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ABSTRACT. Let A be a rectangular matrix of size m x n and A; be the random
matrix where each entry of A is multiplied by an independent {0, 1}-Bernoulli ran-
dom variable with parameter 1/2. This paper is about when, how and why the
non-Hermitian eigen-spectra of the matrices A;(A — A1)* and (A — A;)* Ay cap-
tures more of the relevant information about the principal component structure of
A than the eigen-spectra of AA¥* and A*A.

We illustrate the application of this striking phenomenon on the matrix com-
pletion problem for the setting where the underlying matrix P is low rank, with
incoherent singular vectors, and where the matrix A is equal to the matrix P on a
(uniformly) random subset of entries of size dn and all other entries of A are equal
to zero. We show that the eigenvalues of the asymmetric matrices A; (A— A1)* and
(A — A;)* A, with modulus greater than a detection threshold are asymptotically
equal to the eigenvalues of PP* and P* P and that the associated eigenvectors are
aligned as well. The central surprise is that by intentionally inducing asymmetry
and additional randomness via the A; matrix, we can extract more information
than if we had worked with the singular value decomposition (SVD) of A!

The associated detection threshold is asymptotically exact and is non-universal
since it explicitly depends on the element-wise distribution of the underlying matrix
P. We show that reliable, statistically optimal but not perfect matrix recovery, via
a universal data-driven algorithm, is possible above this detection threshold using
the information extracted from the asymmetric eigen-decompositions. Averaging
the left and right eigenvectors provably improves estimation accuracy but not the
detection threshold. Our results encompass the very sparse regime where d is of
order 1 where matrix completion via the SVD of A fails or produces unreliable
recovery.

We define another variant of this asymmetric principal component analysis pro-
cedure that bypasses the randomization step and has a detection threshold that is
smaller by a constant factor but with a computational cost that is larger by a poly-
nomial factor of the number of observed entries. Both detection thresholds shatter
the seeming barrier due to the well-known information theoretical limit d = logn
for matrix completion found in the literature.
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1. INTRODUCTION
1.1. Setting and overview. We start by describing the main mathematical model that

will be studied in this paper. Let m,n > 1 large integers, and let P = (Ps,y)ze[m],ye[n] €
Mo n(R) be a real matrix with singular value decomposition

P =" oxCréi, (1.1)
k=1
the positive numbers oy, are the singular values of P, and ((1,...,¢), (&1, ..,&) are two

orthonormal families of singular vectors. Let M € .#, »(R) be a random matrix whose
entries are independent Bernoulli with parameter d/n: for all z,y, we have

d
PMyy=1)=1—-P(M;,=0)=—.
n
The non-zeros entries of the matrix M correspond to the entries of the matrix P that
are observed, the remaining ones are hidden. The observed matriz is then defined as
A= (ﬁ) PO M,
d
where © denotes the Hadamard pr entry-wise product of two matrices. The normalization
is chosen so that E[A] = P, hence A is an unbiased estimator of P. The matrix A has an
average of d revealed revealed entries per row. From now on, we will concentrate on the
asymptotic regime where m and n are large and have the same order, by supposing that
a = m/n is bounded away from 0 and 0.

The matrix completion problem aims at answering the following general question: what
parts of P can be recovered from the observed entries? The literature around this problem
is gigantic, see Section 7. Roughly speaking, it is known that under natural assumptions
on P (low-rank with delocalized eigenvectors), we can recover exactly P as soon as d has
order logn. Below this threshold, there exists an estimator P whose mean square error,
that is tr(P — P)?/n, is of order 1/d.

In this paper, we go much beyond this last result and study the detection problem of
the spectrum of P. Namely, for a given singular value o, of P with corresponding unit
singular vectors (x, &k, our goal is to address the following two questions:

(i) For which values of d is it possible to design a consistent estimator of o7
(ii) For a given £ > 0, for which values of d is it possible to design an estimator (i of (x
such that [{(x, (k)| = & with high probability, and the same for £?

The above mentioned previous results on the mean square error imply that (¢) and (i%)
are feasible when d goes to infinity. Our results prove that this is possible for d of order
1 simply by considering the k-th largest eigenvalue of an m x m carefully chosen matrix
X and its corresponding eigenvector.

1.2. Informal statement of the main result. Let Z € #, »(R) be an auxiliary
random matrix whose entries are independent Bernoulli with parameter 1/2. We set
A1 =Z®Aand As = A— A, and we define

X = A A% Y = Af A,. (1.2)

These are square matrices, with respective sizes m x m and n xn. They are not Hermitian,
their eigenvalues are complex numbers. Then, given any fixed d, there is a threshold 9,
intrinsic to the matrix P and to d, such that the following holds with high probability
when n is large.

(i) Each singular value o; > 9 gives rise to an eigenvalue v; of X close to o2. The rest
of the eigenvalues of X are quarantined in the disc D(0,9).

(ii) Moreover, if x; is a unit right-eigenvector of X associated with the eigenvalue v; ~ o7
above the threshold ¥, then the scalar product between y; and the singular vector
¢i has an explicit non-vanishing limit.
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(B) Hyperbolic secant distributed singular vectors.

FIGURE 1. Matrix completion using various methods for the setup de-
scribed in Section 1.3. Of interest is the fact that the asymmetric eigen-
methods proposed in this paper (rightmost two columns) succeed in the
regime where the SVD based method (second column from the left) fails.

Similar results hold for Y and &;. All the theoretical quantities at stake can efficiently be
estimated from the observation of P ® M, leading to asymptotically efficient data-driven
estimators even in the sparsest regime where d is fixed. This threshold will be essentially
the analog of the Kesten-Stigum. When all the singular values of P are above the threshold
9, we can thus use the eigenvalues and eigenvectors of X and Y to craft an estimator p
of P which is correlated with P.

This spectral method does not need complex manipulations, does not require trim-
ming, uses all the available information, and only needs computing the top eigenvalues
and eigenvectors of m x m or n x n matrices, hence is computationally efficient. On the
other hand, spectral algorithms are generally known to be less robust than other meth-
ods, and the detection threshold is 1.44 times higher than the so-called non-backtracking
threshold studied in our Subsection 3, the latter gives better results but requires a higher
computational cost.

1.3. Sneak peek: Improved matrix recovery using asymmetric eigen-methods.
Our results are part of a new and promising philosophy, namely that in many problems
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(A) Symmetric matrix completion via asym-
metrization and (non-symmetric) eigendecompo-
sition.
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(B) Rectangular matrix completion via asymmetrization and (non-symmetric)
eigendecomposition.

FIGURE 2. How we construct asymmetric (square) matrices for extract-
ing more/better eigen-information from sparsely observed symmetric
and rectangular low-rank matrices, as described in Section 1.5.

eigenvalues of non-symmetric matrices can perform better than eigenvalues of symmetric
matrices. We will highlight this statement with several numerical experiments in Section
6.1. we would like to motivate the reader by beginning our exposition with a preview of
the striking gains our methods obtain.

The first column of Figure 1 displays the 30 x 10 upper-left sub-matrices of 2000 x 3000
rank one matrices modeled as in (1.1). In Figure la the singular vectors are normally
distributed whereas in Figure 1b they are drawn from the hyperbolic secant distributions.
This matrix was very sparsely sampled (d = 9.7 and d = 22.6 for the Gaussian and
Hyperbolic setting, respectively). The second, third and fourth columns of Figure 1 show
reconstructions obtained using the SVD (with the missing entries replaced by zeros),
the eigen-spectra of the asymmetric matrix as described above (which averages the left
and right eigenvectors of the X and Y matrices to produce an estimate of the left and
right singular vectors, respectively) and using the (right) eigenvector of the weighted non-
backtracking matrix.

The SVD reconstruction fails completely, whereas the two asymmetric methods meth-
ods described succeed and produce reliable, even if imperfect, estimates. To summarize
the emergent philosophy: we succeed in finding (symmetric) structure in a regime where
a symmetric eigen-decomposition fails by inducing, via randomization, asymmetry and
viewing the symmetric problem through an asymmetric eigen-decomposition lens.

Intuitively this is happening because the SVD method is crippled by the localization of
singular vector estimates in the very sparse regime due to the echo-chamber like effect of a
few rows/columns having a larger number of observed entries is bypassed when we induce
asymmetricity and/or use the weighted non-backtracking matrix. Hence the asymmetric
methods detect and extract structure well below the threshold where the SVD can detect
and extract it. The asymmetric randomization acts as an implicit spectral regularizer.
See Figures 7 and 8 for additional illustrations of this phenomenon, including subtler
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aspects pertaining to how the structure of the matrix we are trying to recover governs the
improvement in performance we can (or cannot) expect.

To summarize our findings: all other things being equal, practitioners can expect
greater gains with these methods for recovering incoherent matrices whose elements have
a larger kurtosis.

‘We hope that practitioners who encounter low-rank matrix completion problems in
high-dimensional, very sparse settings, such as in reinforcement learning and computa-
tional game theory where reward/payoff matrices are often modeled this way [52, 36], can
utilize these methods to find structure in severely under-sampled regimes where the failure
of SVD based matrix completion methods might have been misconstrued as a by-product
of a fundamental informational barrier. We shall release a numerical implementation of
our methods to facilitate revised experimentation on such given-up-for-being-too-sparse
data sets.

