
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FI1GURE 3. Logarithmic plot for the invariants associated to each
of the solution paths, in the toric setting.

Running example, part 3. Recall that Z((t) = (X (¢),Y (1)), i = 1,2 are the
two roots for f; in the running example (2). Let z(*)(t) = log Z( (t) coordinatewise,
and let g = g(z()) be the metric matrix for (-,-)1 o.

In order to obtain an approximation for the integral ., we first compute the
Taylor series of the Hermitian matrix

‘ 4 -1 ) ;
MO = 2|V (20 (1)) 2 ('flo f20—1> (t, - DV (1)) 0"

aovetor (Vg7 ).

The factor of 2 comes from the fact that we use the product metric (-, = (-, )1 +
(-, in the definition of x and ||Z|. Then, u® = /(|M~!|). The square of v(¥) is
the largest diagonal entry of the matrix

1 1 T
(@) _ 1 @ | 4@ 1 @)
N—A—lm(z)g A—lm(z)7
1 1
10
where A = (1) ? encodes the support and m is the momentum map. Computa-
0 3
tions for u®, v and the speed vector are displayed in Table 2l Actual values of

the invariants appear in Figure [3] We obtain in both cases that

L((£,2");6,1) = j pOV @] | dt = 2log(e™") + O(1).

€

4. DISTORTION BOUNDS

Newton iteration is usually generalized to manifolds through the use of geodesics
and of the exponential map. Given a function or a vector field f defined on a
manifold M, the Newton vector field at this point evaluates to w = —Df(x) " 1f(x) €
T«M. Then Ngy is usually defined to be exp, (w), where exp, (t|w]|~1w) is the
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I i | L | 2 [
[Cf1)el? (t +1)° (% +1)?
H(fQ_)tHZ 4 4
V(@) 2670+ 0(t™) 32+ 00)
$ (1) Lo M) o
-1 1+2+001Y —8t2 1 +16t2
—t7F ¢t 2 -3t —1-1¢ 34+ 342
(4) 2 T2
F- D) ( t3 2 3 t2) 0 T4+ 1+1¢/2
M) et T ) Lo AT )
_ -3t L4+3t —3t 14t
(u')? 4+ 0O(t) 4+ 0(t)
(V)2 241 T2+ 5+ 5t
. 2
2 (£,29(1))| (£,.200(1)) 1—2t2 4+ 0(t%) 4 —56t2 + O(t4)
(M(l)y(l) | & (£, 20 (1) (ft,z(i)(t))) 42+ 0(™) 42+ 0t
pvI [ & (£, Z(i)(t))H(ft,zm(t)) 2671+ 0(1) 2t~ +0(1)
L((f 26, 1) = [ pOvOIEIR + )2, dt 2log(e™!) +O(1) 2log(e™!) + O(1)

TABLE 2. Computation of the condition length in the toric setting.

geodesic passing at x for ¢ = 0 with tangent vector w/|w| and constant unit
speed. This point can be found by solving the geodesic differential equation, or by
integrating it. [Dedieu et al. (2003)) generalized Smale’s invariants to this context
using high order covariant derivatives and parallel transport. A sharper analysis for
equations defined by fiber bundles on a manifold was carried out by |Li and Wang
(2008).

Unfortunately, computing geodesics can be as hard as solving systems of equa-
tions. Indeed, let f : M — C" be a holomorpic map from an n-dimensional complex
manifold onto C”, and assume that the Hermitian structure of M is the pull-back
by f of the canonical Hermitian structure. If xo € M is an arbitrary point and
vo = f(xg), then the segment [y(,0] = C" pulls back to a minimizing geodesic x(t)
with x(0) = —Df(x0) lyo and f(x(1)) = 0. Of course, one may be able to com-
pute efficiently geodesics on the sphere, on projective space and many interesting
manifolds. No easy formula seems to be known for geodesics on toric varieties.

In this paper we traded the geodesics for straight lines in a unique canonical
chart. This is topologically equivalent outside toric infinity, and is geometrically
equivalent up to order 1. The Newton operator is much easier to compute, and no
covariant derivatives are needed. There is a price to pay for bypassing geodesics.
Parallel transport is not available any more. Each point has a different Hermitian
structure associated to it. In this section we bound the distortion introduced by
this trivial transport operator. As usual, the momentum map is the key to bound
this distortion.

4.1. The momentum map. Since the momentum map m;(x) plays such an im-
portant role in the theory, we need to estimate how fast it changes with respect to
x. The theorem below shows that the momentum is locally Lipschitz, and allows
to compute local Lipschitz constants.
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Theorem 4.1.1. Let 1 <i < n be fired. Let x,y € A . If v;(x)|y —x|ix < s then

(a) For any w e R", |(m;(y) — m;(x))w| < |w]; (€25 — 1) 1725,
(b) Let d be the Riemannian distance in (A, |- |ix). Then |m;(y) — m;(x)[2 <
2 diam(Conv(4;)) d(y, x).

