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Abstract
Signals and images with discontinuities appear in many problems in such diverse
areas as biology, medicine, mechanics and electrical engineering. The concrete data
are often discrete, indirect and noisy measurements of some quantities describing the
signal under consideration. A frequent task is to find the segments of the signal or
image which corresponds to finding the discontinuities or jumps in the data. Meth-
ods based on minimizing the piecewise constant Mumford–Shah functional—whose
discretized version is known as Potts energy—are advantageous in this scenario, in
particular, in connectionwith segmentation. However, due to their non-convexity,min-
imization of such energies is challenging. In this paper, we propose a new iterative
minimization strategy for the multivariate Potts energy dealing with indirect, noisy
measurements. We provide a convergence analysis and underpin our findings with
numerical experiments.
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1 Introduction

Problems involving reconstruction tasks for functions with discontinuities appear in
various biological and medical applications. Examples are the steps in the rotation of
the bacterial flagella motor [70,78,79], the cross-hybridization of DNA [30,44,77], X-
ray tomography [74], electron tomography [49] and SPECT [51,93]. An engineering
example is crack detection in brittle material in mechanics [3]. Further examples may
for instance be found in the papers [22,25,34,58,59] and the references therein. In
general, signals with discontinuities appear in many applied problems. A central task
is to restore the jumps, edges, change points or segments of the signals or images from
the observed data. These observed data are usually indirectly measured. Furthermore,
they consist ofmeasurements on a discretized grid and are typically corrupted by noise.

In many scenarios, non-convex nonsmooth variational methods are a suitable
choice for the partitioning task, i.e., the task of finding the jumps/edges/change
points; see for example [13,58,70]. In particular, methods based on piecewise constant
Mumford–Shah functionals [62,63] have been used in various different applications.
The piecewise constant Mumford–Shah model also appears in statistics and image
processing where it is often called Potts model [13–15,36,72,91]; this is a tribute to
RenfreyB. Potts and hiswork in statisticalmechanics [73]. The variational formulation
of the piecewise constant Mumford–Shah/Potts model (with an indirect measurement
term) is given by

argminu γ ‖∇u‖0 + ‖Au − f ‖22 . (1)

Here, A is a linear operator modeling the measurement process, e.g., the Radon trans-
form in computed tomography (CT), or the point-spread function of the microscope
in microscopy. Further, f is an element of the data space, e.g., a sinogram or part of
it in CT, or the blurred microscopy image in microscopy. The mathematically precise
definition of the jump term ‖∇u‖0 in the general situation is rather technical. How-
ever, if u is piecewise constant and the discontinuity set of u is sufficiently regular,
say, a union of C1 curves, then ‖∇u‖0 is just the total arc length of this union. In
general, the gradient ∇u is given in the distributional sense and the boundary length
is expressed in terms of the (d − 1)-dimensional Hausdorff measure. When u is not
piecewise constant, the jump penalty is infinite [75]. The second term measures the
fidelity of a solution u to the data f . The parameter γ > 0 controls the balance
between data fidelity and jump penalty. (A wider class of Mumford–Shah models can
be obtained by replacing the squared L2 distance by more general data terms such as
other norm-based expressions or divergences.)

The piecewise constantMumford–Shah/Pottsmodel can be interpreted in twoways.
On the one hand, if the imaged object is (approximately) piecewise constant, then the
solution is an (approximate) reconstruction of the imaged object. On the other hand,
since a piecewise constant solution directly induces a partitioning of the image domain,
it can be seen as joint reconstruction and segmentation. Executing reconstruction and
segmentation jointly typically leads to better results than performing the two steps
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successively [51,74,75,85]. We note that in order to deal with the discrete data, the
energy functional is typically discretized; see Sect. 2.1. Some references concerning
Mumford–Shah functionals are [2,8,18,33,45,67,75] and also the references therein;
see also the book [1]. The piecewise constant Mumford–Shah functionals are among
themaybemost well-known representatives of the class of free-discontinuity problems
introduced by De Giorgi [29].

The analysis of the nonsmooth and non-convex problem (1) is rather involved.
We discuss some analytic aspects. We first note that without additional assumptions
the existence of minimizers of (1) is not guaranteed in a continuous domain setting
[32,33,75,84]. To ensure the existence of minimizers, additional penalty terms such
as an L p (1 < p < ∞) term of the form ‖u‖p

p [74,75] or pointwise boundedness
constraints [45] have been considered. We note that the existence of minimizers is
guaranteed in the discrete domain setup for typical discretizations [33,84]. Another
important topic is to verify that the Potts model is a regularization method in the sense
of inverse problems. The first work dealing with this task is [75]: The authors assume
that the solution space consists of non-degenerate piecewise constant functions with
at most k (arbitrary, but fixed) different values which are additionally bounded. Under
relatively mild assumptions on the operator A, they show stability. Further, by giving
a suitable parameter choice rule, they show that the method is a regularizer in the
sense of inverse problems. Related references are [45,50] with the latter including
(non-piecewise constant) Mumford–Shah functionals. We note that Mumford–Shah
approaches (including the piecewise constant Mumford–Shah variant) also regularize
the boundaries of the discontinuity set of the underlying signal [45].

Solving the Potts problem is algorithmically challenging. For A = id, it is NP-hard
formultivariate domains [13,87], and, for general linear operators A, it is evenNP-hard
for univariate signals [84]. Thus, finding a global minimizer within reasonable time
seems to be unrealistic in general. Nevertheless, due to its importance, many approx-
imative strategies for multivariate Potts problems with A = id have been proposed.
(We note that the case A = id is important as well since it captures the partitioning
problem in image processing.) For the Potts problem with general A there are still
some but not that many existing approaches, in particular in the multivariate situ-
ation. For a more detailed discussion, we refer to the paragraph on algorithms for
piecewise constant Mumford–Shah problems below. A further discussion of methods
for reconstructing piecewise constant signals may be found in [59]. In [90], we have
considered the univariate Potts problem for a general operator A and have proposed
a majorization–minimization strategy which we called iterative Potts minimization
in analogy to iterative thresholding schemes. In this work, we will develop iterative
Potts minimization schemes for the more demanding multivariate situation which is
important for multivariate applications as appearing in imaging problems.

Existing Algorithmic Approaches to the Piecewise Constant Mumford–Shah Prob-
lem and Related Problems We start to consider the Potts problem for general operator
A. In [5], Bar et al. consider anAmbrosio–Tortorelli-type approximation.Kimet al. use
a level-set-based active contour method for deconvolution in [48]. Ramlau and Ring
[74] employ a related level-set approach for the joint reconstruction and segmentation
of X-ray tomographic images; further applications are electron tomography [49] and
SPECT [51]. The authors of the present paper have proposed a strategy based on the
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alternating methods of multipliers in [84] for the univariate case and in [85] for the
multivariate case.

Fornasier and Ward [33] rewrite Mumford–Shah problems as a pointwise penal-
ized problem and derive generalized iterative thresholding algorithms for the rewritten
problems in the univariate situation. Further, they show that their method converges to
a local minimizer in the univariate case. Their approach principally carries over to the
piecewise constant Mumford–Shah functional as explained in [84,90] and then results
in a �0 sparsity problem. In the univariate situation, this NP-hard optimization prob-
lem is unconstrained and may be addressed by iterative hard thresholding algorithms
for �0 penalizations, analyzed by Blumensath and Davies in [9,10]. (Note that related
algorithms based on iterative soft thresholding for �1 penalized problems have been
considered by Daubechies, Defrise and De Mol in [28].) Artina et al. [3] in particular
consider the multivariate discrete Mumford–Shah model using the pointwise penal-
ization approach of [33]. In the multivariate setting, this results in a corresponding
non-convex and nonsmooth problem with linear constraints. The authors successively
minimize local quadratic and strictly convex perturbations (depending on the previ-
ous iterate) of a (fixed) smoothed version of the objective by augmented Lagrangian
iterations which themselves can be accomplished by iterative thresholding via a Lips-
chitz continuous thresholding function. They show that the accumulation points of the
sequences produced by their algorithm are constraint critical points of the smoothed
problem. In the multivariate situation, a similar approach for rewriting the Potts prob-
lem results in an �0 sparsity problem with additional equality constraints. Algorithmic
approaches for such �0 sparsity problem with equality constraints are the penalty
decomposition methods of [60,61,96]. The connection with iterative hard threshold-
ing is that the inner loop of the employed two-stage process usually is of iterative
hard thresholding type. The difference of the hard thresholding-based methods to our
approach in this paper is that we do not have to deal with constraints and the full
matrix A but with the nonseparable regularizing term ‖∇u‖0 instead of its separable
counterpart ‖u‖0. Hence, we cannot use hard thresholding.

Another frequently appearing method in the context of restoration of piecewise
constant images is total variation minimization [76]. There the jump penalty ‖∇u‖0
is replaced by the total variation ‖∇u‖1. The arising minimization problem is con-
vex and therefore numerically tractable with convex optimization techniques [21,26].
Candès, Wakin and Boyd [17] use iteratively reweighted total variation minimization
for piecewise constant recovery problems. Results of compressed sensing type related
to the Potts problem have been derived by Needell and Ward [65,66]: under certain
conditions, minimizers of the Potts function agree with total variation minimizers.
However, in the presence of noise, total variation minimizers might significantly dif-
fer fromminimizers of the Potts problem. But the minimizers of the Potts problem are
the results frequently desired in practice. Further, algorithms based on convex relax-
ations of the Potts problem (1) have gained a lot of interest in recent years; see, e.g.,
[4,16,20,37,56,86].

We next discuss approaches for the multivariate Potts problem for the situation
A = id which is particularly interesting in image processing and for which there are
some further approaches. The first class of approaches is the approach via graph cuts.
Here, the range space of u is a priori restricted to a relatively small number of values.
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The problem remains NP-hard, but it then allows for an approach by sequentially
solving binary partitioning problems via minimal graph cut algorithms [12,13,52].
We here point out that this approach also can deal with (possibly non-convex) data
fidelity terms more general than the squared L2 data term employed in (1) (in the
case A = id). Another approach is to limit the number k of different values which
u may take without discretizing the range space a priori. For k = 2, active contours
were used by Chan and Vese [24] to minimize the corresponding binary Potts model.
They use a level-set function to represent the partitions which evolves according to
the Euler–Lagrange equations of the Potts model. A globally convergent strategy for
the binary segmentation problem is presented in [23]. The active contour method
for k = 2 was extended to larger k in [88]. Note that, for k > 2 the problem is
NP-hard. We refer to [27] for an overview on level-set segmentation. In [40–42],
Hirschmüller proposes a non-iterative strategy for the Potts problem which is based
on cost aggregation. It has lower computational cost, but comes with lower quality
reconstructions compared with graph cuts. Due to the small number of potential values
ofu, thesemethodsmainly appear in connectionwith image segmentation.Methods for
restoring piecewise constant images without restricting the range space are proposed
in Nikolova et al. [68,69]. They use non-convex regularizers which are algorithmically
approached using a graduated non-convexity approach.We note that the Potts problem
(1) does not fall into the class of problems considered in [68,69]. Last but not least, Xu
et al. [94] proposed a piecewise constant model reminiscent of the Potts model that is
approached by a half-quadratic splitting using a pixelwise iterative thresholding type
technique. It was later extended to a method for blind image deconvolution [95].

Contributions The contributions of this paper are threefold: (i) We propose a
new iterative minimization strategy for multivariate piecewise constant Mumford–
Shah/Potts objective functions as well as a (still NP-hard) quadratic penalty relaxation.
(ii) We provide a convergence analysis of the proposed schemes. (iii) We show the
applicability of our schemes in several experiments.

Concerning (i), we propose two schemes which are based on majorization–
minimization or forward–backward splittingmethods of Douglas–Rachford type [57].
The one scheme addresses the Potts problem directly, whereas the other scheme treats
a quadratic penalty relaxation. The solutions of the relaxed problem themselves are
not feasible for the Potts problem but near to a feasible solution of the Potts problem
where nearness can be quantified. In particular, when a given tolerance in applications
is acceptable the relaxed scheme is applicable. In contrast to the approaches in [9,33]
and [60,61] for sparsity problems which lead to thresholding algorithms, our approach
leads to non-separable yet computationally tractable problems in the backward step.

Concerning (ii), we first analyze the proposed quadratic penalty relaxation scheme.
In particular, we show convergence toward a local minimizer. Due to the NP-hardness
of the quadratic penalty relaxation, the convergence result is in the range of what can
be expected best. Concerning the scheme for the non-relaxed Potts problem we also
perform a convergence analysis. In particular, we obtain results on the convergence
toward local minimizers on subsequences. The quality of the convergence results is
comparable with the ones in [60,61]. We note that compared with [60,61] we face the
additional challenge to deal with the non-separability of the backward step. (We note
that in practice we observe convergence of the whole sequence, not on a subsequence.)
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Concerning (iii) we consider problems with full and partial data. We begin to apply
our algorithms to deconvolution problems. In particular, we consider deblurring and
denoising Gaussian blur images and motion blur images, respectively. We further
consider noisy and undersampled Radon data, together with the task of joint recon-
struction, denoising and segmentation. Finally, we use our method in the situation
of pure image partitioning (without blur) which is a widely considered problem in
computer vision.

Organization of the Paper In Sect. 2, we derive the proposed algorithmic schemes.
In Sect. 3, we provide a convergence analysis for the proposed schemes. In Sect. 4, we
apply the algorithms derived in the present paper to concrete reconstruction problems.
In Sect. 5, we draw conclusions.

2 Majorization–Minimization Algorithms for Multivariate Potts
Problems

2.1 Discretization

We use the following finite difference type discretization of the multivariate Potts
problem (1) given by

Pγ (u) = ‖Au − f ‖22 + γ

S∑

s=1

ωs
∥∥∇as u

∥∥
0 , (2)

where the as ∈ Z
2 come from a finite set of directions and the symbol ∇as u (i, j)

denotes the directional difference u(i, j)+as − ui, j with respect to the direction as at
the pixel (i, j). The symbol ‖∇as u‖0 denotes the number of nonzero entries of ∇as u.

