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Abstract The generic change of the Weierstraß Canonical Form of regular complex structured ma-
trix pencils under generic structure-preserving additive low-rank perturbations is studied. Several
different symmetry structures are considered and it is shown that for most of the structures, the
generic change in the eigenvalues is analogous to the case of generic perturbations that ignore the
structure. However, for some odd/even and palindromic structures, there is a different behavior for
the eigenvalues 0 and ∞, respectively +1 and −1. The differences arise in those cases where the
parity of the partial multiplicities in the perturbed pencil provided by the generic behavior in the
general structure-ignoring case is not in accordance with the restrictions imposed by the structure.
The new results extend results for the rank-1 and rank-2 cases that were obtained in [3, 5] for the
case of special structure-preserving perturbations. As the main tool, we use decompositions of matrix
pencils with symmetry structure into sums of rank-one pencils, as those allow a parametrization of
the set of matrix pencils with a given symmetry structure and a given rank.
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1 Introduction

The generic change in the Jordan structure of matrices under low-rank perturbations has been
established in [21] and was rediscovered later independently in [36, 38, 39]: if a matrix A ∈ C

n×n

has an eigenvalue λ0 with partial multiplicities n1 > · · · > ng (i.e., these are the sizes of the Jordan
blocks associated with λ0 in the Jordan canonical form of A), then a generic perturbation of rank
r < g has the effect that the perturbed matrix still has the eigenvalue λ0 with partial multiplicities
nr+1 > · · · > ng, while λ0 is no longer an eigenvalue of the perturbed matrix if a generic perturbation
of rank r > g is applied.

Starting with [28] a series of papers has studied the generic changes in the Jordan structure of
matrices with symmetry structures under structure-preserving low-rank perturbations and it has
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been observed that sometimes the behavior differs from the one under arbitrary low-rank perturba-
tions due to restrictions in the possible Jordan structures of the matrices with symmetry structures,
see [6, 15, 22, 28–33].

There are many applications where low-rank perturbations of matrix pencils with or without
symmetry structures arise. For example, matrix pencils are the coefficient representations of linear
differential-algebraic equations, see e.g. [7,23] and the references therein. Structured low-rank pertur-
bations are then common when power networks or electrical circuits are considered, and the stability
is studied when interconnections are interrupted [1, 13, 19, 37]. These are typically perturbations of
rank one or two. Another class of problems where the perturbations are of low-rank compared to
the system size, but not low-rank in absolute terms, are switched systems which change their states,
see e.g. [18,20,24,25,35]. We will study low-rank perturbations of structured matrix pencils from an
abstract matrix-theoretical point of view and do not consider the many concrete applications where
this topic has major implications.

A result on the generic change of the Weierstraß structure (namely, the partial multiplicities)
under low-rank perturbations of regular pencils without any additional symmetry structures has
been established as early as in [12], where genericity was understood in the following sense: a subset
of a finite-dimensional linear space of perturbations is called generic if it is an open dense subset with
respect to the natural topology on the linear space. In contrast to this notion, a stronger concept of
genericity had been used in the references starting from [28]: in that sense, a subset G of Cm is generic
if its complement Cm \ G is contained in a proper algebraic set, i.e., a set of common zeros of finitely
many polynomials in m variables that does not coincide with the full set Cm. The latter concept is
not only stronger than the previous one (clearly any generic set in the latter sense is an open dense
subset of Cm while the converse is not true in general), but it also allowed an easy transition from
the complex to the real case as it was shown in [30]. This concept requires the parametrization of
the set of considered perturbations as a subset of Cm. In [11] such a parametrization of the set of
pencils of rank at most r was introduced and the result from [12] could be generalized to the stronger
concept of genericity in the sense of its complement being contained in a proper algebraic set. The
main result obtained in [11] states that the generic behavior in the case of matrix pencils coincides
with the one for matrices. More precisely, if A + λB is a regular pencil and λ0 ∈ C ∪ {∞} is an
eigenvalue of A+ λB with partial multiplicities n1 > · · · > ng, then a generic additive perturbation
of A + λB with rank r “destroys” the r largest multiplicities, so that the perturbed pencil has the
partial multiplicities nr+1 > · · · > ng at λ0.

Surprisingly, the case of matrix pencils with some additional symmetry structure has not yet
been as well studied as the matrix case. The first attempt to investigate the generic change in the
Weierstraß structure of such matrix pencils under structure-preserving low-rank perturbations was
undertaken in [3–5], where the cases of rank-1 perturbations and special perturbations of rank two
were considered - the restriction to these cases was due to the fact that straightforward parameter-
izations were available in that case. While it was shown in [6] how the knowledge of the behavior
in the rank-one case can be extended to arbitrary rank in the matrix case, a similar transition is
not possible in the pencil case, since a structured pencil of small rank can in general not be written
as a sum of those rank-1 or rank-2 pencils that were considered in [3–5]. Therefore, the case of
structure-preserving perturbations of rank larger than two remained an open problem.

It is our aim to fill this gap by extending the ideas from [11] to develop parameterizations of low-
rank pencils with symmetry structures and obtain results on the generic change in the Weierstraß
structure of structured matrix pencils under low-rank structure-preserving perturbations. Moreover,
we will also consider one aspect that has not been considered in the pencil case so far: the generic
multiplicity of newly generated eigenvalues.

Low-rank perturbation of singular matrix pencils has been considered in [9], restricted to the case
where the perturbed pencil remains singular. A different generic behavior on the change of the partial
multiplicities of eigenvalues is shown in this case. In particular, for generic perturbations, all partial
multiplicities of any eigenvalue of the unperturbed pencil stay after perturbation. In this paper,
however, we restrict ourselves to regular matrix pencils which remain regular after perturbation
(which is a generic condition). Nonetheless, singular pencils naturally appear in the context of the
present work, since low-rank pencils are necessarily singular.
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The paper is organized as follows. In Section 2 we introduce some notation and recall the Weier-
straß canonical form. The symmetry structures considered in the paper are introduced in Section
3, where we also present the rank-1 decomposition of low-rank structured pencils for any of these
structures. We consider the Hermitian and ⊤-even cases in full detail, and from the results for these
two structures we derive the results for the remaining symmetry structures. Section 4 contains the
main results of the paper, namely the description of the generic change of the partial multiplici-
ties of regular pencils with symmetry structures under low-rank structure-preserving perturbations.
If we restrict ourselves to pencils with real entries, the approach followed in the manuscript is no
longer valid. In the short Section 5 we briefly discuss the case of real matrix pencils with symmetry
structures and explain why the results of the previous sections cannot be applied in that case. In
Section 6 we summarize the contributions of the paper and we present some lines of further research.
Appendix A contains the proof of a couple of technical results used in Section 4.

2 Notation and basic results

By ei we denote the ith canonical vector of appropriate size, i.e., the ith column of the identity
matrix with the appropriate order. By i we denote the imaginary unit. The notation 0m×n stands
for the m × n zero matrix. When either m = 1 or n = 1, then we just write 0n or 0m, respectively.
Note that we use the same notation for zero rows and zero columns, but which is the right one is
clear by the context.

As usual, Cm×n denotes the set of m× n matrices with complex entries, and C
n denotes the set

of vectors with n complex coordinates in column form (i.e., Cn = C
n×1). Given a matrix A ∈ C

m×n,
we denote by A(i, j) the (i, j) entry of A. By C[λ]n we denote the set of vector polynomials with n

coordinates, i.e., the set of vectors with n coordinates which are polynomials in the variable λ.
We use L(λ) for general pencils, as well as for the given (unperturbed) pencil, whereas E(λ)

will be used for the perturbation pencil. The notation ⋆ is used for either the transpose (⊤) or the
conjugate transpose (∗) of a matrix. Given a matrix pencil L(λ) = A+ λB (or just L, for short), by
L(λ)⋆ (or L⋆, for short) we denote the pencil A⋆ + λB⋆. It is important to note that, when ⋆ = ∗,
then the operator ∗ does not affect the variable λ, but just the coefficients of the pencil. The pencil
is said to be regular if it is square and detL(λ) is not identically zero. Otherwise, it is said to be
singular. The rank of L(λ), denoted rankL, is the size of the largest non-identically zero minor of
L(λ) (considering the minors as polynomials in λ), i.e., the rank of L(λ) considered as a matrix over
the field of rational functions in λ. In other words, it is the quantity maxλ∈C rank(A + λB). This
is sometimes referred to as the normal rank in the literature (see, for instance, [14]). Note that, if
A+ λB is a square n× n matrix pencil with rank r < n, then A+ λB is singular.

The reversal rev(A+ λB) of a matrix pencil A+ λB is the matrix pencil B + λA.
By Lα we denote a right singular block of order α, i.e., the α× (α+ 1) pencil

Lα :=



λ 1
. . .

. . .

λ 1




α×(α+1)

.

By Jk(a − λ) we denote a pencil corresponding to a k × k Jordan block associated with the
eigenvalue a, namely

Jk(a− λ) :=




a− λ 1
. . .

. . .

a− λ 1
a− λ




k×k

,

and R denotes the reverse identity matrix, namely

R :=




1

. .
.

1


 ,
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where the size will be clear by the context.

Remark 1 If w ∈ C[λ]n is a vector polynomial of degree (at most) 1, and v ∈ C
n (i.e., a constant

vector) then rev(vw⋆) = v · (revw)⋆.

If A + λB is a regular n × n matrix pencil, then it can be transformed to Weierstraß canonical
form (WCF). More precisely, there exist nonsingular matrices S, T ∈ C

n×n such that

S(A+ λB)T = diag
(
Jn1,1(a1 − λ), . . . ,Jn1,g1

(a1 − λ), . . . ,Jnκ,1(aκ − λ), . . . ,Jnκ,gκ
(aκ − λ),

diag
(
rev Jnκ+1,1(−λ), . . . , rev Jnκ+1,gκ+1

(−λ)
)
.

Here κ ∈ N, and a1, . . . , aκ ∈ C are the finite eigenvalues of A + λB with geometric multiplicities
g1, . . . , gκ, respectively. The value gκ+1 is the geometric multiplicity of the infinite eigenvalue, where
we allow gκ+1 = 0 for the case that ∞ is not an eigenvalue of the pencil. The parameters ni,1, . . . , ni,gi
are called the partial multiplicities of A+ λB at λi. Without loss of generality, we may assume that
they are ordered non-increasingly, i.e., we have ni,1 > · · · > ni,gi .

If A+λB is a singularm×nmatrix pencil, then the corresponding canonical form is the Kronecker
canonical form (KCF): there exist nonsingular matrices S ∈ C

m×m and T ∈ C
n×n such that

S(A+ λB)T = diag
(
L̃(λ), Lα1 , . . . , Lαη , L

⊤
β1
, . . . , L⊤

βξ

)

with L̃(λ) in WCF. Here, the parameters α1, . . . , αη ∈ N and β1, . . . , βξ ∈ N are called the right or left
minimal indices, respectively.

3 Representation of structured pencils as a sum of rank-1 pencils

It is well-known, see e. g. [16], that any Hermitian or symmetric matrix A ∈ C
n×n with rankA =

r 6 n can be written as a sum of rank-1 matrices of the same structure (this is an immediate
consequence of the so-called spectral decomposition). In particular, if A is symmetric, then it can be
written as A = u1u

⊤
1 + · · · + uru

⊤
r (or A = s1u1u

⊤
1 + · · · + sruru

⊤
r if we restrict ourselves to real

coefficients), whereas if A is Hermitian, then it can be written as A = s1u1u
∗
1 + · · ·+ sruru

∗
r where

s1, . . . , sr ∈ {+1,−1} are signs. By Sylvester’s Law of Inertia, the numbers of positive (resp. negative)
signs among s1, . . . , sr are uniquely determined.

It is natural to ask whether an analogous decomposition holds for matrix pencils with symmetry
structures. The structures we are interested in are compiled in the following list. A matrix pencil
L(λ) = A+ λB with A,B ∈ C

n×n is said to be

– Hermitian if A = A∗, B = B∗;
– symmetric if A = A⊤, B = B⊤;
– skew-Hermitian if A∗ = −A,B∗ = −B;
– skew-symmetric if A⊤ = −A,B⊤ = −B;
– ⋆-even if A⋆ = A,B⋆ = −B;
– ⋆-odd if A⋆ = −A,B⋆ = B;
– ⋆-palindromic if A⋆ = B;
– ⋆-anti-palindromic if A⋆ = −B.

The name ⋆-alternating is also used as an umbrella term for both ⋆-even and ⋆-odd.
For the sake of brevity, we will use the following notation for the set of n× n structured matrix

pencils with rank at most r, for each of the previous structures:

structure notation

Hermitian Hr

symmetric Symr

skew-Hermitian SHr

skew-symmetric SSymr

⋆-even Even⋆r
⋆-odd Odd⋆r

⋆-palindromic Pal⋆r
⋆-anti-palindromic Apal⋆r
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Note that, for the ease of notation, and since all matrices considered in this paper are of the same
size n× n, there is no explicit mention of the size in the notation introduced above.

We start by showing the existence of a decomposition of structured low-rank pencils as a sum
of structured rank-1 pencils. For this, we will use structured canonical forms for these kinds of
pencils. These canonical forms comprise the information displayed in the WCF, with the appropriate
restrictions imposed by the corresponding symmetry structure. We refer to [4] for these canonical
forms, since they are all gathered in this reference, even though all of them were introduced in earlier
references. Furthermore, we focus on the case of Hermitian pencils and will give a detailed proof for
this case only, while for the cases of other structures we will either reduce them to the Hermitian
case or mention in which parts the proofs of the corresponding results differ from the Hermitian case.

3.1 Rank-1 decompositions for the Hermitian case

First, we recall the well-known canonical form for Hermitian pencils under congruence, see, e.g., [4,
Theorem 2.20].

Theorem 1 (Canonical form of Hermitian pencils). Let E(λ) be a Hermitian n×n matrix pencil. Then

there exists a nonsingular matrix P such that

P ∗E(λ)P = diag
(
E1(λ), . . . , Em(λ)

)
,

where each pencil Ej(λ), for j = 1, . . . ,m, has exactly one of the following four forms:

i) blocks σRJk(a− λ) associated with a real eigenvalue a ∈ R and a sign σ ∈ {+1,−1};
ii) blocks

rev
(
σRJk(−λ)

)
= σ




−1
−1 λ

. .
.
. .
.

−1 λ




associated with the eigenvalue infinity and a sign σ ∈ {+1,−1};
iii) blocks R diag

(
Jk(µ − λ), Jk(µ − λ)

)
associated with a pair (µ, µ) of conjugate complex eigenvalues,

with µ ∈ C having positive imaginary part;

iv) blocks [
0 L⊤

k

Lk 0

]

consisting of a pair of one right and one left singular block with the same index k.

The parameters a, k, σ, and µ depend on the particular block Lj(λ) and may be distinct in different blocks.

Furthermore, the canonical form is unique up to permutation of blocks.

The signs σ in the blocks of type i) and ii) in Theorem 1 are invariant under congruence transforma-
tions and their collection is referred to as the sign characteristic of the Hermitian pencil following the
terminology of [17,34]. The following result presents a decomposition of a given Hermitian pencil as
a sum of rank-1 Hermitian pencils, which extends the one for Hermitian matrices mentioned at the
beginning of this section. Hereafter, we deal with polynomial vectors, namely vectors v(λ) ∈ C[λ]n,
though, for brevity, in general we will drop the dependence on λ. For a given v(λ) ∈ C[λ]n, by deg v
we denote the largest degree of the entries of v. In order to avoid confusion, it is important to recall
that, given a pencil A+ λB, we write (A+ λB)∗ to denote the pencil A∗ + λB∗, i.e., we only apply
the conjugate transpose to the coefficients of the pencil, and not to the variable λ.

Theorem 2 (Rank-1 decomposition for Hermitian pencils). If E(λ) is a Hermitian n×n matrix pencil

with rankE = r 6 n, then it can be written as

E(λ) = (a1 + λb1)u1u
∗
1 + · · ·+ (aℓ + λbℓ)uℓu

∗
ℓ + v1w

∗
1 + · · ·+ vsw

∗
s + w1v

∗
1 + · · ·+ wsv

∗
s , (1)

where ai, bi ∈ R, for i = 1, . . . , ℓ, and
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(i) ℓ+ 2s = r,

(ii) deg u1 = · · · = deg uℓ = 0 = deg v1 = · · · = deg vs and degw1, . . . ,degws 6 1.

Proof It suffices to prove the statement for E(λ) being in Hermitian canonical form as in Theorem 1.
To see this, just notice that if KE(λ) is the Hermitian canonical form of E(λ) and if it has a
decomposition

KE(λ) = (a1 + λb1)ũ1ũ
∗
1 + · · ·+ (aℓ + λbℓ)ũℓũ

∗
ℓ + ṽ1w̃

∗
1 + · · ·+ ṽsw̃

∗
s + w̃1ṽ

∗
1 + · · ·+ w̃sṽ

∗
s ,

as in (1), then there exists a nonsingular matrix P such that

E(λ) = PKE(λ)P
∗ = (a1 + λb1)u1u

∗
1 + · · ·+ (aℓ + λbℓ)uℓu

∗
ℓ

+v1w
∗
1 + · · ·+ vsw

∗
s + w1v

∗
1 + · · ·+ wsv

∗
s

with ui = P ũi, vj = P ṽj , and wj = Pw̃j , for i = 1, . . . , ℓ and j = 1, . . . , s. This gives the desired
decomposition (1) for L(λ).

