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RANDOM BIT QUADRATURE AND APPROXIMATION OF

DISTRIBUTIONS ON HILBERT SPACES

MICHAEL B. GILES, MARIO HEFTER, LUKAS MAYER, AND KLAUS RITTER

Abstract. We study the approximation of expectations E(f(X)) for Gaussian random

elements X with values in a separable Hilbert space H and Lipschitz continuous func-

tionals f : H → R. We consider restricted Monte Carlo algorithms, which may only use

random bits instead of random numbers. We determine the asymptotics (in some cases

sharp up to multiplicative constants, in the other cases sharp up to logarithmic factors)

of the corresponding n-th minimal error in terms of the decay of the eigenvalues of the

covariance operator of X . It turns out that, within the margins from above, restricted

Monte Carlo algorithms are not inferior to arbitrary Monte Carlo algorithms, and suit-

able random bit multilevel algorithms are optimal. The analysis of this problem leads

to a variant of the quantization problem, namely, the optimal approximation of prob-

ability measures on H by uniform distributions supported by a given, finite number of

points. We determine the asymptotics (up to multiplicative constants) of the error of the

best approximation for the one-dimensional standard normal distribution, for Gaussian

measures as above, and for scalar autonomous SDEs.

1. Introduction

We study the approximation of expectations E(f(X)), where X is a random element
that takes values in a separable Hilbert space H and where f : H → R is Lipschitz con-
tinuous. We consider randomized (Monte Carlo) algorithms that are only allowed to use
random bits instead of random numbers. By assumption, all other operations (arithmetic
operations, evaluations of elementary functions, and oracle calls to evaluate f) are per-
formed exactly. Algorithms of this type are called restricted Monte Carlo algorithms, and
the approximation of expectations by algorithms of this type will be called random bit
quadrature.

Let µ denote the distribution of X. We consider the worst case setting, where random-
ized algorithms A are compared according to their maximal error e(A, F, µ) and their
maximal cost cost(A, F ) on a class F of functionals f . For an arbitrary Monte Carlo algo-
rithm or a restricted Monte Carlo algorithm cost(A, F ) takes into account, in particular,
the number of calls of the generator for random numbers or random bits, respectively.

A basic question is to what extent restricted Monte Carlo algorithms are inferior to
arbitrary Monte Carlo algorithms. To answer this question one has to compare the n-th
minimal error

eres
n (F, µ) = inf{e(A, F, µ) : A restricted Monte Carlo algorithm, cost(A, F ) ≤ n}
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of restricted Monte Carlo algorithms with the corresponding quantity en(F, µ) for ar-
bitrary Monte Carlo algorithms on classes F of functionals f . In the case of infinite-
dimensional spaces H , this question is closely related to three variants of approximation
problems for probability measures, namely, quantization, average Kolmogorov widths, and
random bit approximation.

In most of the papers on randomized algorithms for continuous problems, uniformly
distributed random numbers from [0, 1] are assumed to be available. Restricted Monte
Carlo algorithms are studied for the classical quadrature problem, where µ is the uniform
distribution on [0, 1]d ⊆ H = R

d, in, e.g., [11, 14, 22, 23, 24, 29, 31].
In the present paper, we are interested in zero mean Gaussian random elements X with

values in a separable Hilbert space H and with a distribution µ with infinite-dimensional
support, and in the class F = Lip1 of all Lipschitz continuous functionals f : H → R with
Lipschitz constant at most one.

The Karhunen-Loève expansion of X may be written as

X =
∞∑

i=1

λ
1/2
i · Yi · ei

with convergence, e.g., in mean-square with respect to the norm of H . Here e1, e2, . . .
form an orthonormal system in H , λ1 ≥ λ2 . . . > 0 with

∑∞
i=1 λi < ∞, and Y1, Y2, . . . are

independent and standard normally distributed random variables. We assume that

lim
i→∞

λi · iβ · (ln(i))α ∈ ]0, ∞[ ,

where β > 1 and α ∈ R. The asymptotic behavior of the variances λi of the random
coefficients of X is known in many cases, see, e.g., [18]. For instance,

β = 2h + 1

and

α = −(d − 1) · β

for a fractional Brownian sheet X with Hurst parameter h ∈ ]0, 1[ and H = L2([0, 1]d).
In particular, β = 2 and α = 0 for a Brownian motion, as well as for a Brownian bridge.

For functions f, g : M → [0, ∞] on any set M we write f(m) � g(m) if there exists a
constant c > 0 such that f(m) ≤ c · g(m) for every m ∈ M . Moreover, f(m) � g(m)
means g(m) � f(m) and f(m) ≍ g(m) means f(m) � g(m) and g(m) � f(m). In order
to mention the set M explicitly, we sometimes say that the corresponding relation holds
uniformly in m ∈ M .

We show that suitable random bit multilevel Monte Carlo algorithms yield the upper
bound

eres
n (Lip1, µ) � n− min(1/2,(β−1)/2) ·





1, if β > 2,

(ln(n))max(0,1−α/2), if β = 2 ∧ α 6= 2,

ln(ln(n)), if β = 2 ∧ α = 2,

(ln(n))−α/2, if β < 2,

for the n-th minimal error of restricted Monte Carlo algorithms, see Theorem 5 and
Corollary 1. See [12] for a recent survey of multilevel algorithms.

Upper and lower bounds for the n-th minimal error of arbitrary Monte Carlo algorithms
have been established in [3] in a Banach space setting. Combining the upper bound from
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the present paper with the lower bound from [3, Thm. 10] we obtain the following results,
see Corollary 1. For β < 2

eres
n (Lip1, µ) ≍ en(Lip1, µ) ≍ n−(β−1)/2 · (ln(n))−α/2

and, in particular, there is no superiority of Monte Carlo algorithms over restricted Monte
Carlo algorithms in this case. For β = 2, a superiority may at most be present on the
level of logarithmic factors, since

eres
n (Lip1, µ)

en(Lip1, µ)
�




ln(n)max(1,α/2), if α 6= 2,

ln(n) · ln(ln(n)), if α = 2.

For β > 2 we may only conclude that

lim inf
n→∞

eres
n (Lip1, µ)

en(Lip1, µ)
� (ln(n))(1+β)/2 · (ln(ln(n)))α/2.

Note that for many infinite-dimensional quadrature problems the asymptotic behavior of
n-th minimal errors is only known up to logarithmic factors. Except for the case β = 2 and
α < 1, the upper bound from the present paper slightly improves the respective bound
from [3], which holds true in a Banach space setting.

In [14], random bit quadrature with respect to the uniform distribution µ on [0, 1]d and
Sobolev and Hölder classes F of functions on [0, 1]d are considered. The n-th minimal
errors of unrestricted and of restricted Monte Carlo algorithms turn out to be of the same
order, and a very small number of O((2 + d) · log n) random bits suffice to achieve asymp-
totic optimality. The proofs of these results are based on a reduction of the quadrature
problem to a summation problem and on a discrete variant of Bakhvalov’s trick. See [25]
for a related approach to integral equations. Anisotropic function classes are considered
in [11, 31].

For the Gaussian measures µ on infinite-dimensional spaces we do not know whether
the number of random bits that are needed to achieve the upper bound for eres

n (Lip1, µ)
(or asymptotic optimality) is negligible, compared to n. In our construction of a multilevel
algorithm that yields the upper bound for eres

n (Lip1, µ) the number of random bits is of
the order n.

The analysis of random bit quadrature problems leads to the following variant of the
quantization problem for probability measures, namely, the optimal approximation of
probability measures µ by uniform distributions ν on 2p points. Since p random bits
suffice to sample any such ν, we use the term random bit approximation of probability
measures to denote this new type of approximation problem. Let d denote the Wasserstein
distance of order two on the set M(H) of all Borel probability measures on H , and let
U(H, p) ⊆ M(H) denote the set of all uniform distributions on H with support of size 2p.
Given µ ∈ M(H) we study the distance

rbit(µ, p) = inf{d(µ, ν) : ν ∈ U(H, p)}
between µ and U(H, p). In the one-dimensional case H = R this approximation problem
has recently been introduced and thoroughly studied for Wasserstein distances of any
order in [30], and some of the results from [30] are generalized to the Banach space R

d,
equipped with the maximum norm, for any d ∈ N in [2].

