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HOMOLOGICAL ALGEBRA FOR PERSISTENCE MODULES

PETER BUBENIK, NIKOLA MILIĆEVIĆ

Abstract. We develop some aspects of the homological algebra of persistence modules, in

both the one-parameter and multi-parameter settings, considered as either sheaves or graded

modules. The two theories are different. We consider the graded module and sheaf tensor

product and Hom bifunctors as well as their derived functors, Tor and Ext, and give explicit

computations for interval modules. We give a classification of injective, projective, and flat

interval modules. We state Künneth Theorems and Universal Coefficient Theorems for the

homology and cohomology of chain complexes of persistence modules in both the sheaf and

graded module settings and show how these theorems can be applied to persistence modules

arising from filtered cell complexes. We also give a Gabriel-Popescu Theorem for persistence

modules. Finally, we examine categories enriched over persistence modules. We show that

the graded module point of view produces a closed symmetric monoidal category that is

enriched over itself.

1. Introduction

In topological data analysis, one often starts with application data that has been prepro-
cessed to obtain a digital image or a finite subset of a metric space, which is then turned into
a diagram of topological spaces, such as cubical complexes or simplicial complexes. Then
one applies an appropriate homology functor with coefficients in a field to obtain a diagram
of vector spaces. In cases where the data is parametrized by a number of real variables,
this diagram of vector spaces is indexed by Rn or a subset of Rn. Such a diagram is called
a (multi-parameter) persistence module. These persistence modules have a rich algebraic
structure. The indexing set Rn is an abelian group under addition and has a compatible
coordinate-wise partial order. The sub-poset generated by the origin is the positive orthant
which is a commutative monoid under addition which acts on persistence modules. The
category of vector spaces has kernels and cokernels with desirable properties; it is a particu-
larly nice abelian category. This algebraic structure underlies the power of topological data
analysis. We will exploit this algebraic structure and apply some of the tools of homological
algebra to study persistence modules.

To facilitate a broad class of present and future applications, we generalize the above
setting somewhat. We replace Rn with a preordered set with a compatible abelian group
structure. We replace the category of vector spaces with any Grothendieck category. This
is an abelian category satisfying additional properties useful for homological algebra. We
call the resulting diagrams persistence modules. It follows that the category of persistence
modules is also a Grothendieck category. Thus, for example, persistence modules satisfy the
Krull-Remak-Schmidt-Azumaya Theorem [6].

The algebraic structure of persistence modules has been studied from a number of points
of view, for example, as graded modules [41, 10, 31], as functors [7, 8], and as sheaves [13].
Here we develop some aspects of the homological algebra of persistence modules, with an
emphasis on the graded module and sheaf-theoretic points of view. From both sheaf theory
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and graded module theory, we define tensor product and Hom bifunctors for persistence
modules as well as their derived functors Tor and Ext (Section 3, Section 4, Section 7). We
provide explicit formulas for the interval modules arising from the persistent homology of
sublevel sets of functions. In computational settings, single-parameter persistence modules
decompose into direct sums of finitely many such interval modules. So, in the computational
setting, since these four functors preserve finite direct sums, the general case reduces to that
of interval modules. For example, we have the following.

Proposition 1.1. Suppose k[a, b) and k[c, d) are interval modules. Then:

• k[a, b)⊗gr k[c, d) = k[a + c,min{a+ d, b+ c})
• Hom(k[a, b),k[c, d)) = k[max{c− a, d− b}, d− a)
• Tor

gr
1 (k[a, b),k[c, d)) = k[max{a+ d, b+ c}, b+ d)

• Ext1gr(k[a, b),k[c, d)) = k[c− b,min{c− a, d− b})

The sheaf theoretic Tor bifunctor is trivial (Theorem 7.3), but the Ext bifunctor is not
(Example 7.4).

A necessary step for computations in homological algebra is understanding projective,
injective, and flat modules. We give a classification of these for single-parameter interval
modules in Section 6 and also extend the result somewhat to the multi-parameter setting.

Theorem 1.2. Let a ∈ R. Then:

• The interval modules k(−∞, a) and k(−∞, a] are injective. They are not flat and
thus not projective.

• The interval modules k[a,∞) are projective (free) and the interval modules k(a,∞)
are flat but not projective. Both are not injective.

• The interval module k[R] is both injective and flat, but not projective.
• If I ⊂ R is a bounded interval, then k[I] is neither flat (hence not projective) nor
injective.

In both the graded module and sheaf settings, we have Künneth Theorems and Universal
Coefficient Theorems for homology and cohomology (Section 8). There is evidence to sug-
gest these theorems can be used to give faster algorithms for computing persistent homology
[17]. We compute a number of examples for these theorems in Section 8. In addition to
our main results, we discuss (Matlis) duality (Section 5), persistence modules indexed by
finite posets (Section 9) and we state the Gabriel-Popescu Theorem for persistence modules
(Corollary 2.25). Matlis duality helps us identify injective and flat modules and is used ex-
tensively in proving Theorem 1.2. The Gabriel-Popescu Theorem characterizes Grothendieck
categories as quotients of module categories. For persistence modules over finite posets we
show a stronger result is true; persistence modules are isomorphic to modules over the ring
End(U) where U is a generator of the Grothendieck category of persistence modules. This
allows one to study persistence modules as modules over a non-graded ring. In Section 10,
we consider persistence modules from the point of view of enriched category theory. We
show that by viewing persistence modules as graded modules we obtain a closed symmetric
monoidal category that is enriched over itself. Many of these results are adaptations or con-
sequences of well-known results in graded module theory, sheaf theory, and enriched category
theory. However, we hope that by carefully stating our results for persistence modules and
providing numerous examples we will facilitate new computational approaches to topological
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data analysis. For example, the magnitude of persistence modules [18] is a new numeri-
cal invariant that respects the monoidal structure of the graded module tensor product of
persistence modules.

Related work. Some of the versions of the Künneth Theorems that appear here were in-
dependently discovered by Polterovich, Shelukhin, and Stojisavljevic [36], and Gakhar and
Perea [17]. Recent papers on persistence modules as graded modules include [34, 21, 32]
where they are considered from the perspective of commutative algebra. Recent papers from
the sheaf theory point of view include [27, 1, 2]. Results akin to Theorem 1.2 also appear
in [3, 24]. In the final stages of preparing this paper a preprint of Carlsson and Fillipenko
appeared [20], which covers some of the same material considered here, in particular graded
module Künneth Theorems, but from a complementary point of view. Grothendieck cate-
gories have been used to define algebraic Wasserstein distances for persistence modules [6].
Enriched categories over monoidal categories have been used in other recent work in applied
topology [29, 11].

2. Persistence modules

In this section we consider persistence modules from several points of view and provide
background for the rest of the paper. In particular, we consider persistence modules as
functors, sheaves and graded modules. We show that these points of view are equivalent.
Thus, the reader may read the paper from their preferred viewpoint. What the different
perspectives bring to the table are canonical operations from their respective well developed
mathematical theories.

2.1. Persistence modules as functors. Given a preordered set (P,≤) there is a corre-
sponding category P whose objects are the elements of P and whose morphisms consist of
the inequalities x ≤ y, where x, y ∈ P . An up-set in a preordered set (P,≤) is a subset
U ⊂ P such that if x ∈ U and x ≤ y then y ∈ U . For a ∈ P denote by Ua ⊂ P the
principal up-set at a, i.e., Ua := {x ∈ P | a ≤ x}. A down-set in a preordered set (P,≤)
is a subset D ⊂ P such that if y ∈ D and x ≤ y then x ∈ D. For a ∈ P denote by
Da ⊂ P the principal down-set at a, i.e., Da := {x ∈ P | x ≤ a}. Let Rn denote the category
corresponding to the poset (Rn,≤), where ≤ denotes the product partial order. That is,
(x1, . . . , xn) ≤ (y1, . . . , yn) if and only if xi ≤ yi for all i.

Let (P,≤) be a preordered set and let P be the corresponding category. Let A be a
Grothendieck category – an Abelian category with additional useful properties (see Appen-
dix A).

Definition 2.1. A persistence module is a functor M : P → A. The category of persistence
modules is the functor category AP, where the objects are persistence modules and mor-
phisms are natural transformations. Of greatest interest to us is a special case of this, when
P = Rn.

The assumption that A is a Grothendieck category contains most examples of interest and
ensures that the category of persistence modules has a number of useful properties (Propo-
sition 2.23). For example, the category A may be the category ModR of right R-modules
over a unital ring R and R-module homomorphisms. R will always denote a unital ring in
what follows and we will always assume that our rings are unital. We could also consider
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RMod the category of left R-modules over a unital ring R and R-module homomorphisms.
Of greatest interest to us is a special case of this, the category Vectk, of k-vector spaces for
some field k and k-linear maps.

Definition 2.2. Let (P,≤) be a preordered set. Say U ⊂ P is convex if a ≤ c ≤ b with
a, b ∈ U implies that c ∈ U . Say U ⊂ P is connected if for any two a, b ∈ U there exists a
sequence a = p0 ≤ q1 ≥ p1 ≤ q2 ≥ · · · ≥ pn ≤ qn = b for some n ∈ N such that all pi, qi ∈ U
for 0 ≤ i ≤ n. A connected convex subset of a preordered set is called an interval.

Let A ⊂ P be a convex subset. The indicator persistence module on A is the persistence
module R[A] : P → ModR given by R[A]a equals R if a ∈ A and is 0 otherwise and all the
maps R[A]a≤b, where a, b ∈ A, are identity maps. If A is an interval, then R[A] is called an
interval persistence module. If A is an interval on the real line, say A = [a, b), and R = k is
a field, we will write k[a, b) instead of k[[a, b)] for brevity.

2.2. Persistence modules as sheaves and cosheaves. For more details see [13, 12].

Definition 2.3. Let (P,≤) be a preordered set. Define the Alexandrov topology on P to be
the topology whose open sets are the up-sets in P . Let Open(P ) denote the category whose
objects are the open sets in P and whose morphisms are given by inclusions.

Lemma 2.4. Let (P,≤) and (Q,≤) be preordered sets and consider P and Q together with
their corresponding Alexandrov topologies. Let f : P → Q be a map of sets. Then f is
order-preserving if and only if f is continuous.

Example 2.5. Consider R with the Alexandrov topology. Then the open sets are ∅, R, and
the intervals (a,∞) and [a,∞), where a ∈ R.

Let (P,≤) be a preordered set, and let U be an up-set in P . Then the preorder on P
restricts to a preorder on U , and U is a full subcategory of P. Furthermore any functor
F : P → C restricts to a functor F |U : U → C.

Lemma 2.6. [13, Remark 4.2.7] Let (P,≤) be a preordered set with the Alexandrov topology
and let P be the corresponding category. Let C be a complete category. Then any functor
F : P → C has a canonical extension F̂ : Open(P )op → C given by

F̂ (U) = limF |U = lim
p∈U

F (p),

and F̂ (U ⊃ V ) is given by a canonical map.

Proof. First we define ι : P → Open(P )op given by ι(p) = Up (the principal up-set at p) for
p ∈ P , and ι(p ≤ q) : Up ⊃ Uq.

Next for an up-set U in P we have the comma category U ↓ ι, whose objects are elements
p ∈ P such that U ⊃ Up, that is, p ∈ U , and whose morphisms are given by p ≤ q ∈ U . Notice
that this category is isomorphic to the category U. Consider the projection π : U ↓ ι → P.
Then π is just the inclusion of U in P and F ◦ π = F |U .

Now let F̂ : Open(P )op → C be the right Kan extension, Ranι F . By definition, F̂ (U) =

Ranι F (U) = lim(U ↓ ι
Fπ
−→ C) = limF |U = limp∈U F (p). That is, F̂ (U) is the universal (i.e.

terminal) cone over the diagram F |U : U → C. For U ⊃ V ∈ Open(P )op, F̂ (U) is a cone

over F |V . By the universal property of F̂ (V ), there is a canonical map resV,U : F̂ (U) → F̂ (V ).

Let F̂ (U ⊃ V ) = resV,U . The universal property of the limit shows that this defines a functor.
4



Finally for p ∈ P , Ranι Fι(p) = Ranι F (Up) = limq∈Up
F (q) = limp≤q F (q) = F (p). So this

Kan extension is actually an extension. �

Proposition 2.7. The functor F̂ = Ranι F : Open(P )op → C is a sheaf. That is, for any
open cover {Ui} of an open set U in P ,

(1) F̂ (U)
∏

i

F̂ (Ui)
∏

i,j

F̂ (Ui ∩ Uj)
∏

i F̂ (U⊃Ui)

∏
i,j F̂ (Ui⊃Ui∩Uj)

∏
i,j F̂ (Uj⊃Ui∩Uj)

is an equalizer.

Proof. Let c be the limit of the diagram
∏

i limF |Ui
⇒

∏

i,j limF |Ui∩Uj
where the arrows are

those in (1). By Lemma 2.6, we want to show that limF |U ∼= c.
By the universal property of the limit, for all i, j we have the following commutative

diagram of canonical maps.

limF |Ui

limF |U limF |Ui∩Uj

limF |Uj

F̂ (Ui⊃Ui∩Uj)F̂ (U⊃Ui)

F̂ (U⊃Uj)

F̂ (U⊃Ui∩Uj)

F̂ (Uj⊃Ui∩Uj)

Therefore there is a canonical map limF |U → c.
For all p ∈ U , p ∈ Ui for some i. So Ui ⊃ Up and hence we have a canonical map

c→ limF |Ui
→ limF |Up

= F (Up) = F (p). By the definition of c, this map does not depend
on the choice of i.

For p ≤ q, if p ∈ Ui then q ∈ Ui. So we have the following commutative diagram.

F (p)

c limF |Ui

F (q)

Thus for all p, q ∈ U with p ≤ q, we have canonical maps c → F (p) and c → F (q) which
commute with F (p ≤ q) : F (p) → F (q). Therefore there is a canonical map c→ limF |U .

By the universal property of the limit, both composites are the identity map. �

Theorem 2.8. [13, Theorem 4.2.10] Let (P,≤) be a preordered set and let C be a complete
category. Then there is an isomorphism of categories between the functor category CP and
the category Shv(P ;C) of sheaves on P with the Alexandrov topology.