So we may assume E(λ) to be in Hermitian canonical form, which is a direct sum of blocks of
the four different types i)–iv) as in Theorem 1. We will provide a decomposition like (1) for each of
these blocks.

1) A k×k block associated with a real eigenvalue a ∈ R and sign σ ∈ {+1,−1} can be decomposed
as follows, depending on whether k is odd or even. If k is even then

σRJk(a− λ)

= σ




a− λ
0 1/2

a− λ 0
0 1/2

. .
.
. .
.

a− λ 0
0 1/2



+ σ




0
a− λ 1/2

0 0
a− λ 1/2

. .
.

. .
.

0 0
a− λ 1/2




= +σ






a− λ

1/2
0k−2


 e∗k +




02
a− λ

1/2
0k−4


 e

∗
k−2 + · · ·+



0k−2

a− λ

1/2


 e∗2




+σ


ek



a− λ

1/2
0k−2



∗

+ ek−2




02
a− λ

1/2
0k−4




∗

+ · · ·+ e2



0k−2

a− λ

1/2



∗

 ,

which is of the form (1) with vi = σe2i and wi =
[
0k−2i a− λ 1/2 02i−2

]∗
, for i = 1, . . . , k/2. Note

that σ can be included either in vi or wi, for i = 1, . . . , k/2.
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If k is odd, then we can split the block in two pieces

σRJk(a− λ)

= σ(a− λ)e k+1
2
e∗k+1

2

+ σ




a− λ

. .
.

1

a− λ . .
.

0 1

a− λ 1

. .
.
. .
.

a− λ 1




= σ(a− λ)e k+1
2
e∗k+1

2

+ σ






a− λ

1
0k−2


 e∗k +




0
a− λ

1
0k−3


 e

∗
k−1 + · · ·+




0 k−3
2

a− λ

1
0 k−1

2


 e

∗
k−1
2




σ(a− λ)e k+1
2
e∗k+1

2

+ σ


ek



a− λ

1
0k−2



∗

+ ek−1




0
a− λ

1
0k−3




∗

+ · · ·+ e k−1
2




0 k−3
2

a− λ

1
0 k−1

2




∗
 ,

and proceed as in the previous case with the last two summands.
2) A k×k block associated with ∞ and sign characteristic σ can be decomposed in a similar way,

replacing the roles of a− λ and 1 in the previous case by −1 and λ, respectively.
3) A pair of k × k blocks corresponding to a pair of complex conjugate eigenvalues µ, µ can be

decomposed as

Rdiag(Jk(µ− λ), Jk(µ− λ)) =




µ− λ

. .
.

1

µ− λ . .
.

µ− λ 1

µ− λ

. .
.

1

µ− λ . .
.

µ− λ 1




= +



µ− λ

1
02k−2


 e∗2k + · · ·+




0k−2

µ− λ

1
0k


 e

∗
k+2 +



0k−1

µ− λ

0k


 e∗k+1

+ek+1



0k−1

µ− λ

0k



∗

+ ek+1




0k−2

µ− λ

1
0k




∗

+ · · ·+ e2k



µ− λ

1
02k−2



∗

,

which is of the desired form.
4) Finally, a pair consisting of a left and a right singular block with respective sizes k × (k + 1)

and (k+ 1)× k can be decomposed as

[
0 L⊤

k

Lk 0

]
= ek+1




λ

1
02k−1



∗

+ · · ·+ e2k+1




0k−1

λ

1
0k




∗

+




λ

1
02k−1


 e∗k+1 + · · ·+




0k−1

λ

1
0k


 e

∗
2k+1,
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which is, again, in the desired form.
So each block in the canonical form has a decomposition like (1). Forming this direct sum by

padding up with zeroes in the entries of each vector corresponding to the other blocks, we arrive at
a decomposition (1) for E(λ) given in Hermitian canonical form.

Remark 2 Note that u1, . . . , uℓ and v1, . . . , vs are constant vectors, but w1, . . . , ws are (column) pencils,
which means that their entries are polynomials in λ with degree at most 1. Thus writing wi(λ) =
wi,A + λwi,B for i = 0, . . . , s with w1,A, . . . , ws;A, w1,B, . . . , ws,B ∈ C

n and using the notation

U :=
[
u1 . . . uℓ

]
, V :=

[
v1 . . . vs

]
,

WA :=
[
w1,A . . . ws,A

]
, WB :=

[
w1,B . . . ws,B

]
,

DA :=diag(a1, . . . , aℓ), DB :=diag(b1, . . . , bℓ),

we can write (1) in the concise form

E(λ) = U(DA + λDB)U∗ + V (W ∗
A + λW ∗

B) + (WA + λWB)V ∗. (2)

Remark 3 By the construction in the proof of Theorem 2, the terms of the form (a+ λb)uu∗ in the
decomposition (1) come either from blocks associated with real eigenvalues or from blocks associated
with the infinite eigenvalue, and in both cases the blocks have odd size.

Remark 4 If (1) is a decomposition into rank-1 pencils as in Theorem 2, then the vectors u1, . . . , uℓ,
v1, . . . , vs are linearly independent. To see this, assume that they are linearly dependent. Let X :=[
X1 X2 X3

]
∈ C

n×n be nonsingular such that the columns of
[
X1 X2

]
∈ C

n×(p+q) span the or-

thogonal complement of the span of v1, . . . , vs and the columns of X1 ∈ C
n×p span the orthogonal

complement of the span of u1, . . . , uℓ, v1, . . . , vs. Then we have p + q > n − s and, because of the
assumed linear dependency, p > n− (ℓ+ s). Observe that

X∗E(λ)X =




p q n−p−q

p 0 0 X∗
1E(λ)X3

q 0 X∗
2E(λ)X2 X∗

2E(λ)X3

n−p−q X∗
3E(λ)X1 X∗

3E(λ)Xf X∗
3E(λ)X3




from which we obtain that the rank of E(λ) is bounded by

2(n− p− q) + q = n− p+ n− p− q < ℓ+ s+ s = r,

which is in contradiction to the assumption in Theorem 2 that E(λ) has rank r.

Unfortunately, the decomposition (1) is far from being unique as the following example illustrates.

Example 1 Consider the Hermitian pencil

E(λ) := λ

[
0 1
1 0

]
−

[
0 1
1 0

]
=

[
0 λ− 1

λ− 1 0

]

and let u1 = 1√
2

[
1 1

]⊤
, u2 = 1√

2

[
−1 1

]⊤
, v1 =

[
1 0

]⊤
, and w1 =

[
0 λ− 1

]⊤
. Then we have

E(λ) = (λ− 1)u1u
∗
1 − (λ− 1)u2u

∗
2 = v1w

∗
1 + w1v

∗
1 .

In particular, Example 1 shows that also the parameters ℓ and s from Theorem 2 are not unique,
as in the first decomposition we have ℓ = 2 and s = 0 and in the latter we have ℓ = 0 and s = 2.
However, the values of ℓ and s can be fixed by requiring ℓ to be minimal. Interestingly, in that case
the minimal parameter ℓ depends on the sign characteristic of the Hermitian pencil. In order to state
the following theorem, we recall the definition of the so-called sign sum from [27].
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Definition 1 Let E(λ) be a Hermitian n× n pencil and let µ ∈ R be an eigenvalue of E(λ). Assume
that (n1, . . . , nm, nm+1, . . . , nq) are the sizes of the blocks associated with the eigenvalue µ in the
Hermitian canonical form of E(λ), where n1, . . . , nm are odd and nm+1, . . . , nq are even. Furthermore,
let (σ1, . . . , σm, σm+1, . . . , σq) be the corresponding signs (of the blocks associated with µ) from the
sign characteristic of E(λ). Then the signsum sigsum(E,µ) of µ is defined as

sigsum(E,µ) :=
m∑

j=1

σj .

If ∞ is an eigenvalue of E(λ), then the signsum of ∞ is defined as

sigsum(E,∞) := sigsum(revE, 0).

Thus, the signsum of the real eigenvalue µ of a Hermitian pencil is just the sum of the signs that
correspond to blocks of odd size associated with µ.

Example 2 Consider the following three Hermitian pencils

E1(λ) =




1− λ 0 0 0
0 0 0 1− λ

0 0 1− λ 1
0 1− λ 1 0


 ,

E2(λ) =

[
1− λ 0
0 λ− 1

]
, E3(λ) =

[
0 1− λ

1− λ 1

]
,

which all have just the single eigenvalue a = 1. Then we have sigsum(E1, 1) = 2, since E1(λ) has
two odd-sized blocks associated with a = 1 (one of size one and one of size three), both having the
sign +1. On the other hand sigsum(E2, 1) = 0 as E2(λ) has two blocks of size one, but with opposite
signs +1 and −1. For the pencil E3(λ), we also obtain sigsum(E3, 1) = 0, because it has no odd-sized
blocks associated with the eigenvalue a = 1, but just one block of size two. In that case, the sum in
Definition 1 is empty and thus, by definition, equal to zero.

Theorem 3 Let E(λ) be a Hermitian n× n pencil and let µ1, . . . , µp ∈ R ∪ {∞} be the pairwise distinct

real eigenvalues of E(λ). (Infinity is interpreted as a possible real eigenvalue here.) Furthermore, let (1)
as in Theorem 2 be a decomposition of E into rank-1 pencils so that the parameter ℓ from Theorem 2 is

minimal among all possible such decompositions. Then

ℓ =

p∑

j=1

| sigsum(E,µj)|. (3)

Proof In the following, let ℓ0 denote the right-hand-side of (3), i.e., ℓ0 =
∑p

j=1 | sigsum(E,µj)|.
“6”: We first show that there exists a decomposition as in (1) such that ℓ = ℓ0. Using the same
construction as in the proof of Theorem 2, we see from Remark 3 that in their decomposition into
rank-1 pencils only blocks of odd-size that are associated with real eigenvalues (including ∞) have
a term of the form (a+ λb)uu∗ (with a, b ∈ R and u ∈ C

n), and thus only those blocks contribute to
the number ℓ in the decomposition (1). Therefore and because it is sufficient to consider each real
eigenvalue separately, we may assume, without loss of generality, that E(λ) is regular and only has
a single eigenvalue µ that is real and finite, such that all blocks in the Hermitian canonical form of
E(λ) associated with µ have odd size. We then have to show that E(λ) has a decomposition as in (1)
with ℓ = | sigsum(E,µ)|.

To this end, assume that the Hermitian canonical form of the pencil E(λ) consists of m blocks
with size n1, . . . , nm (which are all odd). Let σ1, . . . , σm be the signs from the sign characteristic of
E(λ), where σj is associated with nj for j = 1, . . . ,m. By the construction in the proof of Theorem 2,
we then obtain a decomposition of the form

E(λ) = σ1(a− λ)u1u
∗
1 + · · ·+ σm(a− λ)umu

∗
m + v1w

∗
1 + · · ·+ vsw

∗
s + w1v

∗
1 + · · ·+ wsv

∗
s . (4)
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Suppose that m = m+ +m−, where m+ is the number of blocks with positive sign σj and m− is the
number of blocks with negative sign σj . Then sigsum(E, a) = |m+ −m−|, i.e., if we try to pair up
the blocks into pairs consisting of two blocks with opposite signs (but possibly different sizes) then
the signsum of a corresponds to the number of blocks that will remain unpaired. In particular, all
of these remaining blocks will have the same sign. Thus, to prove the assertion, it remains to show
that in the decomposition (4) each summand

(a− λ)uiu
∗
i − (a− λ)uju

∗
j

(where we have σi = 1 and σj = −1) can be replaced by a summand of the form vkw
∗
k + wkv

∗
k with

vk ∈ C
n and wk being an n × 1 pencil. This goal can be achieved by choosing vk = ui + iuj and

wk = 1
2(a− λ)(ui − iuj).

“>”: It remains to show that ℓ cannot be chosen smaller than ℓ0. Thus, let (1) be a decomposition
of E(λ) into rank-1-pencils with some ℓ < ℓ0. By Remark 4, the columns of the matrix

[
U V

]
with

U =
[
u1 . . . uℓ

]
and V =

[
v1 . . . vs

]
are linearly independent. Thus, let X ∈ C

n×(n−s−ℓ) be such

that
[
X U V

]
is invertible and set P :=

[
X U V

]−1
. Then we obtain

PE(λ)P ∗ =




n−s−ℓ ℓ s

n−s−ℓ 0 0 S∗
A + λS∗

B

ℓ 0 DA + λDB ∗

s SA + λSB ∗ ∗


,

where SA+λSB are the first n− s− ℓ columns of (W ∗
A+λW ∗

B)P
∗, and where DA, DB ,WA,WB are as

in Remark 2. In particular, all eigenvalues of DA + λDB are real and semisimple, because the pencil
DA+λDB is diagonal. Furthermore, we can assume that if DA+λDB has a multiple eigenvalue, say
µ, then all signs in the sign characteristic of DA + λDB associated with µ are equal. Otherwise, we
may use the trick from the part “6” to get a decomposition of the form (1) with an even smaller ℓ.

Note that SA+λSB must be of full normal rank s, because otherwise the pencil E(λ) would have
less than r = s+ ℓ+ s linearly independent columns. Thus, in particular SA − ηSB has rank s for all
values η ∈ C that are not eigenvalues of E(λ). This implies that the only eigenvalues of E(λ) are the
eigenvalues of DA+λDB . Moreover, if we denote the eigenvalues of E(λ) by µ1, . . . , µd, with respective

algebraic multiplicities m1, . . . ,md, then we have ℓ =
∑d

j=1mj. Now, it suffices to prove that mj =
| sigsum(E,µj)|, for j = 1, . . . , d. This will prove that ℓ = ℓ0, a contradiction to the assumption ℓ < ℓ0.
So let µ be one of the eigenvalues of DA + λDB , i.e., µ is real (or infinite). Suppose first that µ ∈ R.
Then for sufficiently small ε > 0, we have that no λ̂ ∈ [µ − ε, µ + ε] \ {µ} is an eigenvalue of E(λ).
Consequently, for all such λ̂, there exist a nonsingular matrix M ∈ C

(n−s−ℓ)×(n−s−ℓ) (depending on
λ̂) such that

(SA + λ̂SB)M =
[ n−r s

s 0 S
]
,

where S ∈ C
s×s is invertible (and also depends on λ̂). But this implies that



M∗ 0 0
0 I 0
0 0 I


PE(λ̂)P ∗



M 0 0
0 I 0
0 0 I


 =




n−r s ℓ s

n−r 0 0 0 0
s 0 0 0 S∗

ℓ 0 0 DA + λ̂DB ∗

s 0 S ∗ ∗


,

and due to the nonsingularity of S, we can easily read off the inertia index from the Hermitian matrix
E(λ̂). If ind(H) = (ν+, ν−, ν0) denotes the inertia index of a given Hermitian matrix H, i.e., ν+, ν−,
and ν0 are the numbers of positive, negative, and zero eigenvalues of H (counted with multiplicities),
respectively, then we easily obtain (see also [27, Lemma 6]) that

ind
(
E(λ̂)

)
= (s, s, n− r) + ind(DA + λ̂DB),
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where the sum of triples is taken componentwise. Assume that ind(DA + µDB) = (d+, d−,m), i.e.,
m is the algebraic multiplicity of the eigenvalue µ of DA + µDB . Then it follows that

ind
(
E(µ− ε)

)
= (s+ d+, s+ d− +m,n− r) and ind

(
E(µ+ ε)

)
= (s+ d+ +m, s+ d−, n− r)

if the sign of µ in the sign characteristic of DA+λDB is positive (recall that all signs associated with
µ in the sign characteristic of DA + λDB are equal), or

ind
(
E(µ− ε)

)
= (s+ d+ +m, s+ d−, n− r) and ind

(
E(µ+ ε)

)
= (s+ d+, s+ d− +m,n− r)

if the sign of µ in the sign characteristic of DA + λDB is negative. Similarly, checking the change of
inertia index of E(λ̂) based on its Hermitian canonical form, a straightforward computation shows
that the number of positive or negative eigenvalues change by the number sigsum(µ) when λ̂ passes
from µ− ε to µ+ ε. This shows that we must have m = | sigsum(µ)|.

Finally, assume that µ = ∞ is an eigenvalue of DA + λDB with algebraic multiplicity m. If η > 0
is sufficiently large such that all finite eigenvalues of E(λ) are contained in the interval ]− η, η[, then
a similar comparison of the inertia indices of E(η) and E(−η) reveals that the algebraic multiplicity
of ∞ as an eigenvalue of DA + λDB must be | sigsum(∞)|.

3.2 Rank-1 decomposition for other structures

Next, we consider a decomposition analogous to (1) for the other structures mentioned at the begin-
ning of this section. For most of these decompositions, observations similar to the ones in Remark 2–4
can be made, but for the sake of brevity we refrain from stating them explicitly.

