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Abstract

Recently, there has been a great interest in analysing dynamical flows, where the sta-
tionary limit is the minimiser of a convex energy. Particular flows of great interest
have been continuous limits of Nesterov’s algorithm and the fast iterative shrinkage-
thresholding algorithm, respectively. In this paper, we approach the solutions of linear
ill-posed problems by dynamical flows. Because the squared norm of the residual of
a linear operator equation is a convex functional, the theoretical results from convex
analysis for energy minimising flows are applicable. However, in the restricted situa-
tion of this paper they can often be significantly improved. Moreover, since we show
that the proposed flows for minimising the norm of the residual of a linear operator
equation are optimal regularisation methods and that they provide optimal convergence
rates for the regularised solutions, the given rates can be considered the benchmarks
for further studies in convex analysis.
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1 Introduction
We consider the problem of solving a linear operator equation
Lx =y, )

where L: X — ) is a bounded linear operator between (infinite dimensional) real
Hilbert spaces X and ). If the range of L is not closed, Eq. 1 is ill-posed, see [13],
in the sense that small perturbations in the data y can cause non-solvability of Eq. 1
or large perturbations of the corresponding solution of Eq. 1 by perturbed right hand
side. These undesirable effects are prevented by regularisation.

In this particular paper, we consider dynamical regularisation methods for solving
Eq. 1. That is, we approximate the minimum norm solution x " of Eq. 1 by the solution
& of a dynamical system of the form

N—1
M) + Z ar(HEW (1) = —L*LE@) + L*y forallt € (0, 00), o
k=1
£®0) =0 forallk=0,...,N—1,
at an appropriate time, where N € IN, a;: (0,00) - R,k =1,...,N — 1, are

continuous functions, and y is a perturbation of y. The stopping time is in practice
often chosen via a standard discrepancy principle, see [13, Chapter 3.3]. We are now
interested under which conditions the regularised solution &(¢) can be guaranteed to
converge to the solution xT as 1 — oo and how fast this convergence happens.

Studying first the case of exact data y = y, it turns out that the convergence rate, that
is, the decay of ||£(r) — xT||? in the limit t — oo, can be uniquely characterised by the
spectral decomposition of the minimum norm solution x with respect to the operator
L*L, which allows us to get optimal convergence rates as a function of the “regularity”
of the source x . This regularity is usually described by so-called source conditions,
the most common ones being of the form x' e R((L*L)%) for some p© > 0; we
refer to [13, Chapter 2.2] and [9, Chapter 3.2] for an introduction to the use of those
source conditions for obtaining convergence rates. Moreover, these convergence rates
for exact data are seen to be in a one-to-one correspondence to certain convergence
rates for perturbed data as the perturbation ||y — y ||2 goes to zero.

Outside the regularisation community source conditions might appear technical
because they involve the operator L. However, it was demonstrated that for differ-
ential and integral operators L, these conditions very well coincide with smoothness
conditions in Sobolev spaces. See for instance [14], where the analogy of smoothness
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and source conditions has been explained for the problem of numerical differentiation.
For this analogy, these conditions are also often termed smoothness conditions.

In particular, we will apply the general theory of this equivalent characterisation of
convergence rates to the following three, well-studied examples:

1. Showalter’s method (also known as the gradient flow method), see [27,28], which
corresponds to the case N = 1 in Eq. 2:

E'(t) = —L*LE(@t) + L*y forall t € (0, 00),

(3)
£0) =0,
see Table 1 for an overview of the available convergence rates results;
2. the heavy ball method, introduced in [22], corresponding to N = 2 with a constant
function a1 (t) = b > 0 in Eq. 2:

0 E(1;9) + bdE(t;y) = —L*LE(t; ) + L*y forall 1 € (0, 00) ,
9£(0;y) =0,
£(0;y) =0, 4)

where known convergence rates results are collected in Table 2;
3. the vanishing viscosity method, see [29], which is the case of N = 2 witha; (t) = I;’
for some b > 0 in Eq. 2:

b
9§ y) + ?3t5(t; y) = —L"LE(t; y) + L*y forall £ € (0, 00)

36(0; y) =0,
£§(0:y) =0. (&)

Some convergence rates from the literature are listed in Table 3.

Especially the vanishing viscosity method has recently been heavily investigated,
see [5,6,8,29], for example, as it shows a faster convergence compared to the other
two methods, and it was demonstrated to be a time continuous formulation of Nes-
terov’s algorithm, see [20], providing an explanation of the rapid convergence of
this algorithm. Consequently, it was not only studied in the form of Eq. 5, but
more generally with the right hand side (which in Eq. 5 is the negative gradient of
Jo(x) = %||Lx —yI1» replaced by the negative gradient of an arbitrary convex and
differentiable functional 7. But, since our theory relies on spectral analysis, we limit
our discussion to the quadratic functional Jp.

In terms of convergence rates, however, the discussions for general functionals J
are often limited to the estimation of the convergence of 7 (&(f)) — min,cy J (x),
which for J = [J is given by %HL& (1) — y||*>. In the well-posed case where the
operator L has a bounded pseudoinverse L7, this convergence of the squared norm of
the residual is equivalent to the convergence of the error ||£(r) — x|/, but this is no
longer true in the ill-posed case where the pseudoinverse is unbounded. In contrast to
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this, our approach directly gives convergence rates for ||£(r) — x '||%, which then imply
a convergence (typically of higher order) of the squared norm of the residual.
We will proceed as follows:

— In Sect. 2, we revisit convergence rates results of regularisation methods from [3],
which, in particular, allow to analyse first- and higher-order dynamics.

— Inthe following sections, we apply the general results of Sect. 2 to regularising flow
equations. In Sect. 4 we derive well-known convergence rates results of Showalter’s
method and prove optimality of this method. In Sect. 5, we prove regularising
properties, optimality, and convergence rates of the heavy ball dynamical flow. In
the context of inverse problems, this method has already been analysed by [33],
however not in terms of optimality, as it is done here.

— In Sect. 6, we consider the vanishing viscosity flow. We apply the general theory of
Sect. 2 and prove optimality of this method. In particular, we prove under source
conditions (see for instance [9,13]) optimal convergence rates (in the sense of
regularisation theory) for ||£(f) — xT||2. These rates (and the resulting ones for the
squared norm of the residual) are seen to interpolate nicely between the known
rates in the well-posed (finite-dimensional) and those in the ill-posed setting when
varying the regularity of the solution x' (via changing the parameter s in Table 3).

We want to emphasise that the terminologies optimal from [7] (a representative
reference for this field) and [3] differ by the class of problems and the amount of a
priori information taken into account. In [7], best worst-case error rates in the class of
convex energies are derived, while we focus on squared functionals 7. Moreover, we
take into account prior knowledge on the solution. In view of this, it is not surprising
that we get different “optimal” rates.

2 Generalisations of Convergence Rates Results

In the following, we slightly generalise convergence rates and saturation results from
[3] so that they can be applied to prove convergence of the second order regularising
flows in Sects. 5 and 6. Thereby one needs to be aware that in classical regularisation
theory, the regularisation parameter o > 0 is considered a small parameter, meaning
that we consider small perturbations of Eq. 1. For dynamic regularisation methods
of the form of Eq. 2, we take large times to approximate the stationary state. To
link these two theories, we will apply an inverse polynomial identification of optimal
regularisation time and regularisation parameter.

Let L: X — Y be a bounded linear operator between two real Hilbert spaces X
and ) with operator norm |[L||, y € R(L), and let xt € X be the minimum norm
solution of Lx = y defined by

Lx" =y and |x"|| = inf{||x| | Lx = y}.

Definition 1 We call a family (ry)q~0 of continuous functions ry : [0, 00) — [0, 00)
the generator of a regularisation method if

FoC
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1. there exists a constant o € (0, 1) such that

2
re(A) < min {X’ } forevery A > 0, o > 0; (6)

o
Vai
2. the error function 7 : (0, 00) — [—1, 1], defined by

FuM) = 1 — Arg(A), A > 0, (7

is non-negative and monotonically decreasing on the interval (0, «);
3. there exists for every « > 0 a monotonically decreasing, continuous function
: (0,00) — [0, 1] such that R > |Fg] and o +— R (A) is continuous and
monotonically increasing for every fixed A > 0;
4. there exists for every & > 0 a constant 6 € (0, 1) such that

Ry (@) < 6 foralla € (0, @).

Remark 1 The definition of the generator of a regularisation method differs from the
one in [3] by allowing the regularisation method to overshoot meaning thatr, (1) > l
is possible at some points A > 0 (the choice (1) = 5, which is not a regularlsatlon
method in the sense of Definition 1, would correspond to taking the inverse without
regularisation, see Eq. 8). Consequently, we also relaxed the assumption that the error
function 7, is monotonically decreasing to the existence of a monotonically decreasing
upper bound Ry, for 7. We also want to remark that in the definition of the error function

in [3], r& ], there is an additional square included, that is, r[3] r

Definition 2 Let (ry)q>0 be the generator of a regularisation method.

1. The regularised solutions according to a generator (ry)y~0 and data y are defined
by

Xa: Y = X, x(§) = ro(L*L)L*, ®)

where we use the bounded Borel functional calculus to identify the function
re i [0, 00) — [0, oo) with a function acting on the space of positive semi-definite
self-adjoint operators, see [32, Chapter XI.12], for example.

2. Let (Iéa)ot>0 be as in Definition 1 item 3. Then, we define for all « > 0 the
envelopes

1 ~
Ryt (0.00) = [0,00), Ry(h) = 5 (1= Ral®)). ©)
and the corresponding regularised solutions
Xo: Y —> X, Xg(J) = Ry (L*L)L*. (10)

Fo C 'ﬂ
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Remark2 The family (Ry)q>0 is also a generator of a regularisation method, since
we have

1 — RN _l-Fa()

Ry ()‘) = = }L

=re(A) < mi 2 11
—ra()_mm{x, (11)

7l
oA
for every A > 0 and @ > 0, which verifies Definition 1 item 1; and the other three
conditions of Definition 1 are tautologically fulfilled: Definition 1 item 2 by the defi-
nition of Ry via Definition 1 item 3, and Definition 1 item 3 and item 4 by choosing
R, itself as upper bound for |Ry]|.

The idea of these regularised solutions is to replace the unbounded inverse of
L: N(L)* — R(L) by the bounded approximation x,, where the parameter & > 0
quantifies the regularisation. It should disappear in the limitee — 0, where we typically
expect rq (L) — % corresponding to x, (y) — (L*L)"L*y = xT (this is, however, not
enforced by Definition 1, but we will add in Definition 4 a compatibility condition to
ensure this).

Example 1T The most prominent regularisation method is probably Tikhonov regular-
isation, where the regularised solution x, (y) is defined as the minimisation point of
the Tikhonov functional

Tyt X = R, T 5(0) = | Lx = §I* + erllx |
Solving the optimality condition, gives us for x4 (y) the expression

Xa(3) = (L*L +al)~'L*3,

1

where I: X — X denotes the identity map on X', which has with 4 (1) := 577 the

form of Eq. 8 and r, satisfies all the conditions of Definition 1, see [3, Example 2.4].

We will show later in Sections 4, 5, and 6 that also some common dynamical
regularisation methods fall into this regularisation scheme so that all the convergence
rates results from this section can be applied to these methods.

Definition 3 We denote by A +— E,4 and A — F, the spectral measures of the
operators L*L and LL*, respectively, on all Borel sets A C [0, 00); and we define the
right-continuous and monotonically increasing function

e: (0,00) — [0,00), e(r) = |[Ejox" 1% (12)

We remark that the minimum norm solution x* is in the orthogonal complement of
the null space NV(L) of L and we therefore have Eg ;1x" = E (o x".

Moreover, if f: (0, 00) — R is a right-continuous, monotonically increasing, and
bounded function, we write

b
/ g df(h) = / g0 du s ()
a (a,b]
EOE';W
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for the Lebesgue—Stieltjes integral of f, where 1 ¢ denotes the unique non-negative
Borel measure defined by p r((A1, A2]) = f(A2) — f(A1) and g € L' (mr).

We introduce the following quantities, whose behaviour we want to relate to each
other:

— the spectral tail of the minimum norm solution x¥ with respect to the operator
L*L, that is, the asymptotic behaviour of e(A) as A tends to zero, see [21];

— the error between the minimum norm solution x* and the regularised solution x4 (y)
or X, (y) for the exact data y called the noise-free regularisation error, that is,

d(@) == ‘ X (y) — xT ”2 and D(a) := H Xo(y) — xTHZ , (13)

respectively, as « tends to zero;

— the best worst-case error between the minimum norm solution x* and the regu-
larised solution x, (¥) or X, (y) for some data y with distance less than or equal
to § > 0 to the exact data y under optimal choice of the regularisation parameter
o, that is,

d(8) := sup inf

2
Xq(¥) — xTH and
jeBs(y)*”

) - (14)
D) := sup inf Hxa(y)—xTH ,
FeBs(y) @0

respectively, as § tends to zero;
— the noise-free residual error, which is the error between the image of the regu-
larised solution x, (y) or X4(y) and the exact data y, that is,

q(a) == || Lxy(y) — y[I* and Q(e) = [ LXa () — v, 15)
respectively, as « tends to zero.

To describe the behaviour of these quantities, we consider, for example, convergence
rates of the form

d(@) = |lxa(y) — x| < Cap(a) forall & > 0,

with some constant C; > 0 for the noise-free regularisation error d, characterised by
the decay of a monotonically increasing function ¢: (0, o0) — (0, o0) for @ — 0,
and look for a corresponding (equivalent) characterisation of the convergence rates of
the other quantities, such as e(A) = ||E[0,)L])cT||2 or g(a) = || Lxy(y) — y||2.