Proof. Right Kan extension gives a functor Ranι : C
P → COpen(P )op (see [38, Prop. 6.1.5]

for example). By Proposition 2.7, Ranι : C
P → Shv(P ;C).

Define a functor stalk(F ) : Shv(P ;C) → CP as follows. For p ∈ P , let stalk(F )(p) =
F (Up), and stalk(F )(p ≤ q) = F (Up ⊃ Uq).

We claim these functors are mutually inverse. Let p ∈ P and F ∈ CP. Then (stalkRanι F )(p) =
Ranι F (Up) = F (p). Let U be an up-set of P and F ∈ Shv(P ;C). Then (Ranι stalkF )(U) =
limp∈U(stalkF )(p) = limp∈U F (Up). Since U = ∪p∈UUp and F is a sheaf, this equals
F (U). �
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We can dualize the above construction. For a preordered set (P,≤), let P op denote the
preordered set with the opposite order. The Alexandrov topology on P op has as open sets
the down-sets D of P . Instead of right Kan extensions and limits, we use left Kan extensions
and colimits.

Lemma 2.9. [12, Example 4.5] Let (P,≤) be a preordered set and let P be the corresponding
category. Let C be a cocomplete category. Then any functor F : P → C has a canonical
extension F̂ : Open(P op) → C given by

F̂ (D) = colimF |D = colim
p∈D

F (p),

and F̂ (D ⊂ E) is given by a canonical map.

Proposition 2.10. [12, Theorem 4.8] The functor above F̂ : Open(P op) → C is a cosheaf.

Theorem 2.11. [13, Theorem 4.2.10] Let (P,≤) be a preordered set and let C be a cocom-
plete category. Then there is an isomorphism of categories between the functor category CP

and the category Coshv(P op;C) of cosheaves on P op with the Alexandrov topology.

Corollary 2.12. Let (P,≤) be a preordered set and let A be a Grothendieck category. Then
AP ∼= Shv(P ;A) ∼= Coshv(P op;A), where P and P op have the Alexandrov topology.

Example 2.13. We may consider the persistence module k[a, b) as a sheaf. For an up-set

U ⊆ R, k[a, b)(U) = limx∈U [a, b)x =

{

k if inf U ∈ [a, b)

0 otherwise.

Let X be a topological space. If R is a sheaf of rings on X , we can define left (or right)
R-modules (which themselves are sheaves of abelian groups). These form a categoryR-Mod

(or Mod-R). If M and N are two such R-modules we denote their set of morphisms by
HomR(M,N). If R is a ring, define RX to be the sheaf associated to the constant presheaf
U 7→ R for every open U ⊂ X . If R = k is a field and X = Rn we have the constant sheaf
kRn (where X = Rn has for example the Alexandrov topology). See Appendix C for more
details.

Example 2.14. We may consider the persistence module R[P ] as the constant sheaf of
rings RP on P with the Alexandrov topology (see Appendix C). By Corollary 2.12, we can
view persistence modules M ∈ ModP

R, or M ∈ RModP as sheaves on P valued in ModR
or RMod respectively, where P is given the Alexandrov topology obtained from (P,≤).
Furthermore, we have isomorphisms of categories:

ModP
R
∼= Mod-RP and RModP ∼= RP -Mod

(see Appendix C).

Using the sheaf viewpoint, we have the six Grothendieck operations which we can apply
to persistence modules (see [26, Chapters 2 and 3]). In particular we have a tensor product
of sheaves M⊗RP

N and an internal hom of sheaves HomRP
(M,N). These six Grothendieck

operations are usually only left or right exact functors and in order to preserve cohomological
information we need the derived perspective (Appendix D). Thus, it is crucial to be able
to construct injective and projective resolutions of complexes of sheaves. Proposition 2.15
gives us a way of determining if a given sheaf is injective or not, by checking a smaller class
of diagrams rather than the one usually given in the definition of an injective object.
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Proposition 2.15. [26, Exercise 2.10] Let R be a sheaf of rings on a topological space X
and let M ∈ Ob(Mod-R). Then:

1) M is injective if and only if for any sub-R-module S of R (also called an ideal of
R), the natural homomorphism:

HomR(R,M) → HomR(S,M)

is surjective.
2) Let k be a field. Then any ideal of kX is isomorphic to a sheaf kU , where U is open

in X.
3) From 1) and 2) it follows that a kX-module M is injective if and only if the sheaf M

is flabby (Appendix C).

Part 1) of Proposition 2.15 is analogous to Theorem B.1, the Baer criterion for graded
modules. It can be used to identify injective persistence modules by looking at a smaller
class of diagrams. Part 3) tells us that a vector-space-valued persistence module is injective
if and only if it is flabby as a sheaf. In other words, we only need to check if the restriction
morphism M(P ) = limx∈PMx →M(U) = limx∈UMx is surjective, for all up-sets U in P .

Example 2.16. Let a, b ∈ R2 be incomparable with respect to ≤ and let U = Ua ∪ Ub and
D = Da∪Db (Figure 1). Consider the interval persistence module on D, k[D]. Observe that
k[D](R2) = limx∈R2k[D]x = k. On the other hand we have that k[D](U) = limx∈Uk[D]x =
k2. Hence the restriction morphism induced by the inclusion U ⊂ R2 cannot be surjective.
Thus k[D] is not flabby as a sheaf, and therefore it is not injective, by Proposition 2.15.

U

D

Figure 1. An up-set U and a down-set D. The interval module k[D] is not
injective. See Example 2.16.

2.3. Persistence modules as graded modules. Throughout this section we assume R is
a unital ring and (P,≤, 0,+) is a preordered set together with an abelian group structure. We
assume that the addition operation in the abelian group structure is compatible, meaning that
for a, b, c ∈ P , a ≤ b implies that a+c ≤ b+c. As an example consider (Ri×Qj×Zℓ,≤, 0,+),
with i, j, ℓ ≥ 0 and n := i+ j+ ℓ ≥ 1, and where the right hand side has the product partial
order. Recall that U0 is the principal up-set at 0 ∈ P . For example, if (P,≤) = (Rn,≤),
then U0 ⊂ Rn is the non-negative orthant of Rn.

Example 2.17. Let (P,≤) = (Rn,≤). Consider the monoid with addition, (U0,+, 0), which
we will also denote by U0. Let R be a unital ring. Let R[U0] be the monoid ring, whose
definition is analogous to that of a group ring R[G] for a ring R and a group G. For example,
elements of R[U0] can be xπ1 , 1 + r1x

e
1 + r2x

5
3 , for r1, r2 ∈ R, etc. This ring, R[U0], is an

Rn-graded ring and is commutative whenever R is. Indeed, we can give it a grading in the
following way: R[U0] =

⊕

a∈PR[U0]a, where R[U0]a is the set of homogeneous elements in
R[U0] of degree a if a ≥ 0, and is 0 otherwise. Observe that R[U0]a ∼= R, for all a ≥ 0.
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For a preordered set P with a compatible abelian structure, let P be the corresponding
category. Let A be the category of left R modules, RMod. Consider a persistence module
M : P → A. Then M can be viewed as an P -graded left R[U0]-module and vice versa.
Indeed, we can write M =

⊕

a∈PMa with left R[U0]-action given by xs ·m := Ma≤a+s(m)
and extending linearly for a given m ∈Ma and s ∈ U0 and x

s the generator of R[U0]s. In the
other direction, given a left action of R[U0] we can construct an R-module homomorphisms
Ma → Ma+s by defining them to be given by the left action by the generator xs of R[U0]s.
Furthermore, every natural transformation corresponds to a graded module homomorphism;
see Figure 2. This is an isomorphism of categories. This has been observed by different
authors, in [32] in the P = Rn-graded case, in [41] in the P = Zn-graded case and in [34,
Lemma 3.4] and [35] where P is a partially ordered abelian group. What is new in this paper
is the generalization to preordered sets. The corresponding statements also hold for functors
M : P → ModR and P -graded right R[U0]-modules.

Ma Mb

Na Nb

Ma≤b

xb−a

αa αb

Na≤b

xb−a

Figure 2. Consider maps αa :Ma → Na for a ∈ P . Viewing Ma≤b and Na≤b

as actions by xb−a, the equality αb(Ma≤b(m)) = Na≤b(αa(m)) corresponds to
the equality α(xb−a ·m) = xb−a · α(m). The first equality is the condition for
α to be natural transformation. The second equality is the condition for α to
be a graded module homomorphism.

In Section 8 we will state Künneth Theorems for persistence modules. The splitting of
the short exact sequences in those theorems will depend on the properties of the graded
ring R[U0]. Observe that when the ring R is commutative, the ring R[U0] is an associative
R-algebra. Furthermore, the ring R[U0] is commutative, thus it is a commutative R-algebra.
Now suppose R = k is a field and (P,≤) = (Rn,≤). We make the following observations on
the ring k[U0] and its ideals.

i) k[U0] is not a principal ideal domain. In particular, the ideal k[U0 \ {0}] is not
generated by a single element.

ii) k[U0] is not even a unique factorization domain. Otherwise, it would satisfy the
ascending chain condition for principal ideals (see [15, Section 0.2]). However, for
m = 1, 2, 3, . . ., the increasing sequence of principal graded ideals k[U( 1

m
,..., 1

m
)] does

not stabilize.
iii) The only graded (homogeneous) ideals are the interval persistence modules of up-sets

that are contained in the first orthant, namely k[U ] for up-sets U ⊂ U0. See also [34,
Remark 8.12] and [25].

iv) We have that k[U0\{0}] is the unique nonzero graded maximal ideal of k[U0], consist-
ing of homogeneous non-invertible elements of k[U0]. Hence k[U0] is a graded-local
ring. Note that k[U0] is not a local ring. Indeed, if k[U0] were local then x1 or 1− x1
would be a unit. This is not the case, as these elements are not invertible.

Recall that we have assumed that P be a preordered set together with an abelian group
structure. Let M,N : P → A be persistence modules, where A is either ModR or RMod.

8



Let HomR[U0](M,N) denote the set of module homomorphisms from a persistence moduleM
to N , forgetting the grading. For a module M , let M(s) be the translation of M by s, i.e.,
M(s)a := Ms+a. Recall that a graded module is finitely generated if it is finitely generated
as a module (Appendix B). The following proposition suggests how to construct sets of
morphisms between persistence modules that are themselves persistence modules. This will
eventually allow us to consider a chain complex of persistence modules with coefficients in
another persistence module (Section 8).

Proposition 2.18. [23, Theorem 1.2.6] Suppose M is a finitely generated persistence mod-
ule. Then the abelian group of module homomorphisms from M to N , HomR[U0](M,N), has
a direct sum decomposition HomR[U0](M,N) ∼=

⊕

s∈P

Hom(M,N(s)), where Hom(M,N(s)) is

the set of natural transformations (graded module homomorphisms) from M to N(s).

Hence sets of (ungraded) module homomorphisms of persistence modules have the struc-
ture of a graded abelian group when the domain module M is a finitely generated module.

The following is a graded version of Nakayama’s Lemma in homological algebra.

Proposition 2.19. [33, Theorem 4.6] Let Γ be a monoid. Let S be a Γ-graded ring. Suppose
S is a graded-local ring. Then if P is a finitely generated graded projective S-module, P is
a graded free S-module.

Since every group is a monoid, we can apply Proposition 2.19 to rings and modules graded
over a group. Thus, we have the following corollary, where Vectk is defined in Section 2.1.

Corollary 2.20. A finitely generated persistence module M : P → Vectk is projective if
and only if M is graded free.

Let us now summarize some of the results from this section and the previous two sections.

Theorem 2.21. Let (P,≤,+, 0) be a preordered set with a compatible abelian group structure.
Let R be a unital ring. Then we have the isomorphisms of categories

RModP ∼= RP -Mod ∼= GrP-R[U0]Mod and ModP
R
∼= Mod-RP

∼= GrP-ModR[U0].

where GrP -R[U0]Mod and GrP -ModR[U0] are the categories of P -graded left and right R[U0]-
modules, respectively. In particular, for each a ∈ P , Ma

∼= M(Ua). Also, M(U) =
lima∈U M(Ua), and the graded module structure is given by M ∼=

⊕

a∈P Ma.

Definition 2.22. We say M is a left persistence module if M : P → RMod. We say M is
a right persistence module if M : P → ModR. Due to the above isomorphisms, we will also
use these terms when M is a left RP -module or right RP -module, respectively, and when P
is a preordered set with a compatible abelian group operation, when M is a P -graded left
R[U0]-module or a P -graded right R[U0]-module, respectively.

2.4. A Grothendieck category of persistence modules. In this section we observe that
the category of persistence modules is a Grothendieck category and remark that the Gabriel-
Popescu Theorem can be applied. This allows us to potentially consider persistence modules
as modules over a new (non-graded) ring. Let (P,≤) be a preordered set. Recall that for
a ∈ P , Ua = {b ∈ P | a ≤ b}. Let A be a Grothendieck category. Recall that a family
of generators in a category is a collection of objects {U}i such that for every two distinct
morphism f, g : X → Y in the category, there exists an i and h : Ui → X such that fh 6= gh
(Appendix A). If the family is a singleton, we simply say generator.
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Proposition 2.23. The category AP is a Grothendieck category with a generator. In par-
ticular, the category has enough projectives and injectives.

Proof. SinceA is a Grothendieck category, so is the functor categoryAP, by Proposition A.2.
Let G be a generator of A. For a ∈ P , define G[Ua] to be the persistence module given by
G[Ua]b = G if b ∈ Ua and 0 otherwise and let G[Ua]b≤c = 1G if b, c ∈ Ua and 0 otherwise. The
collection {G[Ua]}a∈P is a family of generators. Indeed, suppose f, g : M → N are natural
transformations between persistence modulesM and N such that f 6= g. Then by definition,
there exists an a ∈ P such that fa 6= ga. In particular, as G is a generator of A, there exists
an ha : Ga → Ma such that faha 6= gaha. Define h : G[Ua] → M by setting hb = 0 for
b 6∈ Ua and setting hb =Ma≤bha for b ∈ Ua. Since all of the maps in G[Ua] are the identity or
are zero, the collection of maps {hb}b∈P are the components of a natural transformation h.
Then, by construction it is clear that fh 6= gh, hence {G[Ua]}a∈P is a family of generators.
By Proposition A.1 we have that U :=

⊕

a∈PG[Ua] is a generator (which is also free and
hence projective). By Theorem A.3 and Proposition A.1, the category has enough injectives
and projectives. �

We will show later in Section 6 that the interval modules k[Da] are injective and that the
interval modules k[Ua] are projective, when k is a field.