Before proving the statement, we should point out an immediate consequences of
Theorem b). A point v € ¥ is said to be at toric infinity if it has no preimage
in. .

Corollary 4.1.2. Let x € A4 and let § be the minimum over all i of the FEuclidean
distance from m;(x) to dConv(A;), divided by the diamater of Conv(A;). Then,
the open ball B([V(x)],d/2) € ¥ contains no point at toric infinity.

By dividing the induced Fubini-Study volume form by the total volume of 7,
one makes ¥ into a probability space. The momentum map is volume preserving,
up to a constant. Therefore,

Corollary 4.1.3. The probability that v € ¥ is at distance at most §/2 from a

point at toric infinity is at most

diam(Conv(A;))Vol(dConv(A;))
52 Vol(Conv(A4;)) .

Proof of Theorem[{.1.1 Assume without loss of generality that m;(x) = 0. Since
the momentum m;(y) depends only on the real part of y, assume also that x and
y are real. For k > 1, define

_ 21@71 2 2ay .
Si(y) D) ¥ a®---®a

acA; k times

The momentum map is given by the formula

mi(y) = ~56()51(y)
with 6(y) = ~2/ |Vl = -2/

Do(y) = o(y)*Si(y)
DSi(y) = Sks1(y)

ay|2. The derivation rules for ¢ and Sy, are:

The first derivatives of m(y) are

Duly) = 3 (6520 + 635132
Dami(y) = —pave (6)Si00) + 300)25)S10) + 63)*51(5)°)
Domi(y) =~ yave (90)5:) + 1605/Sa(3)515) + 300)°(5)52(3)

F60(y) Sa(¥)S1(3)? + 0(y) St <y>4)

where average is taken over all permutations acting on the arguments of the j + 1-
linear form within parentheses. Recall that D/m;(y) = DiT'ilog K(y,y) so
it should be a symmetric tensor. The averaging above can be understood as
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a symmetrization operator. It is convenient to represent each term of the form

Avg (gb(y)kSil(y) - Sip (y)) by the Young diagram for the partition j + 1 = i1 +
io + - -+ i}. For instance when j = 3 we write

1

Dsmi(y)=—§ CTTT +4H_U+3EE+6@3+E .

The coefficients to each Young diagram are the number of ways to partition a set of
j+ 1 labeled elements into the corresponding partition. Indeed, the ‘derivative’ of a
Young diagram is obtained by adding one box into every possible row, for instance

D @3 =: [ l+@3+ﬁ+§3=: [ l+2@3+§3

Using this notation,

; 1
D'm;(y) = —5203/}/
Y

where the sum ranges over all Young diagrams with j + 1 boxes. A coarse bound
for the norm of D’m(y) is [D'm(y)| < 241 max|Y|, where wji1 = Dy cy is
the number of partitions of a set with 5+ 1 labelled elements, known as the j + 1-th
Bell number, see Sloane’s OEIS (2016, BELL sequence) and Knuth’s book (2005]).

However we are actually bounding | D?m(x)|| under the assumption that m(x) =
0. In particular, Si(x) = 0 and Young diagrams with at least one length one row
should not be counted. The number @ of Young diagrams with j boxes and no row
of length one is also known as the number of complete rhyming schemes (Sloane,
2016, sequence A000296), (Knuth, 2005) and has exponential generating function

c(t) = e ~1=t. The first values for @’ are

wy=1 @wi=0 wh=1 wh=1 w)=4 wy=11 wi=41 w) =162
By using the fact that
(W1, Waix = (D[Vi](x)w1, DIVi](x)wa) = [Vi(x)| 2 ) pac”™ (aw:) (aws),

a

each S can be bounded as follows:

() (w1, wa, wa, o wi)| = 2573 g2 (awy ) (aws) (aws) - (awy)
a
< 2k ZpieZax(awl)(an) max |awg| - - - |awy|
a
a
< 25N Vi(0) | [Kwr, Wa i | max|aws| - - |aw |
< 257N Vi(@) [P | i x| li x max [aws| - - Jawy
Hence,

(10) 81wl |000] < 24w xlwalis (malawal - Jaws]
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If Y is a Young diagram, let 7(Y") be its number of rows. Let w be an arbitrary
vector. Adding over all the Young diagrams with j + 1 cases and no row of length
one,

|Djmz(x)(w,y =X,y _X)| <

2T(y) X JH1-2r(Y)
<Y lwlix Sy - (1maxlaty - )

j—1
<gé§5§|a(y - X)>

where the last inequality uses that |y — x[;x < maxaca, [a(y — x)|. Recall that
m;(x) = 0. The Taylor series of m;(y)w around x is:

m;(y)(w) = Dm,;(x)(w,y — x) Z DjmZ (w, (y —x)7).