Example 2 Common families of functions ¢ used to describe the convergence rates
are Holder functions

o1 (0,00) > R, ¢} (@) = o" forall u > 0, (16)
FolCTl
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Fig.1 Graphs of some common

functions used to characterise — b o

convergence rates. See -k

Example 2 for the definitions of L

these functions 1
—%bs
B

3

see [13], for example; and logarithmic

1
1’ forall u > 0, (17)

loga|™", a<e”

L. L) —
@0 (0,00) = R, @) = . «> e

or even double logarithmic functions, see for instance [17,25]. See Fig. 1 for a sketch
of the graphs of these functions.

The main results are collected in Theorem 1 and Corollary 3. We proceed in the

following way to derive them:

— InLemma 1 and Corollary 1, we write the different regularisation errors in spectral
form.

In Lemma 2 and Corollary 3, we show the relations between the convergence rates
of the noise-free quantities e, d, and D. For this, we require the function ¢, which
describes the rate of convergence and is the same for all three quantities, to be
compatible with the regularisation method, see Definition 4.

In Lemma 10 and Lemma 11, we derive the relations of the best worst-case errors
d and D to the quantities e and D. The corresponding rate of convergence is hereby
of the form @[¢], where the mapping @ is introduced in Definition 5 and some
of its elementary properties are shown in Lemma 6, Lemma 7, Lemma 8, and
Lemma 9.

The statements for the residual errors g and Q are then concluded from Theorem 1
by using the identification of ¢ and Q for the minimum norm solution x' with
the noise-free errors d and D for the minimum norm solution X = (L*L)%x%
of the problem Lx = y with y = L', and they are summarised in Corollary 3,
Corollary 4, and Corollary 5.

In the remaining of this section, we will always consider (ry )40 to be the generator

of a regularisation method with an envelope (Ry)q~0 and corresponding regularised

solutions (x4 )e>0 and (X )e=0, respectively. Moreover, we use the functions e, d, D,

d, D, q, and Q as defined in Definition 3, see Table 4 for a summary of the notation.

FolCT
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Table 4 Used variables and references to their definitions

Abbreviation Description References

ra Generator Definition 1

Ry Envelope generator Equation 9

T Error function Equation 7

Rq Envelope error function Definition 1 item 3

xq(¥) = ra(L*L)L*)?
Xa(¥) = Ry (L¥L)L*y

d@ =[x [’

D) = | Xu ) — x|’
d(s)

D(5)

q(@) = [ Lxa(y) = yI?

Q@) = |ILXa(y) — yII?
Eq Fy

e() = [Ejo x |12

Regularised solution according to ry

Regularised solution according to Ry

Noise-free regularisation error for ry

Noise-free regularisation error for Ry

Best worst-case error for ry,

Best worst-case error for Ry
Noise-free residual error for ry
Noise-free residual error for Ry
Spectral measures of L*L, LL*
Spectral tail of xf

P(a) = Vap(a)

Generalised inverse of a function ¢

Noise-free to noisy transform

Equation 8
Equation 10

Equation 13

Equation 13

Equation 14
Equation 14
Equation 15
Equation 15
Definition 3
Equation 12
Definition 5
Definition 5
Definition 5

2.1 Spectral Representations of the Regularisation Errors

To do the analysis, we will expand the quantities of interest with respect to the measure

A |EaxT]

2 . . o .
, which describes the spectral decomposition of x ' with respect to the

operator L* L. With the function e defined in Eq. 12, we can write the resulting integrals
in the form of Lebesgue—Stieltjes integrals.

Lemma 1 We have the representations

Iy >
d(a) = / 72(1) de() and D(a) = f R2(1) de(n) (18)
0 0
for the regularisation errors d and D, respectively, and
Iz P2/
g() = / AF2(3) de()) and Q(a) = / ARZ(L) de() (19)
0 0

for the residuals q and Q, respectively.

Proof We can write the differences between one of the regularised solutions x, (y) or
X« () and the minimum norm solution x" in the form

Xo(y) = xT =rg(L*L)L*y —

FoC'T
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Xo(y) —x" = (R (L*L)L*L — D)x",

respectively, where /1 X — X denotes the identity map on X' According to spectral
theory, we can formulate this with the definition of the error functions 7, and Ry, see
Egs. 7 and 9, as

x| = fo 0 de and [y — 1] = fo " R e,

For the differences between the image of the regularised solution x4 (y) or X4 (y)
and the exact data, we find similarly

ILxa(y) = yI? = |ILra(L*L)L* LT — Lyt = <xT, L*L(rq(L*L)L*L — 1)2x*> and

ILXa) = ¥I? = (¥, L LRa(L* )L*L = D2,
Thus, we have

L) ILi>
I Lxe(y) — yII> = /0 AFZ(1) de(r) and |ILXq(y) — ylI* = /O ARZ (%) de(n).

O

From this representation, we immediately get that the regularised solutions (xg )y >0
and (Xy)g>0 converge to the minimum norm solution x " if the error functions (7 )g=0
and (Ry)y>0 tend to zero as @ — 0.

Corollary 1 The regularisation errors D, Q, d, and D (but not necessarily d and q) are
monotonically increasing functions and the functions D and Q are also continuous.

Moreover, if limy_gFy(X) = 0 (or limg_q Iéa (X)) = 0, respectively) for every
A > 0, then the regularised solutions x4 (y) (or Xq(y), respectively) converge for
o — 0 in the norm topology to the minimum norm solution x".

Proof By assumption, see Definition 1 item 3, & > Ry (1) is monotonically increas-
ing, and so are the functions

ILi> ILi?
o D(a) =/ R2(A) de(r) and @ > Q() =/ ARZ(L) de(h).
0 0

The monotonicity of d and D follows directly from their definition in Eq. 14 as
suprema over the increasing sets Bs(y), § > 0.

Since ﬁa () € [0, 1] for every « > 0 and every A > 0 and @ +—> ﬁa(k) is for
every A > 0 continuous, see Definition 1 item 3, Lebesgue’s dominated convergence
theorem implies for every ag > 0:

IL? .
lim D(a) = / lim R2(1)de(r) = D(ap) and
0 oa—>0(

oa—>0o(
EOE';W
@ Springer Lﬁjog



1580 Foundations of Computational Mathematics (2022) 22:1567-1629

L2 .
lim Q(a) = / lim AR2(%)de()) = Q(ap),
oa—>o 0 a—a0

which proves the continuity of D and Q.
Similarly, we get with |7, (1)| < Ry(X) < 1 forevery @ > 0 and every A > 0 from
Lebesgue’s dominated convergence theorem that

2 L]
Xo(y) — xTH = lim d(a) = / lim 72(1) de(A) = 0 if lim 7y () = O,
a—0 0 a—0 a—0

lim
a—0
and also
2 IL|? . .
lim HXa(y) —xTH = lim D(a) = / lim R2()de(3) = 0if lim Ry(1) = 0.
a—0 a—0 0 a—0 a—0
O

2.2 Bounds for the Noise-Free Regularisation Errors

The representations of the noise-free regularisation errors as integrals over the spectral
tail e allow us to characterise the convergence of the regularisation errors d(«) and
D(w) in the limit ¢ — 0 in terms of the behaviour of the spectral tail e(%) for A — 0.

Lemma 2 With the constant o € (0, 1) from Definition 1 item 1, we have for every
o > 0 the relation

(1 —0)%e(@) < d(«) < D(@). (20)

Thatis, (1—0)? times the spectral tail is a lower bound for the noise-free regularisation
error of the regularisation method, which in turn is a lower bound for the error of the
regularisation method of the envelope generator.

Proof Let a > 0 be fixed. With Eq. 18 and Ry > |Fal, according to Definition 1 item
3, we find for the errors d and D that

Ii?

IL12
D(a):/ R2(1)de(n) z/ 72(\) de(n) = d(a).
0 0

2

Furthermore, since 75 is monotonically decreasing on [0, ], according to Definition 1

item 2, and e(A) = e(||L||2) forall A > ||L||2, we can estimate

min{a, || L||?} o
d(a) 3/ fg(x)de(x)zf F2(0) de(n) = P2 (a)e(a).
0 0
Elol:;ﬂ
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Inserting the expression of Eq. 7 for 7, and using the upper bound from Definition 1
item 1, we thus have

d(@) > (1 — arg(@))’e(@) > (1 —o0)%e(@).

]

Since we did not require so far that the error functions r, and Iéa vanish asa — 0,
we cannot assure that the regularised solutions x, (y) and X (y) converge as o« — 0
to the minimum norm solution or even get an upper bound on the regularisation errors
d and D. We therefore impose the following additional constraint for a function ¢ to
serve as an upper bound for the regularisation error.

Definition 4 We call a monotonically increasing function ¢ : (0, co) — (0, co) com-
patible with the regularisation method (r4)q~0 With correspondingly chosen error
functions (ﬁa)a>0 according to Definition 1 item 3 if there exists for arbitrary A > 0
a monotonically decreasing, integrable function F: [1, co) — IR such that

1%3(A)5F(%> for0 <o <A < A. 1)
o

In particular, a monotonically increasing function ¢: (0, 00) — (0, c0) with
limg 0 ¢(a) = 0 can only be compatible with (ry)g=0 if

R2(%)
a0 @(a)

= 0 for every A > 0, (22)

since the integrability of the monotonically decreasing function F in Eq. 21 implies
the asymptotic behaviour lim,_, o, zF (z) = 0.

Remark 3 With F(z) = (Az)fi, A € (0,00), u € (0, 1), Eq. 21 is exactly the
condition from [3, Equation 7] for the error function Ra (there we assume that 7
satisfies Definition 1 item 3 and item 4 such that we can take ﬁa = Fg).

These sort of conditions for ensuring convergence rates of the method have a long
history. For the special choice F(z) = Az 2, it was introduced as qualification of
the regularisation method in [19, Definition 1 and 2], which is now commonly used
for characterising convergence rates, see [12,16], for example. Even before that, the
condition was used for the convergence rates (pllf, see, for example, the textbooks [30,
Theorem 4.3], [31, Theorem 1.1 in Chapter 3], and [9, Theorem 4.3, Corollary 4.4].

Lemma3 Let ¢: (0, 00) — (0, 00) be a monotonically increasing function which is
compatible with (ry)q=0 in the sense of Definition 4 and dominates the spectral tail,
that is,

e(X) < @A) forall A > 0. (23)
EOE';W
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Then, with a monotonically decreasing and integrable function F: [1,00) — R
fulfilling Eq. 21 for A = ||L||%, we get

D(x) < (max{l, F(1)} + | Fll 1) e(a) for all o > 0.

That is, the order of the noise-free regularisation error D of the envelope generator
(Ry)a=0 is given by the function ¢.

Proof We first extend the function F' to F:[0,00) — Rvia F(z) := max{1, F(1)}
forz € [0, 1]and F(z) := F(z) forz € (1, 0o) so that we have (because of R(%(k) <1
foralla > 0 and A > 0)

R < F (‘”E ;) foralla > 0and 0 < A < ||L||?.
e

Taking for D the representation from Eq. 18 and using that Fis monotonically decreas-
ing, we get

L2 L2 )2
D(a) :/ R2(0) de(n) 5/ F <¢(x)> de() _/ P <e(k)> de(h).
0 0 @(a) 0 @(a)

Then, the substitution z = % gives us

D(x) = w(a)/o F(z)dz = (max{1, F()} + | F | 1) ().

O

Remark 4 The result of Lemma 3 is analogous to [3, Proposition 2.3] where the noise-
free regularisation error produced by a generator (ry)q=0 is estimated.

The compatibility condition in Eq. 21 is essentially a way to measure if the regular-
isation method converges at each spectral value faster than a given convergence rate
@, see Eq. 22. It is therefore not surprising that if some convergence rate is compatible
with (r4)q>0, then all slower convergence rates are also compatible with it.

Lemma4 Let g1, ¢2: (0, 00) — (0 oo) be two monotonically increasing, continuous
functions such that the ratio ¥ := (p is monotonically increasing on (0, o] for some
ag > 0.

Then ¢y is compatible with the regularisation method (ry)q>0 in the sense of Def-
inition 4 if @1 is compatible with (ry)g>0-

Proof Let A > 0 be arbitrary. Since ¥ is continuous and everywhere positive, we have
the positive bounds m := minge[gy, 4] ¥ (o) > 0 and M := maxye[o, 4] ¥ (@) > m.
Then, the monotonicity of ¥ on the interval (0, «¢] implies for every o € (0, A] that

oY) _ min{y@,m) {
min = min
selen] Y@~ Y@

Fo C 'ﬂ
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By definition of v, this means that

P m o)
p1(@) — M ()

forall0 <o <A < A.

Thus, if F is a monotonically decreasing, integrable function F: [1, c0) — R such
that Eq. 21 holds for ¢ = ¢, then

‘Pl()»)) - F (ﬂ P2 (1)
p1(a) ) — M ()

Ri(k)gF( )forallO<a§A§A.

Since the function F: [1,00) — R given by F(z) = F(372) is also monotonically
decreasing and integrable, this proves that ¢; is compatible with ()0, too. O

In particular, if one of the Holder rates from Example 2 is compatible with (r4 )0,
then all the logarithmic rates are compatible.

Corollary 2 Let (pllf and (pb, w > 0, be the rates defined in Example 2.
Then (pb is for every u > 0 compatible with the regularisation method (ro)g=0 in

the sense of Definition 4 if there exists a parameter v > 0 such that <p,l;l is compatible
with (ro)e=0-

Proof Let goll)'l be compatible with (ry)y~0 for some v > 0 and consider for arbitrary

H
u > 0 the function ¢ := Z—“L. Since
i

¥/ (@) =" logal* ! (v[loga| — 1) > 0for0 <@ < minfe™", e v} = aq,

the function 1 is monotonically increasing on (0, «g]. Thus, Lemma 4 implies the
compatibility of the function (pll;. O

2.3 Relation Between Convergence Rates for Noise Free and for Noisy Data

We will see that when applying the regularisation to noisy data, the convergence rates
D give rise to convergence rates of the form D(§) < Cz@[D](§) for some constant
Cj > 0Oand the transform @[ D] of the function D which satisfies the equation system

52
P[D](6) = D(as) = o

for some suitable function § — 5.