Theorem 2.24. [37, Theorem 14.2, Chapter 4][Gabriel-Popescu Theorem] Let C be a
Grothendieck category and let U be an object in C. Consider the endomorphism ring S := EndC(U).
Then the following are equivalent:

1) U is a generator.
2) The functor Hom(U, ·) : C → ModS is full and faithful and its left adjoint · ⊗S U :

ModS → C is exact.

From this we have the following Gabriel-Popescu theorem for persistence modules:

Corollary 2.25. Let U =
⊕

a∈P G[Ua] and let S = End(U). Then:

• Hom(U, ·) : AP → ModS is full and faithful; and its left adjoint
• · ⊗S U : ModS → AP is exact.

We will use this result in Section 9 when we consider persistence modules over finite
preordered sets.

2.5. Chain complexes of persistence modules. In Section 8 we will investigate how
changing the coefficients of a chain complex of persistence modules changes its homology.
In order to compute examples that come from applications, we consider a chain complex of
persistence modules obtained from a filtered cellular complex, such as a filtered simplicial
complex or a filtered cubical complex.

A filtration on a CW complex X is a function f : X → R that is constant on the cells of X
and such that f(∂σ) ≤ f(σ) for all cells σ of X . For a ∈ R, let Xa be the subcomplex of X
defined by Xa := f−1(−∞, a]. The collection of CW complexes {Xa}a∈R with the inclusion
maps Xa →֒ Xb whenever a ≤ b is a filtered CW complex. The inclusion maps induce k-linear
maps on cellular homology with coefficients in a field k, Hn(Xa;k) → Hn(Xb;k). Let Hn(X)
denote the resulting persistence module.

Let X be a CW complex with filtration f . Let X(m) denote the set of m-cells of X . For
m ≥ 0, define Cm(X) =

⊕

σ∈X(m)
k[f(σ),∞). For σ ∈ X(m), also let σ denote the generator
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of k[f(σ),∞). For a ≥ f(σ), let σa denote k[f(σ),∞)f(σ)≤aσ. Similarly define αa ∈ Cm(X)
for an m-chain α in the cellular chain complex on X . Define dm : Cm(X) → Cm−1(X) to be
the natural transformation obtained by extending the definition (dm)a(σa) := (∂σ)a linearly.
Let Hn(C(X)) be the homology of the chain complex (C∗(X), d∗).

Lemma 2.26. Let X be a CW complex with a filtration as above. For all n ∈ N, Hn(C(X)) ∼=
Hn(X).

Proof. For all a ∈ R, by definition, Hn(X)a is the n-th cellular homology of f−1(−∞, a] ⊆ X ,
Hn(f

−1(−∞, a];k). By construction, Cm(X)a has as generators the m cells σ of X such
that f(σ) ≤ a. By the definition of (dm)a it follows that Hn(C(X))a is isomorphic to
Hn(f

−1(−∞, a];k). �

3. Tensor products of persistence modules

In this section, we consider two functors of persistence modules. In Section 10 we show
that they are both monoidal products on the category of persistence modules. These are
⊗gr and ⊗sh, the tensor products from graded module theory and sheaf theory respectively.
We give formulas for calculating these functors applied to one-parameter interval modules.
These formulas will be useful in computations in Section 8.

3.1. Tensor product of sheaves. Let (P,≤) be a preordered set and let R be a unital
ring. For more details, see [5, Chapter 1] and [26, Chapter 2].

Definition 3.1. Let M be a right RP -module and let N be a left RP -module, where P is
given the up-set topology. The sheaf tensor product M ⊗RP

N is the sheaf of abelian groups
on P which is associated to the presheaf given by the assignment U 7→ M(U) ⊗R N(U),
for an up-set U ⊂ P . The stalk of this presheaf at a ∈ P is Ma ⊗R Na. As sheafification
preserves the values on stalks, we have (M ⊗RP

N)a =Ma ⊗R Na. However, as discussed in
the proof of Lemma 2.6, we have (M ⊗RP

N)(Ua) =M(Ua)⊗R N(Ua) =Ma ⊗R Na. By the
result of Theorem 2.8, we can also take the functor stalk(M ⊗RP

N) : P → Ab, defined by
stalk(M ⊗RP

N)a :=M(Ua)⊗R N(Ua), as the definition of M ⊗RP
N . To simplify notation,

we will denote ⊗RP
by ⊗sh throughout this paper (the ring R will always be clear from

context). When N is an RP -bimodule, M ⊗sh N is in fact a right RP -module. When R is
commutative, M ⊗sh N is an RP -module.

Example 3.2. Assume that (P,≤) = (Rn,≤) and R = k is a field. Let U, V ⊂ Rn be
intervals and let k[U ] and k[V ] be the corresponding interval persistence modules. For
a ∈ Rn, (k[U ]⊗sh k[V ])a = k[U ]a⊗k[V ]a which equals k if a ∈ U ∩V and is otherwise zero.
If U ∩ V is connected then, k[U ] ⊗sh k[V ] = k[U ∩ V ]. As a special case, if n = 1, we have
that k[a,∞)⊗sh k[b,∞) = k[max{a, b},∞).

3.2. Tensor product of graded modules. Let (P,+, 0) be an abelian group. There exists
a tensor product operation onGrP -S, the category of P -graded modules over a P -graded ring
S; for example see [23]. Hence we have a tensor product of persistence modules, M ⊗R[U0]N .
For the one-parameter case, see for example [36, 20]. For simplicity and to differentiate from
the sheaf tensor product we will write M ⊗gr N throughout, as the ring R and the abelian
group P will be clear from the context.
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Definition 3.3. Let M be a P -graded right R[U0]-module and let N be P -graded left
R[U0]-module. Let M ⊗R N :=

⊕

r∈P (M⊗R)r, where

(M ⊗R N)r := R
〈{

∑

i

mi ⊗R ni |mi ∈Mh, ni ∈ Nh, deg(mi) + deg(ni) = r
}〉

.

Define the graded module tensor product of M and N , written M ⊗grN , to be the P -graded
abelian group given by

M ⊗gr N := (M ⊗R N)/J,

where J is the subgroup of M ⊗R N generated by the homogeneous elements

{m · x⊗R n−m⊗R x · n |m ∈Mh, n ∈ Nh, x ∈ R[U0]
h}.

where Mh, Nh and R[U0]
h are the sets of homogeneous elements of M,N and R[U0] respec-

tively.

Now assume (P,≤,+, 0) is a preorder with a group structure compatible with the preorder,
namely a ≤ b implies a + c ≤ b + c. Then, there is an equivalent categorical definition of
⊗gr, as observed in [36]. Let Xr =

⊕

s+t=r(Ms ⊗R Nt). The abelian group (M ⊗gr N)r is
the quotient of Xr given by the colimit of the diagram of abelian groups (Ms ⊗R Nt)s+t≤r.
See Figure 3 for the case (P,≤) = (R,≤).

M

N

Ma Mb

Nc

Nd

Mb ⊗R Nc

Ma ⊗R Nd

Ma ⊗R Nc

Xr :=
⊕

s+t=r

(Ms ⊗R Nt)

Xr

(M ⊗gr N)r := colim
s+t≤r

(Ms ⊗R Nt)

Ma≤b ⊗R 1Nc

1 M
a
⊗
R
N
c
≤
d

Figure 3. The tensor product of one-parameter persistence modules M and
N . Each abelian group (M⊗grN)r is assigned to be the colimit of the diagram
of abelian groups (Ms ⊗R Nt)s+t≤r.

Definition 3.4. Let M be a P -graded right R[U0]-module and let N be a P -graded left
R[U0]-module. Define the P graded abelian group M ⊗gr N by setting (M ⊗gr N)r :=
colims+t≤r(Ms ⊗R Nt).

Observe that Definition 3.3 and Definition 3.4 are equivalent. Indeed this follows from
Section 2.3 and the way the Z[U0] action is defined in the quotient in Definition 3.3. If N is
a P -graded R[U0]-bimodule, then M ⊗gr N is a P -graded right R[U0]-module. Furthermore
M ⊗gr N(s) =M(s)⊗gr N = (M ⊗gr N)(s) for all s ∈ Rn, and M ⊗gr k[Us] =M(−s).
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a b

c

d

a+ c

b+ c

a+ d

Figure 4. Tensor product of interval modules : k[a, b) ⊗gr k[c, d) = k[a +
c,min{a + d, b+ c})

Example 3.5. Let M = k[a, b) and N = k[c, d). Assume b+ c ≤ a + d (see Figure 4). Let
r ∈ R and let Xr :=

⊕

s+t=r(Ms ⊗k Nt). For a + c ≤ r < b + c, every summand of Xr is
in the image of Ma ⊗k Nc

∼= k, and hence (M ⊗gr N)r ∼= k and for a + c ≤ r ≤ r′ < b + c,
(M⊗grN)r≤r′ is the identity map on k. For b+c ≤ r, each non-zero summandMs⊗kNt ofXr

has t > c and thus lies in the image ofMs⊗kNc
∼= k. However, the mapMs⊗kNc → Ml⊗kNc

where l is such that l + c = r has to be the zero map as r ≥ b + c, thus l ≥ b and thus
Ml = 0. Hence M ⊗gr N ∼= k[a + c, b+ c).

If we had a + d ≤ b+ c, then the same argument shows that M ⊗gr N ∼= k[a + c, a + d).
Combining these two results we have the following.

k[a, b)⊗gr k[c, d) = k[a+ c,min{a+ d, b+ c})

Note that the persistence of this interval module (i.e. the length of the corresponding inter-
val) is the minimum of the persistences of the interval modules M and N .

Alternatively, note that k[a, b) and k[c, d) are graded modules with one generator in degrees
a and c, respectively. Label these generators as ya and zc respectively. Then note that by
the action of the graded ring k[0,∞), we have xt · ya 6= 0 if and only if t < b− a. Similarly
xt · zc 6= 0 if and only if t ≤ d − c. From the point of view of graded module theory,
k[a, b) ⊗gr k[c, d) will be a graded module with a single generator in degree a + c, namely
ya ⊗gr z

c and xt · (ya ⊗gr z
c) 6= 0 if and only if t < min{b− a, d− c}.

Similarly one obtains the following equalities.

k[a,∞)⊗gr k[c, d) = k[a + c, a+ d) k[a,∞)⊗gr k[c,∞) = k[a + c,∞)

k[a, b)⊗gr k(−∞, d) = 0 k[a,∞)⊗gr k(−∞, d) = k(−∞, a+ d)

k[a, b)⊗gr k(−∞,∞) = 0 k[a,∞)⊗gr k(−∞,∞) = k(−∞,∞)

Note that ⊗gr is different from ⊗sh. Indeed, the tensor unit of ⊗gr is R[U0] while the
tensor unit of ⊗sh is R[P ]. We will focus more on ⊗gr over ⊗sh in this paper because ⊗gr

is right exact in general unlike ⊗sh which is exact when R = k is a field. We thus need
to spend more time carefully constructing projective resolutions and calculating the derived
functor of ⊗gr. However, as we will see in Proposition 3.7 and Remark 3.8, unlike ⊗sh, ⊗gr

does not interact nicely with the other Grothendieck operations obtained from sheaf theory.

Definition 3.6. Let X and Y be topological spaces and f : Y → X a continuous map. Let
F be a sheaf on X . The inverse image of F by f , denoted f−1F is the sheaf on Y associated
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to the presheaf given by the following assignment:

f−1F (U) := colim
f(U)⊂V

F (V ),

for all open U ⊂ Y , where V ranges over all open subsets of X containing f(U).

Proposition 3.7. Let f : P → P be a continuous map (with respect to the Alexandrov
topology on (P,≤)). Then for a right persistence module M and a left persistence module N
we have a canonical isomorphism.

(2) f−1(M ⊗sh N) ∼= f−1M ⊗sh f
−1N

Proof. Let f : X → Y be a map of topological spaces, and let R be a sheaf of rings on
Y . Let M be a right R module and let N be a left R module. Then there is a canonical
isomorphism f−1(M ⊗R N) ∼= f−1M ⊗f−1R f−1N , see for example [26, Proposition 2.3.5].
Now let X = Y = P (with the Alexandrov topology) and let R = RP . Suppose f : P → P is
continuous, with respect to the Alexandrov topology on P . Then, f−1RP = RP . Indeed let
U ⊂ P be an up-set. Then by Definition 3.6, f−1RP is the sheaf associated to the presheaf
f−1RP (U) := colimf(U)⊂V RP (V ) = R, which means f−1RP is the constant sheaf on P . Thus
we have f−1(M ⊗sh N) ∼= f−1M ⊗sh f

−1N . �

Remark 3.8. Let f : P → P be continuous (with respect to the Alexandrov topology on
(P,≤)). It is not necessarily true that f−1(M ⊗gr N) is isomorphic to f−1M ⊗gr f

−1N .
Indeed consider the following counter example. Let (P,≤) = (R,≤) and let R = k. Let
f : R → R be given by f(x) = x+ 5. Observe that f is continuous and that for an interval
module k[a, b) we have:

f−1(k[a, b)⊗gr k[a, b)) = f−1k[2a, a+ b) = k[2a− 5, a+ b− 5) .

On the other hand:

f−1k[a, b)⊗gr f
−1k[a, b) = k[a− 5, b− 5)⊗gr k[a− 5, b− 5) = k[2a− 10, a+ b− 10) .

For the remainder of this section we assume that (P,≤) = (Rn,≤) and that R = k is a
field.

Example 3.9. Consider persistence modules M = k[[a1, b1) × · · · × [an, bn)] and N =
k[[c1, d1)× · · · × [cn, dn)]. Then M ⊗gr N = k[[a1 + c1,min{b1 + c1, a1 + d1})× · · · × [an +
cn,min{bn + cn, an + dn)]. To see this, observe that M and N are graded modules with a
single generator, in degrees (a1, . . . , an) and (c1, . . . , cn) respectively. Hence M ⊗grN will be
a persistence module with a single generator in degree (a1+c1, . . . , an+cn), say y

a+c, and all
that is left is to determine for which t ∈ Rn is xt · ya+c zero. We examine this coordinatewise
as in Example 3.5 to obtain the answer above.