Random bit approximation is closely related to quantization, which has been studied
intensively for finite-dimensional and for infinite-dimensional Banach spaces H . More
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precisely, let F(H, p) denote the set of all Borel probability measures on H with support
of size at most 2p. Obviously the quantization number

quant(µ, p) = inf{d(µ, ν) : ν ∈ F(H, p)}

is a lower bound for rbit(µ, p), i.e.,

rbit(µ, p) ≥ quant(µ, p)

for every µ ∈ M(H) and every p ∈ N. A partial list of references on quantization of
probability measures includes the monograph [13] and the survey [7] as well as [3, 4, 5,
6, 8, 9, 17, 18, 19]. We stress that the strong asymptotics of quant(µ, p) is studied most
of the time in the literature, while we only consider the weak asymptotics of rbit(µ, p).
Observe that we lose the control about asymptotic constants anyway in the analysis of
the random bit quadrature problem.

For the one-dimensional standard normal distribution µ we derive

rbit(µ, p) ≍ 2−p/2 · p−1/2,

see Theorem 1, while quant(µ, p) ≍ 2−p according to a known general result for quanti-
zation. For the Gaussian measures µ on Hilbert spaces we have

rbit(µ, p) ≍ p−(β−1)/2 · (ln(p))−α/2,

see Theorems 2 and 3. For scalar autonomous SDEs we consider the distribution µ of the
solution on L2([0, 1]), and under mild assumptions on the drift and diffusion coefficients
we have

rbit(µ, p) ≍ p−1/2,

see Theorem 4. In the latter two cases we only have to establish the upper bound for
rbit(µ, p), since the matching lower bound even holds for quant(µ, p), according to known
results for quantization.

In the present paper we employ upper bounds for rbit(µ, p) and asymptotically optimal
random bit approximations to construct random bit algorithms for quadrature and to
derive upper bounds for eres(Lip1, µ). In [3] close relations between quantization numbers
and average Kolmogorov widths on the one-hand side, and upper and lower bounds for
(minimal) errors of arbitrary Monte Carlo algorithms have been established.

This work is partially motivated by reconfigurable architectures like field programmable
gate arrays (FPGAs). These devices allow users to choose the precision of each individual
operation on a bit level and provide a generator for random bits. In the setting and
analysis of the present paper we take into account the latter fact, while we ignore all finite
precision issues for arithmetic operations. We refer to [1, 27] for the construction and for
extensive tests of a finite precision multilevel algorithm for FPGAs with applications in
computational finance. For an error analysis of the Euler scheme for SDEs in a finite
precision arithmetic we refer to [26].

This paper is organized as follows. In Section 2 we formulate and study the random
bit approximation problem for probability measures. Section 3 is devoted to the analysis
of random bit quadrature with respect to Gaussian measures. In the Appendix we derive
some asymptotic properties of the distribution function and its inverse for the standard
normal distribution.
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2. Random Bit Approximation of Probability Measures

2.1. Definitions and Basic Properties. Consider the set M(V ) of all Borel probability
measures on a separable Banach space (V, ‖ · ‖V ) with a finite second moment, equipped
with the Wasserstein distance d of order two, i.e.,

d(µ1, µ2) = inf
{(

E ‖X1 − X2‖2
V

)1/2
: PX1 = µ1, PX2 = µ2

}

for µ1, µ2 ∈ M(V ). Here X1 and X2 are jointly defined on any probability space and take
values in V , and PXi

denotes the distribution of Xi.
For p ∈ N we use ν(p) to denote the uniform distribution on {0, 1}p, and we define

R(V, p) = {ν
(p)
f ∈ M(V ) : f : {0, 1}p → V },

where ν
(p)
f denotes the distribution of f with respect to ν(p). Observe that R(V, p) is the

set of all probability measures on V with support of size at most 2p and with probability
weights being integer multiples of 1/2p. Clearly p random bits suffice to sample from any
ν ∈ R(V, p).

Given µ ∈ M(V ) we study the distance

rbit(µ, p) = inf{d(µ, ν) : ν ∈ R(V, p)}
between µ and R(V, p). We wish to determine the asymptotic behavior of rbit(µ, p) as p
tends to infinity and to construct probability measures µ(p) ∈ R(V, p) such that d(µ, µ(p))
is close to rbit(µ, p).

Specifically, we are interested in separable Hilbert spaces (H, ‖ · ‖H) and the cases of µ
being the one-dimensional standard normal distribution, the distribution of a Brownian
bridge on H = L2([0, 1]) or, more generally, of a Gaussian random element on an infinite-
dimensional Hilbert space H , and finally the distribution of the solution of a scalar SDE
on H = L2([0, 1]).

Remark 1. Obviously,

rbit(µ, p + 1) ≤ rbit(µ, p)

for every µ ∈ M(V ) and every p ∈ N.

Remark 2. Let

U(V, p) = {ν
(p)
f ∈ M(V ) : f : {0, 1}p → V is injective},

which is the set of all uniform distributions on V with support of size 2p. Since U(V, p) ⊆
R(V, p) with a dense embedding with respect to the Wasserstein distance d, we have

rbit(µ, p) = inf{d(µ, ν) : ν ∈ U(V, p)}
for every µ ∈ M(V ) and every p ∈ N. Consequently, random bit approximation deals with
the optimal approximation of probability measures by uniform distributions on 2p points.

The one-dimensional case V = R has been thoroughly studied in a more general setting
in [30], and some of the results in the latter paper have been generalized in [2] to the
Banach space V = R

d, equipped with the maximum norm, for any d ∈ N. Given p ∈ N

and probability weights a1, . . . , a2p the objective is to minimize the Wasserstein distance
of order r between a Borel probability measure µ on V with a finite moment of order r
and ν =

∑2p

k=1 ak · δxk
with Dirac measures δxk

at any points xk. This problem is called
best finite constrained approximation with prescribed weights ak in [30].
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The special case V = R, r = 2, and ak = 2−p corresponds to the random bit approxi-
mation of µ ∈ M(R), and we present key results from [30] in this case. In the sequel, Ψ−1

denotes the inverse of the distribution function of µ.

Remark 3. According to [30, Rem. 5.6(ii)], the unique best approximation ν ∈ R(R, p)
of µ ∈ M(R) with respect to d is determined by the points

(1) x∗
k = 2p ·

∫ k·2−p

(k−1)·2−p
Ψ−1(t) dt, k = 1, . . . , 2p.

Assume that the measure corresponding to Ψ−1 is absolutely continuous with respect
to the Lebesgue measure on [0, 1]. In [30, Thm 5.15] a constant c ∈ ]0, ∞[ ∪ {∞} is given
explicitly such that

lim
p→∞

2p · rbit(µ, p) = c.(2)

In particular, rbit(µ, p) � 2−p, and this lower bound is sharp if and only if c < ∞. As an
elementary example we have c = (2 ·

√
3)−1 for µ being the uniform distribution on the

unit interval.
Next, assume that all moments of µ are finite. Then we have

rbit(µ, p) � (2p)−1/2+ε(3)

for all ε > 0, see [30, Thm. 5.20].

Remark 4. Random bit approximation is closely related to quantization, which has
been studied intensively for finite-dimensional and for infinite-dimensional spaces V . More
precisely, let

F(V, p) = {ν ∈ M(V ) : | supp(ν)| ≤ 2p}
denote the set of all probability measures on V with support of size at most 2p. The
quantization numbers

quant(µ, p) = inf{d(µ, ν) : ν ∈ F(V, p)}
immediately yield lower bounds for rbit(µ, p), i.e.,

rbit(µ, p) ≥ quant(µ, p)

for every µ ∈ M(V ) and every p ∈ N. A partial list of references on quantization of
probability measures includes the monograph [13] and the survey [7] as well as [3, 4, 5, 6,
8, 9, 17, 18, 19].

The results from [10], which deals with quantization on V = R
d by means of empirical

measures, immediately yield upper bounds for rbit(µ, p). In particular, if d ≥ 5 and if µ
has a finite moment of any order greater than 2/(1 − 2/d), then rbit(µ, p) � 2−p/d, see
[10, Thm. 1]. This upper bound is sharp in many cases, since quant(µ, p) � 2−p/d under
mild assumptions on µ for every d ∈ N, see [7, 13] for details.