=27

j !
< 2w

Let ¢(t) = e ~1=t be the exponential generating function for the number of com-
plete rhyming schemes wg». We can bound:

2 -
mi(y)w| < [Wlixly = xix Y] 541 (25)
j=1 J:
x|y = x[ix o 1
< s Z H] j+l (28)
j=1 J:
HWHZX”); B X”i,x (C/(QS) _ wll)
< wlixc'(25)

because @) = 0 and |y — xix < vi(x)|y —x[ix = s. Explicitly, ¢{(t) = (¢’ —
1)€et_1_t so item (a) follows:
jm, (y)w| < [wl(e?* — 1)ec” 172

In order to prove item (b), we apply the bound to the formula Dm;(y) =
-3 (y)S2(y). One obtains:

[Dm; (y) (w1, w2)| < [willix[weix-
Let x(t)se[0,r] be a minimizing geodesic with respect to | - [;x with boundary

x(0) = x and x(T') = y. Then,

|(m;(y) — my(x))(we)| = dt

f Dim (x(1)) ((¢), w2)

< f 205(8) i ey 102 e
T
< 2max( N MG
< 2max( ix(1))di(2,y)
< 2|wz|diam(Conv(4;))d;(x,y)

where the last bound follows from the inequality ||ul|; x < |w|2diam(Conv(4;)). O
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4.2. The local norms and the circumscribed radii.

Proof of Lemma[3.4.5. Assume without loss of generality that m;(x) = 0 for all i.
Write |w|;y = |Dvi(y)w| where v;(x) = V;(x)/|Vi(x)|. In that case,

1
Dv;(y)w = Dv;(x)w + Z DFvi(w,y — %,y — x).
k—1!
k>2
Also,
DEu(x)(W,y — X, 1y — %) = 1 | pac®(aw)(aly — x))*!
IVi(x)| .
SO
1 :
Dk ; — X, o < - ax (g o k—1
= | DVi](x)w| max |a(y —x)[*!
acA;
Therefore,
(maxaea, |aly —x)[)F! s
| D (y)w — Dvg(x)w| < [wlix D) = P < wlix (e = 1)
k=2 ’
Triangular inequality yields
(2 —e”)|w]ix < [Wliy < e’[wl]ix
so the first statement follows. The second statement is now obvious. O

The circumscribed radii v; were crucial in our previous bounds. For later use,
we also estimate their variation rate.

Lemma 4.2.1. Let 1 <i<n. Let x€ A and v;(x)||y — x|l;x < s. Then,

(Vi(X) (e 1)6625—1—25) e <uily) < (Vi(X) + (e — 1)6325—1—25) 2_7165'
It follows immediately that if v(x)|y — x|x < s,
(v = (2 =™ 12 ) e < uly) < () + (20 — e 1) S
as well.
Proof. In the sequel we drop the i indexso A = A;, v =v;, | |x = || [i.x, etc... We

introduce the notation vy (y) = max,|, -1 [(a — m(y))u| so vx(x) = v(x). From
triangular inequality,

vx(x) = [m(y) —m(x)[x < vx(y) < vx(x) + [m(y) — m(x)]x

~—

< v(y) < (vx(x)+max |[m(y)—m(x)|x)

vy(y
vx(y

~—
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From Lemma B4}, (2 — ¢*)|[wlx < |wl, < e*|wlx so

vy(y) = sup max|(a—m(y))w|
Iwly<1 a€A

< 5o S max |(a —m(y))w|
= )
and
vy(y) = sup max|(a—m(y))w|
[wiy<1 a4

1
= — sup max|(a—m w
e | P max |( (¥))wl

1
= EVX(Y)
The last two bounds and Theorem a) can be substituted into equation :
s s 1
(V(X) - (625 — 1)662 71725) e s <u(y) < (I/(X) + (628 _ 1)ee2 71725) S
J— es

O

4.3. The condition number. Toward the proof of Theorem [3.4.6] we will show
the following estimate. It should be compared to Burgisser and Cucker (2011, Prop.
16.55). The extra factor 1 + O(s) comes from the different local norms.

Theorem 4.3.1. Let [f], [g] € P(F1),...,P(F,). Let x € A . Assume that for all
i viX) |y = x[ix < 5. If p(f,%x) (dp(f, g) + (e* — 1)) <1, then
(2 %) (£, x) e*u(f, %)
1+ pu(f,x) (dp(f,g) + (ef — 1 u(f,x) (dp(f,g) + (ef — 1))

where dp is the multiprojective (sine) distance.

M < plgy) < g

In the proof of Theorem we will need two well-known Lemmas about linear
mappings between normed spaces. The proofs are included for completeness.