4. Homomorphisms of persistence modules

In this section we consider two bifunctors of persistence modules: the two internal homs,
Hom and Hom , coming from graded module theory and sheaf theory, respectively. These
functors are well known in their respective domains but examples in the persistence module
literature seem to be lacking. In order to do computations with interval modules we first need
to understand the sets of natural transformations between them. The following examples
serve that purpose.
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Example 4.1 ([9, Appendix A.2]). Suppose k[a, b) and k[c, d) are interval modules. Then,
due to the constraints of commutative squares for natural transformations, we have:

Hom(k[a, b),k[c, d)) ∼=

{

k if c ≤ a < d ≤ b

0 otherwise

Example 4.2. [35, Proposition 3.10] Let U be an up-set and D a down-set in a poset (P,≤).
Then Hom(k[U ],k[D]) ∼= kπ0(U∩D) where π0A is the set of equivalence classes of connected
components of a set A, with respect to the poset structure, as in Definition 2.2. For upsets
U and U ′, Hom(k[U ′],k[U ]) = k{S∈π0U ′ |S⊆U}.

4.1. Sheaf internal hom. Let (P,≤) be a preorder with the Alexandrov topology and let R
be a unital ring. Given two left/right persistence modules M and N , thought of as sheaves,
there is a sheaf of abelian groups given by HomRP

(M,N)(U) := HomRP |U (M |U , N |U), for
any up-set U (see Definition C). We will write Hom (M,N) instead of HomRP

(M,N) as
the ring R and preorder P will always be clear from context. Furthermore, when the ring
R is commutative, Hom (M,N) also has the structure of an RP -module (i.e. a persistence
module). For any persistence module X , the functor −⊗sh X is left adjoint to the functor
Hom (X,−) (see Proposition C.1).

Example 4.3. For interval modules k[a, b) and k[c, d) we have the following.

Hom (k[a, b),k[c, d)) =







































0 if a < b ≤ c < d

0 if a < c ≤ b < d

k[c, d) if a < c < d ≤ b

0 if c ≤ a < b < d

k(−∞, d) if c ≤ a < d ≤ b

0 if c < d ≤ a < b

To see this, note that by definition we have the following.

Hom (k[a, b),k[c, d))x = Hom (k[a, b),k[c, d))([x,∞)) =

= Homk[R]|[x,∞)
(k[a, b)|[x,∞),k[c, d)|[x,∞))

Thus, we need to compute the set of natural transformations between the functors

k[a, b)|[x,∞),k[c, d)|[x,∞) : [x,∞) → Vectk,

where [x,∞) is given the total linear order induced from R. Note that k[a, b)|[x,∞) is nonzero
if and only if x ∈ (−∞, b). Consider the case c ≤ a < d ≤ b. As in Example 4.1, we see that
Homk[R]|[x,∞)

(k[a, b)[x,∞),k[c, d)[x,∞)) ∼= k if x ∈ (−∞, d) and is zero otherwise. The other
cases may be computed similarly. The same argument also shows that

Hom (k[a,∞),k[c, d)) =











k[c, d) if a < c

k(−∞, d) if c ≤ a < d

0 if d ≤ a

and that

Hom (k[a, b),k[R]) = 0 and Hom (k[a,∞),k[R]) = k[R].
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4.2. Graded module internal hom. Now assume that (P,≤,+, 0) is a preordered set with
a compatible abelian group structure. Then we can consider the graded module internal hom,
the right adjoint of ⊗gr.

Definition 4.4. Let M be a persistence module (either left or right). For s ∈ P , let
Ts : P → P be the translation functor by s, i.e., Ts(x) = x+ s. Define M(s) :=M ◦ Ts.

Observe that for every s ∈ U0, there is a natural transformation ηs : 1P → Ts whose
components (ηs)a : 1P(a) → Ts(a) are given by a ≤ a+s. Then ηs is a natural transformation
since a ≤ b implies a + s ≤ b + s for all a, b ∈ P . Furthermore, for any s ∈ U0, given a
persistence module M , we have a natural transformation 1M ∗ ηs : M → M(s), where ∗
denotes horizontal composition.

Definition 4.5. Let M and N be two persistence modules (both left or both right). Define
Hom(M,N) :=

⊕

s∈P Hom(M,N(s)). Then Hom(M,N) is a P -graded abelian group. This
follows from Proposition 2.18. When the ring R is commutative, Hom(M,N) is a persistence
module. Given s ∈ P , we have the R-module Hom(M,N)s := Hom(M,N(s)) and for
each s ≤ t we have an R-module homomorphisms Hom(M,N)s≤t defined by ({αx : Mx →
Nx+s}x∈P ) 7→ ({Nx+s≤x+tαx : Mx → Nx+t}x∈P ) or equivalently, by the naturality of α,
({αx :Mx → Nx+s}x∈P ) 7→ ({αx+tMx≤x+t :Mx → Nx+s+t}x∈P ).

There is a canonical isomorphism Hom(M,N(s)) ∼= Hom(M(−s), N) for all s ∈ P . Hence
shifting the first argument in Hom or the second one to construct Hom gives us the same
definition.

Proposition 4.6. (Limit characterization of Hom) Let M,N be persistence modules (both
left or both right). Then Hom(M,N)r is the limit of the diagram {HomR(M−s, Nt)}s+t≥r.

Proof. Define Xr =
∏

s+t=r HomR(M−s, Nt). We claim that Hom(M,N)r is the abelian

M

N

ba

c

d
HomR(M−b, Nd)

HomR(M−b, Nc)

HomR(M−a, Nd)

◦M−b≤−a

N
c
≤
d
◦

Xr =
∏

s+t=r

HomR(M−s, Nt)

Xr

Hom(M,N)r = lim
s+t≥r

HomR(M−s, Nt)

Figure 5. Limit characterization of Hom.

subgroup of Xr that is the limit of the diagram of abelian groups given by HomR(M−s, Nt)
with s + t ≥ r and maps as in Figure 5. Note that Figure 5 illustrates the case in which
(P,≤) = (R,≤), but the algebra holds for the general case. To see this observe the following:
Let f ∈ HomR(M−b, Nc) and g ∈ HomR(M−a, Nd), where a + d = b + c = r. The canonical
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maps HomR(M−b, Nc) → HomR(M−b, Nd) and HomR(M−a, Nd) → HomR(M−b, Nd) that
are induced by M−b≤−a and Nc≤d are just postcomposition and precomposition by Nc≤d and
M−b≤−a respectively. If f and g are components of a natural transformation in Hom(M,N(r))
then the parallelogram in Figure 6 commutes. Equivalently, f and g are mapped to the same
morphism under the above maps (see Figure 6). �

M−b M−a

Nc Nd

f

M−b≤−a

g

Nc≤d

Figure 6. Commutativity of natural transformations is equivalent to a limit
characterization of the appropriate hom sets.

In the remainder of this section we assume that (P,≤) = (Rn,≤) and R = k is a field.

Example 4.7. Consider two interval modules, say k[a, b) and k[c, d). Note that in the
definition of Hom(M,N), we compute the direct sum of abelian groups of natural transfor-
mations between the persistence moduleM and all translations of the persistence module N
on the real line. Thus, by using the same arguments as in Example 4.1, Hom(k[a, b),k[c, d))
is the interval module k[I] such that for all t ∈ I, Hom(k[a, b),k[c, d))t = k and 0 otherwise.
Depending on the lengths of the intervals [a, b) and [c, d) there are two cases to consider,
namely b− a ≤ d− c and d− c ≤ b− a. We can calculate, accounting for both cases, that

Hom(k[a, b),k[c, d)) = k[max{c− a, d− b}, d− a) ,

Alternatively, using Proposition 4.6 and reasoning similar to that used in Example 3.5 we
can do the same calculation in terms of limits of diagrams of vector spaces, see Figure 7.
Other formulas such as Hom(k[a, b),k[c,∞) = 0, Hom(k[a,∞),k[b, c)) = k[b− a, c− a) can

−a−b

c

d

Figure 7. Hom of interval modules: Hom(k[a, b),k[c, d) = k[max{c− a, d−
b}, d− a).

be computed using the same arguments.

Example 4.8. Suppose thatM = k[[a1, b1)×· · ·× [an, bn)] and N = k[[c1, d1)×· · ·× [cn, dn)]
are two rectangle modules. Then Hom(M,N) = k[[max{c1 − a1, d1 − b1}, d1 − a1) × · · · ×
[max{cn − an, dn − bn}, dn − an)].
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5. Duality

Let (P,≤) be a preorder. Let R be a commutative unital ring. For a persistence module
we have duals from sheaf theory and from graded module theory. For the former, see [26,
Corollary 2.2.10.] and for the latter see [34, 32]. The graded module dual will be useful in
determining which interval modules are flat and injective, which will be used in homological
algebra computations to come.

Definition 5.1. The sheaf dual of a persistence module M is the persistence module given
by

M∗
sh := Hom (M,RP ).

Example 5.2. Let (P,≤) = (R,≤) and let R = k be a field. Let a ≤ b and consider the
interval module k[a, b). Then, by Example 4.3, we find k[a, b)∗sh := Hom (k[a, b),k[R]) = 0.
Similarly, if a ∈ R, we have k[a,∞)∗sh := Hom (k[a,∞),k[R]) = k[R].

Now suppose that (P,≤,+, 0) is a preorder with a compatible abelian group action. The
ring R is still assumed commutative and unital.

Definition 5.3. The Matlis dual of a persistence moduleM is the persistence module given
by

M∗
gr := Hom(M,R[D0]]).

Lemma 5.4. For a ∈ P ,
(

M∗
gr

)

a
∼= HomR(M−a, R).

Proof. Note that Hom(M,R[D0])a = Hom(M,R[D0](a)) = Hom(M,R[D−a]). It remains to
show that

Hom(M,R[D−a]) ∼= HomR(M−a, R).

For ϕ : M → R[D−a], we have the component ϕ−a : M−a → R. For f : M−a → R, define
ϕ : M → R[D−a] by ϕ−a = f , for x ≤ −a, ϕx = fMx≤−a, and let ϕx be the zero map
otherwise. These two mappings provide the desired isomorphism. Under this isomorphism,
(

M∗
gr

)

a≤b
is given by the mapping f 7→ f ◦M−b≤−a. �

Using the ⊗gr − Hom adjunction (see Theorem 10.7) we have the following canonical
isomorphism:

(M ⊗gr N)∗gr = Hom(M ⊗gr N,R[D0]]) ∼= Hom(M,Hom(N,R[D0])) = Hom(M,N∗
gr) .

Similarly, using the ⊗sh − Hom adjunction, [26, Proposition 2.2.9], we have the following
canonical isomorphism:

(M ⊗sh N)∗sh = Hom (M ⊗sh N,RP ) ∼= Hom (M,Hom (N,RP )) = Hom (M,N∗
sh) .

In the remainder of this section (P,≤) = (Rn,≤) and R = k is a field.
If a persistence module M is pointwise finite dimensional we have (M∗

gr)
∗
gr

∼= M . This is
true since for finite dimensional vector spaces the same formula holds for vector space duals.
In particular for a pointwise finite dimensional persistence module M , the module M∗

gr is in
some sense the dilation of M about the origin of scale factor −1.

Example 5.5. Consider an interval module k[A]. Then k[A]∗gr = k[−A].

Definition 5.6. A graded module M is ⊗gr-flat if −⊗gr M is an exact functor.
18



Proposition 5.7. [34, Remark 4.20] A persistence module M is ⊗gr-flat if and only if its
Matlis dual M∗ is injective, and vice versa. In particular, k[A] is injective if and only if
k[−A] is ⊗gr-flat.

Remark 5.8. Observe that we can use Matlis duality and the fact that injectivity of per-
sistence modules is equivalent to their flabbiness (Appendix C and Proposition 2.15) to
classify interval modules into injectives and flats, see Figure 1, or use the Baer criterion
(Proposition A.4, Theorem B.1, and Proposition 2.15) if one prefers it over the flabbiness
condition.

6. Classification of projective, injective and flat interval modules

In this section we assume that (P,≤) = (Rn,≤) and that R = k is a field. We classify
interval modules (in the one-parameter case) into injectives and projectives and extend the
results somewhat to the multi-parameter setting. This is a necessary step for the homological
algebra computations that are to come involving interval modules.

Proposition 6.1. Let a ∈ R. The interval module k(a,∞) is not graded projective.

Proof. For simplicity we will prove the claim for k(0,∞). Consider the following diagram

k(0,∞)

⊕

a>0

k[a,∞) k(0,∞) 0

Id
β

p

where p is induced by the inclusions k[a,∞) →֒ k[0,∞), a > 0. However, by Example 4.2,
k(0,∞) has no nonzero maps to k[a,∞), when a > 0, because (0,∞) is not a subset of [a,∞).
Thus β = 0 but then the diagram cannot commute, and thus k(0,∞) is not projective. �

In particular, submodules of free modules are not necessarily free, which is expected as
the graded ring we are working with is not a principal ideal domain.

The following is an observation due to Parker Edwards.

Lemma 6.2. If a < c ∈ R ∪ {∞} then colima<b<c k[b, c) = k(a, c). Dually, if c < a ∈
R ∪ {−∞}, then limc<b<ak(c, b] = k(c, a).

Lemma 6.3. Colimits of graded projective modules are ⊗gr-flat.

Corollary 6.4. Let a ∈ R. The interval module k(a,∞) is ⊗gr-flat.

We now prove the classification of projective, injective and ⊗gr-flat interval modules stated
in Theorem 1.2.

Theorem 6.5 (Theorem 1.2). Let a ∈ R. Then:

• The interval modules k(−∞, a) and k(−∞, a] are injective. They are not flat and
thus not projective.

• The interval modules k[a,∞) are projective (free) and the interval modules k(a,∞)
are flat but not projective. Both are not injective.