We stress that the strong asymptotics of quant(µ, p) is studied most of the time in
the literature, while we only consider the weak asymptotics of rbit(µ, p). Observe that
we lose the control about asymptotic constants anyway in the analysis of the random bit
quadrature problem.

Remark 5. Let (W, ‖ · ‖W ) denote another separable Banach space. For the proof of
upper bounds for rbit(µ, p) we may use the following simple observation. Let f : W → V
be measurable and µ ∈ R(W, p), then µf ∈ R(V, p).
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2.2. Approximation of the Standard Normal Distribution. We first fix some no-
tations. For p ∈ N let

D(p) =
{ p∑

i=1

bi · 2−i + 2−(p+1) : bi ∈ {0, 1} for i = 1, . . . , p
}

= {k · 2−p − 2−(p+1) : k = 1, . . . , 2p}
denote the set of dyadic numbers from [0, 1[ with p bits, shifted by 2−(p+1), so that D(p) is
symmetric with respect to 1/2. Furthermore, we define the truncation operator T (p) via

T (p) : [0, 1[ → D(p), x 7→ ⌊2p x⌋
2p

+ 2−(p+1),

i.e., the application of T (p) means rounding to a nearest element from D(p).
Let Y be a standard normally distributed random variable and let Φ denote the corre-

sponding distribution function. Observe that U = Φ(Y ) is uniformly distributed on [0, 1],
so that T (p)(U) is uniformly distributed on D(p). The distribution of

(4) Y (p) = Φ−1 ◦ T (p) ◦ Φ(Y )

therefore belongs to U(R, p).

Theorem 1. Let µ denote the standard normal distribution. Then we have

rbit(µ, p) ≍ 2−p/2 · p−1/2.(5)

Furthermore, let Y (p) as in (4). Then
(
E |Y − Y (p)|2

)1/2 ≍ rbit(µ, p).(6)

Moreover,

E
(
Y (p)

)
= 0(7)

and

sup
p∈N

E
∣∣∣Y (p)

∣∣∣
r

< ∞(8)

for all r ≥ 1.

Proof. By definition,

rbit(µ, p) ≤
(
E |Y − Y (p)|2

)1/2
.(9)

Hence we show that

(10)
(
E |Y − Y (p)|2

)1/2 � 2−p/2 · p−1/2.

Let zk = k · 2−p for k = 2p−1, . . . , 2p, and let ϕ denote the density of the standard normal
distribution. We have

E |Y − Y (p)|2 = E
∣∣∣Φ−1(U) − Φ−1 ◦ T (p)(U)

∣∣∣
2

= 2 ·
2p∑

k=2p−1+1

Ak,

where

Ak =
∫

[zk−1,zk[

∣∣∣Φ−1(u) − xk

∣∣∣
2

du

with xk = Φ−1(zk − 2−(p+1)).
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Consider the case 2p−1+1 ≤ k ≤ 2p−2. Observe that ϕ◦Φ−1 is monotonically decreasing
on [1/2, 1[. Using

∣∣∣Φ−1(u) − xk

∣∣∣ ≤ |u − (zk − 2−(p+1))|
ϕ(Φ−1(zk))

for u ∈ [zk−1, zk[, we obtain

Ak ≤ 2−3p

12 ϕ2(Φ−1(zk))
.

Consequently,

2p p ·
2p−2∑

k=2p−1+1

Ak ≤ 2−2p p

12
·

2p−2∑

k=2p−1+1

1

ϕ2(Φ−1(zk))
≤ 2−p p

12
·
∫ 1−2−p

1/2

1

ϕ2(Φ−1(u))
du

=
2−p p ·

√
2π

12
· h(Φ−1(1 − 2−p)),

where

(11) h(a) =
∫ a

0
exp(x2/2) dx

for a > 0. By Lemma 8 from the Appendix we obtain

lim sup
p→∞

2p p ·
2p−2∑

k=2p−1+1

Ak ≤ 1

12 ln 4
.

For every 2p−1 + 1 ≤ k ≤ 2p,

Ak ≤ 2 ·
∫

[zk−1+2−(p+1),zk[

∣∣∣Φ−1(u) − xk

∣∣∣
2

du = 2 ·
∫

[xk,Φ−1(zk)[
(x − xk)2 ϕ(x) dx.

Furthermore, this upper bound for Ak is monotonically increasing in k, since Φ−1 is convex
on [1/2, 1[. Therefore we consider the case k = 2p. Put

(12) g(a) =
∫

[a,∞[
(x − a)2 ϕ(x) dx

for a > 0. By Lemma 9 from the Appendix we obtain

lim sup
p→∞

2p p · E |Y − Y (p)|2 ≤ 49

6 ln 4
,

which completes the proof of the upper bound (10).
Next we show

(13) rbit(µ, p) � 2−p/2 · p−1/2.

To this end we consider a random variable Ŷ (p) with distribution in R(R, p) and defined

on the same space as Y . Let x̂ denote the essential supremum of Ŷ (p). We are going to
consider two cases, at first we assume

x̂ ≤ Φ−1(1 − 2−(p+1)).

Due to the monotonicity of Φ−1 we have

E
(
Y − Ŷ (p)

)2 ≥ E
((

Φ−1(U) − Ŷ (p)
)2 · 1{U≥1−2−(p+1)}

)

≥ E
((

Φ−1(U) − Φ−1(1 − 2−(p+1))
)2 · 1{U≥1−2−(p+1)}

)

= g
(
Φ−1(1 − 2−(p+1))

)
.
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Lemma 9 from the Appendix yields g
(
Φ−1(1 − 2−(p+1))

)
� 2−p · p−1. For the second case,

i.e.,

x̂ > Φ−1(1 − 2−(p+1))

we use Lemma 11 from the Appendix with a = 1 − 3 · 2−(p+2) and b = 1 − 2−(p+1) to
conclude that

Φ−1(b) − Φ−1(a) � p−1/2.

Together with the monotonicity of Φ−1 this leads to

E
(
Y − Ŷ (p)

)2 ≥ E
((

Φ−1(U) − x̂
)2 · 1

{Ŷ (p)=x̂}
· 1{U≤a}

)

≥ E
((

Φ−1(a) − Φ−1(b)
)2 · 1

{Ŷ (p)=x̂}
· 1{U≤a}

)

� p−1 · P
(
{Ŷ (p) = x̂} ∩ {U ≤ a}

)

≥ p−1 ·
(
P ({Ŷ (p) = x̂}) − P ({U > a})

)

≥ p−1 ·
(
2−p − P ({U > a})

)

= p−1 · 2−(p+2).

This completes the proof of (13). Combing (9), (10), and (13) yields (5) and (6).
For the proof of (7) we observe that T (p)(U) is uniformly distributed on D(p). Since

Φ−1(1 − x) = −Φ−1(x) for x ∈]0, 1[, we get (7) for symmetry reasons.
Observe that x 7→ (Φ−1(x))r is a convex function on [1/2, 1[ for r ≥ 1 with integral

equal to 1
2

E |Y |r, and applying a midpoint rule to this function we get 1
2

E |Y (p)|r. Hence
we have

sup
p∈N

E
∣∣∣Y (p)

∣∣∣
r ≤ E |Y |r < ∞,

which implies (8). �

Remark 6. We compare Theorem 1 with the results from [30], as discussed in Remark 3,
for the standard normal distribution µ.

Note that the measure corresponding to Φ−1 is absolutely continuous with respect to
the Lebesgue measure on [0, 1]. Theorem 1 implies that c = ∞ in (2). Moreover, the order
of convergence of rbit(µ, p) is only slightly better than the upper bound (3), which holds
for every µ ∈ M(R) with finite moments of any order.

The optimal selection of support points x∗
k is given by the local averages of Φ−1 based

on a uniform partition of [0, 1], see (1) with Ψ−1 = Φ−1. In Theorem 1 we consider
a slightly simpler construction, which still yields the same order of convergence of the
Wasserstein distance, as we employ the values xk of Φ−1 at the midpoints for this partition.
Both of these point sets are symmetric with respect to 1/2, and xk < x∗

k < xk+1 for
k = 2p−1 + 1, . . . , 2p − 1.