1.4. Extensions. The results in this paper extend naturally to the setting where the
matrix P is modeled as the Kronecker product of two matrices so that P = P4 ® Pg. In
this setting, an application of the results of Van Loan and Pitsianis [58, Section 2] shows
that there is a rearrangement operator R(A) which rearranges the elements of the matrix
A such that R(A) is rank one. In other words, R(A) = vec(Pa)vec(Pp) where vec(-)
stacks the columns of the matrix on top of each other and creates a single column vector.
We can use this to induce low rank matrices which fit into our framework. Kronecker
product structured matrices are ubiquitous in many scientific applications (see [57, 56])
and spotting Kronecker structure in them and applying the re-arrangement trick can lead
to improved matrix completion in Kronecker structured matrix completion problems.

Tensor completion (see [35]) is a natural extension of our ideas in matrix completion
for the problem of completing higher order arrays with missing data. Low-rank higher-
dimensional tensors can, via a rearrangement and flattening operation (see [34, Section
2]) be expressed as low-rank matrices (with not necessarily orthogonal components). This
allows us to connect the low-rank incoherent tensor completion problem with our frame-
work.

Finally, the idea that random asymmetrization bypasses the echo-chamber effect that
cripples the SVD (or the symmetric eigen-decomposition) can be employed as a non-
parametric estimation technique wherever the underlying singular vectors we are trying
to estimate are delocalized but where the SVD (or a symmetric eigen-decomposition) re-
turns localized estimates. This trick will work right out of the box, for example, in the
estimation of low-rank matrices with incoherent singular vectors contaminated with heavy
tailed noise or just-sparse-enough-but-too-large outliers. Trimming techniques which pre-
cisely tune the threshold parameters based on precise structural information might have
lower estimator errors than a non-parametric technique such as ours but the random
asymmetrization trick will be more robust to errors to errors due to a mismatch in the
structure model for the outliers or heavy tails. A hint that the random asymmetriza-
tion is a useful technique can spring from analytical or numerical simulation insights as
in Figure 6 whenever one gleans that the operator norm (or the largest singular value)
might be asymptotically unbounded but that the spectral radius (or largest eigenvalue
in magnitude) is not. Where else might this be trick be useful beyond our context? An
important extension of our framework is in settings where the missing entries are not sam-
pled uniformly. One important scenario, that lends significant structure in the pattern of
the observed entries, corresponds to the setting where the entries are observed via (for ex-
ample) a Poissonian process with an intensity that is proportional to a (assumed, known)
function of the (magnitude of the) underlying matrix entries we are trying to estimate, as
in for example [5].

We leave related explorations and excursions to follow-up work and interested readers.

1.5. Roadmap of the paper and auxiliary results. The main results summarized in
the preceding paragraph will be precisely stated later, in Theorem 4.10. They will indeed
follow from the simpler case where P is a square, Hermitian matrix. In this case, we do
not need to form the matrices X and Y above: the observed matrix, A, is itself a square
matrix, hence we can directly show the aforementioned phenomenon directly on A.
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The setup is depicted in Figure 2a. Informally we will show that when the underlying
is symmetric and low-rank and we observe missing entries as in the left panel of Figure
2a, then the randomly asymmetric matrix formed from the original matrix has (left and
right) eigenvectors that are well-aligned with the eigenvectors of the underlying low-rank
symmetric matrix.

The detailed statement of this result is contained in Theorem 2.3, whose proof runs
from Section 8 to Section 14 — it is the most voluminous part of the paper.

The statements characterize the eigenvalues of the randomly asymmeterized matrix and
the accuracy, measured via an inner-product, of the left and right eigenvectors with respect
to corresponding the ground truth latent eigenvector. What emerges from the results is
the fact that averaging the left and right eigenvectors produces more accurate estimates of
the underlying eigenvectors and that we can estimate the accuracy of the resulting improve
eigenvector estimate directly from the point estimate of the inner product between the
left and right eigenvector pairs. This paves the way for a statistically optimal, in a
Frobenius norm error sense, estimator of the underlying low-rank matrix that accounts
for the noisiness in the estimated eigenvectors & la OptShrink [47].

The symmetric setup underpins our extension to the matrix completion because the
results on rectangular matrices will then be obtained through a Hermitization trick, by

considering the matrix
0o P

and applying our theorem for square matrices as depicted in Figure 2b.

This is all done in Section 4, where the reader will find a complete elucidation of the
behaviour of the high eigenvalues and eigenvectors of the matrices X and Y, which paves
the way for our main interest, the problem of matrix completion in Section 5. There, we
precisely describe our method and show a few theoretical guarantees for its performance.
Numerical simulations are displayed in these first sections, but in Section 6 we focus on
illustrating the case where the rank of P is one, which has attracted considerable attention
in the literature.

Section 7 shortly surveys the rich literature on sparse spectral graph theory, random
matrices, principal component analysis and matrix completion. All the subsequent sec-
tions, starting with Section 8 at page 37, are the technical proofs of our results.

We included in Section 3 several results on non-backtracking matrices (see 3), when
the underlying P is square. The very recent paper [53] was build on a preliminary version
of the present work and generalizes this portion to the case of weighted inhomogeneous
graphs.

A few technical results which were developed in the course of the proof might be of
independent interest. Among them, we mention the perturbation results from Section
8, dealing with spectra of perturbations of non-normal matrices (Theorem 9.2), and also
the results of Section 12 which include new and powerful concentration inequalities for
functionals on Erdds-Rényi random graphs (see Proposition 12.3).

1.6. Acknowledgments. CB was supported by ANR-16-CE40-0024-01. SC is supported
by ERC NEMO, under the European Union’s Horizon 2020 research and innovation pro-
gramme grant agreement number 788851. RRN’s work was supported by ONR grant
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11-1-039CB. CB and SC thank the University of Michigan for its hospitality in June 2016
and June 2018 where this work was initiated and continued. CB and RRN thank Literati
Coffee in Ann Arbor, MI for the stimulating environment in which the problem considered
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1.7. Notation and convention. When n is an integer, [n] denotes the set {1,...,n}.
The group of permutations of [r] is noted &,. We identify R™ with the set £2([n]).
Elements in R™ will be noted u = (u(x))ze[n]. We will note |- |o, | - | the usual norms on
R™, namely

1/p

[uloe = max [u(z)]  fuly =] 3 fu(x)P”
ze[n]



VERY SPARSE MATRIX COMPLETION 7

The Euclidean norm (p = 2) will simply be noted |- |. The operator norm of the matrix X
is noted | X |; it is the greatest singular value of the matrix. The Frobenius norm is noted
| X|F and is defined by | X|r = 1/tr(X*X). It is also the L*-norm of the singular values.

The letter ¢ denotes a universal numerical constant. It might be used from line to line
to denote different constants.

We will also make the following convention on the phase of eigenvectors. If ¢ and 1’
are two right and left eigenvectors of a matrix associated to the same simple eigenvalue,
we will also assume that their phase is chosen so that

@' ) = 0. (1.4)

2. DETAILED RESULTS: SQUARE MATRICES

In this section, we restrict ourselves to the case where P is a square n X n matrix. We
write its spectral decomposition as

P =" uprel, (2.1)
k=1
the real numbers uy are the eigenvalues of P, and ¢1, ...,y is an orthonormal basis of

eigenvectors. The eigenvalues are ordered by decreasing modulus:
i = = |pal = 0.

As above, M is a matrix with i.i.d. Bernoulli entries with parameter d/n, and the observed
matrix is

A= (g)P@M.

Our goal is to describe the behaviour of the high eigenvalues of A.

2.1. Main result. Our result will hold uniformly over a wide class of matrices that match
the usual hypothesis from the literature: low (stable) rank with incoherence conditions.
The goal is is not really to restrict the range of applications, but to track the dependence
of the error terms with respect to the parameters at stake (such as stable rank, measure
of incoherence or spectral separations). We list these definitions which are central to this
paper, and then we explain them in the subsequent remark.

Definitions 2.1 (complexity parameters of P). Let P = Y. ;i be a square Hermitian
matrix. The amplitude, stable rank and incoherence describe the complexity of the matrix
P.

(1) Amplitude parameter L:
L = nmax | Py y|. (2.2)
z,y

Equivalently, it is the scaled L' to L* norm of P.
(2) Stable numerical rank r:

CIPE Xp
(T T
(3) Incoherence parameter b: any scalar b > 1 such that for every k in [n] with
ur # 0, we have

max |on(z)] < — (2.3)

z€e[n] = % ’

Definitions 2.2 (detection parameters of P and d). Let P = Y pipipf be a square
Hermitian matrix and d > 1 be a real number. The detection threshold, rank and gap
describe what parts of P can be detected and how easily.

(1) Variance matrix Q:

Qay = ”‘Pw,y|2 p=1Ql. (2.4)
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(2) Detection threshold 9: any number 9 such that
3> max{%l,{)g}, (25)

where the ‘theta parameters’ are defined by

L
192:\/5 and 91 = <.

(3) Detection rank ro: number of eigenvalues of P which have modulus strictly
larger than 9, i.e.

lpal = - = |prg| > 9 = prg 1] = -+ = |pml. (2.6)

(4) Detection hardness or gap 7o:

= Te (0,1). (2.7)

It is the gap between ¥ and the smallest eigenvalue above 9.