Theorem 4 (Rank-1 decomposition for symmetric pencils). If E(λ) is a symmetric n×n matrix pencil

with rankE = r 6 n, then it can be written as

E(λ) = (a1 + λb1)u1u
⊤
1 + · · ·+ (aℓ + λbℓ)uℓu

⊤
ℓ + v1w

⊤
1 + · · ·+ vsw

⊤
s + w1v

⊤
1 + · · ·+ wsv

⊤
s , (5)

where ai, bi ∈ C, for i = 1, . . . , ℓ, and

(i) ℓ+ 2s = r,

(ii) deg u1 = · · · = deg uℓ = 0 = deg v1 = · · · = deg vs and degw1, . . . ,degws 6 1.

Proof The proof is similar to the one of Theorem 2 using the canonical form for complex symmetric
pencils [4, Theorem 2.17]. The only difference with the Hermitian case is that in the symmetric case
complex eigenvalues are not necessarily paired up by conjugation, so terms of the form (a+ λb)vv⊤

may come also from odd blocks associated with complex eigenvalues.

Remark 5 The minimal value of ℓ is achieved when all eigenvalues of the pencil

DA + λDB := diag(a1, . . . , aℓ) + λdiag(b1, . . . , bℓ),

as in Remark 2, have algebraic multiplicity equal to 1. If the multiplicity is larger than 1 for some
eigenvalue which is given, say, by the ith and jth diagonal entries a + λb and c(a+ λb), with some
c ∈ C \ {0}, then with a similar trick as in the proof of Theorem 3 two summands of the form
(a + λb)uiu

⊤
i + (ca + λcb)uju

⊤
j can be replaced by two summands of the form vkw

⊤
k + wkv

⊤
k by

choosing vk = 1
2(ui + iduj) and wk = a(ui − iduj) + λb(ui − iduj), where d ∈ C is a square root of c,

i.e., d2 = c. On the other hand, each eigenvalue of E(λ) with odd algebraic multiplicity must occur
in one of the summands (a + λb)uiu

⊤
i . Indeed, similar to Remark 4 we can show that the vectors

u1, . . . , uℓ, v1, . . . , vs are linearly independent and with an argument similar to the one in the proof
of Theorem 3, we can show that E(λ) is congruent to a pencil of the form




n−s−ℓ ℓ s

n−s−ℓ 0 0 S⊤
A + λS⊤

B

ℓ 0 DA + λDB ∗

s SA + λSB ∗ ∗


,
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which shows that any eigenvalue that is not an eigenvalue of DA + λDB must have even algebraic
multiplicity being an eigenvalue of both SA + λSB and S⊤

A + λS⊤
B . Thus, we have just shown that

the minimal value of ℓ is equal to the number of pairwise distinct eigenvalues of E(λ) that have odd
algebraic multiplicity.

We highlight in passing that in the case of complex symmetric matrices and other structures that
are based on the transpose rather than the Hermitian transpose no sign characteristic is involved.

Theorem 5 (Rank-1 decomposition for skew-symmetric pencils). If E(λ) is a skew-symmetric n× n

matrix pencil with rankE = r 6 n, then r is even and E(λ) can be written as

E(λ) = v1w
⊤
1 + · · ·+ vsw

⊤
s − w1v

⊤
1 − · · · − wsv

⊤
s , (6)

where s = r
2 , deg v1 = · · · = deg vs = 0, and degw1, . . . ,degws 6 1.

Proof The proof follows the same steps as the proof of Theorem 2. All blocks in the skew-symmetric
canonical form are paired up (see [4, Theorem 2.18]). More precisely, the blocks in this canonical
form are of three different kinds, namely: (a) pairs of k × k blocks associated with the eigenvalue
∞, (b) pairs of k × k blocks associated with a complex eigenvalue, and (c) pairs of a k × (k + 1)
right singular and a (k + 1)× k left singular block. Then, following the proof of Theorem 2, we can
decompose any of these blocks as a sum of rank-1 pencils as in (6).

Theorem 6 (Rank-1 decomposition for ⊤-even pencils). If E(λ) is a ⊤-even n× n matrix pencil with

rankE = r 6 n, then it can be written as

E(λ) =

{
v1w1(λ)

⊤ + · · ·+ vsws(λ)
⊤ + w1(−λ)v

⊤
1 + · · ·+ ws(−λ)v

⊤
s , if r is even,

uu⊤ + v1w1(λ)
⊤ + · · ·+ vsws(λ)

⊤ + w1(−λ)v
⊤
1 + · · ·+ ws(−λ)v

⊤
s , if r is odd,

(7)

where s = ⌊r/2⌋, deg u = deg v1 = · · · = deg vs = 0 and degw1, . . . ,degws 6 1.

Proof We proceed in a similar way as in the proof of Theorem 2 using the canonical form for ⊤-even
pencils [4, Theorem 2.16]. Again, we may assume the ⊤-even pencil L(λ) is given in canonical form.
Then, it is a direct sum of blocks of six kinds, namely: (a) (2k + 1) × (2k + 1) blocks associated
with the eigenvalue ∞, (b) pairs of (2ℓ)× (2ℓ) blocks associated with the eigenvalue ∞, (c) pairs of
(2m+ 1)× (2m+ 1) blocks associated with the eigenvalue 0, (d) (2p)× (2p) blocks associated with
the eigenvalue 0, (e) pairs of q× q blocks corresponding to a pair of eigenvalues µ,−µ ∈ C \ {0}, and
(f) pairs of a right and a left singular block of size (r + 1) × r and r × (r + 1), respectively. Blocks
of type (d) can be written as a sum of two rank-1 pencils of the form vw⊤ + wv⊤ using the same
decomposition as in the proof of Theorem 2. Similarly, paired blocks of types (b)–(c) and (e)–(f) can
be written as a sum of paired rank-1 pencils vw⊤ + wv⊤ using a combined row-column expansion.
For instance, a pair of blocks of type (e) has the form




µ+ λ

. .
.

1

µ+ λ . .
.

µ+ λ 1

µ− λ

µ− λ 1

. .
.
. .
.

µ− λ 1




(2q)×(2q)

and can be decomposed into a sum v1w1(λ)
⊤ + · · ·+ vqwq(λ)

⊤ + w1(−λ)v
⊤
1 + · · ·+ wq(−λ)v

⊤
q of 2q

rank-1 pencils with vi = e2q−i+1, for i = 1, . . . , q, and wi(λ) being, up to the sign, the (2q − i+ 1)th

column of the whole matrix pencil, namely wi(λ) =
[
0i−1 µ−λ 1 02q−i−1

]⊤
for i = 1, . . . , q − 1, and
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wq(λ) =
[
0q−1 µ−λ 0q

]⊤
. Blocks of type (a), however, will need one extra term of the form uu⊤. To

be more precise, the (2k+ 1)× (2k+ 1) block associated with ∞ having the form




1

. .
.
λ

1 . .
.

1 λ

. .
.
−λ

1 . .
.

1 −λ




(2k+1)×(2k+1)

can be decomposed as uu⊤ + v1w1(λ)
⊤ + · · · + vkwk(λ)

⊤ + w1(−λ)v
⊤
1 + · · · + wk(−λ)v

⊤
k , where

u = ek, vi = e2k−i+2 for i = 1, . . . , k, and where for i = 1, . . . , k, wi(λ)
⊤ is the (2k − i+ 2)th row of

the matrix pencil, namely wi(λ) =
[
01×(i−1) 1 −λ 01×(2k−i)

]⊤
.

The previous arguments show that E(λ) can be written as

E(λ) = u1u
⊤
1 + · · ·+ uℓu

⊤
ℓ + v1w1(λ)

⊤ + · · ·+ vsws(λ)⊤

+w1(−λ)v
⊤
1 + · · ·+ ws(−λ)v⊤s ,

(8)

with ℓ + 2s = r, and deg u1 = . . . = deg uℓ = deg v1 = . . . = deg vs = 0. It remains to prove that,
given two vectors u1, u2 ∈ C

n, there exist another two vectors v, w, with deg v = 0, such that

u1u
⊤
1 + u2u

⊤
2 = vw⊤ + wv⊤. (9)

Note that, if this is true, then we can group an even number of summands of the form uu⊤ in (8) to
get a decomposition like in (7).

To get the expression (9), just set v = u1 + iu2 and w = 1
2(u1 − iu2).

Theorem 7 (Rank-1 decomposition for ⊤-odd pencils). If E(λ) is a ⊤-odd n × n matrix pencil with

rankE = r 6 n, then it can be written as

E(λ) =

{
v1w1(λ)

⊤ + · · ·+ vsws(λ)
⊤ − w1(−λ)v

⊤
1 − · · · −ws(−λ)v

⊤
s , if r is even,

λuu⊤ + v1w1(λ)
⊤ + · · ·+ vsws(λ)⊤ − w1(−λ)v

⊤
1 − · · · − ws(−λ)v⊤s , if r is odd,

(10)

where s = ⌊r/2⌋, deg u = deg v1 = · · · = deg vs = 0 and degw1, . . . ,degws 6 1.

Proof The result follows from Theorem 6 applied to the reversal of E(λ) and using Remark 1.

The following decomposition for low-rank ⊤-palindromic pencils has been presented in the recent
reference [8, Th. 3.1]. For completeness, we provide a different proof based on Theorem 2.

Theorem 8 (Rank-1 decomposition for ⊤-palindromic pencils). If E(λ) is a ⊤-palindromic n × n

matrix pencil with rankE = r 6 n, then it can be written as

E(λ) =

{
v1w

⊤
1 + · · ·+ vsw

⊤
s + (revw1)v

⊤
1 + · · ·+ (revws)v

⊤
s , if r is even,

(1 + λ)uu⊤ + v1w
⊤
1 + · · ·+ vsw

⊤
s + (revw1)v

⊤
1 + · · ·+ (revws)v⊤s , if r is odd,

(11)

where s = ⌊r/2⌋, deg u = deg v1 = · · · = deg vs = 0 and degw1, . . . ,degws 6 1.

Proof The result follows from Theorem 2 using Cayley transformations. More precisely, let C−1 and
C+1 be the Cayley transformations of a given matrix pencil P (λ) defined as

C−1(P )(λ) = (1 + λ)P

(
λ− 1

1 + λ

)
and C+1(P )(λ) = (1− λ)P

(
1 + λ

1− λ

)
. (12)
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It is known that, if E(λ) is ⊤-palindromic, then C+1(E) is ⊤-even [26, Theorem 2.7]. It is clear, by
definition, that both C−1 and C+1 preserve the rank. Then C+1(E) is ⊤-even with rank C+1(E) = r,
so it admits a decomposition like (7). We will focus on the case when r is odd, because the case
when r is even is analogous. Using that C−1(C+1(P ))(λ) = 2P (λ) for any matrix pencil P (λ), see [26,
Proposition 2.5], it follows that

2E(λ) = C−1

(
uu⊤ +

∑s
j=1

(
vjwj(λ)

⊤ + wj(−λ)v
⊤
j

))

= (1 + λ)uu⊤ +
∑s

j=1 vj

(
(1 + λ)wj

(
λ−1
1+λ

))⊤
+

∑s
j=1

(
(1 + λ)wj

(
1−λ
1+λ

))
v⊤j ,

where s = (r − 1)/2. Now, the result follows from the identity

rev

(
(1 + λ)w

(
λ− 1

1 + λ

))
= λ

(
1 +

1

λ

)
w

( 1
λ − 1

1 + 1
λ

)
= (1 + λ)w

(
1− λ

1 + λ

)
. (13)

Using again appropriate Cayley transformations and the decomposition for ⊤-even matrix pencils
in Theorem 6 we can also get a rank-1 decomposition for ⋆-anti-palindromic pencils.

Theorem 9 (Rank-1 decomposition for ⊤-anti-palindromic pencils). If E(λ) is a ⊤-anti-palindromic

n× n matrix pencil with rankE = r 6 n, then it can be written as

E(λ) =

{
v1w

⊤
1 + · · ·+ vsw

⊤
s − (revw1)v

⊤
1 − · · · − (revws)v⊤s , if r is even,

(1− λ)uu⊤ + v1w
⊤
1 + · · ·+ vsw

⊤
s − (revw1)v

⊤
1 − · · · − (revws)v

⊤
s , if r is odd,

(14)

where s = ⌊r/2⌋ = 0, deg v1 = · · · = deg vs = 0, and degw1, . . . ,degws 6 1.

Proof The proof is similar to the one of Theorem 8, but first considering C−1(E), which is ⊤-even [26,
Th. 2.7], and then applying C+1 to get C+1(C−1(E)) = 2E. The differences between (14) and (11)
come from the identities

C+1(uu
⊤) = (1− λ)uu⊤,

C+1(vw(λ)
⊤) = v

(
(1− λ)w

(
1+λ
1−λ

))⊤
, C+1(w(−λ)v

⊤) = (1− λ)w
(

1+λ
λ−1

)
v⊤,

and

rev

(
(1− λ)w

(
1 + λ

1− λ

))
= λ

(
1−

1

λ

)
w

(
1 + 1

λ

1− 1
λ

)
= −(1− λ)w

(
1 + λ

λ− 1

)
.

We highlight that the parameter ℓ in the decomposition r = ℓ+ 2s takes the minimal value zero
or one in the decompositions in Theorem 5–9. This is in contrast with Theorem 2 and Theorem 4,
where the minimal value for ℓ can be as large as r, for example if the pencil E(λ) does only have
simple eigenvalues in the symmetric case, or only simple real eigenvalues in the Hermitian case.

The rank-1 decompositions for skew-Hermitian, ∗-even, and ∗-odd pencils can be directly obtained
from the decomposition in the Hermitian case, by means of the following observation (see [4, page
80]):

– If A+ λB is skew-Hermitian then i(A+ λB) is Hermitian.
– If A+ λB is ∗-even then A+ λ(iB) is Hermitian.
– A+ λB is ∗-odd if and only if B + λA is ∗-even.

For completeness, we explicitly state these decompositions in a similar way as we have done for the
previous structures.

Theorem 10 (Rank-1 decomposition for skew-Hermitian pencils). If E(λ) is a skew-Hermitian n× n

matrix pencil with rankE = r 6 n, then it can be written as

E(λ) = i(a1 + λb1)u1u
∗
1 + · · ·+ i(aℓ + λbℓ)uℓu

∗
ℓ + v1w

∗
1 + · · ·+ vsw

∗
s − w1v

∗
1 − · · · −wsv

∗
s , (15)

where ai, bi ∈ R, for i = 1, . . . , ℓ, and
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(i) ℓ+ 2s = r,

(ii) deg u1 = · · · = deg uℓ = 0 = deg v1 = · · · = deg vs and degw1, . . . ,degws 6 1.

Theorem 11 (Rank-1 decomposition for ∗-even pencils). If E(λ) is a ∗-even n× n matrix pencil with

rankE = r 6 n, then it can be written as

E(λ) = (a1 + λ(b1i))u1u
∗
1 + · · ·+ (aℓ + λ(bℓi))uℓu

∗
ℓ

+v1w1(λ)
∗ + · · ·+ vsws(λ)

∗ + w1(−λ)v
∗
1 + · · ·+ ws(−λ)v

∗
s ,

(16)

where ai, bi ∈ R, for i = 1, . . . , ℓ, and

(i) ℓ+ 2s = r,

(ii) deg u1 = · · · = deg uℓ = 0 = deg v1 = · · · = deg vs and degw1, . . . ,degws 6 1.

Theorem 12 (Rank-1 decomposition for ∗-odd pencils). If E(λ) is a ∗-odd n × n matrix pencil with

rankE = r 6 n, then it can be written as

E(λ) = (a1i+ λb1)u1u
∗
1 + · · ·+ (aℓi+ λbℓ)uℓu

∗
ℓ

+v1w1(λ)
∗ + · · ·+ vsws(λ)

∗ − w1(−λ)v
∗
1 − · · · − ws(−λ)v

∗
s ,

(17)

where ai, bi ∈ R, for i = 1, . . . , ℓ, and

(i) ℓ+ 2s = r,

(ii) deg u1 = · · · = deg uℓ = 0 = deg v1 = · · · = deg vs and degw1, . . . ,degws 6 1.

The decomposition in (15) follows from (1) after multiplying by i and using that, for any pair of
vectors u, v ∈ C[λ]n, we can write i(uw∗+wv∗) = (iv)w∗−w(iv)∗ = ṽw∗−wṽ∗, with ṽ = iv. Similarly,
the expression (16) follows from (1) applied to E(iλ) and then multiplying the leading coefficient in
the decomposition by −i. Note that, if A+λ(iB) = vw(λ)∗+w(λ)v∗ = v(w∗

0+λw
∗
1)+(w0+λw1)v

∗ (with
v ∈ C

n and w(λ) = w0 + λw1, w0, w1 ∈ C
n), then, multiplying the leading coefficient by −i, we get

A+λB = v(w∗
0−iλw∗

1)+(w0−iλw1)v
∗ = v(w∗

0+λ(iw1)
∗)+(w0−λ(iw1))v

∗ = vw(λ)∗+w(−λ)v∗. Finally,
the decomposition (17) follows from (16) applied to revE(λ) and then applying the reversal to the
decomposition in the right-hand side. Note that, if λA+B = vw̃(λ)∗+w̃(−λ)v∗ = v(w∗

0+λw
∗
1)+(w0−

λw1)v
∗ (with v ∈ C

n and w̃(λ) = w0+λw1, w0, w1 ∈ C
n), then A+λB = v(w∗

1+λw
∗
0)−(w1−λw0)v

∗ =
vw(λ)∗ − w(−λ)v∗, where w(λ) = rev w̃(λ).