Lemma 4.3.2. Let A and B be linear operators between finite dimensional normed
spaces. Let o(X) = infjy <1 [Xu| and let | X| denote the operator norm of X.
Then,

lo(A) —o(B)| < [A- B
Proof. Assume that o(A4) = |Au| with |ul| = 1. Triangular inequality yields
o(4) = |Au| = |Bu| — (A - B)u| > o(B) — |A - B|.
Replacing A by B one obtains that o(B) > o(A) — |A — B]. O
Lemma 4.3.3. Let A, B be invertible linear operators between finite dimensional
normed spaces. If |[A71||A — B| < 1, then

A~
L+ A=A - B

A~
1—[A=H[A - B

<|IB7Y <
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Proof. From the previous Lemma,

1 1 1
= — 14— Bl <
A= BT S A1)

Multiplying by [A~'[[| B!,
[B7H(1 = [A7Y|A = B]) < A7 < [BH(1 + A7 A - B])

+ A+ B|.

and so
A7

1+ A=A - B|

A7

<[B7H <
1—[A-Y]A-B]|

O

Proof of Theorem[{.5.1 Assume without loss of generality that m;(x) = 0 for all
i. Also without loss of generality, scale the f; such that |fi]| = -- anH =1and
the g; such that | f; —g¢;| is minimal, so dp(f,g) = |[f —g]|. Let v;(x ) “V( il Vi(x).
Because m;(x) = 0 for all 4, we can write

u(f,x) = | (£ - Du(x)7"

where f - Dv(x) is an operator from (., | - |x) into C™ with the canonical norm
assumed.
From the previous Lemma,
f,x w(f, x
p(f, %) H g Dv(y 1H )
1+ upf,x)T w(f,x)T
where T' = |f - Dv(x) — g - Dv(y)||,. We estimate T' = T" + T"” where
T'" = |f-Dv(x)—g-Dv(x)|,
< sup [(f—g)- Dv(x)w]|
Iwlx<1
< sup /D[ — g2 max [wi
Iwlx<1 !
< |f-gf
and
" = |g-Dv(x) —g-Dv(y)lx
= sup \/Z |g:(Dv;(x) — Dv;(y))w|?
Iwlx<1
< Sy /Z l9i]? max [|(Dvi(x) — Dui(y))w]|
< sup max|(Dvi(x) — Dui(y))w]|
Iwilx<1 *
< max sup Uz( )(va_xv"' 7y_X)H
bWl x <1 =2 k
x)k=1 -
< maXZk )Ry
< (ef = 1)
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Therefore,

(2 — 68) N(ﬂx) eslu(fv X)
T a0 (E—gl+ (@ —1) &Y ST E 0 (f—gl + (@~ 1)

(]
We are ready to prove Theorem [3.4.6]

Proof of Theorem[3.4.6, Let s = max; v;(x)[y — x|ix and recall that u(f,x)v(x)
(ly — x|x + dp(f,g)) < 6. The right-hand sides of Lemma can be bounded
above by

1

vly) < (v + (€2 = et )
2—e®
1

< v(x) (1 + (e?? — 1)ee29_1_29) Sy

using v(x) > 1 and s = v(x)|x — y|x < 6. The right hand side of Theorem [£.3.]]
satisfies

e’ u(f,x)
MeY) S TR drE )+ (@ 1)
e*p(f,x)
= 2 —ef

using pu(f, x) (e —1) < erEXVE)x=ylx 1 and hence u(f, x) (dp(f — g) + (e* — 1))
< e’ — 1. Putting all together,

1+ (€20 — 1) —1-20 - wu(f, x)v(x)

S

u

p(g, y)v(y) < p(f, x)r(x)e

(2 — e0)? 1—56
By a similar argument,
1— 629 -1 662671720 9 _ 66'
e y)iy) = x0TI o gyt xpwx.

O

5. PROOF OF THE TECHNICAL RESULTS

5.1. Proof of the toric y-theorem. For the proof of Theorem [3.5.1] we will need
the following fact, which can be stated as a general result about the « invariant.
Let k(X) = | X|[|X~!| be the Wilkinson condition number for a square matrix X,
where operator norms are assumed:

Lemma 5.1.1. Let z € C" be fized, and let £ : U — C™ with £(z) = 0 be holomor-
phic on a neighborhood of z. Let my, ... ,m, € (C™)* and set g;(x) = e"™* f;(x).
If f(z) = 0 then

v(g,2) < k(Df(z)) max sup |m;(w)|+~(f,2).

b lwle<1
Proof of Lemma[5.1.1. We differentiate g; to obtain
Dgi(x) = e7™ ™ (D fi(x) — fi(x)m;).
Since g vanishes at z, we have Dg;(z) = e ™2D f;(z). By induction,

k

Do) = 331 () v (09 8 )

=0
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where the average is taken over all the permutations of the covariant indices. In
—1 )k

order to bound (g, z), we will produce a bound for M. For clarity, we

examine first the case k = 2. Assume that the operator norm of 1 Dg(z)~!D%g(z)

is attained at unit vectors wi and wo, that is

)1Dg<z>-1D2g<z>

- H;Dg(z)_lng(Z)(WhW?)

2 Zz V4
where w1, = |w2|, = 1. Expand
S De(z) D’g(z)(wi,wa) = S DE(z) " DH(z)(wi, ws)

S .

— %Df(z)*1 Df(z)wy
i m, - Wi |
s .