We observe that our threshold ® can vary above max{91,d2}. This is to allow an
optimal application of our main theorem below. It is also interesting to note that the
usual algebraic rank of P is an upper bound on r. We can now state our main theorem.

Theorem 2.3. Let P and A be as above. We define D = max(2d,1.01) and

€ =1[(1/8)logp(n)]. (2.8)
There exists a universal constant ¢ = 1 such that if the inequality
Co = errgb™* In(n)'® < 7%, (2.9)

holds true then with probability greater than 1 — cn71/4, the following event occurs:

1) Eigenvalues. There exists an ordering of the largest ro eigenvalues in modulus
Als-oy Arg Of A such that for all i € [ro],
¢

3
|Ai = i < Co m |pil, (2.10)

i

and all the other eigenvalues of A have modulus smaller than Cé/gﬁ.

2) Eigenvectors. We denote by v; and 1 two unit right and left eigenvectors of \; with
positive scalar product. The relative spectral gap ratio at p; is defined as

Tio=1— min |1 — (u;/m)"] (2.11)
je[n]\{i}

Then, for every i € [ro] and j € [r], one has

8y | o _Coto

RPRNES . 2.12
el - 22| < 28 (212)
where v; = 1 is the deterministic number only depending on d and P defined by
¢
<17 QS@i O) ¢i>
2y (219
The overlap between eigenvectors satisfy
Fi i C Te
st - el < o (214)
Vi | S =70 = 7ie)
where T'; j are real numbers defined by
¢
1,Qvi O ;)
;= —_— 7 2.15
7 920 (O’iO'jd)s ( )
Finally, the same bound (2.12)-(2.14) also hold for the unit left eigenvectors v; and
i 0Oij CoT§
i) — | S ———. 2.16
O (210
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FIGURE 3. An underlying 10000 x 10000 symmetric matrix P satisfying
the above conditions, and with eigenvalues us = 1, u2 = 2 and p1 = 3,
has been fixed. Above, we see the eigenvalues of A when the sparsity
parameter is d = 5. In this case, the threshold max{9,9o} is approxi-
mately 2.44, hence only the eigenvalue p1 = 3 gives rise to an outlier in
the spectrum of A. On the right panel, we chose d = 15, and in this case
the threshold is close to 1.3, thus the two eigenvalues p1 = 3,2 = 2
give rise to two outliers of A close to 3 and 2.

We have stated this theorem for any matrix P with parameters b, r, 10, 70, d,d without
mentioning any dependence on n. In fact, all those parameters can indeed depend on n
since our result is non-asymptotic and quantitative. A numerical value for the universal
constant ¢ > 1 could be extracted from the proof, even if it would not be very informative:
we have used various crude bounds to arrive at a tractable constant Cy and a readable
proof. There are however various ways to improve the value of Cy, notably by decreasing
very substantially the factor b** or ln(n)w. We have postponed this technical discussion
in the final Section 18.

In Theorem 2.3, the value of the threshold ¥ > ¥s v 91 is free, it determines the
eigenvalues above the threshold and the gap 79. Theorem 2.3 is not trivial if C is smaller
than 7,*. In the typical situation where the parameters b,r, 7o are O(In(n)°), for some
constant ¢ > 0, it happens if log;(1/70) » In(In(n))/In(n). We note also that in this paper
we only focus in the regime where d is small, typically for d = O(4/In(n)), where usual
spectral methods on the symmetric matrices are not working. We have thus made no
effort in obtaining an interesting error bound when d is larger.

The threshold 92 = \/W is the analog of the Kesten-Stigum bound in community
detection, see [46], it is related to an intrinsic property on the existence of an eigenwave
in a Galton-Watson tree with Poisson offspring distribution with parameter d, see Section
14. In most applications and simulations, 92 is bigger than 91 = L/d. There is however
a regime where d is very small and as a consequence, the actual threshold is ©;. This is
the same phenomenon as the one uncovered in [24] — see the definition of p in Theorem
1 of that paper, see also [15] for a similar phenomenon. In our setting, as it is defined,
the threshold 8 = L/d is often pessimistic. We have used it mostly for the readability of
the proofs. There are ways to decrease the value of L for most choices of matrices P. We
have again postponed this technical discussion in Section 18.

Remark 2.4. We note that it is immediate to check that as d grows, 7; — 1 ~ C'/d where
C depends on P.

Remark 2.5. The coefficients ; have a simple expression if P is such that Zy Qzy =
nZy ng does not depend on x. Indeed, in this case, the vector 1 is the top eigenvector
of @ and we have ), Qsy = p/n. In particular, Q°1 = p°1. From (2.13), for i € [ro], we

get
[ 2s _ \2(£41)
S S (- IR 770 (02/1:) — (2.17)
2\ T (92/p0)
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We conclude this subsection with an easy corollary of Theorem 2.3. It asserts that,
above the threshold 9, the average of the left and right unit eigenvectors of A is a good
estimate of the corresponding eigenvector of P.

Corollary 2.6. With the notation of Theorem 2.3, fori € [ro], let $; = (Vi +15)/|vi + i)
where | - | is the Euclidean norm of a vector. On the event of Theorem 2.3, we have for
all j € [r],
(rrpyy] — 2t | o AComs
SSARVCrE S | I v
The above result states that weak recovery is feasible even in the regime where d is of
order 1 provided that ¥ itself is of order 1. This is in very sharp contrast with what would
happen if the revealed entries were symmetric. As known in the literature (a general
survey is given in Subsection 7.2 at page 33), the top eigenvalues would then be aligned
with the high-degree vertices, but also the top eigenvectors would be localized on those
vertices, losing all the signal information.

(2.18)

2.2. The rank one case and Erdés-Rényi graphs. We illustrate Theorem 2.3 for
rank one matrices which are already an interesting first example: P = pp*. With the
above notation r = 1, 1 = 1 and ¢1 = ¢. In this case, from (2.17) it is easy to check
that we have . S04

V2 = n|§|4 and v = 179 T —283
where v = 71 is defined by (2.13) and |p|i = 3, |¢(2)|*. For d = O(In(n)), Theorem 2.3
is an improvement of the results in [23].

This result on rank-one matrices can be applied to the adjacency matrix of a directed
Erdés-Rényi graph. It corresponds to a matrix P whose entries are Py, = 1/n for all
2,y. Then the matrix A" = dA is the adjacency matrix of a random graph where each
directed edge (x,y) (including loops (z,x)) is present independently with probability d/n.
In the asymptotic regime n — o and d > 1 is fixed, Theorem 2.3 implies that 1) A’
has one outlier eigenvalue close to d, all the other eigenvalues being smaller than v/d and
2) the unit eigenvector ¢ associated with the outlier eigenvalue satisfies |[(1,1/y/n)| =
4/1—1/d + o(1). These results are illustrated on Figure 4, at page 11.

This is quite a striking contrast with the undirected sparse Erdds-Rényi graphs, where
the high eigenvalues are aligned with the high-degree vertices, and the associated eigen-
vectors are localized on those vertices, see references below.

(2.19)

3. DETAILED RESULTS: NON-BACKTRACKING MATRIX

In this section, we work out what happens if instead of using the adjacency matrix of
the problem, we use the non-backtracking matrix.

3.1. Setting: weighted non-backtracking matrix. In the square symmetric case P =
P*_ Theorem 2.3 and its Corollary 2.6 illustrate the striking accuracy of the spectrum of
the non-symmetric matrix A to estimate the symmetric matrix P. There is however some
information which has been lost: the fact that P = P* has not been used in the definition
of A and the set of revealed entries could be almost doubled in principle. At some extra
computational cost, a weighted variant of the non-backtracking matrix can cope with this
issue.

Let us first define the probabilistic model. Let d > 1 and M € .#,(R) be a random
symmetric matrix where all entries above the diagonal are independent Bernoulli random
variable with parameter d/n: for all 2,y € [n], My, = M, , and

P(Myy —1) = 1 — P(My, — 0) = %.

Then, we define £ = {(x,y) : My, = 1}, it is the set of revealed entries of P. With
d = 2d — d/n, this would correspond to the revealed entries of the matrix (A + A*)/2 in
our previous model up to a slight modification of the law of entries on the diagonal which
is harmless in our setting.
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e S At toaN ot e p
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Histogram for the Perron eigenvalue (N = 10%) Entries of

FIGURE 4. On top, the spectrum of a directed Erdés-Rényi graph with
d = 4 an n = 10000 vertices. The outlier \; ~ 4 is clearly visible.
Above (right), a plot of the entries of the eigenvector of A associated
with A1 ~ 4. All entries are positive (Perron’s theorem) and are stacked
close to the real eigenvector ¢ which is in orange; their scalar product is
close to 4/1 — 1/4. Above (left) is a histogram of the values of \i, over
N = 10000 realizations of directed Erdds-Rényi graphs with parameters
n = 10000 and d = 4.

We will need the following notation. A vector ¢ € R™ can be lifted as two vectors, ¢™,
¢~ in R¥ by setting
- p(z) + ©(y)
¢ ((z,9) = —= and ¢ ((z,9) = —=.
(z,9)) i ((z,)) 3
The scaling is chosen so that these lifts are isometries from R™ to L*(R” P): E[|¢*|?] =
|0|?, where |- | is the Euclidean norm of a vector. The norm of ¥ is tightly concentrated:
if || =1 and |p|e < b/y/n, then with probability at least 1 — 1/n,

||ng+|2 -1 < cb*dIn(n)®*n= 12,
for some universal constant ¢ > 0 (it follows for example from the forthcoming Theorem
12.5).

