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COMPLEXES FROM COMPLEXES

DOUGLAS N. ARNOLD AND KAIBO HU

Abstract. This paper is concerned with the derivation and properties of dif-
ferential complexes arising from a variety of problems in differential equations,
with applications in continuum mechanics, relativity, and other fields. We
present a systematic procedure which, starting from well-understood differ-
ential complexes such as the de Rham complex, derives new complexes and
deduces the properties of the new complexes from the old. We relate the co-
homology of the output complex to that of the input complexes and show that
the new complex has closed ranges, and, consequently, satisfies a Hodge de-
composition, Poincaré type inequalities, well-posed Hodge-Laplacian boundary
value problems, regular decomposition, and compactness properties on general
Lipschitz domains.

1. Introduction

Differential complexes are an important tool in the modeling, analysis, and—
increasingly—the numerics of a number of problems. In physics, differential com-
plexes relate to the decomposition of a field into a potential and a complementary
part. Recently, we have come to understand the extent to which stability and con-
vergence of numerical methods rely on the preservation of the underlying structures
of the differential complexes, in particular, the cohomology. Building on early works
on finite element differential forms [14, 34], this point of view has been developed
into the framework of the finite element exterior calculus (FEEC) by Arnold, Falk
and Winther [8, 10] among others.

The most canonical differential complex is the de Rham complex. It is of funda-
mental importance in numerous applications, such as electromagnetism and fluid
dynamics, and by now it is vastly studied. But there are many other complexes that
arise in different applications and relate to different differential equations, the best
known perhaps being the elasticity complex. Key functional analytic and regularity
properties of these other complexes are crucial for analysis and numerics, but are
not so well understood. In this paper, we present a systematic procedure which,
starting from well-understood differential complexes, constructs new complexes and
deduces the properties of the new complexes from the old.

In order to better clarify the contents of the paper, we now quickly review the
de Rham complex on a bounded Lipschitz domain Ω Ă Rn, in several variant forms.
This discussion will be elaborated in Section 2 of the paper. The basic homological
structure is captured in the smooth de Rham complex, in which the spaces consist
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of differential forms with smooth coefficients (note that Λk in the notation indicates
a space of differential k-forms) and the differentials are exterior derivatives:

0 C8Λ0 C8Λ1 ¨ ¨ ¨ C8Λn 0.d0 d1 dn´1

(1)

If we restrict to three dimensions, we can use scalar and vector proxies to write this
in calculus notation:

0 C8pΩq C8pΩ;R3q C8pΩ;R3q C8pΩq 0.
grad curl div

Here C8pΩq is the usual space of all infinitely differentiable functions on Ω.
Additional analytical properties are captured in a variant of the smooth complex,

namely the Sobolev de Rham complex, which extends the exterior derivatives to
less regular differential forms and encodes the fact that they are operators of first
order. For any real number q, it reads:

0 HqΛ0 Hq´1Λ1 ¨ ¨ ¨ Hq´nΛn 0.d0 d1 dn´1

(2)

This is a bounded Hilbert complex, meaning that the spaces are Hilbert spaces and
the operators bounded linear operators. Further functional analytic structure is
encoded in another variant, the L2 de Rham Hilbert complex where the differential
operators are not bounded, but merely closed and densely defined,

0 L2Λ0 L2Λ1 ¨ ¨ ¨ L2Λn 0.d0 d1 dn´1

(3)

Their domains are defined to be the spaces

HΛk “
 
u P L2Λk : dku P L2Λk`1

(
.

Restricting to the domains furnishes yet another variant of the de Rham complex,
a bounded Hilbert complex called the domain complex of the L2 de Rham complex:

0 HΛ0 HΛ1 ¨ ¨ ¨ HΛn 0.d0 d1 dn´1

(4)

The L2 de Rham complex plays a crucial role in FEEC, and we refer to [6, 8] and
the references therein for many results related to it. The Sobolev de Rham complex
(2) and generalizations of it were studied extensively by Costabel and McIntosh in
[23] under rather weak assumptions on the regularity of the domain. From their
results, we may obtain numerous fundamental properties of the de Rham complex:

‚ The complexes (2) and (3) are closed in the sense that all the differential
operators have closed range. This is a crucial assumption of the FEEC
framework, which implies the Poincaré inequality, the Hodge decomposi-
tion, and well-posedness of the Hodge Laplacian boundary value problem,
among other results.

‚ For each of the variant complexes above, the cohomology spaces are finite
dimensional and mutually isomorphic. A common single set of C8 coho-
mology representatives can be chosen.

‚ If the domain Ω is contractible, then each of the complexes has vanishing
cohomology except at the level 0, where the cohomology space is R. In
other words, each complex is locally a resolution of the constants.

‚ Each space in (4) admits a regular decomposition.
‚ The complexes (3) satisfy a compactness property.
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We will define and discuss these properties in greater detail in Section 2 below.
As mentioned above, many problems arising in continuum mechanics and dif-

ferential geometry require other, more complicated differential complexes, the best
known being the elasticity complex, also called the Kröner complex in mechanics or
the (linearized) Calabi complex in geometry. In three space dimensions, the smooth
elasticity complex reads

0 C8 b V C8 b S C8 b S C8 b V 0.def inc div (5)

It is locally a resolution of the rigid motions. Here we write V for the space R3 of 3-
vectors and so C8 bV “ C8pΩq bV is the space of smooth vector fields. Similarly,
S and C8 b S denote the spaces of 3 ˆ 3 symmetric matrices and smooth matrix
fields, respectively. The operators in the elasticity complex are the deformation
or linearized strain operator def “ symgrad, the incompatibility operator inc “
curl ˝T ˝ curl (where T denotes the transpose operation and curl acts on a matrix
field by rows), and the (row-wise) divergence operator operating on matrix fields.
Note that the incompatibility operator is second-order.

The elasticity complex has been crucial to the development of mixed finite el-
ement methods for elasticity [11, 9]. The incompatibility operator inc appears in
the Saint-Venant condition inc e “ 0 giving the conditions for a symmetric matrix
field e to locally equal the deformation (strain tensor) def u of a displacement vec-
tor field. It is further utilized in the development of intrinsic elasticity [22] where
the deformation field replaces the displacement field as the primary unknown. The
incompatibility operator is also central to Kröner’s pioneering work on dislocation
theory [40, 50], where inc applied to a strain tensor measures the density of dis-
locations. Its application to problems such as elastoplasticity remains an active
research area [2, 3, 29]. The analogy between the operators of the de Rham com-
plex and those of the elasticity complex has been long noted, going back at least to
[49, Table 1] and [40].

Other complexes combining first and second order differentials arise in other
applications, particularly the Hessian complex

0 C8 C8 b S C8 b T C8 b V 0,hess curl div (6)

and its formal adjoint, the div div complex,

0 C8 b V C8 b T C8 b S C8 0.
dev grad sym curl div div (7)

Here T is the space of trace-free matrices, and dev is the deviatoric operator which
sends a matrix to its trace-free part. These complexes have been used for plate and
other biharmonic problems by Pauly and Zulehner [45, 46] and have been applied
to the Einstein equations by Quenneville-Bélair [48].

While the elasticity, Hessian, div div, and other complexes have important ap-
plications, there has not been a systematic investigation of their derivations or
fundamental properties. For example, the crucial closed range property required to
fit the complexes into the FEEC framework has not yet been established in general,
nor has the independence of the cohomology on the Sobolev regularity (although a
variety of special cases and partial results have appeared [1, 4, 21, 30, 37, 45, 46]).
In this paper, we present a systematic way to obtain and analyze such complexes
via an algebraic construction presented in Section 3 which derives new complexes
from existing ones. The construction is related to the Bernstein–Gelfand–Gelfand
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(BGG) resolution from the representation of Lie algebras [25, 26, 17], but we shall
not rely on that, and instead provide a self-contained presentation. In Section 3, we
present the derivation of the new complex together with two key theorems relating
its cohomology to that of the input complexes. The proofs of these theorems are
postponed to Section 5, but first, in Section 4, we apply the results of Section 3
in numerous ways to obtain a variety of complexes (elasticity, Hessian, div div,
grad curl, curl div, graddiv, conformal elasticity, and conformal Hessian) with a
variety of applications. We emphasize that the value of this paper lies not only
in the numerous results obtained for numerous complexes in Section 4, but also
in the systematic approach to obtaining these results from known results for the
de Rham complex and similar complexes. We believe this BGG-based construction
will prove valuable in other contexts, both to extend to other complexes and to ob-
tain additional properties. An example in this direction is in [20] where the BGG
approach is used to construct Poincaré operators for the elasticity complex from
classical Poincaré operators based on path integrals for the de Rham complex.

This paper is focused on the construction and analysis of differential complexes
which relate to important PDE problems from continuum mechanics and other ap-
plications. However, another important motivation for the work is to enable the
development of stable and accurate discretization methods for solving these prob-
lems. An important conclusion of the finite element exterior calculus is that a stable
finite element method for a problem arising from a differential complex requires fi-
nite element spaces that form a subcomplex of the original complex and admit a
cochain projection from the complex on the continuous level to that on the dis-
crete level. The construction of such finite element spaces has been systematically
investigated and achieved for the de Rham complex. For the elasticity complex, it
was achieved in 2002 when, after attempts going back four decades, the first stable
mixed finite elements for elasticity with polynomial shape functions were discovered
in two dimensions [11]. In that work, and particularly in the follow-up work in [7]
and [9], the construction of finite elements for the elasticity complex was guided
by the corresponding derivation of the elasticity complex at the continuous level
from the de Rham complex, together with the use of known stable finite element
discretizations of the de Rham complex. This approach has been followed by nu-
merous authors since, such as another discretization of the 2D elasticity complex
obtained by Christiansen, Hu, and Hu [19] by combining a discrete Stokes complex
and an Hermite finite element discretization of the de Rham complex. The current
paper develops the systematic derivation of new complexes from known complexes,
with the derivation of the elasticity complex from the de Rham complex being one
example of many. Consequently our results should provide guidance for the de-
velopment of finite element discretization of these new complexes, providing stable
finite element methods to solve numerous problems for which they were heretofore
unavailable.