Remark 7. We compare Theorem 1 with known results for the quantization problem,
see, e.g., [13, Thm. 6.2]. First of all,

quant(µ, p) ≍ 2−p
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for the quantization of the standard normal distribution µ, so that the quantization error
converges to zero much faster than the corresponding quantity for random bit approxi-
mation. On the other hand, for the uniform distribution on [0, 1] both quantities are of
the same order 2−p.

2.3. Approximation of the Distribution of a Brownian Bridge. Let (si)i∈N be the
sequence of Schauder functions given by

si(t) =
∫ t

0
hi(u) du, t ∈ [0, 1],

with

h2m+k−1 = 2m/2 ·
(
1I2m+k

− 1J2m+k

)

for m ∈ N0 and k = 1, . . . , 2m, where

I2m+k = [(k − 1)/2m, (k − 1/2)/2m[

and

J2m+k = [(k − 1/2)/2m, k/2m[ .

Let B denote a standard Brownian bridge on [0, 1], which is henceforth considered
as a centered Gaussian random element that takes values in H = L2 = L2([0, 1]). The
Lévy-Ciesielski (or Brownian bridge) representation of B states that

B =
∞∑

i=1

Yi · si

with convergence, e.g., in mean-square with respect to the L2-norm. Here Y1, Y2, . . . is an
independent sequence of standard normally distributed random variables.

We define

B(ℓ) =
2ℓ−1∑

i=1

Yi · si

for ℓ ∈ N, i.e., B(ℓ) is the piecewise linear interpolation of B at the points k · 2−ℓ with
k = 0, . . . , 2ℓ. The following result is well known, see, e.g., [28, Sec. II.3] for references and
remarks.

Lemma 1. We have (
E
∥∥∥B − B(ℓ)

∥∥∥
2

L2

)1/2

≍ 2−ℓ/2.

For ℓ ∈ N we consider a vector

p = (p1, . . . , p2ℓ−1) ∈ N
2ℓ−1

of bit numbers. We define

B(ℓ,p) =
2ℓ−1∑

i=1

Y
(pi)

i · si,

where Y
(pi)

i is the approximation of Yi according to (4). This approach, which is appro-
priate for the construction of multilevel algorithms, see Section 3, has been suggested in
[12, p. 320]. Note that the distribution of B(ℓ,p) belongs to U(L2, |p|) with

|p| =
2ℓ−1∑

i=1

pi.
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Lemma 2. We have

(
E
∥∥∥B(ℓ) − B(ℓ,p)

∥∥∥
2

L2

)1/2

≍
(

2ℓ−1∑

i=1

2−pi/pi · i−2

)1/2

uniformly in ℓ ∈ N and p ∈ N
2ℓ−1.

Proof. Let Ŷi = Y
(pi)

i . Use Theorem 1 and ‖si‖2
L2

≍ i−2 to obtain

E
∥∥∥B(ℓ,p) − B(ℓ)

∥∥∥
2

L2

=
∫ 1

0
E

(
2ℓ−1∑

i=1

(
Ŷi − Yi

)
· si(t)

)2

dt

=
∫ 1

0
Var

(
2ℓ−1∑

i=1

(
Ŷi − Yi

)
· si(t)

)
dt =

∫ 1

0

2ℓ−1∑

i=1

Var
((

Ŷi − Yi

)
· si(t)

)
dt

=
2ℓ−1∑

i=1

E
(
Ŷi − Yi

)2 ·
∫ 1

0
s2

i (t) dt ≍
2ℓ−1∑

i=1

2−pi/pi · i−2. �

Theorem 2. Let µ be the distribution of a standard Brownian bridge B on L2. Then we

have

rbit(µ, p) ≍ quant(µ, p) ≍ p−1/2.

Define p(ℓ) ∈ N
2ℓ−1 for ℓ ∈ N by

(14) pi(ℓ) = 2 · (ℓ − ⌊log2 i⌋), i = 1, . . . , 2ℓ − 1.

Then we have (
E
∥∥∥B − B(ℓ,p(ℓ))

∥∥∥
2

L2

)1/2

≍ rbit(µ, |p(ℓ)|)
and

|p(ℓ)| = 2ℓ+2 − 2ℓ − 4 ≍ 2ℓ.

Proof. We write p and pi instead of p(ℓ) and pi(ℓ), respectively, to simplify the notation.
By definition,

rbit(µ, |p|) ≤
(

E
∥∥∥B − B(ℓ,p)

∥∥∥
2

L2

)1/2

.

Hence we show that

(15)
(

E
∥∥∥B − B(ℓ,p)

∥∥∥
2

L2

)1/2

� |p|−1/2.

Since

2ℓ−1∑

i=1

2−pi/pi · i−2 ≤ 2−ℓ(16)

for the specific choice of the bit numbers pi, Lemmata 1 and 2 yield
(

E
∥∥∥B − B(ℓ,p)

∥∥∥
2

L2

)1/2

� 2−ℓ/2.

The explicit formula for |p| is easily verified by induction, and this completes the proof
of the asymptotic upper bound (15). On the other hand,

quant(µ, p) ≍ p−1/2,

see [17, p. 527] and [4]. �
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Remark 8. Observe that the Schauder function si has a support of size 2−⌊log2 i⌋. Therefore
B(ℓ,p(ℓ)) involves all Schauder functions with support size between 1 and 2−(ℓ−1), and
the number of random bits that is associated to si according to (14) only depends on
the size of its support. This number varies linearly between 2ℓ for s1 and 2 for si with
i = 2ℓ−1, . . . , 2ℓ − 1.

In our construction the total number |p(ℓ)| of bits coincides, up to a multiplicative
constant, with the numbers of terms in B(ℓ,p(ℓ)) and in B(ℓ). The partial sum B(ℓ) formally
corresponds to pi(ℓ) = ∞ for i = 1, . . . , 2ℓ − 1, but still the errors of B(ℓ) and Bℓ,p(ℓ)) are
of the same order 2−ℓ/2, see Lemma 1 and Theorem 2.

Remark 9. The bit numbers given by (14) depend on i and they approximately minimize
|p|, subject to the constraint (16).

For constant bit numbers

(17) p = p1 = . . . = p2ℓ−1

the following holds true. For (16) to hold true we must have 2−p/p ≤ 2−ℓ, and together
with p ≤ 2p this yields p ≥ ℓ/2. On the other hand p = 2 · ℓ implies (16). Therefore the
minimum of |p|, subject to the constraints (16) and (17) is only of the order 2ℓ · ℓ.

2.4. Approximation of Gaussian Measures. In this section we consider a centered
Gaussian random element X that takes values in a separable Hilbert space (H, ‖ ·‖H) and
has an infinite-dimensional support. The Karhunen-Loève expansion of X may be written
as

X =
∞∑

i=1

λ
1/2
i · Yi · ei(18)

with convergence, e.g., in mean-square with respect to the norm of H . Here (ei)i∈N is
an orthonormal system in H and (λi)i∈N is a non-increasing and summable sequence of
strictly positive numbers, and Y1, Y2, . . . is an independent sequence of standard normally
distributed random variables. We assume that

(19) lim
i→∞

λi · iβ · (ln(i))α ∈ ]0, ∞[ ,

where β > 1 and α ∈ R. The asymptotic behavior of the variances λi of the random
coefficients of X is known in many cases. For instance,

β = 2h + 1

and

α = −(d − 1) · β

for a fractional Brownian sheet X on [0, 1]d with Hurst parameter h ∈ ]0, 1[ and H =
L2([0, 1]d), see, e.g., [18, p. 1586, p. 1588]. In particular, β = 2 and α = 0 for a Brownian
motion, as well as for a Brownian bridge.

The analysis from the previous section extends to the case of Gaussian random elements
in a straight-forward way. In contrast to the Lévy-Ciesielski representation the Karhunen-
Loève expansion may naturally be truncated after any number of terms. For m ∈ N we
consider a vector

p = (p1, . . . , pm) ∈ N
m
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of bit numbers. We define

X(m,p) =
m∑

i=1

λ
1/2
i · Y

(pi)
i · ei,(20)

where Y
(pi)

i is the approximation of Yi according to (4). Note that the distribution of
X(m,p) belongs to U(H, |p|) with

|p| =
m∑

i=1

pi.