Definition5 Let ¢: (0, 00) — [0, 0o) be a monotonically increasing function which
is not everywhere zero. We define the noise-free to noisy transform @[¢]: (0, co) —
(0, o0) of ¢ by

2

D 6) i= ————,
[916) 1= =155
FolCTM
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where we introduce the function
$:(0,00) — [0,00), $(@) = Yag(@)
and write ¢! for the generalised inverse
¢ %) == inf{a > 0| $(a) > 8}.

Remark5 We emphasise that the considered functions need to be neither continuous
nor surjective to be able to define a generalised inverse. In particular the function
é: (0,00) — [0, 00), A — /Ae(A), with e defined in Eq. 12, is only right-continuous
and not surjective in general. Nevertheless, a generalised inverse exists.

We also note that if ¢: (0, o0) — [0, 00) is a monotonically increasing function
which is not everywhere zero and ¢ := inf {&¢ > 0 | () > 0}, then we have that
@: (0,00) — [0, 00), @ — Jag(a) is a strictly increasing function on (o, 00) SO
that = ¢~ (¢(a)) for every a € (ap, 00).

Later on, we will apply this transform to the functions describing the convergence
rates. We therefore calculate (at least in leading order) the noise-free to noisy trans-
forms for the families of convergence rates introduced in Example 2.

Lemma5 Let gollj and <pl'; be the functions introduced in Example 2.
Then, we have for every u > 0 that

1. q§[<pllf] = (szi and

Dl L1s)

D, 1(8 D[
2.0<1iminfi#()§lim (]’i#<oo

Proof 1. We find directly from Definition 5 that

82 R I

which gives

- 82 2
DlgH1(8) = —— = gt
§THE

2. This is shown in [3, Example 3.4 (ii)].
O

Let us collect some elementary properties of the transform @ before estimating the
quantities d and D.

Lemma6 Let ¢: (0, 00) — [0, 00) be a monotonically increasing function which is
not everywhere zero and ¢(a) := /ap(a).
Then, we have
Elol:;ﬂ
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1. forevery$ € (/3((0, oo)) \ {0} that

®[p1(8) = ¢(¢™"(8)) and,
2. if ¢ is additionally right-continuous, that

D[@]1(8) < 9§~ (8)) for every § > 0.

Proof 1. Since ¢ is strictly increasing on {o > 0 | @() > 0} and § € ¢((0, 00))\ {0},
there exists exactly one point « > 0 with ¢(«) = &, which then is by definition
o = ¢~ (8). Thus, we have that ¢(¢~'(8)) = 8, which means that

2

¢l

p@ ') = = 2[p](5).

2. Since ¢ is right-continuous and monotonically increasing, it is upper semi-
continuous and so is ¢. Thus, the set {& > 0 | ¢(a) > 8} is closed and therefore
®~1(8) = min{a > 0 | ¢(a) > 8}. In particular, we have that the inequality

52

PG (8) = 8, thatis, p(¢~'(8)) > = P[9](6), (24)

O

holds.
O

Lemma?7 Let ¢,y : (0,00) — [0, 00) be monotonically increasing functions which
are not everywhere zero.
Then,

1. ¥ < @ implies that @[] < ®[¢] and,
2. if ¢ is additionally right-continuous, then @[] < @[¢] also implies yr < ¢.

Proof We set ¢(a) := +/ap(a) and 1@(0{) = Jay ().
1. Let ¢ < ¢. Then, we have

¥®) =inflo > 0 ey (@) 2 8%} = inflo > 0| (@) 2 8% = §7' )

and thus

2 2

8
P 8) = = =
WO = 55 < 515,

= P[¢](3).
2. Conversely, if @[] < @[g], then we get immediately that P! < 1/}’1.
Now, let « > 0 be arbitrary. If ¥ (o) = 0, there is nothing to show; so we assume
EOE';W
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@(a) > 0 and define § := @(a). Then, o = 1&’1(8) > $~1(8), so that we find
with Eq. 24 (using the right-continuity of ¢) that

Vag@) > ¢@718) = 8 = Vay (a).

So, (@) = ¥ (a).

O

Lemma8 LetC > 0,¢ > 0, and ¢: (0, 00) — [0, 00) be a monotonically increasing
function which is not everywhere zero. We set

¥ (a) = Clo(ta).
Then,
D[Y1(8) = C2P[p](£6).

Proof We define again ¢ () := /a@(«) and 1@(0[) = Ja(a). Then, we have for
every § > 0 that

U8 = infle > 0 | ay (@) > 8%} = inf{a > 0 | CPap(c’a) > 87}

L. s 5 (G c 5y2 Loy .
= C_sz{a >0ap(@) = (87} = 29 (&9),
which gives us

oL@ = 2 = g ey
Ty ey T e

m}

Lemma9 Let ¢: (0,00) — (0,00) be a monotonically increasing function and
assume there exists a continuous, monotonically increasing function G: (0, 00) —
(0, 00) such that
o(ya) < GWy)e(a) forally >0, a > 0.
Then,
Plel(yd) = PIGI(Y)Pll(d) forally >0, § > 0.

Proof We get from ¢ (&) < G(y)tp(%&) with Lemma 7 and Lemma 8 that

P[014) = GPle] (Job5)
Elol:;ﬂ
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Thus, switching to the variable y = G(y) = +yG(y) (which means that y =
G~ () and thus, by Lemma 6, ®[G](}) = G(y)), we find with § := %8:

Plel(yd) = PIG1(7)P[pl(6).

2.4 Bounds for the Best Worst-Case Errors

Let us finally come back to the functions d and D, the best worst-case errors of the
regularisation methods defined by the generators (ry)y~0 and (Ry)q=0, respectively.
Here, we derive an estimate between the best worst-case errors and the noise-free
regularisation errors.

Lemma 10 Let x' # 0. Then, we have with the constant o € (0, 1) from Definition 1
item 1 that

d(8) < (1 +0)>@[D](8) and D(8) < (1 + 0)*>®[D](8) forall § > 0.

Proof To estimate the distance between the regularised solutions for exact data y and
inexact data y € Bs(y), we define the Borel measure

w(A) = [F4(G — %,

where F denotes the spectral measure of the operator L L*. Then, we get with Eq. 11
the relation

IXa) = Xa P = (5= 0 RLLOLLG =) = [ aR2Gyduer
©. 1L

= f AW dp () =[x (5) — xa DI
.11
Thus, we have with Eq. 6 the upper bound

1Xa (3) = XaWI? < Ixa(G) = xeOI* = / Mg () dp ()

©,1L1%]
52

< 52 sup Arozl()\) < o2,
Ae(0,IIL)12] o

The triangular inequality gives us then

3 . 2 5 \?
D@) = sup inf (xo,(y)—ﬂ” §oilr;f0(HXa(y)—xTH+aﬁ) . ©5)

yeBs(y) @70

FolCT
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We cistimate the infimum therein from above by the value at o := D! (8), where we
set D(a) := v/aD(a). Since the function D is according to Corollary 1 monotoni-
cally increasing and continuous, we get from Lemma 6 and Definition 5 the identity
D(b_l %)) = bislz((;) = ®[D]($), so that both terms in the infimum are for this choice
of « of the same order. This gives us

2
~ ~ 2
D) < (\/ D(D1(8)) + o | [)_81 (8)) =1+ 0)2<D[D](8). (26)

Because of Eq. 20, we get in the same way

- . 5§ \2
d() = sup inf xa(y)—x"‘—l—cr—)

12
xa(ﬁ)—x‘H < inf (
a>0

yeBs(y) ¥~ Vo
e (x + 8 (27
< — JR—
< inf (| Xa) =" +o 2
< (1+0)*®[D](©),
where we used Eq. 26 in the last inequality. O

_ The following lemma provides relations between the best worst-case errors d and
D of the regularisation methods generated by (ry)~0 and (Ry)o=0, respectively, and
the spectral tail e.

Lemma 11 Let x # 0. Then, there exist constants ¢ > 0 and C > 0 such that we
have the inequalities

d(8) > c®[e](8) and D(8) = CP[e](8) for all § > 0.
Proof To obtain a lower bound on d , We write

2
52 =5+ 5@ = I

+2 (e (3) = 220, xay) — x)

xa(i)—xTH2 =

(28)

2
xa() = x|+ (7 v R2ALILLG - )
+2{ro (LL*)(§ — ), ra (LL*)LL*y — y).

We set é(a) := +/ae(a) and choose an arbitrary @ > 0 with the property that § :=
é(&) > 0. Then, we find according to Definition 1 item 4 a parameter & € (0, 1) with

Ry(a) < 6 foralla € (0, @). (29)

We now consider for § € (0, §) the two cases 6~ 1(8) € a(L*L) \ {0} and 6~1(8) ¢
o (L*L) \ {0}, where o (L*L) denotes the spectrum of the operator L*L.
FolCTM
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— Assume that § € (0, §) is such that s := é=1(8) € o(L*L) \ {0}. From the
continuity of Ry, and Eq. 29, we find that there exists a parameter as € (0, as)
such that

Ry, (as) < 6. (30)

Then, the assumption o5 € o (L*L) \ {0} implies that the spectral projection F of
the operator L L* fulfils Fi4; 24,1 7 0. To estimate Eq. 28 further, we will choose
for given values of & > 0 and § € (0, §) a particular point §. For this choice, we
differ again between two cases.

- If
a8 = F[a5,2a5](rot(LL*)LL*y —y) #0,
we pick
F=y4o
| zes]
in Eq. 28 and obtain
2 2
s (v +opy) =] = fra -]
82
s (2w FRLL) L L 205) + T (e LL ") 205, Zas).
a5 |25

Here, we may drop the last term as it is non-negative, which gives us the lower
bound

xo (v 0py) - XTH2 2

— Otherwise, if

12
xa(y)—ka +48% min Xrozt(k).

Lelas,2as]

Fla5.205)(ra (LL*)LL*y — y) = 0,

we choose z4,5 € R(F[4;5.205]) \ {0} arbitrarily. Then, with y = y 4+ § 7+ ||z 8”

the last term in Eq. 28 vanishes and we find again

'}'2
R | =

Therefore, we end up with

T 2 2 : 2
Xo(Y) — x H +82 min ar2().
r€las,2as]

d©) = sup inf
FeBs(»)*7

) == ot

2 o 2
xa(y)—xTH +82 min Ar2G) ).
A€las,2as]
EOE';W
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Using Eq. 11 and that R,, is by Definition 1 item 3 monotonically decreasing, we
get the inequality

1 - 2 1 - 2
ME0) = (1 - Ra(k)> 2 o (1 - Ra(a(;)) for all A € [as, 203],

and since we already proved in Lemma 2 that d > (I — o)%e, we can estimate
further

. 82 - 2
. 2
d(é) > Ollgli) ((1 —0o)e(a) + 205 (1 - Ra(aS)) ) .

Now, the first term is monotonically increasing in « and, since o +— Ra (L) is for
every A > 0 monotonically increasing, see Definition 1 item 3, the second term is
monotonically decreasing in . Thus, we can estimate the expression for ¢ < ;s
from below by the second term at @ = «;s, and for @ > «; by the first term at
o= ag:

- 82 . 2
d(8) > min {(1 — 0)2e(as), o (1 — Ry, (a3)> } .

Recalling that o5 = ¢~ !(8) and that the function e is right-continuous, we get

from Lemma 6 that e(as) > @[e](5) and have by Definition 5 that i—i = D[e](6).
Thus, we obtain with Eq. 30 that

d(8) > co®[e](8) with co := min {(1 —o)?, L1 - &)2} . G1)

— It remains the case where a5 := ¢~ 1(8) ¢ o (L*L) \ {0}. We define
ap ;= inf{a > 0| e(a) > e(as)} € (0, as].

Since e is right-continuous and monotonically increasing, the infimum is achieved
and we have that e(ag) = e(as). Moreover, ag € o (L*L), since e is constant
on every interval in (0, 00) \ o (L*L) and so g ¢ o (L*L) would imply that
e()) = e(ag) forall & € (g — ¢, ap + €) for some ¢ > 0 which would contradict
the minimality of «g.

Setting 89 := é(ap) (so é~'(89) = ap and, according to Lemma 6, e(ag) =
®D[e](8y)), we have that §¢ = e(ap) < e(as) = 8 and we therefore find with the
monotonicity of d, see Corollary 1, Eq. 31, and Lemma 6 that

d(8) > d(80) > co®lel(80) = coe(ap) = coelers) > co®[el(d).
Thus, we have shown for every § € (0, 5 ) that
d(8) = co®@[el(5), (32)

FoC'T
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where ¢ is given by Eq. 31.
Now, we know from Lemma 6 that ®[e](8) < e(¢=1(8)) < e(||L||%) for every

8 > 0. Thus, setting ¢ := min{co, d(®) }, it follows with Eq. 32 that the inequalit
£ R d quattty

3(8) > c¢P[e](d) holds for every § > O.
Following exactly the same lines, we also get that there exists a constant C > 0
with

D(8) = C®[e](8) for every § > 0.

2.5 Optimal Convergence Rates

Putting together all these results, we can characterise the convergence of the regular-
isation errors for noise-free data and the best worst-case errors equivalently in terms
of the regularity of the minimum norm solution, concretely, in the behaviour of the
spectral tail. And we have shown in [3] that this can also be written in the form of
variational source conditions.

Theorem 1 Let ny € (0, 1) be an arbitrary parameter and ¢ : (0, co) — (0, 00) be a
monotonically increasing function which is compatible with (ry)q~0 in the sense of
Definition 4. (The function ¢ represents the expected convergence rate of the regular-
isation method.)

Then, the following statements are equivalent:

1. There exists a constant C, > 0 such that e(A) < C.q@()) for every A > 0, meaning
that the ratio of the spectral tail and the expected convergence rate is bounded.