We close the introduction by noting that the approach of this paper provides a
new way to prove important analytical results such as Korn’s inequality. Korn’s
inequality is nothing other than the first Poincaré inequality associated with the
elasticity complex, and so follows from the closed range property of that complex,
which is established here as a consequence of known properties of the de Rham
complex together with homological algebra. A stronger, but lesser known inequality,
the trace-free Korn’s inequality, fits into the same framework and is proved in a
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similar way, but for a different complex. Cf., Section 4.4. Similar observations
apply to other operators, such as inc, furnishing more or less familiar inequalities.

2. Sobolev scales of complexes and their properties

Before continuing, we make precise some terminology and notation. Suppose
we have a two vector spaces V and W and a linear operator D mapping between
them. Sometimes we will allow for the case where D is defined only on a subspace
of V , called its domain, rather than on the whole space. The kernel of D, which
we denote by N pDq or N pD,V q, is nevertheless a well-defined subspace of V , and
the range of D, RpDq or RpD,V q, is a subspace of W . Now suppose that we have
a sequence of vector spaces and linear operators mapping one to the next,

¨ ¨ ¨ Ñ Zk´1 Dk´1

ÝÝÝÑ Zk Dk

ÝÝÑ Zk`1 Ñ ¨ ¨ ¨ ,

allowing for the case in which the domain of Dk is a proper subspace of Zk. The
sequence is called a complex if RpDk´1q Ă N pDkq for each k. Then we can define
the kth cohomology space H k as the vector space N pDkq{RpDk´1q. The complex
is called a Hilbert complex if the spaces Zk are Hilbert spaces and the operators
Dk are closed and densely defined [16, 31, 10, 6]. Note that, for a Hilbert complex,
the nullspace N pDkq, being the kernel of a closed operator, is a closed subspace of
Zk, but the range RpDk´1q need not be closed. Therefore the cohomology space
H k may not be a Hilbert space. In this case it does not coincide with the Hilbert

space H̄ k :“ N pDkq{RpDk´1q, which is called the reduced cohomology space. If
each RpDkq is closed, we say the Hilbert complex is closed, and then the distinction
between cohomology and reduced cohomology disappears.

Throughout this paper, we assume that Ω is a bounded Lipschitz domain in
Rn. We shall consider Sobolev spaces of functions (or distributions) on Ω taking
values in a finite dimensional Hilbert space E (for example, we might have E “ Rn).
We may identify such a vector-valued Sobolev space with a tensor product, and so
denote it by HqpΩq b E, or just Hq b E, where q P R is the order of the Sobolev
space. This is a Hilbert space, whose norm we denote by } ¨ }q. In the case q “ 0,
i.e., the space L2 b E, we may just write } ¨ }. For a (possibly unbounded) linear
operator D which maps from one such L2 space to another, we may use the graph
norm given by }u}2

D
:“ }u}2 ` }Du}2. We write dk for the exterior derivative

operator from k-forms to pk ` 1q-forms (it vanishes for k ă 0 or k ą n ´ 1).
The Sobolev–de Rham complex (2) depends on the Sobolev order q, and so is

actually a scale of complexes, by which we mean a family of complexes

¨ ¨ ¨ Ñ Zk
rqs

Dk
rqs

ÝÝÝÑ Zk`1
rqs Ñ ¨ ¨ ¨ (8)

indexed by a parameter q P R, such that if q1 ě q, then

Zk
rq1s Ă Zk

rqs and Dk
rq1s “ Dk

rqs|Zk

rq1 s
.

In this paper we will derive numerous scales of complexes of the form

¨ ¨ ¨ Ñ Hqk b W
k Dk

ÝÝÑ Hqk`1 b W
k`1 Ñ ¨ ¨ ¨ , (9)

The spaces are vector-valued Sobolev spaces of the form Zk
rqs “ Hqk bWk where the

W
k are finite dimensional inner product spaces and the differentials Dk are linear
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differential operators of some positive real order γk ě 1. The real numbers qk are
given by q0 “ q and qk`1 “ qk ´ γk.

For such a Sobolev scale of complexes there is an L2 Hilbert complex variant,
just as for the de Rham complex. The complex is

¨ ¨ ¨ Ñ L2 b W
k Dk

ÝÝÑ L2 b W
k`1 Ñ ¨ ¨ ¨ , (10)

where now Dk is a differential operator with constant (or more generally, smooth)
coefficients defined in the sense of distributions and viewed as a closed unbounded
operator with domain

HW
k :“ tu P L2 b W

k |Dku P L2 b W
k`1 u.

This operator is indeed closed (c.f., [6, Section 6.2.6]). It is densely defined because
C8

0 pΩq b Wk is dense in L2 b Wk. This leads to the following L2 domain complex

¨ ¨ ¨ Ñ HW
k Dk

ÝÝÑ HW
k`1 Ñ ¨ ¨ ¨ . (11)

In many important cases, at each level k, the cohomology of the complexes in
the scale can be represented by a single set of smooth functions, independent of q.

Definition 1. A sequence of finite-dimensional spaces Gk
8 Ă L2pΩq b Wk is said

to uniformly represent the cohomology of a scale of complexes (8) if, for each k P Z

and each q P R,

N pDk, Zk
rqsq “ RpDk´1, Zk´1

rqs q ‘ Gk
8. (12)

Note that, in case the scale of complexes is of the form (9), then, by definition,
the space Gk

8 belongs to all the Sobolev spaces Hq bWk, so it is contained in C8.
In the rest of this discussion we assume that there exists a uniform representation
of the cohomology for the Sobolev scale (9).

Almost all the complexes we treat will be closed (recall that this means that the
range space RpDk´1, Zk´1q is closed in Zk for each k). In particular if the coho-
mology is finite dimensional, then the range space is closed ([38, Lemma 19.1.1]).
Moreover, if a scale of Sobolev complexes has a uniform representation of coho-
mology, then, for each q, the complex has finite dimensional cohomology and so is
closed.

Since Hγk´1 b W
k Ă HW

k Ă L2 b W
k, the cohomology of the L2 complex

(10) can be represented by the same representatives as the Sobolev complex (9).
Specifically, we have the following result.

Theorem 1. Suppose that the scale of complexes (9) admits a uniform set of coho-
mology representatives Gk

8. Then the same spaces are cohomology representatives
for the domain complex (11) as well:

N
`
Dk, HW

k
˘

“ RpDk´1, HW
k´1q ‘ Gk

8.

Proof. We have

N
`
Dk, HW

k
˘

“ N
`
Dk, L2 b W

k
˘

“ RpDk´1, Hγk´1 b W
k´1q ‘ Gk

8

Ă RpDk´1, HW
k´1q ‘ Gk

8 Ă N
`
Dk, HW

k
˘
,

where the first equality is by definition. This implies the result. �

From the fact that the complex is closed we may derive numerous consequences.
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Hodge decomposition. An important consequence of the closedness of the range of
D is the Hodge decomposition. Let D˚

k : L2 b Wk Ñ L2 b Wk´1 be the adjoint

operator of the unbounded operator Dk´1 : L2 bW
k´1 Ñ L2 bW

k associated with
(10). We denote the domain of the adjoint by H˚Wk.Recall that for any densely
defined linear operator between Hilbert spaces T : X Ñ Y , the adjoint of T is
defined to be an unbounded operator with the domain

DpT ˚q :“ tw P Y : Dcw ą 0 s.t. |xw, TvyY | ď cw}v}X , @v P DpT qu.

In specific examples, it consists of forms u P L2 b Wk for which the formal adjoint
D˚

ku P L2 b Wk´1 and which satisfy certain boundary conditions. See [6, The-
orem 6.5] for the case of the de Rham complex. With this notation, the Hodge
decomposition is easily derived. Let

H
k “ tu P N pDkq |u K RpDk´1q u

denote the harmonic forms for this Hilbert complex. Then we have

L2 b W
k “ N pDkq ‘ N pDkqK “ N pDkq ‘ RpD˚

k`1q “ RpDk´1q ‘ H
k ‘ RpD˚

k`1q,
(13)

which is the Hodge decomposition in this context. Besides the definitions, we
have used duality and the closed range theorem, which ensure that the orthogonal
complement of the kernel of an operator with closed range coincides with the range
of its adjoint.

Poincaré inequality. Another important consequence of the closed range property
is the Poincaré inequality, from which it follows by Banach’s theorem. For (10),
the Poincaré inequality reads:

}u} À
››Dku

›› , @u P HW
k, u KL2 N

`
Dk, HW

k
˘
,

and for (2):

}u}qk À
››Dku

››
qk`1

, @u P Hqk b W
k, u KHqk N

`
Dk, Hq b W

k
˘
. (14)

We write a À b to mean a ď Cb for some generic constant C.

Well-posed Hodge-Laplacian boundary value problem. The Hodge decomposition
and Poincaré inequalities then imply the well-posedness of the Hodge-Laplacian
boundary value problems associated with the L2 domain complex (11), up to har-
monic forms. We refer to [6, Section 4.4.2] for the proof.

The preceding properties were all deduced from the fact that the cohomology of
the L2 domain complex (11) is finite dimensional. Now we present three more im-
portant properties that require in addition the existence of a uniform representation
of cohomology of (9).

Existence of regular potentials.

Theorem 2 (Existence of bounded regular potentials). Let q, r P R, k P Z. There
is a constant C such that for any v P Hq b Wk`1 X RpDk, Hr b Wkq, there exists
u P Hq`γk b Wk such that Dku “ v and

}u}q`γk
ď C}v}q. (15)
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Proof. By the assumptions on v, it belongs to N pDk`1, Hq b Wk`1q. Now, from
the uniform representation of cohomology applied to the sequence

Hq`γk b W
k Dk

ÝÝÑ Hq b W
k`1 Dk`1

ÝÝÝÑ Hq´γk`1 b W
k`2,

we have N pDk`1, Hq b Wk`1q “ RpDk, Hq`γk b Wkq ` Gk`1
8 , so there exists

u P Hq`γk bWk and s P Gk`1
8 for which v “ Du` s. But v P RpDk, Hr bWkq and

Du P RpDk, Hq`γk bWkq, so s P Gk`1
8 XRpDk, Ht bWkq with t “ minpq ` γk, rq.