The weighted non-backtracking matriz B € g (R) is the non-symmetric matrix indexed
by E with entries, for e = (x,y) € E and f = (a,b) € E (those are directed edges):

Be,f = %la:ylz#bpa,b-

Exactly as for the matrix A, we can relate the top eigenvalues and eigenvectors of
B with those of P. The weighted non-backtracking matrix B is defined on the directed
edges of the graph induced by the non-missing entries of the matrix P and hence, so are
its eigenvectors. At each vertex, we sum the elements of an eigenvector of B over all its
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incoming edges and then normalize the resulting vector to have unit norm. We refer to
these vectors as the weighting non-backtracking eigenvectors of the matrix P.

3.2. Results. The non-backtracking matrix allows to reduce the detection threshold, the
cost being that the size of the matrix B is typically larger by a factor d (see Remark 3.6
below for possible ways to solve this issue).

A version of Theorem 2.3 also holds for the matrix B, but before stating it we need
some definitions. The first ones are simply adapted from the square case. We emphasize
the difference between the original definitions and the non-backtracking ones by overlining
the corresponding quantities.

Definitions 3.1 (complexity parameters of P). Let P = Y. u; ;05 be a square Hermitian
matrix. The amplitude, stable rank and incoherence describe the complexity of the matrix
P.

(1) Amplitude parameter L:
L = nmax Py, (3.1)
T,y

Equivalently, it is the scaled L' to L* norm of P.

(2) NB-Stable rank 7: for technical reasons, we introduce a stronger notion of stable
rank by setting

2= Il

|1

Note that r < 7 < rank(P).
(3) Incoherence parameter b: any scalar b > 1 such that for every k in [n] with

wr # 0, we have

ma [or (z)] < —

z€e[n] ¢ \/ﬁ ( )

Definitions 3.2 (NB-detection parameters of P and d). Let P = Y. pipip¥ be a square
Hermitian matrix and d > 1 be a real number. The detection threshold, rank and gap
describe what parts of P can be detected and how easily.

(1) Variance matrix Q:
Quy = 1l oy’ p=1Ql. (3.3)
(2) NB-Detection threshold 9: any number ¥ such that

9 = max(d1,92),

_ L
32=\/§ and 9 = 2.

(3) Detection rank ro: number of eigenvalues of P which have modulus strictly
larger than 9, i.e.

where

lual = - = lingl > 9 = Jprgs1] = -+ = |pal- (3:4)

(4) Detection hardness or gap 7o:

m =170 € (0, 1) (35)

Before stating our main theorem for the non-backtracking matrix, we need to introduce
a new parameter on the matrix P which is really specific to the non-backtracking setting;:
this is due to the fact B and B* are not equal in law.

Definition 3.3. Ifrg > 1, we define the matrix C € .#,,(R) by, for all 1, j € [ro],

(1,Qpi © ¢;) Qa,y
Cij = = i(x)pj(x).
J it o ,ui,ujw( )i ()
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Note that C is scale invariant. The matrix C' is the Gram matrix of the vectors
(¢i/Hi)ierr) associated to the scalar product (1, ¢)q = >, (2, Qe.y)¥(2)¢(x) on the
vector space spanned by the coordinate vectors (ez)zev where V' is the set of z € [n] such
that n ), P, = 2., Qazy > 0. It is thus easy to check that C' is definite positive. We
denote by o > 0 the smallest eigenvalue of C. For example, if Zy Qz,y does not depend
on z then o > 1. In general, we have o > mingey Zy sz/u%

We are now ready to state a version of Theorem 2.3 for the non-backtracking matrix
B.

Theorem 3.4. Let P and B be as above and assume d = 1 and o > 0.01. We define
D = max(d,1.01) and
¢ = 1(1/8) log p (m)]. (3.6)

There exists a universal constant ¢ = 1 such that if the inequality

Co = edirgh™ In(n)™ < 75, (3.7)

~14 the following event occurs:

holds true then with probability greater than 1 — cn
1) Eigenvalues. There exists an ordering of the largest ro eigenvalues in modulus

Ay oy Arg of B such that for all i € [ro],

¢

X — il < Co|—| |ual, (3-8)

and all the other eigenvalues of B have modulus smaller than Cl/ef)

2) Eigenvectors. We denote by 1; and 1; two unit right and left eigenvectors of A; with
positive scalar product. For every i € [ro] and j € [r], one has

C_’()Te 0i i Coté
o — =L < o Loby - 2L < 0. 3.9
il = 22| < 2 iD= 22 < 20 o)
where 7; 0 is defined in (2.11) and v; is defined in (2.13) with d in place of d and
41
1,Q°p;
—dy € Q o ®<p;>'
s=1
Finally, the same bound (2.12) also holds for the unit left eigenvector 1; and
/ di,j Coth
iy iy — ——=2=| < . 3.10
vy - | < O (3.10)

The assumptions o > 0.01 is only to guarantee a bound which is uniform in o > 0.01.
In general, it could easily be extracted from the proof an expression of Cy which depends
on o.

The coefficient 4; has a simple expression if Zy Qzy is constant. Arguing as in Equation
(2.17), we have

£+1 N\2(€+1)
D2 P p 11— (2/pi)
% =d =Ly = L2 R 3.11
E Z ( ) W2 T2 T (92/m)? (3:11)

We will check that p > ui (in forthcoming (10.2)). In particular, we always have in
this case that 4; = ;. It follows from (3.9) that the right eigenvector v; is closer than the
left eigenvector 1 to @i .

There is also an analog of Corollary 2.6 which allows to define a new sharp estimator
of eigenvectors of P. To this end, we define the ’left divergence’ of a vector ¢ € RE as the
vector i € R™: for all y € [n],

dw=5 Y el

z:(z,y)eEE
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The 'right divergence’ is defined as follows. Let deg(y) be the number of edges F attached
to y (with loops, My, = 1, counting twice). If deg(y) < 1, we set 1 (y) = 0, otherwise, we
set

7&(9)=m Z Y((z,y))-

z:(z,y)EE

With the notation of Theorem 3.4, we will check that, for symmetry reasons, we have for
i € [ro], the vectors v;/|1;| and 1)} /[+);| are very close to each other and well-defined.

Corollary 3.5. With the notation of Theorem 3.4, for i € [ro], let @i = i/|ths| and
@i = YL /YL, For some universal constant ¢ > 0, with probability at least 1 — en ™4,
have for all j € [r],

we

57;,]‘ < 46’07’(% ]
NGz 1—7is

The same statement holds with ¢; in place of ;.

[{Pis i)l —

Remark 3.6. The spectrum of B is related through the so-called Thara-Bass formulas to
the spectrum of Hermitian matrices of dimension n, see [59, 3] for recent references. In
the simplest case where the entries of nP takes only two values, say 0 and 1, then the

spectrum of B can be obtained from the spectrum of a matrix in .#2,(R), see [4, Note
3.5]. These formulas have been used to design symmetric matrices in .#,(R) strongly
connected to the spectrum of B, see notably [50, 51].

As an alternative, for an integer £ > 1, we may consider the symmetric matrix B, €
M (R) defined as

By = V¥*AB TV,

where A € .#g(R) is the diagonal matrix defined for e = (a,b) € E by (A)ec,e = nPay,
T € #r(R) is the involution matrix defined for e = (a,b) € E by T, = 6p,q) and
the matrix V € .#gz,,(R) defined for e = (a,b) € E and = € [n] by Ve = laez/Vd (s0
that ¢~ = V). The entry (Bg)s,y is equal to the weighted sum of non-backtracking
paths of length ¢ between = and y on the random graph whose adjacency matrix is M and
with edge weights nPy,/d. Then with £ odd as in (3.6), it can easily be checked from the
proofs that a version of Theorem 3.4 holds for By if we replace the eigenvalues \; of B by
sign(Aie)|Aie|"¢ where the A; (s are the eigenvalues of By (this result comes with better
constants since we can rely on the spectral perturbation theory of symmetric matrices).
In practice, this matrix By is however less natural that the matrix B since it has an extra
parameter ¢ which is rather artificial.

3.3. A representative example. In this section we work out a small example, where
we chose the very simple case where

a a b b
a b 2(a ... a b ... b
P= E,n=—
(b a>® 27y b ... b a ... a
b b a a

with k. the matrix of size k with 1 everywhere. Its spectral decomposition is given by
P=(a+b)111f + (a — b)121%, where 1; = (1,...,1,0,...,0) and 1o = 1 — 1;.

Such a P obviously satisfies the required hypothesis for our analysis (low-rank, incoher-
ence). The eigenvalues of P are a — b, a + b with multiplicity one, and 0 with multiplicity
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n — 2. Consequently, the matrix Q = nP © P is equal to

a® ... a® v ... b?

0= 4 | a? a® b b2
S on |2 b2 a? a?
b? b a? a?

and we immediately infer p = 2(a® + b*). When a = 4 and b = 1, the nonzero eigenvalues
of P are thus 5 and 3 and the detection threshold with the non-symmetric masked matrix
is 9 = 4/34/d, while the detection threshold with the non-backtracking matrix is ¥ =

\/p/2d = 4/17/d. When d = 3, these thresholds will be

9 =4/34/3 ~ 3.317 9 =4/17/3 ~ 2.23.