The simplest set of directions consists of the unit vectors a1 = (0, 1), a2 = (1, 0)
along with unit weights. Unfortunately, when refining the grid, this discretization
converges to a limit that measures the boundary in terms of the �1 analogue of the
Hausdorff measure [18]. The practical consequences are unwanted block artifacts
in the reconstruction (geometric staircasing). More isotropic results are obtained by
adding the diagonals a3 = (1, 1), a4 = (1,−1) to the directions a1 and a2; a near
isotropic discretization can be achieved by extending this system by the knight moves
a5 = (1, 2), a6 = (2, 1), a7 = (1,−2), a8 = (2,−1). (The name is inspired by the
possible moves of a knight in chess.) Weights ωs for the system {a1, a2, a3, a4} of
coordinate directions and diagonal directions can be chosen as ωs = √

2 − 1 for the

coordinate part s = 1, 2 andωs = 1−
√
2
2 for diagonal part s = 3, 4.When additionally

adding knight-move directions, weights ωs for the system {a1, . . . , a8} can be chosen
as ωs = √

5 − 2 for the coordinate part s = 1, 2, ωs = √
5 − 3

2

√
2 for diagonal

part s = 3, 4, and ωs = 1
2 (1 + √

2 − √
5) for diagonal part s = 5, . . . , 8. There are

several ways to derive weights ωs for the neighborhood systems: the method of [19]
is based on an optimization approach, the method of [11] is based on the Cauchy–
Crofton formula, and the approach of [85] is based on equating the Euclidean lengths
of straight lines and the lengths of their digital counterparts.We note that for the system
{a1, a2, a3, a4} of coordinate directions and diagonal directions the weights of [19]
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and in [85] coincide; the weights displayed for the knight-move case above are the
ones derived by the scheme in [85]. For further details, we refer to these references.

We record that the considered problem (2) has a minimizer.

Theorem 1 The discrete multivariate Potts problem (2) has a minimizer.

The validity of Theorem 1 can be seen by following the lines of the proof of [43,
Theorem 2.1] where an analogous statement is shown for the (non-piecewise constant)
Mumford–Shah problem.

Vector-Valued Images We briefly discuss the extension of (2) to vector-valued
images and multi-channel data, e.g., (blurred) RGB color images. To this end, we
assume multi-channel data f = ( f1, . . . , fC ) consisting of C channels and images
u = (u1, . . . , uC ). In this situation, the role of the first summand on the right-hand side
of (2) is taken by the channel-wise sum

∑C
c=1 ‖Auc − fc‖22. The symbol ∇as u(i, j)

now denotes the vector of directional differences with entries u(i, j)+as ,c − ui, j,c,
c = 1, . . . , C and the entirety of these vectors form the rows of ∇uas . Consequently,
‖∇as u‖0 denotes the number of nonzero rows of∇as u. As a result, introducing a jump
between two pixels in all channels has the same costs as opening a jump in a single
channel only. This enforces the jumps to be aligned across the channels which is in
contrast to a channel-wise application of the single-channel Potts model (2).

2.2 Derivation of the Proposed Algorithmic Schemes

We start out with the discretization (2) of the multivariate Potts problem.We introduce
S versions u1, . . . , uS of the target u and link them via equality constraints in the
following consensus form to obtain the problem

Pγ (u1, . . . , uS) → min, s.t. u1 = . . . = uS, (3)

where the function Pγ (u1, . . . , uS) of the S variables u1, . . . , uS is given by

Pγ (u1, . . . , uS) =
S∑

s=1

1

S
‖Aus − f ‖22 + γ

S∑

s=1

ωs
∥∥∇as us

∥∥
0 . (4)

Note that solving (3) is equivalent to solving the discrete Potts problem (2). Further,
note that we have overloaded the symbol Pγ which, for one argument u, denotes the
Potts function of (2) and for S arguments u1, . . . , uS denotes the energy function of
(4); we have the relation Pγ (u, . . . , u) = Pγ (u).

A Majorization–Minimization Approach to the Quadratic Penalty Relaxation of the
Potts Problem The quadratic penalty relaxation of (4) is given by

Pγ,ρ(u1, . . . , uS) =
S∑

s=1

1

S
‖Aus − f ‖22 + γ

S∑

s=1

ωs
∥∥∇as us

∥∥
0

+ρ
∑

1≤s<s′≤S

cs,s′ ‖us − us′ ‖22. (5)
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Here, the soft constraints which replace the equalities u1 = . . . = uS are realized
via the squared Euclidean norms

∑
1≤s<s′≤S cs,s′ ‖us − us′ ‖22, where the nonnegative

numbers cs,s′ denote weights (which may be set to zero if no direct coupling between
the particular us, us′ is desired.) The symbol ρ denotes a positive penalty parameter
promoting the soft constraint, i.e., increasing ρ enforces the ui to be closer to each
other w.r.t. the Euclidean distance. We note that we later analytically quantify the size
of ρ which is necessary to obtain an a priori prescribed tolerance in the ui ; see (18).
Frequently, we use the short-hand notation

ρs,s′ = ρ cs,s′ . (6)

Typical choices of the ρs,s′ are

ρs,s′ = ρ for all s, s′, or ρs,s′ = ρ δ((s+1)mod S),s′ , (7)

i.e., the constant choice (cs,s′ = 1), as well as the coupling between consecutive
variables with constant parameter (δs,t = 1 if and only if s = t, and δs,t = 0
otherwise.) We note that in these situations only one additional positive parameter ρ

appears, and that this parameter is tied to the tolerance one is willing to accept as a
distance of the ui ; see Algorithm 1.

For the majorization–minimization approach, we derive a surrogate functional [28]
of the function Pγ,ρ(u1, . . . , uS) of (5). For this purpose, we introduce the block
matrix B and the vector g given by

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S−1/2A 0 · · · 0

0 S−1/2A · · · 0
...

. . .
...

0 0 · · · S−1/2A 0

0 0 · · · 0 S−1/2A

ρ
1/2
1,2 I −ρ

1/2
1,2 I 0 . . . 0 0

ρ
1/2
1,3 I 0 −ρ

1/2
1,3 I . . . 0 0

...
...

ρ
1/2
1,S I 0 0 . . . 0 −ρ

1/2
1,S I

0 ρ
1/2
2,3 I −ρ

1/2
2,3 I . . . 0 0

...
...

0 ρ
1/2
2,S I 0 . . . 0 −ρ

1/2
2,S I

...

...

0 0 0 . . . ρ
1/2
S−1,S I −ρ

1/2
S−1,S I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, g =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S−1/2 f
S−1/2 f

...

S−1/2 f
S−1/2 f

0
0
...

0
0
...

0
...
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

123



Foundations of Computational Mathematics (2021) 21:649–694 657

Here, I denotes the identity matrix and 0 the zero matrix; The matrix B has S block
columns and S + S(S −1)/2 block rows. Further, we introduce the difference operator
D given by

D(u1, . . . , uS) =
⎛

⎜⎝
∇a1u1

...

∇aS uS

⎞

⎟⎠ (9)

which applies the difference w.r.t. the i th direction to the i th component of u. We
employ the weights ω1, . . . , ωS to define the quantity ‖D(u1, . . . , uS)‖0,ω which
counts the weighted number of jumps by

‖D(u1, . . . , uS)‖0,ω =
S∑

s=1

ωs
∥∥∇as us

∥∥
0 . (10)

With all this comprehensive notation at hand, we may rewrite the function of (5) as

Pγ,ρ(u1, . . . , uS) =
∥∥∥B(u1, . . . , uS)T − g

∥∥∥
2

2
+ γ

∥∥∥ D(u1, . . . , uS)

∥∥∥
0,ω

. (11)

Using the representation (11), the surrogate functional in the sense of [28] of Pγ,ρ is
given by

Psurr
γ,ρ (u1, . . . , uS, v1, . . . , vS) = 1

L2
ρ

∥∥∥B(u1, . . . , uS)T − g
∥∥∥
2

2
+ γ

L2
ρ

∥∥∥ D(u1, . . . , uS)

∥∥∥
0,ω

(12)

− 1

L2
ρ

∥∥∥B(u1, . . . , uS)T − B(v1, . . . , vS)T
∥∥∥
2

2

+
∥∥∥(u1, . . . , uS)T − (v1, . . . , vS)T

∥∥∥
2

2
.

Here, Lρ ≥ 1 denotes a constant which is chosen larger than the spectral norm ‖B‖
of B (i.e., the operator norm w.r.t. the �2 norm.) This scaling is made to ensure that
B/Lρ is contractive. In terms of A and the penalties ρs,s′ , we require that

L2
ρ > ‖A‖22/S + 2 max

s∈{1,...,S}

S∑

s′:s′ �=s

ρs,s′ . (13)

For the particular choice ρs,s′ = ρ as on the left-hand side of (7) we can choose L2
ρ

smaller, i.e., L2
ρ > ‖A‖22/S + Sρ. For only coupling neighboring us with the same

constant ρ, i.e., the right-hand coupling of (7), we have L2
ρ > ‖A‖22/S + αρ, where

α = 4, if S is even, and α = 2− 2 cos
(

π(S−1)
S

)
if S is odd. These choices ensure that

B/Lρ is contractive by Lemma 1. Basics on surrogate functionals as we need them
for this paper are gathered in Sect. 3.4. Further details on surrogate functionals can be
found in [9,10,28].
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Using elementary properties of the inner product shows that

Psurr
γ,ρ (u1, . . . , uS, v1, . . . , vS)

=
∥∥∥∥(u1, . . . , uS)T −

(
(v1, . . . , vS)T − 1

L2
ρ

BT(B(v1, . . . , vS)T − g)

)∥∥∥∥
2

2

+ γ

L2
ρ

∥∥∥D(u1, . . . , uS)

∥∥∥
0,ω

+ R(v1, . . . , vS), (14)

where R(v1, . . . , vS) is a rest term which is irrelevant when minimizing Psurr w.r.t.
u1, . . . , uS for fixed v1, . . . , vS . Writing this down in terms of the original system
matrix A and the data f yields

Psurr
γ,ρ (u1, . . . , uS, v1, . . . , vS) (15)

=
S∑

s=1

⎡

⎢⎣

∥∥∥∥∥∥
us −

⎛

⎝vs + 1
SL2

ρ
A∗ f − 1

SL2
ρ

A∗ Avs −
∑

s �=s′

ρs,s′
L2

ρ
(vs − vs′)

⎞

⎠

∥∥∥∥∥∥

2

2

+ γωs
L2

ρ

∥∥∇as us
∥∥
0

⎤

⎥⎦ + R(v).

For the quadratic penalty relaxation of the Potts problem, i.e., for minimizing
the problem (5), we propose to use the surrogate iteration, i.e., u(n+1)

1 , . . . , u(n+1)
S

∈ argminu1,...,uS
Psurr

γ,ρ (u1, . . . , uS, u(n)
1 , . . . , u(n)

S ).Applied to (15), this surrogate iter-
ation reads

(
u(n+1)
1 , . . . , u(n+1)

S

)
∈ argmin

u1,...,uS

S∑

s=1

[∥∥∥us − h(n)
s

∥∥∥
2

2
+ γωs

L2
ρ

∥∥∇as us
∥∥
0

]
(16)

where h(n)
s is given by

h(n)
s = u(n)

s + 1
SL2

ρ
A∗ f − 1

SL2
ρ

A∗ Au(n)
s −

∑

s′:s′ �=s

ρs,s′
L2

ρ
(u(n)

s − u(n)
s′ ), for all s ∈ {1, . . . , S}.

(17)
Note that in Sect. 2.3, we derive an efficient algorithm which computes an exact
minimizer of (16). Now assume that we are willing to accept a deviation between the
us which is small, i.e.,

‖us − us′ ‖22 =
∑

i, j

|(us)i j − (us′)i j |2 < ε2

cs,s′
, (18)

for ε > 0 and for indices s, s′ with cs,s′ �= 0. The following algorithm computes a
result fulfilling (18).
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Algorithm 1 We consider the quadratic penalty relaxed Potts problem (5) and toler-
ance ε for the targets us we are willing to accept. We propose the following algorithm
for the relaxed Potts problem (5) (which yields a result with targets us deviating from
each other by at most ε/

√
cs,s′ ).

– Set ρ according to (34), set Lρ according to (13) (or, in the special cases of (7),
as below (34) and (13).)

– Initialize u(n)
s as discussed in the corresponding paragraph below, (e.g., u(n)

s = 0
for all s.)

– Iterate until convergence:

1. h(n)
s = u(n)

s + 1
SL2

ρ
A∗ f − 1

SL2
ρ

A∗ Au(n)
s −

∑

s′ :s′ �=s

ρs,s′
L2

ρ
(u(n)

s − u(n)

s′ ), s = 1, . . . , S,

2.
(

u(n+1)
1 , . . . , u(n+1)

S

)
∈ argmin

u1,...,uS

S∑

s=1

[∥∥∥us − h(n)
s

∥∥∥
2

2
+ γωs

L2
ρ

∥∥∇as us
∥∥
0

]
. (19)

We will see in Theorem 3 that this algorithm converges to a local minimizer of the
quadratic penalty relaxation (5) and that the us are ε-close, i.e., (18) is fulfilled.

The relation between the Potts problem and its quadratic penalty relaxation and
obtaining a feasible solution for the Potts problem (4) from the output of Algo-
rithm 1. As pointed out above, we show in Theorem 3 that Algorithm 1 produces a
local minimizer of the quadratic penalty relaxation (5) of the Potts problem (4) and
that the corresponding variables of a resulting solution are close up to an a priori pre-
scribed tolerance. This may in practice be already enough. However, strictly speaking
a local minimizer of the quadratic penalty relaxation (5) is not feasible for the Potts
problem (4).