As for the ∗-palindromic structure, the decomposition follows from (16) using appropriate Cayley
transforms, like for the ⊤-palindromic structure.

Theorem 13 (Rank-1 decomposition for ∗-palindromic pencils). If E is a ∗-palindromic n× n matrix

pencil with rankE = r 6 n, then it can be written as

E(λ) =
(
(a1 − b1i) + λ(a1 + b1i)

)
u1u

∗
1 + · · ·+

(
(aℓ − bℓi) + λ(aℓ + bℓi)

)
uℓu

∗
ℓ

+v1w
∗
1 + · · ·+ vsw

∗
s + (revw1)v

∗
1 + · · ·+ (revws)v

∗
s ,

(18)

where ai, bi ∈ R, for i = 1, . . . , ℓ, and

(i) ℓ+ 2s = r,

(ii) deg u1 = · · · = deg uℓ = 0 = deg v1 = · · · = deg vs and degw1, . . . ,degws 6 1.

Proof The proof is similar to the one of Theorem 8, but we include it here to illustrate where the
difference in the first ℓ summands comes from. In particular, if E(λ) is ∗-palindromic as in the
statement, then C+1(E) is ∗-even [26, Theorem 2.7]. Therefore, it admits a decomposition like (16).
Now

2E(λ) = C−1

(
C+1(E)

)
= C−1

(∑ℓ
i=1

(
ai + λ(bii)

)
uiu

∗
i

)
+ C−1

(∑s
j=1

(
vjwj(λ)

∗ + wj(−λ)v
∗
j

))

=
∑ℓ

i=1

(
(ai − bii) + λ(ai + bii)

)
uiu

∗
i +

∑s
j=1

(
vjw

∗
j + (revwj)v

∗
j

)
,

where, for the first sum, we have used that

C−1

(
(a+ λ(bi))uu∗

)
= (1 + λ)

(
a+

λ− 1

1 + λ
bi

)
uu∗ =

(
(a− bi) + λ(a+ bi)

)
uu∗,

and, for the second sum, we have followed exactly the same steps as in the proof of Theorem 8, just
replacing ⊤ by ∗.
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Note that the first ℓ summands in the right-hand side of (18) come from eigenvalues of E(λ) which
lie on the unit circle. Moreover, any complex value on the unit circle can be identified as a root of a
linear polynomial of the form (a− bi) + λ(a+ bi).

Theorem 14 (Rank-1 decomposition for ∗-anti-palindromic pencils). If E(λ) is a ∗-anti–palindromic

n× n matrix pencil with rankE = r 6 n, then it can be written as

E(λ) = ((a1 + b1i) + λ(−a1 + b1i))u1u
∗
1 + · · ·+ ((aℓ + bℓi) + λ(−aℓ + bℓi))uℓu

∗
ℓ

+v1w
∗
1 + · · ·+ vsw

∗
s − (revw1)v

∗
1 − · · · − (revws)v

∗
s ,

(19)

where ai, bi ∈ R, for i = 1, . . . , ℓ, and

(i) ℓ+ 2s = r,

(ii) deg u1 = . . . = deg uℓ = 0 = deg v1 = . . . = deg vs and degw1, . . . ,degws 6 1.

Proof The proof follows the same steps as the proof of Theorem 9.

Concerning minimality of the parameter ℓ, there is a characterization analogous to the one in The-
orem 3 involving the signsum of real eigenvalues in the case of skew-Hermitian pencils, of purely
imaginary eigenvalues in the case of ∗-even and ∗-odd pencils, or unimodular eigenvalues in the case
of ∗-palindromic or ∗-anti-palindromic pencils. We refrain from explicitly stating these characteriza-
tions.

4 Structure-preserving low-rank perturbations

In this section, we will develop our main results on the change of the partial multiplicities of eigen-
values of matrix pencils with symmetry structure under generic structure-preserving low-rank per-
turbations. For this, we follow the approach in [11]. More precisely, let Sr be the set of matrix pencils
with structure S and with rank at most r, where S is any of the structures mentioned in Section 3,
let L(λ) be a regular pencil (with structure S) and let λ0 be an eigenvalue of L(λ) (finite or infinite).
The procedure then consists of two main steps:

Step 1. Obtain a (polynomial) parameterization of Sr.
Step 2. Prove that, for a generic set of parameters, all pencils E(λ) ∈ Sr obtained from the
previous parameterization are such that the partial multiplicities of (L+E)(λ) at λ0 are the ones
described in the main results (given in Section 4.4).

Step 1 is addressed in Section 4.3, and Step 2 is addressed in Section 4.4. For the realization of Step
2 we will need as a key ingredient a localization result that we develop in Section 4.1, where we will
also clarify the notion of genericity.

4.1 A localization result

Let F denote one of the fields R or C, we then use the following notion of genericity.

Definition 2 A generic set G of Fm is a subset of Fm whose complement is contained in a proper
algebraic set, i.e., G is nonempty and coincides with the complement of a set of common zeros of
finitely many polynomials in m variables.

We highlight that even though in this paper we only deal with the case of complex matrix pencils,
we have to use the concept of genericity with respect to the real numbers when symmetry structures
involving the conjugate transpose are considered, because complex conjugation is not a polynomial
map on C. This problem can be circumvented if we identify C

m with R
2m by considering the real and

imaginary parts of each component separately. In this context, complex conjugation is an R-linear
map and thus in particular polynomial.

We will need the following result, which is almost identical to [33, Lemma 3.1]. (The parameter
µ will be equal to 1 for most cases, which corresponds to simple eigenvalues. However, in the case of
skew-symmetric matrix pencils, considered in Theorem 21, we will apply the result with µ = 2.)
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Lemma 1 Let A ∈ C
n×n have the pairwise distinct eigenvalues λ1, . . . , λκ ∈ C with algebraic multiplici-

ties a1, . . . , aκ, and let ε > 0 be such that the discs

Dj :=
{
µ ∈ C : |λj − µ| < ε2/n

}
, j = 1, . . . , κ

are pairwise disjoint. Furthermore, let U ⊆ F
m be open and let C : U → C

n×n be an analytic function

with C(0) = A, such that the following conditions are satisfied:

1) For all x ∈ U , the algebraic multiplicity of any eigenvalue of C(u) is always a multiple of µ ∈ N \ {0}.
2) There exists a generic set G ⊆ F

m such that, for all x ∈ G ∩ U , the matrix C(x) has the eigenvalues

λ1, . . . , λκ with algebraic multiplicities ã1, . . . , ãκ, where ãj 6 aj for j = 1, . . . , κ. (Here, we allow

aj = 0 in the case that λj is no longer an eigenvalue of C(x).)
3) For each j = 1, . . . , κ there exists xj ∈ U with ‖xj‖ < ε such that the matrix C(xj) has exactly

(aj−ãj)/µ pairwise distinct eigenvalues in Dj different from λj and each one has algebraic multiplicity

exactly µ.

Then there exists ε′ > 0 and a set G0, open and dense in {x ∈ F
m | ‖x‖ < ε′}, with G0 ⊆ U , such that,

for all x ∈ G0, the pencil C(x) has exactly
∑κ

j=1
1
µ (aj − ãj) eigenvalues that are different from those of

A and each of these eigenvalues has algebraic multiplicity exactly µ.

Proof The proof is almost identical to the one of Lemma 3.1 in [33] and therefore omitted. (One just
has to replace R in [33] with F and remove the final paragraph on the proof which is not needed
here, because the statement of Lemma 1 has been adapted correspondingly.) �

The next result generalizes [33, Theorem 3.2] (which itself was an extension of [6, Theorem 2.6])
from the matrix to the pencil case and will be the main tool in Section 4.4.

Theorem 15 Let L(λ) = A+λB be a regular complex n×n matrix pencil and let λ1, ..., λκ be its pairwise

distinct eigenvalues (finite or infinite) with geometric multiplicities gi, nonzero partial multiplicities ni,1 >

ni,2 > · · · > ni,gi > 0, and algebraic multiplicities

ai =

gi∑

j=1

ni,j ,

for i = 1, . . . , κ, respectively. Let Φ : Fm → C
n×n × C

n×n be a polynomial map and, for x ∈ F
m, let

us identify Φ(x) = (ΦA(x), ΦB(x)) with the pencil ΦA(x) + λΦB(x). Furthermore, assume that, for all

x ∈ F
m, we have

(i) Φ(0) = (0,0);
(ii) rankΦ(x) 6 r;

(iii) if L+Φ(x) is regular, then the algebraic multiplicity of any eigenvalue of L+Φ(x) is always a multiple

of some µ ∈ N \ {0}.

Then the following statements hold:

(1) If x ∈ F
m is such that L+Φ(x) is regular and if ηi,1 > · · · > ηg̃i are the partial multiplicities associated

with λi as an eigenvalue of L+Φ(x), for i = 1, . . . , κ (here we allow g̃i = 0 if λi is not an eigenvalue of

L+Φ(x)), then the list (ηi,1, . . . , ηi,g̃i ) dominates the list (ni,r+1, . . . , ni,gi), i.e., we have g̃i > gi − r

and ηi,j > ni,j+r , for j = 1, . . . , gi − r and i = 1, . . . , κ.
(2) Assume that, for all x ∈ F

m for which L + Φ(x) is regular, we have that, for each i = 1, . . . , κ, the

algebraic multiplicity a
(x)
i of λi as an eigenvalue of L + Φ(x) satisfies a

(x)
i > ãi, for some ãi ∈ N.

If, for any ε > 0 and each i = 1, . . . , κ, there exists x0,i ∈ F
m with ‖x0,i‖ < ε such that L+ Φ(x0,i)

is regular, a
(x0,i)
i = ãi, and all eigenvalues of L + Φ(x0,i) that are different from those of L have

multiplicity precisely µ, then there exists a generic set G ⊆ F
m such that, for all x ∈ G, the following

conditions are satisfied:

(a) the pencil L+ Φ(x) is regular;

(b) a
(x)
i = ãi for all i = 1, . . . , κ;
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(c) all eigenvalues of L+ Φ(x) which are different from those of L have multiplicity precisely µ.

If, in addition, we have ãi = ni,r+1+ · · ·+ni,gi for some i ∈ {1, . . . , κ}, then the partial multiplicities

of λi as an eigenvalue of L+ Φ(x) are precisely ni,r+1, . . . , ni,gi for all x ∈ G.

Proof In order to introduce the dependence on λ in the pencil Φ(x), we denote Φx(λ) := Φ(x) along
the proof. First of all, we may assume that ∞ is not an eigenvalue of L(λ). Otherwise, consider
instead the pencil L̂(λ) = A + λ

(
αA + B

)
, for some α ∈ ]0,1[ such that ∞ is not an eigenvalue

of L̂(λ). Note that this transformation only changes the eigenvalues, but not their corresponding
multiplicities and their behavior under perturbation when the perturbation pencil is adapted to
Φ̂x(λ) = ΦA(x) + λ

(
αΦA(x) + ΦB(x)

)
.

Part (1) is a direct consequence of [12, Lemma 2.1] using the fact that the rank of Φx(λ) is at
most r, for any x ∈ F

m.
For part (2), we first show that the set

Greg = {x ∈ F
m | (L+ Φx)(λ) is regular}

is a generic set. To see this, let z ∈ C be a value which is not an eigenvalue of L(λ). Then p(x) :=
det

(
(L+Φx)(z)

)
is a polynomial in the entries of x that is not the zero polynomial. The set of pencils

for which L + Φx is singular is then contained in the set of pencils for which p(x) = 0, which by
definition is an algebraic set. Therefore, Greg is generic.

Next, let Yi(x) be the matrix Yi(x) =
(
(L+Φx)(λi)

)n
. Then, by assumption, we have rankYi(x0,i) =

n− ãi, for some x0,i ∈ F
m, and it follows from [28, Lemma 2.1] that the set

Gi := {x ∈ F
m | rankYi(x) > n− ãi}

is a generic set, for i = 1, . . . , κ. On the set Gi ∩Greg the condition rankYi(x) > n− ãi is equivalent to

a
(x)
i 6 ãi, and since, by assumption, the reverse inequality a

(x)
i > ãi holds for all x ∈ Greg, it follows

that we have a(x)i = ãi for all x ∈ Gi ∩ Greg. Thus, setting G̃ := Greg ∩ G1 ∩ · · · ∩ Gκ, we find that G̃ is

generic, as being the intersection of finitely many generic sets, and for all x ∈ G̃ the conditions (a)
and (b) are satisfied.

Finally, let χx(λ) denote the characteristic polynomial of (L+Φx)(λ). Then the number of distinct
roots of χx is given by

rankS

(
χx,

∂χx
∂λ

)
− n+ 1,

where S(p1, p2) denotes the Sylvester resultant matrix (see, for instance [2, p. 290]) of the two
polynomials p1(λ), p2(λ). (Recall that S(p1, p2) is a square matrix of size deg (p1) + deg (p2) and
that the rank deficiency of S(p1, p2) coincides with the degree of the greatest common divisor of the
polynomials p1(λ) and p2(λ).) Therefore, the set G of all x ∈ G̃ on which the number of distinct
roots of χ(x) is maximal, is a generic set. (Again this uses [28, Lemma 2.1], which states that the set
where a matrix depending on x ∈ C

m has maximal rank is a generic set.) If we can show that this
maximal number is equal to κ+

∑κ
i=1

1
µ (ai − ãi), then clearly (a)–(c) are satisfied for all x ∈ G. To

this end, observe that P as a polynomial is an analytic function and that, by assumption, x0,i can
be chosen to be of arbitrarily small norm. Furthermore, for ε0 > 0 sufficiently small, the continuity
of P guarantees that, for all x ∈ C

m with ‖x‖ 6 ε0, the perturbed pencil (L+ Φx)(λ) is regular and
does not have ∞ as an eigenvalue. But then B + ΦB is invertible and we can apply Lemma 1 to the
matrix (B + ΦB)−1(A + ΦA) using the fact that matrix inversion is an analytic function to prove
that the maximal number of distinct roots of χx is as desired.

The additional part follows from the fact that the only list of partial multiplicities that both

dominates (ni,r+1, . . . , ni,g) and has a
(x)
i = ni,r+1 + · · ·+ ni,gi is the list (ni,r+1, . . . , ni,g). �

The key consequence of Theorem 15 is the following: If we want to show that a pencil has
a particular behavior under perturbations, it is now enough to consider the pencil locally in the
following sense: it is sufficient to focus on a single eigenvalue and construct examples of perturbations
that provide the desired behavior for that particular eigenvalue. We will use this strategy exhaustively
in the following subsections.
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4.2 Revisiting the unstructured case

In this subsection, we will briefly revisit the case of general matrix pencils (possibly without additional
symmetry structures) and discuss their parameterizations from [11]. This will not only give us an
idea on how we can extend this procedure to the case of structured pencils, but also allows us
to strengthen the main result in [11], which only considered the generic change in the Weierstraß
structure of regular matrix pencils under low-rank perturbations, but did not discuss the multiplicity
of newly generated eigenvalues.

As in [11], let us pick an integer r 6 n and let us define for each s = 0,1, . . . , r the set

Cs :=




v1(λ)w1(λ)

⊤ + · · ·+ vr(λ)wr(λ)
⊤

∣∣∣∣∣∣∣∣

v1, . . . , vr, w1, . . . , wr ∈ C[λ]n,
deg vi,degwi 6 1, for j = 1, . . . , r,

deg v1 = · · · = deg vs = 0,
degws+1 = · · · = degwr = 0





.

Then using [9, Lemma 2.8] it was shown in [11, Lemma 3.1] that

Pr = C0 ∪ C1 ∪ · · · ∪ Cr, (20)

where Pr denotes the set of n× n matrix pencils with rank at most r.

Remark 6 It is important to note that the union in (20) is not a partition, as the sets C0,C1, . . . ,Cr

are not disjoint. In particular, if A ∈ C
n×n is a matrix of rank r, then the pencil A = A + λ0 is

contained in each Cs for s = 0, . . . , r.

Definition 3 (Parameterization of the set of pencils with rank at most r). Let r ∈ N. For each s =

0, 1, . . . , r we define the map Φs : C3rn −→ Cs as follows: for x ∈ C
3rn decomposed as x =

[
α β γ δ

]⊤
with

α =
[
α11 · · · αn1 · · · α1r · · · αnr

]
∈ C

1×rn,

β =
[
β1,s+1 · · · βn,s+1 · · · β1r · · · βnr

]
∈ C

1×(r−s)n,

γ =
[
γ11 · · · γn1 · · · γ1r · · · γnr

]
∈ C

1×rn,

δ =
[
δ11 · · · δn1 · · · δ1s · · · δns

]
∈ C

1×sn,

we set

Φs(x) = v1(λ)w1(λ)
⊤ + · · ·+ vr(λ)wr(λ)

⊤,

where v1, . . . , vr, w1, . . . , wr are defined via

vi =
[
α1i · · · αni

]⊤
, for i = 1, . . . , s,

vj =
[
α1j + λβ1j · · · αnj + λβnj

]⊤
, for j = s+ 1, . . . , r,

wi =
[
γ1i + λδ1i · · · γni + λδni

]⊤
, for i = 1, . . . , s,

wj =
[
γ1j · · · γnj

]⊤
, for j = s+ 1, . . . , r.

With this preparation, we are able to prove the following result, which extends the main result
from [11] by adding a statement on the simplicity of newly generated eigenvalues.