- %Df(z)_1 Df(z)w;.
| m, - W2¥

Taking norms, |3Dg(z) ' D?g(z) (w1, w2)|» < ¥(f,z) + k(Df(2z)) max; |m;|,. The
general case is similar. Assume that the operator norm of % Dg(z)~'DFg(z) is
attained at wy,..., Wy, namely

i De@) Dl

1
- | e D))

z

with |[w1]l; = -+ = |wg]|z. Then,

—Dg(z)*leg(z)(wl, Ce W) =

k—1
= % Z (—l)l (];) Avg (Df(z)*lM(wl7 . ,wl)Dka(Z)(wH_l, e ,Wk))
" =0

with
l
Hj:l mj - W
M(wr,...,wp)
Hé’:l My - W
Taking norms,
1 S 15 (k 1
i HDg(z) D"g(z) < i ) Avg |Df(z) " M (w1, ..., wi)
. z ‘20
DR (z) (Wig, ..., W)
1S (k
< i <Z>Avg HDf(z)flM(wh...,Wl)Df(z)HZ

HDf(z)*Dk*’f(z)(wm, W)

When | = 0 we have |Df(z)'M(wn,... 7wl)Df(z)Hz = 1. Otherwise, its value can be
bounded above by x(Df(z)) max; ;(|m; - w;|)!. Using the fact that x(Df(z)) > 1, we
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bound

b1 —1yk—1
1 - 1 Df(z)" D" 'f(z)
EHDg(z) 'D*g(z)| < 515(DF(2)) max(|m; - w;|)' | ol :
: z i—o v ¥ .

k=1 kE—1 1 1 k—1—1

< [ 1) 5(DE@)! (max m - w; )2 (£, 2)
1=0

< (kDrEmyxim il +a(0)
Taking k — 1-th roots, we obtain:
(8, 2) < £(DE(x)) max |m; - wj| +y(f, 2).
O

We will need the following, well-known Lemma. Since the proof is short, it is
included for completeness.

Lemma 5.1.2. Letg: (E,|-||) — (F,| - |) be a holomorphic map between Banach

spaces. Let u = |z — x|vy(g,z) < 1— g Then, Dg(x) is invertible and
. (1-w)
12 Dg(x) 'Dg(z)| < ———=
(12) |Dg(x) (z)] )
where ¥(u) = 1 — 4u + 2u?.
Proof.
_ (Dg(z) ' D*g(z) k-1
(De@) De0 1] < 3 LB TDEE]
k=2 ’
< Y k(g ) x -zt
k=2
CoA-w? T
Therefore Dg(z))~!Dg(x) is invertible and
_ 1 1—u?
|Dg(x)" Dg(s)] < - L)
)
and equation holds. (Il

Proof of Theorem[3.5.1 We assume without loss of generality that m;(z) = 0. For
each i, we use the i-th momentum map to produce an ‘integrating factor’ at xq:
Set W;(x) = e™™i(x0)*)V}(x). Then

1 1 1
i ——— Py DVi(x = fi+—--- | — ——=Vi(x0)Vi(x0)* | DV;(x
fe oy v PVito) =1 ||m<xo>< Vit o) (0)) (x0)
1 1

= fi o DVixo) — fi o Vi(xo)mi(x
Jo T PVi0) — fi gy Vi milxa)

_ m;(x0)Xo £, . 1 (%
ST Wy P

1
= e W i)
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The toric Newton operator takes x¢ to x; = Ng(xq) where
-1
X1 = Xg— (f . (I — PV(xo)L)DV(XO)) f- V(Xo)
= X0 — (f . DW(X()))_lf . W(Xo)

Thus, the toric Newton operator at X is the same as the usual Newton operator
at xg for the function g(x) = f - |[W(xo)|"'W(x). This differs from the local
section by a ratio

8(%) = St (x — z)e G0
Also, g(z) = 0.

From now on we use the metric structure of T,.#. All norms, operator norms
and the invariant « are computed with the norm || - |,. Lemma provides the
bound

7(8:2) = (DSt 2(0)) max [mi(xo) |, + (£, 2)

where k(DS ,(0)) = | DSt (0)|,]| DSt (0)71, < p(f,x) using operator norms.
Above, [m;(xo)llz = max|w|,<1 [m;(xo)w| is the norm of m;(xg) as a covector.
Since we took m;(z) = 0, |m;(xg)[. = |m;(x¢) — m;(z)|,. Therefore,

37
7

By Theorem applied to g one would achieve quadratic convergence yet for
a different Newton operator, namely x — X — (f- Py (x,)+ DV(x))™!-V(x). Instead,
we just claim that for x; = N¢(xo),

Ix0 = 2.7(8,2) < 7(f,2) + p(f, 2)|[mi(x0) — my(2) ], <

v
()
where u = ¥(g,z)|xo — 2|z and ¥(u) = 1 — 4u + 2u®. If we define the sequence

u; = v(g,2z)|x; — 2|, we deduce from that

2
Uy

P(u)

This is enough to deduce that the u; decrease faster than the iterates of tg = 0,
2

tiy1 = Ny, (t;), for hy(t) =t — f’_—tw, ~v =~(f,z). This in turn implies that

(13) Ix1 =zl < %0 — 2.