• The interval module k[R] is both injective and flat, but not projective.
19



• If I ⊂ R is a bounded interval, then k[I] is neither flat (hence not projective) nor
injective.

Proof. First, let us show that k(−∞, a) is injective. By Corollary 6.4, we know the interval
module k(−a,∞) is⊗gr-flat. By Proposition 5.7 it follows that the interval module k(−∞, a)
is injective. To see that k[a,∞) is projective, note that it is a graded free module and is thus
graded projective (hence ⊗gr-flat). The statement that k(a,∞) is ⊗gr-flat and not projective
is Proposition 6.1 and Corollary 6.4. Note that k[a,∞)([a,∞) ⊂ R) : k[a,∞)(R) = 0 →
k[a,∞)[a,∞) = k is not surjective. Thus the sheaf k[a,∞) is not flabby and hence by
Proposition 2.15 is not injective. The same argument shows k(a,∞) is not injective. By
Proposition 5.7, k(−∞, a) and k(−∞, a] are not ⊗gr-flat thus not projective.

The same argument used for k(−∞, a) shows that k[R] is injective. By Proposition 5.7
k[−R] = k[R] is ⊗gr-flat.

For a bounded interval I ⊂ R note that for a ∈ I, k[I]([a,∞) ⊂ R) is not surjective. Thus
the sheaf k[I] is not flabby thus not injective by Proposition 2.15. Its Matlis dual k[−I] is
thus not ⊗gr-flat. By the same arguments k[−I], as −I is a bounded interval, k[−I] is not
injective thus by Proposition 5.7 k[I] is not ⊗gr-flat thus not projective. �

For the multi-parameter case note that for a ∈ Rn, the persistence module k[Ua] is graded
free, thus graded projective, and hence ⊗gr-flat. By Proposition 5.7, the persistence module
k[Da] is injective.

Definition 6.6. Let (Q,≤) be a poset. Let p, q ∈ Q. The join of p and q denoted p ∨ q is
the smallest r ∈ Q such that p ≤ r and q ≤ r, if it exists. The meet of p and q denoted p∧ q
is the largest t ∈ Q such that t ≤ p and t ≤ q, if it exists. A poset where every join exists
is called a join semilattice. A poset where every meet exists is called a meet semilattice. A
poset where every join and every meet exists is called a lattice. Note that every up-set U
(and every down-set D) in a lattice is an interval.

Example 6.7. The poset (Rn,≤) is a lattice.

Proposition 6.8. Let (P,≤) be a lattice. Consider a down-set D ⊂ P such that for all
a, b ∈ D, the join a ∨ b is in D. Then the interval module k[D] is injective. Dually, for an
up-set U ⊂ Rn with a ∧ b ∈ U for all a, b ∈ U , the interval module k[U ] is ⊗gr-flat.

Proof. Let D be as in the statement of the proposition. Observe that, viewing k[D] as a
sheaf, we have k[D](P ) = limx∈P k[D]x ∼= k. Let U be an up-set of P with D∩U 6= ∅. Then,
since the join for all a, b ∈ D∩U exists in D∩U , it follows that k[D](U) = limx∈U k[D]x ∼= k.
Since the nonzero maps in the module k[D] are identities, the induced map between the limits
is an isomorphism. Hence k[D] is a flabby sheaf, hence an injective persistence module by
Proposition 2.15. The remainder of the statement follows from Proposition 5.7. �

7. Derived functors for persistence modules

In this section we consider the derived functors of the following functors of persistence
modules: ⊗gr,Hom,⊗sh and Hom . Throughout this section we assume (P,≤) = (Rn,≤)
and that R = k is a field. For one-parameter interval decomposable persistence modules we
will use the classification of projective, injective, and flat interval modules (Theorem 1.2) in
order to construct projective and injective resolutions and calculate these derived functors.
The resulting formulas will be used in Section 8.
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7.1. Graded module Tor and Ext. Here we consider the derived functors Torgr and
Extgr of the graded module tensor product ⊗gr and its adjoint, Hom.

Example 7.1 ([36]). Consider the interval modules k[a, b) and k[c, d). We have the following
augmented projective resolution of k[a, b).

0 → k[b,∞) → k[a,∞) → k[a, b) → 0

Apply the functor − ⊗gr k[c, d) to the projective resolution to get the following (no longer
exact) sequence.

0 → k[b+ c, b+ d) → k[a+ c, a+ d) → 0

Calculating homology (i.e. taking the kernel of the middle map) we get the following.

Tor
gr
1 (k[a, b),k[c, d)) = k[max{a+ d, b+ c}, b+ d) .

Similarly Tor
gr
1 (k[a, b), (−∞, d)) = k[a + d, b+ d) and Tor

gr
1 (k[a,∞),k[c, d)) = 0.

Example 7.2. Consider the interval modules k[a, b) and k[c, d). We have the following
augmented injective resolution of k[c, d).

0 → k[c, d) → k(−∞, d) → k(−∞, c) → 0

Apply the functor Hom(k[a, b),−) to the injective resolution.

0 → k[d− b, d− a) → k[c− b, c− a) → 0

Calculating homology (i.e. taking the cokernel of the middle map) we get the following.

Ext1gr(k[a, b),k[c, d)) = k[c− b,min{c− a, d− b})

In Example 7.1 and Example 7.2, where U0 ⊆ R, the given one-parameter persistence
modules had projective, respectively injective resolutions, of length one. It is an open ques-
tion whether all one-parameter persistence modules have projective resolutions of length one.
More generally, for U0 ⊆ Rn, it is unknown if the ring k[U0] has a finite global dimension.

7.2. Sheaf Tor and Ext. Here we consider the derived functors Torsh and Extsh of the
sheaf tensor product ⊗sh and its adjoint Hom .

Theorem 7.3. Let M be a persistence module. Then − ⊗sh M and M ⊗sh − are exact
functors. In particular, Torshi (M,N) = 0 for any persistence modules M and N and any
i ≥ 1.

Proof. We will show that −⊗sh M is exact. The other case is symmetric.
Suppose 0 → A → B → C → 0 is a short exact sequence of persistence modules. A

classical result in sheaf theory is that a sequence of morphisms A → B → C of sheaves is
short exact if and only if the induced maps on all the stalks are short exact. Thus for all
x ∈ Rn, 0 → Ax → Bx → Cx → 0 is a short exact sequence of vector spaces. Now observe
that applying the functor − ⊗sh M , we get a sequence A ⊗sh M → B ⊗sh M → C ⊗sh M
which gives us a sequence on stalks (A⊗shM)x → (B⊗shM)x → (C⊗shM)x which is equal
to Ax ⊗k Mx → Bx ⊗k Mx → Cx ⊗k Mx. Since every k-vector space is a flat k-module, and
the sequence Ax → Bx → Cx is short exact, the sequence (A ⊗sh M)x → (B ⊗sh M)x →
(C⊗shM)x is also exact, for all x ∈ Rn. Thus the sequence A⊗shM → B⊗shM → C⊗shM
is also exact. Thus −⊗sh M is an exact functor. �
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It is not true in general that for any persistence module M the functors Hom (−,M)
and Hom (M,−) are exact. Thus we do have non-trivial Extish(M,N) groups for certain
persistence modules M and N , see Example 7.4.

Example 7.4. Consider two interval modules k[a, b) and k[c, d). We have the following
augmented projective resolution.

0 → k[b,∞) → k[a,∞) → k[a, b) → 0

Apply the functor Hom (−,k[c, d)) to the projective resolution to get the (no longer exact)
sequence:

0 → Hom (k[a,∞),k[c, d)) → Hom (k[b,∞),k[c, d)) → 0

Using Example 4.3 this sequence falls in one of the following cases:






































0 → k[c, d) → k[c, d) → 0 if a < b < c < d

0 → k[c, d) → k(−∞, d) → 0 if a < c ≤ b < d

0 → k[c, d) → 0 → 0 if a < c < d ≤ b

0 → k(−∞, d) → k(−∞, d) → 0 if c ≤ a < b < d

0 → k(−∞, d) → 0 → 0 if c ≤ a < d ≤ b

0 → 0 → 0 → 0 if c < d ≤ a < b

By definition, Ext1sh(k[a, b),k[c, d)) is the cokernel of the middle morphisms. Thus we have
the following.

Ext1sh(k[a, b),k[c, d)) =

{

k(−∞, c) if a < c ≤ b < d

0 otherwise

8. Künneth theorems and universal coefficient theorems

In this section we state Künneth and Universal Coefficient Theorems for chain complexes
of persistence modules. We apply these theorems to products of filtered CW complexes.
We will see that the Künneth formula for the additive product-filtration comes from graded
module theory and that the Künneth formula for the maximum product-filtration comes
from sheaf theory.

Theorem 8.1 and Theorem 8.2 below imply the existence of certain natural short exact
sequences, however additional assumptions are needed for these sequences to split. One of
these is the assumption that the ring R[U0] is hereditary (submodules of projective modules
are projective). For example, the G = Rn-graded ring k[U0] is not hereditary. Indeed,
for a ∈ R the interval module k[a,∞) is projective, however its submodule k(a,∞) is not
(Theorem 1.2). However, the Z-graded ring k[U0] where U0 is the principal up-set at 0 of the
poset Z, is hereditary, since it is a principal ideal domain. We can obtain splittings for more
general persistence modules if they are left Kan extension of persistence modules indexed
over Z. That is, if M : Z → Vectk is a persistence module and i : Z → G is an inclusion
of posets, then the left Kan extension of M along i, is the persistence module given by
Ma = limi(k)≤aMk. In particular, when n = 1 and M is a real parameter persistence module

isomorphic to a direct sum of interval modules, M =
⊕N

i=1k[ai, bi) then M is obtained by
such a Kan extension. In these cases, by the functoriality of the left Kan extension, the
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splitting of persistence modules indexed by Z provides a splitting of persistence modules
indexed by G.

Below, let (P,≤,+, 0) be a preorder with a compatible abelian group structure. Let ∗
denote either sh or gr. Recall that given a chain complex (K, dK), valued in some abelian
category, the subcomplex of boundaries is the chain complex (L, dL) where Ln = dKn (Kn)
and dLn is the restriction of dKn , for all n ∈ Z.

Theorem 8.1 (Künneth Homology Theorem for Persistence Modules). Let (K, dK) be a
chain complex of ⊗∗-flat right persistence modules whose subcomplex of boundaries B also
has all terms ⊗∗-flat. Let (L, dL) be a chain complex of left persistence modules. Then:

1) For every n ∈ Z there is a natural short exact sequence

0 →
⊕

p+q=n

(Hp(K)⊗∗ Hq(L)) → Hn(K ⊗∗ L) →
⊕

p+q=n−1

(Tor∗1(Hp(K), Hq(L))) → 0 .

2) Suppose now that R[U0] is right hereditary and all terms in (K, dK) are projective,
then the above sequence splits (the splitting need not be natural).

Proof. For part 1), adapt the proof of Theorem 3.6.3 in [40]. Part 2) follows from Exercise
3.6.2 in [40]. �

Recall that by Theorem 7.3 persistence modules with coefficients in a field are ⊗sh-flat,
hence there will be no Torsh1 term present in the sequence above, if we work over a field k.

Theorem 8.2 (Künneth Cohomology Theorem for Persistence Modules). Let (K, dK) be a
complex of left persistence modules such that all terms of K and its subcomplex of boundaries
B are projective.

1) For all n ≥ 0 and every complex (L, dL) of left persistence modules, there is a natural
short exact sequence

0 →
∏

p−q=n−1

Ext1∗(Hp(K), H−q(L)) → Hn(Hom∗(K,L)) →
∏

p−q=n

Hom∗(Hp(K), H−q(L)) → 0 .

where Hom∗ is Hom if ∗ = gr and Hom otherwise.
2) If R[U0] is graded left hereditary, then the exact sequence splits for all n ≥ 0.

Proof. In the ungraded module case, this is Exercise 3.6.1 in [40] and Theorem 10.85 in [39].
The proof can be adapted to the graded case. �

We apply the Künneth theorems above to some simple filtered simplicial complexes.

Example 8.3. See Figure 8. Let (K, dK) and (L, dL) be chain complexes of persistence
modules determined by filtrations of the 1-simplex. In particular, let

K0 = k[a1,∞)⊕ k[b1,∞), K1 = k[c1,∞),

L0 = k[a2,∞)⊕ k[b2,∞), L1 = k[c2,∞)

where a1 ≤ b1 ≤ c1 and a2 ≤ b2 ≤ c2, and let dK and dL be the induced boundary maps by
the boundary maps of the 1-simplex, as discussed in Section 2.5. Note that the boundary
subcomplexes of K and L are ⊗gr-flat. Indeed, the only nontrivial boundary map are dK1 and
dL1 and by construction dK1 (K1) ∼= k[c1,∞) and dL1 (L1) ∼= k[c2,∞) and we know these are in
fact projective by Theorem 1.2. Thus the hypotheses in Theorem 8.1 are satisfied for both
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(K, dK) and (L, dL). Now consider the product complex K ⊗gr L (Definition D). Note that
it is the chain complex of persistence modules corresponding to the filtered cubical given by
the square in Figure 8, which assigns each cell the sum of filtration values of corresponding
cells in the two 1-simplices.

c1

c2

c1 + a2

c1 + b2

b 1
+
c 2

a
1
+
c 2

× c1 + c2

a1 b1 a2

b2

a1 + a2 b1 + a2

b1 + b2a1 + b2

f

Figure 8. A product complex, with respect to ⊗gr, visualized.

One can compute that the only non-trivial homology groups are:

H0(K) = k[a1,∞)⊕ k[b1, c1), H0(L) = k[a2,∞)⊕ k[b2, c2),

H0(K ⊗gr L) = k[a1 + a2,∞)⊕ k[a1 + b2, a1 + c2)⊕

⊕k[b1 + a2, c1 + a2)⊕ k[b1 + b2,min{b1 + c2, c1 + b2}),

and H1(K ⊗gr L) = k[max{b1 + c2, c1 + b2}, c1 + c2).

Note that H0(K⊗grL) = H0(K)⊗grH0(L) and H1(K⊗grL) = Tor
gr
1 (H0(K), H0(L)), which

agrees with Theorem 8.1.