2. There exists a constant Cq > 0 suchthatd(o) < Cqe(a) for every a > 0, meaning
that the ratio of the noise-free rate of the regularisation method and the expected
convergence rate is bounded.

3. There exists a constant Cp > 0 such that D(x) < Cpe(a) for every a > 0,
meaning that the ratio of the noise-free rate of the envelope generated regularisation
method and the expected convergence rate is bounded.

4. The expected convergence rate satisfies the variational source condition that there
exists a constant C, > 0 with

1
<xT, x> < Gyl (L*L)x||"|x||'™" for all x € X. (33)
If the function ¢ is additionally right-continuous and G-subhomogeneous in
the sense that there exists a continuous and monotonically increasing function
G: (0, 00) — (0, 00) such that
p(ya) = G(y)e(a) forally >0, a >0, (34
then every one of these statements is also equivalent to each of the following two:

FolCT
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5. There exists a constant C5 > 0 such that ) < C;P[pl(8) for every § > 0,
meaning that the best worst-case error of the regularisation method and the noise-
[free tonoisy transformed expected convergence rate is bounded (in fact this justifies
the name of the noise-free to noisy transform).

6. There exists a constant C, > 0 such that D) < Cp®lpl(8) for every § > 0,
meaning that the best worst-case error of the envelope regularisation method and
the noise-free to noisy transformed expected convergence rate is bounded.

Proof We first note that there is nothing to show if xT =0, sincethene =d = D =
d=D = 0, see Eq. 18, Egs. 25, and 27. So, we assume that xt # 0.

We also remark that if ¢ is compatible with a regularisation method in the sense of
Definition 4 and C > 0, then C¢ is compatible with the regularisation method.

1 = 3: This follows directly from Lemma 3.

3 = 2: This follows directly from Lemma 2.

2 = 1: This follows again directly from Lemma 2.

1 <= 4: This equivalence was proved in [3, Proposition 4.1].

3 = 5: Since D < Cpg, we get from Lemma 7 and Lemma 8 that

@[D](8) < ®[Cpel(8) = CDCD[w](C;%B) for every § > 0.
Now, using the assumption from Eq. 34, we find with Lemma 9 that
@[D]($) < CDdi[G](C;%)d?[w]((S) for every 6 > 0.
We therefore get from Lemma 10 that
) = (1 +0P@DIG) = (1 +0°Cpd[GI(Cpy ) Blg](6) for every 5 > O,

where o € (0, 1) is the constant from Definition 1 item 1.
3 = 6: As before, Lemma 10 implies

D) < (1+0)*@[D]() < (1 + U)ZCDQ[G](C;%)fp[(p](S) for every § > 0.

5 == 1: The estimate d < C 7Ple] together with the constant ¢ > 0 found in
Lemma 11 yields that

P[e](6) < l617(5) < ﬁ<15[<,0]((3) for every § > 0.
c c

Since we know from Lemma 8 that the function v : (0, co) — (0, 00),
defined by

Ci (Ca Ci
Y(a) i= —¢ | —a], fulfils 2[¢¥](§) = —=P[¢p](§) for every § > O,
C C C
Elol:;ﬂ
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it follows that @[e] < @[¥] and we get with Lemma 7 and Eq. 34 that
C; C; C; C;
e(a) < Y(a) = ¢ | —“a) < =G| —)¢a) forevery a > 0.
Cc C C C

6 = 1: The estimate D < C 5Ple] yields with the constant C > 0 found in
Lemma 11 the inequality

1 -~ C[)
Ple](d) < ED((S) < ?05[(;)](8) for every § > 0

and thus with Eq. 34 as above:

Cr Cr Cr Cr
e(a) < ?Dgo (?Da) < ?DG <?D> ¢ () for every o« > 0.

]

Remark 6 We note that the conditions in Theorem 1 item 2, item 3, item 5, and item
6 are convergence rates for the regularised solutions, which are equivalent to the
spectral tail condition in Theorem 1 item 1 and to the variational source conditions
in Theorem 1 item 4. We also want to stress, and this is a new result in comparison
to [3], that this holds for regularisation methods ()0 Whose error functions 7, are
not necessarily non-negative and monotonically decreasing and that this also enforces
optimal convergence rates for the regularisation methods generated by the envelopes
(Ry)o>0-

The first work on equivalence of optimality of regularisation methods is [21], which
has served as a basis for the results in [3]. The equivalence of the optimal rate in
Theorem 1 item 1 and the variational source condition in Theorem 1 item 4 has been
analysed in a more general setting in [10-12,15]

In particular, all the equivalent statements of Theorem 1 follow (under the assump-
tions of Theorem 1) from the standard source condition, see [13, e.g. Corollary 3.1.1].
However, the standard source condition is not equivalent to these statements, see, for
example, [3, Corollary 4.2].

Proposition1 Let ¢: (0, 00) — (0, 00) be a monotonically increasing, continuous
function such that the standard source condition

i 3(L*
x' e R(p2(L*L))
is fulfilled.
Then, there exists for every n € (0, 1] a constant C, > 0 such that

1
<xT,x> < Cyll@? (L*L)x||"|x]|'™" for all x € X.

Proof This statement is shown in [3, Corollary 4.2]. |
EOE';W
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Let us finally take a look at the additional condition of G-subhomogeneity intro-
duced in Eq. 34 in Theorem 1 to prove optimal convergence rates for the best worst
case errors and check that the convergence rates from Example 2 satisfy this condition.

Lemma 12 Let <pl1;l and (p,]; denote the families of convergence rates defined in Exam-
ple 2.
Then, we have for every parameter (1 > O that

1. the function (,()II:I is G-subhomogeneous for G(y) := y* in the sense of Eq. 34 and
2. there exists a monotonically increasing, continuous function G : (0, oo) — (0, 00)
such that function (plI; is G-subhomogeneous in the sense of Eq. 34.

Proof 1. We clearly have (p}f(yoz) = y“(p;l(a) forally > Oand a > 0.
oL (ye)
oh(@)
1 and

2. We consider the function g(«; y) := .Since g: (0, 00) x (0, 0c0) — (0, 00)

is continuous, g(o; y) < 1 fora > e~

lim oa: ) = I |log | "
im ;y)=lim | ——— | =1,
a0 8 Y= 0 [logr| —log y

the function G : (0, 00) — (0, 00), é(y) '= SUPye(0,00) & (a5 ¥) is well-defined,
monotonically increasing and satisfies by construction (pb(ya) < é(y)(pl]z () for

ally > 0 and @ > 0. Thus, ¢" is G-subhomogeneous for every monotonically
increasing, continuous function G with G > G.
O

2.6 Optimal Convergence Rates for the Residual Error

By applying Theorem 1 to the source (L*L)%xf, we can directly establish a relation
to the convergence rates for the noise-free residual errors ¢ and Q of the regularisation
method and the envelope generated regularisation method as defined in Eq. 15.

Corollary 3 We introduce the squared norm of the spectral projection of =
17,
(L*L)2x" as

) A
Z(0) = ”E[O,WETH :/O i de(i). (35)

Let ¢: (0, 00) — (0, 00) be a monotonically increasing function which is compatible
with (ry) a0 in the sense of Definition 4. Then, the following statements are equivalent:

1. There exists a constant C; > 0 such that e(A) < Cz@()) for every . > 0.
2. There exists a constant Cy > 0 such that g(a) < Cy¢(a) for every a > 0.
3. There exists a constant Cp > 0 such that Q(«) < Co@(a) for every a > 0.

Proof We first remark that since x™ € NV(L)+ = N(L*L)*, also x" € M(L)* and
is therefore the minimum norm solution of the equation Lx = y with y = Lx' =

FoC'T
e,
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L(L*L) %xT. The claim now follows from Theorem 1 for the minimum norm solution
%' by identifying the function e with ¢ and the distances d and D because of

Iz Iz
q@) = / AF2(2) de(r) = / 72(1)de(n) and
0 0 (36)

IZI?
Q) = / R2(n) de(n),
0

see Lemma 1, with ¢ and Q, respectively. O

From Corollary 3, we can obtain a non-optimal characterisation for the convergence
rates of the noise-free residual errors ¢ and Q in terms of the spectral tail e of the
minimum norm solution x ¥ instead of having to rely on the spectral tail & of the point

(L*L)2xt.

Corollary 4 Let ¢: (0, 00) — (0, 00) be a monotonically increasing function which
is compatible with (ry)q=0 in the sense of Definition 4 and fulfils

re(h) < @(L) forall A > 0, 37)

meaning that the ratio of the spectral tail and ¢ is bounded by the spectral represen-
tation of the inverse of L*L.
Then, there exists a constant C > 0 such that we have

q(a) < Q(a) < Co(a) forall a > 0. (38)

Proof The first inequality follows with Definition 1 item 3 directly from the represen-
tation in Eq. 19 for ¢ and Q:

IL)2 Li?
g(a) = / AF2(h) de(r) < / AR (L) de(h) = Q(a). (39)
0 0

For the second inequality, we use that the function e defined in Eq. 35 fulfils
Ao by .
e(A) = / Ade()) < A/ de(L) = re(X) < @(A) for every A > 0. (40)
0 0

Thus, Corollary 3 implies that there exists a constant C > 0 with Q(«) < C¢(«) for
alla > 0. O

Remark 7 In particular, Corollary 3 implies that Eq. 38 holds for all monotonically
increasing functions ¢ with ¢(«) > ca for some ¢ > 0 which are compatible with
(ra)a>o0-

The condition in Eq. 37 is, however, not equivalent to those in Corollary 3.
FolCT
u o
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Example 3 Let x' be such that its spectral tail e has the form

1
e(h) = for A € (0, Ao] (41)
[log A|

for some A € (0, 1).
Then, we claim that e, defined by Eq. 35, converges faster to zero than A — Ae(}),
that is,

e(L)
lim =0,
1—0 Ae()r)

(42)

proving that the condition in Eq. 37 is stronger than those in Corollary 3.
To verify Eq. 42, we plug in Eq. 35 and perform an integration by parts in the
numerator to obtain

_ AT 47
im et =1-— lim —fo @) di
1—0 Ae(Rr) =0 Ae(r)

Now, L'Hospital’s rule implies that

€0 _ |y e(V) X 1

ey 0 aSbe) +re ) 0 1a1i 0
€ e € 1+ limy ¢ e(h)

Inserting our expression for e from Eq. 41, we find that

re' (M) . 1
m = lim =
1—0 e(A) A—0 |10g)»|

herein, which shows Eq. 42.

Since e tends by definition faster to zero than the identity ¢: (0, co) — (0, 00),
¢(0) = «, the noise-free residual errors ¢ and Q also converge (without imposing
an additional source condition) faster than the identity provided that ¢ is compatible
with (rq)a>0-

Corollary 5 If the convergence rate ¢: (0, 00) — (0, 00), () = « is compatible
with (r4)e=0 in the sense of Definition 4, then we have that

.qle) . Q@)
lim —— = lim =

a—0 o a—0 o

0.

Proof Since g < Q, see Eq. 39, it is enough to prove it for the function Q. We define
e as in Eq. 35 and differ between two cases.

Elol:;ﬂ
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— If e(A) = O for all A € [0, Ag] for some 1y > O, then we estimate, using the
integral representation for Q from Eq. 36,

LI
O(a) = / R2(0)de(n) < R2Ga)II(L*L)2xT|1%.

)

Since ¢ is compatible to (ry)y>0, we known from Eq. 22 that

i 2@ 0.
o

R2(n
i % (%0) _
a—0 o

= ILx"||? lim
a—0
— If e(A) > O for all A > 0, then we first construct using the compatibility of ¢,
as in the proof of Lemma 3, a monotonically decreasing and integrable function
F: [0, 0) - R with
RZ) < F(2)foralla > 0and 0 < A < |[L|%.

Next, we pick a monotonically increasing function f: (0, co) — (0, | L %) with

lim f(a¢) =0and lim d@) =00 (43)
a—0 a—0 o
and split the integral in Eq. 36 for Q at the point f(«) into two giving us
e fer e
Q) =/ Ry, (A) de(n) 5/ F(%)de(d) +/ F(%)de(2). (44)
0 0 fe)
We check that both terms decay faster than «.
— Since e fulfils by its definition in Eq. 35 that
e(A
lim ﬂ =0,
=0 A
we find for every ¢ > 0 a value g > 0 such that
e(M) <erforall0 < A < f(ap). 45)
Therefore, we get for the first term in Eq. 44 with the substitution z = %
that
fl@) | fl)y | N -
f F(2)den) < f F(X2)de(n) < ea F| i forall @ < ag.
0 0
And since this holds for arbitrary ¢ > 0, we see that
1 f@
lim — F(%)de(r) = 0.
a—0 o 0 o
FolCT
u o
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— For the second term in Eq. 44, we remark that Eq. 45 also implies that there
exists a constant C > 0 with

e(l) < Cxforall A > 0.

Thus, we find with the substitution z = % that

o]

1L Lz _ .
/ F(2)den) < / F(¢%yde(n) < Ca/ F(z)dz

(@) (@) Yo

for all « > 0. According to our choice of f, see Eq. 43, the integral converges
to zero for « — 0 and we therefore obtain

.
lim — F(%)de(n) = 0.
=0 i)

O

The results of this section explain the interplay of the convergence rates of the
spectral tail of the minimum norm solution, the noise free regularisation error, and
the best worst-case error. For these different concepts, equivalent rates can be derived.
Moreover, these rates also infer rates for the noise-free residual error. In addition to
standard regularisation theory, we proved rates on the associated regularisation method
defined in Eq. 9.

3 Spectral Decomposition Analysis of Regularising Flows

We now turn to the applications of these results to the method in Eq. 2 with some
continuous functions ax € C((0,00); R), k = 0,..., N — 1. We hereby consider
the solution as a function of the possibly not exact data y € ). Thus, we look for a
solution £: [0, 00) x YV — X of

N-—1

NEw; )+ Y ar(dEW: §) = —L*LE(; §) + L*5 forall 1 € (0,00), (46a)
k=1

ke 5)=0 forallk € {0,..., N — 1}, (46b)

such that £(-; y) is N times continuously differentiable for every y.