Theorem 16 (Generic change under low-rank perturbations of general regular matrix pencils). Let
L(λ) be a regular n × n matrix pencil and let λ1, . . . , λκ denote the pairwise distinct eigenvalues of L(λ)
having the partial multiplicities ni,1 > . . . > ni,gi > 0, for i = 1, . . . , κ, respectively. Furthermore, let r be

a positive integer, let 0 6 s 6 r, and let Φs be the map in Definition 3. Then, there exists a generic set Gs

in C
3rn such that for all E(λ) ∈ Φs(Gs), the perturbed pencil L+E is regular and the partial multiplicities

of L+ E at λi are given by ni,r+1 > · · · > ni,gi . (In particular, if r > gi then λi is not an eigenvalue of

L+ E.) Furthermore, all eigenvalues of L+ E that are different from those of L are simple.
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Proof By Theorem 15 it is sufficient to focus on a particular eigenvalue λi and construct one particular
example E = Φs(x) of a pencil such that the partial multiplicities of L + E are as claimed in the
theorem and such all eigenvalues that are different from those of L are simple. For the moment, let
us suppose that λi is finite and, for simplicity, let us write n1 > · · · > ng instead of ni,1 > . . . > ni,gi
for its partial multiplicities. Since genericity of sets is preserved under multiplication with invertible
matrices, we may assume, without loss of generality, that L is in WCF and has the form

L(λ) = diag
(
Jn1(λi − λ), . . . , Jng (λi − λ), L̃(λ)

)
,

where L̃(λ) consists of all the blocks associated with eigenvalues different from λi. As in the proof
of [11, Theorem 3.4], let Ek(ψ) be the k×k matrix that is zero everywhere except for the (k, 1)-entry
which takes the value ψ ∈ C. Then it is straightforward to check that the pencil Jm(λi −λ)+Em(ψ)
has determinant equal to χ(λ) = (λi − λ)m + (−1)m−1ψ, i.e., its eigenvalues lie on a circle centered

around λi with radius |ψ|
1
m . Thus, consider the n× n pencil

E(λ) = diag
(
En1(ψ1), . . . , Enr(ψr), 0).

Then E(λ) is a constant pencil of rank r and hence, by Remark 6, there exists x ∈ C
3rn such that

E(λ) = Φs(x). Moreover, we find that L + E has the partial multiplicities nr+1 > · · · > ng at λi.

Furthermore, having chosen the values ψ1, . . . , ψr ∈ C appropriately such that all radii |ψj |
1
nj are

pairwise distinct and smaller than the distance of λi to the spectrum of L̃(λ), we can guarantee
that all eigenvalues of L+ E that are different from those of L are simple. Finally, by also choosing
ψ1, . . . , ψr to be of sufficiently small modulus, we can guarantee that the norm of x is arbitrarily
small. This gives the desired example. For the case λi = ∞ consider the reversal of the pencil L(λ)
and apply the result for the already proved case λi = 0.

4.3 Parameterization of low-rank structured matrix pencils

In this subsection, we finally consider the generic change in the Weierstraß structure of structured
matrix pencils under structure-preserving low-rank perturbations. Following the procedure in [11],
we first look for a parameterization of the set of n×n structured matrix pencils with rank at most r,
for any of the structures considered in Section 3. Such a parameterization comes naturally from the
decomposition into a sum of rank-1 pencils provided in that section. More precisely, we decompose
the set of n × n structured matrix pencils as the union of subsets given by fixing the value of the
parameter s in Theorems 2, 4, 5–13, and 14. Again, we will use the Hermitian case as a model for
other structures. Thus, while the Hermitian case will be presented in full detail, we only give a brief
remark on how other structures have to be dealt with whenever this is necessary, with one exception:
we will add a bit more details in the case of ⊤-even pencils, because the effect of structure-preserving
low-rank perturbation needs a more detailed discussion for this structure and related ones. Thus,
the set of ⊤-even pencils will be a subordinate case.

For the Hermitian structure, the decomposition outlined in the previous paragraph is as follows.
For each 0 6 s 6 ⌊r/2⌋, let us define

C
H
s :=





(a1 + λb1)u1u
∗
1 + · · ·+ (aℓ + λbℓ)uℓu

∗
ℓ

+v1w
∗
1 + · · ·+ vsw

∗
s + w1v

∗
1 + · · ·+ wsv

∗
s

∣∣∣∣∣∣∣∣∣∣∣∣

ℓ = r − 2s,
u1, . . . , uℓ ∈ C

n,

v1, . . . , vs ∈ C
n,

w1, . . . , ws ∈ C[λ]n,
degwj 6 1, for j = 1, . . . , s,
ai, bi ∈ R, for i = 1, . . . , ℓ





.

Then, Theorem 2 states that
Hr = C

H
0 ∪ C

H
1 ∪ · · · ∪ C

H

⌊r/2⌋. (21)

We emphasize that, as in the general case without particular structure, the decomposition (21) is
not a partition, since the sets CH

i are not disjoint.
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The case of the structures Symr, SHr, Even
∗
r , Odd

∗
r , Pal

∗
r , and Apal

∗
r is similar and the decompo-

sition is obtained through the same number of subsets as in (21), using (5), (15), (16), (17), (18),
and (19), respectively, and replacing ∗ by ⊤ and allowing ai, bi ∈ C for the case Symr.

For the remaining structures SSymr, Even
⊤
r , Odd

⊤
r , Pal

⊤
r , and Apal⊤r , we also have to replace ∗

by ⊤ and allow ai, bi ∈ C. In addition, the decomposition of the set of structured matrices of rank r
consists of only one set, since the value of s is fixed by s = r/2 if r is even, or by s = (r− 1)/2 if r is
odd.

Next, we introduce a parameterization for the sets of n×n structured matrix pencils with rank at
most r by introducing a parameterization for each of the subsets that give rise to the decompositions
above.

Definition 4 (Parameterization of the set of Hermitian matrix pencils with rank at most r).
Let r ∈ N. For each s = 0, 1, . . . , ⌊r/2⌋ we define the map Φs : R2ℓ × C

(r+s)n −→ C
H
s with ℓ = r − 2s

as follows: For x ∈ C
(r+s)n decomposed as x =

[
α β γ δ

]⊤
with

α =
[
α11 · · · αn1 · · · α1ℓ · · · αnℓ

]
∈ C

1×ℓn,

β =
[
β11 · · · βn1 · · · β1s · · · βns

]
∈ C

1×sn,

γ =
[
γ11 · · · γn1 · · · γ1s · · · γns

]
∈ C

1×sn,

δ =
[
δ11 · · · δn1 · · · δ1s · · · δns

]
∈ C

1×sn,

we set

Φs

([
a1 b1 · · · aℓ bℓ

]⊤
, x

)

= (a1 + λb1)u1u
∗
1 + · · ·+ (aℓ + λbℓ)uℓu

∗
ℓ + v1w

∗
1 + · · ·+ vsw

∗
s + w1v

∗
1 + · · ·+ wsv

∗
s ,

where u1, . . . , uℓ, v1, . . . , vs, w1, . . . , ws are defined by

ui =
[
α1i · · · αni

]⊤
, for i = 1, . . . , ℓ,

vj =
[
β1j · · · βnj

]⊤
, for j = 1, . . . , s,

and wj =
[
γ1j + λδ1j · · · γnj + λδnj

]⊤
, for j = 1, . . . , s.

Remark 7 For the other structures, the parameterization is defined analogously. More precisely, let
Sr be the set of n × n matrix pencils with rank at most r having the structure S and assume
that Sr = C

S

i1 ∪ . . . ∪ C
S

ik is a decomposition into smaller subsets, where the number k depends
on the structure and on r. Then the parameterization of Sr is a tuple of continuous, surjective
maps Φs : Rps × C

ms −→ C
S
s, for s ∈ {i1, . . . , ik}, and where ps, ms depend on s. (In fact, these

parameterizations are not only continuous, but are polynomials either in the entries of x or in the
real and imaginary parts of the entries of x.)

For the Hermitian, skew-Hermitian, ∗-even, ∗-odd, ∗-palindromic, and ∗-anti-palindromic struc-
tures, we have k = ⌊r/2⌋ + 1, {i1, . . . , ik} = {0, 1, . . . , ⌊r/2⌋}, ps = 2(r − 2s), and ms = (r + s)n,
while for the symmetric structure, we have k = ⌊r/2⌋+1, {i1, . . . , ik} = {0, 1, . . . , ⌊r/2⌋}, ps = 0, and
ms = 2(r − 2s) + (r+ s)n.

In the remaining structures, we have k = 1, s = ⌊r/2⌋, ps = 0, and ms = ⌊3r/2⌋n. For example,
for the case of ⊤-even pencils, the map

Φ : C⌊ 3r
2
⌋n −→ Even⊤r (22)

is defined by Φ(x) = E(λ), with E(λ) as in (7), and where u, vj , wj , for j = 1, . . . , ⌊r/2⌋, are defined

as follows: if x ∈ C
⌊3r/2⌋n is decomposed as x =

[
α β γ δ

]⊤
, where

α =
[
α1 · · · αℓn

]
∈ C

1×ℓn,

β =
[
β11 · · · βn1 · · · β1,⌊r/2⌋n · · · βn,⌊r/2⌋n

]
∈ C

1×⌊r/2⌋n,
γ =

[
γ11 · · · γn1 · · · γ1,⌊r/2⌋n · · · γn,⌊r/2⌋n

]
∈ C

1×⌊r/2⌋n,
δ =

[
δ11 · · · δn1 · · · δ1,⌊r/2⌋n · · · δn,⌊r/2⌋n

]
∈ C

1×⌊r/2⌋n,
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with ℓ = r − 2⌊r/2⌋, then

u =
[
α1 · · · αℓn

]⊤
,

vj =
[
β1j · · · βnj

]⊤
, for j = 1, . . . , ⌊r/2⌋,

wj =
[
γ1j + λδ1j · · · γnj + λδnj

]⊤
, for j = 1, . . . , ⌊r/2⌋.

Note that α is void if r is even, because we then have ℓ = 0.
We highlight that, in all cases, the map Φs is surjective.

4.4 Generic perturbation theory for pencils with symmetry structures

In this subsection, we will develop the eigenvalue perturbation theory of regular matrix pencils with
symmetry structures under structure-preserving perturbations with the help of the parameterizations
from Section 4.3. The sets of the form R

ps ×C
ms that appear as domains for the parameterizations

constructed analogous to Definition 4 will be identified with the set Rps+2ms by splitting the variables
in C into their real and imaginary parts. As noted before, this detour via the reals is necessary when
symmetry structures involving complex conjugation are considered. When we deal with symmetry
structures only involving the complex transpose, but not complex conjugation, then we have ps = 0
and we can express genericity in terms of complex polynomials only.

Theorem 17 (Generic change under low-rank perturbations of Hermitian pencils). Let L(λ) be a

regular n× n Hermitian matrix pencil and let λ1, . . . , λκ denote the pairwise distinct eigenvalues of L(λ)
having the partial multiplicities ni,1 > . . . > ni,gi > 0 for i = 1, . . . , κ, respectively. Furthermore, let r be

a positive integer, let 0 6 s 6 ⌊r/2⌋, and let Φs be the map in Definition 4 and ℓ = r − 2s. Then, there
exists a generic set Gs in R

2ℓ × C
(r+s)n such that, for all E(λ) ∈ Φs(Gs), the perturbed pencil L+ E is

regular and the partial multiplicities of L + E at λi are given by ni,r+1 > · · · > ni,gi . (In particular, if

r > gi then λi is not an eigenvalue of L+ E.) Furthermore, all eigenvalues of L+ E that are different

from those of L are simple.

Proof By Theorem 15 (applied for the case F = R and m = 2ℓ + 2(r + s)n in accordance with the
identification R

2ℓ+2(r+s)n = R
2ℓ×C

(r+s)n) it is sufficient to show, for each i = 1, . . . , κ, the existence
of one particular xi ∈ R

2ℓ × C
(r+s)n of arbitrarily small norm such that, with the corresponding

perturbation pencil E(λ) = Φs(xi), the perturbed pencil L+E has precisely the partial multiplicities
ni,r+1 > · · · > ni,gi at λ0 and all eigenvalues of L + E that are different from those of L are
simple. Since genericity of sets is invariant under multiplication with invertible matrices, it suffices
to consider the case when L is given in Hermitian canonical form (Theorem 1). To this end, we
distinguish three cases and for the ease of notation we will from now on drop the dependence on i

of the geometric multiplicity and partial multiplicities of λi, thus writing g and n1, . . . , ng instead of
gi and ni,1, . . . , ni,gi .

Case (1): λi ∈ R. Then we can assume, without loss of generality, that L is of the form

L(λ) = diag
(
σ1RJn1(λi − λ), . . . , σgRJng(λi − λ), L̃(λ)

)
,

where λi is not an eigenvalue of L̃(λ). Let Fν = ũũ∗, with ũ = e1 ∈ C
ν , and Gν,ν̃ = ṽw̃∗ + w̃ṽ∗, with

ṽ = eν̃+1, w̃ = 1
2e1 ∈ C

ν+ν̃ , i.e., Fν is the ν×ν matrix that is everywhere zero except for Fν(1,1) = 1,
and Gν,ν̃ is the (ν + ν̃) × (ν + ν̃) matrix which is everywhere zero except for Gν,ν̃(1, ν̃ + 1) =
Gν,ν̃(ν̃ + 1, 1) = 1. Note that both Fν and Gν,ν̃ are Hermitian matrices.

First, let us assume that r 6 g. Then, we set

E(λ) = diag(α1Fn1 , . . . , αℓFnℓ , β1Gnℓ+1,nℓ+2 , . . . , βsGnr−1,nr , 0) + λ0n×n (23)

for some values α1, . . . , αℓ, β1, . . . , βs ∈ R to be specified later. The matrix pencil E(λ) has rank r

and, from the construction of Fm and Gm,m̃, it is clear that E(λ) can be written in the form (1) (e.g.,

with a1 = . . . = aℓ = 1, b1 = . . . = bℓ = 0). Thus, we have E(λ) ∈ C
H
s . Then, since Φs is surjective,
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there exists some x ∈ R
2ℓ×C

(r+s)n such that Φs(x) = E(λ), and provided that the parameters αi, βj
are sufficiently small, it is clear that this x can be chosen to be of arbitrarily small norm. (This uses
the fact that Φs is not injective, i.e., we can “split up” the small values αi, βj and put them into the
parameters ai, bi, uj , vk, wk of Definition 4 in such a way that all entries of x are small.) Moreover, the
nonzero partial multiplicities of L+E at λi are (nr+1, . . . , ng). To see this, note first that only the first
r blocks of L are modified so, in particular, L+E contains g−r Jordan blocks associated with λi with
sizes (nr+1, . . . , ng). (If g = r, then this means that λi is not an eigenvalue of L+E.) Furthermore, the
part of the pencil L+E corresponding to the first r blocks of L is block diagonal, and with the help
of the Laplace expansion it is easy to verify that the characteristic polynomials of its diagonal blocks
RJnj (λi − λ) + αjFnj , j = 1, . . . , ℓ, and diag(RJnℓ+2j−1(λi − λ),RJnℓ+2j (λi − λ)) + βjGnℓ+2j−1,nℓ+2j ,
for j = 1, . . . , s, are given by

(−1)̺j
(
(λ− λi)

nj − αj

)
, j = 1, . . . , ℓ and (−1)̺ℓ+j

(
(λ− λi)

nℓ+2j−1+nℓ+2j − β2j
)
, j = 1, . . . , s,

respectively, where ̺1, . . . , ̺ℓ+s are integers only depending on the sizes n1, . . . , nr and the signs
σ1, . . . , σr. Thus, the eigenvalues of this diagonal blocks lie on circles centered around λi with

radii |α1|
1
n1 , . . . , |αℓ|

1
nℓ , |β1|

2
nℓ+1+nℓ+2 , . . . , |βs|

2
nr−1+nr . Clearly, choosing the parameters α1, . . . , αℓ

and β1, . . . , βs appropriately, we can guarantee that all eigenvalues of L+ E that are different from
those of L are simple.

Now assume that g < r. If g 6 ℓ or if g has the same parity as ℓ (i.e. g− ℓ is even) then we define
E(λ) as in (23), where we interpret nj = 0 for j > g. Then E(λ) has rank less than r, but still can be
written in the form (1). Indeed, if g 6 ℓ then we set ui = 0 for i > g and vj = wj = 0 for j = 1, . . . , s,

and if g > ℓ then we set vj = wj = 0 for j = g−ℓ
2 +1, . . . , s. If, on the other hand, g > ℓ and g has the

opposite parity to ℓ, i.e. g − ℓ = 2κ+ 1, then we slightly alter the pencil in (23) to

E(λ) = diag(α1Fn1 , . . . , αℓFnℓ , β1Gnℓ+1,nℓ+2 , . . . , βκGnℓ+2κ−1,nℓ+2κ , βκ+1Fng , 0) + λ0n×n.

Also this pencil can be written in the form (1), noting that a block Fν can also be represented in
the form ṽw̃∗+ w̃ṽ∗ by choosing ṽ = w̃ = 1

2e1. In all cases, the perturbed pencil L+E does not have
the eigenvalue λi and all eigenvalues different from those of L are simple if the parameters αi and
βj are chosen appropriately.