Uil S

u; < 272"+1UO
and hence ‘
% = zls < 272 %0 — 2.
It remains to prove (I3). Set Wi(x) = e ™))V (x). As before, u =
v(g,2)|xo — z|. Then
x1—z = xo—z— (f-(I— Pv(xO)L)DV(Xo))_l f V(xo)
= xo—2z— Dg(x0))"'g(xo)
= (Dg(x0))~" (Dg(x0)(x0 — 2) — g(%0))
= (Dg(x0)) ™" (Dg(2))(Dg(2)) " (Dg(x0)(x0 — 2) — g(x0))
For all vector w, we can expand

Dg(xo)w = Dg(z)w + 5

k=2

1
k—1!

D"g(2)((x0 —2)" ", w).
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Lemma applied to g : (T, 4, | - ||z) — (C",| - |2) implies that
_ (1—wu)?
Dg(x0) 'Dg(z)|, < ———
IDg(x0) D) <
with ¥(u) = 1 — 4u + 2u?. It remains to bound

(Dg(2))" (Dg(xo)(x0 — 2) — g(x0)) = 3 "=

k=2

L (Dg(2)) " Dre(z) (x0 - 2)*

by
ullxp — 7z
—u)?

|(Dg (@)~ (), < X (k= Dt xo — 2, =

= (1

w?u) , establishing .

This shows that |x; — z||, < |x¢ — 2|,

5.2. The higher derivative estimate.

Proof of Theorem[3.6.1 Assume without loss of generality that m;(x) = 0 for all
i.

1
71 [DSex(0)7 D Se (0] <

, | £l w1/ e PV ()
< 4 DSt (0)~! : :
1l ) I \ 7 fro - o P Vi (%)
. Wi D Vi(x)
S ﬁu(ﬂx) :
kaVn(x)

< onlE X0t

as in the proof of Lemma [3.4.5] Then use the fact that u(f,x) > 1 to bound the
expression above by

% HDSf7x(O)*1Dka7x(O)H (f, X)kfly(x)k*a

1
x < 21{:71“’
before taking k — 1-th roots. O

5.3. Proof of the modified gamma theorem.

Proof of Theorem[5.6.3, Assume that u = 3|xo — z||,u(f,z)v(z) < 3T From
Theorem B.6.1] we can bound

Ix0 = 2z]y(f,2) <
From Theorem [£.1.1f(a) and bounding s < 2u,

%0 — z| (£, 2) max sup |(m;(z) — m;(x))w| < 2u(e*™ — 1)6341‘_1_4“-
[wllz=1

The inequality u+2u(e** —1)ee " 14 < 3= ‘[ holds for u < up = 0.090994609 -
where ug was obtained numerically. D
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5.4. Proof of Proposition [3.7.1
Proof. Since f(z) = 0,

DE(z)(x) = x— 2+ Y] %Df(z)_lef(z)(x ey

k=2 "

so that

| DE(2) £ (x) .

VA

Ix — 2 (1 + ), 2) x - ZIIL“)

k>2
|x — 2],

1—~(f,2)|x - 2],
Since |x — z[y(f,2)| <u < 1/10 <1 —+/2/2, Lemma allows us to bound
|DE(x)" (x)|. < [ DEf(x)' Df(2)]2] DE(2)~ (%),
(1—w)?’ |x — 2,
W) 1= 2)lx— 7l
with 9 (u) = 1 — 4u + 2u®. Theorem and Lemma with s < 2u imply

<

1—u
B(f,x) = | Df(x) " (x)|x < e ——||x — 2|,
(f,x) = [ Df(x) " £(x)| o) I I
Also, Theorem with 0 < 2u implies that
p(z)v(z)
< B
SO
1—u

1 U
SHEXVRB(EX) < ue orsr—as

6. FINSLER STRUCTURE

The toric variety associated to an unmixed system of sparse polynomial equations
has n natural Hermitian metrics, each one induced by the support of one of the
equations. In Section we added up all those Hermitian metrics to produce one
Hermitian metric, namely

<.’ .>x = <.7 ‘>17x 4+ e+ <.’ .>n’x'

This metric cannot be a natural object. Each of the n Hermitian metrics is actually
induced by a Kahler symplectic form, and the mixed volume is the integral over the
toric variety of the wedge product of those n forms, up to a constant. By adding
the Hermitian metrics, information is lost. Instead, a formal linear combination

>\1<'7 '>1,x + -+ )\n<7 '>n,x

would preserve the mixed volume information, the mixed volume being propor-
tional to the coefficient in A; - - - A\, of the total volume. Those linear combinations
are induced by a semigroup structure on the space of spaces of fewnomials, see
(Malajovich, 2013a) and the discussion therein.
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Therefore, it may be more natural to measure lengths on ¥ and .# in some way
that is invariant of the coefficients A1, ..., A, > 0. Instead of using the Hermitian

norm
Il = V0
Wl = s ] = a4 /<, W)

This associates a norm to each x. Because each | - ||; x is rescaling invariant, |||,
is independent of the \;. We always have ||w||, < |w|x. In the running example,

we can also use

1wl = 22wl

Remark 6.0.1. Most authors define a Finsler structure as a function F : TM — R
so that F(x,-) is a norm and F(x,%) is smooth or C! for x # 0. The norm [[x||,
is only guaranteed to be continuous and subdifferentiable. Properly speaking, one
might call it a subdifferentiable Finsler structure.