Theorem 3. Let µ denote the distribution of the Gaussian random element X on H, and

assume that (19) is satisfied. Then we have

rbit(µ, p) ≍ quant(µ, p) ≍ p−(β−1)/2 · (ln(p + 1))−α/2.

Define p(m) ∈ N
m for m ∈ N by

pi(m) = ⌈max(p̃i(m), 1)⌉, i = 1, . . . , m,

where

p̃i(m) = β · log2(m/i) + max(α, 0) · log2(log2(m + 1)/ log2(i + 1)).

Then we have (
E
∥∥∥X − X(m,p(m))

∥∥∥
2

H

)1/2

≍ rbit(µ, |p(m)|)
and

|p(m)| ≍ m.

Proof. We write p, pi, and p̃i instead of p(m), pi(m), and p̃i(m), respectively, to simplify
the notation. Note that ∫ 1

0

1

x · t + 1
dt =

ln(x + 1)

x
for x > 0. It follows that x 7→ x/ log2(x + 1) is strictly increasing on ]0, ∞[. Therefore
m/i ≥ log2(m + 1)/ log2(i + 1) and

pi ≤ 1 + p̃i � 1 + ln(m/i)

uniformly in m ∈ N and i = 1, . . . , m. Since
m∑

i=2

ln(m/i) ≤
∫ m

1
ln(m/x) dx = m − ln(m) − 1,

we obtain

|p| � m +
m∑

i=1

ln(m/i) ≤ 2m − 1,

while |p| ≥ m trivially holds true. We conclude that |p| ≍ m, as claimed.
By definition,

rbit(µ, |p|) ≤
(

E
∥∥∥X − X(m,p)

∥∥∥
2

H

)1/2

.

Hence we show that

(21)
(

E
∥∥∥X − X(m,p)

∥∥∥
2

H

)1/2

� m−(β−1)/2 · (ln(m + 1))−α/2.

First of all,

X(m) =
m∑

i=1

λ
1/2
i · Yi · ei
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with m ∈ N satisfies

E
∥∥∥X − X(m)

∥∥∥
2

H
≍ m−(β−1) · (ln(m + 1))−α,

see (19). Furthermore, Theorem 1 yields

E
∥∥∥X(m) − X(m,p)

∥∥∥
2

H
=

m∑

i=1

E
(
Yi − Y

(pi)
i

)2 · λi ≍
m∑

i=1

2−pi/pi · i−β · (ln(i + 1))−α

uniformly in m ∈ N and p ∈ N
m. For the specific choice of bit numbers pi we obtain

2−pi · i−β · (ln(i + 1))−α � m−β · (ln(m + 1))−α

uniformly in m ∈ N and i = 1, . . . , m. Since pi ≥ 1, we conclude that

E
∥∥∥X(m) − X(m,p)

∥∥∥
2

H
� m−(β−1) · (ln(m + 1))−α,

which completes the proof of (21).
On the other hand,

quant(µ, p) ≍ p−(β−1)/2 · (ln(p + 1))−α/2,

see, e.g., [18, p. 1581] �

2.5. Approximation of the Distribution of a Scalar SDE. We consider a scalar
autonomous SDE

dX(t) = a(X(t)) dt + b(X(t)) dW (t), t ∈ [0, 1],

X(0) = x0

with a deterministic initial value x0 ∈ R and a scalar Brownian motion W . Both, the drift
coefficient a : R → R and the diffusion coefficient b : R → R are assumed to be differen-
tiable with bounded and Lipschitz continuous derivatives. This yields, in particular,

(22) E sup
t∈[0,1]

|X(t)|2 < ∞.

Furthermore, we assume that b(x0) 6= 0 in order to exclude the case of a deterministic
equation.

At first, we consider the random bit approximation of marginal distributions of X. To
this end we consider the Milstein scheme based on the equidistant points

tk = tk,m = k/m, k = 0, . . . , m,

where m ∈ N. In terms of the normalized increments

Yk = Yk,m = m1/2 · (W (tk) − W (tk−1))

the scheme reads as

Xm(t0) = x0,

Xm(tk) = Xm(tk−1) + a
(
Xm(tk−1)

)
· m−1 + b

(
Xm(tk−1)

)
· m−1/2 · Yk

+ 1
2

· (b · b′)
(
Xm(tk−1)

)
· m−1 ·

(
Y 2

k − 1
)
,

where k = 1, . . . , m. The following result is well known, see, e.g., [20, Thm. 1.2.4].

Lemma 3. We have
(

E
(

max
k=1,...,m

|X(tk) − Xm(tk)|2
))1/2

� m−1.
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Let q ∈ N. The approximation

Y
(q)

k = Y
(q)

k,m = Φ−1 ◦ T (q) ◦ Φ(Yk),

of the normalized increments, cf. (4), leads to the random bit Milstein scheme

X(q)
m (t0) = x0,

X(q)
m (tk) = X(q)

m (tk−1) + a
(
X(q)

m (tk−1)
)

· m−1 + b
(
X(q)

m (tk−1)
)

· m−1/2 · Y
(q)

k

+ 1
2

· (b · b′)
(
X(q)

m (tk−1)
)

· m−1 ·
((

Y
(q)

k

)2 − 1
)
,

where k = 1, . . . , m.
We are going to employ results from [21], which deals with the quantization problem.

In the latter setting approximations Ỹ
(q)

k to Yk with distributions in F(R, q) and error of
order 2−q are available, see Remark 7. However, the method of proof for Lemma 3 from
[21] is immediately applicable in the present setting of random bit approximation, where
we rely on Theorem 1.

Lemma 4 (Cf. [21, Lemma 3]). We have

(
E
(

max
k=1,...,m

|Xm(tk) − X(q)
m (tk)|2

))1/2

� m−1 + 2−q/2 · q−1/2

uniformly in m, q ∈ N.

Remark 10. Let ν(q)
m denote the joint distribution of X(q)

m (t1), . . . , X(q)
m (tm) and let ν

denote the corresponding marginal distribution of X. Consider the supremum norm on

V = R
m. The joint distribution of Y

(q)
1 , . . . , Y (q)

m belongs to U(Rm, mq), and therefore
ν(q)

m ∈ R(Rm, mq). Lemmata 3 and 4 yield

(23) rbit(ν, mq) ≤
(

E
(

max
k=1,...,m

|X(tk) − X(q)
m (tk)|2

))1/2

� m−1 + 2−q/2 · q−1/2.

Now we turn to the random bit approximation of the distribution of X on the space L2 =
L2([0, 1]). We employ a piecewise linear interpolation together with a local refinement of
the Milstein approximation on each of the subintervals [tk−1, tk]. To this end we consider
the Brownian bridges

Bk(t) = Bk,m(t) = m1/2 · (W (tk−1 + t/m) − W (tk−1)) − t · Yk, t ∈ [0, 1],

and we define

Xm(t) = (t − tk−1) · m · Xm(tk) + (tk − t) · m · Xm(tk−1)

+ b
(
Xm(tk−1)

)
· m−1/2 · Bk((t − tk−1) · m),

where t ∈ [tk−1, tk] and k = 1, . . . , m.

Lemma 5 ([21, Lemma 4]). We have

sup
t∈[0,1]

(
E |X(t) − Xm(t)|2

)1/2 � m−1.
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Finally we choose p(ℓ) according to (14), and we define X(q,ℓ)
m analogously to Xm,

replacing Xm by X(q)
m and Bk by B

(ℓ,p(ℓ))
k = B

(ℓ,p(ℓ))
k,m . This leads to

X(q,ℓ)
m (t) = (t − tk−1) · m · X(q)

m (tk) + (tk − t) · m · X(q)
m (tk−1)

+ b
(
X(q)

m (tk−1)
)

· m−1/2 · B
(ℓ,p(ℓ))
k ((t − tk−1) · m),

where t ∈ [tk−1, tk] and k = 1, . . . , m. The distribution of B
(ℓ,p(ℓ))
k belongs to U(L2, |p(ℓ)|),

and |p(ℓ)| = 2ℓ+2 − 2ℓ − 4, see Theorem 2. Therefore the distribution of X(q,ℓ)
m belongs to

R(L2, c(m, q, ℓ)), where

c(m, q, ℓ) = m · (q + 2ℓ+2 − 2ℓ − 4).