The following proposition provides an existence and uniqueness of the solution
of flows of higher order. In case that the coefficients a; are in C*°([0, c0); R) the
result can also be derived simpler from an abstract Picard—Lindel6f theorem, see, for
example, [18, Section I1.2.1]. However, in our case a; might also have a singularity at
the origin, such as in Eq. 5, and the proof gets more involved.

FoC'T
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Proposition2 Let N € N and y € Y be arbitrary, and let A — E, denote the
spectral measure of the operator L* L.
Assume that the initial value problem

N-1
8,N/5(t; A+ Z ak(t)Z),k p(t; A) = —=xp(t; A) forall . € [0,00), t € (0, 00),
k=1
(47a)
8{‘,5(0;)0:0 forall . € [0,00), ke{l,...,N —1},
(47b)
p0; 1) =1 forall » € [0, 00),
47c)

has a unique solution p: [0, c0) x [0, c0) — R which is N times partially differen-
tiable with respect to t. Moreover, we assume that 3,",6 e C1([0, 00) x [0, 00); R) for
everyk € {0,..., N}.

We define the function p: [0, c0) x (0, 00) — R by

1=p@: 4

A= 48
p(t; 1) 5 (48)
Then, the function £(-; y), given by
E(t;y) = [ ) o(t; M) dE, L™y for every t € [0, 00), (49)
O.11L117]

is the unique solution of Eq. 46 in the class of N times strongly continuously differen-
tiable functions.

Proof We split the proof in multiple parts. First, we will show that p and &, defined by
Egs. 48 and 49, are sufficiently regular. Then, we conclude from this that £ satisfies
Eq. 46. And finally, we show that every other solution of Eq. 46 coincides with &.

— We start by showing that the function p defined by Eq. 48 can be extended to a
function p: [0, o0) x [0, 00) — R which is N times continuously differentiable
with respect to ¢ by setting

p(1;0) := —0,p(1; 0). (50)

For this, we only have to check the continuity of all the derivatives at the points
(t,0), t € [0, 00). We observe that the solution of Eq. 47 for . = 0 is given by

p(t;0) =1 forevery t € [0, 00).

For the derivatives 8," o, k € {0, ..., N}, we therefore find with the mean value
theorem (recall that akatk p = 8{‘8;,6 according to Schwarz’s theorem, see, e.g.,
EOE';W
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[23, Theorem 9.1], since 8f,5 S Cl([O, o0) x [0, 00); R) forevery € € {0, ..., k})
and Eq. 50 that

Gim (3fp @7 — 0 00.0))
(f,))—(t,0)

OKp(7,0) — %5 (F, A 5
— lim (”O( ) — 9 )+8tl‘3kp(t;0)>

(7,7~ (2,0) A
= lim (afaxp“(t; 0) — 8,055, i)) —0,
(7.3~ (1,0
which proves that a,k,o is forevery k € {0, ..., N} continuous in [0, c0) X [0, 00).
— Next, we are going to show that the function & is N times continuously differen-
tiable with respect to ¢ and that its partial derivatives are for every k € {0, ..., N}
given by
OfE(t; ) = / of p(t; 1) dE, L5, (51)
©.IZ1%)

To see this, we assume by induction that Eq. 51 holds for k = ¢ for some ¢ €
{0,..., N — 1}. Then, we get with the Borel measure 7«5 on [0, 0o) defined by
1r+5(A) = [EAL*||* that

ILE( + e §) — 0LE(t: 2
lim CE(t+h;y) E(; ) _/ Bpr(t;)\)dEAL*f
h—0 h ©.ILI2]
ot h; A — ot 1A 2
= lim / ( (U R D)~ B )—af“p(t; A)) dE; L*y
h=0 [ J (0,112 h
Aot +h: 2) —lp(t: :
= lim ( Pl hid) =3 p( )—af“p(t;x)) dpugs5(0).
h=0J 0,112 h

Now, since B,Z‘H p is continuous, it is in particular bounded on every compact
set [0, T'] x [0, ||L||2], T > 0. And since the measure ji7+5 is finite, Lebesgue’s
dominated convergence theorem implies that

et + h: y) — 3LE@: 3 2
fim |2 FHD Z%EES) 3 p(1: 1) dE, L*5
h t
h—0 (O, IIL1I%]
[ 8fp(t+h; M) =3t p(; 2) 2
=/<0|L||212L“B<lp h t — o h) ) dug5 () =0,

which proves Eq. 51 for k = £+ 1. Since Eq. 51 holds by definition of £ for k = 0,
this implies by induction that Eq. 51 holds for all k € {0, ..., N}.

FoC'T
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Finally, the continuity of the Nth derivative 3}V & follows in the same way directly
from Lebesgue’s dominated convergence theorem:

- . 12 . 2
tim o7& $)—0Net; )| =1lim (0 pE =8Nt 0))” dupag=o0.
t—t t—t J(0,||L|"]

— To prove that & solves Eq. 46, we plug the definition of p from Eq. 48 into Eq. 51
and find

N-—1
oV ) + Y awdfE: §)
k=1
1 N N—1 .
- —(a¥50; ) + "k p(t: 1) | dE;, L*5.
/<o,||L|2M (t ;;ak t ) e

Making use of Eq. 47, we get that & fulfils Eq. 46a:

N—1
Ve )+ 3 e ) = /(0 L FEDABLS
k=1 ’

= / (=2p(t; 1) + 1) dE, L™y
©.IIL1%]

=—L"LE(t;7) + L*y.

(We remark that we have the relation R(L*) c N(L)* = N(L*L)* which
implies the ldentlty E(O, HLHZJL*& = L*y)
And for the initial conditions, we get, in agreement with Eq. 46b, from Eq. 51 that

ake; 3) = _/«) . 0¥ 5(0; 1) dE,L*5 =0, ke {l,...,N —1}, and

1 —0(0; A -
£(0: §) =/ 1=pO:8) g, 145 = 0.
©,ILI2] A

— It remains to show that Eq. 49 defines the only solution of Eq. 46.
So assume that we have two different solutions of Eq. 46 and call &, the difference
between the two solutions. We choose an arbitrary #y > 0 and write 8,1‘ & (to; y) =

£® for everyk € {0, ..., N — 1}. Then, &j is a solution of the initial value problem
N-—1

ONE(t:9) + Y an(t)df€o(t; §) = —L*LEo(t; 7) forall 1 € (0,00)  (52a)
k=1

ke (to; ) = £® forallk € {0,...,N —1}. (52b)

FolCTM
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We know, for example, from [18, Section II.2.1], that Eq. 52 has a unique solution
on every interval [#1, 2], 0 < #; < ty < t2. Thus, we can write &y in the form

N—-1
awH =Y [ prn e
=0 710.0)

with the functions p; solving for every A € [0, co) the initial value problems

N—-1

0/ pe(t: 1) + Y ar(®df pe(ts 1) = —hpe(t: 4) forall 1 € (0, 00)
k=1

3 pe(10; 1) = 8re forallk,¢€{0,...,N —1}.

(Since ay is continuous on (0, 00), Lebesgue’s dominated convergence theorem is
applicable to every compact set [1, 2] x [0, ||L||2], O0<th<ty<hnh.)

Now, we have for every measurable subset A C [0, oo) andeveryk € {0, ..., N —
1} that
N-1
IEAdf E0(; HIZ= ) / O pe(t: WO pun (15 1) diter gom (3,
A

£,m=0

where the signed measures g, ,,, 11,12 € X, are defined by g, ,,(A) =
(1, Eana).

The measures Mg ® gom with £ # m are absolutely continuous with respect to
He® g and with respect to Mg m) g m) - Moreover, we can use Lebesgue’s decom-
position theorem, see, e.g., [24, Theorem 6.10], to split the measures Me® g©)
t € {0,...,N — 1}, into measures u;, j € {0,...,J}, J < N — 1, which are
mutually singular to each other, so, explicitly, we write

J
Mg gm) = Z fjlml/«j
=0

for some measurable functions f¢n, with fje, = fjme. Since then

2y N-1
0< DM i) M THCTACIR LY
=0

£,m=0

N—-1
> f ge(h) dE, £
(=074

has to hold for all functions g, € C([0,00);R), £ € {0,..., N — 1}, and all

measurable sets A C [0, 00), the matrices F;(A) = (fjem (A))Z ,;]:0 are (after

possibly redefining f¢, onsets A jgp, with (A je,) = 0) positive semi-definite.
FolCTM
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Thus, we have for every measurable set A C [0, co) that

J N-1
IEadf&o(: I =) /A D FiemO0f pe(t; 20 pn (£ 1) dpaj (1),
=0

£,m=0

where the integrand is a positive semi-definite quadratic form of Btk p, namely
(atl‘p)TF/(Btkp), where p = (pg)évz_ol. We can therefore find for every j €
{0, ..., J} and every A a change of coordinates O;(A) € SOy (R) such that the
matrix OJT(A)F (M) 0;(A) = diag(d jg()h))?’:?)] is diagonal with non-negative diag-
onal entries dj¢(A). Setting pj¢(t; A) = (O;(XM)p(t;A)e and iy = djepj, we
get

J N-1

2
IEAd & HIP =" fA (67t ) ditjen). (53)

j=0 =0

Since &p: [0, 00) — X is N times continuously differentiable, it follows from
Eq. 53 that

In) 2
/ / (afﬁﬂ(t; .)) djije(1)dr < oo forevery k € {0, ..., N},
0 [0,00)

and therefore, there exists a set A ¢ C [0, 00) with f1;¢([0, 00) \ Aj¢) = 0 such
that

fo 2
/ (Bfﬁﬂ(r;)\)> dt < coforevery A € Ajoandevery k € {0,..., N}.
0

So, pje(-; A) is for every A € Ajy in the Sobolev space HN ([0, 1], ije). By
the Sobolev embedding theorem, see, e.g., [2, Theorem 5.4], we thus have that
B,k,éﬂ(-; A) extends forevery A € Ajgandevery k € {0, ..., N — 1} continuously
to a function on [0, 7p].

Since & is the difference of two solutions of Eq. 46, we have in particular that

lim 950 (2; 31> = 0 forevery k € {0, ..., N — 1}.
t—

Thus, Eq. 53 implies that Bf‘ﬁjg(t; ) — 0in L2([O, 00), 4 j¢) with respect to the
norm topology as t — 0. Because of the continuity of af pje(; A), this means that
there exists a set A je with 12 ¢([0, 00) \ A j¢) = 0 such that we have for every
kel0,...,N—1}:

lin}) afﬁjg(t; A) = 0 for every A € ANjg.
t—
EOE';W
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But since Eq. 47 has a unique solution, this implies that p;¢(¢; A) = 0 for all

t €[0,00), A € A~.,'g, and therefore, because of Eq. 53, that &y(¢; ¥) = O for every
t € [0, 00), which proves the uniqueness of the solution of Eq. 46.

]

In the following sections, we want to show for various choices of coefficients a; that
there exists a mapping 7 : (0, oo) — (0, 0o) between the regularisation parameter «
and the time ¢ such that the solution & corresponds to a regularised solution x,, as
defined in Definition 2, via

E(T(a); y) = xa(3)

for some appropriate generator (ry)qy~0 Of a regularisation method as introduced in
Definition 1. Since we have by Definition 2 of the regularised solution that

xa(5) = ra(L*L)L*5 = / ro(0) dE, L*
(O, 1LI*]

and the solution & is according to Proposition 2 of the form of Eq. 49, this boils down
to find a mapping T such that if we define the functions ry by

ra(A) = p(T (@); 1),

they generate a regularisation method in the sense of Definition 1.

4 Showalter’s Method

Showalter’s method, given by Eq. 3, is the gradient flow method for the functional 7.
According to Proposition 2, we rewrite it as a system of first-order ordinary differential
equations for the error function p of the spectral values A of L*L, which in this
particular case reads

0rp(t; M)+ Ap(t; A) =0forall A € (0,00), t € (0, 00),

~ (54)
0(0; 1) = 1forall A € (0, 00).
Lemma 13 The solution p of Eq. 54 is given by
p(t;0) =e M forall (1, 1) € [0, 00) x (0, 00). (55)

In particular, the solution of Showalter’s method, that is, the solution of Eq. 46 with
N =1, is given by

1— C_M
E(1; 5) =/ ——  dE,L*§, (56)
(VAT I—"
Elol:;ﬂ
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where A — E 4 denotes the spectral measure of L*L.

Proof Clearly, the smooth function p defined in Eq. 55 is the unique solution of

Eq. 54 and the function p defined in Eq. 48 is p(t; A) = 1_‘;:M ,t>0,A > 0. So,

Proposition 2 gives us the solution Eq. 56. O

Next, we want to show that, by identifying o« = % as regularisation parameter,

the solution é(é; y) is a regularised solution of the equation Lx = y in the sense
of Definition 2. For the verification of the property in Definition 1 item 1 of the
regularisation method, it is convenient to be able to estimate the function 1 — e~ by

N

Lemma 14 There exists a constant oy € (0, 1) such that

1 —e % < og/z forevery z > 0. (57)

Proof We consider the function f: (0, c0) — (0, 00), f(z) = 1=¢* Since we have

Jz
lim;¢ f(z) = 0 and lim;_,» f(z) = 0, f attains its maximum at the only critical

point zg > 0 given as the unique solution of the equation

e_Z 1 _ a2 e_Z
0=f()=—F4=—-—F—=—75QRz+1-¢%, 2>0,
NEIPS 272

where the uniqueness follows from the convexity of the exponential function. Since
2z +1 > e* at z = 1, we know additionally that zop > 1. Therefore, we have in
particular

f(2) < f(z0) <1 —e7% < 1forevery z > 0,

which gives Eq. 57 upon setting og := 1 — e, O

In order to show that Showalter’s method is a regularisation method, we verify now
all the assumptions in Definition 1.