We will now explain a projection procedure to derive a feasible solution for the
Potts problem (4) from a local minimizer of (5) with nearby variables us (as produced
by Algorithm 1.) Related theoretical results are stated as Theorem 4. In particular, we
will see that in case the image operator A is lower bounded, the projection procedure
applied to the output of Algorithm 1 yields a feasible point which is close to a local
minimizer of the original Potts problem (4).

In order to explain the averaging procedure, we need some notions on partitionings.
Recall that a partitioning P consists of a (finite number of) segments Pi which are
pairwise disjoint sets of pixel coordinates whose union equals the image domain 
,

i.e.,

∪NP
i=1Pi = 
, Pi ∩ P j = ∅ for all i, j = 1, . . . , NP . (20)

Here, we assume that each segment Pi is connected w.r.t. the neighborhood system
a1, . . . , aS in the sense that there is a path connecting any two elements in Pi with
steps in a1, . . . , aS .

We will need the following proposed notion of a directional partitioning. A direc-
tional partition w.r.t. a set of S directions a1, . . . , aS consists of a set I of (discrete)
intervals I , where each interval I is associated with exactly one of the directions
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a1, . . . , aS; here, an interval I associated with the direction as has to be of the form
I = {(i, j) + kas : k = 0, . . . , K − 1}, where K ∈ N and I belongs to the discrete
domain. (For each direction as , the corresponding intervals form an ordinary parti-
tion.) We note that Algorithm 1 which produces output u = (u1, . . . , uS) : 
 → R

s

induces a directional partitioning as follows. We observe that each variable us is asso-
ciated with a direction as . For any s ∈ {1, . . . , S}, we let each (maximal) interval of
constance of us be an interval in I associated with as .

Each partitioning induces a directional partitioning I by letting the intervals I
of I be the stripes with direction as obtained from segment Pi for each direction
s = 1, . . . , S and each segment Pi , i = 1, . . . , NP . Furthermore, each directional
partitioning I induces a partitioning by the following merging process.

Definition 1 We say that pixels x, y are related, in symbols, x ∼ y, if there is a path
x0 = x, . . . , xN = y connecting x, y in the sense that for any consecutive members
xi , xi+1, i = 1, . . . , N − 1, of the path there is an interval I of the directional
partitioning I containing both xi , xi+1.

The relation x ∼ y obviously defines an equivalence relation and the corresponding
equivalence classes Pi yield a partitioning on 
. We use the symbols

I(P) = IP , P(I) = PI , (21)

to denote the mappings assigning a partitioning a directional partitioning and vice
versa, respectively.

As a final preparation, we consider a function u = (u1, . . . , uS) : 
 → R
s as

produced byAlgorithm 1 and a partitioningP of
 and define the following projection
to a function πP (u) : 
 → R by

πP (u)|Pi =
∑

x∈Pi

∑S
s=1 us(x)

S #Pi
, (22)

where the symbol #Pi denotes the number of elements in the segment Pi . Hence, the
projection π defined via (22) averages w.r.t. all components of u and all members of
the segment Pi and so produces a piecewise constant function w.r.t. the partitioning
P.

Using these notions, we propose the following projection procedure.

Procedure 1 (Projection Procedure) We consider output u = (u1, . . . , uS) : 
 → R
s

of Algorithm 1 together with its induced directional partitioning I.

1. Compute the partitioning P(I) = PI induced by the directional partitioning I
as explained above (21).

2. Project u = (u1, . . . , uS) : 
 → R
s to πPI (u) using (22) for the partitioning

P(I) = PI , and return πPI (u) as output.

We notice that when having a partitioning PI solving the normal equation in the
space of functions constant on PI would be an alternative to the above second step
which, however, might be more expensive.
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A Penalty Method for the Potts Problem Based on a Majorization–Minimization
Approach for Its Quadratic Penalty Relaxation Intuitively, increasing the parameters
ρ during the iterations should tie the us closer together such that the constraint of (3)
should be ultimately fulfilled which results in an approach for the initial Potts problem
(2). Recall that ρs,s′ = ρ cs,s′ , was defined by (6), where the cs,s′ are nonnegative
numbers weighting the constraints. We here increase ρ while leaving the cs,s′ fixed
during this process.

Algorithm 2 We consider the Potts problem (3) in S variables (which is equivalent to
(2) as explained above). We propose the following algorithm for the Potts problem (3).

Let ρ(k) be a strictly increasing sequence (e.g., ρ(k) = τ kρ(0), with ρ0, τ > 1) and
δk → 0 be a strictly decreasing sequence converging to zero (e.g., δk = δ0/τ

k .)
Further, let

t > 2σ−1/2
1 S−1/2‖A‖ ‖ f ‖, (23)

where σ1 is the smallest nonzero eigenvalue of CTC with C given by (49). For the
particular choice of coupling given by the left-hand and right-hand side of (7) we
let

t > 2
S ‖A‖ ‖ f ‖, and t > 2(2 − 2 cos(2π/S))−1/2S−1/2‖A‖ ‖ f ‖,

(24)

respectively.
Initialize u(0)

s := u(0,0)
s as discussed in the corresponding paragraph below, (e.g.,

u(0)
s = 0 for all s.)

Set ρ = ρ(0), ρs,s′ = ρ(0)cs,s′ , δ = δ0, k, n = 0; set Lρ according to (13) (or,
in the special cases of (7), as explained below (13))

A. While

∥∥∥u(k,n)
s − u(k,n)

s′
∥∥∥ >

t

ρ
√

cs,s′
, or

∥∥∥u(k,n)
s − u(k,n−1)

s

∥∥∥ >
δ

Lρ

(25)

do

1. h(k,n)
s = u(k,n)

s + 1
SL2

ρ
A∗ f − 1

SL2
ρ

A∗ Au(k,n)
s −

∑

s′:s′ �=s

ρs,s′
L2

ρ
(u(k,n)

s − u(k,n)

s′ ),

s = 1, . . . , S,

2.
(

u(k,n+1)
1 , . . . , u(k,n+1)

S

)
∈ argmin

u1,...,uS

S∑

s=1

[∥∥∥us − h(k,n)
s

∥∥∥
2

2
+ γωs

L2
ρ

∥∥∇as us
∥∥
0

]
,

(26)

and set n = n + 1.
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B. Set

u(k+1)
s = u(k+1,0)

s = u(k,n)
s , (27)

set k = k + 1, n = 0, and let ρ = ρ(k), ρs,s′ = ρ(k) cs,s′ , δ = δk; set Lρ

according to (13) (or, in the special cases of (7), as below (13)) and goto A.

This approach is inspired by [60] which considers quadratic penalty methods in
the sparsity context. There, the authors are searching for a solution with only a few
nonzero entries. The corresponding prior is separable. In contrast to this work, the
present work considers a non-separable prior.

Initialization Although the initialization of Algorithm 1 and of Algorithm 2 is not
relevant for its convergence properties (cf. Sect. 3), the choice of the initialization
influences the final result. (Please note that this also might happen for convex but not
strictly convex problems.) We discuss different initialization strategies. The simplest
choice is the all-zero initialization (u(0)

1 , . . . , u(0)
s ) = (0, . . . , 0). Likewise, one can

select the right-hand side of the normal equations of the underlying least squares prob-
lem, that is AT f . A third reasonable choice is the solution of the normal equation itself
or an approximation of it. Using an approximation might in particular be reasonable to
get a regularized approximation of the normal equation. A possible strategy to obtain
such a regularized initialization is to apply a fixed number of Landweber iterations [54]
or of the conjugate gradient method to the underlying least square problem. (In our
experiments, we initialized Algorithm 1 with the result of 1000 Landweber iterations
and Algorithm 2 with AT f .)

2.3 A Non-iterative Algorithm for Minimizing the Potts Subproblem (16)

Both proposed algorithms require solving the Potts subproblem (16) in the backward
step, see (19),(26).Wefirst observe that (16) can be solved for each of the us separately.
The corresponding s minimization problems are of the prototypical form

argmin
us :
→R

‖us − f ‖22 + γ ′
s‖∇as u‖0 (28)

with given data f , the jump penalty γ ′
s = γωs

L2
ρ

> 0 and the direction as ∈ Z
2. As a

next step, we see that (28) decomposes into univariate Potts problems for data along
the paths in f induced by as , e.g., for as = e1 those paths correspond to the rows of
f and we obtain a minimizer u∗

s of (28) by determining each of its rows individually.
The univariate Potts problem amounts to minimizing

P id,1d
γ (x) = ‖x − g‖22 + γ ‖∇x‖0 → min, (29)

where the data g is given by the restriction of f to the pixels in 
 of the form v + as z,
for z ∈ Z, i.e., g(z) = f (v + as z).
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Here, the offsetv is fixedwhen solving eachunivariate problem, but varied afterward
to get all lines in the image with direction as . The target to optimize is denoted by
x ∈ R

n and, in the resulting univariate situation, ‖∇x‖0 = |{i : xi �= xi+1}| denotes
the number of jumps of x .

It is well known that the univariate direct problem (29) has a unique minimizer.
Further these particular problems can be solved exactly by dynamic programming
[18,35,62,63,92] which we briefly describe in the following. For further details, we
refer to [35,82]. Assume we have computed minimizers xl of (29) for partial data
(g1, . . . , gl) for each l = 1, . . . , r , r < n. Then, the minimum value of (29) for
(g1, . . . , gr+1) can be found by

P id,1d
γ (xr+1) = min

l=1,...,r+1
P id,1d

γ (xl−1) + γ + E l:r+1, (30)

where we let x0 be the empty vector, P id,1d
γ (x0) = −γ and E l:r+1 be the quadratic

deviation of (gl , . . . , gr+1) from its mean. By denoting the minimizing argument in
(30) by l∗ the minimizer xr+1 is given by

xr+1 = (xl∗−1, μ[l∗,r ], . . . , μ[l∗,r ]), (31)

where μ[l∗,r ] is the mean value of (gl∗, . . . , gr ). Thus, we obtain a minimizer for full
data g by successively computing xl for each l = 1, . . . , n. By precomputing the
first and second moments of data g and storing only jump locations the described
method can be implemented in O(n2), [35]. Another way to achieve O(n2) is based
on the QR decomposition of the design matrix by means of Givens rotations, see [82].
Furthermore, the search space can be pruned to speed up computations [47,83].

We briefly describe the extensions of the above scheme necessary to approach (29)
for vector valued-data g ∈ R

n×C (e.g., the row of a color image). In this situation, the
symbol E l:r+1 in (30) denotes the sum of the quadratic deviations of (gl , . . . , gr+1)

from its channel-wise means. Further, μ[l∗,r ] ∈ R
C in (31) is the vector of channel-

wise means of the data (gl∗, . . . , gr ). On the computational side, the first and second
moments of each channel have to be precomputed separately. It is worth mentioning
that the theoretical computational costs of the described method grows only linearly in
the number of channels [83]. Thus, the proposed algorithm can be efficiently applied
to vector-valued images with a high-dimensional codomain.

3 Analysis

3.1 Analytic Results

In the course of the derivation of the proposed algorithms above, we consider the
quadratic penalty relaxation (5) of the multivariate Potts problem. Although it is more
straightforward to access algorithmically via our approach, we first note that this
problem is still NP-hard (as is the original problem).
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Theorem 2 Finding a (global) minimizer of the quadratic penalty relaxation (5) of the
multivariate Potts problem is an NP-hard problem.

The proof is given in Sect. 3.3. In Sect. 2.2, we have proposed Algorithm 1 to approach
the quadratic penalty relaxation of the multivariate Potts problem. We show that the
proposed algorithm converges to a local minimizer and that a feasible point of the
original multivariate Potts problem is nearby.

Theorem 3 We consider the iterative Potts minimization Algorithm 1 for the quadratic
penalty relaxation (5) of the multivariate Potts problem.

i. Algorithm 1 computes a local minimizer of the quadratic penalty relaxation (5)
of the multivariate Potts problem for any starting point. The convergence rate is
linear.

ii. We have the following relation between local minimizers L, global minimizers G
and the fixed points Fix(I) of the iteration of Algorithm 1,

G ⊂ Fix(I) ⊂ L. (32)

iii. Assume a tolerance ε we are willing to accept for the distance between the us, i.e.,

∑

s,s′
cs,s′ ‖us − us′ ‖22 =

∑

s,s′
cs,s′

∑

i, j

|(us)i j − (us′)i j |2 ≤ ε2. (33)

Running Algorithm 1 with the choice of the parameter ρ by

ρ > 2ε−1 σ
−1/2
1 S−1/2‖A‖‖ f ‖ (34)

(where σ1 is the smallest nonzero eigenvalue of CTC with C given by (49); for the
particular choice of the coupling given by (7), σ1 = S and σ1 = (2−2 cos(2π/S)),

respectively) yields a local minimizer of the quadratic penalty relaxation (5) such
that the us are close up to ε, i.e., (33) is fulfilled.

The proof is given in Sect. 3.5. A solution of Algorithm 1 is not a feasible point for the
initial Potts problem (3). However, we see below that it produces a δ-approximative
solution u∗ in the sense that there is μ∗ and a partitioning P∗ such that

∑

s,s′
cs,s′ ‖u∗

s − u∗
s′ ‖22 < δ, and L(μ∗) < δ, (35)

where L(μ∗) is given by (53). In this context, note that the conditions for a local
minimizer are given by

∑
s,s′ cs,s′ ‖u∗

s − u∗
s′ ‖22 = 0 and the Lagrange multiplier con-

dition L(μ∗) = 0. So (35) intuitively means that both the constraint and the Lagrange
multiplier condition are approximately fulfilled for the partitioning induced by u∗.