Smale’s alpha-theory was originally stated for holomorphic mappings between
Banach spaces. The definition of invariants 3, 7 and « for a Newton operator
B — B only uses the norm on B and the induced operator norm for multilinear
maps. In the context of this paper, the invariants become

B, x) = [Ne(x) = x|l = || DSex(0) " Sex (0],

22\ KL w1
and o(f,x) = S(f,x)y(f, x).
The invariant p is more delicate. It was defined as the operator norm of the map

DG(f) : (T P(F1) x - x T P(Fn), |- ) = (Tt |- )

where the product norm was assumed in the domain of DG(f). We redefine u as
the operator norm of the same map between different spaces. In the manifold

P(F) x -+ x P(F,)
we also define a Finsler structure,

i

DG(f) : (T, P(F1) x - x T, B(Fn), M) = (el s+ 1)

and the norm on the domain is

. 1 k—1
~(f, x) def hax ( sup mDvax(O)_leSf’x(O)(Wl, .. ,wk)“x>

= max fl 7.
H[f] i | H[m

Now,

= mox g
[, =l

An alternative formulation is

I £

(£, %) = || DSex(0)™!

1))
1
( inf maiji()(M|1/;(x)) .

lIwll; <1 i I£]1:
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The expression above guarantees that u(f, x) > 1 always. The invariant v is already
defined in terms of the | - ||;x so it does not change.

In the proof of Theorem only the inner products {-,-); x appear, and this
is the only place in the proof of Main Theorems A and B where an Hermitian
structure is used.

The definition of the multiprojective metric in Theorem [3.4.6]should be modified
to be compatible with the Finsler structure. Now,

Ifi = Agil
dp(f,g) = max inf ———.
he) =me

As usual, dp(f,g) < d(f,g) where d is the Finslerian distance from f to g.
The proofs of Theorem and must be modified because of the operator

norm |[-[; -

Proof of Theorem for the Finsler structure. We assume without loss of gener-
ality that m;(x) = 0 for all 4, scale the f; such that |f]|; = - - = |fa] = 1 and then
scale the g; such that || f; — g;|| is minimal. The sine distance now is the sine distance

for the Finsler metric, that is dp(f,g) = max; | fi — ¢;]. Let v;(x) = WVZ(X)

Because m;(x) = 0 for all 7, we can write

pu(f,x) = ||(f- Dv(x))~

oo -
Lemma [4.3.3| provides us with the inequality
ulf, %) (£, %)
1+ p(f,x)T w(f,x)T
where now, T' = ||f - Dv(x) — g - Dv(y)|[ .- We estimate T =T" +T" where

<[(e-Dvy) 'l <

T = |If-Dv(x) =g Dv(x)llyq
< s max|(f ) D Gow]
w|
< maxlf; — g
and
" = g Dv(x) =g Dv(y)llx0
= " bﬁ‘lp maX|gz(DUz( ) DU%(Y))W|
w x<1
< sup max [|[(Dvi(x) — Dvi(y))w|
Iwil, <t *
< sup maxz - 1‘||D vi(X) (W, y — %, ,y —X)|
llwll, <1 k>2
x)k-1 k—1
< max Y G0y - xli
k>2
< (e —1)
As before,

(2 ) (), 2) ¢ u(F )
T a0 (f gl + (- 1) &Y ST E 0 (f—gl + (@ - 1)
O
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Proof of Theorem[3.6.1 for the Finsler structure. As before, assume without loss
of generality that m;(x) = 0 for all i.

1
7 [[DSex(0)7 D Sex (0), <

1 1 k
. | f1] e e PV (x)
< — || DSgx(0)7F : :
k! ) .
1 1 k
1ol /Mo N \ 7 fo - o P Va )/
1 1
< 7M(fvx)max sSup 7Dk‘/i(x)(wla"'vwk)
k! C wallrsliwe <1 TV

< %u(f,x)l/(x)k_l.

as in the proof of Lemma We can still use pu(f,x) = 1 to bound the expression

above by

! 1
] || DSt x(0) " D¥ Se 5 (0)],. < 21671M(f,x)k—ly(x)kq7

and take k — 1-th roots. O

7. CONCLUSIONS AND FUTURE WORK

The theory of condition numbers and homotopy for sparse systems proposed in
this paper shares many of the features of the theory of homotopy algorithms for
dense polynomial systems: there are effective criteria for quadratic convergence, a
Lipschitz condition number, a higher derivative estimate and the toric condition
length is an upper bound for the cost of homotopy algorithms.