Lemma 6. We have
(

E
∥∥∥X − X(q,ℓ)

m

∥∥∥
2

L2

)1/2

� m−1 + 2−q/2 · q−1/2 + m−1/2 · 2−ℓ/2

uniformly in m, q, ℓ ∈ N.

Proof. We closely follow the proof of [21, Lemma 5], and we write p instead of p(ℓ) to
simplify the notation. Due to Lemma 5 it suffices to analyze Xm − X(q,ℓ)

m . This difference
is split up into

Xm − X(q,ℓ)
m = U1 + U2 + U3,

where

U1(t) = (t − tk−1) · m ·
(
Xm(tk) − X(q)

m (tk)
)

+ (tk − t) · m ·
(
Xm(tk−1) − X(q)

m (tk−1)
)
,

as well as

U2(t) =
(
b
(
Xm(tk−1)

)
− b

(
X(q)

m (tk−1)
))

· m−1/2 · Bk((t − tk−1) · m)

and

U3(t) = b
(
X(q)

m (tk−1)
)

· m−1/2 ·
(
Bk((t − tk−1) · m) − B

(ℓ,p)
k ((t − tk−1) · m)

)

for t ∈ [tk−1, tk].
Put

∆ = ∆(q)
m = max

k=1,...,m
|Xm(tk) − X(q)

m (tk)|,
and observe that

E
(
∆2
)

� m−2 + 2−q · q−1,

see Lemma 4. Clearly |U1(t)| ≤ ∆, and therefore

E ‖U1‖2
L2

� E
(
∆2
)

.

The Lipschitz continuity of b yields

|U2(t)| � ∆ · m−1/2 · Bk((t − tk−1) · m)

for t ∈ [tk−1, tk] and k = 1, . . . , m. Moreover,

E ‖Bk((· − tk−1) · m)‖2
L2([tk−1,tk]) ≍ m−1.

We use the independence of ∆ and (B1, . . . , Bm) to conclude that

E ‖U2‖2
L2

� E
(
∆2
)

· m−1 ·
m∑

k=1

E ‖Bk((· − tk−1) · m)‖2
L2([tk−1,tk]) ≍ m−1 · E

(
∆2
)

.
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Altogether

E ‖U1 + U2‖2
L2

� m−2 + 2−q · q−1.

It remains to consider the term U3. From (22) and (23) we get

sup
m∈N,q∈N

E max
k=1,...,m

|X(q)
m (tk)|2 < ∞.

Moreover,

E ‖Bk((· − tk−1) · m) − B
(ℓ,p)
k ((· − tk−1) · m)‖2

L2([tk−1,tk ]) ≍ m−1 · E ‖B − B(ℓ,p)‖2
L2

≍ m−1 · 2−ℓ,

see Theorem 2. Since b satisfies a linear growth condition we get

E ‖U3‖2
L2

� m−1 · 2−ℓ

from the independence of maxk=1,...,m |X(q)
m (tk)| and (B1, . . . , Bm). �

Remark 11. Suppose that the Euler scheme, instead of the Milstein scheme, would be
employed in the definition of X(q,ℓ)

m . Then the first term in the upper bound from Lemma 6
would change from m−1 to m−1/2, so that altogether

(
E
∥∥∥X − X(q,ℓ)

m

∥∥∥
2

L2

)1/2

� m−1/2 + 2−q/2 · q−1/2,

which does not suffice for our purposes.

Theorem 4. Let µ denote the distribution of X on L2. Then we have

rbit(µ, p) ≍ quant(µ, p) ≍ p−1/2.

Furthermore, let

m(ℓ) = 2ℓ, q(ℓ) = 2ℓ,

and c(ℓ) = c(m(ℓ), q(ℓ), ℓ). Then we have
(

E
∥∥∥X − X

(q(ℓ),ℓ)
m(ℓ)

∥∥∥
2

L2

)1/2

≍ rbit(µ, c(ℓ))

and

c(ℓ) = 2ℓ+2 · (2ℓ − 1) ≍ 22ℓ.

Proof. We write m, q, and p instead of m(ℓ), q(ℓ), and p(ℓ), respectively, to simplify the
notation. By definition,

rbit(µ, c(ℓ)) ≤
(

E
∥∥∥X − X(q,ℓ)

m

∥∥∥
2

L2

)1/2

.

Hence we show that

(24)
(

E
∥∥∥X − X(q,ℓ)

m

∥∥∥
2

L2

)1/2

� c(ℓ)−1/2.

Use Lemma 6 to derive (
E
∥∥∥X − X(q,ℓ)

m

∥∥∥
2

L2

)1/2

� 2−ℓ.

The explicit formula for c(ℓ) obviously holds true, and this completes the proof of the
asymptotic upper bound (24).

On the other hand,

quant(µ, p) ≍ p−1/2,
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see [6, Thm. 1.1]; the same asymptotic result for quantization is derived in [3, 19] under
stronger assumptions. �

3. Random Bit Quadrature with respect to Gaussian Measures

As in Sections 2.3 and 2.4 we consider a centered Gaussian random element X that
takes values in an infinite-dimensional separable Hilbert space (H, ‖ · ‖H). We define and
analyze algorithms that use random bits for the approximation of

S(f) = E(f(X))

for functionals

f : H → R

that are Lipschitz continuous with Lipschitz constant one, i.e.,

|f(x) − f(y)| ≤ ‖x − y‖H

for all x, y ∈ H . For comparison we also consider algorithms that may use uniformly
distributed random numbers from [0, 1] instead of random bits.

Let Lip1 denote the corresponding class of all such functionals f , and let µ denote
the distribution of X on H . Of course, the output A(f) of a randomized (Monte Carlo)
algorithm A on input f ∈ Lip1 is a random quantity, and therefore the worst case error
of A on the class Lip1 is defined by

e(A, Lip1, µ) = sup
f∈Lip1

(
E |S(f) − A(f)|2

)1/2
.

Consider any increasing sequence

H1 ⊆ H2 ⊆ . . .

of finite-dimensional subspaces of H such that dim Hn = n for n ∈ N, and put H̃ =⋃∞
n=1 Hn as well as H0 = ∅. We suppose that a randomized algorithm may evaluate any

functional f ∈ Lip1 at any point x ∈ H̃ at cost n, if x ∈ Hn \ Hn−1. Furthermore,
algorithms are assumed to perform arithmetic operations with real numbers exactly and
to evaluate elementary functions at unit cost. Finally, the algorithms have access to a
random number generator at cost one per call, and here we distinguish two cases. If the
generator provides random bits, we use the term of a restricted Monte Carlo algorithm.
Otherwise, if the generator provides random numbers from [0, 1], the algorithm is called
a Monte Carlo algorithm.

By cost(A, f) we denote the cost for applying the randomized algorithm A to the
functional f , which is defined as the sum of the cost associated to every instruction that
is carried out. Observe that cost(A, f) is a random quantity, analogously to A(f), and
therefore the worst case cost of A on the class Lip1 is defined by

cost(A, Lip1) = sup
f∈Lip1

E(cost(A, f)).

This cost model, which is called variable subspace sampling, is appropriate for quadrature
problems on infinite-dimensional spaces, see [3] for details and for the mild measurability
assumptions involved. The latter are obviously satisfied for the specific algorithms to be
constructed below.
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We are particularly interested in multilevel Monte Carlo algorithms, see [12] for a survey.
At first we consider the setting from Section 2.4 with the natural choice of subspaces

Hn = span{e1, . . . , en}.

It follows, in particular, that H̃ is a dense subspace of the support of µ. In the present
setting of a quadrature problem with random bits we construct a multilevel algorithm
as follows. Let L ∈ N be the maximal level of the multilevel algorithm. On every level
ℓ = 2, . . . , L the algorithm involves a fine and a coarse approximation that are based on the
first m = 2ℓ and m = 2ℓ−1 terms, respectively, of the Karhunen-Loève expansion of X. On
level ℓ = 1 we only consider the fine approximation with m = 2 terms. The bit numbers
that are used to approximate the random coefficients Yi of X are chosen according to
Theorem 3. In this way we have two dimensions of discretization: the truncation level for
the Karhunen-Loève expansion and the bit numbers for the approximation of the random
coefficients.