Case (2): λi = ∞. This case follows by applying the already proved Case (1) to the reversal of
the pencil L.

Case (3): λi ∈ C \ R. In the following we denote λi by µ, for consistency with the notation used
before. In this case, the Hermitian canonical form contains 2k× 2k coupled blocks associated with µ
and µ, each of size k× k, as indicated in the proof of Theorem 2. Then, we may assume that L(λ) is
of the form

L(λ) = diag (R diag(Jn1(µ− λ), Jn1(µ− λ)), . . . ,

diag( R diag(Jng(µ− λ), Jng (µ− λ)), L̃(λ))
)
,

where, again, neither µ nor µ are eigenvalues of L̃(λ). Furthermore, we assume that g > r. (The
subcase g < r can be treated analogously to the corresponding subcase in Case (1).)

Let F̃2ν = uu∗, with u = e1 + eν+1 ∈ C
2ν and G̃2ν,2ν̃ = vw∗ + wv∗, with v = e2ν+1 + e2ν+ν̃+1 ∈

C
2(ν+ν̃), w = 1

2 (e1+eν+1) ∈ C
2(ν+ν̃). Thus F̃2ν is the 2ν×2ν matrix whose entries are all zero except

for the entries in the positions (1,1), (1, ν +1), (ν +1,1) and (ν +1, ν +1), which are all equal to 1,
and G̃2ν,2ν̃ is the 2(ν + ν̃)× 2(ν + ν̃) matrix whose entries are all zero except for the entries in the
positions (1,2ν + 1), (1, 2ν + ν̃ + 1), (ν + 1, 2ν + 1), (ν + 1, 2ν + ν̃ + 1), (2ν + 1,1), (2ν + 1, ν + 1),
(2ν + ν̃ + 1,1), and (2ν + ν̃ + 1, ν + 1) which are all equal to 1. Let E(λ) be

E(λ) = diag(α1F̃2n1 , . . . , αℓF̃2nℓ , β1G̃2nℓ+1,2nℓ+2, . . . , βsG̃2nr−1,2nr , 0) + λ0n×n, (24)

where the real parameters α1, . . . , αℓ, β1, . . . , βs will be specified later.
By construction, rankE = r and E(λ) ∈ C

H
s . Again, since Φs is surjective, there is some x ∈

R
2ℓ × C

(r+s)n such that Φs(x) = E(λ). (Again, x can be chosen to be of arbitrarily small norm
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provided that the parameters αi, βj are sufficiently small.) It remains to see that the partial multi-
plicities of L + E at µ are (nr+1, . . . , ng) and that all eigenvalues of L + E that are different from
those of L are simple. Again, since the smallest g − r Jordan blocks associated with µ in L(λ) are
not modified by the perturbation E(λ), they will stay in the WCF of L+ E, so (nr+1, . . . , ng) is a
sublist of the list of partial multiplicities of L+ E at λ0.

With the help of the Laplace expansion, one can easily show that the determinant of each block
Rdiag(Jni(µ− λ), Jni(µ− λ)) + αiF̃ni,ni is given by

χi(λ) = (−1)̺i
(
(λ− µ)ni(λ− µ)ni − αi(λ− µ)ni − αi(λ− µ)ni

)
,

where ̺i is an integer only depending on ni. It was shown in [29, Example 4.2] that such a polynomial

has simple roots (and clearly these are different from µ and µ) if αi is chosen such that |αi| 6
|µ−µ|ni

2 .
On the other hand, again with the help of the Laplace expansion and performing tedious but

elementary calculations, one finds that the determinant of each block

R diag(Jnℓ+2j−1(µ− λ), Jnℓ+2j−1(µ− λ), Jnℓ+2j (µ− λ), Jnℓ+2j (µ− λ)) + βjGnℓ+2j−1,nℓ+2j

is given by

χℓ+j(λ)

= (−1)̺j
(
(λ− µ)nℓ+2j−1+nℓ+2j (λ− µ)nℓ+2j−1+nℓ+2j − β2j (λ− µ)nℓ+2j−1(λ− µ)nℓ+2j

(−1)̺j
(
− β2j (λ− µ)nℓ+2j (λ− µ)nℓ+2j−1 − β2j (λ− µ)nℓ+2j−1+nℓ+2j − β2j (λ− µ)nℓ+2j−1+nℓ+2j

)
.

If |βj | is sufficiently small, then χℓ+j is guaranteed to have only simple roots (that are clearly all
different from µ and µ). Indeed, assume that λ is a common root of χℓ+j and χ′ℓ+j . Then multiplying
the equation χℓ+j = 0 with (λ− µ)(λ− µ) and using twice the equation χℓ+j(λ) = 0, we obtain that

β2
(
(λ− µ)nℓ+2j−1+nℓ+2j + (λ− µ)nℓ+2j−1+nℓ+2j

)
= 0,

which implies |λ− µ| = |λ− µ|. Using the fact that roots of polynomials depend continuously on the
coefficients of the polynomials it follows that βj can be chosen sufficiently small such that the roots

of χℓ+j have a distance from either µ or µ less than |µ−µ|
2 which then contradicts |λ− µ| = |λ− µ|.

Therefore, choosing α1, . . . , αℓ, β1, . . . , βs appropriately, we can guarantee that there are n1+ · · ·+
nr simple eigenvalues close to µ or µ, respectively, corresponding to the r Jordan blocks that were
perturbed by E. Indeed, after having chosen α1, let δ1 denote the smallest distance of a root of χ1

to the set {µ, µ}. Then choose α2 so small that the (simple) roots of χ2 are located within circles of
a radius less then δ1 around µ or µ, respectively. Then let δ2 be the smallest distance of a root of χ2

to the set {µ, µ} and continue in this manner choosing α3, . . . , αℓ, β1, . . . , βs such that all eigenvalues
of L+ E that are different from the eigenvalues of L are simple.

Theorem 18 (Generic change under low-rank perturbations of symmetric pencils). Let L(λ) be a

regular n× n symmetric matrix pencil and let λ1, . . . , λκ denote the pairwise distinct eigenvalues of L(λ)
having the partial multiplicities ni,1 > . . . > ni,gi > 0 for i = 1, . . . , κ, respectively. Furthermore, let r be a

positive integer, let 0 6 s 6 ⌊r/2⌋ and let Φs be the map as in Remark 7 and ℓ = r− 2s. Then there exists

a generic set Gs in C
2ℓ+(r+s)n such that, for all E(λ) ∈ Φs(Gs), the perturbed pencil L+E is regular and

the partial multiplicities of L+E at λi are given by ni,r+1 > · · · > ni,gi . (In particular, if r > gi then λi
is not an eigenvalue of L+ E.) Furthermore, all eigenvalues of L+ E that are different from those of L

are simple.

Proof The proof is similar to the one of Theorem 17 now applying Theorem 15 for the case F = C

and m = 2ℓ+ (r+ s)n. The only difference comes from the blocks in the symmetric canonical form,
which are different to the ones in the Hermitian canonical form. In particular, in the symmetric case
there is no need to distinguish between real and complex eigenvalues, so we can follow exactly the
same arguments as in the proof of Theorem 17 for an eigenvalue λi ∈ R, which now is valid for a
general λi ∈ C.
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Theorem 19 (Generic change under low-rank perturbations of ⊤-alternating pencils). Let L(λ) be

a regular n× n ⊤-alternating matrix pencil and let λ1, . . . , λκ denote the pairwise distinct eigenvalues of

L(λ) having the partial multiplicities ni,1 > . . . > ni,gi > 0 for i = 1, . . . , κ, respectively. Furthermore,

let r be a positive integer and let Φ be the map as in Remark 7, i.e., Φ is as in (22). Then, there exists

a generic set G in C
⌊ 3r

2
⌋n such that for all E(λ) ∈ Φ(G), the perturbed pencil L + E is regular and the

partial multiplicities of L+ E at λi are the ones given in Table 1, where (P) is the following property:

ni,r = ni,r+1 = · · · = ni,r+d > ni,r+d+1, with d odd. (P)

Structure e-val λi case multiplicities

⊤-even

λi = 0
ni,r+1 odd and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi)
otherwise (ni,r+1, ni,r+2, . . . , ni,gi )

λi = ∞

r even, ni,r+1 even, and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi)
r even, otherwise (ni,r+1, ni,r+2, . . . , ni,gi )
r odd, ni,r+1 even, and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi , 1)
r odd, otherwise (ni,r+1, ni,r+2, . . . , ni,gi , 1)

λi ∈ C \ {0} all (ni,r+1, ni,r+2, . . . , ni,gi )

⊤-odd

λi = 0

r even, ni,r+1 even, and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi)
r even, otherwise (ni,r+1, ni,r+2, . . . , ni,gi )
r odd, ni,r+1 even, and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi , 1)
r odd, otherwise (ni,r+1, ni,r+2, . . . , ni,gi , 1)

λi = ∞
ni,r+1 odd and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi)
otherwise (ni,r+1, ni,r+2, . . . , ni,gi )

λi ∈ C \ {0} all (ni,r+1, ni,r+2, . . . , ni,gi )

Table 1 Generic partial multiplicities at λi for rank-r ⊤-alternating perturbations

In particular, if r > gi then λi is not an eigenvalue of L+E. Furthermore, all eigenvalues of L+E that

are different from those of L are simple.

Proof For simplicity, we drop the dependence on i in the geometric and partial multiplicities of λi,
i.e., we write g instead of gi and n1 > . . . > ng instead of ni,1 > . . . > ni,gi . We also replace λi by
λ0. We will only prove the case g > r in full detail. (The case g < r can be treated similarly by
constructing an analogous perturbation of rank g instead of rank r, thus showing that λi is not an
eigenvalue of the perturbed pencil.) We aim to apply Theorem 15 for the case F = C to any single
eigenvalue of the pencil. Here we make use of the fact that, in contrast to the Hermitian case, the
set Even⊤r need not be decomposed into smaller sets that can be parameterized as in the sense of
Definition 4, but the parameterization map Φ as in (22) is already a map onto Even⊤r .

Case 1): property (P) does not apply. We first consider all cases except those where property (P)
appears in Table 1. In these cases, it is sufficient to prove the existence of one particular perturbation
E(λ) of arbitrarily small norm which belongs to Even⊤r .

Subcase 1a): λ0 ∈ C \ {0}. As in the proof of Theorem 17, we may assume that L(λ) is given in
⊤-alternating canonical form. Let us start with the ⊤-even structure. In the ⊤-even canonical form,
the blocks associated with λ0 and −λ0 appear in pairs [4, Th. 2.16]. Then, we may assume that L(λ)
is of the form:

L(λ) = diag
(
R diag(−λI − Jn1(λ0), λI − Jn1(λ0)), . . . ,

diag
(
R diag(−λI − Jng (λ0), λI − Jng (λ0)), L̃(λ)

)
,

where λ0 is not an eigenvalue of L̃(λ).
Let F̃2m and G̃2m,2n be the same matrices as in the proof of Theorem 17, and let E(λ) be the

pencil in (24). Note that the pencil E(λ) belongs to Even⊤r . Therefore, there is some x ∈ C
⌊ 3r

2
⌋n such

that Φ(x) = E(λ), and x can be chosen to be of arbitrarily small norm provided that the parameters
αi, βj are sufficiently small. Moreover, with similar reasonings to the ones in the proof of Theorem
17, it can be seen that the nonzero partial multiplicities at λ0 in L+ E are (nr+1, . . . , ng), and that
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all eigenvalues of L+E different from those of L are simple, if the parameters αi, βj in the pencil (24)
have been chosen appropriately.

The case of the ⊤-odd structure can be addressed in a similar way, just multiplying by λ the
perturbation blocks F̃2m and G̃2m,2n in (24).

Subcase 1b): λ0 = 0 and ⊤-even structure. Recall that by assumption condition (P) is not satisfied.
Then L(λ) is of the form

L(λ) = diag(L0(λ), L̂0(λ), L̃(λ)),

where L0(λ) contains the Jordan blocks corresponding to the largest r partial multiplicities at 0
(namely, n1 > · · · > nr), L̂0 contains the blocks corresponding to the remaining partial multiplicities
at 0, and L̃(λ) contains the information of the nonzero eigenvalues.

If nr+1 is even or nr+1 is odd, but nr = nr+1 = · · · = nr+d > nr+d+1 with d even (i.e., (P) does
not hold), then the part L0(λ) is a direct sum of blocks of two types:

(i) a 2k × 2k block of the form




λ

. .
.
1

λ . .
.

−λ 1

. .
.
. .
.

−λ 1




2k×2k

.

(ii) A pair of (2k + 1)× (2k+ 1) blocks of the form Rdiag(J2k+1(−λ), J2k+1(λ)).

This is a consequence of the fact that, in the ⊤-even canonical form, the Jordan blocks with odd size
associated with the eigenvalue 0 are paired up, and can be matched up to form pairs as in blocks of
the form (ii) (see [4, Th. 2.16]). Therefore, the blocks in L0(λ) with odd size larger than nr (if any)
are paired up, and, since d is even, also those of size nr (if any) are paired up.

For each block of type (i) we can add a rank-1 perturbation by adding just one entry equal to
α in the upper left corner of the block. This perturbation is of the form uu⊤ (actually, it is αF2k in
the proof of Theorem 17), and it is easily checked that the characteristic polynomial of the resulting
perturbed block is given by χ = λ2k − (−1)kα which means that its eigenvalues are simple and on

a circle with center in the origin and radius |α|
1
2k . For each pair of blocks of type (ii) we can add

a rank-2 perturbation by adding entries equal to β in the positions (1,1) and (2k + 2, 2k + 2). This
perturbation is of the form β(vv⊤+ww⊤) with v = e1 and w = e2k+2, and, again, it is easily checked
that the characteristic polynomial of the resulting perturbed block is given by χ = λ4k+2+β2 which

implies that its eigenvalues are simple and on a circle with center in the origin and radius |β|
1

2k+1 .
Therefore, choosing the parameters α and β appropriately, we can construct a rank-r perturbation
E(λ) of arbitrarily small norm which is ⊤-even such that the nonzero partial multiplicities at 0 in
L+E are (nr+1, . . . , ng) and such that all eigenvalues different from those of L are simple, as desired.

Subcase 1c): λ0 = 0 and ⊤-odd structure. The case that r is even can be treated analogously
to the previous subcase 1b), by just replacing 1 with λ in the nonzero entries of the perturbation
constructed above. However, the case when r is odd deserves some more effort. The reason for this
relies on the fact that any generic ⊤-odd perturbation with rank r and r 6 n being odd contains 0
as an eigenvalue. This can be seen by looking at the summand λuu⊤ in Theorem 7. In this case, the
part L0(λ) is a direct sum of blocks of two types:

(i) A pair 2k × 2k blocks of the form Rdiag(J2k(λ),−J2k(−λ)).
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(ii) A (2k + 1)× (2k+ 1) block of the form

Uk :=




λ

λ 1

. .
.
. .
.

λ 1
λ −1

. .
.
. .
.

λ −1




(2k+1)×(2k+1)

.

Since the ⊤-odd perturbation pencil E(λ) = λEA + EB has odd rank r, it follows that the skew-
symmetric constant coefficient EB has rank at most r−1. Then a straightforward dimension argument
implies that the geometric multiplicity of the eigenvalue zero can change at most by r − 1. Hence,
the geometric multiplicity of the eigenvalue zero must be at least g − r + 1. Since the list of par-
tial multiplicities at zero must dominate the list (nr+1, . . . , ng), but also must contain, at least,
g − r + 1 elements, the algebraic multiplicity of nr+1 + · · · + ng is not possible for the eigenvalue
zero. Now, the (unique) list of partial multiplicities with minimal algebraic multiplicity that dom-
inates (nr+1, . . . , ng) and is consistent with a geometric multiplicity of, at least, g − r + 1 is the
list (nr+1, . . . , ng, 1). Thus, by Theorem 15, it remains to construct one particular perturbation (of
arbitrarily small norm) such that the perturbed pencil has this list of partial multiplicities at zero
and such that all eigenvalues different from those of the unperturbed pencil are simple to show that
this is the generic case.

Now, we are going to show how to construct such a ⊤-odd perturbation, like in the previous
case. For each pair of blocks of type (i) we add the pencil Mk := (λ+ α)e1e

⊤
2k+1 + (λ− α)e2k+1e

⊤
1 ,

with e1, e2k+1 ∈ C
4k×4k. It is straightforward to see that det(Rdiag(J2k(λ),−J2k(−λ)) + Mk) =

(λ2k − λ+ α)(λ2k − λ− α), and that the roots of this polynomial are simple for α 6= 0.
For each pair of blocks of type (ii), Uk1

and Uk2
, we add a rank-2 perturbation of the form

Nk1,k2
:= β(e1e

⊤
2k1+2 − e2k1+2e

⊤
1 ), with e1, e2k1+2 ∈ C

2(k1+k2+1). It is straightforward to see that

det
(
diag(Uk1

, Uk2
) +Nk1,k2

)
= (−1)k1+k2λ2(k1+k2+1) + β2, so all the eigenvalues of the perturbed

pencil are simple for β 6= 0.
Finally, we must include a rank-1 summand of the form λuu⊤ to get a perturbation like in (10).