Example 8.4. Let (K, dK) and (L, dL) be as in the previous example, where again a1 ≤
b1 ≤ c1 and a2 ≤ b2 ≤ c2. Now form the product complex K⊗shL, recalling that k[a,∞)⊗sh

k[b,∞) = k[max(a, b),∞) (Example 3.2). The corresponding picture is given in Figure 9.

c1

c2

max(c1, a2)

max(c1, b2)

m
ax

(b
1
,c

2
)

m
ax

(a
1
,c

2
)

× max(c1, c2)

a1 b1 a2

b2

max{a1, a2} max{b1, a2}

max{b1, b2}max{a1, b2}

Figure 9. A product complex, with respect to ⊗sh, visualized.

In this case, recalling the discussion from Example 3.2, the only non-trivial homology
groups are:

H0(K) = k[a1,∞)⊕ k[b1, c1), H0(L) = k[a2,∞)⊕ k[b2, c2),

H0(K ⊗sh L) = k[max{a1, a2},∞)⊕ k[max{a1, b2}, c2)⊕

⊕k[max{b1, a2}, c1)⊕ k[max{b1, b2},min{c1, c2}) =

= H0(K)⊗sh H0(L).

Example 8.3 and Example 8.4 are specific instances of Theorem 8.5. Let X and Y be
CW complexes with filtrations f and g, respectively (see Section 2.5). The CW complex
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X × Y has two canonical filtration given by f + g and max(f, g), which we call the additive
filtration and maximum filtration respectively.

Theorem 8.5. Let (K, dK) and (L, dL) be two chain complexes of persistence modules ob-
tained from filtered CW complexes X and Y respectively (Section 2.5). Then the additive and
maximum filtrations on X × Y induce the chain complexes of persistence modules K ⊗gr L
and K ⊗sh L, respectively. In particular, we can calculate the persistent homology of these
filtrations on X × Y by applying Theorem 8.1.

Proof. Let σ be an n-cell of Y and let τ be an m-cell of Y . These cells have corresponding
free summands k[aσ,∞) and k[bτ ,∞) in Kn and Lm respectively (Section 2.5). Consider
the additive filtration on X × Y . Then σ × τ is a (n+m)-cell in X × Y with corresponding
free summand k[aσ,∞)⊗gr k[bτ ,∞) = k[aσ + bτ ,∞) in (K ⊗gr L)m+n (Example 3.5). Note
that this correspondence is compatible with the cellular boundary ∂(σ × τ) = ∂(σ) × τ +
(−1)|σ|σ× ∂(τ) (see for example [22, Proposition 3.B.1]), and the boundary map in K ⊗gr L
(see Appendix D). Thus K ⊗gr L is the chain complex of persistence modules induced by
the additive filtration on X × Y .

Similarly, by Example 3.2, k[aσ,∞)⊗sh k[bτ ,∞) = k[max{aσ, bτ},∞) and K ⊗sh L is the
chain complex of persistence modules induced by the maximum filtration on X × Y . �

The Künneth theorems allow us to compute homology of a tensor product of chain com-
plexes of persistence modules (or cohomology of its adjoint). Thus, as a special case of the
Künneth Theorem for persistence modules, we have Theorem 8.6 and Theorem 8.7, where
the second chain complex of persistence modules is assumed to be concentrated in degree 0.

Theorem 8.6 (Universal Coefficient Homology Theorem for Persistence Modules). Let A
be a left persistence module and let (K, d) be a chain complex of ⊗∗-flat right persistence
modules whose subcomplex of boundaries B also has all terms ⊗∗-flat. Then

1) for all n ∈ N, there is a natural exact sequence

0 → Hn(K)⊗∗ A→ Hn(K ⊗∗ A) → Tor∗1(Hn−1(K,A)) → 0

2) Assuming the ring in question is right-hereditary (right submodules of right projective
modules are projective) and (K, d) has all terms projective (no assumptions on B this
time), the above sequence splits (it need not be a natural splitting).

Theorem 8.7 (Universal Coefficient Cohomology Theorem for Persistence Modules). Let
A be a left persistence module, let (K, d) be a complex of projective left persistence modules
whose subcomplex B of boundaries has all terms projective.

1) Then for all n ∈ N there is a natural short exact sequence

0 → Ext1∗(Hn−1(K), A) → Hn(Hom∗(K,A)) → Hom∗(Hn(K), A) → 0

where Hom∗ is Hom if ∗ = gr and Hom otherwise.
2) If the ring in question is left-hereditary then the above splits (need not be a natural

splitting).

We now consider some examples in the one-parameter setting and assuming that the
coefficient ring is a field k.

25



a

→֒

b

→֒ →֒

c d

→֒

e

→֒

f

→֒

g

Figure 10. A filtration of a triangle.

Example 8.8. Let a ≤ b ≤ c ≤ d ≤ e ≤ f ≤ g be real numbers and consider the filtration
of the 2-simplex in Figure 10.

The corresponding chain complex of persistence modules (Section 2.5) is given by

K0 = k[a,∞)⊕ k[b,∞)⊕ k[c,∞),

K1 = k[d,∞)⊕ k[e,∞)⊕ k[f,∞),

and K2 = k[g,∞).

We compute H0(K) = k[a,∞)⊕ k[b, d)⊕ k[c, e), and H1(K) = k[f, g).

Example 8.9. Let (K, d) be the chain complex of persistence modules in Example 8.8.
Let A = k[α,∞). Let us compute H∗(K ⊗gr A). Using Theorem 8.6, since A is free,
Tor

gr
i (Hn−1(K), A) = 0 for all i ≥ 1, hence Hn(K ⊗gr A) ∼= Hn(K)⊗gr A. Thus,

H0(K) = k[a + α,∞)⊕ k[b+ α, d)⊕ k[c + α, e),

and H1(K) = k[f + α, g).

That is, all interval modules have shifted to the right by α. If K is obtained from a filtration
f , then K ⊗gr A is the chain complex obtained from the filtration f + α.

Example 8.10. Let (K, d) be the chain complex of persistence modules in Example 8.8.
Let A = k[R]. Let us compute H∗(K⊗grA). By Theorem 8.6, Hn(K⊗grA) = Hn(K)⊗grA
since A is ⊗gr-flat. From Example 3.5, we have k[a, b) ⊗gr A = 0 for all a ≤ b ∈ R, and
k[a,∞)⊗gr A = A for all a ∈ R. Therefore, H0(K) = k[R] and H1(K) = 0.

Example 8.11. Let (K, d) be the chain complex of persistence modules in Example 8.8.
Let A = k(−∞, 0). Applying Example 3.5 we have

(K ⊗gr A)0 := K0 ⊗gr A = k(−∞, a)⊕ k(−∞, b)⊕ k(−∞, c),

(K ⊗gr A)1 := K1 ⊗gr A = k(−∞, d)⊕ k(−∞, e)⊕ k(−∞, f),

and (K ⊗gr A)2 := K2 ⊗gr A = k(−∞, g).

Applying Theorem 8.6 and Example 7.1 we calculate the following:

H0(K ⊗gr A) ∼= H0(K)⊗gr A = k(−∞, a),

H1(K ⊗gr A) ∼= H1(K)⊗gr A⊕Torgr(H0(K), A) = 0⊕ k(b, d)⊕ k(c, e),

and H2(K ⊗gr A) ∼= Torgr(H1(K), A) = k(f, g).

Remark 8.12. We thank Alexander Dranishnikov for the following observation. The persis-
tence barcodes in Example 8.11 correspond to the compactly supported cohomology groups
of the filtration of topological spaces in Figure 11. It may be that this observation can be
generalized to an arbitrary filtered CW complex. We leave it as question for future work.
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a b c d e f

∅

g

Figure 11. A filtration of the geometric realization of ∆2 corresponding to
the chain complex K ⊗gr k(−∞, 0).

Example 8.13. Let (K, d) be the chain complex of persistence modules in Example 8.8.
Let A = k[α, β). Using Example 3.5 we have

(K ⊗gr A)0 := K0 ⊗gr A = k[a+ α, a+ β)⊕ k[b+ α, b+ β)⊕ k[c+ α, c+ β),

(K ⊗gr A)1 := K1 ⊗gr A = k[d+ α, d+ β)⊕ k[e+ α, e+ β)⊕ k[f + α, f + β),

and (K ⊗gr A)2 = K2 ⊗gr A = k[g + α, g + β).

Applying Theorem 8.6 and Example 7.1 we have the following:

H0(K ⊗gr A) ∼= H0(K)⊗gr A = k[a + α, a+ β)⊕

⊕k[b + α,min{d+ α, b+ β})⊕ k[c + α,min{e+ α, c+ β}),

H1(K ⊗gr A) ∼= Torgr(H0(K), A)⊕H1(K)⊗gr A = 0⊕ k[max{b+ β, d+ α}, d+ β)⊕

⊕k[max{c+ β, e+ α}, e+ β)⊕ k[f + α,min{f + β, g + α},

and H2(K ⊗gr A) ∼= Torgr(H1(K), A) = k[max{f + β, g + α}, g + β).

Once again, there is a geometric interpretation. If we examine the chain groups K⊗grA then
we see that for each simplex appearing at time t in the original filtration, it now appears at
time t + α and is removed at time t + β. For example an edge generates a homology class
when both its boundary points are removed.

Example 8.14. Let A = k[α,∞). Let (K, d) be the chain complex in Example 8.8. Then
by using Example 4.7 we calculate that:

Homgr(K,A)
0 := Hom(K0, A) = k[α− a,∞)⊕ k[α − b,∞)⊕ k[α− c,∞),

Homgr(K,A)
1 := Hom(K1, A) = k[α− d,∞)⊕ k[α− e,∞)⊕ k[α− f,∞),

and Homgr(K,A)
2 := Hom(K2, A) = k[α− g,∞).

By Theorem 8.7, Example 7.2 and Theorem 1.2 we have

H0(Homgr(K,A)) ∼= Hom(H0(K), A) = k[α− a,∞),

H1(Homgr(K,A)) ∼= Extgr(H0(K), A)⊕ Hom(H1(K), A) =

= k[α− d, α− b)⊕ k[α− e, α− c)⊕ 0 = k[α− d, α− b)⊕ k[α− e, α− c),

and H2(Homgr(K,A)) ∼= Extgr(H1(K), A) = k[α− g, α− f).

This also has a geometric interpretation (see Figure 12). In particular, each cell in the
original simplicial complex which appeared at time t, now appears at time α− t.
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α− g α− f α− e α− d α− c α− b α− a

Figure 12. A filtration of the geometric realization of ∆2 corresponding to Homgr(K,A).

Example 8.15. Let (K, d) be the chain complex in Example 8.8. Let A = k(−∞, α). Then
by using Example 4.7 we have:

Homgr(K,A)
0 := Hom(K0, A) = k(−∞, α− a)⊕ k(−∞, α− b)⊕ k(−∞, α− c),

Homgr(K,A)
1 := Hom(K1, A) = k(−∞, α− d)⊕ k(−∞, α− e)⊕ k(−∞, α− f),

and Homgr(K,A)
2 := Hom(K2, A) = k(−∞, α− g).

Noting that A is injective, by Theorem 8.7 we have that:

H0(Homgr(K,A)) ∼= Hom(H0(K), A) = k(−∞, α− a)⊕ k(α− d, α− b)⊕ k(α− e, α− c),

and H1(Homgr(K,A)) ∼= Extgr(H0(K), A)⊕ Hom(H1(K), A) =

= 0⊕ k(α− g, α− f) = k(α− g, α− f).

As before, there is a filtration (see Figure 13) and the persistence module may be interpreted
as arising from the cohomology of this filtration. It is not yet clear how this generalizes to
arbitrary CW complexes with a filtration. We leave this question for future work.

α− g α− f α− e α− d α− c α− b α− a

∅

Figure 13. A filtration corresponding to Homgr(K,A)

Each simplex in the original simplicial complex which appeared at time t now appears
at time α − t. Note that if α = 0, then Hom(Hn(K), A) = Hn(K)∗gr = Hn(Hom(K,A)) =
Hn(K∗

gr), generalizing the classical result that homology and cohomology, with coefficients
in a field, are isomorphic.

Example 8.16. Let A = k[α, β). Let (K, d) be the chain complex in Example 8.8. By
Example 4.7 we have:

Homgr(K,A)
0 := Hom(K0, A) = k[α− a, β − a)⊕ k[α− b, β − b)⊕ k[α− c, β − c),

Homgr(K,A)
1 := Hom(K1, A) = k[α− d, β − d)⊕ k[α− e, β − e)⊕ k[α− f, β − f),

and Homgr(K,A)
2 := Hom(K2, A) = k[α− g, β − g).
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By Theorem 8.7 and Example 7.2 we have that:

H0(Homgr(K,A)) ∼= Hom(H0(K), A) = k[α− a, β − a)⊕

⊕k[max{α− b, β − d}, β − b)⊕ k[max{α− c, β − e}, β − c),

H1(Homgr(K,A)) ∼= Extgr(H0(K), A)⊕ Hom(H1(K), A) =

= k[α− d,min{α− b, β − d})⊕ k[α− e,min{α− c, β − e})⊕ k[max{α− f, β − g}, β − f),

and H2(Homgr(K,A)) ∼= Extgr(H1(K), A) = k[α− g,min{α− f, β − g}).

This has a geometric interpretation, dual situation to that in Example 8.13

Example 8.17. Let (K, d) be complex of projective persistence modules coming from a
filtration of a simplicial complex and let A be an arbitrary persistence module. Since
persistence modules are ⊗sh-flat as noted in Theorem 7.3, we have natural isomorphisms
Hn(K⊗shA) ∼= Hn(K)⊗shA, by Theorem 8.6. In particular, if A is an interval module, say
A = k[I], and Hn(K) ∼=

⊕

j∈Jk[Ij ] is the interval decomposition of Hn(K), then recalling

Example 3.2 we have Hn(K ⊗sh A) ∼=
⊕

j∈Jk[I ∩ Ij].

Example 8.18. Let (K, d) be as in Example 8.8 and let A = k[α, β) with b ≤ α and g ≤ β.
By Example 4.3 we have:

Homsh(K,A)
0 := Hom (K0, A) = k[α, β)⊕ k[α, β)⊕ k(−∞, β),

Homsh(K,A)
1 := Hom (K1, A) = k(−∞, β)⊕ k(−∞, β)⊕ k(−∞, β),

and Homsh(K,A)
2 := Hom (K2, A) = k(−∞, β).