Proposition 3 Let p be the solution of Eq. 54 given in Eq. 55. Then, the functions
(ra)(x>() deﬁnEd by

1 i | —c
ra(X) := - (1-5;0)= — (58)

generate a regularisation method in the sense of Definition 1.

Proof We verify that (ry)~0 satisfies the four conditions from Definition 1.

1. We clearly have r,(A) < % < % To prove the second part of the inequality
Definition 1 item 1, we use Lemma 14 and find
ra(h) < —=.
oA

EOE';W
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where op € (0, 1) denotes the constant found in Lemma 14.

2. Moreover, the function 7y, given by 7y (L) = ,5(%; A) = e_%, is non-negative and
monotonically decreasing.

3. Since 7, is monotonically decreasing and o +> 7, (X) is monotonically increasing,
we can choose Iéa := F, to fulfil Definition 1 item 3.

4. We have Ry (o) = Fy(a) = e~ ! < 1 for every o > 0.

]

Finally, we check that the common convergence rate functions are compatible with
this regularisation method.

Lemma 15 The functions (,DII:I and (plI; definedin Example 2 are for all n > 0 compatible
with the regularisation method (ry) >0, defined by Eq. 58, in the sense of Definition 4.

Proof According to Corollary 2, it is enough to prove that go}j is for arbitrary u > 0
compatible with (r4)q~0. To see this, we remark that

H
- ) 1
Rg(k) —e 2k _ F, (%) with F,(z) = exp(—Zlet).

Since [} exp(—ZZﬁ)dz =p [T e M wt dw < oo forevery u > 0, F, is inte-
grable and thus, gallf is compatible with (ry)g~0. O

We have thus shown that we can apply Theorem 1 to the regularisation method
which is induced by Eq. 3, that is, the regularisation method generated by the functions
(ra)a>0 defined in Eq. 58, and the convergence rate functions (p}f or (pb for arbitrary
w > 0. This gives us optimal convergence rates under variational source conditions
as defined in Eq. 33, for example.

However, to compare with the literature, see [9, Example 4.7], we formulate the
result under the slightly stronger standard source condition, see Proposition 1.

Corollary 6 Let y € R(L) be given such that the corresponding minimum norm solu-
tion x' € X, fulfilling Lx" = y and ||x"|| = inf{||x|| | Lx = y}, satisfies for some
w > 0 the source condition

e R((@FL)?). (59)

Then, if & is the solution of the initial value problem in Eq. 3,

1. there exists a constant C1 > 0 such that
12
HE(I; y) — & ” <Cit *foralt > 0;
2. there exists a constant Co > 0 such that

2 2 B
inf 6 5) —x*|” < Co U5 = 1 orait 5 e v
t>
Elol:;ﬂ
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and
3. there exists a constant C3 > 0 such that

ILE®; y) — yI2 < C3t L forallt > 0.

Proof We consider the regularisation method defined by the functions (ra)wo from
Eq. 58. We have already seen in Lemma 12 and Lemma 15 that the function ¢, Hia) =
at is G-subhomogeneous in the sense of Eq. 34 with G(y) = y* and compatible
with the regularisation method given by (r4)¢>0-

1. According to Proposition 1 and Theorem 1 with the convergence rate function
@ = <pl’j, the source condition in Eq. 59 implies the existence of a constant Cy4 such
that

d(@) < Cagy () = Cga,

where d is given by Eq. 13 with the regularised solution x,, defined in Eq. 8 fulfilling
according to Eqs. 58 and 56 that

l—e @«

xa(§)=ra(L*L)L*~=/ e —
O, 11L1%]

AL =£(;5 9. (60)

Thus, by definition of d, we have that
2 2 C
H"g“(t; y) —xTH = Hxl(y) —xJ’H = d(%) < t_ud for every ¢t > 0.
t
2. According to Theorem 1, we also find a constant C 7 such that
- u o
d(é) = C3Ply,1(8) = Czér+T,

where @ denotes the noise-free to noisy transform defined in Definition 5 and d is
given by Eq. 14 with the regularised solution x, given by Eq. 60. Therefore, we
have that

inf (s 5) — 7 H = inf [e(: 5) -« H <d(I5 -yl < C; 15—yl

a>0

forevery y € ).
3. Furthermore, Theorem 1 implies that there is a constant C, > 0 such that e(d) <
Cepy H()). In particular, we then have re(A) < ¢ +1(A) And since ¢ 1 is by
Lemma 15 compatible with (ry)y~0, We can apply Corollary 4 and find a constant
C > 0 such that the function ¢, defined in Eq. 15 with the regularised solution x,
as in Eq. 60, fulfils

q(@) < Ce;l, () forall o > 0.
FoE"ﬂ
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1 7
: —t+— p(t;0.5)
AN ---t—p(t1)
051 s N_ | t— p(t;5)
H AN

—0.5 +

Fig.2 Graphs for the function p for the value b = 2. The non-monotonicity of the functions ¢t + 5(; 1)
and A — p(t; A) requires to compare the rates with the regularisation methods derived from the envelope

Thus, by definition of ¢, we have

C

2
1L ) = yI2 = | Lxs () = y| =4} = o forall 1 > 0.

m}

We emphasise that for Showalter’s method, we did not make use of the extended
theory involving envelopes of regularisation methods (cf. Definition 2), and this theory
could have been developed also with the regularisation results from [3].

5 Heavy Ball Dynamics

The heavy ball method consists of Eq. 2 for N = 2 and a;(t) = b for some b > 0,
that is, Eq. 4.

According to Proposition 2, this corresponds to the initial value problems for every
A>0

O p(t; M) +Dbosp(t; M) + Ap(t; L) =0 forallt € (0, 00),
90(0; A) =0, (61)
o0; A) = 1.

Lemma 16 The solution of Eq. 61 is given by

[

e (cosh (B-(0)%) + b5 sinh (B-(0%)) ifre 0.5,
Pt 2) = Y (cos (B 00%) + gy sin (B+ (M%) ifh € (5. 00), (6)
I+ ir="

4 4
B-(A) = l—b—zand/3+(k)= ﬁ—l, (63)

FoC'T
e,
@ Springer |03
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see Fig. 2. In particular, the solution of Eq. 4 is given by

- 1—p(; A -
£t §) = / L=p8) 4g, 175, (64)
©,IILI] A

where A — E 4 denotes the spectral measure of L*L.

Proof The characteristic equation of Eq. 61 is
2N +bz(M) + 1 =0

and has the solutions

Gy =2 b2, and Gy=_24 ¥
R N V1 @2 =75 TR

2 .
Thus, for A < bz, we have the solution

. bt b? . b?
pt;A)=e 2 | Ci(A)cosh | ¢ Z—A + Cp(A) sinh | ¢ Z—A ;

2 . . .
for A > I’T, we get the oscillating solution

bt b2 b2
pt; ) =e 2 | Ci(X)cos t‘M_I + C2 (X)) sin Z‘M_Z ;

2
and for A = bT, we have

p(t: 1) = e 2 (C1(0) + CL(000).

Plugging in the initial condition p(0; A) = 1, we find that C;(A) = 1 for all A > 0,
and the initial condition 9;p(0; A) = 0 then implies

Ca() b? A bf A b
— —A=—forA < —,
2 4 2 4
2 b b?

Cr()) A—Z: for A > T and

C(f) =

NS

Moreover, since p is smooth and the unique solution of Eq. 61, the function & defined
in Eq. 64 is by Proposition 2 the unique solution of Eq. 4. O

FolCT
H_ A
@Springer L0
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To see that this solution gives rise to a regularisation method as introduced in
Definition 1, we first verify that the function A — p(t; A), which corresponds to the
error function 7, in Definition 1, is non-negative and monotonically decreasing for
sufficiently small values of A as required for 7, in Definition 1 item 2.

Lemma 17 The function . +— p(t; \) defined by Eq. 62 is for every t € (0, 00)
non-negative and monotonically decreasing on the interval (0, % + %).

Proof We prove this separately for A € (0, lf—f) and for A € (%, % + %).
— We remark that the function

gr:(0,00) = R, g:(B) = cosh(B7) + Sinh‘#’

is non-negative and fulfils for arbitrary ¢ > 0 that
tcosh(ft) sinh(B71)
B B*

%(51 — tanh(B7)) > 0,

8:(B) = tsinh(B7) +

= tsinh(B71) +

since tanh(z) < z for all z > 0. Thus, writing the function p for A € (0, %2) with
the function B_ given by Eq. 63 in the form

~ _bt
Pt = gu (B0,
we find that

pt 1) = e,%g,% (BB <0,

since B_(A) = < 0. Therefore, the function A — p(f; A) is non-negative

2
b2B— (%)
2
and monotonically decreasing on (0, %).

— Similarly, we consider for A € (ﬁ, 00) the function

sin(B71)

G;:(0,00) > R, G;(B) =cos(Bt) + 5

for arbitrary T > 0. Since limg_.0 G: () = 1 + t > 0 and since the smallest
zero f; of G is the smallest non-negative solution of the equation tan(8t) = —f,
implying that 8, t € (%, ), wehavethat G, (8) > Oforall 8 € (0, lt) C (0, By).
Moreover, the derivative of G satisfies for every 8 € (0, 2”—1) that

T cos(BT) B sin(Bt)
B p?

G (B) = —tsin(B7) +
FoC'T
u
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cos(Bt)
_ e

(8% + Dran(pr) - pr) <0,

since tan(z) > z for every z > 0. Therefore, we find for the function p on the
2
domain (0, 00) x ( I’T, 00), where it has the form

- _ bt
Pt 1) =e 2 Gy (B (1)
with B4 given by Eq. 63, that
pt:2) = 0and &, 5(1: 1) = e~ 2 G, (BL(W)BL (W) <0
v

2

. 2 .
for B+ (1) < 7, thatis, for A < bT + 17; since we have g/, () = #ﬁk) > 0.

Because p is continuous, this implies that A — p(t; A) is for every ¢ € (0, co)

. . . 2 2
non-negative and monotonically decreasing on (0, I’T + 2’7). O

In a next step, we introduce the function P(r;-) asa correspondence to the upper
bound R, and show that it fulfils the properties necessary for Definition 1 item 3.

Lemma 18 We define the function

e (cosh (B-(1)%) + 5y sinh (B-(0%)) ifa e 0.5,

/ (65)
e T (144 if 1 €[4, 00),

P(t; 1) = {

where the function B_ shall be given by Eq. 63.
Then, P is an upper bound for the absolute value of the function p defined by
Eq. 62: P > |p|.

Proof Since p(t; 1) = P(t; A) for A < % for every t+ > 0, we only need to consider
the case A > %. Using that |cos(z)| < 1 and |sin(z)| < |z| for all z € R, we find with

B+ as in Eq. 63 for every A > % and every ¢ > 0 that

()| =e 7

N bt 1 . N bt
cos <ﬁ+( >3> o <ﬂ+( >3>‘
_bt bt ~

O

Lemma 19 Ler P be given by Eq. 65. Then, A — P(t: 1) is monotonically decreasing
and t — P(t; A) is strictly decreasing.

EOE';W

@ Springer Lﬁjog



1612 Foundations of Computational Mathematics (2022) 22:1567-1629

Proof For the derivative of P with respect to ¢, we get

b -4 1 : bty b?
b= |5 (5_(x) — gy ) sinh (B-G0%) if 1 e .5,
—blem2 if 1 e [2, 00),

with B_ defined in Eq. 63; and since S_(A) € (0, 1) for every A € (O, %2), we thus
have 3, P(t; ) < O for every t > (0 and every A > 0.

Since P(t; 1) = p(t; A) for A € (0, sz], where p denotes the solution of Eq. 61,
given by Eq. 62, we already know from Lemma 17 that A — P(; 1) is monoton-
ically decreasing on (0, %]. And since A — 15(1‘; )) is constant on [ﬁ, 00), it is
monotonically decreasing on (0, 00). O

To verify later the compatibility of the convergence rate functions go}j and (plI;

introduced in Eqs. 16 and 17, we derive here an appropriate upper bound for P.

Lemma 20 We have for every A > 0 that the function P defined in Eq. 65 can be
bounded from above by

P(t;1) < WA(At) forallt > 0, x € (0, Al,

where

Wa(0) = max |2e7F, e Hr (14 2 (66)
AlZ) = max € , € A .

Proof We consider the two cases A € (0, %2) and A € [Z—2, A] separately.

— For A € (0, %), we use the two inequalities cosh(z) < e and % < e for all
z > 0, where the latter follows from the fact that f(z) = 2ze®(e* — “mgﬁ) =

(2z — 1)e% + 1 is because of () = 4ze% > 0 monotonically increasing on
[0, 00) and thus fulfils f(z) > f(0) = 0 for every z > 0. With this, we find from

Eq. 65 that
P(t;0) <2 1 h 1 bt
yA) < 2ex - — — - 1.
PV 732 2

Since /1 —z < 1— 5 forall z € (0, 1), we then obtain
Is(t; A < Ze_% foreveryt > 0, A € (0, %2).

— For A € [%, A], we use that ¢ +— 15(t; M) is according to Lemma 19 for every
A € (0, co) monotonically decreasing and obtain from Eq. 65 that
Elol:;ﬂ
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Py < B ()= % (1422 ¢ t>0
N —_— = —_— T SVEer .
5 = A, (] 2A Oeey >

[}

Next, we give an upper bound for the function p, p(¢; A) := %(1 — p(t; 1)), which
allows us to verify the property in Definition 1 item 1 for the corresponding generator
(ra)a>0 of the regularisation method.

Lemma 21 Let p be given by Eq. 62. Then, there exists a constant o1 € (0, 1) such
that

1 | 2t
X(l —p(t; L)) <oy ﬁforallt >0, A>0.