Further, given a solution ofAlgorithm1wefind a feasible point for thePotts problem
(3) (or, equivalently,(2)) which is nearby as detailed in the following theorem.
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Theorem 4 We consider the iterative Potts minimization Algorithm 1 for the quadratic
penalty relaxation (5) in connection with the (non-relaxed) Potts problem (3).

i. Algorithm 1 produces an approximative solution in the sense of (35) of the Potts
problem (3).

ii. The projection procedure (Procedure 1) proposed in Sect. 2.2 applied to the solu-
tion u′ = (u′

1, . . . , u′
S) of Algorithm 1 produces a feasible image û (together with

a valid partitioning) for the Potts problem (3) which is close to u′ in the sense that

‖u′
s − û‖ ≤ C1ε for all s ∈ {1, . . . , S}, (36)

where ε = maxs,s′ ‖u′
s − u′

s′ ‖ quantifies the deviation between the us . Here,
C1 = #
/4, where the symbol #
 denotes the number of elements in 
. If the
imaging operator A is lower bounded, i.e., there is a constant c > 0 such that
‖Au‖ ≥ c‖u‖, a local minimizer u∗ of the Potts problem (3) is nearby, i.e.,

‖u∗ − û‖ ≤
√

η

c
(37)

where
η :=

(
‖A‖2εC2

1 + 2‖A‖C1‖ f ‖2
)

ε. (38)

The proof of Theorem 4 can be found at the end of Sect. 3.4, where most relevant
statements are already shown in Sect. 3.3. Theorem 4 theoretically underpins the
fact that, on the application side, we may use Algorithm 1 for the Potts problem (3)
(accepting some arbitrary small tolerance we may fix in advance).

In addition, in Sect. 2.2, we have proposed Algorithm 2 to approach the Potts
problem (3). We first show that Algorithm 2 is well defined.

Theorem 5 Algorithm 2 is well defined in the sense that the inner iteration governed
by (25) terminates, i.e., for any k ∈ N, there is n ∈ N such that the termination
criterium given by (25) holds.

The proof of Theorem 5 is given in Sect. 3.6. Concerning the convergence properties
of Algorithm 2, we obtain the following results.

Theorem 6 We consider the iterative Potts minimization algorithm (Algorithm 2) for
the Potts problem (3).

– Any cluster point of the sequence u(k) is a local minimizer of the Potts problem
(3) (which implicitly implies that the components of each limit u∗ are equal, i.e.,
u∗

s = u∗
s′ for all s, s′.)

– If A is lower bounded, the sequence u(k) produced by Algorithm 2 has a cluster
point and the produced cluster points are local minimizers of the Potts problem
(3).

The proof of Theorem 6 can be found in Sect. 3.6.
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3.2 Estimates on Operator Norms and LagrangeMultipliers

Lemma 1 The spectral norm of the block matrix B given by (8) fulfills

‖B‖2 ≤
(

1
S ‖A‖22 + 2 max

s∈{1,...,S}

S∑

s′:s′ �=s

ρs,s′
) 1

2

. (39)

For the particular choice of constant ρs,s′ = ρ (independent of s, s′) as on the
left-hand side of (7), we have the improved estimate

‖B‖2 ≤
(

1
S ‖A‖22 + Sρ

) 1
2

. (40)

For only coupling neighboring us with the same constant ρ, i.e., the right-hand cou-
pling of (7), we have

‖B‖2 ≤
(

1
S ‖A‖22 + αρ

) 1
2

, where α =
{
4, if S is even,

2 − 2 cos
(

π(S−1)
S

)
, if S is odd.

(41)

Proof We decompose the matrix B according to B =
(

S−1/2 Ã
P̃

)
.Here, Ã denotes an

S × S-block diagonal matrix with each diagonal entry being equal to A, where A is
the matrix representing the forward/imaging operator; see (8). The matrix P̃ is given
as the lower

(S
2

) × S-block in (8) which represents the soft constraints.
Using this decomposition of B, we may decompose the symmetric and positive

(semidefinite) matrix BTB according to

BTB = 1
S ÃT Ã + P̃T P̃, (42)

where ÃT Ã is an S × S-block diagonal matrix with each diagonal entry being equal
to AT A, and P̃T P̃ is an S × S-block diagonal matrix with block entries given by

P̃T P̃ =

⎛

⎜⎜⎜⎜⎝

∑S
k=2 ρ1,k I −ρ1,2 I −ρ1,3 I . . . −ρ1,S I
−ρ1,2 I

∑S
k=1,k �=2 ρ2,k I −ρ2,3 I . . . −ρ2,S I

...
...

−ρ1,S I −ρ2,S I −ρ3,S I . . .
∑S−1

k=1 ρS,k I

⎞

⎟⎟⎟⎟⎠
, (43)

with ρl,k := ρk,l for l > k. Using Gerschgorin’s Theorem (see for instance [81]), the
eigenvalues of P̃ are contained in the union of the ballswith center xr = ∑S

k=1,k �=r ρr ,k

and radius xr = ∑S
k=1,k �=r | − ρr ,k |. These balls are all contained in the larger ball

with center 0 and radius 2 · maxr xr . This implies the general estimate (39).
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For seeing (40), we decompose an argument u = (u1, . . . , uS) according to u =
ū + u0 with an “average” part ū = ( 1S

∑S
i=1 ui , . . . ,

1
S

∑S
i=1 ui ) and u0 := u − ū

such that u0 has average 0, i.e.,
∑S

i=1 u0
i = 0, where 0 denotes the vector containing

only zero entries here. In the situation of (40), the matrix P̃T P̃ has the form P̃T P̃ =
ρ(S · I − (1, . . . , 1)(1, . . . , 1)T) We have P̃T P̃ū = 0. Further, P̃T P̃u0 = ρSu0.

Hence, the largest modulus of an eigenvalue of P̃T P̃ equals ρS which in turn shows
the estimate (40).

For seeing (41), we notice that in case of (41), the matrix P̃T P̃ has cyclic shift
structure with three nonzero entries in each line. The discrete Fourier matrix w.r.t. the
cyclic group of order S diagonalizes P̃T P̃ . The corresponding eigenvalues are given
by λk = ρ

(
2 − 2 cos

(
2π k

S

))
, where k = 0, . . . , S − 1. The largest modulus of an

eigenvalue is thus given by 4 ρ, if S is even, and by ρ ·
(
2 − 2 cos

(
π(S−1)

S

))
. ��

Note that the problem of estimating the operator norm of B in (39) involves com-
puting the operator norm of P̃ given by (43). This problem is intimately related to
computing the spectral norm of the Laplacian of a corresponding weighted graph
(e.g., [38,80]), in particular, we conclude from this link that the general estimate (39)
is sharp in the sense that the factor of 2 in front of the sum cannot be made smaller.
This is because, for a general graph, the spectral radius of the (normalized) Laplacian
has spectral norm smaller than two and this factor of two is sharp; cf. [38,80].

We recall that we have introduced the concept of a directional partitioning I and
discussed its relation with the concept of a partitioning near (21) above. For a function
f : 
 → R

S (representing its S component functions f1, . . . , fS : 
 → R) defined
on a grid 
, we consider the orthogonal projection PI associated with a directional
partition I by first sorting the intervals I into I1, . . . , IS according to their associated
directions as, s = 1, . . . , S, and then letting

PI f =
⎛

⎜⎝
PI1 f1

...

PIS fS

⎞

⎟⎠ , where PIs fs |I =
∑

x∈I fs(x)

#I
, (44)

i.e., the function PIs fs on the interval I is given as the arithmetic mean of fi on
the interval I for all intervals I ∈ Is, and for all s = 1, . . . , S. Here, the symbol
#I denotes the number of elements in I . We note that PI defines an orthogonal
projection on the corresponding �2 space of discrete functions f : 
 → R

S with the
norm ‖ f ‖2 = ∑

s,i |( fs)i |2 where i iterates through all the indices of fs .

We consider a partitioning P of 
, its induced directional partitioning IP w.r.t. a
set of S directions a1, . . . , aS, and the subspace

AP = PIP (�2(
,RS)) (45)

of functions which are constant on the intervals of the induced directional partitioning
IP (which equal the image of the orthogonal projection PIP .)

Functions g : 
 → R which are piecewise constant w.r.t. a partitioning P, i.e.,
they are constant on each segmentPi are in one-to-one correspondence with the linear
subspace BP of AP given by
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BP = { f ∈ AP : f1 = . . . = fS} (46)

as shown by the following lemma.

Lemma 2 There is a one-to-one correspondence between the linear space of piecewise
constant mappings w.r.t. the partitioning P, and the subspace BP of AP via the
mapping ι : g �→ (g, . . . , g).

Proof Let g be a piecewise constant mapping w.r.t. the partitioningP, then (g, . . . , g)

is constant on each interval I of the induced directional partitioning IP , and
(g, . . . , g) ∈ BP . This shows that ι is well defined in the sense that its range is
contained in BP . Obviously, ι is an injective linear mapping so that it remains to
show that any f ∈ BP is the image under ι of some g : 
 → R which is piecewise
constant w.r.t. the partitioning P. To this end, let f ∈ BP . By definition, f has the
form f = (g, . . . , g) for some g : 
 → R. Now, toward a contradiction, assume
there is a segment Pi and points x, y ∈ Pi with g(x) �= g(y). Since there is a path
x0 = x, . . . , xN = y connecting x, y in Pi with steps in a1, . . . , aS, we have that
for any i there is an interval I in the induced partitioning IP containing xi together
with xi+1. Since g is constant on each I in IP we get g(xi ) = g(xi+1) for all i which
implies g(x) = g(y). This contradicts our assumption and shows the lemma. ��

Using the identification given by Lemma 2, we define, for a given partitioning P,

the projection QP onto BP by

QP f =
⎛

⎜⎝
πP f

...

πP f

⎞

⎟⎠ , where π f |Pi =
∑S

s=1
∑

x∈Pi
fs(x)

#Pi S
, (47)

i.e., we average w.r.t. the segment and to all component functions as given by (22).
Since the components of QP f are all identical, we will not distinguish QP and πP in
the following. Thismeans thatwe also use the symbol QP f to denote the scalar-valued
function which is piecewise constant on the partitioning P.

On AP , we consider the problem

argmin
u1,...,uS

S∑

s=1

1

S
‖Aus − f ‖22 subject to Cu = 0, (48)

i.e., given the directional partitioning we are searching for a solution which belongs
to BP . Here, C denotes the matrix
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C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1,2 I −c1,2 I 0 . . . 0 0
c1,3 I 0 −c1,3 I . . . 0 0

...
...

c1,S I 0 0 . . . 0 −c1,S I
0 c2,3 I −c2,3 I . . . 0 0

...
...

0 c2,S I 0 . . . 0 −c2,S I
...

0 0 0 . . . cS−1,S I −cS−1,S I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (49)

where the cs,s′ are as in (5); if cs,s′ = 0, the corresponding line is removed from the
constraint matrix C . For the special choices of (7), we have

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I −I 0 . . . 0 0
I 0 −I . . . 0 0

...
...

I 0 0 . . . 0 −I
0 I −I . . . 0 0

...
...

0 I 0 . . . 0 −I
...

0 0 0 . . . I −I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I −I 0 0 . . . 0 0 0
0 I −I 0 . . . 0 0 0
0 0 I −I . . . 0 0 0

...
...

0 0 0 0 . . . I −I 0
0 0 0 0 . . . 0 I −I

−I 0 0 0 . . . 0 0 I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(50)
which reflects the constraints u1 = . . . = uS . We recall that μP is a Lagrange
multiplier of the problem in (48) if

min
u∈BP

S∑

s=1

1

S
‖Aus − f ‖22 = min

u∈AP

S∑

s=1

1

S
‖Aus − f ‖22 + μT

PCu. (51)

We note that for quadratic problems such as in (48) Lagrange multipliers always exist
[7]. We have that

2
S PIP ÃT ÃPIP u∗

P − 2
S PIP ÃT f̃ = CTμP = PIP CTμP , (52)

or, in other form,

L(μP ) :=
∥∥∥ 2

S PIP ÃT ÃPIP u∗
P − 2

S PIP ÃT f̃ − PIP CTμP
∥∥∥ = 0, (53)

where Ã is the block diagonal matrix with constant entry A on each diagonal compo-
nent, f̃ is a block vector of corresponding dimensions with entry f in each component,
and u∗

P is a minimizer of the constraint problem in BP . We note that the last equality
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CTμP = PIP CTμP in (52) holds since the left-hand side of (52) is contained in the
image of PIP .

Lemma 3 We consider a partitioning P of the discrete domain 
 and the correspond-
ing problem (48). There is a Lagrange multiplier μP for (48) with

‖μP‖ ≤ 2σ−1/2
1 S−1/2‖A‖‖ f ‖. (54)

Here, σ1 is the smallest nonzero eigenvalue of CTC with C given by (49). For the
particular choice of C given by the left-hand side of (50), we have

‖μP‖ ≤ 2
S ‖A‖‖ f ‖; (55)

and, for the particular choice of C given by the right-hand side of (50) we have

‖μP‖ ≤ 2(2 − 2 cos(2π/S))−1/2S−1/2‖A‖‖ f ‖, (56)

(e.g., for S = 4, an eight neighborhood, 2 − 2 cos(2π/S) = σ1 = 2.) In particular,
the right-hand side and the constants in all these estimates are independent of the
particular partitioning P .