By Theorem 8.7, Example 7.4, Example 4.3, and Theorem 8.7, we have that:

H0(Homsh(K,A)) ∼= Hom (H0(K), A) = Hom (k[a,∞),k[α, β))⊕

⊕Hom (k[b, d),k[α, β)⊕ Hom (k[c, e),k[α, β)) =

= k[α, β)⊕ 0⊕ 0 = k[α, β),

H1(Homsh(K,A)) ∼= Extsh(H0(K), A)⊕ Hom (H1(K), A) =

= Extsh(k[a,∞),k[α, β))⊕ Extsh(k[b, d),k[α, β))⊕ Extsh(k[c, e),k[α, β)⊕

⊕Hom (k[f, g),k[α, β))= 0⊕ k(−∞, α)⊕ 0⊕ 0 = k(−∞, α),

and H2(Homsh(K,A)) ∼= Extsh(H1(K), A) = Extsh(k[f, g),k[α, β)) = 0.

9. Persistence modules over finite posets

In this section we apply the Gabriel-Popescu Theorem (Theorem 2.24) to persistence
modules over finite preordered sets. It is a classical result that every abelian category is
isomorphic to a full subcategory of modules over some ring. Here we do not assume an
additional abelian group structure on our preorder P and thus persistence modules are not
graded modules over a graded ring. However, the stronger version of the Gabriel Popescu
Theorem we show for persistence modules in this section allows us to explicitly construct
the ring in question in the above-mentioned isomorphism of categories.

Definition 9.1. Let C be a cocomplete abelian category. Then an object A in C is compact
if HomC(A, ·) commutes with direct sums.
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Example 9.2. ([30, Satz 3] and [4, Introduction]) Let R be a unital ring and A a left
R-module. Then A is compact if and only if A is finitely presented.

Theorem 9.3. (Strengthening of the Gabriel-Popescu Theorem) Let U ∈ C be an object in
a cocomplete abelian category. Let R = End(U). Then the following are equivalent:

1) U is a compact projective generator.
2) The functor HomC(U, ·) gives us an equivalence of categories between C and Mod(R).

Proof. See [16, Exercise F, page 106]. �

Proposition 9.4. Suppose A is a Grothendieck category, let (P,≤) be a finite preordered
set and let P denote the corresponding category. Let G be a generator of A. Then the set
{G[Ua]}a∈P is a family of generators for AP. In particular, U :=

⊕

a∈PG[Ua] is a generator
for AP.

Proof. Repeat the arguments in the proof of Proposition 2.23. �

Proposition 9.5. Let (P,≤) be a finite preordered set and let R be a unital ring. For
each a ∈ P , R[Ua] is a projective right (and left) persistence module. In particular, U =
⊕

a∈P R[Ua] is a projective persistence module.

Proof. We prove the statement for the case for right persistence modules. The proof for
left persistence modules uses the same arguments. Given any right exact sequence of right
persistence modules M

π
−→ N → 0 and a natural transformation α : R[Ua] → N we need

to show that there exists a natural transformation α̂ : R[Ua] → M such that πα̂ = α.
Since we have R-module homomorphisms πa : Ma → Na and αa : R[Ua]a → Na and R is a
projective object inModR, there is an R-module homomorphismα̂a : R[Ua]a →Ma such that
πaα̂a = αa. Define α̂b : R[Ua]b → Mb for a ≤ b to be the map Ma≤bα̂aR[Ua]

−1
a≤b (recall that

R[Ua]a≤b) is the identity map on R so its inverse is defined). If b 6∈ Ua, let α̂b : R[Ua]b →Mb

be the zero map. By construction it follows that the collection {α̂b}b∈P are components of
a natural transformation α̂ : R[Ua] → M . Furthermore, observe that since all the maps for
R[Ua]a≤b are the identity maps of R and α is a natural transformation it follows that αb =
Na≤bαaR[Ua]

−1
a≤b. On the other hand, for a ≤ b, since α̂ and π are natural transformations we

have πbα̂b = πbMa≤bα̂aR[Ua]
−1
a≤b = Na≤bπaα̂aR[Ua]

−1
a≤b = Na≤bαaR[Ua]

−1
a≤b = αb. Thus πα̂ = α

and therefore R[Ua] is a projective persistence module. �

Proposition 9.6. Let (P,≤) be a finite preordered set and let R be a unital ring. Then
U =

⊕

a∈P R[Ua] is a compact right (and left) persistence module.

Proof. We show that there is a canonical isomorphism Hom(U,
⊕

iMi) ∼=
⊕

iHom(U,Mi).
Given f : R[Ua] →

⊕

iMi, since f is a natural transformation and all maps in R[Ua] are
the identity or the zero map, f is completely determined by its image, f(1a), where 1a
is the multiplicative identity in R[Ua]a. Thus as the codomain is a direct sum we have
f(1a) =

∑n

i=1m
a
i for some ma

i ∈ (Mi)a. Define fi : R[Ua] → Mi by setting fi(1a) = ma
i , and

extending appropriately. Define the map ψa : Hom(R[Ua],
⊕

iMi) →
⊕

iHom(R[Ua],Mi)
by f 7→ (fi). This is clearly well-defined and a canonical isomorphism. The functor Hom
commutes with limits. Since finite direct sums are isomorphic to finite direct products, Hom
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commutes with finite direct sums. Thus we have canonical isomorphisms

Hom(
⊕

a∈P

R[Ua],
⊕

i

Mi) ∼=
⊕

a∈P

Hom(R[Ua],
⊕

i

Mi)

⊕ψa
∼=

⊕

a∈P

⊕

i

Hom(R[Ua],Mi) ∼=
⊕

i

(
⊕

a∈P

R[Ua],Mi)

�

Combining Proposition 9.4, Proposition 9.5, Proposition 9.6 and the fact a unital ring R is
a generator for the category left/right modules over R (Appendix A) we obtain Theorem 9.7.

Theorem 9.7. Let (P,≤) be a finite preordered set with corresponding category P and let
R be a unital ring. Let U =

⊕

a∈P R[Ua]. Then Hom(U,−) : ModP
R → ModEnd(U) is an

equivalence of categories.

Thus two persistence modules M and N over a finite preordered set are isomorphic iff the
End(U)-modules Hom(U,M) and Hom(U,N) are isomorphic.

10. Enriched category theory and persistence modules

In this section, we assume that R is a commutative unital ring and that (P,≤,+, 0) is a
preorder with a compatible abelian group structure. That is, a ≤ b implies that a+c ≤ b+c.
The purpose of this section is to observe that persistence modules are symmetric monoidal
categories enriched over themselves, with respect to both the graded module and sheaf tensor
products. These observations follow from classical results in enriched category theory. We
state these results for persistence modules in the hope that doing so will facilitate new
computational approaches to topological data analysis. We remark that enriched category
theory has been used in applied topology recently [29, 11, 18].

10.1. Enriched structure of persistence modules with the graded tensor.

Theorem 10.1.
(

ModP
R,⊗gr, R[U0]

)

is a symmetric monoidal category.

Proof. Let M,N ∈ ModP
R and s, t ∈ P . We have canonical morphisms γs,t : Ms ⊗R Nt →

Nt⊗RMs since ModR is a symmetric monoidal category, as R is assumed to be commutative,
with unit R and tensor product ⊗R. The collection of maps γs,t induces an isomorphism of
diagrams {(Ms⊗RNt)}s+t≤r and {Nt⊗RMs}s+t≤r and thus a natural isomorphism between
their colimits. Hence we get a natural isomorphism between (M ⊗gr N)r and (N ⊗gr M)r,
called the braiding. By the same argument, we obtain an associator and left and right
unitors.

Since it will be used later, let us explicitly define the left unitor. The left unitor is

a natural isomorphism with components λM : R[U0] ⊗gr M
∼=
−→ M , for each persistence

module M . Let x0 be the generator of R[U0] and consider
∑

cix
ti ⊗gr mi ∈ R[U0] ⊗gr M

where ci ∈ R, ti ∈ U0, and mi ∈ Msi . Note that by the definition of ⊗gr we have that
∑

cix
ti ⊗gr mi =

∑

i x
0 ⊗gr cix

ti ·mi. Define λM(
∑

cix
ti ⊗gr mi) :=

∑

i cix
ti ·mi.

Since the pentagon identity, triangle identity, and hexagon identity hold in ModR, it
follows that they also hold here. �
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Proposition 10.2. There is a functor Hom(−,−) : (ModP
R)

op ×ModP
R → ModP

R given by

Hom(M,N)s := Hom(M,N(s)),

for s ∈ P and persistence modules M and N .

Proof. Let s ∈ P . Then Hom(M,N(s)) is the set of natural transformations from M to
N(s). This is an R-module. Indeed given a natural transformation, we define an R action
by an element r ∈ R to be componentwise multiplication by r. Whenever s ≤ t define
Hom(M,N)s≤t : Hom(M,N(s)) → Hom(M,N(t)) to be the map

Hom(M,N)s≤t(α) = α ∗ ηt−s.

That is, given a natural transformation α : M → N(s) compose each component αa with
Na+s≤a+t to get a new natural transformation, namely α ∗ ηt−s. Note that we could have
precomposed with Ma−(t−s)≤a to have a similar construction, however due to the naturality
of α this choice would give us the same answer.

Ma−(t−s) Ma

Na+s Na+t

Ma−(t−s)≤a

αa

Na+s≤a+t

It remains to show is that this definition is functorial.
Suppose α : M → N is a natural transformation of persistence modules M and N .

Let N ′ be a persistence module. Define Hom(α, P ) : Hom(N,N ′) → Hom(M,N ′) by pre-
composing with α. Namely, for a given β : N → P (s) define Hom(α,N ′)(β) = βα. Then
Hom(γα,N ′)(βα) = Hom(α,N ′) ◦ Hom(γ,N ′) and that Hom(−, N ′)(1M) = 1Hom(M,N ′). To
show that Hom(N ′,−) is a functor, define Hom(N ′, α)(β) = αβ. It follows that Hom(N ′,−)
is a functor. �

By Proposition 2.18, when M is finitely generated Hom(M,N) is the abelian group of
module homomorphisms when we forget the grading.

Proposition 10.3. There is a category whose objects are persistence modules and whose
morphisms are the sets Hom(M,N). We denote this category ModP

R.

Proof. Let α ∈ Hom(M,N) and β ∈ Hom(N,N ′). Suppose α and β are of homogeneous
degrees, s and t respectively. That is α : M =⇒ N(s) and β : N =⇒ N ′(t). Define the
x-component of β ◦ α to be βs+x ◦ αx. Extend to the general case by linearity. Since the
composition in ModP

R is associative, this composition is associative as well.
For the more categorically minded reader, this can be stated using horizontal and vertical

compositions of natural transformations. We define β ◦ α := (β ∗ 1Ts) • α (Definition 4.4),
where ∗ signifies horizontal composition and • a vertical composition. Consider the following
diagram, where N(s) = NTs and N

′(t) = N ′Tt.
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P ModR

P P ModR

P P P ModR

=

M

=
N(s)

α

=

Ts N

= =

Ts

1Ts

Tt

β

N ′

For every persistence moduleM we have an identity morphism, 1M the identity morphism
in ModP

R viewed as a morphism in the new category. The identity axiom in ModP
R follows

from the identity axiom in ModP
R. �

Example 10.4. Let M be a persistence module and s ∈ P . Then the translations by s and
−s, show thatM(s) andM are isomorphic inModP

R. That is, translations are isomorphisms.

Proposition 10.5. ModP
R is an additive category.

Proof. Each Hom(M,N) is an abelian group as it is a graded direct sum of abelian groups.
Our definition of composition in ModP

R is bilinear. The zero persistence module is the 0
object. The coproduct of persistence modulesM andN isM⊕N . The product of persistence
modules M and N is M ×N and is canonically isomorphic to M ⊕N . �

Theorem 10.6.
(

ModP
R,⊗gr, R[U0]

)

is a symmetric monoidal category.

Proof. Let the braiding, associator, left and right unitor morphisms be those from the sym-
metric monoidal category

(

ModP
R,⊗gr, R[U0]

)

(Theorem 10.1). It remains to show that

these commute with the larger set of morphisms in ModP
R.

Consider the braiding. Let ϕ : M → M ′ and ψ : N → N ′ in ModP
R. Since we have the

following commutative diagrams in ModR,

Ms ⊗R Nt Nt ⊗RMs

M ′
s+a ⊗R N

′
t+b N ′

t+s ⊗R M
′
s+a

γ

ϕa
s⊗Rψ

b
t ψb

t⊗Rϕ
a
s

γ

it follows that the braiding is natural in ModP
R. Naturality of the associator and left and

right unitors follows similarly. �

Theorem 10.7.
(

ModP
R,⊗gr, R[U0]

)

is a closed symmetric monoidal category. That is, for

all N ∈ ModP
R, − ⊗gr N has right adjoint Hom(N,−) : ModP

R → ModP
R. That is, for

any persistence modules M,N and N ′ there exists a natural (in all arguments) isomorphism
Hom(M ⊗gr N,N

′) ∼= Hom(M,Hom(N,N ′)). Furthermore this isomorphism is a morphism

of degree zero, i.e., a natural transformation. In particular,
(

ModP
R,⊗gr, R[U0]

)

is a closed

symmetric monoidal category.
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Proof. Define ψr to be the following composition of isomorphisms. The first two and last
isomorphisms are by the categorical definitions of Hom(−,−) and − ⊗gr − (Definition 3.4
and Proposition 4.6). The third and the third last isomorphism are due to the fact that
HomR(−,−) preserves limits in both variates. Since it is contravariant in the first variable
this means that it sends colimits to limits in ModR. The fourth isomorphism is the tensor-
hom adjunction in ModR. The remaining fifth isomorphism follows from reindexing. We
have p + q ≤ −s ≤ t− r which may be rewritten as p + q − t ≤ −r. Substituting variables,
we have −s− p− q ≤ −r which may be rewritten as p+ q ≥ t ≥ −s + r.