This summand may correspond to either a pair of blocks of type (i) or to a block of type (ii) above.
The first case is not possible, since otherwise condition (P) would hold. Therefore, we must have a
block of the form Unr−1

2
, and we add a perturbation γe1e

⊤
1 , with u1 ∈ C

nr . It is straightforward to

see that det(Unr−1
2

+ γe1e
⊤
1 ) = (−1)

nr−1
2 λnr + λγ. Therefore, the perturbed pencil has λ0 = 0 as a

simple eigenvalue, and the remaining eigenvalues are simple for γ 6= 0.
As before, choosing the parameters α, β, and γ appropriately, we can construct a rank-r pertur-

bation E(λ) of arbitrarily small norm which is ⊤-odd such that the nonzero partial multiplicities at
0 in L+ E are (nr+1, . . . , ng , 1) and such that all eigenvalues different from those of L are simple.

Subcase 1d) λ0 = ∞. For the eigenvalue λ0 = ∞ we just apply the result for λ0 = 0 in the reversal
pencil (recall that L(λ) is ⊤-even if and only if revL(λ) is ⊤-odd).

Case 2) Property (P) applies. Note that in this case we must have λ0 = 0 or λ0 = ∞.We distinguish
several subcases.

Subcase 2a) λ0 = 0 and ⊤-even structure. This case corresponds to the first line of Table 1. By
part (1) of Theorem 15 we know that, for any ⊤-even rank-r pencil E, there are at least g− r partial
multiplicities at 0 in L+E, say mr+1 > · · · > mg, with mi > ni, for i = r+1, . . . , g. However, by the
canonical form for ⊤-even pencils (see [4, Th. 2.16]), it is not possible that these partial multiplicities
be exactly nr+1 > · · · > ng, because L + E is ⊤-even, nr+1 is odd, and its value appears an odd
number of times in the list {nr+1, . . . , ng}, by property (P). Consequently, the algebraic multiplicity
nr+1 + · · ·+ ng for the eigenvalue λ0 of L+ E is not possible in this case.

As in the previous case, we will instead construct a ⊤-even perturbation E of rank r and of
arbitrarily small norm such that the algebraic multiplicity of L+ E at 0 is ã = nr+1 + · · ·+ ng + 1
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and such that all eigenvalues that are different from those of L are simple. Then by part (2) of

Theorem 15 there is a generic set G ⊆ C
⌊ 3r

2
⌋n such that for all corresponding perturbations E we

have the situation outlined above.
As before, let us assume that L(λ) is given in ⊤-even canonical form, so we can write it as

L(λ) = diag
(
L1(λ),R diag(Jnr(−λ), Jnr (λ)),L2(λ), J̃(λ)

)
,

where L1(λ) contains the first r − 1 Jordan blocks associated with 0, L2(λ) contains the Jordan
blocks associated with 0 and with sizes nr+2, . . . , ng, and J̃(λ) corresponds to the nonzero eigenvalues
(including infinity). Here, we used the fact that nr = nr+1 by property (P). Now, let E(λ) be of the
form

E(λ) = diag(E1, γ(e1 + enr+2)(e1 + enr+2)
⊤, 0)

where e1, enr+2 ∈ C
2nr (with enr+2 interpreted as being the zero vector in the case nr = 1), and

where E1 is of size (n1+ · · ·+nr−1)× (n1+ · · ·+nr−1) and is constructed as a direct sum of blocks as
explained above for the precedent case associated with the eigenvalue λ0 = 0. (Namely, E1 consists
of a direct sum of rank-1 blocks with sizes ni×ni or rank-2 blocks with sizes (ni+ni+1)×(ni+ni+1),
depending on whether L1(λ) contains a ni × ni block, with ni even, or a pair of blocks with sizes
ni × ni and ni+1 × ni+1, with ni+1 = ni odd.) Then

det(L+ E) = det(L1(λ) + E1)

·det
(
Rdiag(Jnr (−λ), Jnr (λ)) + γ(e1 + enr+2)(e1 + enr+2)

⊤)
)

·detL2(λ) · det J̃(λ).

(25)

With straightforward computations (using again the Laplace expansion) it can be seen that

det(Rdiag(Jnr (−λ), Jnr (λ)) + γ(e1 + enr+2)(e1 + enr+2)
⊤)) = λnr+1(λnr−1 − 2γ) (26)

if nr > 1, or det(Rdiag(Jnr (−λ), Jnr (λ))+γ(e1+enr+2)(e1+enr+2)
⊤)) = λ2 if nr = 1, see Appendix A

(see also [3, p. 663]). On the other hand, we have detL2(λ) = λnr+2+···+ng . Thus, choosing the
parameters αi and βj in E1 and the parameter γ appropriately, we can construct a perturbation pencil
E of arbitrarily small norm such that the algebraic multiplicity of L+E at zero is ã = nr+1+· · ·+ng+1
and such that all eigenvalues of L+ E that are different from those of L are simple, as desired.

However, the reader should keep in mind that part (2) of Theorem 15 only contains information
on the generic algebraic multiplicity of the eigenvalue 0 of L+ E for a generic ⊤-even perturbation
E. Unlike the previous cases, it is no longer true that combining the parts (1) and (2) of Theorem 15
forces the partial multiplicities of L+ E at 0 to be uniquely determined. Therefore, it is necessary
to further investigate which lists of partial multiplicities at 0 are possible such that both (1) and (2)
of Theorem 15 are satisfied. To this end, there are three possible situations:

(a) If nr+1−1 6∈ {nr+2, . . . , ng , 0}, then the only possible partial multiplicities are nr+1+1 > nr+2 >

· · · > ng.
(b) If nr+1 − 1 ∈ {nr+2, . . . , ng}, say nr+1 − 1 = nr+d+1 (and d being minimal with this property),

then there are two possible lists of partial multiplicities:
(b1) nr+1 + 1 > nr+2 > · · · > ng, or
(b2) nr+1 = · · · = nr+d = nr+d+1 + 1 > nr+d+2 > · · · > ng.

(c) If nr = 1, then there are two possible lists of partial multiplicities:
(c1) (2,1, . . . , 1︸ ︷︷ ︸

g−r−1

), or

(c2) (1, . . . , 1︸ ︷︷ ︸
g−r+1

).

To see this, first note that, for any x ∈ G, the algebraic multiplicity of L+ Φ(x) at 0 is, exactly, ã.
Since the partial multiplicities at 0 are mr+1 > · · · > mg, with mi > ni, for i = r + 1, . . . , g, then
either one of the partial multiplicities nr+1 > · · · > ng at 0 in L increases one unit, or either a new
partial multiplicity equal to 1 appears after adding E = Φ(x). However, it is not possible to add
or remove just one odd partial multiplicity after perturbing by E, since this would imply that the
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parity in the number of some of the odd-sized Jordan blocks associated with 0 would change, and
this is not allowed by the ⊤-even structure. However, when increasing in one unit just one partial
multiplicity at 0 in L, say ni, either one odd partial multiplicity is added or removed, depending on
the parity of ni. In order for the number of each odd-sized Jordan blocks associated with 0 to stay
as an even number, the only possibility is that either ni = nr+1 or ni = nr+1 − 1. The first case
corresponds to cases (a), (b1), and (c1) above, whereas the second one corresponds to cases (b2) and
(c2).

With an argument identical to the one used in [4], we are going to prove that the generic partial
multiplicities are just the ones in either (a), (b1), or (c1), which essentially reduce to the same
behavior, namely, one of the largest remaining partial multiplicities increases in one unit.

Let us focus on case (b) first. By assumption on d being minimal, we have (nr =)nr+1 = · · · =
nr+d > nr+d+1 > · · · > ng and nr+1 − 1 = nr+d+1. Note that necessarily d is odd as we are in the
case of property (P).

Assume that the change in case (b1) is not generic. Then the set B ⊆ C
⌊ 3r

2
⌋n of all x for which

the partial multiplicities of L+ Φ(x) at 0 are nr+1 = · · · = nr+d = nr+d+1 + 1 > nr+d+2 > · · · > ng
is not contained in a proper algebraic set. (Note that it must happen that g − r > 2.)

Now, let us define the map

Φ̃d : (Cn)d −→ Even⊤d
u = (u1, . . . , ud) 7→ Φ̃(u) = u1u

⊤
1 + · · ·+ udu

⊤
d .

and also consider the map

Φ̃ : C⌊ 3r
2
⌋n × (Cn)d −→ Even⊤r+d

(x, u) 7→ Φ̃(x, u) = Φ(x) + Φ̃d(u),

Observe that the map Φ̃ may be different from the corresponding map C
⌊ 3(r+d)

2
⌋n −→ Even⊤r+d

from (22). (Indeed, the dimensions of the domains do not coincide if r is odd.) Moreover, it is not
even clear whether the map Φ̃ is surjective. Nevertheless, Φ̃ satisfies the hypotheses of Theorem 15
and thus by part (1) of Theorem 15 we have that for any (x, u) ∈ B × (Cn)d the list of partial
multiplicities of L + Φ̃(x, u) at λi dominates the list nr+d+1 + 1 > nr+d+2 > · · · > ng. The key
observation is now that by [5, Lemma 2.2] the set B × (Cn)d is not contained in a proper algebraic

subset of C⌊ 3r
2
⌋n × (Cn)d. If we can show that there exist (x0, u0) of arbitrarily small norm such

that the partial multiplicities of L+ Φ̃(x0, u0) are nr+d+1 > nr+d+2 > · · · > ng, then by part (2) of

Theorem 15 this hold for all L+ Φ̃(x, u) with (x, u) from a generic set G̃ ⊆ C
⌊ 3r

2
⌋n × (Cn)d. Since the

list nr+d+1 > nr+d+2 > · · · > ng does not dominate the list nr+d+1 + 1 > nr+d+2 > · · · > ng this

leads to a contradiction, because the sets G̃ and B × (Cn)d must have a nonempty intersection, the
first set being generic and the second set not being contained in a proper algebraic set.

Thus it remains to construct one particular example with the properties outlined above. To this
end, note that, by assumption on k, the pencil L has the form

L(λ) = diag
(
L1(λ),R diag(Jnr (−λ), Jnr (λ)), . . . , Rdiag(Jnr(−λ), Jnr (λ)),L3(λ), J̃(λ)

)
,

where the block Rdiag(Jnr(−λ), Jnr (λ)) is repeated
d+1
2 times and L3(λ) contains the blocks associ-

ated with the partial multiplicities nr+k+2 > · · · > ng. Then the desired example for a perturbation
that does the job is given by

E(λ) = γ diag(E1, e1e
⊤
1 + enr+1e

⊤
nr+1, . . . , e1e

⊤
1 + enr+1e

⊤
nr+1, 0),

where E1 is as before, the block e1e
⊤
1 + enr+1e

⊤
nr+1 is repeated d+1

2 times, and γ > 0 is chosen
sufficiently small. Indeed note that, as before, all blocks in L1 and all the paired blocks of size nr are
perturbed in such a way that all eigenvalues lie on circles around zero, so that the partial multiplicities
of L+ E at 0 are given by nr+d+2 > · · · > ng. Moreover, E1 + e1e

⊤
1 is a ⊤-even pencil of rank r and

thus, using the surjectivity of Φ, there exists x ∈ C
⌊ 3r

2
⌋n with Φ(x) = E1+ e1e

⊤
1 . Since the remaining
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part of E is of the form u1u
⊤
1 + · · ·+ udu

⊤
d , this implies the existence of (x, u) ∈ C

⌊ 3r
2
⌋n × (Cn)d with

Φ̃(x, u) = E.

To show that in case (c) the subcase (c1) is generic can be shown by contradiction in a similar
way. In this case, there would be two generic sets of ⊤-even perturbations with rank r + 1 giving
different behavior.

Subcase 2b) λ0 = 0 and r odd and ⊤-odd structure. In this case, the situation is similar to the
one in the previous subcase, but we are also in a situation similar to the one in Subcase 1c), i.e.,
the geometric multiplicity of the eigenvalue λ0 = 0 after perturbation must be at least g − r + 1.
But then, it is straightforward to show that the algebraic multiplicity nr+1 + · · · + ng + 1 is not
possible in this case. Thus, we will construct a perturbation leading to the algebraic multiplicity
ã = nr+1 + · · ·+ ng + 2. As before, let us assume that L(λ) is given in ⊤-odd canonical form, so we
can write it as

L(λ) = diag
(
L1(λ),R diag(Jnr(−λ), Jnr (λ)),L2(λ), J̃(λ)

)
,

where L1(λ) contains the first r − 1 Jordan blocks associated with 0, L2(λ) contains the Jordan
blocks associated with 0 and with sizes nr+2, . . . , ng, and J̃(λ) corresponds to the nonzero eigenvalues
(including infinity). Since the pencil L1(λ) does not have the property (P), we can construct a ⊤-odd
perturbation E1(λ) as in subcase 1b) such that the eigenvalues of the perturbed pencil L1 +E1 are
all nonzero and simple. It remains to perturb the block R diag(Jnr (−λ), Jnr (λ)) in an appropriate
way. For this we consider the perturbation γλ(e1 + enr+2)(e1 + enr+2)

⊤, with e1, enr+2 ∈ C
2nr . It is

straightforward to see that

det(Rdiag(−Jnr(−λ), Jnr (λ)) + γλ(e1 + enr+2)(e1 + enr+2)
⊤ = λnr+2

(
λnr−2 + 2γ

)
(27)

(a proof of this identity is provided in Appendix A). Moreover, since, for λ0 = 0, the perturbed
subpencil has the same rank as the original one, the geometric multiplicity of λ0 = 0 at the perturbed
subpencil is the same one as in the original one, namely 2. Therefore, setting E(λ) = diag(E1, γλ(e1+
enr+2)(e1+enr+2)

⊤, 0) and choosing γ sufficiently small, the eigenvalues of the perturbed pencil L+E
are λ0 = 0 with algebraic multiplicity ã, geometric multiplicity g−r+1, and the remaining eigenvalues
are all simple, for γ 6= 0. The argument that the geometric multiplicities are as claimed in Table 1 is
shown in a way that is analogous to the one in Subcase 1c).

Subcase 2c) λ0 = ∞. The cases λ0 = ∞ where property (P) appears in Table 1 can be proved
from the cases λ0 = 0 by using the reversal, which exchanges the roles of these two eigenvalues and
takes ⊤-even pencils into ⊤-odd ones and viceversa. In particular, the case λ0 = ∞ in the ⊤-odd
structure can be obtained from the case λ0 = 0 in the ⊤-even structure, and the case λ0 = ∞ in the
⊤-even case can be obtained from the case λ0 = 0 in the ⊤-odd structure.

Theorem 20 (Generic change under low-rank perturbations of ⊤-palindromic pencils). Let λ1, . . . , λκ
be the pairwise distinct eigenvalues of the regular n×n ⊤-palindromic or ⊤-anti-palindromic matrix pencil

L(λ), having the nonzero partial multiplicities ni,1 > ni,2 > · · · > ni,gi > 0, for k = 1, . . . , κ, respectively.
Furthermore, let r > 0 be an integer and let Φ be the map as in Remark 7. Then, there is a generic set G in

C
⌊ 3r

2
⌋n such that, for all E(λ) ∈ Φ(G), the perturbed pencil L+E is regular and the partial multiplicities

of L + E at λ0 are the ones given in Table 2, where (P) is the same property as in the statement of

Theorem 19. (In particular, if r > gi then λi is not an eigenvalue of L+E.) Furthermore, all eigenvalues

of L+ E different from those of L are simple.

Proof We just prove the ⊤-palindromic case, since the ⊤-anti-palindromic one follows similar rea-
sonings.

Let L(λ) be a given ⊤-palindromic pencil satisfying the conditions in the statement, and let E(λ)
be another ⊤-palindromic pencil of the form (11). Let C+1 and C−1 be the Cayley transforms in (12).
Then

C+1(L+ E) = C+1(L) + C+1(E),
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Structure e-val λi case multiplicities

⊤-palindromic

λi = 1
ni,r+1 odd and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi)
otherwise (ni,r+1, ni,r+2, . . . , ni,gi)

λi = −1

r even, ni,r+1 even, and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi)
r even, otherwise (ni,r+1, ni,r+2, . . . , ni,gi)
r odd, ni,r+1 even, and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi , 1)
r odd, otherwise (ni,r+1, ni,r+2, . . . , ni,gi , 1)

λi ∈ C \ {±1} all (ni,r+1, ni,r+2, . . . , ni,gi)

⊤-anti-palindromic

λi = 1

r even, ni,r+1 even, and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi)
r even, otherwise (ni,r+1, ni,r+2, . . . , ni,gi)
r odd, ni,r+1 even, and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi , 1)
r odd, otherwise (ni,r+1, ni,r+2, . . . , ni,gi , 1)

λi = −1
ni,r+1 odd and (P) holds (ni,r+1 + 1, ni,r+2, . . . , ni,gi)
otherwise (ni,r+1, ni,r+2, . . . , ni,gi)

λi ∈ C \ {±1} all (ni,r+1, ni,r+2, . . . , ni,gi)

Table 2 Generic partial multiplicities at λ0 for rank-r ⊤-alternating perturbations

with both the pencil in the left-hand side and the ones in the right-hand side being ⊤-even [26, Th.
2.7]. Moreover, if r = rankE is odd, then

C+1(E)(µ) = C+1((1 + λ)uu⊤ + v1w
⊤
1 + · · ·+ v(r−1)/2w

⊤
(r−1)/2

+(revw1)v
⊤
1 + · · ·+ (revw(r−1)/2)v

⊤
(r−1)/2)

= 2uu⊤ + v1ŵ1(µ)
⊤ + · · ·+ v(r−1)/2ŵ

⊤
(r−1)/2(µ)

+(ŵ1(−µ))v
⊤
1 + · · ·+ (ŵ(r−1)/2(−µ))v

⊤
(r−1)/2),

(28)

with ŵi(µ) = C+1(wi)(µ) = (1− µ)w( 1+µ
1−µ ), for i = 1, . . . , (r − 1)/2. The second sum in the last term

of (28) follows by using similar identities to the ones in (13), which allow us to see that

C+1(revwi)(µ) = C+1(λwi(1/λ))(µ) = (1− µ) · 1+µ
1−µ · wi

(
1−µ
1+µ

)

= (1 + µ)wi

(
1−µ
1+µ

)
= ŵi(−µ).