Proof For any minimizer u∗
P of the constraint problem in BP , we have that

‖ 2
S PIP ÃT ÃPIP u∗

P − 2
S PIP ÃT f̃ ‖ ≤ ‖ 2

S ÃT Ãu∗
P − 2

S ÃT f̃ ‖ ≤ 2
S ‖A‖‖ f̃ ‖

≤ 2
√

S
S ‖A‖‖ f ‖, (57)

where we recall that Ã is the block diagonal matrix with constant entry A, and f̃ is a
block vector with entry f in each component. The first inequality is a consequence of
the fact that PIP is an orthogonal projection. The second inequality may be seen by
evaluating the term for the constant zero function (which always belongs to BP ) as a
candidate and by noting that ‖AT‖ = ‖A‖.

Using (52), we have ‖CTμP‖ ≤ 2√
S
‖A‖‖ f ‖. Choosing μP in the complement of

the zero space of CT, we get

‖CTμP‖ ≥ inf
x∈(ker(CT))

⊥
,‖x‖=1

‖CTx‖ ‖μP‖. (58)

We observe that finding the infimum in (58) corresponds to finding the square root of
the smallest nonzero eigenvalue of CTC . This is because (i) the nonzero eigenvalues
of CTC equal the nonzero eigenvalues of CCT, i.e.,

min
{
σ : σ ∈ spectrum(CCT)\{0}

}
= min

{
σ : σ ∈ spectrum(CTC)\{0}

}
= σ1,

(59)
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whereσ1 is the smallest nonzero eigenvalue ofCTC . Further, (ii) for x ∈ (
ker

(
CT

))⊥
,

‖CTx‖2 = 〈x, CCTx〉 ≥ min
{
σ : σ ∈ spectrum(CCT)\{0}} ‖x‖2. Hence, using

(59) in (58) we get that ‖CTμP‖ ≥ √
σ1‖μP‖, and together with (52) and (57),

we obtain

‖μP‖ ≤ σ−1/2‖CTμP‖ ≤ 2σ−1/2S−1/2‖A‖‖ f ‖ (60)

which shows (54).
Now we consider the particular choice of C given by the left-hand side of (50).

Similar to the derivation in (43), we have that CTC = S · I − (1, . . . , 1)(1, . . . , 1)T).

Further, the constants constitute the kernel of CTC and any vector u in its orthogonal
complement is mapped to Su. Hence, σ1 = S which shows (55).

Finally, we consider the particular choice of C given by the right-hand side of (50).
As already explained in the proof of Lemma 1, the discrete Fourier transform shows
that the corresponding eigenvalues are given by λk = ρ

(
2 − 2 cos

(
2π k

S

))
, where

k = 0, . . . , S − 1. The smallest nonzero eigenvalue is thus given by 2− 2 cos(2π/S).

This shows (56) which completes the proof of the lemma. ��

3.3 The Quadratic Penalty Relaxation of the Potts Problem and Its Relation to the
Potts Problem

In this subsection,we reveal some relations between the Potts problemand its quadratic
penalty relaxation; in particular, we show Theorem 2 and parts of Theorem 4. We start
out to show that the quadratic penalty relaxation of the Potts problem is NP-hard which
was formulated as Theorem 2.

Proof of Theorem 2 Weconsider the quadratic penalty relaxation (5) of themultivariate
Potts problem in its equivalent form (11) which reads

Pγ,ρ(u1, . . . , uS) =
∥∥∥B(u1, . . . , uS)T − g

∥∥∥
2

2
+ γ

∥∥∥ D(u1, . . . , uS)

∥∥∥
0,ω

.

with B and g given by (8) and D given by (9).We serialize u : (u1, . . . , uS) : 
 → R
S

into a function û : X → R with X ⊂ Z being a discrete interval of size S#
 as
follows: for us, we consider the discrete lines in the image with direction as and
interpret u on these lines as a vector; then we concatenate these vectors starting with
the one corresponding to the leftmost upper line to obtain a vector of length #
; for
each s, we obtain such a vector and we again concatenate these vectors starting with
index s = 1, 2, . . . to obtain the resulting object which we denote by û. Using this
serialization we may arrange B, g and D accordingly to obtain the univariate Potts
problem

P̂γ,ρ(û) =
∥∥∥B̂û − ĝ

∥∥∥
2

2
+ γ

∥∥∥ω̂∇û
∥∥∥
0
, where ω̂ : X → [0,∞)
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is a weight vector, ω∇û denotes pointwise multiplication, and B̂, ĝ are the matrix
and the vector corresponding to B, g w.r.t. the serialization. The weight vector may
be zero which in particular happens at the line breaks, i.e., those indices where two
vectors have been concatenated in the above procedure. More precisely, constant data
induce a directional segmentation on 
 and the image of the directional segmentation
under the above serialization procedure induces a partitioning of the univariate domain
D; precisely between these segments, the weight vectors equals zero. Now, for each
segment [d1, . . . , dr ] in D, we transform the basis δd1 , . . . , δdr to the basis δd2 −
δd1, . . . , δdr − δdr−1 ,

1
r

∑r
l=1 δdl obtained by neighboring differences and the average.

As a result (which is in detail elaborated in [84]), we obtain a problem of the form

P̂γ,ρ(û) =
∥∥∥B̃ũ − b̃

∥∥∥
2

2
+ γ

∥∥∥ω̂ũ
∥∥∥
0
, where ω̂ : D → [0,∞) (61)

which is a sparsity problem and which is known to be NP-hard; see, for instance, [84].
This shows the assertion. ��

We next characterize the local minimizers of the relaxed Potts problem (5) and of
the Potts problem (2).

Lemma 4 A local minimizer u = (u1, . . . , uS) of the quadratic penalty relaxation
(5) is characterized as follows: let I be the directional partitioning induced by the
minimizer u, and P = PI be the induced partitioning, then u is a minimizer of the
problem

min
u∈AP

Fρ(u), where Fρ(u) =
∑S

s=1
1
S ‖Aus − f ‖22 + ρ‖Cu‖2. (62)

Conversely, if u minimizes (62) on AP , then u is a minimizer of the relaxed Potts
problem (5).

Proof Let u = (u1, . . . , uS) be a local minimizer of the quadratic penalty relaxation
(5).Hence, there is a neighborhoodU ofu such that, for anyv ∈ U , Pγ,ρ(v) ≥ Pγ,ρ(u).

Now if v ∈ AP and ‖v − u‖ is small, then
∑S

s=1 ωs
∥∥∇as us

∥∥
0 = ∑S

s=1 ωs
∥∥∇as vs

∥∥
0

which implies that

Fρ(u) = Pγ,ρ(u) − γ

S∑

s=1

ωs
∥∥∇as us

∥∥
0 ≤ Pγ,ρ(v) − γ

S∑

s=1

ωs
∥∥∇as vs

∥∥
0 = Fρ(v).

(63)

This shows that u minimizes (62). Conversely, we assume that u minimizes (62). If
the directional partitioning I ′ induced by u is coarser than I consider the coarser
directional partitioning I ′ instead of I. Let the maximum norm of h = (h1 . . . , hS)

be smaller than the height of the smallest jump of u, then, for u + h,

S∑

s=1

ωs
∥∥∇as (us + hs)

∥∥
0 ≥

S∑

s=1

ωs
∥∥∇as us

∥∥
0 . (64)
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If inequality holds in (64), the continuity of Fρ implies that Fρ(u + h) ≥ Fρ(u) − ε

for small enough h and arbitrary ε. Hence,

Pγ,ρ(u) = Fρ(u) + γ

S∑

s=1

ωs
∥∥∇as us

∥∥
0 ≤ Fρ(u + h) − γ min

s
ωs

+ γ

S∑

s=1

ωs
∥∥∇as (us + hs)

∥∥
0 + ε

≤ Fρ(u + h) + γ

S∑

s=1

ωs
∥∥∇as (us + hs)

∥∥
0 = Pγ,ρ(u + h), (65)

if we choose ε small enough. If equality holds in (64), we have that u + h ∈ AP
which implies Fρ(u) ≤ Fρ(u + h) since u is a minimizer of Fρ on AP . This in turn
implies Pγ,ρ(u) ≤ Pγ,ρ(u + h) by the assumed equality in (64). Together, in any
case, Pγ,ρ(u) ≤ Pγ,ρ(u + h) for any small perturbation h. This shows that u is a local
minimizer of Pγ,ρ which completes the proof. ��
Lemma 5 We consider a function u∗ : 
 → R and its induced partitioning P. Then,
u is a local minimizer of the Potts problem (2), if and only if (u∗, . . . , u∗) minimizes
(48) w.r.t. P.

Proof Since the proof of this statement is very similar to the proof of Lemma4,we keep
it rather short and refer to the proof of Lemma 4 if more explanation is necessary. Let u
be a minimizer of (2) which is equivalent to ū = (u, . . . , u) being a minimizer of (4).
There is a neighborhoodU of ū such that, for any v̄ = (v, . . . , v) ∈ U , Pγ (v) ≥ Pγ (u).

For v̄ ∈ BP with small ‖v̄ − ū‖, we have ∑S
s=1 ωs

∥∥∇as u
∥∥
0 = ∑S

s=1 ωs
∥∥∇as v

∥∥
0 .

Hence, by the definition of Pγ in (4) ‖Au − f ‖22 ≤ ‖Av − f ‖22 which shows that
(u∗, . . . , u∗) minimizes (48).

Conversely, let ū = (u, . . . , u) be a minimizer of (48) with the partitioning P
induced by u. For h̄ = (h, . . . , h)with absolute value smaller than the minimal height
of a jump of u, we have the estimate

∑S
s=1 ωs

∥∥∇as (u + h)
∥∥
0 ≥ ∑S

s=1 ωs
∥∥∇as u

∥∥
0 .

If inequality holds in this estimate, the continuity of Fρ implies that ‖A(u+h)− f ‖22 ≥
‖Au− f ‖22−ε for small enough h and arbitrary ε.Hence, Pγ (ū) ≤ ‖A(u+h)− f ‖22−
γ mins ωs + γ

∑S
s=1 ωs

∥∥∇as (u + h)
∥∥
0 + ε ≤ Pγ,ρ(ū + h̄) if ε is small. If equality

holds above, i.e.,
∑S

s=1 ωs
∥∥∇as (u + h)

∥∥
0 = ∑S

s=1 ωs
∥∥∇as u

∥∥
0 , then ū + h̄ ∈ BP

which implies that ‖Au − f ‖22 ≤ ‖A(u + h) − f ‖22 since ū is a minimizer of the
corresponding function on BP . As a consequence Pγ (ū) ≤ Pγ (ū + h̄) for any small
perturbation h. This shows that u is a local minimizer of Pγ which completes the
proof. ��
Proposition 1 Any local minimizer of the quadratic penalty relaxation (5) is an approx-
imate local minimizer in the sense of (35) of the Potts problem (3).
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Proof By Lemma 4, a local minimizer u = (u1, . . . , uS) of the quadratic penalty
relaxation (5) is aminimizer of the problem (62). Let us thus consider a localminimizer
u of (5) with induced partitioning P = PI . Since u minimizes (62), we have

1
S PI ÃT ÃPIu − 1

S PI ÃT f̃ + ρ PICTC PIu = 0 (66)

since the gradient projected toAP equals zero for any local minimizer of the restricted
problem on the subspace AP . (The notation is chosen as in (53) above.) We define μ

by μ = ρC PIu and obtain

L(μ) = ‖ 1
S PI ÃT ÃPIu − 1

S PI ÃT f̃ + PICTμ‖ = 0 (67)

by (66). It remains to show that ‖Cu‖ becomes small. To this end, we observe that,
by Lemma 6, for arbitrary v = (v1, . . . , vS) ∈ AP , ‖Cv‖ = ‖C PIv‖ ≤ 1

ρ
‖μ∗‖ +√

Fρ(v)−minx∈AP Fρ(x)

ρ
,whereμ∗ is an arbitrary Lagrange multiplier of (48). Plugging

in the minimizer u for v yields ‖Cu‖ < 1
ρ
‖μ∗‖. Thus, letting δ = 1

ρ
‖μ∗‖, we have

∑

s,s′
cs,s′ ‖u∗

s − u∗
s′ ‖22 = ‖Cu‖2 < δ, (68)

and L(μ) = 0 by (67) which by (35) shows the assertion and completes the proof. ��
For the proof of Proposition 1 as well as in the following, we need the next lemma.
Similar statements are [53, Proposition 13] and [60, Lemma 2.5]. However, since there
are differences concerning the precise estimate in these references, and the setup here
is slightly different, we provide a brief proof here for the readers convenience.

Lemma 6 Let P be a partitioning and I = IP be the corresponding induced parti-
tioning. For arbitrary v = (v1, . . . , vS) ∈ AP ,

‖Cv‖ = ‖C PIv‖ ≤ 1
ρ
‖μ∗‖ +

√
Fρ(v)−minx∈AP Fρ(x)

ρ
, (69)

where μ∗ is an arbitrary Lagrange multiplier of (48).