Proof We consider the two cases for A € (0, %) and A € (%, o0) separately. The

estimate for A = % then follows directly from the fact that the function A — p(z; A)
is continuous for every t € [0, 00).

— For A € (0, %), we use that cosh(z) = e* — sinh(z) for every z € R and obtain
with the function S_ from Eq. 63 that

L pun =g (1 e p 0 _ <—f3_1(>») - 1) ¥ sinh(ﬁ—()»)b?t)> .

Since B_(1) € (0, 1), we can therefore estimate this with the help of Lemma 14
by

1 1 bt o bt
21— A 21 _a—=p_0nk% 0 7
A(l pt; 1) < . (1 e 2) = V1I=p-(), >

where o € (0, 1) is the constant found in Lemma 14. Since A = %(1 — ﬁ% 1)),
this means

1(1 51 3)) < o)) 2t _ 2t
—(1 = p(z; <— [ — <00,/ —.
P JTr BV or ="V
— For A € (%, 00), we remark that

- b 1 b bt
0 p(t; ) = ) <,3+()») + /3+()»)) e 2sin <,3+()\)?> ,

where the function S is given by Eq. 63. Since the function [0, c0) — R, z >
(e ?sin(az))?, a > 0, attains its maximal value at its smallest non-negative critical
point z = % arctan(a), we have that

) b o)
19;p (25 )| < 5 </3+()~) + )e F+@ " |sin(arctan(B4 (1)) .

B+(2)
EOE';W
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tan(z)

Using that sin(z) = m forall z € (—%, 7). this reads

b _ arctan(B4 (1))
95 0] = Sy T+ BEG)e 0, (67)
arctan(z)
We further realise that the function f: (0,00) — R, f(z2) = 11 € E , 18
Z
monotonically decreasing because of
1 _arctan(z) z 1 arctan(z) )
/7 —_—
7)) = ———¢€ z + —
IS 1+ 22 <1+z2 z(1+27%) 22
1 arctan(z)
=————-¢e : (z—arctan(z)) <0.
22V1+ 72

Thus, f(z) <lim, ¢ f(z) = e~ and Eq. 67 therefore implies that
_ b )
10 p(t; M| < 2—6(1 + BL(M).
With ;iz)» =(1+ ,83_ (X)), the mean value theorem therefore gives us
1 - 1 . - 2t
(1 =p(; 1) = = (p(0; &) — p(t; 1)) < —- forall 7 > 0.
A A eb

Since we know from Lemmas 18 and 19 that we can estimate p with the function
P from Eq. 65 by

15(t; M) < P(t; 1) < P(0; ) = 1, (68)

we find by using the estimate min{a, b} < min{\/a, v/b} max{/a, vb} = vab
for all a, b > 0 that

1(1 o(t; X)) < mi 2 <\/§,/2tf 1Nt>0
o - 5 =mny_—, —¢ = —4/ T IOr a > 0.
A p A eb eV ba

Finally, we can put together all the estimates to obtain a regularisation method
corresponding to the solution & of the heavy ball equation, Eq. 4.

O

Proposition 4 Let p be the solution of Eq. 61. Then, the functions (rg)g=0,

1
ra() = (1= P(L: 1), (69)

define a regularisation method in the sense of Definition 1.
FoC'T
e,
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Proof We verify the four conditions in Definition 1.

1. We have already seen in Eq. 68 that |p(¢; A)] < 1 and thus rq (X)) < % for every
A > 0.
Moreover, Lemma 21 implies that there exists a parameter o1 € (0, 1) such that

l ~. b o1
ra(d) = +(1 =Pz 4) = —=

\/Ol)n’

which is Eq. 6.
2. The corresponding error function

Fot (0,00) = [ 1, 1], Fu(R) = (53 1),

is according to Lemma 17 non-negative and monotonically decreasing on the inter-
val (0, % + 2L > 2ab for all a, b € R, we find that

b? N 720’ =5 7202 b?
4 b~ b 4

=nua > «,

which implies that 7 is forevery @ > 0 non-negative and monotonically decreasing
on (0, o).
3. Choosing

Ro(h) = P(35: %) (70)

with the function P from Eq. 65, we know from Lemma 18 that Ry(A) > |Fa(V)]
holds for all A > 0 and @ > 0. Moreover, Lemma 19 tells us that Ra is for every
o > 0 monotonically decreasing and that @ +— Ry (a; 4) is for every A > 0
monotonically increasing.

4. To estimate the values Ra (o) for & in a neighbourhood of zero, we calculate the
limit

Jim Rq(@) = lim P(3: )
e (o (o) gy ()
_allﬂ)e cosh | B (x 1o + 5@ sinh [ S (« 1o ,

where /3_ is given by Eq. 63. Setting & = b2 and using that then f_(x) =
h2 = /1 — &, we get that

1 1—a 1
hm R = lim e @ | cosh sinh
FolC
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5 1 (1 N 1 ) VIa-1 _
= lim = e @
V1 —a

I
a
=
A
J—

Thus, there exists for an arbitrarily chosen ¢ € (e_%, 1) a parameter &g > O such
that Ry (a) < &9 for every a € (0, ap).

Using further that ¢ — Is(t; A) is strictly decreasing, see Lemma 19, we have for
every « > 0 that

Ro(e) = P(L:a) < P(0;) = 1.

Thus, since & — Ry (c) is by definition of Pin Eq. 65 continuous on (0, 00), we
have for every & > 0 that

sup ﬁa(a)=max{ sup Iéa(a), sup Iéa(a)}

ae(0,a] ae(0,a0) aclag,a]
< max {60, max ﬁa(a)} <1,
aelag,a)
which shows Definition 1 item 4.
O
To be able to apply Theorem 1 for the regularisation method generated by ()0
from Eq. 69 to the common convergence rates <pl1:I and <pb, it remains to show that they
are compatible with (ry)y=0.

Lemma 22 The functions (,DII:I and (plI; definedin Example 2 are for all n > 0 compatible
with the regularisation method (ry)y~0 defined by Eq. 69 in the sense of Definition 4.

Proof We know from Corollary 2 that we only need to prove the statement for gollf for

every i > 0. The function R, defined in Eq. 70 fulfils according to Lemma 20 for
arbitrary A > 0 that

e 5 (D) zar () = (2 (A0
o= (410) ot (2) =0 (4 (42

1
for every o« > 0 and A € (0, A], where ¥, is given by Eq. 66. Since z +— Wﬁ(%zﬁ)
is for every u > 0 integrable, wllf is compatible with (ry)g~0. O

We can therefore apply Theorem 1 to the regularisation method induced by Eq. 4,
which is the regularisation method generated by the functions (ry)e=0 defined in
Eq. 69, and the convergence rate functions ¢ff or g for arbitrary s > 0. Thus, although
the functions ¢ +— p(f; 1) and A — p(f; A) are not monotonic, we obtain optimal
convergence rates of the regularisation method under variational source conditions
such as in Eq. 33.

If we formulate it with the stronger standard source condition, see Proposition 1,
we can reproduce a result similar to [33, Theorem 5.1].

Elol:;ﬂ
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Corollary 7 Let y € R(L) be given such that the corresponding minimum norm solu-
tion x' € X, fulfilling Lx" = y and ||x"|| = inf{||x|| | Lx = y}, satisfies for some
> 0 the source condition

e R((LFL)%).

Then, if & is the solution of the initial value problem in Eq. 4,

1. there exists a constant C1 > 0 such that
2
H*’E(t; y) _XT” <Cit " forallt > 0;

2. there exists a constant Co > 0 such that
. - 112 - 2 -
lng Hé(t; ) —x° H < Cally = yl#t forally € Y;
1>

and
3. there exists a constant C3 > 0 such that

ILE(r; y) — y|I> < C3t™* " forallt > 0.

Proof The proof follows exactly the lines of the proof of Corollary 6, where the
compatibility of (,0,5I is shown in Lemma 22 and we have here the slightly different
scaling

: - 1= plas M) - :

X (§) = ra(L*L)L*§ = / —— 2 dB, LY = £( F)
©ILIP1 A

between the regularised solution x,, defined in Eq. 8 with the regularisation method

(ro)a>0 from Eq. 69, and the solutions & of Eq. 4 and p of Eq. 61; which however

does not cause a change in the order of the convergence rates. O

6 The Vanishing Viscosity Flow

We consider now the dynamical method Eq. 2 for N = 2 with the variable coefficient
ai(t) = I;’ for some parameter b > 0, that is, Eq. 5. According to Proposition 2, the

solution of Eq. 5 is defined via the spectral integral in Eq. 49 of p(¢; A) = %,

where p solves for every A € (0, 0o) the initial value problem

~ b, . ~
o p(t; A) + ;B,p(t; M)+ Arp(t; A) =0forallt € (0,00),
8,5(0: 1) = 0, D
p0; 1) = 1.

FoCT
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Fig.3 Graph of the function u, 1 4
defined in Eq. 72, which gives

the solution p of Eq. 71 via

A(t; 1) = u(ty/). As in the

heavy ball method, the

function p is not monotonic (in 0.5 +
either component) so that we
used the envelope of the
regularisation method to obtain
the optimal convergence rates

V' 10 20 30

As already noted in [29, Section 3.2], we obtain a closed form in terms of Bessel
functions for the solution of Eq. 71.

Lemma 23 Let b, A > 0. Then, Eq. 71 has the unique solution

-1
ot A) = u(t~/A) with u(t) = (;) F(%(b + 1))1%(17_1)@), (72)

where I is the gamma function and J, denotes the Bessel function of first kind of
order v € R. See Fig. 3 for a sketch of the graph of the function u.

Proof We rescale Eq. 71 by switching to the function

v:[0,00) x (0, IL[*] = R, v(r: 1) = 1%4(027: 1) (73)
with some parameters o, € (0, 0c0) and k¥ € R. The function v thus has the derivatives

3:v(T: A) = 05,750, p(osT: M) + kT (ot A) (74)

and
Borv(T; ) = 02740, p (0575 &) + 200 T 718, p (03T M) 4 Kk (k — 1) T2 p(03,T; ).
We use Eq. 71 to replace the second derivative of o and obtain
drv(T: 1) = 05, (26 — D)T* 9 p(0nTi 1) + (K (k — 1) = 2o TH) T 2 f(02T: M),

which, after writing 9,0 and p via Eqs. 74 and 73 in terms of the function v, becomes
the differential equation

T20:.0(t; A) + (b — 2)Td:0(T; &) + (Aoft? —k(k — 1) — (b — 2))v(T; 1) =0
FoC'T
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for the function v. Choosing now ¥ = %(b —1),sothatb — 2k = 1, and o), = \/LX’

we end up with Bessel’s differential equation
‘(23”1)(1'; M)+ tov(T; A) + (‘C2 — I(2)U(‘L'; A =0,
for which every solution can be written as

o(T: A) = Cridic|(t) + Coi Y (v), «k €Z,
’ Crudie(T) + Co I (T), Kk € R\ Z,
for some constants C1 ,, C2, € R, where J, and Y, denote the Bessel functions of
first and second kind of order v € R, respectively; see, for example, [1, Chapter 9.1].
We can therefore write the solution p as

Cli (tNR) T (VA + Coc (NN ¥ (1VD), Kk € Z,

75
CLic (VDN T e (tVA) + Coic VW) T (VD) K € r\z ™

ptx) = {

To determine the constants Cy . and C2 . from the initial conditions, we remark that
the Bessel functions have for all « € R \ (—=IN) and all n € IN asymptotically for
T — 0 the behaviour

1
I (1) = ———— + O(z?),

T " Je(T) INCEE) +0(7) y
. n 2"(n — 1)! . Yo(o) 2 (76)
lim t"Y,(t) = ———, and lim = —,

70 b4 t—0log(r) w

see, for example, [1, Formulae 9.1.10 and 9.1.11].
We consider the cases k > 0 and k € (—%, 0) separately.

— In particular, the relations in Eq. 76 imply that, for the last terms in Eq. 75, we
have with T = r+/A asymptotically for t — 0

— fork =0:
2
Ca,0Y0(7) = ;Cz,oo(log(f))

because of the third relation in Eq. 76;
— forx € IN:

2%k — 1)!

CoeT Y (1) = Coe T (1Y, (1)) = Cae (— + 0(1)> T

because of the second relation in Eq. 76; and
— fork € (0, 00) \ IN:

K

CznyiKJ—K ('L') = C2,KT72K (TKJ—K (T)) = CZ,K (m

+ O(rz)) T
EOE';W
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because of the first relation in Eq. 76.

Thus, the last terms in Eq. 75 diverge for every x > 0 as ¢t — 0.

Since the first terms in Eq. 75 converge according to the first relation in Eq. 76 for
t — 0, the initial condition p(0; A) = 1 can only be fulfilled if the coefficients
C2 ., k > 0, in front of the singular terms are all zero so that we have

Bt ) = Cpe (1NN T (1/2) forall « > 0.

Furthermore, the initial condition p(0; A) = 1 implies according to the first relation
in Eq. 76 that

Cie=2T'(k + 1) forall « >0,

which gives the representation of Eq. 72 for the solution p.
It remains to check that also the initial condition 9;0(0; A) = O is for all k > 0
fulfilled, which again follows directly from the first relation in Eq. 76:

1
5 (0: 1) = lim ~ (2"F(K + DAV TtV R) — 1) —Oforallc > 0.

— Fork € (—%, 0), we have that the first term in p(¢; 1) converges for t — 0 to 0
because of

1
lkc| _ oy 4 2
Cre (V¥ I (1V2) = Cre (1) <2|K|F(|K| Tt ot )),

which follows from the first relation of Eq. 76. Therefore, the initial condition
p(0; &) = 1 requires that

1=4(0; 1) = Cox 1ir%(rﬁ)‘K‘J_|K,(r«/X) forall k € (—1,0),
—

from which we get with the first property in Eq. 76 that
Cop =2T'(k + 1).