But the last space reduces to zero, since the sum in (12) is direct. Further, we
may subtract from u its projection onto N pDk, Hq`γk b Wkq without changing
Dku. Then u is the desired regular potential and the bound (15) is immediate from
Poincaré inequality (14). �

Regular decomposition. The regular decomposition of the de Rham complex and its
discrete version have various applications in numerical analysis, see, e.g., [36] and
the references therein. A classical proof of the regular decomposition relies on the
Fourier analysis and extensions of vector fields [35]. However, we now show that
regular decompositions for the more general complex (11) can be deduced directly
from the Hodge decomposition of the L2 complex (10) and the existence of regular
potentials.

Theorem 3. The regular decomposition holds:

HW
k “ Dk´1

`
Hγk´1 b W

k´1
˘

` Hγk b W
k. (16)

Proof. Let w P HWk. Applying Theorem 2 to v “ Dkw, we obtain u P Hγk b Wk

such thatDku “ Dkw. Then w´u P N pDk, L2bWkq, so, by uniform representation
of cohomology, there exists y P Hγk´1 bWk´1 and s P Gk

8 bWk such that w ´u “
Dk´1y ` s. Then w “ Dk´1y ` pu` sq provides a regular decomposition for u. �

Compactness property. The space HWk X H˚Wk, i.e., the intersection of the do-
mains of D and D˚, is a Hilbert space with the norm u ÞÑ p}un} ` }Dkun} `
}D˚

ku
n}q1{2. Its inclusion into L2 b Wk is obviously continuous. The compactness

property states that the inclusion is in fact compact.

Theorem 4. The imbedding HWk X H˚Wk
ãÑ L2 b Wk is compact.

The classical proof of the compactness property for the de Rham complex is
due to Picard [47]. Here we provide a proof for general complex (10) based on the
existence of regular potentials and the classical Rellich compactness theorem for
H1 scalar functions. A similar proof can be found in [45, Lemma 3.19].

Proof. Let tunu be a bounded sequence inHW
kXH˚

W
k, so }un}`}Dkun}`}D˚

ku
n}

is bounded. We must show that there exists a convergent subsequence in L2 bWk.
Expanding un by the Hodge decomposition, we have

un “ vn ` wn ` hn, (17)

where the sequences tvnu, twnu, and thnu belong to the spaces RpDk´1, HWk´1q,
RpD˚

k`1, H
˚Wk`1q, and Hk, respectively, and are L2 bounded. We shall show that

each of these sequences admits a convergent subsequence, giving the theorem. This
is certainly true for the hn sequence, since dimHk ă 8.

To show that tvnu has a convergent subsequence we introduce a regular potential
yn P Hγk´1 b Wk´1 with Dyn “ vn and with the yn uniformly bounded in Hγk´1 .
We can then apply the Rellich compactness theorem to obtain a subsequence, which
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we continue to denote yn, which converges in L2. Now, from (17), we see that
vn P H˚Wk and D˚vn “ D˚un is L2-bounded uniformly in n. Thus

}vm ´ vn}
2

“ pDk´1pym ´ ynq, vm ´ vnq “ pym ´ yn, D˚pvm ´ vnqq

which tends to zero as m,n Ñ 8, since tynu is Cauchy in L2 and tD˚vnu is
L2-bounded.

By a completely analogous argument applied to the dual Hilbert complex (which
is also closed), we find a convergent subsequence of twnu, and so complete the
proof. �

Remark 1. From the compactness results and the other properties, one can derive
generalized div-curl lemmas which may be applied to nonlinear problems. Cf. Pauly
[44].

In this section we have seen that if a Sobolev scale of complexes in the form (9)
admits a uniform representation of cohomology in the sense of Definition 1, then
it possesses all the numerous properties discussed above. As a primary example
we have the de Rham complex. In [23], Costabel and McIntosh investigated the
Sobolev de Rham complex (2) on general Lipschitz domains and established the
uniform representation of cohomology. Their primary tools were regularized path
integrals of Poincaré and Bogovskĭı, which provide a contracting homotopy of the
exterior derivatives, which they showed are pseudodifferential operators of order
´1.

Theorem 5 (Costabel and McIntosh). On any bounded Lipschitz domain in Rn

and for any real number q, the cohomology of the Sobolev de Rham complex (2) has
finite dimension independent of q. Moreover, the cohomology can be represented
by smooth functions, again independent of q. In other words, there exists a finite-
dimensional space Hk

8 Ă C8Λk such that

N pdk, HqΛkq “ Rpdk´1, Hq`1Λk´1q ‘ Hk
8, q P R, 0 ď k ď n. (18)

From this theorem and the arguments in this section we obtain a new proof of
the fundamental properties of the de Rham complex which is alternative to more
classical arguments, cf. [6, 8] and the references therein).

Finally, we remark that we have stated Theorem 5 for the L2 based Sobolev
spaces, but it was proven in [23] also for a variety of Banach, Besov, and Triebel–
Lizorkin spaces and a number of the results of this section would extend to these.

3. Algebraic construction of a complex and its cohomology

In this section we present the algebraic construction by which we derive new
differential complexes from known ones, and then we relate the cohomology of the
output complex to that of the input complexes. We carry this out in an abstract
setting. For simplicity, we restrict to complexes of Hilbert spaces, although some
of the results could be generalized to Banach spaces without major changes.

We start with two bounded Hilbert complexes pZ‚, D‚q, pZ̃‚, D̃‚q and bounded

linking maps Si : Z̃i Ñ Zi`1, i “ ´1, ¨ ¨ ¨ , n:

0 Z0 Z1 ¨ ¨ ¨ Zn 0

0 Z̃0 Z̃1 ¨ ¨ ¨ Z̃n 0

D0 D1 Dn´1

D̃0

S0

D̃1

S1

D̃n´1

Sn´1 (19)
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(the zero maps S´1 and Sn are not shown). This means that the spaces Zi and

Z̃i, i “ 0, 1, ¨ ¨ ¨ , n, are Hilbert spaces and the maps Di, D̃i, i “ 0, 1, ¨ ¨ ¨ , n´ 1, are
bounded linear operators. The two complexes in (19) cannot be arbitrary. Instead,
we require that the spaces be of the form

Zi :“ V i b E
i and Z̃i :“ V i`1 b Ẽ

i (20)

for given Hilbert spaces V i and finite dimensional inner product spaces Ei and Ẽi.
In typical applications, V i is a Sobolev space and Ei, Ẽi might be the space of
scalars, vectors, matrices, symmetric matrices, trace-free matrices, or skew sym-
metric matrices (denoted by R, V, M, S, T, and K, respectively, and equipped with
the Frobenius norm).

In addition, we assume that the connecting operators Si are of the form

Si “ id b si (21)

where si : Ẽi Ñ Ei`1 is a linear operator between finite dimensional spaces for
which we require two key properties,

‚ Anticommutativity:

Si`1D̃i “ ´Di`1Si, i “ 0, 1, ¨ ¨ ¨ , n ´ 2, (22)

‚ The J-injectivity/surjectivity condition: for some particular J with 0 ď
J ă n,

si is

#
injective, 0 ď i ď J,

surjective, J ď i ă n.
(23)

Note that the latter condition implies that sJ is bijective.
From the si maps we obtain the null spacesN psiq Ă Ẽi and the ranges: Rpsi´1q Ă

Ei. With all these ingredients, we now define the output complex (in Theorem 6
below we show that it is indeed a complex):

0 Ñ Υ0 Υ1 ¨ ¨ ¨ ΥJ ΥJ`1 ¨ ¨ ¨ Υn Ñ 0,D
0

D
1

D
J´1

D
J

D
J`1

D
n´1

(24)
with spaces

Υi :“

#
V i b Rpsi´1qK, 0 ď i ď J,

V i`1 b N psiq, J ă i ď n,
(25)

and operators

D
i “

$
’&
’%

pid b PRK qDi, i ă J ;

D̃J pSJq´1DJ , i “ J ;

D̃i, i ą J.

(26)

Here for a closed subspace F of some Hilbert space, we write PF for the orthogonal
projection onto F and FK for its orthogonal complement. Of course PFK “ I ´ PF.
We will be particularly interested in the case where the subspace is Rpsi´1q Ă Ei

or N psiq Ă Ẽi. When confusion is unlikely we shorten the notation to PN , PNK ,
PR, and PRK for PN psiq, etc. With a slight abuse of notation, we also denote the

projections in Zi “ V i b Ei and Z̃i “ V i`1 b Ẽi, i.e., id b PN , id b PNK , id b PR,
and id b PRK by PN , PNK , PR, and PRK , respectively.

Note that D i maps Υi to Υi`1 for i ă J because we included the orthogonal
projection onto RpsiqK in its definition, while for i ě J , D i maps Υi to Υi`1 due
to the anticommutativity.
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We can read out the output complex from the input Z and Z̃ complexes as
follows. We start from the left end of the top row of (19) where the S operators
are injective, and follow the complex rightwards, at each step restricting to the
orthogonal complement of the ranges of the incoming S operators. When we reach
the space ZJ we map to the space Z̃J`1 in the bottom row by following a zig-
zag path, rightwards into ZJ`1 by DJ , then down and to the left into Z̃J by
following the linking map SJ in the reverse direction (which is possible since it is

a bijection), and then rightwards into Z̃J`1 by D̃J . We then continue rightwards
along the bottom complex, restricting to the kernels of the S operators.

This completes the construction of the output complex (24) in the abstract
setting. In Section 4, we will apply it to derive the elasticity complex, the Hessian
complex, and the div div complex in 3 dimensions, generalizations of these to n

dimensions, and other complexes. In order to establish the properties of the output
complex, a key result is the relation between its cohomology and that of the two
input complexes (19). This is described in the following two theorems, which are
main results of this paper. Theorem 6 verifies that the output complex is indeed
a bounded Hilbert complex and relates the dimensions of its cohomology spaces to
those of the input complexes. Under an additional assumption, Theorem 7 gives
an explicit map between the output and input complexes and show that it induces
an isomophism on the cohomology. The proofs of these results will be given in
Section 5.