While the adjacency matrix will only have one outlier close to 5, the non-backtracking
matrix will have two outliers, thus reflecting the whole structure of P and capturing more
information on P — at a higher computational cost though, because the average size of
B is 2dn. The phenomenon is illustrated at Figure 5.

4. DETAILED RESULTS: RECTANGULAR MATRICES

We now go back to our original problem, where P is a rectangular m X n matrix.
Without loss of generality, we will assume m < n and we introduce the parameter a € (0, 1]
defined as

a=". (4.1)

Let M be a m x n matrix whose entries are i.i.d. Bernoulli with parameter d/n:
d
PMyy=1)=1—-P(M,, =0) = o
As before, the non-zero entries of M correspond to the entries of P that are observed.
For convenience, most proofs in this section are deferred to Section 17 at page 80.

4.1. Setting and strategy: reducing non-symmetric to symmetric. We first de-
scribe a useful strategy to use our results for symmetric problems P and transfer them to
the non-symmetric world.

We start by introducing an auxiliary (n+m) x (n+m) random matrix Z whose entries
are Bernoulli random variables with the following distribution: for z,y € [n + m],

P(Zey=1,2Zy-=1)=¢q (x #v) (4.2)

1—
P(Zey = 0,2y =1) = P(Zey = 1,20 = 0) = 1 (x#y)  (43)

P(Zszo=1)=(1+4¢q)/2 (4.4)
where g € (0, 1) is a parameter which must satisfy the following identity:

g % (1‘;")2 (4.5)

It is easy to check that such a g exists. It is given by 2d(1 —+/1 —d/n)/n—1 ~ d/4n. We
finally define a (n + m) x (n 4+ m) matrix with zero-one entries by

M:=Z0 <MO* Aj) . (4.6)

Lemma 4.1. If q satisfies (4.5) then the entries ofM are independent Bernoulli random

variables with parameter
2q d
2L 11012,
T3 (Fegy
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----- Vp/d with d = 3

- S

(e}

I

----- \/p/2d with d = 3

-2 0 2 4

FIGURE 5. The underlying 1000 x 1000 symmetric matrix P is as in
Example 3.3 and has eigenvalues 0,3 and 5. On the top panel, we see
the eigenvalues of A when the sparsity parameter is d = 3, with one
outlier above the threshold & ~ 3.317. Below is the spectrum of the
non-backtracking matrix B defined in this paragraph; there are two
outliers close to 3 and 5, above the threshold § ~ 2.23. Note that the
second panel depicts around 6000 points (the average size of B with
n = 1000 and d = 3).
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The proof is at Subsection 17.1. The mask M is thus an i.i.d. Bernoulli matrix with
parameter 2q/(1 + q) = d/2n + o(1/n) =: d/n with 7 := n + m. The parameter d is close

to (1 + a)d/2, hence we have n/d ~ 2n/d. We can now apply our results from the first
section, especially Theorem 2.3, to our new estimator A which we define now. First, we

note P the Hermitization of P:
~ 0o P
P = . 4.7
(P* O) (4.7)

The link between P and P (especially between the spectral decomposition of P and the
SVD of P) is well-known in the literature ; we recall it at Subsection 17.2. Our estimator
is simply going to be

A <27"> Mo P. (4.8)
It is a block matrix with the following form:

< 0 A
(s ) »

where A1, A3 are m x n real matrices. Note that all the information contained in the
original problem is kept intact: each revealed entry of P is present at least once (maybe
twice) in this new estimator A.

4.2. Results. Just as before, we first gather the main definitions involved in our result.
We emphasize the differences with the quantities in the preceding sections with a tilde.

Definitions 4.2 (complexity parameters of P). Let P = > 0:(;(f be an m x n matrix
and P is Hermitization as in (4.7). The amplitude, stable rank and incoherence describe
the complexity of the matrix P.

(1) Size: i =m + n.

(2) Amplitude parameter L:

L =nmax|P,,| = (1+a)L. (4.10)
x,y

Equivalently, it is the scaled L' to L norm of P.
(3) Stable numerical rank r:

_IPIE X i

PR I
(4) Incoherence parameter b: any scalar b > 1 such that for every k in [n] we have
b
< —. 4.11
max |k (@)l [ox (2)] < = (4.11)

Definitions 4.3 (detection parameters of P and d). Let P be as in (4.7) and d > 1 be
a real number. The detection threshold, rank and gap describe what parts of P (and P)
can be detected and how easily.

(1) Variance matrix Q:

Quy = 71| Py |” p=1Ql. (4.12)
(2) Detection threshold 9: any number § such that
9 = max{9:, 9.}, (4.13)
where the ‘theta parameters’ are defined by
§o=1/2 and 5 =L (4.14)
d d

(3) Detection rank 7o: number of singular values of P which are strictly larger than
9, ie.
012205 >V 2 070+1 2 = On. (4.15)
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(4) Detection hardness or gap To:
9

Org

=70 € (0,1). (4.16)

Let us make a few remarks on these definitions.

e It is clear that if Q is the non-square matrix defined by Q., = n|Psy|?, and
p = n||Q|, thus corresponding to the base problem, then we have p = (1 + a)p.
The thresholds in (4.14) thus satisfy

/ f,
9 = and 9 =2~
2 \/7 1 i

e We know (see the link between P and P at Subsection 17.2, and more precisely
(17.2)) that |prlew < b/vV/2 < b

e The number of eigenvalues of P with modulus greater than 9 is 27y. Each singular
value o; gives rise to two eigenvalues of Pat +0; and —o;, as recalled in Subsection
17.2.

e It is easy to see that the stable rank 7 of P is equal to 2r, where r is the stable
rank of P.

As in the square case, we need to define ‘theoretical correlations’ between eigenvectors.
They now depend on more parameters than before.

Definition 4.4 (theoretical covariances). For i,j € [fo] and for signs o,n, the real
numbers I}’ are defined by

4 s, o o
e Y 1,Q%¢; ©¢5) (4.17)

v A (a0y)(00y)d)?
where { is the integer defined in (4.18) thereafter.

We will also use v; as a shorthand for FI{* =I'; ;7. It is easily checked to be bigger
than 1; however, there is no particular reason for F:f to be bigger than 1 or even positive
in general, and indeed one can verify that limg—, o I’L’f = —0;,;/2.

We are now ready to state ou main theorem for rectangular matrices: it directly follows
from an application of Theorem 2.3 in our setting.

Theorem 4.5. Let P and A as defined earlier. We define D = max(Qci7 1.01) and

= |(1/8)logp (7)] . (4.18)
There exists a universal constant ¢ = 1 such that if the inequality
Co := cifgh** In(R)"¢ < 75, (4.19)

holds true then with probability greater than 1 — cn71/4, the following event occurs:

1) Eigenvalues. There exists an ordering A1, ..., r, of the 7o eigenvalues of A with
greater modulus and positive real part, such that for all i € [7o],
<t

s = oil < Co| = lon], (4.20)

and these \; are real. All the other eigenvalues with positz’ve real part have modulus smaller
than CJ/*9.

2) FEigenvectors. We denote by 1/1? the unit right eigenvectors of £X;. The relative
spectral gap ratio at o; is defined as

Fe=1— min |1—(o;/0:)". 4.21
") je[n]\{i}l (o5/0:)"] (4.21)

Then, for every i € [fo] and j € [Fo], and for every signs o,o € {+, —}, one has
Jo.00i5| _ _Cofs

|<¢z750]>‘ ﬁ = 1 _ %i,f

(4.22)
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and

ITigl| _ o

VI | (1= F) (1= F)
Finally, if w:ﬁe“ denotes the unit left eigenvector associated with +\; with the conven-

tion (1.4), then

[<oi, i) —

(4.23)

o 80,00i, Co7
© b 1ogy) — 220003 | < 0 4.24
‘<w s 5 1eft) e (4.24)

The main difference between this theorem and the original theorem for symmetric
matrices lies in the threshold & in (4.13)-(4.14). With our method, the singular values of
P are detected only above the new threshold

s | 28,2 |
which is strictly bigger than max{L/d, 1/p/d}, the original threshold.

4.3. Smaller, square matrices. The matrix Ais a square matrix with size m + n,
which is bigger than m by a factor 1 + a~'. This can result in a higher computational
cost, but we can do better and restrict ourselves to smaller matrices. Starting from the
block decomposition (4.9), we can use the alternative matrices

X = A AY Y= A5A (4.25)

which are square matrices of respective sizes m and n. The following example shows in
details how to obtain them directly from the observations.