To determine the coefficient C ., we remark that the first identity in Eq. 76 then
gives us for + — 0 the asymptotic behaviour

(t3/2)2IK1

2
e+ TO

Ia(t; A =1 +C1,K

Therefore, we have for the first derivative at + = 0 the expression

20k |Alel 1
2T (|| 4+ 1) ¢1=20l”

9;p(0; 1) = 1im Cy
t—0
Elol:;ﬂ
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To satisfy the initial condition 9,0(0; A) = 0, we thus have to choose C; , = 0
fork € (—%, 0), which leaves us again with Eq. 72.

]

Corollary 8 The unique solution & : [0, 00) x Y — R of the vanishing viscosity flow,
Eq. 5, which is twice continuously differentiable with respect to t is given by

) =/ LGN
©,ILI2] A

where the function u is defined by Eq. 72.

Proof We have already seen in Lemma 23 that Eq. 71 has the unique solution p given
by A(t; 1) = u(t~/2). To apply Proposition 2, it is thus enough to show that § is
smooth.

Since the function u has the representation

00 1=k
u(t) = v(z?) with v(¥) = I'( (b+1))2k'1“( ((bj)lHk)

see, for example, [1, Formula 9.1.10], the solution p: [0, 0c0) x [0, c0) — R given by
Eq. 72 is of the form p(¢; A) = u(t«/X) = v(1#?) and is therefore seen to be smooth.
Therefore, Proposition 2 yields the claim. O

Again, we want to determine a corresponding regularisation method. We start by
showing that the function A +— p(#; &), which corresponds to the error function
7o of the regularisation method, is non-negative and monotonically decreasing for
sufficiently small values A as required for 7y in Definition 1 item 2.

Lemma24 Let j. 1 € (0, 00) denote the first positive zero of the Bessel function J.
Then, the solution p given in Eq. 72 fulfils
— forevery A > 0 that the function t — p(t; L) is strictly decreasing on the interval
1 .
(O, ﬁ]%(b—l)’l) and
— for every t > 0 that the function A — p(t; \) is strictly decreasing on the interval

©, )-

,2]1(b .1

Proof Since we can write / in the form §(r; 1) = u(t+/2), see Eq. 72, it is enough to
show that

/ .
u'(t) < 0forz € (0, ji_y) 1)

This property of u follows directly from the representation of the Bessel functions J,
K € —%, 00), as an infinite product, see, for example, [1, Formula 9.5.10]:

Je(T) = 26T (i +1)1_[< f;(ﬁ)

FoE'ﬂ
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where ji ¢ denotes the £th positive zero (sorted in increasing order) of J,; since this
gives

00 2

uo =[]l 1-5—].

=1 Ti-1).0

which is for 7 € (0, j L), 1) a product of only positive factors. Therefore, we have

00
‘L’2

/ _ .—2 - ;
W(t)=-2ty Iy IT [t |- 0forall T € (0, /11, )-
e=1 IeN\{¢} $(b-1).0

m}

Furthermore, we can construct an upper bound P(t;A) = U@V2) of |5(t; 1),
which corresponds to the envelope value R, (1), such that P(r;-) is monotonically
decreasing. This will give us the condition of Definition 1 item 3 for the function R,,.
The additionally derived explicit upper bound for U helps us to show the compatibility
of the convergence rate functions (pllj and (plI;.

Lemma 25 Let p be the solution of Eq. 71 given by Eq. 72. Then, there exist a constant
C > 0 and a continuous, monotonically decreasing function U : [0, co) — [0, 1] so
that

— 1p(t: )| < U@~/2) foreveryt >0, A > 0,
- U(r) < lforallt >0, and
- U(r) < Ct’gfor allt > 0.

Proof We use again the function u defined in Eq. 72 which satisfies p(f; A) = u(¢ N
Then, we remark that the energy

E(r) = () +u?(0), 1 >0,

fulfils (using Eq. 71 with A = 1, = t and u(7) = p(7; 1))
/ / ” b 72
E'(t) =2u' (1) (u (t) + u(r)) =——u"(r) <0.
T

Since we know from Lemma 24 that u’(t) = 98,6(t; 1) < Ofort € (0, j%(b_l) 1), we
have that E is strictly decreasing on (0, j%(bfl) 1) so that E(j%(bfl)yl) < E(0). For
T>j Lp1),1> We can therefore estimate u by

u*(v) < E(0) < E(jigpy)) < EO) = 1.
FoE'ﬂ
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Thus, u is monotonically decreasing on (0, j Lo-1 ) and uniformly bounded by
E(j%(hfl) ) <1lon [j%(bil) |» 00). Therefore, we can find a monotonically decreas-

ing function U : [0, 00) — [0, 1] with
u(r) < U(I) < I forevery t > 0.
Since it follows from [1, Formula 9.2.1] that there exists a constant ¢ > 0 such that

|J%(b—1)(f)| < cr_% forall T > 0,
which implies according to Eq. 72 with C = 2%(1”1)1"(%(19 4+ 1))c the upper bound

lu(t)| < Ct= % forall T > 0,

the function U defined by U (1) = min{U (7), C r_%} satisfies all the properties. O

To verify the condition in Definition 1 item 1 for r,, we establish here the corre-
sponding lower bound for the function p.

Lemma 26 Let p be the solution of Eq. 71 given by Eq. 72. Then, there exists a constant
T € (0, iy p_1),1] such that

N
ﬁ(t;k)zl—ziforalltz(), A > 0. (77)
7

Proof We define u again by Eq. 72 and choose some arbitrary ¢ > 0. Then, the initial
conditions #(0) = 1 and u’(0) = 0imply that we finda 7 > O such thatu(r) > 1—ct
for all T € [0, T]. Setting now 1} := min{i, f‘v j%(bfl) 1}, we have by construction

u(r) > 1—ct > 1— —— forall 7 € [0, 7].
21y

Moreover, the uniform bound |u(7)| < 1 for all ¢ > 0, shown in Lemma 25, implies
that

2
u(t) >—-1>1—--1t>1 - forall T € [T, 00).
T 27

Thus, 5(t; A) = u(t+/2) yields the claim. o

These estimates for p suffice now to show that the functions r, defined by Eq. 78
generate the regularisation method corresponding to the solution & of Eq. 5.

FoC
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Proposition5 Let p be the solution of Eq. 71 given by Eq. 72, t), be the constant
defined in Lemma 26, and set

1 (™
ra(A) ::X(l—p<ﬁ;k>>. (78)

Then, (rq)a=0 generates a regularisation method in the sense of Definition 1.

Proof We verify the four conditions in Definition 1.

1. We know from Lemma 25 that |p| < 1, and thus it follows that

ra(A) <

>N

Moreover, it follows from Eq. 77 that

1 - ™ 1
w0 =3 (-2 (%) s 2

2. The error function 7, corresponding to the generator r is given by

- ~( T .
Fa(A) = p ﬁvk s

which is a monotonically decreasing function on (0, a) according to

42

rlf]%(bfl),l

Lemma 24. Since we have chosen 7, € (0, jl(b—l) (1, see Lemma 26, this in
7 ,

particular shows that 7, is monotonically decreasing on (0, ).
3. Let U be the function constructed in Lemma 25. We define

Ry(L) :=U (‘L’b\/§> . (79)

Then, we have by Lemma 25 that A — Ro (1) is monotonically decreasing, o >
R, ()) is continuous and monotonically increasing and R, fulfils

) =5 () < u (o) = R
T, g ; = T —_ = .
[ 1Y ﬁ b o o

4. We have again by Lemma 25 that

Ry(e) = U(1p) < L foralla > 0.

FoC'T
e,
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As before, we also verify that the classical convergence rate functions (p,lf and (plI;
are compatible with the regularisation method (74)y=0. In contrast to Showalter’s
method and the heavy ball method, the compatibility for <pllj only holds up to a certain
saturation value for the parameter .

Lemma 27 The functions (pllffor all u € (0, %) and the functions gob forall u > 0, as
defined in Example 2, are compatible with the regularisation method (ry)y=0 defined
by Eq. 78 in the sense of Definition 4.

Proof As before, it is because of Corollary 2 enough to check this for the functions
(pZI, n e (0, %’). The function R, defined in Eq. 79 fulfils according to Lemma 25 that
there exists a constant C > 0 with

-y H -5
~ A A\ 2 (A) +
fo =07 (T” _> =Cn (_> =Cn” (¢ﬁ< >> ’
o o @, (o

b
which is Eq. 21 with the compatibility function F,(z) = C 2Tb— b27% It remains to

check that F, : [1, 00) — R is integrable, which is the case for 4 < %. O

We can therefore apply Theorem 1 to the regularisation method generated by the
functions (ry)y>0 defined in Eq. 78 and the convergence rates go}j, uw e (0, g), and

(plI;, w > 0. By using that we have by construction x,(y) = E(f/—%; y), see Eq. 80

below, this gives us equivalent characterisations for convergence rates of the flow &
of Eq. 5. As before for Showalter’s method and the heavy ball method, we formulate
the resulting convergence rates under the stronger, but more commonly used standard
source condition, see Proposition 1.

Corollary9 Let y € R(L) be given such that the corresponding minimum norm solu-
tion x* € X, fulfilling Lx® = y and ||x|| = inf{||x|| | Lx = y}, satisfies for some
n e (0, g) the source condition

e R((LFL)%).

Then, if & is the solution of the initial value problem in Eq. 5,

1. there exists a constant C1 > 0 such that
2 Cl
. T 1 .
6@ —x| = S foraits > 0;
2. there exists a constant Co > 0 such that
. - 2 . 2 -
inf 6 5) 5" < Co U5 — 1 forait 5 €
1>
and

FolCT
H_ A
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3. ifu < %’ — 1, there exists a constant C3 > 0 such that

C3
ILE(; ) = yIP < iy forall t > 0.

Proof The proof follows exactly the lines of the proof of Corollary 6, where the
compatibility of (p}f is shown in Lemma 27 and we have the different scaling

X (¥) = ra(L*L)L*y

1 wa B . (80)
/<o,|L|2] A < P <«/5 )) g : («/a y)

between the regularised solution x,, defined in Eq. 8 with the regularisation method
(ra)a>0 from Eq. 78, and the solutions § of Eq. 5 and p of Eq. 71. Following Corollary 6
and using the notation d from Eq. 13 and d from Eq. 14 we get

1. in the case of exact data the convergence rates

: i|? = Py (%
§y) — x| = |xp2() — x| =d| 7] and

2. For perturbed data we get the convergence rate

Th - T
(%)
3. Moreover, using that for u < % — lalso gpllj 41 1s compatible with (ry)e=0, we get
from Corollary 4 the convergence rate

2
Cdrb”
2

§ 2
s = x| =

2 2
nf <d(ly —yl) < CzI1y — yll==T.

i
a>0

2
inf &: 5) - 7| =
>0

2 3 2ut1),—
1L&@ ) = yIP = [Lxg 200 -] =4 (73) < Cg 20
for the noise-free residual error, where ¢ is defined in Eq. 15.

We end this section by a few remarks.

Remark 8 (Comparison of Flows) Comparing the results in Corollary 6, Corollary 7,
and Corollary 9, we see that the three methods we have analysed, namely Showalter’s
method, the heavy ball dynamics, and the vanishing viscosity flow, all give the same
rate of convergence for noisy data with optimal stopping time. However, one should
notice that their optimal stopping times are different. This is due to the acceleration
property of the vanishing viscosity flow in comparison with the other two, which has
been analysed in the literature.

Elol:;ﬂ
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Remark 9 (Saturation of Viscosity Flow) The vanishing viscosity flow suffers from
a saturation effect for the convergence rate functions <pl‘f allowing only convergence
rates up to certain values of w, which is not the case in the other two methods (because
of their exponential decay of the error function at every fixed spectral value).

Remark 10 (Comparison with literature) Equation 71 has been investigated quite heav-
ily in a more general context of non-smooth, convex functionals J and abstract
ordinary differential equations of the form

") + ?E’(r) +0J (&) >0forallt € (0,00),

§'0) =0, 1)
£(0) =0,
see for instance [4—7,29]. Equation 81 corresponds to Eq. 2with N = 2and a; () = ?,

b > 0, for the particular energy functional [ (x) = % |ILx — y||2.
The authors prove optimality of Eq. 81, which, however, is a different term than in
our paper:

1. In the above referenced paper, optimality is considered with respect to all possible
smooth and convex functionals 7, while in our work optimality is considered with
respect to all possible variations of y only. The papers [4,7,29] consider a finite
dimensional setting where 7 maps a subset of a finite dimensional space R¢ into
the extended reals.

2. The second difference in the optimality results is that we consider primarily optimal
convergence rate of £(f) — x' for t — oo and not of J(£(t)) — min,cy J(x),
that is, we are considering rates in the domain of L, while in the referenced papers
convergence in the image domain is considered. Consequently, we get rates for the
residual squared (which is the rate of J(£(¢)) in the referenced papers), which are
based on optimal rates (in the sense of this paper) for £(r) —x — 0. The presented
rates in the image domain are, however, not necessarily optimal.

Nevertheless, it is very interesting to note that the two cases b > 3and 0 < b < 3,
referred to as heavy and low friction cases, do not result in a different analysis in our
paper, compared to, for instance, [4]. This is of course not a contradiction, because we
consider a different optimality terminology.

Conclusions

The paper shows that the dynamical flows provide optimal regularisation methods (in
the sense explained in Sect. 2). We proved optimal convergence rates of the solutions of
the flows to the minimum norm solution for # — oo and we also provide convergence
rates of the residuals of the regularised solutions.

We observed that the vanishing viscosity method, heavy ball dynamics, and Showal-
ter’s method provide optimal reconstructions for different times. In fact, eventually,
for a fair numerical comparison of the results of all three methods one should compare

Eo oy
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the results of Showalter’s method and the heavy ball dynamics, respectively, at time
tg with the vanishing viscosity flow at time 7.
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