Theorem 6. Let there be given bounded Hilbert complexes pZ‚, D‚q and pZ̃‚, D̃‚q

and bounded linking maps Si : Z̃i Ñ Zi`1 satisfying (19)–(23). Then the output
complex defined by (24)–(26) is a bounded Hilbert complex. Moreover,

dimH
i pΥ‚,D‚q ď dimH

i pZ‚, D‚q ` dimH
ipZ̃‚, D̃‚q, @i “ 0, 1, ¨ ¨ ¨ , n

(where H i denotes the ith cohomology space). Finally, equality holds if and only
if Si induces the zero maps on cohomology, i.e., if and only if

SiN pD̃iq Ă RpDiq, @i “ 0, 1, ¨ ¨ ¨ , n ´ 1. (27)

We immediately obtain from this theorem that, if the input complexes in (19)
have finite dimensional cohomology, then so does the output complex. This, in
turn, implies that the operators in the output complex have closed range, and the
numerous properties that this implies, as explained in Section 2.

It is easy to verify the cohomology condition (27), if we assume that there exist

bounded operators Ki : Z̃i Ñ Zi, i “ 0, 1, . . . , n, such that

Si “ DiKi ´ Ki`1D̃i, i “ 0, 1, . . . , n ´ 1. (28)

Proposition 1. Assume that there exist bounded operators Ki satisfying (28).
Then (27) holds.

Proof. SiN pD̃iq “ pDiKi ´ Ki`1D̃iqN pD̃iq “ DipKiN pD̃iqq Ă RpDiq. �

Under the same assumption, we can give an explicit isomorphism from the Carte-
sian product of the cohomology spaces of the Z and Z̃ complexes to the cohomology
spaces of the output complex. Clearly, si´1 : Ẽi´1 Ñ Ei restricts to an isomor-
phism of N psi´1qK onto Rpsi´1q. Its Moore–Penrose inverse, which we denote by

ti : Ei Ñ Ẽ
i´1, is defined to act as the inverse of this isomorphism on Rpsi´1q and
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to vanish on its orthogonal complement. Equivalently, the compositions of ti and
si are the orthogonal projections

tisi´1 “ PN psi´1qK , si´1ti “ PRpsi´1q. (29)

We also let T i “ idb ti. The proof of the following theorem will be given in Section
5.

Theorem 7. Assume that there exist operators Ki satisfying (28). Define K :

Zi ˆ Z̃i Ñ Υi by

K
ipω, µq “

#
PRpsi´1qK pω ` Kiµq, 0 ď i ď J,

PN psiqrD̃i´1T iω ` pI ` D̃i´1T iKiqµs, J ă i ď n.
(30)

This defines a cochain map from the sum complex Z‚ ˆ Z̃‚ to the output complex
Υ‚ for which the induced map on cohomology is an isomorphism.

As an immediate corollary of Theorem 7, we have an explicit representation of
the cohomology of the output complex.

Corollary 1. Assume that H‚ and H̃‚ are cohomology representatives of the Z

and Z̃ complexes, respectively, i.e.,

N pDi, Ziq “ RpDi´1, Zi´1q ‘ Hi, 1 ď i ď n,

and

N pD̃i, Z̃iq “ RpD̃i´1, Z̃i´1q ‘ H̃i, 1 ď i ď n.

Then

N pD i,Υiq “ RpD i´1,Υi´1q‘

#
PRpsi´1qK pHi ` KiH̃iq, 1 ď i ď J,

PN psiqrD̃i´1T iHi ` pI ` D̃i´1T iKiqH̃is, J ă i ď n.

(31)

4. Applications

In order to apply the algebraic construction from the last section we must specify
the Hilbert spaces V i, finite dimensional inner product spaces Ei and Ẽi, and the
linking maps si : Ẽi Ñ Ei`1, and we must verify the anticommutativity property
and the J-surjectivity/injectivity condition (for a particular J). This then furnishes
an output complex (24) satisfying Theorem 6.

In Section 4.1 we show how to derive the elasticity, Hessian, and div-div com-
plexes in three dimensions, beginning with variants of the de Rham complex. This
example is then generalized to n-dimensions in Section 4.2. Additional complexes
are derived in Sections 4.3 and 4.4.

4.1. Applications in three dimensions using vector proxies. We begin with
some elementary examples, using vector calculus notation. To this end, we intro-
duce notations for some basic linear algebraic operations in R

n:

‚ skw : M Ñ K and sym : M Ñ S are the skew and symmetric part operators,
‚ tr : M Ñ R is the matrix trace,
‚ ι : R Ñ M is the map ιu :“ uI identifying a scalar with a scalar matrix,
‚ dev : M Ñ T given by dev u :“ u ´ 1{n trpuqI is the deviator, or trace-free
part.
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In three dimensions only, we also have an isomorphism between skew symmetric
matrices and vectors defined by the map

mskw

¨
˝

v1
v2
v3

˛
‚:“

¨
˝

0 ´v3 v2
v3 0 ´v1

´v2 v1 0

˛
‚,

Thus the operator mskw maps V isomorphically onto K and satisfies mskwpvqw “
v ˆ w for v, w P V. The vector v is said to be the axial vector of the skew matrix
mskwpvq. We also define vskw “ mskw´1 ˝ skw : M Ñ V, the map taking a
matrix to the axial vector of its skew symmetric part. Finally, we define the map
S : M Ñ M by Su “ uT ´ trpuqI. This map is invertible in any number of
dimensions n ą 1.

Now, let Ω be a Lipschitz domain in R3 and q any real number and consider the
following diagram whose rows are complexes joined by linking maps [5]:

0 Hq b R Hq´1 b V Hq´2 b V Hq´3 b R 0

0 Hq´1 b V Hq´2 b M Hq´3 b M Hq´4 b V 0

0 Hq´2 b V Hq´3 b M Hq´4 b M Hq´5 b V 0

0 Hq´3 b R Hq´4 b V Hq´5 b V Hq´6 b R 0.

grad curl div

grad

id

curl

2 vskw

div

tr

grad

´ mskw

curl

S

div

2 vskw

grad

ι

curl

´ mskw

div

id

(32)
The first and the last rows of this diagram are simply the usual Sobolev de Rham
complex with two different Sobolev orders presented using vector proxies, while
the middle two rows are each a Sobolev de Rham complex tensored with the 3-
dimensional space V. (Note that, because we tensor the de Rham complex on the
right, the differential operators in the middle two rows are applied columnwise: e.g.,
grad applied to a vector field is the matrix field whose columns are the gradients
of the components of the field.) It is elementary to check the anticommutativity
around any of the six small parallelograms in the diagram. Finally, for the maps
connecting the first two rows, the J-injectivity/surjectivity conditions hold for J “
0. For the next two, it holds for J “ 1, and for the last two, for J “ 2. We have
thus verified all the requirements to derive a new complex from any of the three
pairs of consecutive rows.

From the first two rows of (32) we obtain in this way the Hessian complex

0 Hq b R Hq´2 b S Hq´3 b T Hq´4 b V 0,hess curl div

(33)
where hess :“ gradgrad. From the second and third rows of (32) we obtain the
elasticity complex

0 Hq´1 b V Hq´2 b S Hq´4 b S Hq´5 b V 0.def inc div

(34)
In this sequence, the middle operator inc “ curlS´1 curl is a second order differen-
tial operator mapping matrix fields to matrix fields. Now, the curl of a symmetric
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matrix is trace-free (this follows from the anticommutativity of the second paral-
lelogram of (32)). It follows that S´1 curlu “ Tcurlu (with T being the transpose
operator) and so incu “ curl T curlu for u symmetric. Thus the definition of inc
here extends that given after (5). It is also easy to compute the action of inc on
skew symmetric matrix fields. If u is skew symmetric then S´1 curlu is the gradient
of a vector field, as follows from the anticommutativity of the third parallelogram
in (32). Thus incu “ curlS´1 curlu vanishes for skew u.

Finally we consider the last two rows of (32). From these we derive the div div
complex

0 Ñ Hq´2 b V Hq´3 b T Hq´4 b S Hq´6 b V Ñ 0.
dev grad sym curl div div

(35)
In addition to many applications of the elasticity complex as mentioned in the
introduction, Pauly and Zulehner [45] investigated the Hessian complex (33) and
the div div complex (35) with HpDq type spaces. See also [46] for applications to
the biharmonic equation.

These examples, limited to three dimensions and using vector proxies instead of
differential forms, are elementary but somewhat ad hoc. In the following subsection
we generalize this example to n dimensions using the language of differential forms,
which renders it more systematic.

4.2. Complexes from Altk-valued forms. In this section we work in n dimen-
sions, so Ω is a domain in Rn. For i ě 0, let Alti “ AltiRn be the space of algebraic
i-forms, that is, of alternating i-linear maps on Rn. We also set Alti,J “ Alti bAltJ ,
the space of AltJ -valued i-forms or, equivalently, the space of pi ` Jq-linear maps
on Rn which are alternating in the first i variables and also in the last J variables.
Thus dimAlti,J “

`
n
i

˘`
n
J

˘
. For the linking maps, we define the algebraic operators

si,J : Alti,J Ñ Alti`1,J´1

si,Jµpv0, ¨ ¨ ¨ , viqpw1, ¨ ¨ ¨ , wJ´1q :“
iÿ

l“0

p´1qlµpv0, ¨ ¨ ¨ , pvl, ¨ ¨ ¨ , viqpvl, w1, ¨ ¨ ¨ , wJ´1q,

@v0, ¨ ¨ ¨ , vi, w1, ¨ ¨ ¨ , wJ´1 P R
n.

We also write Si,J “ id b si,J : Hq b Alti,J Ñ Hq b Alti`1,J´1 for any Sobolev
order q. Now Hq b Alti is just another notation for HqΛi, and so we have the
exterior derivative, di : Hq bAlti Ñ Hq´1 bAlti`1. Tensoring with AltJ then gives
di : Hq b Alti,J Ñ Hq´1 b Alti`1,J , where we have simply written di in favor of
di b idAltJ . With these definitions, we may write down the diagram generalizing



COMPLEXES FROM COMPLEXES 15

(32) to n dimensions:

0 Hq b Alt0,0 Hq´1 b Alt1,0 ¨ ¨ ¨ Hq´n b Altn,0 0

0 Hq´1 b Alt0,1 Hq´2 b Alt1,1 ¨ ¨ ¨ Hq´n´1 b Altn,1 0

...
...

...