Proof By [53, Corollary 2], we have for arbitrary v = (v1, . . . , vS) ∈ AP that

∑S

s=1
1
S ‖Avs − f ‖22 − min

(y,...,y)∈BP
‖Ay − f ‖22 ≥ −‖μ∗‖ ‖Cv‖. (70)

Then,

Fρ(v) − min
x∈AP

Fρ(x) ≥
∑S

s=1
1
S ‖Avs − f ‖22 + ρ‖Cv‖2 − min

(y,...,y)∈BP
Fρ(y, . . . , y)

=
∑S

s=1
1
S ‖Avs − f ‖22 + ρ‖Cv‖2 − min

(y,...,y)∈BP
‖Ay − f ‖22

≥ ρ‖Cv‖2 − ‖μ∗‖ ‖Cv‖. (71)
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For the first inequality, we wrote down the definition of Fρ and restricted the set
with respect to which the minimum is formed which results in a potentially larger
function value. For the second inequality we notice that, for (y, . . . , y) ∈ BP , we
have C(y, . . . , y) = 0, and for the last inequality we employed (70). Now, writing

z2− ‖μ∗‖
‖ρ‖ z = z2− ‖μ∗‖

ρ
z+

( ‖μ∗‖
2ρ

)2−
( ‖μ∗‖

2ρ

)2 = (z− ‖μ∗‖
2ρ )2−

( ‖μ∗‖
2ρ

)2
and plugging

this into (71) with z := ‖Cv‖ yields

Fρ(v)−minx∈AP Fρ(x)

ρ
≥

(
‖Cv‖ − ‖μ∗‖

2ρ

)2 −
( ‖μ∗‖

2ρ

)2
, (72)

and hence

∣∣∣‖Cv‖ − ‖μ∗‖
2ρ

∣∣∣ ≤
√

Fρ(v)−minx∈AP Fρ(x)

ρ
+

( ‖μ∗‖
2ρ

)2 ≤
√

Fρ(v)−minx∈AP Fρ(x)

ρ
+ ‖μ∗‖

2ρ

(73)

where the last inequality is a consequence of the fact that the unit ball w.r.t. the �1

norm is contained in the unit ball w.r.t. the �2 norm. As a consequence, ‖Cv‖ ≤√
Fρ(v)−minx∈AP Fρ(x)

ρ
+ ‖μ∗‖

2ρ + ‖μ∗‖
2ρ which completes the proof. ��

Next, we see that for any local minimizer of the quadratic penalty relaxation (5), we
can find a nearby feasible point using the projection procedure (Procedure 1) proposed
in Sect. 2.2. Further, if the imaging operator A is lower bounded, we find a nearby
minimizer.

Proposition 2 Procedure 1 applied to a local minimizer u′ = (u′
1, . . . , u′

S) of the
quadratic penalty relaxation (5) produces a feasible image û (together with a valid
partitioning) for the Potts problem (3) which is close to u′ in the sense that

‖u′
s − û‖ ≤ C1ε for all s ∈ {1, . . . , S}, (74)

where ε = maxs,s′ ‖u′
s − u′

s′ ‖ quantifies the deviation between the us . Here C1 =
#
/4, where the symbol #
 denotes the number of elements in 
.

If the imaging operator A is lower bounded, i.e., there is a constant c > 0 such
that ‖Au‖ ≥ c‖u‖, a local minimizer u∗ of the Potts problem (3) is nearby, i.e.,

‖u∗ − û‖ ≤
√

η

c
(75)

where
η :=

(
‖A‖2εC2

1 + 2‖A‖C1‖ f ‖2
)

ε. (76)

Proof Wedenote the directional partitioning induced by u′ by I and the corresponding
induced partitioning by P = PI . We note that Procedure 1 applied to u′ precisely
produces

(û, . . . , û) = QPu′, (77)
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with the projection QP given by (47). We first note, that the average (ū)i j =
1
S

∑S
s=1(u

′
s)i j fulfills |(ū)i j − (u′

s)i j | < ε. Further, the function value of û which
is piecewise constant w.r.t. P is obtained by û|Pi = ∑

x∈Pi
ū(x)/#Pi . Hence, we

may estimate

‖u′
s − û‖22 ≤ εL, (78)

where L is the maximal length of a path connecting any two pixels as given by
Definition 1. As a worst case estimate, we get L ≤ C1 where we define C1 as one
fourth of the number of elements in 
, i.e., C1 = #


4 . This shows (74).
For Fρ given by (62), we have

Fρ(u′) ≤ Fρ(û, . . . , û) =
∑S

s=1
1
S

∥∥Aû − f
∥∥2
2

≤
∑S

s=1
1
S

(∥∥Aû − Au′
s

∥∥
2 + ∥∥Au′

s − f
∥∥
2

)2

≤
∑S

s=1
1
S

(‖A‖εC1 + ∥∥Au′
s − f

∥∥
2

)2 (79)

≤ ‖A‖2ε2C2
1 + 2‖A‖εC1

∑S

s=1
1
S

∥∥Au′
s − f

∥∥
2 +

∑S

s=1
1
S

∥∥Au′
s − f

∥∥2
2

≤ η + Fρ(u′),

with
η =

(
‖A‖2εC2

1 + 2‖A‖C1‖ f ‖2
)

ε, (80)

as given in (76). The first inequality holds since as a local minimizer of the quadratic
penalty relaxation (5), u′ is the global minimizer of Fρ onAP by Lemma 4 and since
(û, . . . , û) ∈ AP by construction. The next inequalities apply the triangle inequality
and estimates on matrix norms. The last inequality is a consequence of the fact that∑S

s=1
1
S

∥∥Au′
s − f

∥∥
2 ≤ ‖ f ‖2. Otherwise, if ‖Au′

s − f ‖2 > ‖ f ‖2, choosing u′
s = 0

would yield a lower function value which would contradict the minimality of u′.
Now consider the partitioning P ′ induced by û, and the corresponding minimizer

u∗, i.e.,

(u∗, . . . , u∗) = argmin
u∈BP ′

Fρ(u) (81)

where, for (u, . . . , u) ∈ BP ′
, we have Fρ(u, . . . , u) = ‖Au − f ‖22 . By Lemma 5, u∗

is a local minimizer of the Potts problem (2). On the other hand, by orthogonality in
an inner product space, we have
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Au∗ = P
A
(
BP ′) f , and ‖ f − P

A
(
BP ′) f ‖2 = min

u∈BP ′ Fρ(u), (82)

where P
A
(
BP ′) denotes the orthogonal projection onto the image of BP ′

under the

linear mapping A. Thus,

‖Aû − Au∗‖2 = ‖Aû − P
A
(
BP ′) f ‖2

= ‖Aû − f ‖2 − ‖ f − P
A
(
BP ′) f ‖2 = ‖Aû − f ‖2 − ‖Au∗ − f ‖2.

(83)

Inserting u∗ in the estimate (79), we get

Fρ(u′) ≤ Fρ(u∗, . . . , u∗) ≤ Fρ(û, . . . , û) ≤ η + Fρ(u′) ≤ η + Fρ(u∗, . . . , u∗).
(84)

This allows us to further estimate

‖Aû − Au∗‖2 = ‖Aû − f ‖2 − ‖Au∗ − f ‖2 ≤ ‖Au∗ − f ‖2 + η − ‖Au∗ − f ‖2 = η.

(85)

If now the operator A is lower bounded, then

‖û − u∗‖2 <
1

c2
‖Aû − Au∗‖2 ≤ η

c2
(86)

which completes the proof. ��

3.4 Majorization–Minimization for Multivariate Potts Problems

In this part, we build the basis for the convergence analysis of Algorithms 1 and 2.
We first recall some basics on surrogate functionals. We consider functionals F(u)

of the form F(u) = ‖Xu − z‖2 + γ J (u), where X is a given (measurement) matrix
with operator norm ‖X‖ < 1 (with the operator norm formed w.r.t. the �2 norm), z is a
given vector (of data), J is an arbitrary (not necessarily convex) lower semicontinuous
functional, and γ > 0 is a parameter. In general, the surrogate functional F surr(u, v)

of F(u) is given by

F surr(u, v) = F(u) + ‖u − v‖2 − ‖Xu − Xv‖2. (87)

Lemma 7 Consider the functionals F(u) = ‖Xu −z‖2+γ J (u) as above with ‖X‖ <

1. (For our purposes, J is the regularizer ‖D(u)‖0,ω given by (10).) Then, we get for
the associated surrogate functional F surr given by (87) (with J as regularizer), that
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i. the inequality

F surr(u, v) ≥ F(u)

holds for all v; and F surr(u, v) = F(u) holds if and only if u = v;
ii. the functional values F(uk) of the sequence uk given by the surrogate iteration

uk+1 = argminu F surr(u, uk) are non-increasing, i.e.,

F(uk+1) ≤ F(uk); (88)

iii. the distance between consecutive members of the previous surrogate sequence uk

converges to 0, i.e.,
lim

k→∞ ‖uk+1 − uk‖ = 0. (89)

We note that—when minimizing F—the condition ‖X‖ < 1 can always be achieved
by rescaling, i.e., dividing the functional F by a number which is larger than ‖X‖2.
Proofs of the general statements above on surrogate functionals (which do not rely on
the specific structure of the problems considered here) may for instance be found in
the above mentioned papers [9,28,33].

We now employ properties of the quadratic penalty relaxation Pγ,ρ(u1, . . . , uS) of
the Potts energy given by (5). The strategy is similar to the authors’ approach for the
univariate case in [90]. We first show that the minimizers of Pγ,ρ(u1, . . . , uS) (with
B = id in (11)) which are precisely the solutions of (16) have a minimal directional
jump height which only depends on the scale parameter γ, the directional weights
ωs and the constant Lρ but not on the particular input data. Here, for the multivariate
discrete function u = (u1, . . . , uS) (and the directional system as, s = 1, . . . , S) a
directional jump is a jump in the sth component us in direction as for some s. In
particular, jumps of us in directions as′ with s′ �= s are not considered.

Lemma 8 We consider the function Pγ,ρ(u1, . . . , uS) of (11) for the choice B = id
and data h = (h1, . . . , hS). In other words, we consider the problem (16) for arbitrary
data h = (h1, . . . , hS). Then, there is a constant c > 0 which is independent of the
minimizer u∗ = (u∗

1, . . . , u∗
S) of (16) and the data h such that the minimal directional

jump height jmin(u∗) (w.r.t. the directional system as, s = 1, . . . , S,) of a minimizer
u∗ fulfills

jmin(u
∗) ≥ c. (90)

The constant c depends on γ, the directional weights ωs and the constant Lρ.

Proof Writing u = (u1, . . . , uS), we restate (16) as the problem of minimizing

P id
γ /L2

ρ
(u1, . . . , uS) = ‖u − h‖22 + γ

L2
ρ

∥∥∥ D(u1, . . . , uS)

∥∥∥
0,ω

(91)

where we use the notation ‖D(u1, . . . , uS)‖0,ω = ∑S
s=1 ωs

∥∥∇as us
∥∥
0 introduced in

(10). We let

c =
√

γ mins∈{1,...,S} ωs

L2
ρ W

, (92)
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where W denotes the maximal length of the signal u per dimension (e.g., if u denotes
an l×b image, then W = max(l, b).)We now assume that hmin(u∗) < c,whichmeans
that the minimizer u∗ has a directional jump of height smaller than c. For such u∗, we
construct an element u′ with a smaller P id

γ /L2
ρ
value which yields a contradiction since

u∗ is aminimizer of P id
γ /L2

ρ
. To this end,we let as be a direction such that the component

u∗
s of u∗ has a jump of height smaller than c. We denote the (discrete) directional

intervals in direction as near the directional jump by I1, I2 and the corresponding
points near the directional jump of u∗

s by x1 and x2. We let m1, m2 and m be the mean
of hs on I1, I2 and I1 ∪ I2, respectively. We define

u′
s′ = u∗

s′ if s′ �= s, and u′
s(x) =

{
m for x ∈ I1 ∪ I2
u∗

s (x) elsewhere.
(93)

By construction, ‖∇u′‖0 = ‖∇u∗‖0 − 1, and thus

‖D(u′
1, . . . , u′

S)‖0,ω = ‖D(u∗
1, . . . , u∗

S)‖0,ω − ωs ≤ ‖D(u∗
1, . . . , u∗

S)‖0,ω − min
s∈{1,...,S} ωs .

(94)
Since u∗ is a minimizer of P id

γ /L2
ρ
, its sth component u∗

s equals m1 on I1 and m2 on

I2. Further, as u′
s′ = u∗

s′ if s′ �= s and u∗
s and u′

s only differ on I1 ∪ I2, we have that

‖u′ − h‖2 =
S∑

s′=1

‖u′
s′ − hs′ ‖2 =

S∑

s′=1,s′ �=s

‖u∗
s′ − hs′ ‖2 + ‖u∗

s − hs‖2

+ l1|m1 − m|2 + l2|m2 − m|2
< ‖u∗ − h‖2 + W c2, (95)

where l1, l2 denote the length of I1 and I2, respectively. Employing (94) together with
(95), we get

P id
γ /L2

ρ
(u′

1, . . . , u′
S) = ∥∥u′ − h

∥∥2
2 + γ

L2
ρ

∥∥∥ D(u′
1, . . . , u′

S)

∥∥∥
0,ω

< ‖u∗ − h‖2 + W c2 + γ

L2
ρ

‖D(u∗
1, . . . , u∗

S)‖0,ω − γ

L2
ρ

min
s∈{1,...,S} ωs

≤ ‖u∗ − h‖2 + γ

L2
ρ

‖D(u∗
1, . . . , u∗

S)‖0,ω = P id
γ /L2

ρ
(u∗

1, . . . , u∗
S).

The validity of the last inequality follows by (92). Together, u′ has a smaller function
value than u∗ which is a contradiction to u∗ being a minimizer which shows the
assertion. ��
Proposition 3 The iteration (19) of Algorithm 1 converges to a local minimizer of the
quadratic penalty relaxation Pγ,ρ of the Potts objective function given by (5). The
convergence rate is linear.
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Proof We divide the proof into three parts. First, we show that the directional parti-
tionings induced by the iterates u(n) become fixed after sufficiently many iterations.
In a second part, we derive the convergence of Algorithm 1 and, in a third part, we
show that the limit point is a local minimizer of Pγ,ρ .

(1) We first show that the directional partitioning In induced by the iterates u(n)

gets fixed for large n. For every n ∈ N, the iterate u(n) of Algorithm 1 is a minimizer
of the function Pγ,ρ of (11) for the choice B = id as it appears in (16). Here, the data
h = (h1, . . . , hS) is given by (17). By Lemma 8, there is a constant c > 0 which is
independent of the particular u(n) = (u(n)

1 , . . . , u(n)
S ) of (16) and the data h such that

the minimal directional jump height jmin(u(n)) fulfills

jmin(u
(n)) ≥ c for all n ∈ N. (96)

We note that the parameter γ, the directional weightsωs and the constant Lρ which the
constant c depends on by Lemma 8 do not change during the iteration of Algorithm 1.