If r is even, then we get a similar expression according to the expression for E(λ) in (11). This
means that the pencil C+1(E) is of the form (7). Then, by Theorem 19, there is a generic set G in

C
⌊ 3r

2
⌋n such that, for all x ∈ G, the perturbed pencil (C+1(L) + Φ(x))(µ) is regular and the partial

multiplicities at µ0 are the ones given in Table 1, replacing µ0 by λi, with µ0 = (λi − 1)/(λi + 1)
if λi 6= 1, and µ0 = ∞ if λi = 1, and furthermore, such that all eigenvalues that are different from
those of C+1(L) are simple. Note that Φ is the map that takes a set of parameters x ∈ C

⌊ 3r
2
⌋n to a

pencil like in (28).
Applying the Cayley transformation C−1 we conclude that, for any x ∈ G, the pencil L+C−1(Φ(x))

is regular and has the partial multiplicities at λi as given in Table 2, while all eigenvalues that are
different from those of L are simple. But, since Φ(x) = C+1(E)(µ), then C−1(Φ(x)) = E(λ), and this
concludes the proof for this case.

For the ⊤-anti-palindromic case just replace C−1 by C+1 and vice versa, and refer to the ⊤-odd
case instead of the ⊤-even one.

Next, we turn to the skew-symmetric structure. As it is well known, the algebraic multiplicity
of each eigenvalue of a skew-symmetric pencil is necessarily even (see, e.g., [4, Theorem 2.18]). As a
consequence, the newly generated eigenvalues by a structure-preserving perturbation will generically
be double eigenvalues instead of simple ones.

Theorem 21 (Generic change under low-rank perturbations of skew-symmetric pencils). Let L(λ) be
a regular n × n skew-symmetric matrix pencil and let λ1, . . . , λκ ∈ C be its pairwise distinct eigenvalues

having the nonzero partial multiplicities ni,1 > ni,2 > · · · > ni,gi > 0, for i = 1, . . . , κ, respectively. (We

highlight that both n and all values ni,j , j = 1, . . . , gi, i = 1, . . . , κ are necessarily even.) Furthermore,

let r be a nonzero even integer and let Φ be the map as in Remark 7. Then, there is a generic set G in
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C
3rn
2 such that, for all E(λ) ∈ Φ(G), the perturbed pencil L+E is regular and the partial multiplicities of

L+ E at λi are ni,r+1 > · · · > ni,gi , for i = 1, . . . , κ. Furthermore, all eigenvalues of L+E that are not

eigenvalues of L have algebraic multiplicity precisely two.

Proof Without loss of generality we may assume that L(λ) is of the form

L(λ) =

[
0 D(λ)

−D(λ) 0

]
,

where D(λ) is a regular pencil of size n
2 × n

2 . This assumption can be made since L(λ) is congruent
to a pencil in the indicated form - a fact that follows easily by assuming that L(λ) is in the canonical
form of [4, Theorem 2.18] and then applying simultaneous row and column permutations. Clearly,
the eigenvalue λi of D(λ) has the partial multiplicities

ni,1

2 >
ni,2

2 > · · · >
ni,gi

2 . By the proof of

Theorem 16, there exists x̃ ∈ C
3rn
4 of arbitrarily small norm such that Ẽ(λ) = Φ r

2
(x̃) (with Φ r

2
being

the map from Definition 3) is an n
2 × n

2 pencil of rank r
2 such that D+ Ẽ is regular, has the partial

multiplicities ni,r+1

2 > · · · >
ni,gi

2 at λi, for i = 1, . . . , κ, and all its eigenvalues that are different from
those of D are simple. Then setting

E(λ) =

[
0 Ẽ(λ)

−Ẽ(λ) 0

]
,

it follows that E is skew-symmetric and has rank r. Furthermore, due to the surjectivity of Φ it
follows that there exists x ∈ C

3rn
2 such that Φ(x) = E and it is straightforward to check that x

can be chosen to be of the same norm as x̃. Obviously, L + E now has the partial multiplicities
ni,r+1 > · · · > ni,gi at λi for i = 1, . . . , κ, and all eigenvalues of L+ E that are not eigenvalues of L
have algebraic multiplicity precisely two. Then applying Theorem 15 with µ = 2 yields the desired
result.

As for the remaining structures (skew-Hermitian, ∗-alternating, ∗-palindromic, and ∗-anti-palindromic)
a similar result to Theorem 17 can be obtained either from this result directly using the observations
in the paragraph right after Theorem 9 (skew-Hermitian, ∗-alternating) or using appropriate Cayley
transformations as in the proof of Theorem 20 (∗-palindromic, and ∗-anti-palindromic). We gather
all these results in just one statement in Theorem 22.

Theorem 22 (Generic change under low-rank perturbations of skew-Hermitian, ∗-alternating, ∗-
palindromic, and ∗-anti-palindromic pencils). Let λ1, . . . , λκ be the pairwise distinct eigenvalues (finite

or infinite) of the regular n×n skew-Hermitian, ∗-alternating, ∗-palindromic, or ∗-anti-palindromic matrix

pencil L(λ), with nonzero partial multiplicities ni,1 > ni,2 > · · · > ni,gi > 0 for i = 1, . . . , κ, respectively.
Furthermore, let r be a positive integer and, for each 0 6 s 6 ⌊r/2⌋, let Φs be the map as in Remark

7. Then, there is a generic set Gs in R
ℓ×C

(r+s)n such that, for all E(λ) ∈ Φs(Gs), the perturbed pencil

(L+E)(λ) is regular and the partial multiplicities of L+E at λi are ni,r+1 > · · · > ni,gi for i = 1, . . . , κ.
In particular, if gi 6 r then λi is not an eigenvalue of L+E. Furthermore, all eigenvalues of L+E that

are not eigenvalues of L are simple.

The results presented in Theorems 18–20 extend the ones in [3] and [5] from rank-1 and special
rank-2 perturbations to low-rank perturbations of matrix pencils with symmetry structures. Even
though some of the arguments and techniques in the proof of Theorems 18–20 are analogous to some
of the ones used in [3, 5], the main approach, which uses the parameterizations constructed from
the rank-1 decompositions given in Section 3, is different to the one followed in [3, 5].

If we compare Theorems 17–22 with Theorem 16, we will realize that, in most cases, the generic
behavior for pencils with symmetry structures coincides with the one for general pencils. However,
there are several cases in Theorems 19 and 20 where this behavior is different. In these cases, the
⊤-alternating and ⊤-palindromic structures impose additional restrictions that must be fulfilled in
the canonical form, which prevent some behaviors, that in the general case are allowed, to occur
under structure-preserving perturbations of pencils having these symmetry structures.
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5 Outlook on the real case

So far, we have restricted ourselves to the complex case only. The main reason for this is the surprising
fact that in general real versions of rank-1 decompositions as in Theorem 2 or Theorem 4 need not
exist as the following example shows.

Example 3 Consider the real symmetric pencil

E(λ) = 2

[
0 1
1 0

]
− λ

[
1 0
0 −1

]
=

[
−2λ 2
2 2λ

]
.

This pencil has the eigenvalues i,−i and a decomposition in complex Hermitian rank-1 pencils is
given by

E(λ) =

[
1
−i

] [
−λ 2 + iλ

]
+

[
−λ

2− iλ

] [
1 i

]

while for a decomposition into complex symmetric rank-1 pencil pencils we can take

E(λ) = (λ+ i)

[
−i

1

] [
−i 1

]
+ (λ− i)

[
i

1

] [
i 1

]
.

However, E(λ) does not allow a decomposition of the form

E(λ) = v(w+ λx)⊤ + (w+ λx)v⊤ with v =

[
v1
v2

]
, w =

[
w1

w2

]
, x =

[
x1
x2

]
∈ R

2. (29)

Indeed, (29) leads to the contradictory equations
[

2v1w1 v1w2 + v2w1

v1w2 + v2w1 2v2w2

]
=

[
0 2
2 0

]
and

[
2v1x1 v1x2 + v2x1

v1x2 + v2x1 2v2x2

]
=

[
−2 0
0 2

]
,

since these imply v1, v2 6= 0 and thus w1 = w2 = 0, which contradicts v1w2 + v2w1 = 2. But E(λ)
does not allow a decomposition of the form

E(λ) = (a1 + λb1)uu
⊤ + (a2 + λb2)vv

⊤ with u =

[
u1
u2

]
, v =

[
v1
v2

]

either, because in that case the pencil would have real eigenvalues, which is not the case.

We expect that in the real case one will have to allow summands of rank two in order to obtain
a decomposition into low-rank pencils. This will be subject to subsequent research.

6 Conclusions and future work

We have described the generic change of the Weierstraß Canonical Form (given by the partial mul-
tiplicities) of regular matrix pencils with symmetry structures under structure-preserving additive
low-rank perturbations. In particular, we have considered all the structures indicated at the begin-
ning of Section 3. We have seen that, for most eigenvalues and most of the structures, the generic
change coincides with the one in the unstructured case, namely: given an eigenvalue λ0 ∈ C ∪ {∞}

of the pencil L(λ), with g associated partial multiplicities, for a generic perturbation, E(λ), of rank
r, the partial multiplicities of (L+ E)(λ) at λ0 are exactly the g − r smallest partial multiplicities
of L(λ). In particular, if r > g, the value λ0 is not generically an eigenvalue of (L+E)(λ). However,
for the ⊤-alternating structures, there is a (generic) different behavior for the eigenvalues λ0 = 0
and λ0 = ∞, and similarly for the ⊤-palindromic structures with the eigenvalues λ0 = ±1. These
differences arise in those cases where the parity of the partial multiplicities in the perturbed pen-
cil L + E provided by the generic behavior in the unstructured case is not in accordance with the
restrictions imposed by the structure (for instance, the even-sized blocks associated with λ0 = 0 in
⊤-even pencils must be paired-up).
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Our results contain the ones in [3], valid for rank-1 perturbations of pencils with symmetry
structure, and extend the ones in [5] that are valid for special rank-2 perturbations of pencils with
symmetry structures. However, the main tools and developments used in this work are different to
the ones in [3,5]. More precisely, to obtain our main results we have introduced a structure-preserving
rank-1 decomposition of low-rank pencils with symmetry structures, for each of the structures con-
sidered in the paper.

Several lines of research arise as a natural continuation of this work:

– To analyze the generic change of the partial multiplicities under low-rank perturbations of pencils
with symmetry structures that have real coefficients, together with the generic change of the sign
characteristic. In this work, we have restricted ourselves to the partial multiplicities, but the sign
characteristic is also a key ingredient in the eigenstructure, for instance, of Hermitian pencils.
The sign characteristic also appears in matrix pencils with real coefficients, for some of the other
structures considered in this work (like the ⊤-even structure, see [40]). So it is natural to address
the generic change of the sign characteristic in the context of pencils with symmetry structures
having real coefficients.

– To describe the generic change of the partial multiplicities under low-rank perturbations of reg-
ular matrix polynomials with symmetry structures of arbitrary degree. The generic change of
the partial multiplicities of regular matrix polynomials without additional symmetry structures
has been described in [10]. However, the case of structure-preserving perturbations of matrix
polynomials with symmetry structures remains open.

A Appendix

This appendix is devoted to prove the identities (26) and (27).
We start with (26). In this case nr is odd, say nr = 2k + 1. The case k = 0 is straightforward, so we assume

k > 0. Setting ∆k := det(R diag J2k+1(−λ), (J2k+1(λ)) + γ(e1 + e2k+3)(e1 + e2k+3)
⊤ we have

∆k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ 0 . . . 0 0 γ λ
0 0 . . . 0 λ 1
...

. . .
. . .

... . .
.
. .
.

0 0 . . . 0 λ 1
0 . . . 0 −λ 0 0 . . . 0
γ −λ 1 0 γ . . . 0

. .
.
. .
. ...

...
−λ 1 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Using the Laplace expansion with respect to the (2k + 1)st row and column we arrive at

∆k = λ2 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ 0 . . . 0 γ λ
0 0 . . . 0 λ 1
...

...
. . .

... . .
.
. .
.

0 0 . . . 0 λ 1
γ −λ γ 0 . . . 0

−λ 1 0 0 . . . 0

. .
.
. .
. ...

...
. . .

...
−λ 1 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Using the Laplace expansion with respect to the last column, we obtain

∆k = λ2




(−λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ
λ 1

. .
.
. .
.

λ 1
γ −λ γ

−λ 1

. .
.
. .
.

−λ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ γ 0
λ 1

. .
.
. .
.

λ 1
γ −λ γ

−λ 1

. .
.
. .
.

−λ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




. (30)
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Computing separately the first and second determinant again via Laplace expansion, the first determinant is equal
to

(−1)k−1λ2k−1

∣∣∣∣∣∣∣∣∣

γ −λ
−λ 1

. .
.
. .
.

−λ 1

∣∣∣∣∣∣∣∣∣

= (−1)k−1λ2k−1
(
(−1)k−1γ − (−1)k−1(−λ)2k

)

= λ2k−1
(
γ − λ2k

)
,

and the second determinant is

(−1)k−1

∣∣∣∣∣∣∣∣∣∣∣∣

γ 0 . . . 0 γ
γ 0 . . . −λ γ

. .
.

1

−λ ..
.

−λ 1

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)k−1

∣∣∣∣∣∣∣∣∣∣∣∣

γ 0 . . . 0 γ
−λ

. .
.

1

−λ . .
.

−λ 1

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)kγ

∣∣∣∣∣∣∣∣∣

−λ
−λ 1

. .
.
. .
.

−λ 1

∣∣∣∣∣∣∣∣∣

= −γλ2k .

so that for (30) we get

∆k = −λ2
(
−λ2k(γ − λ2k)− γλ2k

)
= λ2k+2

(
λ2k − 2γ

)
,

as claimed.

The proof of (27) proceeds analogously, with only minor modifications. Now nr is even, say nr = 2k. Thus,

setting ∆̃k := det(Rdiag(−J2k(−λ), J2k(λ)) + γλ(e1 + e2k+2)(e1 + e2k+2)
⊤ we have

∆̃k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γλ 0 . . . 0 0 γλ λ
0 0 . . . 0 λ 1
...

. . .
. . .

... . .
.
. .
.

0 0 . . . 0 λ 1
0 . . . 0 λ 0 0 . . . 0
γλ λ −1 0 γλ . . . 0

. .
.
. .
. ...

...
λ −1 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Using the Laplace expansion with respect to the (2k + 1)st row and column we arrive at

∆̃k = −λ2 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γλ 0 . . . 0 γλ λ
0 0 . . . 0 λ 1
...

...
. . .

... . .
.
. .
.

0 0 . . . 0 λ 1
γλ λ γλ 0 . . . 0

λ −1 0 0 . . . 0

. .
.
. .
. ...

...
. . .

...
λ −1 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Using the Laplace expansion with respect to the last column, the previous expression is equal to

∆̃k = −λ2




(−λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ
λ 1

. .
.
. .
.

λ 1
γλ λ γλ

λ −1

. .
.
. .
.

λ −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γλ γλ 0
λ 1

. .
.
. .
.

λ 1
γλ λ γλ

λ −1

. .
.
. .
.

λ −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




. (31)
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Computing separately the first and second determinant again via Laplace expansion, the first determinant is equal
to

(−1)k−1λ2k−2

∣∣∣∣∣∣∣∣∣

γλ λ
λ −1

. .
.
. .
.

λ −1

∣∣∣∣∣∣∣∣∣

= (−1)k−1λ2k−2
(
(−1)k−1γλ+ (−1)k−1λ2k−1

)

= λ2k−1
(
λ2k−2 + γ

)
,

and the second determinant is

(−1)k−1

∣∣∣∣∣∣∣∣∣∣∣∣

γλ 0 . . . 0 γλ
γλ 0 . . . λ γλ

. .
.
−1

λ ..
.

λ −1

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)k−1

∣∣∣∣∣∣∣∣∣∣∣∣

γλ 0 . . . 0 γλ
λ

. .
.
−1

λ ..
.

λ −1

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)kγλ

∣∣∣∣∣∣∣∣∣

λ
λ −1

. .
.
. .
.

λ −1

∣∣∣∣∣∣∣∣∣

= −γλ2k .

so that for (31) we get

∆̃k = −λ2
(
−λ2k(λ2k−2 + γ) − γλ2k

)
= λ2k+2

(
λ2k−2 + 2γ

)
,

as claimed.
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