0 Hq´n`1 b Alt0,n´1 Hq´n b Alt1,n´1 ¨ ¨ ¨ Hq´2n`1 b Altn,n´1 0

0 Hq´n b Alt0,n Hq´n´1 b Alt1,n ¨ ¨ ¨ Hq´2n b Altn,n 0.

d d d

d

S0,1

d

S1,1

d

Sn´1,1

d d d

d

S0,n

d

S1,n

d

Sn´1,n

(36)
As before, we can take any pair of consecutive rows and apply the general al-

gebraic construction of Section 3. Specifically, we fix an arbitrary real number
q and an integer J with 0 ď J ă n, and let V i :“ Hq´J´i, Ei :“ Alti,J , and
Ẽi :“ Alti,J`1. The differentials Di and D̃i are then just the exterior deriva-
tives d : Hq´J´i b Alti,J Ñ Hq´J´i´1 b Alti`1,J and d : Hq´J´i´1 b Alti,J`1 Ñ
Hq´J´i´2 b Alti`1,J`1. In short, the top complex in (19) is the Sobolev de Rham

complex of order q ´ J tensored with AltJ and the bottom complex is the Sobolev
de Rham complex of order q ´ J ´ 1 tensored with AltJ`1. Finally, the linking
map si from Ẽi Ñ Ei`1, i.e., from Alti,J`1 to Alti`1,J , is the just the natural map
si,J`1 obtained by skew-symmetrization.

We now verify the requirements on the linking maps.

Lemma 1. With the differentials Di, D̃i and the linking maps si “ si,J`1 defined
as above, the anticommutativity condition (22) holds.

We will prove this result shortly, as a corollary of Lemma 3.

Lemma 2. The operators si “ si,J`1 are injective for 0 ď i ď J and surjective for
J ď i ď n.

We prove Lemma 2 in Appendix 1.
In this example, the output complex (24) reads

¨ ¨ ¨ Ñ Hq´2J`1 b RpsJ´2,J`1qK Ñ Hq´2J b RpsJ´1,J`1qK d˝pSJ,J`1q´1˝d
ÝÝÝÝÝÝÝÝÝÝÑ

Hq´2J´2 b N psJ`1,J`1q Ñ Hq´2J´3 b N psJ`2,J`1q Ñ ¨ ¨ ¨ (37)

In this way we have derived n new complexes, one for each choice of J with
0 ď J ă n. Each involves n ` 1 spaces and n differential operators, with all the
operators of first order except for one. It follows from Theorem 6 that each complex
has finite dimensional cohomology and thus the differentials have closed range. In
the case n “ 3, these complexes are the Hessian complex, the elasticity complex,
and the div-div complex previously derived.

Explicit representation of cohomology. In Theorem 6, (27) provides a condition for
obtaining the exact dimension and specific representations of the cohomology. Next,
we will introduce a Koszul type operator as required in (28) to verify this condition
for the above example.
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The first step to construct such operators is to introduce the Koszul operator
K̃J : Hq b AltJ Ñ Hq b AltJ´1, with any real number q, defined by a contraction
with the Euler (identity) vector field, i.e.,

K̃Jµpw1, ¨ ¨ ¨ , wJ´1q :“ µpx,w1, ¨ ¨ ¨ , wJ´1q, @w1, ¨ ¨ ¨ , wJ´1 P R
n, (38)

where x is the Euler (identity) vector field in Rn. In terms of the standard coordi-
nates on Rn, we have

K̃Jpf dxτ1 ^ ¨ ¨ ¨ ^ dxτJ q “
Jÿ

j“1

p´1qj´1xτjfd xτ1 ^ ¨ ¨ ¨ ydxτj ¨ ¨ ¨ ^ ¨ ¨ ¨ ^ dxτJ .

where f “ fpxq is an arbitrary coefficient function and ydxτj indicates that that

factor is omitted from the wedge product. Tensoring with Alti, we extend the
above Koszul operator to K̃i,J : Hq b Alti,J Ñ Hq b Alti,J´1.

Lemma 3. We have

Si,J “ diK̃i,J ´ K̃i`1,Jdi. (39)

Proof. We may expand an arbitrary element of Hq b Alti,J as a sum of terms of
the form

µ :“ f dxσ1 ^ ¨ ¨ ¨ ^ dxσi b dxτ1 ^ ¨ ¨ ¨ ^ dxτJ ,

where 1 ď σ1 ă ¨ ¨ ¨ ă σi ď n, 1 ď τ1 ă ¨ ¨ ¨ ă τJ ď n, and f P HqpΩq. Thus it

suffices to prove that Si,Jµ “ diK̃i,Jµ ´ K̃i`1,Jdiµ for such µ. Now

K̃i,jµ “
Jÿ

j“1

p´1qj´1xτjf dxσ1 ^ ¨ ¨ ¨ ^ dxσi b dxτ1 ^ ¨ ¨ ¨ ydxτj ¨ ¨ ¨ ^ ¨ ¨ ¨ ^ dxτJ .

and

diK̃i,Jµ

“
nÿ

l“1

Jÿ

j“1

p´1qj´1 Bpxτjfq

Bxl
dxl ^ dxσ1 ^ ¨ ¨ ¨ ^ dxσi b dxτ1 ^ ¨ ¨ ¨ ydxτj ¨ ¨ ¨ ^ ¨ ¨ ¨ ^ dxτJ

“
Jÿ

j“1

p´1qj´1xτj

nÿ

l“1

Bf

Bxl
dxl ^ dxσ1 ^ ¨ ¨ ¨ ^ dxσi b dxτ1 ^ ¨ ¨ ¨ ydxτj ¨ ¨ ¨ ^ ¨ ¨ ¨ ^ dxτJ

`
Jÿ

j“1

p´1qj´1f dxτj ^ dxσ1 ^ ¨ ¨ ¨ ^ dxσi b dxτ1 ^ ¨ ¨ ¨ ydxτj ¨ ¨ ¨ ^ ¨ ¨ ¨ ^ dxτJ

“ K̃i`1,Jdiµ ` Si,Jµ.

�

An immediate consequence of the lemma is the identity

di`1Si,J “ ´Si`1,Jdi, (40)

which establishes Lemma 1.
Lemma 3 suggests that we use the operators K̃i,J to obtain the condition (28).

However, these operators do not satisfy the necessary boundedness. The condition
requires an operator Ki mapping Hq´J´i´1 b Alti,J`1 boundedly into Hq´J´i b
Alti,J , i.e., which smooths by one order of differentiability, but the operators K̃i,J
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are not smoothing. To address this, we make use of homotopy operators for the
Sobolev de Rham complex established by Costabel and McIntosh [23].

Lemma 4. For the complex (2), there exist P i : Hq´iΛi Ñ Hq´i`1Λi´1 and
Li : Hq´iΛi Ñ C8Λi with finite dimensional range, for i “ 1, 2, ¨ ¨ ¨ , n, satisfying

di´1P i ` P i`1di “ id ´ Li, i “ 1, 2, ¨ ¨ ¨ , n. (41)

Note that, from (41), we have the commutativity

diLi “ Li`1di. (42)

Now we define the operator Ki in (28) by

Ki “ P i`1Si,J ` LiK̃i,J . (43)

Then Ki maps Hq bAlti,J boundedly into Hq`1 bAlti,J´1 for any real number q.
Moreover, condition (28) is still fulfilled.

Lemma 5. Let 0 ď i ď n and 0 ď J ă n be integers and let q be any real number.
Then

pdiKi,J ´ Ki`1,Jdiqµ “ Si,Jµ, µ P Hq b Alti,J . (44)

Proof. Using (43), (40), (41) , (42), and (39), we obtain

dK ´ Kd “ dpPS ` LK̃q ´ pPS ` LK̃qd “ dPS ` PdS ` dLK̃ ´ LK̃d

“ pid ´ LqS ` LdK̃ ´ LK̃d “ S.

�

Having verified condition (28), we obtain (27) thanks to Proposition 1. Therefore
we may apply Theorem 6 to conclude that the dimension of the ith cohomology
space for the output complex is precisely the sum of the corresponding dimensions
for the two input de Rham complexes. Moreover, if we choose explicit spaces
of cohomology representatives for the input de Rham complexes, we may apply
Corollary 1 to obtain the explicit representation (31) of the cohomology of the
output complex. If the cohomology representatives for the input complexes are
chosen to be independent of the Sobolev index q, as in Theorem 5, then the resulting
representatives for the output complex will have the same property. From this
follows a variety of properties for the output complex as discussed in Section 2
(existence of regular potentials, regular decomposition, compactness property, etc.).

4.3. More complexes from Altk-valued forms. In the previous two sections
we took as the input complexes two consecutive rows of the diagram (32) (in three
dimensions) or its n-dimensional generalization (36). Actually, it is not necessary
that the rows be consecutive. To illustrate, we derive a new complex taking as
input complexes the first and third rows in (32). For the connecting operators,
we compose two S operators, multiply the first composition by ´1 to retain the
anticommutativity, and divide each by 2 for convenience. Noting that mskw ˝ vskw
is the identity on V and tr ˝S “ ´2 tr, we are led to following diagram in which we
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have added some additional zeros to line up the two complexes:

0 Hq Hq´1 b V Hq´2 b V Hq´3 0 0

0 0 Hq´2 b V Hq´3 b M Hq´4 b M Hq´5 b V 0.

grad curl div

0

grad

id

curl

´ tr

div

0

(45)
One may easily verify that (45) satisfies the assumptions of Section 3, and so we
derive a new complex from it. In this case, the output complex (24) turns out to
be the grad curl complex:

0 Hq Hq´1 b V Hq´3 b T Hq´4 b M Hq´5 b V 0.
grad grad curl curl div

(46)
The second order operator appearing in this complex, grad curl, appears in several
applications. In Cosserat elasticity and couple stress models, it is introduced to
incorporate the size effects, c.f., [41, 43]. We also refer to [18] for a grad curl
correction term in magnetohydrodynamics problems.

In a similar way, we may take the second and fourth rows in (32) as inputs and
derive the curl div complex:

0 Ñ Hq b V Hq´1 b M Hq´2 b T Hq´4 b V Hq´5 Ñ 0.
grad dev curl curl div div

(47)
The curl div operator for trace-free matrix fields appears in several applications in-
cluding couple stress models and Cosserat elasticity, see, for example, [41, equation
1.16]. The deviator of the couple-stress is a trace-free matrix field. Gopalakrishnan,
Lederer and Schöberl [32] proposed a mass conserving mixed stress formulation for
the Stokes problems where the curl div operator plays a role.