If two iterates u(n), u(n+1) have different induced directional partitionings In, In+1

their �∞ distance always fulfills ‖u(n) − u(n+1)‖∞ > c/2 since both u(n), u(n+1) have
minimal jump height of at least c and different induced directional partitionings. This
implies ‖u(n) − u(n+1)‖2 > c/2 for the �2 distance as well. This may only happen
for small n, since Lemma 7 by (89), we have ‖u(n) − u(n+1)‖2 → 0 as n increases.
Hence, there is an index N such that, for all n ≥ N , the directional partitionings In

are identical.
(2) We use the previous observation to show the convergence of Algorithm 1. We

consider iterates u(n) with n ≥ N ; they have the same induced directional partitionings
which we denote by I ′, and all jumps have minimal jump height c. Hence, for n ≥ N ,

the iteration of (16) can be written as

u(n+1) = PI ′(h(n)) (97)

with PI ′ being the orthogonal projection onto the �2 spaceAP consisting of functions
which are piecewise constant w.r.t. the directional partitioning I ′, and where h(n)

depends on u(n) via

h(n)
s = u(n)

s + 1
SL2

ρ
A∗ f − 1

SL2
ρ

A∗ Au(n)
s −

∑

s′:s′ �=s

ρs,s′
L2

ρ
(u(n)

s − u(n)
s′ ), for all s ∈ {1, . . . , S},

(98)
as given by (17). As introduced before, we use the symbols Ã to denote the block
diagonal matrix with constant entry A on each diagonal component, and f̃ for the
block vector of corresponding dimensions with entry f in each component. With this
notation, we may write (97) as

u(n+1) = PI ′((I − 1
SL2

ρ
( Ã)T Ã − 1

SL2
ρ
ρ CTC)u(n) + 1

SL2
ρ

ÃT f̃ ). (99)
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Since u(n) is piecewise constant w.r.t. the directional partitioning I ′, we have u(n) =
PI ′u(n). Using this fact and the fact that PI ′ is an orthogonal projection we obtain

u(n+1) =
(

I −
((

ÃPI′√
SLρ

)T (
ÃPI′√

SLρ

)
+

(√
ρC PI′√

SLρ

)T (√
ρC PI′√

SLρ

)))
u(n)

+
(

ÃPI′√
SLρ

)T
f̃√

SLρ
. (100)

Since C ÃT f̃ = 0, the iteration (100) can be interpreted as Landweber iteration for
the block matrix consisting of the upper block ( ÃPI ′)/(

√
SLρ) and the lower block

(
√

ρC PI ′)/(
√

SLρ) and data f̃ /(
√

SLρ) extended by 0. The Landweber iteration
converges at a linear rate; cf., e.g., [31]. Thus, the iteration (97) convergences and, in
turn, we get the convergence of Algorithm 1 at a linear rate to some limit u∗.

(3)We show that u∗ is a local minimizer. Since u∗ is the limit of the iterates u(n), the
jumps of u∗ also have minimal height c, the number of jumps are equal to those of the
u(n) for all n ≥ N , and the induced directional partitioning I∗ equals the partitioning
I ′ of the u(n) for n ≥ N . Since u∗ equals the limit of the above Landweber iteration,
u∗ minimizes Fρ given by (62) on API′ . Then, by Lemma 4 u∗ is a local minimizer
of the relaxed Potts energy Pγ,ρ which completes the proof. ��

After having shown the convergence of Algorithm 1 to a local minimizer, we have
now gathered all information to show Theorem 4.

Proof of Theorem 4 Assertion i. was stated and shown as Proposition 1 in Sect. 3.3.
By Proposition 3, Algorithm 1 produces a local minimizer. Then, the assertion ii. is a
consequence of Proposition 2. ��

3.5 Estimating the Distance Between the Objectives

The next lemma is a preparation for the proof of item (iii) of Theorem 3.

Lemma 9 We consider Algorithm 1 for the quadratic penalty relaxation (5) of the
multivariate Potts problem. For any output u = (u1, . . . , uS) of Algorithm 1 we have
that

(∑
s,s′ cs,s′ ‖us − us′ ‖22

) 1
2 ≤ 2σ−1/2

1 S−1/2‖A‖‖ f ‖/ρ. (101)

Here, σ1 denotes the smallest nonzero eigenvalue of CTC with C given by (49).

Proof Since u = (u1, . . . , uS) is the output of Algorithm 1 it is a local minimizer
of the relaxed Potts problem (5). In particular, there is a directional partitioning I
with respect to which u is piecewise constant. We denote the induced partitioning by
P = PI . By Lemma 6, we have
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(∑
s,s′ cs,s′ ‖us −us′ ‖22

) 1
2 =‖Cu‖=‖C PIu‖ ≤ 1

ρ
‖μ∗‖+

√
Fρ(u)−minx∈AP Fρ(x)

ρ
,

(102)

where μ∗ is an arbitrary Lagrange multiplier of (48). By Lemma 3, we have that
‖μ∗‖ ≤ 2σ−1/2

1 S−1/2‖A‖‖ f ‖, for any partitioning of the discrete domain 
, and in
particular for the partitioning P = PI . This shows that

‖Cu‖ ≤ 2σ−1/2
1 S−1/2‖A‖‖ f ‖/ρ +

√
Fρ(u)−minx∈AP Fρ(x)

ρ
.

Since u is a local minimizer of the relaxed Potts problem (5), it is a minimizer of Fρ

onAP by Lemma 4, and the second summand on the right-hand side equals zero. This
shows (101) and completes the proof. ��

We have now gathered all information necessary to show Theorem 3.

Proof of Theorem 3 Part (i) is shown by Proposition 3.
Concerning (ii), we first show that any global minimizer of the relaxed Potts energy

Pγ,ρ given by (5) appears as a stationary point of Algorithm 1. To this end, we start
Algorithm 1 with a global minimizer ū∗ = (u∗

1, . . . , u∗
S) as initialization. Then, we

have for all v̄ = (v1, . . . , vS) with v̄ �= ū∗,

Psurr
γ,ρ

(
v1, . . . , vS, u∗

1, . . . , u∗
S

) = Pγ,ρ(v̄) − ‖Bv̄ − Bū∗‖2 + ‖v̄ − ū∗‖2 (103)

> Pγ,ρ(v̄) ≥ Pγ,ρ(ū∗) = Psurr
γ,ρ (ū∗, ū∗).

Here, B is given by (8). The estimate (103) means that ū∗ is the minimizer of the
surrogate functional w.r.t. the first component, i.e., it is the minimizer of the mapping
v̄ �→ Psurr

γ,ρ (v̄, ū∗). Thus, the iterate ū(1) = (u(1)
1 , . . . , u(1)

S ) of Algorithm 1 equals ū∗
when the iteration is started with ū∗. Thus, the global minimizer ū∗ is a stationary
point of Algorithm 1.

It remains to show that each stationary point of Algorithm 1 is a local minimizer
of the relaxed Potts energy Pγ,ρ . This has essentially already been done in the proof
of Proposition 3: start the iteration given by (16) with a stationary point u′; its limit
equals u′ and is thus a local minimizer by Proposition 3.

Concerning (iii), we use Lemma 9 to estimate

(∑
s,s′ cs,s′ ‖us − us′ ‖22

) 1
2 ≤ 2σ−1/2

1 S−1/2‖A‖‖ f ‖/ρ < ε. (104)

The second inequality follows by our choice of ρ in (34) as ρ > 2ε−1 σ
−1/2
1 S−1/2

‖A‖‖ f ‖. This shows the validity of (iii) and completes the proof. ��
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3.6 Convergence Analysis of Algorithm 2

We start out showing that Algorithm 2 is well defined in the sense that the inner
iteration governed by (25) terminates. This result was formulated as Theorem 5.

Proof of Theorem 5 We have to show that, for any k ∈ N, there is n ∈ N such that

∥∥∥u(k,n)
s − u(k,n)

s′
∥∥∥ ≤ t

ρk
√

cs,s′
, and

∥∥∥u(k,n)
s − u(k,n−1)

s

∥∥∥ ≤ δk

Lρ

. (105)

To see the right-hand side of (105), we notice that, by Proposition 3, the iteration (19)
converges to a local minimizer of the quadratic penalty relaxation Pγ,ρ(u1, . . . , uS)

of the Potts energy. The inner loop of Algorithm 2 precisely computes the iteration
(19) (for the penalty parameter ρ which increases with k.) Thus, the distance between
consecutive iterates u(k,n)

s , u(k,n−1)
s converges to zero as n increases which implies the

validity of the right-hand side of (105) for sufficiently large n, and all k ∈ N.

To see the left-hand inequality in (105), we notice that, by the considerations
above, the inner loop of Algorithm 2 would converge to a minimizer ū(k),∗ =
(u(k),∗

1 , . . . , u(k),∗
S ) if it was not terminated by (105) for all k ∈ N. Since ū(k),∗ is

a local minimizer of the relaxed Potts problem (5) for the parameter ρk , it is a mini-
mizer of Fρk onAP (whereP denotes the partitioning induced by ū(k),∗) by Lemma 4.

Hence, for any k ∈ N and any ξ > 0 there is ū(k,n) = (u(k,n)
1 , . . . , u(k,n)

S ) such that

Fρk (ū
(k,n))−Fρk (ū

(k),∗) < ξ.We let τ = (t −2σ−1/2
1 S−1/2‖A‖ ‖ f ‖)/ρk, and choose

ξ = ρkτ
2. Using this together with Lemma 6, we estimate

√
cs,s′ ‖u(k,n)

s − u(k,n)

s′ ‖2 = ‖Cū(k,n)‖ ≤ 1
ρk

‖μ∗‖ +
√

Fρk (ū(k,n))−Fρk (ū(k),∗)
ρk

≤ 1
ρk

‖μ∗‖ +
√

ξ
ρk

≤ 1
ρk

‖μ∗‖ + τ ≤ t
ρk

(106)

where μ∗ is an arbitrary Lagrange multiplier of (48). Here, the last inequality is true
since by Lemma 3 we have that ‖μ∗‖ ≤ 2σ−1/2

1 S−1/2‖A‖‖ f ‖ which implies that
τ ≤ (t − μ∗)/ρk . The estimate (106) shows the left-hand inequality in (105) and
completes the proof. ��

We have now gathered all information to prove Theorem 6 which deals with the
convergence properties of Algorithm 2.

Proof of Theorem 6 We start out to show that any accumulation point of the sequence
u(k) produced by Algorithm 2 is a local minimizer of the Potts problem (3). Let u∗ be
such an accumulation point and let I∗ be the directional partitioning induced by u∗.
We may extract a subsequence u(kl ) of the sequence u(k) such that u(kl ) converges to
u∗ as l → ∞, and such that the directional partitionings Ikl induced by the u(kl ) all
equal the directional partitioning I∗, i.e., Ikl = I∗ for all l ∈ N. We let

μkl = −2ρkl Cukl (107)
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with the matrix C given by (49), and estimate

‖ 2
S ÃT Ãukl − 2

S ÃT f̃ − CTμkl ‖ = ‖ 2
S ÃT Ãukl − 2

S ÃT f̃ + 2ρkl C
T Cukl ‖

= ‖∇Fρkl
(ukl )‖ ≤ δkl

Lρkl

≤ δkl . (108)

We recall that Ã was the block diagonal matrix having the matrix A as entry in each
diagonal component and that Fρkl

was given by (62). We notice that the second before
last inequality follows by the right-hand side of (105). We further estimate

‖μkl ‖ = ρkl ‖Cukl ‖ < ρkl
St
ρkl

= St

which is a consequence of the left-hand side of (105). Hence, the sequence μkl is
bounded and thus has a cluster point, say μ∗, by the Bolzano–Weierstraß Theorem.
By passing to a further subsequence (where we suppress the new indexation for better
readability and still use the symbol l for the index), we get that

μkl → μ∗ as l → ∞. (109)

Now, on this subsequence, we have that u(kl ) → u∗ and thatμkl → μ∗.Hence, taking
limits on both sides of (108) yields

2
S ÃT Ãu∗ − 2

S ÃT f̃ − CTμ∗ = 0, (110)

since δkl → 0 as l → ∞. Further,

‖Cu∗‖ ≤ lim
l→∞

‖μkl ‖
ρkl

≤ ‖μ∗‖ lim
l→∞

1
ρkl

= 0. (111)

This implies that the components of u∗ are equal, i.e., u∗
s = u∗

s′ for all s, s′. In particular
u∗ is a feasible point for the Potts problem (3). Or, letting P∗ be the partitioning
induced by u∗, we have that u∗ ∈ BP . Then, (110) tells us that u∗ minimizes (48)
which by Lemma 5 tells us that u∗ is a local minimizer of (3), or synonymously, that
any component of u∗ (which are all equal) minimizes the Potts problem (2). This
shows the first assertion of Theorem 6.