Let N1, . . . , NL ∈ N be the replication numbers on the levels 1, . . . , L, and let Xℓ,j with
ℓ = 1, . . . , L and j = 1, . . . , Nℓ denote independent copies of X. Recall the definition of
p(m) ∈ N

m and X(m,p(m)) according to Theorem 3. We study the multilevel Monte Carlo
algorithm

AL,N1,...,NL(f) =
1

N1

N1∑

j=1

f(X
(2,p(2))
1,j ) +

L∑

ℓ=2

1

Nℓ

Nℓ∑

j=1

(
f(X

(2ℓ,p(2ℓ))
ℓ,j ) − f(X

(2ℓ−1,p(2ℓ−1))
ℓ,j )

)
.

At first we show that this algorithm only requires
∑L

ℓ=1 Nℓ · |p(2ℓ)| calls to the random
number generator for random bits. Since the Xℓ,j are independent copies of X and since
pi(2

ℓ−1) ≤ pi(2
ℓ) for i = 1, . . . , 2ℓ−1 and ℓ ∈ N, it suffices to show that the joint distribution

of X(m,p) and X(m̃,p̃) can be simulated using |p| random bits, where 1 ≤ m̃ ≤ m as well as

p ∈ N
m and p̃ ∈ N

m̃ with p̃i ≤ pi for all i = 1, . . . , m̃. Recall that X =
∑∞

i=1 λ
1/2
i · Yi · ei.

For i = 1, . . . , m define

Ui = T (pi) ◦ Φ(Yi).

By definition we have

X(m,p) =
m∑

i=1

λ
1/2
i · Y

(pi)
i · ei =

m∑

i=1

λ
1/2
i · Φ−1 ◦ T (pi) ◦ Φ(Yi) · ei(25)

=
m∑

i=1

λ
1/2
i · Φ−1(Ui) · ei.

Since p̃i ≤ pi for i = 1, . . . , m̃, we get T (p̃i) = T (p̃i) ◦ T (pi) and therefore

X(m̃,p̃) =
m̃∑

i=1

λ
1/2
i · Y

(p̃i)
i · ei =

m̃∑

i=1

λ
1/2
i · Φ−1 ◦ T (p̃i) ◦ Φ(Yi) · ei(26)

=
m̃∑

i=1

λ
1/2
i · Φ−1 ◦ T (p̃i)(Ui) · ei.

Combining (25) and (26) with the fact that Ui is uniformly distributed on D(pi) and
U1, . . . , Um are independent, we conclude that the joint distribution of X(m,p) and X(m̃,p̃)

can be simulated using |p| random bits.
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Theorem 5. Let µ denote the distribution of the Gaussian random element X on H,

assume that (19) is satisfied, and let ε ∈ ]0, exp(−2)]. Choose

L = L(ε) =

⌈
2

β − 1
· log2 (z(ε))

⌉

with

z = z(ε) = 1 + ε−1 ·
(
ln(ε−1)

)−α/2

as well as

Nℓ = Nℓ(ε) =
⌈
2−ℓβ/2 · ℓ−α/2 · K(ε)

⌉

for ℓ = 1, . . . , L, where

K = K(ε) = ε− max(2,β/(β−1)) ·





1, if β > 2,

(ln(ε−1))max(0,1−α/2), if β = 2 ∧ α 6= 2,

ln(ln(ε−1)), if β = 2 ∧ α = 2,

(ln(ε−1))
α

2(1−β) , if β < 2.

Then the random bit multilevel algorithm A(ε) = AL,N1,...,NL satisfies

e(A(ε), Lip1, µ) � ε

and

cost(A(ε), Lip1) ≍ ε− max(2,2/(β−1)) ·





1, if β > 2,

(ln(ε−1))max(0,2−α), if β = 2 ∧ α 6= 2,

(ln(ln(ε−1)))2, if β = 2 ∧ α = 2,

(ln(ε−1))
α

1−β , if β < 2.

Proof. At first we consider the cost of A(ε). Theorem 3 implies |p(2ℓ)| ≍ 2ℓ, so that

cost(A(ε), Lip1) ≍
L∑

ℓ=1

2ℓ · Nℓ.

In fact the number of calls to the random number generator for random bits is of this
order, see the discussion directly before Theorem 5, and the same holds true for the
number of arithmetic operations as well as for the cost associated to the evaluation of f .
Observe that

L ≍ ln(ε−1)

and

2L ≍ z
2

β−1 .

Therefore

2−Lβ/2 · L−α/2 ≍ z
β

1−β · L−α/2 ≍ ε
β

β−1 · (ln(ε−1))
α

2(β−1) .

We conclude that

2−ℓβ/2 · ℓ−α/2 · K � 2−Lβ/2 · L−α/2 · K � 1,

and consequently that

Nℓ ≍ 2−ℓβ/2 · ℓ−α/2 · K
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both hold uniformly in ε and ℓ = 1, . . . , L. It follows that

(27) cost(A(ε), Lip1) ≍ K ·
L∑

ℓ=1

2ℓ(1−β/2) · ℓ−α/2.

Furthermore

L∑

ℓ=1

2ℓ(1−β/2) · ℓ−α/2 ≍





1, if β > 2,

Lmax(0,1−α/2), if β = 2 ∧ α 6= 2,

ln(1 + L), if β = 2 ∧ α = 2,

2L(1−β/2) · L−α/2, if β < 2.

Since

2L(1−β/2) · L−α/2 ≍ z
2−β
β−1 · L−α/2 ≍ ε

−
2−β
β−1 · (ln(ε−1))

α
2(1−β) ,

we obtain

(28)
L∑

ℓ=1

2ℓ(1−β/2) · ℓ−α/2 ≍





1, if β > 2,

(ln(ε−1))max(0,1−α/2), if β = 2 ∧ α 6= 2,

ln(ln(ε−1)), if β = 2 ∧ α = 2,

ε
−

2−β
β−1 · (ln(ε−1))

α
2(1−β) , if β < 2.

Together with (27) this yields the asymptotic estimate for cost(A(ε), Lip1) as claimed.
It remains to establish the asymptotic upper bound for the error of A(ε). Observe that

∣∣∣S(f) − E(A(ε)(f))
∣∣∣ =

∣∣∣E(f(X)) − E(f(X(2L,p(2L))))
∣∣∣ ≤ E

∥∥∥X − X(2L,p(2L))
∥∥∥

H

and

Var
(
f(X(2,p(2)))

)
= Var

(
f(X(2,p(2))) − f(0)

)

≤ E
∣∣∣f(X(2,p(2))) − f(0)

∣∣∣
2 ≤ E

∥∥∥X(2,p(2))
∥∥∥

2

H
< ∞

as well as

Var
(
f(X(2ℓ,p(2ℓ))) − f(X(2ℓ−1,p(2ℓ−1)))

)

≤ 2 · E
∥∥∥X − X(2ℓ,p(2ℓ))

∥∥∥
2

H
+ 2 · E

∥∥∥X − X(2ℓ−1,p(2ℓ−1))
∥∥∥

2

H

for ℓ = 2, . . . , L, due to the Lipschitz continuity of f ∈ Lip1. From Theorem 3 we hence
get

sup
f∈Lip1

|S(f) − E(A(ε)(f))| � 2−L(β−1)/2 · L−α/2 ≍ z−1 · L−α/2 ≍ ε

as well as

sup
f∈Lip1

Var(A(ε)(f)) �
L∑

ℓ=1

1

Nℓ

· 2−ℓ(β−1) · ℓ−α ≍ K−1 ·
L∑

ℓ=1

2ℓ(1−β/2) · ℓ−α/2 ≍ ε2,

see (28), and therefore e(A(ε), Lip1, µ) � ε as claimed. �

The same analysis applies to the setting of a Brownian bridge X, as studied in Section
2.3. Here we employ a multilevel algorithm with the first 2ℓ − 1 and 2ℓ−1 − 1 terms,
respectively, of the Lévy-Ciesielski representation of X for levels ℓ ≥ 2, and with only
the first term for level ℓ = 1. Furthermore, the bit numbers are chosen according to
Theorem 2. Theorem 5 holds true also in this case with β = 2 and α = 0.
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In order to analyze the optimality of the random bit multilevel algorithm we consider
the n-th minimal error for the random bit quadrature problem, which is defined by

eres
n (Lip1, µ) = inf{e(A, Lip1, µ) : A restricted Monte Carlo algorithm, cost(A, Lip1) ≤ n}

for n ∈ N. For comparison we also consider

en(Lip1, µ) = inf{e(A, Lip1, µ) : A Monte Carlo algorithm, cost(A, Lip1) ≤ n}

Corollary 1. The n-th minimal error of restricted Monte Carlo algorithms satisfies

eres
n (Lip1, µ) � n− min(1/2,(β−1)/2) ·





1, if β > 2,

(ln(n))max(0,1−α/2), if β = 2 ∧ α 6= 2,

ln(ln(n)), if β = 2 ∧ α = 2,

(ln(n))−α/2, if β < 2.