We may even take the first and the last rows of (32) as the input complexes.
Then there is only one nonzero linking map, obtained by composing three of the si

operators. After multiplication by a constant it is just the identity from the first
space in the last row to the last space in the first row. This leads to the graddiv
complex:

0 Ñ Hq Hq´1 b V Hq´2 b V

Hq´4 b V Hq´5 b V Hq´6 Ñ 0.

grad curl

grad div curl div

(48)
Applying Theorem 6, we conclude that the cohomology of each of the above

complexes, i.e., (46), (47) and (48), has finite dimension. We could also define
K operators satisfying (28) as was done in Section 4.2, verifying the conditions
in Theorem 7 and thus giving an expression for the dimension of the cohomology
spaces, and explicit representation of the cohomology in terms of representations
of de Rham cohomology.

4.4. Iterating the construction. In the preceding section we derived various
complexes starting from two de Rham complexes. Next we use two of those output
complexes as input to the construction, and thereby derive a new complex. This
complex includes a space of matrix fields which are both symmetric and trace-free, a
class of fields which has numerous applications. Specifically, consider the following
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diagram whose three rows are the Hessian, elasticity, and div div complexes derived
above:

0 Hq b V Hq´1 b T Hq´2 b S Hq´4 0

0 Hq´1 b V Hq´2 b S Hq´4 b S Hq´5 b V 0

0 Hq´2 Hq´4 b S Hq´5 b T Hq´6 b V 0.

dev grad sym curl div div

def

´ mskw

inc

S

div

tr

hess

ι

curl

S

div

2 vskw

(49)
Either by direct calculation or by the commutativity of (32), it is elementary to
check that this diagram anticommutes and satisfies the injectivity/surjectivity con-
dition (with the operator S being the bijective linking map in both rows), so we
may apply the algebraic construction to either the first and second rows or to the
second and third rows. We obtain the same output complex in both cases, namely

0 Ñ Hq b V Hq´1 b pS X Tq Hq´4 b pS X Tq Hq´5 b V Ñ 0.dev def cinc div

(50)
Here the third order differential operator

cinc :“ curlS´1 inc “ curlS´1 curlS´1 curl “ incS´1 curl .

Note that, if v is skew, then S´1v “ ´v is also skew, so incS´1v “ 0. Thus, for any
matrix field u, incS´1 sym curlu “ incS´1 curlu “ cincu, so the operator derived
from the first two rows of (49) is indeed cinc.

We refer to [12] and the references therein for a smooth version of (50) and its
applications in general relativity. The complex (50), which may be referred to as
the conformal elasticity complex or just the conformal complex, is in many ways
analogous to the elasticity complex (34). Like (34), (50) is formally self-adjoint.
The operator cinc plays the role of inc in the elasticity complex. While the elasticity
complex is locally a resolution of the 6-dimensional space of infinitesimal rigid mo-
tions (Killing fields), the complex (50) is locally a resolution of the 10-dimensional
space of conformal Killing fields, i.e., fields v for which dev def v vanishes. From
the elasticity complex we obtain Korn’s inequality as one of the Poincaré inequali-
ties of the complex, bounding the H1 norm of a vector field by the L2 norm of its
deformation as long as the field is orthogonal to the Killing fields. In the same way,
from the complex (50), we obtain the stronger trace-free Korn’s inequality which
bounds the H1 norm by the L2 norm of the trace-free part of its deformation, as
long as the field is orthogonal to the conformal Killing fields.

The spaces and operators appearing in (50) have numerous applications in gen-
eral relativity and continuum mechanics. For example, Dain [24] used them to
study the momentum constraints in the Cauchy problem for the Einstein equations
while Fuchs and Schirra [28] investigated applications in relativity and Cosserat
elasticity. Further, the recently proposed mass conserving mixed formulation of the
Stokes equations by Gopalakrishnan, Lederer and Schöberl [33] is related to the
last several spaces in (50). Similarly, the trace-free Korn’s inequality has various
applications, e.g., to fluid dynamics [27, Proposition 2.1] and to Cosserat elasticity
[15, 39, 42]. See [15] for more references on this.
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Another complex can be derived if we start with the Hessian complex and the
de Rham complex with appropriate linking maps:

0 Hq b R Hq´2 b S Hq´3 b T Hq´4 b R 0

0 Hq´2 b R Hq´3 b V Hq´4 b V Hq´5 b R 0.

hess curl div

grad

ι

curl

´ mskw

div

id

(51)
The output complex which results is the conformal Hessian complex

0 Ñ Hq b R Hq´2 b pS X Tq Hq´3 b pS X Tq Hq´5 b R Ñ 0.dev hess sym curl div div

(52)
Similarly, we can start with the de Rham complex and the div div complex:

0 Hq b R Hq´1 b V Hq´2 b V Hq´3 b R 0

0 Hq´1 b V Hq´2 b T Hq´3 b S Hq´5 b R 0.

grad curl div

dev grad

id

sym curl

2 vskw

div div

tr

(53)
The output complex is again the conformal Hessian complex (52). Because of its
relation with the Hamiltonian constraint in general relativity, it is referred to as the
Hamiltonian complex in [13]. Using similar techniques we can derive themomentum
complex in [13], so named because of its relation to the momentum constraint of
relativity.

4.5. Two space dimensions. Most of the examples presented above in 3D have
analogues in 2D. In this section we briefly summarize the output complexes in 2D.
First we introduce some notation. In R2, a skew symmetric matrix can be identified
with a scalar. Using the same notation as in 3D, we let mskw : R Ñ K be this
identification, i.e.,

mskwpuq :“

ˆ
0 u

´u 0

˙
in R

2.

We also let sskw “ mskw´1 ˝ skw : M Ñ R be the map taking the skew part of a
matrix and identifying it with a scalar.

The 2D analogue of the diagram (32) is

0 Hq b R Hq´1 b V Hq´2 b R 0

0 Hq´1 b V Hq´2 b M Hq´3 b V 0

0 Hq´2 b R Hq´3 b V Hq´4 b R 0.

grad rot

grad

id

rot

´2 sskw

grad

mskw

rot

id

(54)

The output complexes using two consecutive rows read:

0 Hq Hq´2 b S Hq´3 b V 0,hess rot

and

0 Hq´1 b V Hq´2 b S Hq´4 0,def rot rot
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respectively. Using the first and last rows, we obtain the following diagram:

0 Hq Hq´1 b V Hq´2 0 0

0 0 Hq´2 Hq´3 b V Hq´4 0.

grad rot

0

grad

id

rot

0 0 (55)

This leads to the output complex

0 Hq Hq´1 b V Hq´3 b V Hq´4 0.
grad grad rot rot

(56)
On contractible domains, the cohomology at Hq´1 b V is R.

The conformal complexes (50) and (52) do not immediately carry over to 2D.
That is because in the diagram

0 Hq b V Hq´1 b S Hq´3 0

0 Hq´1 Hq´3 b S Hq´4 0,

def rot rot

hess

ι

rot

tr (57)

analogous to (49), neither of the two linking maps is bijective. The failure of this
diagram to fulfil the requirements of our framework is consistent with the invalidity
of the trace-free Korn’s inequality in two dimensions.

5. Proof of main results

In this section, we prove the main results on the dimension of cohomology and
the cohomology isomorphism, i.e., Theorems 6 and 7. To relate the cohomology of
the input complexes, i.e., the Z and the Z̃ complexes (19), to the cohomology of the
output complex (24), we follow two steps. Throughout the section we assume that

Z‚ and Z̃‚ are bounded Hilbert complexes and the Si are bounded linear operators
satisfying (19)–(23).

The first step, detailed in Section 5.1, is to construct a twisted direct sum of
the Z and the Z̃ complexes (this is (59) below, which we refer to as the “twisted

complex”), and compare it with the direct sum of the Z and the Z̃ complexes
(referred to as the “sum complex”). We will show that in general there exists a
surjective map from the cohomology of the sum complex to the cohomology of
the twisted complex. Therefore the dimension of the cohomology of the twisted
complex is bounded by the sum of the dimensions of cohomology of the Z and Z̃

complexes. Furthermore, the cohomology dimensions of the sum complex and of
the twisted complex are equal if the condition SN Ă R in Theorem 6 holds.

The second step, explained in Section 5.2, is to split the twisted complex into
two subcomplexes. One of them is isomorphic to the output complex, while the
other is exact on any domain, independent of its topology. Removing the exact
sequence from the twisted complex does not change its cohomology. Thus we see
that the cohomology of the output complex is isomorphic to that of the twisted
complex.

Combining the two steps we obtain the desired relation between the cohomology
of the input complexes and of the output complex.



22 DOUGLAS N. ARNOLD AND KAIBO HU

5.1. From the sum complex to twisted complex. The direct sum of the com-
plexes pZ‚, D‚q and pZ̃‚, D̃‚q from (19) is the complex with the spaces Y i :“ ZiˆZ̃i

and the differentials Di ˆ D̃i. The twisted complex has the same spaces, but the
differentials are taken to be

A
i :“

ˆ
Di ´Si

0 D̃i

˙
. (58)

Thus the twisted complex is

¨ ¨ ¨ Y i´1 Y i Y i`1 ¨ ¨ ¨ ,A
i´1

A
i

(59)

which we write as pY ‚,A ‚q or simply as Y ‚ for short. The anticommutativity (22)
implies the chain complex condition A i`1 ˝ A i “ 0. In the remainder of this
subsection we relate the cohomology of the twisted complex to that of the sum
complex (or, equivalently, to that of the input complexes Z‚ and Z̃‚).

Let H‚ and H̃‚ be cohomology representatives for the Z and Z̃ complexes, i.e.,

N pDi, Ziq “ RpDi´1, Zi´1q ‘ Hi and N pD̃i, Z̃iq “ RpD̃i´1, Z̃i´1q ‘ H̃i.

Also, let W ‚ complement N pD‚q in Z‚ and similarly for W̃ ‚. Thus

Zi “ RpDi´1q ‘ Hi ‘ W i, and Z̃i “ RpD̃i´1q ‘ H̃i ‘ W̃ i.

Then Di : W i Ñ RpDiq is an isomorphism whose inverse we denote li : RpDiq Ñ
W i.

Lemma 6.