We continue by showing the second assertion of Theorem 6, i.e., if A is lower
bounded, then the sequence u(k) produced by Algorithm 2 has a cluster point. Then,
by the above considerations, each cluster point is a local minimizer which shows
the assertion. To this end, we show that, if A is lower bounded, the sequence u(k)

produced by Algorithm 2 is bounded which by the Heine–Borel property of finite
dimensional Euclidean space implies that it has a cluster point. So we assume that
A is lower bounded, and consider the sequence u(k) = (u(k)

1 , . . . , u(k)
S ) produced by

Algorithm 2. As in the proof of Theorem 5 we see that, for any k ∈ N, there is a local
minimizer u(k),∗ = (u(k),∗

1 , . . . , u(k),∗
S ) of (5) such that

‖u(k) − u(k),∗‖ ≤ C2δk, (112)
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where C2 is a constant independent of k. By Lemma 4, u(k),∗ is a minimizer of Fρ on
AP (where P denotes the partitioning induced by u(k),∗.) Hence,

1
S

∑S

s=1
‖Au(k),∗

s − f ‖2 ≤ Fρ(u(k),∗) ≤ ‖ f ‖2

by choosing the function having the zero function as entry in each component as a
candidate. This implies

1
S

∑S

s=1
‖Au(k),∗

s ‖2 ≤ 4‖ f ‖2. (113)

Then, since A is lower bounded, there is a constant c > 0 such that

‖u(k),∗‖2 = 1
S

∑S

s=1
‖u(k),∗

s ‖2 ≤ 1
S

∑S

s=1
c2‖Au(k),∗

s ‖2 ≤ 4c2‖ f ‖2 (114)

where we used (113) for the last inequality. Combining this estimate with (112) yields

‖u(k)‖ ≤ ‖u(k) − u(k),∗‖ + ‖u(k),∗‖ ≤ C2δk + 2c‖ f ‖. (115)

Since we have chosen δk as a sequence converging to zero, (115) shows that the
sequence u(k) is bounded which implies that it has cluster points. This completes the
proof. ��

4 Numerical Results

In this section, we show the applicability of our methods to different imaging tasks.
We start out by providing the necessary implementation details. Then, we compare the
results of the quadratic relaxation (5) (Algorithm 1) to the ones of the Potts problem (2)
(Algorithm 2). Next, we apply Algorithm 2 to blurred image data and to image recon-
struction from incomplete Radon data. Finally, we consider the image partitioning
problem according to the classical Potts model.

Implementation Details We implemented Algorithms 1 and 2 for the coupling
schemes in (7) and the set of compass anddiagonal directions (1, 0), (0, 1), (1, 1), (1,−1)

with weights ω1,2 = √
2 − 1 and ω3,4 = 1 −

√
2
2 .

Concerning Algorithm 1, we observed both visually and quantitatively appealing
results if we use relaxed step-sizes Lλ

ρ = Lρ[λ + (1 − (n + 1)−1/2)(1 − λ)] for an
empirically chosen parameter 0 < λ ≤ 1, where Lρ denotes the estimate in Lemma 1.
The iterations were stopped when the nearness condition (18) was fulfilled and the
iterates did not change anymore, i.e., when ‖u(n)

1 − u(n−1)
1 ‖/(‖u(n)

1 ‖ + ‖u(n−1)
1 ‖) and

‖u(n)
2 −u(n−1)

2 ‖/(‖u(n)
2 ‖+‖u(n−1)

2 ‖)were smaller than 10−6. The result ofAlgorithm1
was transformed into a feasible solution of (3) by applying the projection procedure
described in Sect. 2.2 (Procedure 1). As initialization we applied 1000 Landweber
iterations with step-size 1/‖A‖2 to the least squares problem induced by the linear
operator A and data f .
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(a) (b) (c) (d)

Fig. 1 Results of Algorithms 1 and 2 for partitioning an image blurred by a Gaussian kernel of standard
deviation 3. Both methods provide reasonable partitionings. Algorithm 2 provides smoother edges than
Algorithm 1 (e.g., the boundary between the meadow and the forest, the back of the cow). In addition,
Algorithm 1 produces some smaller segments around the treetops

Concerning Algorithm 2, we set ρ(0) = 10−3 in all experiments which we incre-
mented by the factor τ = 1.05 in each outer iteration. The δ-sequence was chosen
as δ(k) = 1

ηρ(k) for η = 0.95 when coupling all variables and η = 0.98 when cou-
pling consecutive variables. Similarly to Algorithm 1, step A of Algorithm 2 was
performed using the relaxed step sizes Lλ

ρ = Lρ[λ+ (1− (n + 1)−1/2)(1−λ)] for an
application-dependent parameter 0 < λ ≤ 1 and for the estimate Lρ in Lemma 1. We
stopped the iterations when the relative discrepancy of the first two splitting variables
‖u(k)

1 − u(k)
2 ‖/(‖u(k)

1 ‖ + ‖u(k)
2 ‖) was smaller than 10−6. We initialized Algorithm 2

with AT f .
Comparison of Algorithm 1 and Algorithm 2 We compare Algorithm 1 and Algo-

rithm 2 for blurred image data, that is, the linear operator A in (1) amounts to the
convolution by a kernel K . In the present experiment, we chose a Gaussian kernel
with standard deviation σ = 7 and of size 6σ + 1. Here, we coupled all splitting
variables and chose the step-size parameter λ = 0.4 for Algorithm 1 and λ = 0.35
for Algorithm 2, respectively. In Fig. 1, we applied both methods to a blurred natural
image. While both algorithms yield reasonable partitionings, Algorithm 2 provides
smoother edges than Algorithm 1. Further, Algorithm 1 produces some smaller seg-
ments (at the treetops).

Application to Blurred Data For the following experiments, we focus on Algo-
rithm 2. In case of motion blur we set the step-size parameter to λ = 0.25, while
for Gaussian blur we set λ = 0.35 as in Fig. 1. We compare our method with the
Ambrosio–Tortorelli approximation [2] of the classical Mumford–Shah model (which
itself tends to the piecewise constant Mumford–Shah model for increasing variation
penalty) given by

Aε(u, v) = γ

∫
ε|∇v|2 + (v − 1)2

4ε
dx + α

∫
v2‖∇u‖2dx + 1

2

∫
(K ∗ u − f )dx .

(116)
The variable v serves as an edge indicator and ε > 0 is an edge smoothing parameter
that is chosen empirically. The parameter γ > 0 controls the weight of the edge length
penalty and the parameter α > 0 penalizes the variation. In this respect, a higher value
of α promotes solutions which are closer to being piecewise constant. In the limit
α → ∞, minimizers of (116) are piecewise constant. Our implementation follows the
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(a) (b) (c) (d)

Fig. 2 Restoration from simulated horizontal motion blur of 80 pixel length and Gaussian noise with
σ = 0.02. The result of the Ambrosio–Tortorelli scheme exhibits noisy and blurred artifacts and bumpy
edges (e.g., the boundaries of the digits). The contours of the proposed result are concise and considerably
less clutter is present

scheme presented in [6]. The functional Aε is alternately minimized w.r.t. u and v. To
this end, we iteratively solve the Euler–Lagrange equations

2αv‖∇u‖22 + γ
v − 1

2ε
− 2εγ∇2v = 0,

(K ∗ u − f ) ∗ K̃ − 2αdiv(v2∇u) = 0,
(117)

where K̃ (x) = K (−x). The first line is solved w.r.t. v using a MINRES solver and the
second line is solved using the method of conjugate gradients [6]. The iterations were
stopped when the relative change of both variables was small, i.e., if both ‖uk+1 −
uk‖/(‖uk‖ + 10−6) < 10−3 and ‖vk+1 − vk‖/(‖vk‖ + 10−6) < 10−3.

Figure 2 shows the restoration of a traffic sign from simulated horizontal motion
blur. For the Ambrosio–Tortorelli approximation, we set α = 105 to promote a piece-
wise constant solution. We observe that both the Ambrosio–Tortorelli approximation
and the proposed method restore the data to a human readable form. However, the
Ambrosio–Tortorelli result shows clutter and blur artifacts. Ourmethod provides sharp
edges and it produces less artifacts.

In Fig. 3, we partition a natural image blurred by aGaussian kernel and corrupted by
Gaussian noise.Weobserved that theAmbrosio–Tortorelli resultwas heavily corrupted
by artifacts for α = 105. This might be attributed to the underlying linear systems in
scheme (117) which become severely ill-conditioned for large choices of the variation
penalty α. Therefore, we chose the moderate variation penalty α = 105 which does
only provide an approximately piecewise constant (rather piecewise smooth) result.
The result does not fully separate the background from the fish in terms of edges.
On the other hand, the result of the proposed method sharply differentiates between
background and fish. Further, it highlights various segments of the fish.

Reconstruction from Radon Data We here consider reconstruction from Radon
data which appears for instance in computed tomography. We recall that the Radon
transform reads
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(a) (b) (c) (d)

Fig. 3 Partitioning of an image blurred by a Gaussian kernel of standard deviation 7 and corrupted by
Gaussian noise with σ = 0.2. The result of the Ambrosio–Tortorelli approximation does not yield a
convincing partitioning of the scene, in particular many parts of the fish are merged with the background.
The proposed approach provides a partitioning which reflects many parts of the fish

(a) (b) (c) (d)

Fig. 4 Reconstruction of the Shepp–Logan phantom from undersampled Radon data (25 projection angles)
corrupted by Gaussian noise with σ = 0.7. The proposed method provides a genuine piecewise constant
reconstruction and the SSIM is improved by the factor 11.58 for filtered backprojection and by 1.05 for
total variation, respectively

Ru(θ, s) =
∫ ∞

−∞
u(sθ + tθ⊥)dt, (118)

where s ∈ R, θ ∈ S1 and θ⊥ ∈ S1 is (counterclockwise) perpendicular to θ ; see [64].
For our experiments, we use a discretization of the Radon transform created using
the AIR tools software package [39]. Regarding our method, we employed coupling
of consecutive splitting variables and the step-size parameter was set to λ = 0.11.
To quantify the reconstruction quality, we use the mean structural similarity index
(MSSIM) [89] which is bounded from above by 1, where higher values indicate better
results.

We compare the proposed method to filtered back projection (FBP) which is stan-
dard in practice [71]. The FBP is computed using its Matlab implementation with the
standard Ram–Lak filter. Furthermore, we compare with total variation (TV) regu-
larization [76] in the Lagrange form ‖Ru − f ‖22 + μ‖∇u‖1 with parameter μ > 0.
Its implementation follows the Chambolle–Pock algorithm [21]. The corresponding
parameter μ was tuned w.r.t. the MSSIM index.

In Fig. 4, we show the reconstruction results for the Shepp–Logan phantom from
undersampled (25 angles) and noisy Radon data. Standard FBP produces strong streak
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Comparison of partitionings of a natural image corrupted by Gaussian noise with σ = 0.2. The
Ambrosio–Tortorelli result is noisy and corrupted by clutter. The L0 gradient smoothing over-segments the
large window on the left-hand side, while details of the cross in the bottom right are smoothed out. The
proposed result is visually competitive with the state-of-the-art graph cuts result

artifacts which are typical for angular undersampling, and the reconstruction suffers
from noise. The TV regularization and the proposedmethod both provide considerably
improved reconstruction results. The proposedmethod achieves a higherMSSIMvalue
than the TV reconstruction, and it provides a reconstruction which is less grainy than
the TV result.

Image Partitioning Finally, we consider the classical Potts problem corresponding
to A = id in (1). While the focus of the present paper is on a general imaging operator
A, we next observe that it also works rather well for A = id. We used the full coupling
scheme and set the step-size parameter to λ = 0.55.

To put our result in context, we added the results of two other methods for A = id:
the L0 gradient smoothingmethod ofXu et al. [94] and the state-of-the-artα-expansion
graph cut algorithm based on max-flow/min-cut of the library GCOptimization 3.0 of
Veksler and Delong [12,13,52]. The method of [94] has a parameter κ > 1 to control
the convergence speed and a smoothing weight ν. In our experiments, we set κ = 1.01
and ν = 0.1. For the graph cuts the same neighborhood weights and jump penalty
were used as for the proposed method. The discrete labels are computed via k-means.

In Fig. 5, we show the results for a natural image corrupted by Gaussian noise.
The Ambrosio–Tortorelli result suffers from clutter and remains noisy. The result
of L0 gradient smoothing over-segments the textured window area while it smooths
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out details of the cross. The state of the art graph cuts method and the proposed
method both provide satisfying results which are visually comparable. Further, they
yield solutions with comparable Potts energy values. For instance, on the IVC dataset
[55] which consists of 10 natural color images of size 512 × 512, for the model
parameters, γ = 0.25 and γ = 1, the mean values of the proposed approach are
7107.8 and 13053.2 compared with the respective mean energies of the graph cut
approach 7093.2 and 13008.7 which differ by about half a percent. (For the results in
Fig. 5, the energy value of the proposed approach is 25067.7 compared with 25119.5
for the graph cuts approach.) Here, for the graph cut approach, we took the mean value
of the input image on each computed segment before computing the Potts objective
function. To sum up, while the proposed method can handle general linear operators
A, the quality of the results for A = id is comparable with the state-of-the-art graph
cut algorithm for A = id.

5 Conclusion

In this paper, we have proposed a new iterative minimization strategy for multi-
variate piecewise constant Mumford–Shah/Potts energies as well as their quadratic
penalty relaxations. Our schemes are based onmajorization–minimization or forward–
backward splitting methods of Douglas–Rachford type [57]. In contrast to the
approaches in [9,33,60,61] for sparsity problems which lead to thresholding algo-
rithms, our approach leads to non-separable yet computationally tractable problems
in the backward step.

As a second part, we have provided a convergence analysis for the proposed
algorithms. For the proposed quadratic penalty relaxation scheme, we have shown
convergence toward a localminimizer. Due to theNP-hardness of the quadratic penalty
relaxation, the convergence result is in the range of what can be expected best. Con-
cerning the scheme for the non-relaxed Potts problem, we have also performed a
convergence analysis. In particular, we have obtained results on the convergence
toward local minimizers on subsequences. The quality of these results is compara-
ble with the results of [60,61] where, compared with these papers, we had to deal with
the non-separability of the backward step as an additional challenge.

Finally, we have shown the applicability of our schemes in several experiments.
We have applied our algorithms to deconvolution problems including the problem of
deblurring and denoising motion blur images. We have further dealt with noisy and
undersampled Radon data for the task of joint reconstruction, denoising and segmenta-
tion. Finally, we have applied our approach to the situation of pure image partitioning
(without blur) which is a widely considered problem in computer vision.
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