Example 4.6 (From raw data to X and Y'). Suppose that the matrix where we store the

observed entries is
0 2 0 4
1 0 0 4

the zeros meaning that the corresponding entry is not observed. The steps to form the
matrices X and Y are as follows: first, for each revealed entry, flip a coin as in Lemma
4.1 and put the entry right or left:

020 4)_ (0 200\ (0004
1 0 0 4/ \o 0 0 4 10 00

Second, normalize by 2n/d to get A; and A%:

o (0 2 0 0 on [0 0 0 4
A, =22 A, = 2
101(0004> 2d<1000>

Finally, multiply them to get the square matrices X and Y: for X, which has size m = 2,

om\?2 (0 2 0 0 A 0 0
X =AAF = (22 = (=
1z <d>x<0 004)X (d>x<16 0>

and for Y which has size n = 4:

= O O O
o O O =

0 1 0 0 0 4
2 2
2
Y:A§A1:<2—n> y 0 0 y 0 0 0 :<2£> y 0 0 0 O
d 0 0 0 0 0 4 d 0 0 0 O
4 0 0 8 0 O

The elementary properties of those matrices are gathered in the following lemma, whose
proof is a mere verification.
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Lemma 4.7 (structure of A) Let X\ be a nonzero eigenvalue of A associated with a unit

right-eigenvector
U
NE

Then, — is an eigenvalue of A, and a unit right-eigenvector is given by

(”). (4.26)

If X := A1A¥ and Y := A¥ Ay, then we have A? = diag(X,Y). Moreover,
Sp(X) = Sp(Y) = {X\*: Ae Sp(A)}. (4.27)

If a nonzero eigenvalue A has multiplicity mx in A, then A\* has also multiplicity my in X
and inY. If (4.26) was a unit right-eigenvector of A, then u # 0 and w/|u| is a unit right-
eigenvector of X associated with \2. Similarly, v # 0 and v/|v| is a unit right-eigenvector
of Y associated with \2.

We can thus detect the squares of the singular values of P, and the singular values
themselves, by only looking at X or Y. Equivalently, we can estimate the singular vectors
Ci, & by only looking at the eigenvectors of X or Y. To do this, fix i € [fg]. We will note x;
a unit right-eigenvector of X associated with the eigenvalue \?, and X} a left eigenvector
(recall convention (1.4)). Similarly, we will note 7;, 7; for the eigenvectors of Y. We will
need a variation of the quantities v;. We define

GOG 0
zA j o= i j = . .
GAC ( 0 ) IIAVAS <§i®§j> (4.28)

Equivalently, ;A = of © 4,0;' —oF O¢; and &V = 7380 4,0;' O] ¢; . Then, we
define:
¢ ~ ‘ ~
FiAj — Z w Fivj - Z w (4.29)
R C 0N oS (afd)e

and we set fyiA = Ffﬂ- and v = Fiv,i. It is straightforward to check that ’yf + 9 =2y
and that

A et +,— V. o_ et +,—
Lia =Ty — T4 ia =Ty + 155 (4.30)
Theorem 4.8. Let, X,Y be the matrices defined in (4.25). We place ourselves under the
event of Theorem 4.5. Then, there exists an ordering v, ..., V5, of the Ty eigenvalues with

greater modulus of X, such that
Cos

1—"Tie

Wi~ ail < (4.31)

Let xi and x; be two unit right and left eigenvectors associated with v; with positive scalar
product, then

5ij Co7y 3i g Cos
[ ol = 2| < 7= OGOl = —=| < 72 (4.32)
A Ti b \v4 Ti, e
\/; \/ Vi
and

A ~0

i CoTo
[xi, X3l — 2| < = = (4.33)

'yiA'yjA \/(1 - Ti,f)(l - Tj,f)
i Co7t
X Xy — 2| < = —. (4.34)
R IRV IC 9y
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10.0 T
N [ e v/ p/2d with d = 50
Singular values of A
5.0 p e ecigenvalues of X
2.5
—2.5 /'/
-5.0 k
—7.5
—10.0
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FIGURE 6. Here we chose P as in Example 4.9 with singular values 5
and 3. The singular values of the masked matrix, A, are depicted with
the gray lines. They are uninformative, contrary to our matrices X and
Y defined in (4.25). The spectra of X and Y are identical except for the
multiplicity of the value 0, and is depicted in the picture. With d = 50
the two outliers can be seen close to o7 = 25 and o2 = 9.

A similar statement holds for Y, its eigenvalues v; and its eigenvectors m;, in particular:

V. ~¢
Ky 3] — ——2 | < Cofo
\/'yiv'ij \/(1 - Ti,f)(l - le)
(romty — 9| o Coy ‘
YAy T VA =T = )

Finally, if the orientation of eigenvectors is chosen so that {xs, X;> = 0, then {xi, ¢y and
(X}, ¢i> have the same sign.

The proof is in Section 17 at page 80 and the result is illustrated at Figure 6.

The preceding theorem completely describes the behaviour of the most informative
parts in the spectral decomposition of the ‘smaller matrices’ A% A; and A¥ As. They will
also be used later in the design of ‘optimal’ estimators of the hidden matrix P. The
can be difficult to compute in general, however we will see in

. . yaN
theoretical covariances I'; J

the following sections that
(i) when the rank of P is one, which is in itself an important example in applications,
all the computations can explicitly be done (see Section 6 after);
(i) When they cannot explicitly be computed, then can consistently be estimated by
the mere results of Theorem 4.8. This will be done in Section 5.

Example 4.9. We took P to be a 1000 x 5000 matrix with SVD P = 5¢(1&1 + 3(2€2, the
singular vectors being taken uniformly at random over the unit sphere. With this matrix,
we have p ~ 170 and the threshold is given by

- 2p 1847
Vo =7/~ ——. 4.35
N T Ve e
The singular value 3 will only be detected if 3 > 95 or equivalently if d > (18.47/3)? ~

37.91. With d = 50, the two outliers v1,v2 of X clearly appear close to the locations
0% =52 =25 and 03 = 3% = 9, same thing for Y.
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4.4. Statistical estimation aspects. We will now use the results of the preceding sec-
tion for the statistical estimation of the singular vectors of P. Fix some i € [fo]. In the
spectrum of X, there is one eigenvalue v; close to o2. It gives rise to two unit eigenvectors,
x: on the right and X} on the left, which contain information on ¢;. Similarly, the unit
eigenvectors 7, m; of Y associated with 7; contain information on &;.

We present two estimators for ¢; and two for &;: using one eigenvector without any
modification (‘simple’), or averaging the two left and right eigenvectors:

&M = xi &M =
ravg Xi + X’IL Favg T + ﬂ—'IL
Ixi + Xl |mi + ]

The following theorem gives the full correlation between these estimators themselves,
as well as their performance at estimating (;, §;. First, we define
sim 1 sim 1
Cli = —F7— Cay = ——

A
Vi 'Yiv

av, 2 av; 2
Cl,ig = N Cz,z‘g = S .
Vi 1 v+

Theorem 4.10 (statistical estimators). We place ourselves on the high-probability event
of Theorem 4.5. Let i,j € [fo]. Then, we have

KE™, ¢l = L+ o(1)er, G, ¢l = (14 o(1)erE

KE™, &) = (14 o(1))ea T, €, ¢l = (1 + o(1))c58

Moreover, these estimators satisfy:

e re.

@™ &™) = (1+ o(1)) = (1.36)
Yi Vj

rovs 2 | P

G580 = (14 o(1)) = (137

(v + 1 +1)

The proof is in Section 17.4 at page 81. One can observe that cti goes to 1 when
d — o0, indicating that in the high-degree regime where d is high, total reconstruction is
nearly achieved. Moreover, it is easy to see, using Definition (4.17), that

<< and Aredi<l s
The elementary identity |{# — ¢|2 = 2(1 — ({*#, () ~ 2(1 — cfﬁz) shows that the closer cffi
is to 1, the better the estimator. The meaning of the inequalities in (4.38) is that avg
estimator is better than the other, as it incorporates more spectral information.

4.5. Non-backtracking matrices. For better performances at a higher computational
cost, it is naturally also possible to use the non-backtracking matrix in conjunction with
the Hermitization P of the matrix P defined in (4.7). The mask matrix is then

=0 M)
M* 0

We can thus define the weighted non-backtracking matrix B associated to this mask matrix
with weights P as in Subsection 3. Applying directly Theorem 3.4, we then obtain a non-
backtracking version of Theorem 4.5. This can be used to do statistical estimation of the
singular vectors as in Subsection 4.4. To avoid too much repetitions, we leave the details
of the statements to the reader since they follow from exactly the same considerations
than above.
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5. APPLICATION TO MATRIX COMPLETION

Let us place ourselves in the general, rectangular case, where the rectangular matrix
T
P =) 0iGEl
i=1

satisfies the suitable incoherence and rank assumptions from the preceding sections. We
want to find back P from the observation of its masked version P ® M, where the prob-
ability of uncovering each entry is d/n for a fixed d. Clearly, our theoretical results only
allow to recover the singular values and vectors with ¢ € [7g]. We will note

7o

Py = Z 0l

i=1
the part of the matrix P which can be recovered. It is clear from the previous results that
P = Po ifO‘min < 9.