N pA iq “ RpA i´1q `

ˆ
I li`1Si

0 I

˙!
ph, h̃q : h P Hi, h̃ P H̃i, Sih̃ P RpDiq

)
.

(60)

Proof. For pω, µq P N pA iq, Diω ´ Siµ “ 0 and D̃iµ “ 0. Therefore there exists

α P Z̃i´1 and h̃ P H̃i such that µ “ D̃α` h̃. Then Dω “ SD̃α`Sh̃ “ ´DSα`Sh̃,
and Dpω ` Sαq “ Sh̃ P RpDq. Therefore l is well defined on Sh̃, and

Dpω ` Sα ´ lSh̃q “ 0,

which implies that

ω ` Sα ´ lSh̃ “ Dβ ` h,

for some β P Zi´1 and h P Hi. Now we have verified that
ˆ

ω

µ

˙
“

ˆ
D ´S

0 D̃

˙ˆ
β

α

˙
`

ˆ
I lS

0 I

˙ˆ
h

h̃

˙
.

This shows that the left-hand side of (60) is contained in the right-hand side. The
opposite inclusion follows from the equation

ˆ
Di ´Si

0 D̃i

˙ˆ
I li`1Si

0 I

˙ˆ
h

h̃

˙
“ 0,

which is easily verified. �

Under the assumption that S induces the zero map on cohomology, we obtain
an explicit set of cohomology representatives for the twisted complex.
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Lemma 7. Assume that S induces zero map on cohomology, i.e., SiN pD̃iq Ă
RpDiq. Then

N pA iq “ RpA i´1q ‘

ˆ
I li`1Si

0 I

˙
Hi ˆ H̃i.

Proof. From (60), we have

N pA iq “ RpA i´1q `

ˆ
I li`1Si

0 I

˙
Hi ˆ H̃i. (61)

To verify that (61) is a direct sum, we let

pω, µq P RpA i´1q X

ˆ
I li`1Si

0 I

˙
Hi ˆ H̃i,

i.e., for some α, β and h P Hi, h̃ P H̃i,

ω “ Di´1α ´ Si´1β, µ “ D̃i´1β, ω “ h ` li´1Si´1h̃, µ “ h̃.

Since H̃i represents the cohomology, it follows that µ “ 0 and so β P N pD̃q and

ω P Hi. Using the hypothesis SN pD̃q Ă RpDq we have ω P RpDq as well, and so
ω “ 0. �

5.2. From the twisted complex to the output complex. In this section we
prove Theorem 6 by splitting the twisted complex into two subcomplexes as outlined
above.

Recall that ti : Ei Ñ Ẽ
i´1 is the Moore–Penrose inverse of si´1, defined via (29),

and that T i “ id b ti. For future reference we establish some simple identities.

Lemma 8. For each i,

PNKD̃i´1T i “ ´T i`1DiPR, (62)

PRKDiPR “ 0, (63)

Di`1PRDi “ ´Di`1PRKDi, (64)

PRKDi`1PRKDi “ 0, (65)

PN D̃iPN “ D̃iPN . (66)

Proof. For the first identity multiply (22) (with i replaced by i ´ 1) on the left
by T i`1 and on the right by T i and use (29). The second identity holds because
DiRpSi´1q Ă RpSiq, again due to (22). The third is immediate from Di`1Di “ 0.
The left-hand side of (65) can be written as PRKDi`1pI ´ PRqDi which vanishes

by (63) and (64). The identity (66) holds because D̃ maps N pSi´1q into N pSiq by
(22). �

We now define a bounded linear map Πi : Y i Ñ Y i by

Πipω, µq “

# `
PRpSi´1qKω, T i`1DiPRpSi´1qKω

˘
, 0 ď i ď J,`

0, PN pSiqpµ ` D̃i´1T iωq
˘
, J ă i ď n.

(67)

The projections in (67) are defined such that the range of Πi is isomorphic to the
output complex and the diagram commutes.

Lemma 9. Π‚ : pY ‚,A ‚q Ñ pY ‚,A ‚q is a cochain projection.
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Proof. We first show that Π‚ is a cochain map (commutes with A ‚) and then that
it is projection (pΠ‚q2 “ Π‚).

To establish commutativity that Πi`1A i “ A iΠi for i ă J , we must show, in
matrix notation, that

ˆ
PRK 0

TDPRK 0

˙ˆ
D ´S

0 D̃

˙
“

ˆ
D ´S

0 D̃

˙ˆ
PRK 0

TDPRK 0

˙
.

The left-hand side simplifies to
ˆ

PRKD 0
TDPRKD 0

˙

since PRKS “ 0. Comparing to the right-hand side we must show the two equations

PRKD “ DPRK ´ STDPRK , TDPRKD “ D̃TDPRK . (68)

In view of (29), the right-hand side of the first of these equations is pI´PRqDPRK “
PRKDPRK . This indeed equals PRKD by (63). Since i ă J and so Si`1 is injective,
it suffices to prove the second equation in (68) after multiplying both sides on the
left by S. Using (29), (65), (63), (64), (29), and (22) we get

STDPRKD “ PRDPRKD “ DPRKD “ DPRKDPRK

“ ´DPRDPRK “ ´DSTDPRK “ SD̃TDPRK ,

as desired. This completes the proof of commutativity for i ă J .
Next we show commutativity for i “ J , which comes down to
ˆ

0 0

PN D̃JpSJq´1 PN

˙ˆ
DJ ´SJ

0 D̃J

˙
“

ˆ
DJ ´SJ

0 D̃J

˙ˆ
PRK 0

pSJ q´1DJPRK 0

˙
.

This reduces to the equation

PN D̃J pSJq´1DJ “ D̃JpSJq´1DJPRK .

This is true since both sides equal D̃J pSJq´1DJ . Indeed SJ`1D̃JpSJ q´1DJ “

0 by (22), so D̃JpSJ q´1DJ P N pSq, and similarly D̃JpSJq´1DJSJ´1 “ 0 so

D̃JpSJq´1DJPR “ 0.
For commutativity in the case i ą J , we must verify that

ˆ
0 0

PN D̃T PN

˙ˆ
D ´S

0 D̃

˙
“

ˆ
D ´S

0 D̃

˙ˆ
0 0

PN D̃T PN

˙
.

The top row of each product vanishes (using SPN “ 0). This leaves the equations

PN D̃TD “ D̃PN D̃T, ´PN D̃TS ` PN D̃ “ D̃PN .

For the first we use that Si´1T i “ I for i ą J , whence Di “ DiSi´1T i “
´SiD̃i´1T i, so

PN D̃TD “ ´PN D̃TSD̃T “ ´PN D̃PNKD̃T

“ PN D̃pI ´ PNK qD̃T “ PN D̃PN D̃T “ D̃PN D̃T.

again invoking (66). For the second equation, we rewrite the left-hand side as

PN D̃pI ´ PNK q “ PN D̃PN “ D̃PN ,

where we have invoked (66) in the last step.
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Having established that Π‚ is a cochain map we now check that it is a projection,
i.e., that the two matrices

ˆ
PRK 0

TDPRK 0

˙
,

ˆ
0 0

PN D̃JT PN

˙

are idempotent. This is immediate using the fact that PRK and PN are projections.
�

From the lemma, it follows directly that the twisted complex Y ‚ “ pY ‚,A ‚q
splits into a direct sum of two subcomplexes, Π‚Y ‚ and pI ´ Π‚qY ‚, and, con-
sequently that the ith cohomology space HipY ‚q is isomorphic to the direct sum
HipΠ‚Y ‚q and HippI ´ Π‚qY ‚q. We shall show (in Lemma 10) that the second
subcomplex, pI ´ Π‚qY ‚, has vanishing cohomology, and consequently that the
cohomology of the complex Y ‚ is isomorphic (under the map induced by Π‚) to
the cohomology of subcomplex Π‚Y ‚. We will then show (in Lemma 11) that the
subcomplex Π‚Y ‚ is isomorphic, as a complex, to the ouput complex (24).

From the definition (67) of the bounded cochain projection Π‚, we easily identify
the subcomplexes Π‚Y ‚ and pI ´ Π‚qY ‚:

ΠiY i “

#
t pω, TDωq : ω P RpSi´1qK u 0 ď i ď J,

0 ˆ N pSiq, J ă i ď n,
(69)

and

pI ´ ΠiqY i “

#
RpSi´1q ˆ Z̃i 0 ď i ď J,

t pω, µ ´ PN D̃Tωq : ω P Zi, µ P N pSiqK u, J ă i ď n.
(70)

Lemma 10. The complex ppI ´ Π‚qY ‚,A ‚q is exact.

Proof. First suppose i ď J . A typical element of y of pI ´ ΠiqY i can be written

as y “ pSβ, µq for some β P Z̃i´1, µ P Z̃i. If y P N pA iq, then 0 “ DSβ ´ Sµ “

´SpD̃β ` µq. Since S is injective, this implies µ “ ´D̃β. Then y “ A p0,´βq and
p0,´βq P pI ´ Πi´1qY i´1. This establishes exactness for i ď J .

Now suppose that i ą J , and let y “ pω, µ ´ PN D̃Tωq for some ω P Zi, µ P
N pSqK, a typical element of pI ´ ΠiqY i. If y P N pA iq, then

Dω “ Sµ, D̃
´
µ ´ PN D̃Tω

¯
“ 0.

Combining (62), the first of these equations, and (29), we get

PNKD̃Tω “ ´TDω “ ´TSµ “ ´PNKµ “ ´µ,

from which it follows that D̃Tω “ PN D̃Tω ´ µ. Therefore,

A p0,´Tωq “ pω, µ ´ PN D̃Tωq “ y

and p0,´Tωq P pI ´ Πi´1qY i´1. �

Next we show that there is a simple isomorphism from the subcomplex pΠ‚Y ‚,A ‚q
to the output complex (24).

Lemma 11. Define Φi : ΠiY i Ñ Υi by

Φipω, µq “

#
ω 0 ď i ď J,

µ, J ă i ď n.
(71)



26 DOUGLAS N. ARNOLD AND KAIBO HU

Then Φi is an isomorphism and D iΦi “ Φi`1A i. It follows that pΥ‚,D‚q is a
bounded Hilbert complex and that Φ‚ : pΠ‚Y ‚,A ‚q Ñ pΥ‚,D‚q is an isomorphism
of complexes.