The n-th minimal error of Monte Carlo algorithms satisfies

n−(β−1)/2 · (ln(n))−α/2 � en(Lip1, µ)

if β ≤ 2, and

lim sup
n→∞

(
en(Lip1, µ) ·

(
n1/2 · (ln(n))(1+β)/2 · (ln(ln(n)))α/2

))
> 0

if β > 2.

Proof. The first claim follows directly from Theorem 5. For the proof of the second claim
we consider the small ball function

φ(ε) = − ln(µ({v ∈ H : ‖v‖H ≤ ε}))

of µ, where ε ∈ ]0, ∞[. From [15, Proposition 4.3] or [16, Proposition 11.3] and (19) we
get

φ(ε) ≍ ε−2/(β−1) · (ln(ε−1))−α/(β−1)

for ε ∈ ]0, exp(−1)]. Combining this with [3, Thm. 10] yields the second claim. �

Remark 12. In the case β < 2, Corollary 1 provides sharp upper and lower bounds, up
to multiplicative constants, for the n-minimal errors with eres

n (Lip1, µ) ≍ en(Lip1, µ). For
β = 2 we have sharp bounds up to logarithmic factors, and, in particular, a superiority
of Monte Carlo algorithms over restricted Monte Carlo may at most be present on the
level of such logarithmic factors. For β > 2 the bounds are sharp only up to logarithmic
factors and up to the presence of a lim sup in the lower bound for en(Lip1, µ). Note that
for many infinite-dimensional quadrature problems the asymptotic behavior of minimal
errors is only known up to logarithmic factors.

The lower bounds from Corollary 1 are also true, if every random bit algorithm is
allowed to choose the hierarchy of subspaces Hn on its own and, roughly speaking, without
any restriction on the randomness that algorithms are allowed to use. Furthermore, the
general situation of a Banach space is considered in [3]. The upper bound from Corollary 1
improves the upper bound from [3, Thm. 10] in terms of powers of ln(n) or ln(ln(n)), if
β 6= 2 or α ≥ 1; the bounds do coincide in the remaining cases. For simplicity of the
presentation we omit the details; instead we refer to [3].
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Appendix A. Asymptotic Properties of Φ and Φ−1

We derive some asymptotic properties of the distribution function Φ and the inverse
distribution function Φ−1 of the standard normal distribution.

In the sequel, we write f(x) ≈ g(x) as x → ∞ for two functions f, g : ]a, ∞[ → R \ {0}
if

lim
x→∞

f(x)/g(x) = 1.

Analogously we define f(x) ≈ g(x) as x ց 0 and x ր 1, respectively.
We make use of

(29) 1 − Φ(x) ≈ x−1 · ϕ(x)

as x → ∞, which is well known and follows, e.g., from L’Hôpital’s Rule.

Lemma 7. We have

Φ−1(1 − 2−p) ≈
√

ln 4 · p1/2

as p → ∞.

Proof. With c =
√

ln 4 and x = 1 − 2−p, i.e., p = − log2(1 − x), we have to show that

Φ−1(x) ≈ c · (− log2(1 − x))1/2

as x ր 1. Setting x = Φ(y) this is equivalent to

y ≈ c ·
(
− log2(1 − Φ(y))

)1/2

as y → ∞. Due to (29) and L’Hôpital’s Rule we get in fact
(
− log2(1 − Φ(y))

)1/2 ≈ y/c

as y → ∞. �

Lemma 8. Let h be defined by (11). Then we have

2−p p · h
(
Φ−1(1 − 2−p)

)
≈
(√

2π ln 4
)−1

as p → ∞.

Proof. Let a = Φ−1(1 − 2−p). Use L’Hôpital’s Rule, or integration by parts, to verify

h(a) ≈ a−1 · exp(a2/2)

as a → ∞. Moreover, observe that

p ≈ a2/ ln 4

as p → ∞, see Lemma 7, and note that 1 − Φ(a) = 2−p. Altogether with (29), we obtain

2−p p · h(a) ≈ (1 − Φ(a)) · a2/ ln 4 · h(a) ≈
(√

2π ln 4
)−1

as p → ∞. �

Lemma 9. Let g be defined by (12). Then we have

g
(
Φ−1(1 − 2−(p+1))

)
≈ 2−p · p−1/ ln 4

as p → ∞.
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Proof. Set a = Φ−1(1 − 2−(p+1)). At first we show

(30) g(a) ≈ 2 · (1 − Φ(a)) · a−2

as a → ∞. By (29) this reduces to showing

g(a) ≈ 2 · ϕ(a) · a−3

as a → ∞. To this end we compute the following derivatives

g′(a) = −2 ·
∫

[a,∞[
(x − a) · ϕ(x) dx,

g′′(a) = 2 ·
∫

[a,∞[
ϕ(x) dx,

g′′′(a) = −2 · ϕ(a)

as well as

d

da

(
ϕ(a) · a−3

)
= −ϕ(a) · a−2 − 3 · ϕ(a) · a−4,

d

da

(
−2 · ϕ(a) · a−2

)
= 2 · ϕ(a) · a−1 + 4 · ϕ(a) · a−3,

d

da

(
2 · ϕ(a) · a−1

)
= −2 · ϕ(a) − 2 · ϕ(a) · a−2.

Using three times L’Hôpital’s Rule yields

lim
a→∞

g(a)

2 · ϕ(a) · a−3
= lim

a→∞

g′(a)

−2 · ϕ(a) · a−2

= lim
a→∞

g′′(a)

2 · ϕ(a) · a−1

= lim
a→∞

g′′′(a)

−2 · ϕ(a)
= 1.

Finally, having (30) at hand, Lemma 7 finishes the proof. �

Lemma 10. For 0 < x < 1 define

u(x) = ϕ
(
Φ−1(1 − x)

)

and

v(x) = x · (ln(x−1))1/2.

Then we have

u(x) ≈
√

2 · v(x)

as x ց 0.

Proof. Set ũ(x) = u(x)2 as well as ṽ(x) = v(x)2. The derivatives read as

ũ′(x) = 2 · ϕ
(
Φ−1(1 − x)

)
· Φ−1(1 − x),

ũ′′(x) = 2 ·
(
Φ−1(1 − x)

)2 − 2

as well as

ṽ′(x) = −2 · x · ln(x) − x,

ṽ′′(x) = −2 · ln(x) − 3.
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Consequently, two times L’Hôpital yields

lim
x→0

ṽ(x)

ũ(x)
= lim

x→0

−2 · ln(x) − 3

2 · (Φ−1(1 − x))2 − 2
= lim

x→0

ln(x−1)

(Φ−1(1 − x))2
.

Now, Lemma 7 yields
(
Φ−1(1 − x)

)2 ≈ 2 · ln 2 · log2(x
−1) = 2 · ln(x−1)

as x ց 0. Altogether we obtain

ṽ(x) ≈ ũ(x)/2

as x ց 0. �

Lemma 11. We have

Φ−1(b) − Φ−1(a) � (b − a) · (1 − a)−1 · (− ln(1 − a))−1/2

uniformly in 1/2 < a < b < 1.

Proof. The mean value theorem yields the existence of m ∈ ]a, b[ such that

Φ−1(b) − Φ−1(a) = (b − a) · (Φ−1)′(m) ≥ (b − a) ·
(
ϕ(Φ−1(a))

)−1
.

The statement is now an immediate consequence of Lemma 10. �
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