Hom(M ⊗gr N,N
′)r Hom(M,Hom(N,N ′))r

lim
s+t≥r

HomR((M ⊗gr N)−s, N
′
t) lim

s+t≥r
HomR(M−s,Hom(N,N ′)t)

lim
s+t≥r

HomR( colim
p+q≤−s

Mp ⊗R Nq, N
′
t) lim

s+t≥r
HomR(M−s, lim

p+q≥t
HomR(N−p, N

′
q))

lim
s+t≥r

( lim
p+q≤−s

HomR(Mp ⊗R Nq, N
′
t)) lim

s+t≥r
( lim
p+q≥t

HomR(M−s,HomR(N−p, N
′
q)))

lim
s+t≥r

( lim
p+q≤−s

HomR(Mp,HomR(Nq, N
′
t)))

∼=

∼=

∼=

∼=

∼=

∼=

∼=

∼=

Note that all of these isomorphisms are natural. The last statement of the theorem follows
by setting r = 0 and thus getting the following natural isomorphism:

ψ0 : Hom(M⊗grN,N
′)0 := Hom(M⊗grN,N

′) ∼= Hom(M,Hom(N,N ′))0 := Hom(M,Hom(N,N ′)),

which gives us an adjunction between ⊗gr and Hom in ModP
R. �

Every closed symmetric monoidal category is enriched over itself, see for example [28,
Section 1.6]. Thus, we have the following corollary. We expect that it will be useful in
applications that the respective hom objects between persistence modules are themselves
persistence modules, from which one may compute invariants such as persistence diagrams.

Corollary 10.8. The category ModP
R is enriched over

(

ModP
R,⊗gr, R[U0]

)

. The category

ModP
R is enriched over (ModP

R,⊗gr, R[U0]).

Note that the statements in Corollary 10.8 and Theorem 10.7 are not true if we replace
ModR by modR, the category of finitely generated R-modules. The reason is that when
applied to persistence modules valued in modR, Hom does not always give a persistence
module valued in modR, as shown in the following example.

Example 10.9. Let vectk denote the category of finite-dimensional k-vector spaces and
k-linear maps. Let M : (R,≤) → vectk be the one-parameter persistence module given by
Ma = k if a ∈ Z and Ma = 0 otherwise. By functoriality, the maps Ma≤b have to be zero
except when a = b ∈ Z. Hence any collection of linear maps {fa : Ma → Ma} will give us a
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natural transformation f : M → M as there are no restrictions for the appropriate squares
to commute. In particular let, αn : M → M be a natural transformation such that αna = 1k
if a = n and αna = 0 otherwise. Then Hom(M,M)0 is an infinite dimensional vector space
as the collection {αn}n∈Z is linearly independent.

10.2. Enriched structure of persistence modules with the sheaf tensor. LetM be a
right RP -module and let N be a left RP -module, where P is given the Alexandrov topology
(Section 2.2). Recall that we have a sheaf tensor product M ⊗shN (Section 3.1). Viewed as
a graded module, M ⊗sh N ∼=

⊕

a∈P M(Ua)⊗R N(Ua) ∼=
⊕

a∈P Ma ⊗R Na.

Theorem 10.10.
(

ModP
R,⊗sh, R[P ]

)

is a symmetric monoidal category.

Proof. Since ⊗sh is a pointwise tensor product of R-modules, the axioms for a symmetric
monoidal category will hold pointwise and thus can be assembled to obtain the desired
axioms for persistence modules. �

Theorem 10.11.
(

ModP
R,⊗sh, R[P ]

)

is a closed symmetric monoidal category.

Proof. See Proposition C.1. �

Corollary 10.12. The category ModP
R is enriched over

(

ModP
R,⊗sh, R[P ]

)

.

Proof. Same arguments that justify Corollary 10.8 may be used. �

Appendix A. Category theory

We review some notions from category theory. For more details, see for example [37, 38].
Let C be a category. A family {Ui}i∈I of objects from C is called a family of generators of C

if for any pair (A,B) of objects in C and for any two distinct morphisms f, g : A→ B, there
is an index i0 and a morphism h : Ui0 → A such that fh 6= gh. We say {Ui}i∈I is a set of
cogenerators of C if the family {Uop

i }i∈I is a set of generators of C
op. If the families in question

are singleton sets, we say they are a generator (resp. cogenerator) of C. In the category
Set , the singleton set {∗} is a generator and the 2 point set {∗1, ∗2} is a cogenerator. In the
category of abelian groupsAb the group Z is a generator. More generally, whenever we have a
unital ring R and the category of left modules over R , ModR, the ring as a module over itself
is a generator of ModR. In particular if R is a field, say k , then Vectk the category of vector
spaces over k is a category with generator k. Grothendieck categories are abelian categories
with a few extra axioms that guarantee existence of injective and projective resolutions, for
more details see [37, 19, 16]. A Grothendieck category C is a category satisfying the following
axioms: (1) C is an abelian category. (2) C has a generator. (3) C contains all small colimits
(colimits of diagrams indexed by a category with a set of objects). (4) Taking colimits of
diagrams of short exact sequences produces a short exact sequence.

The following is due to Grothendieck and is presented in for example [19, Proposition
1.9.1] or [37, Chapter 2, Proposition 8.2].

Proposition A.1. Let C be an abelian category category with infinite direct sums and {Ui}i∈I
a set of objects of C. The following are equivalent:

(1) The given set is a set of generators of C.
(2) The object U :=

∐

i∈I Ui is a generator of C.
(3) For any object A in C, there is a set J and an epimorphism: U (J) → A.
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Proposition A.2 ([19, Proposition 1.8]). Let (P,≤) be a pre-ordered set and P be the cor-
responding category. Let C be a category. If C is an additive/abelian/Grothendieck category
then C(P,≤) is also an additive/abelian/Grothendieck category.

Theorem A.3 ([19, Theorem 1.10.1]). If a category C is a Grothendieck category then any
A ∈ C has a monomorphism into an injective object.

The category of abelian groups Ab (or more generally the category of modules over a
unital ring) is a Grothendieck category. In particular, if we have a unital ring R then ModR
and RMod are Grothendieck categories. Note that if we consider the category modR of
right R-modules of finite rank it is abelian but not a Grothendieck category, as a coproduct
(direct sum) of an infinite family of finite rank modules is not a finite rank module.

Proposition A.4 ([37, Chapter 3, Lemma 3.1], [19, Lemma 1]). Let C be a Grothendieck
category, U a generator and E and object of C. Then E is an injective object if and only
if for any monomorphism ι : U ′ → U and for any morphism f : U ′ → E there exists a
morphism f̄ : U → E such that f̄ ι = f .

Proposition A.4 provides a simpler criterion for an object to be injective in a Grothendieck
category. In particular instead of checking diagrams with arbitrary monomorphismsM → N ,
we need only check diagrams with monomorphisms into the generator This generalizes the
Baer Criterion in module theory. The Baer Criterion for graded modules is presented in
Theorem B.1.

Appendix B. Graded module theory

The purpose of this section is to introduce the reader to the basics of graded module
theory. The literature on graded modules is bountiful but our main reference is [23].

Let Γ be a group. A Γ-graded ring is a ring S =
⊕

g∈Γ

Sg, where Sg is an additive subgroup

of S and SgSh ⊂ Sgh.
Let S be a Γ-graded ring. A graded left S-module is a left S-module M =

⊕

g∈Γ

Mg, where

Mg is an additive subgroup of M and SgMh ⊂Mgh. Let M and N be Γ-graded S-modules.
A Γ-graded S-module homomorphism between M and N is a module homomorphism α :
M → N , such that α(Mg) ⊂ Ng. One can analogously define graded right S-module and
corresponding graded module homomorphism. Assuming the ring S is commutative we stop
differentiating between left and right. The setMh =

⋃

g∈ΓMg is called the set of homogeneous
elements of M .

For graded S-modules M and N , a graded S-module homomorphism of degree ǫ, ǫ ∈ Γ,
is a S-module homomorphism f : M → N , such that f(Mg) ⊂ Ngǫ for any g ∈ Γ. Let
HomS(M,N)ǫ be the subgroup of HomS(M,N), the group of non-graded module homomor-
phisms between M and N , consisting of all S-graded module homomorphisms of degree
ǫ.

A graded module M is finitely generated if it is finitely generated as a module. A Γ-
graded (left) S-module M is called a graded-free S-module if M is a free left S-module with
a homogeneous base. Let M be a Γ-graded module over a Γ-graded ring S. Let g ∈ Γ.
Define a new module M(g) by setting its graded by M(g)h := Mgh. The action of S on
M(g) is induced from the action of S on M .
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Theorem B.1. (Baer Criterion for Graded Modules) Let E be a Γ-graded module over the
Γ-graded ring S. Then E is injective if and only if given any monomorphism i : I → S(g)
and a graded module homomorphism f : I → E, there exists an f : S(g) → E such that
f = fi.

Note that this is a specific example of Proposition A.4, as the generator of the category
of Γ-graded modules over the Γ-graded ring S, with graded module homomorphisms as the
morphisms, is

⊕

g∈Γ

S(g).

Appendix C. Sheaf theory

We introduce some notions from sheaf theory. For more details see [5, Chapter 1] and [26,
Chapter 2]. Throughout this section, X is a topological space.

Given a presheaf F on X there exists a sheaf F+ and a morphism θ : F → F+ such that
for any sheaf G the homomorphism given by θ:

HomSh(X)(F
+, G) → HomPSh(X)(F,G)

is an isomorphism. In other words, F 7→ F+ is the left adjoint functor of the inclusion
functor Sh(X) → PSh(X). Moreover, (F+, θ) is unique up to isomorphism, and for any
x ∈ X , θx : Fx → F+

x is an isomorphism. The sheaf F+ is called the sheaf associated to F or
sheafification of F .

Given an abelian group A, we denote by AX the sheaf associated to the presheaf U 7→ A,
where U is open in X , and we say AX is the constant sheaf on X with stalk A.

Let F be a sheaf on X . We say F is flabby if the map F (U ⊂ X) : F (X) → F (U) is
surjective for all open U ⊂ X .

Let R be a sheaf of rings on X . The pair (X,R) is called a ringed space. A left R-module
M is a sheaf of abelian groups M such that for every open U ⊂ X , M(U) is a left R(U)-
module, and for any inclusion V ⊂ U , V and U open, the restriction morphism is compatible
with the structure of the module, that is,M(V ⊂ U)(sm) = R(V ⊂ U)(s)·M(V ⊂ U)(m) for
every s ∈ R(U) and m ∈M(U). Define right R-modules in the obvious way and morphisms
between left(right) modules is a natural transformation compatible with the structure of
the module. Denote these sets of natural transformations by HomR(M,N). We denote the
category of right R-modules by Mod-R, and the category of left R-modules by R-Mod.

Denote by ZX the sheaf associated to the constant presheaf U 7→ Z for every open U ⊂ X .
Then ZX-modules are precisely sheaves with values in abelian groups, i.e, Mod(ZX) =
Sh(X). More generally, define RX to be the sheaf associated to the constant presheaf
U 7→ R for every open U ⊂ X . For example, we have the constant sheaf kRn .

Let R be a sheaf of rings and let F and G be two left R-modules. Then the presheaf
Hom (F,G) defined by Hom (F,G)(U) := HomR|U (F |U , G|U) is a sheaf of abelian groups, in
particular a left R-module.

Let F be a right R-module and G be a left R-module. Define F ⊗R G to be the sheaf
associated to the presheaf of abelian groups U 7→ F (U) ⊗R(U) G(U), and call F ⊗R G the
tensor product of F and G over R.

Proposition C.1 ([26, Proposition 2.2.9]). Let X be a topological space. Let R be a sheaf
of rings on X, S a sheaf of commutative rings and S → R a morphism of sheaves of rings
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such that its image is contained in the center of R. Let F and G be two R-modules and H
and S-module. Then one has canonical isomorphisms:

HomR(H ⊗S F,G) ∼= HomR(F,Hom S(H,G)) ∼= Hom S(H,HomR(F,G))

Note that by taking global sections of each of the sheaves above, we get:

HomR(H ⊗S F,G) ∼= HomS(H,HomR(F,G))

In other words, −⊗S F is the left adjoint of HomR(F,−).

Proposition C.2 ([26, Section 2.2]). The functor Hom (−,−) is left exact with respect to
each of its arguments and the functor − ⊗R − is right exact with respect to each of its
arguments.

Appendix D. Homological algebra

We introduce some homological algebra. For more details, see [39, 40, 26, 14].
The homotopy category of an abelian category A, K(A), is obtained from the category of

chain complexes valued in A, C(A) by identifying all morphisms that are chain homotopic
to 0. Furthermore, by formally inverting quasi isomorphisms we obtain the derived category
of A, D(A).

Assuming that A has enough projectives/injectives we are able to construct projec-
tive/injective resolutions which are used to compute derived functors. Given an object A of
A, we consider it to be a chain complex concentrated in degree 0. For such a chain complex
there is a quasi-isomorphism to a chain complex of injective objects of A concentrated in
non-negative degrees given by an injective resolution of A: · · · → 0 → E0 → E1 → · · · . In
the derived category, D(A), A is isomorphic to this injective resolution. Given a left-exact
functor F : A → B we compute the i-th right derived functor of F by calculating the i-th
cohomology group of the chain complex: · · · → 0 → F (E0) → F (E1) → · · · .

Similarly, we use projective resolutions to compute left derived functors of right-exact
functors.

Let A be an abelian category and consider C(A) the category of chain complexes valued
in A. Suppose A comes equipped with a monoidal product, say ⊗∗ and an adjoint for the
monoidal product, say Hom∗.

Consider (A, dA) and (B, dB) in C(A). The tensor product A ⊗∗ B is the chain complex
given by (A ⊗∗ B)n :=

⊕

p+q=n

(Ap ⊗∗ Bq) and the differential given on elements x ⊗∗ y in

homogeneous degree by d(x ⊗∗ y) = dAx ⊗∗ y + (−1)|x|x ⊗∗ dBy. The hom chain complex
Hom∗(A,B) given by Hom∗(A,B)n =

∏

p+q=n

Hom∗(A−p, Bq), with differential d defined on

homogeneous f ∈ Hom∗(A,B)n by df := dB ◦ f − (−)nf ◦ dA.
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