5.1. Mean squared error optimal matrix recovery. Suppose that we dispose of
estimators éz and éz of the singular vectors (;,& — we do not specify what they are
for the moment. Then, we can try to estimate P, by a matrix P which can be written
o w;i&;&™ . This amounts to solving the optimisation problem (see [47]):
oo
Py — 2 wiGi&i

i=1

opt __ opt opty _ .
= (wy™,...,wzy’) = arg  min
WL,y Wig

w (5.1)

>0

F
This problem can be solved using elementary analysis, the solution being

70
wiPt = <Re [Z i< Ci><§j7€i>]> ; (5.2)
j=1 N
see [47], Theorem 2.1, statement a) and the proof therein. In order to achieve small
mean-square error in this sense, one must dispose of efficient estimators in the sense that
they have to be strongly correlated with the original eigenvectors; we need {(;, @) as close
to 1 as possible. If we use the estimators from the preceding section, namely fsjm, ftOt,
we obtain different behaviours for the corresponding optimal w?pt, which will be named
wi™ w8, From (5.2) and Theorem 4.10 we thus get

w? = (1+ o(l))aicfflcf; (# = sim, avg) (5.3)
with high probability. The asymptotic expressions are
wsim — (1 + 0(1))01

Jrent (5.4)
Yi Vi
w?Vg — (1 + 0(1))20i ) (5_5)

(O + DY + 1)

Let us note P# the matrix obtained with this method: |Py — P#|r is the optimal
mean-square error MSE? we can get with our estimators using # € {sim, avg}, and it is
given by

MSE? = | R, — P#|3. (5.6)

In general, it is not possible to use (5.3) and the subsequent explicit expressions, be-

cause the formulas for w? are not statistics, they depend through cfl on hidden quantities

1
contained in P, namely the yiA and o;. However, we can efficiently estimate these quan-
tities. First, our analysis provides a number of ways to estimate o;, the simplest being to
simply set
Gi = \/Vi. (5.7)
We now want to estimate cfk directly from the data, and a delightful consequence of
Theorem 4.8 is that we can estimate these quantities directly from data. The key result
here is that the inner product between the left-eigenvector x; and the right-eigenvector
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X; is indeed asymptotically equal to the square of the inner product between x; and (;,
namely [(xi, xi>| ~ 1/714A = (cff’f‘)Q, thanks to equation (4.36). By setting

e = /1o X)) e = g/ [(m, ) (58)

sim

we have obtained consistent estimators of ¢;;’. Similarly,

s | 20 x)l o, [ 2 x)l (5.9)
" 1+ [0 X3 " 1 [(s, m)

are consistent estimators of ¢f?, as can be directly checked from Theorem 4.8.

We can now replace the theoretical optimal quantity wl# by a quantity 12}1# which is
directly computable on the data. In practice this leads to the following two estimators:

—_—

BT = ey (5.10)
avg “avg avg
W8 = Gici ¢y (5.11)

Note that with the definitions they can be written in greater detail as

i . Avilxi, X)X, Tl
sim-__ . SN ey avg _ LAY > N .
oyl el \/ (0 T XD+ e 73D

5.2. Procedure. The methods described above require a few pre-processing of the prob-
lem. The starting data are the observed entries of P. Then, one has to generate the
auxiliary matrix Z defined earlier in (4.2) , and form the new estimator A defined in (4.8),
or even better, to directly form the two matrices X and Y from the preceding corollary.
The matrix Z is not especially difficult to generate, but its role here is more theoretic
because it allowed us to directly transfer our results from the symmetric setting to this
new setting, the key here being that Z ® M is a Bernoulli matrix.

However, in practice, we see that the probability that Z, , = Z, . = 1 is proportional
to 1/n, hence extremely small, while the probability of having Z,, = 1 and Z, ., = 0 or
the other way round is indeed very close to 1/2.

For practical purposes, it is better to replace Z with a matrix Z’ whose entries above
the diagonal are i.i.d. Bernoulli with parameter 1/2, and the entries below the diagonal
are simply Z, , = 1 — Z; ,. The procedure would then be as follows:

(1) Let T = P(® M be the m x n observed matrix.

(2) Let Z' be an m x n matrix with i.i.d. Bernoulli 1/2 entries. We set C1 =T ® Z
and 02 =T - X.

(3) Our estimators are

2n\? % 2n\? %

and the spectral statistics of X,Y have the properties described in Theorem 4.8.
The algorithmic description of this method is described in Algorithm 1 at page 25.

5.3. Mean square errors. The following proposition gives a theoretical expression for
the mean square error. We introduce a notation:

sim Ffj sim F’YJ
( 1 )1,] = T (62 )%J =
AV A
A _ v o
(€7"®)iy = L 00 (€57)is = Ly 0

(/A + )OS +1) VOaZ +)6Y + 1)

These matrices are indeed the Gram matrices of the estimators (3™, (™8 and €™ £2&,
thanks to the results in Theorem 4.10 (up to conjugation by a unitary matrix of signs).
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Algorithm 1 Statistically optimal matrix completion using asymmetric eigen-
decomposition

Choose the estimation method # = sim, avg, tot.
Input: T'= P ® M the masked matrix.
Input: 7 = estimate of the detection rank 7.
Generate X,Y.
Compute the 27 highest eigenvalues v; of X, the associated right-eigenvectors x;, the
left eigenvectors x;. Select an orientation such that (x;,x; >= 0.
6: Compute the 27 highest eigenvalues 7; of Y, the associated right-eigenvectors m;, the
left eigenvectors ;. Select an orientation such that (m;, 7} >> 0.
7. fori=1,...,7 do
Compute the empirical correlations between the eigenvectors.
Compute 0 as in (5.10)-(5.11).
10:  Set

BANE R A

éz:él# and ézzéf
11: end for X A
12: return P# = 2::1 wf#Q#(fz#)*

Proposition 5.1 (minimum square error). On an event with probability tending to 1, the
mean square error obtained with the aforementioned estimators is asymptotically given by
70
2 2 2
MSE? ~ Z o; (1 — 2(0?%1-03;) ) + Z O'in[(CﬁiCQ#,j) (Ef&)”&f)”] (5.13)
i=1 i,5€[Fo0]

The proof is at Subsection 17.6.

The expression for the MSE in the preceding theorem can explicitly be computed
provided we can compute the I'; ; and the %A and ~y;”, which might be difficult. However,
when the rank of P is 1, things are really simple since in this case it is easy to check that
(€k)1,1 = 1, and consequently we will simply have

MSE? = o7 (1 - (cﬁci)g) +o(1).

It is easily understood that when d — o0, the matrices €, & converge towards the

identity I, and the quantities ck#’i converge to 1, hence

lim lim sup MSE? =0

d—=0 poo

thus ensuring that in the d — o0 regime, recovery is almost exact.

6. THE RANK-ONE CASE

In this part, we develop in greater detail our theory when the underlying problem P
has rank 1. In this case, many computations can explicitly be done without too much
difficulty and provide a better understanding of the different parameters at stake.

We begin with the simple case when P is Hermitian, and then illustrate our statistical
results when P is rectangular with rank 1.

6.1. Warm-up: symmetric problems. Here, the first basic model is the rank-one
symmetric completion problem already explored in Subsection 2.2; the underlying matrix
is P = pp™ and the main parameters 92 and v we computed in (2.19). We gather these
results in the following proposition.

Proposition 6.1. Suppose that P = pp*. Then, p = n|g0\ﬁ. The detection threshold is

given by
4
SENCEH 61



26 CHARLES BORDENAVE, SIMON COSTE, RAJ RAO NADAKUDITI

distribution B Kurtp, asymptotic value of n|p|]
Bi-sided exponential (Laplace), f(z)oce™!®! 6
Hyperbolic secant 5
Standard normal 3
Uniform on [0, 1] 9/5~ 1.8
Ber(c) 1/c
Centered Ber(1/2) 1
Generalized normal: f(x)ocefmﬁ W

TABLE 1. Some values of the kurtosis, appearing in our threshold as
n|p|i ~ Kurtp.

The parameter vy1 is given by

1— 192 £+1
n= T (6:2)
2
1+o(1
- Lioll) (6.3)
L=="

But now, the eigenvector ¢ is going to be taken at random among various distributions,
a common model in the literature. More precisely, we take a family (B(z))ze[n) of i.i.d.
random variables, we set S = Y |B(x)|? and we define

ola) = 22)

From Theorem 2.3 and equation (2.19), the phase transition in d for weak recovery is
given by

Zze[n] |B(x)|4
(Sacp 1B@E)’

_ (Zme[n] IB(~”L’)2>_2 (Zze[n] |B(9‘)4) (6.5)

n n

4
nlpld =n

(6.4)

which is easily computed using the Law of Large Numbers: if B is a generic random
variable with the same distribution as each B(z), and having a finite fourth moment, then
almost surely one has
niplt = BB
E[|B]?]?
where Kurtg is the non-centered kurtosis, i.e. the ratio of the fourth moment to the squared
second moment; when the distribution is centered this is the classical kurtosis, defined as
the ratio of the fourth centered moment to the fourth power of the standard deviation.
Of course, the Cauchy-Schwarz inequality tells us that Kurt is always greater than 1 and
this bound is attained for random variables with constant modulus — in particular, for
the centered Ber(1/2) distribution. Table 1 collects some values of the kurtosis.

(1+o(1)) ~ Kurtp

Remark 6.2. As mentioned in the introduction, the real threshold is max{d:,92}, and
in this setting it is equal to 9 if and only if y/p/d > L/d, which reduces to n|p|; > L*/d.
But in our rank-one models, if the sampling distribution of entries of ¢ is unbounded,
then L will grow to 00, even if very slowly: for standard normal random entries, we will
have |¢| = 4/logn/n so L = logn and our theoretical threshold should (asymptotically)
be L/d. However, we can actually bypass this limitation, using tools introduced in [15]
and further explained in the last section of this paper, Section 18. The key here is that L
might be replaced by an essential supremum L', which accounts for the maximum of the
entries of P after deleting a small subset of these entries. The simulations suggest that
these refinements do indeed confirm that ¥ is the right threshold of interest.
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FIGURE 7. Numerical validation of the predictions in Proposition 6.1 for
the setup described in Section 6.2 where n = 8000 and various values of

d.
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6.2. Numerical validation of theoretical results. Figure 7 shows the agreement be-
tween the theoretical predictions in Proposition 6.1 for the inner product between the
left and right eigenvector and the ground truth vector and experiment for the setting
where the rank one P with n = 8000 has (unit-norm) eigenvectors vectors drawn from the
uniform, normal and hyperbolic secant distributions.