Proof. From the formulas (70) for ΠiY i and (25) for Υi, it is easy to see that Φi

defines an isomorphism between them. It is also straightforward from the definition
of their differentials to show that Φ‚ is a cochain map. �

Combining Lemmas 6–11 we have established Theorem 6.
Finally, to prove Theorem 7, we construct cochain maps from the sum complex

pY ‚,D‚q to the output complex pΥ‚,D‚q, where

D
i “

ˆ
Di 0

0 D̃i

˙
.

The first step is to consider a cochain projection Q‚ from the sum complex pY ‚,D‚q
to the twisted complex pY ‚,A ‚q, defined by

Qi “

ˆ
I Ki

0 I

˙
, 0 ď i ď n.

Note that Qi defined above is invertible. From (28), we get the commutativity
A iQi “ QiDi. So Q‚ is a cochain isomorphism. Recall that we already defined
the cochain maps Π‚ (67) from the twisted complex pY ‚,A ‚q to its subcomplex
pΠ‚Y ‚,A ‚q, and Φ‚ (71) from pΠ‚Y ‚,A ‚q to the output complex pΥ‚,D‚q. Com-
posing the maps Q‚, Π‚ and Φ‚, we obtain K ‚ defined in (30). Since Q‚, Π‚ and
Φ‚ are all cochain maps and induce isomorphism on cohomology, we conclude that
so does K ‚. This proves Theorem 7.

Acknowledgements. The authors are grateful to Andreas Čap, Snorre Christiansen,
Victor Reiner, Espen Sande, and Ragnar Winther for numerous valuable discussions
related to this work.

Appendix 1. Proof of injectivity/surjectivity condition

In this appendix we prove Lemma 2. Let n ą 0 and 0 ď k ă n, 1 ď m ď n be
integers. The linear map s “ sk,m is given by

s : Altk Rn b Altm R
n Ñ Altk`1

R
n b Altm´1

R
n

by

spv1 ^ ¨ ¨ ¨ ^ vk b vk`1 ^ ¨ ¨ ¨ ^ vk`mq

“
mÿ

l“1

p´1ql´1vk`l ^ v1 ^ ¨ ¨ ¨ ^ vk b vk`1 ^ ¨ ¨ ¨ ^ yvk`l ^ ¨ ¨ ¨ ^ vk`m. (72)

Our goal is to show that s is injective if k ď m ´ 1 and surjective if k ě m ´ 1.
We begin with some notation. For n and p natural numbers we write rns for

t1, . . . , nu so rnsp denotes the set of p-tuples of elements of rns. We use standard
indexing notation, so an element σ P rnsp can be written pσ1, . . . , σpq. The sym-
metric group Sn, the set of permutations of rns, may be viewed as a subset of rnsn.
If also 0 ď k ď p, we define

Xpn, p, kq “ tσ P rnsp : σ1 ă ¨ ¨ ¨ ă σk, σk`1 ă ¨ ¨ ¨ ă σpu,
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the set of p-tuples which are strictly increasing in the first k indices and in the
remaining p ´ k indices. To each σ P rnsp we may associate

dxσ :“ dxσ1 ^ ¨ ¨ ¨ ^ dxσk b dxσk`1 ^ ¨ ¨ ¨ ^ dxσn P Altk Rn b Altp´k
R

n.

where the dxi are the usual basis elements of the dual space of Rn. The dxσ for
σ P Xpn, p, kq then form the standard basis for Altk Rn b Altp´k

Rn.
Turning to the proof of Lemma 2, we first consider the case m “ n ´ k. In this

case,

s : Altk Rn b Altn´k
R

n Ñ Altk`1
R

n b Altn´k´1
R

n

and we wish to show injectivity for n´2k´1 ě 0 and surjectivity for n´2k´1 ď 0.
Given a subset I Ă rns of cardinality k, let σ P SnXXpn, n, kq be the unique element

for which tσ1, . . . , σku “ I and set ωpIq “ sgnpσqdxσ P Altk Rn b Altn´k
Rn. Let

W pn, kq denote the subspace of Altk Rn bAltn´k
Rn spanned by the elements ωpIq

for all subsets I of rns of cardinality k. It then follows from the definition of s that

sωpIq “ p´1qk
ÿ

jPrnszI

ωpI Y tjuq.

In particular, sW pn, kq Ă W pn, k`1q. We define an inner product on each W pn, kq
by declaring the basis elements ωpIq to be orthonormal. Then the adjoint s˚ :
W pn, k ` 1q Ñ W pn, kq is given by

s˚ωpJq “ p´1qk
ÿ

jPJ

ωpJztjuq, J Ă rns, #J “ k ` 1.

The next result shows the desired injectivity and surjectivity in the case m “ n´k,
but only for the restriction of s to a map from W k to W k`1.

Lemma 12. If n ´ 2k ´ 1 ě 0, then s : W pn, kq Ñ W pn, k ` 1q is injective. If
n ´ 2k ´ 1 ď 0, then it is surjective.

Proof. Let J,K be subsets of rns of cardinality k. Then

xsωpJq, sωpKqy “

$
’&
’%

n ´ k, J “ K,

1, #J X K “ k ´ 1,

0, else,

and

xs˚ωpJq, s˚ωpKqy “

$
’&
’%

k, J “ K,

1, #J X K “ k ´ 1,

0, else.

It follows that

xsωpJq, sωpKqy “ xs˚ωpJq, s˚ωpKqy ` pn ´ 2kqxωpJq, ωpKqy,

and, by bilinearity, that

xsρ, sτy “ xs˚ρ, s˚τy ` pn ´ 2kqxρ, τy, ρ, τ P W pn, kq. (73)

Taking τ “ ρ and assuming that n ´ 2k ´ 1 ě 0, we see that sρ “ 0 implies ρ “ 0,
so s is injective as claimed.

If we replace k by k ` 1 in (73) and assume that n ´ 2k ´ 1 ď 0, the same
argument implies that s˚ : W pn, k ` 1q Ñ W pn, kq is injective, and consequently
that s is surjective. �
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Now we return to general n ě 1, 0 ď k ă n, 1 ď m ď n, and the map s acting
on all of Altk Rn b Altm Rn. To prove surjectivity, assuming k ě m ´ 1, we must
show that s maps onto all of Altk`1

Rn b Altm´1
Rn. For this it is enough to take

an element of the form

ρ “ v1 ^ ¨ ¨ ¨ ^ vk`1 b vk`2 ^ ¨ ¨ ¨ ^ vk`m

with the vi belonging to the dual of Rn, and show that ρ is in the range of s.
Let p “ m ` k and define a linear map from the dual space of Rp to that of Rn

by Tdxi “ vi, i “ 1, . . . , p. Then T induces a linear map

T˚ : Altk Rp b Altm R
p Ñ Altk Rn b Altm R

n

given by

T˚pu1 ^ ¨ ¨ ¨ ^ uk b uk`1 ^ ¨ ¨ ¨ ^ uk`mq “ pTu1 ^ ¨ ¨ ¨ ^Tuk bTuk`1 ^ ¨ ¨ ¨ ^Tuk`mq.

Clearly, T˚s “ sT˚ and, letting

ω “ dx1 ^ ¨ ¨ ¨ ^ dxk`1 b dxk`2 ^ ¨ ¨ ¨ ^ dxk`m,

we have T˚ω “ ρ. Since ω P W pn, k ` 1q, the preceding lemma insures that ω “ sµ

for some µ P W pn, kq Ă Altk Rp b Altm Rp. Therefore

ρ “ T˚ω “ T˚sµ “ spT˚µq.

This completes the proof of surjectivity.
We now prove the injectivity for general n, k, and m, continuing to write p “

m ` k. For σ P Xpn, p, kq let σ̃ P rnsp denote the tuple obtained from σ by taking
its entries in non-decreasing order. For example, if σ “ p2, 3, 1, 2q P Xp3, 4, 2q (so
increasing on its first 2 and last 2 indices), then σ̃ “ p1, 2, 2, 3q. Then we have the
direct sum decomposition

Altk Rn b Altm R
n “

à

JPrnsp

Y pn, p, k, Jq,

where

Y pn, p, k, Jq “ spantdxσ : σ P Xpn, p, kq, σ̃ “ Ju.

Of course, there is a similar decomposition for Altk´1
Rn b Altm`1

Rn. The two
decompositions are compatible with s, in the sense that sY pn, p, k, Jq Ă Y pn, p, k`
1, Jq for the same J . It follows that it is enough to prove that s is injective when
restricted to each of the spaces Y pn, p, k, Jq, J P rnsp. The p-tuple J consists of
entries which appear only once and entries which appear twice. Let l be the number
of repeated entries, so that there are q :“ p ´ 2l non-repeated entries. Without
loss of generality, we may assume that the non-repeated entries are 1, . . . , q and the
repeated entries q ` 1, . . . , q ` l, i.e.,

J “ p1, 2, . . . , q, q ` 1, q ` 1, q ` 2, q ` 2, . . . , q ` l, q ` lq.

The space Sp´2l XXpp´ 2l, p´ 2l, k ´ lq consists of permutations of rp´ 2ls which
are increasing in their first k ´ l and last m ´ l indices. If ρ belongs to this space,
we define Qρ as the p-tuple

Qρ “ pρ1, . . . , ρk´l, q ` 1, q ` 2, . . . , q ` l, ρk´l`1, . . . , ρp´2l, q ` 1, q ` 2, . . . , q ` lq.

This defines a bijection of Sp´2lXXpp´2l, p´2l, k´lq onto tσ P Xpn, p, kq, σ̃ “ Ju.
Now we consider the spaces spanned by the basis functions dxσ where σ varies in
one of these two bijective sets. These spaces are precisely W pp ´ 2l, k ´ lq and
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Y pn, p, k, Jq, respectively, and the bijection just established induces an isomorphism
F : Y pn, p, k, Jq Ñ W pp ´ 2l, k ´ lq, given by

dxQρ ÞÑ dxρ.

It is easy to see that Fs “ sF . If ω P Y pn, p, k, Jq and sω “ 0, then Fω P
W pp´ 2l, k´ lq and sFω “ 0, so, by Lemma 12, Fω “ 0, so ω “ 0. This completes
the proof.
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