This bound is possibly sharper from what we would obtain from the theory of
dense homogeneous or multi-homogeneous equations, as illustrated by the running
example. On the other hand, this theory has some distinctive features.

The higher derivative estimate for v(f, x) is less sharp as x goes to toric infinity.
This is to be expected, since in the toric case ‘infinity’ means a supporting facet of
the support. Therefore it may be necessary to ‘switch charts’ at some point and
appromiate roots going to infinity by points at infinity. In the mean time, we are
left with the undesirable features of the non-homogenized, later discarded version
of the theory in |Shub and Smale (1993a)).

Nothing was said about implementation issues. Some of them may require ex-
perimentation. For instance, it is not clear if the extra sharpness provided by the
Finsler structure does offset the extra cost of computing it. This may depend on
how many variables appear on each polynomial.

Then we need a probabilistic analysis of the condition of sparse polynomial
systems. This may be a challenging problem. Previous results obtained by Mala-
jovich and Rojas (2004) depend on polynomial systems being unmixed or on a
mixed dilation which is only finite for nondegenerate fewnomial spaces as in Defini-
tion iii). This is an inconvenient hypothesis. Removing it is a topic for future
research.
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APPENDIX A. PROOF OF LEMMA [2.5.3]

We start with a real version of Lemma 2.5.31 This will be used to recover
the complex version. The notation {-.-) stands for the canonical Hermitian inner
product in C", and {-.-)gn is the real canonical inner product. Identifying C" to
R2™ we can write

Re () = (- )gen.
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Since the same norm arises from those two inner products, we use the notation | - |

for it. Here is the real Lemma.:

Lemma A.0.1. Suppose that xX,y,¢ € R with ¢ —x L x, y —x L x and
ly =<l < [x = ¢]. Then,

|m=(y) =<l _ Iy =<l
ST

y is the radial projection onto the real affine plane ¢ + ¢*.

I¢1®

where g (y) = &y Opnt1

Proof. Rescaling the three vectors x,y and ¢ simultaneously we can assume that

|x| = 1. Then we can choose an orthonormal basis (eg, ..., e,) so that x = eg, ¢
is in the span of ey and e; and y is in the span of eg,e; and es. In coordinates,
1 1 1
0 t S
~10 _10 _|r
X = , ¢ = and y =
0 0 0

We can further assume that ¢t > 0 and r > 0. Squaring both sides of the hypothesis
ly — ¢|| < |lx — ¢| we obtain

24+ (s—t)?<t?
that is
(14) r? < 2st — §°

which implies s > 0.
We claim first that
5) Ima(y) = ¢ _ Ima(x) = <1
ly = <] Ix — ¢

We compute

(2 +1) (P2 + 12 —2st+ s +17)

|me(y) = ¢[* = Gir 1)
ly =¢|?> = t*—2st+ s> 412
Ime(x) = ¢[* = ¢ (£ +1)
lx—¢* = ¢

To show inequation , we just need to verify that
K = |mr(y) = ¢I*lx = ¢* = |mr(x) = ¢[*ly — ¢[* <0
Using the Maxima computer algebra system (Maxima, 2014)),
t3(t% + 1)
=——— 2 (A +B
Gtz At B)
with
A=(s>—1)t+2s and B=s(t—s)(st+2)
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From the factorization above, K is negative if and only if Ar? + B > 0. Clearly
B >=0. If A > 0 we are done, so assume A < 0. Then multiplying both sides of

by A, one obtains
Ar? > 2Ast — As®

and
Ar? + B = s*(1 +t*) = 0.
This shows (15). Also,
(0= ¢ |, I
Ix = ¢J? >
Taking square roots and combining with (5],

Ime(y) = ¢l _ Iy =<l
<l Il

O

Lemma [2.5.3L Suppose that x,y,{ € C""! with ¢ —x L x, y —x L x and
ly — <[ < |x—¢|. Then,

I=(y) =<l _ Iy =<
9 Il
_ le?

where w(y) = 5oy is the radial projection onto the affine plane ¢ + Cl.

Proof. We identify C"*! with R?"*2 and claim that
(16) Iw(y) — ¢l < me(y) =<

Since complex orthogonal vectors are also real orthogonal, inequation and
Lemma [A.0.T] imply
In(y) -~ ¢l _ Ime) = ¢l _ Iy = ¢l
Iqi e x|
To show we choose coordinates so that

1 a+bi
0 c
¢=1o and y = 0
with ¢ = 0. A straight-forward computation gives
1 1+ 2
c c
a+bi a
) =1 o and  mr(y)=| o
We have
2 b2 2

2 c 2
Im(y) — <l =m\;+§ = |m=(y) — <]
with equality if b = 0. This finishes the proof. O
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