The detection threshold, as in Proposition 6.1 is a function of the kurtosis and Figure
7 confirms this prediction as well as that of the predicted inner products of the left/right
eigenvectors with respect to the ground truth eigenvector and the prediction for the im-
proved performance of the eigenvector estimate formed by averaging the left and right
vectors.

The third column of Figure 7 illustrates the improved accuracy of the estimated vectors
in the £o error sense relative to the eigenvector obtained using the symmetric eigen-
decomposition. This goes beyond the statement of our results and an analysis of this
improvement represents a natural follow-up of our line of work.

Note, too that the estimation performance gap between the asymmetric method and
the symmetric method increases with the kurtosis of the eigenvector element. Intuitively
this has to do with the localization of the eigenvectors of the symmetric matrix in the
very sparse regime which is bypassed when we induce asymmetry.

6.3. Using non-backtracking matrices. We illustrate in this section the behaviour of
the non-backtracking statistics from Section 3, and especially Corollary 3.5. To do this,
we recall that we first symmetrize the observation and then build the non-backtracking
matrix B.

Working at the non-backtracking level. The left/right eigenvectors associated with the
unique outlier of B will be called 1,1’, and lives in C™. The result in (3.9) says that if
T is the lifting of ¢, then
R lj:ill,
Nan
just as in the preceding paragraph. The main difference now is that the left/right inner
product is given thanks to (3.10) by

W, "y = 1270(1) (6.6)

However, when the rank is 1, the quantity 4; is found in (3.11) to be equal to (p/ui)y: =
p7vi, which in our case is exactly

Yi = nlelivi.
Consequently, the inner left/right product is given by

n 4
14+o(1) 1- "

= +
vivnlels  v/nlels
Asymptotically, the left and right non-backtracking eigenvectors are thus far from being

aligned even when d — 0, since in this regime their angle converges towards 1/4/n|p|}
which is generally strictly smaller than 1 as soon as ¢ is not the constant unit vector.

@,y = o(1). (6.7)

Working with lowered eigenvectors. Asin Corollary 3.5, we can also ‘lower’ the eigenvectors
to the dimension n. To do this we simply follow one of the procedures described above
Corollary 3.5; the inner product between the estimators ¢ and ¢ and the real ground-truth
eigenvector ¢ is 1/,/7; as above.

Figure 8 shows agreement between theory and experiment using the weighted non-
backtracking matrix. The leftmost subplot in Figure 8a confirms the accuracy of the
inner product prediction in Theorem 3.4, and the equivalent performance of the left and
right lowered vectors of the weighted non-backtracking matrix as predicted in Corollary
3.5. The rightmost subplot in Figure 8a confirms the accuracy of the theoretical prediction
for the inner product between the left and right (raised) eigenvectors of the weighted non-
backtracking matrix given by Theorem 3.4 and (6.7) and that between the lowered left and
right eigenvectors. The middle plot in Figure 8a shows the improvement in eigenvector
estimation due to the weighted non backtracking matrix relative to that obtained from
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(B) Normally distributed eigenvector: result obtained from 1 trial.

FIGURE 8. Numerical validation for the improved accuracy of the eigen-
vectors derived from the weighted non-backtracking matrix relative to
those obtained from the eigenvectors (symmetric) eigen-decomposition
of P and the averaged left and right eigenvectors of the randomized
asymmetric matrix. The rank one matrix was generated as described in
Section 6.1 with uniformly distributed (top) and normally distributed
(bottom) eigenvectors. The setup and the theoretical predictions are
described in Proposition 6.1.

the (symmetric) eigendecomposition and the average of the left and right vectors from
the randomized asymmetric eigendecomposition. Figure 8b plots the same quantities as
Figure 8a, except over a single trial and with normally distributed eigenvectors — the plots
confirm the accuracy of the asymptotic predictions and the concentration of measure
implied in Theorem 3.4.

6.4. Rectangular rank-one: explicit computations. Suppose now that that P = (¢*
where ¢, £ are unit vectors. The size of the matrix is m x n with m/n = a. In this case,
the whole problem relies on the computation of the quantities fyf. They might be difficult
to compute in the general case, but here these quantities can entirely be computed in
terms of the 4-norm of (, &, as in the symmetric case. The expressions are a little bit more
intricate, but once |£|4, |(|4 are known, the dependence in d is simple. Note that ')Q.A,'yiv
both depend on ¢, see the definition in (4.17); however, in the computations (which are
deferred to Section 17), this dependence can be neglected because it only gives rise to
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terms which are seemingly complicated, but who in the end behave like 3¢ which goes to
zero. This is why we encapsulated them in the o(1) notation.

Proposition 6.3. Suppose that P = (£*. The detection threshold is given by

The parameters ’yf,’yiv are given by

a_L14o() (_¢IF+€f €1% — [¢I3
YT o \ [ kel T enkgien (6-9)
_ 2nidl | 2l
and
49 = L+o() CE+leli |, Ici—1€k (6.10)
' 2Cli \q - 2ol Ty 2nlciel]

The proof of Proposition 6.3 is only a computation, although more tedious than when
the underlying problem P is Hermitian. We postponed it in Section 17, at page 82.

6.5. Rectangular rank-one: numerical validation. Here, P = (£*, but we generate
¢, € using the same model as for the symmetric case: we put

L _AG@ o B@)
ORI O

where Sa = >1|S(2)|* and Sp = 2 |B(y)|?, and A(z) are i.i.d. samples from a common
distribution A and B(z) are i.i.d. samples from another distribution. We suppose that
both of them have finite fourth moments. With this model, the Law of Large Numbers
entails

S ~ nE[A®] Sp ~ naE[B?]
A 1 E[A"]  Kurta el 1 E[B'] _ Kurtg
* nE[A2]2 B n 4 an E[BQ]2 o an ’

almost surely as n — 0.
In this case, Proposition 6.3 say that the detection threshold in d is equal to

Kurt 4aKurt
2n[C[3IE[E = (1 + 0(1))24 ===

For example, if A, B have the same kurtosis k, then the threshold for the birth of outliers
close to 1 in the spectra of X and Y (defined in (4.25)) is 2k//c.
More precisely, with high probability, the following happens.
(i) If d < 2n|C|3|€|3, then all the eigenvalues of X and Y have modulus smaller than
2n|C[51€[3/d + o(1).
(i) If d > 2n|¢|7|€|3, then all the eigenvalues of X and Y have modulus smaller than
2n|¢|2]€|2/d + o(1), except one eigenvalue v of X with v = 1 + o(1) and one
eigenvalue n of Y with n =1 + o(1).
We denote by x, %’ the unit right and left eigenvectors of X associated with the outlier,
when it exists. Similarly, we denote 7, 7’ the right and left eigenvectors of Y. Recall the
convention (1.4) on the positivity of the scalar product of left and right eigenvectors.

FEstimators: definition and accuracy. We will use the estimators defined in Subsection 4.4:

ésim =x éavg — X + X,
X+ x|

and similar estimators for £. We computed 'yiA in Proposition 6.3: when Kurty4 = Kurtg =
k, a few manipulations show that
1+ 2k 14 2k
A o
RAT 4:2 n ~ ka ) (6.11)

T d2a d2a
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Consequently, from Theorem 4.8 that the left/right inner product is
1+o(1 1+o(1
<X7X/i> = ’YT() (, 7Tz> = A

The formulas for the correlations in Theorem 4.10 give {¢ C# , O = c1 , and we get

~sim — 4k? /d? sim 4k2/d%a
Ol s K™, o~ 4 [ g (612)

s 1—4k?/d?a cave 1—4k?/d?a
ave B~ ave ~ . 6.13
K™, Ol \/1 + k/d —2k?/d?« K€, &)l \/1+k/da2k2/d2a ( )
Finally, the MSE (in the sense of Proposition 5.1) in this rank-one context considerably

simplifies. Indeed, we have o1 = 1 and above the threshold 7p = 1, so that

MSE# =1 — (cf&zci) +0o(1)

and using the definitions of ck from above Theorem 4.10 we find

sim 1
Vi Vi
4
MSE"® =1— —————— +0(1).
Sy oW

Illustrations.  Figure 9 shows the agreement between theory and experiment for the
rectangular setting with respect to the predicted inner product between the averaged left
and right eigenvector of the X (resp. Y) matrix corresponding to the largest real eigenvalue
and the left (resp. right) singular vector of the underlying matrix. The plot also confirms
our prediction in Subsection 5.2 that the accuracy of the left (resp. right) singular vector
estimated thus with respect to the ground truth vector can can be determined from the
inner product between the left and right eigenvectors of X (resp. Y'). This underpins the
statistically optimal (in the MSE sense) data-driven matrix completion algorithm

We could lower the MSE of the recovered by using the weighted non-backtracking
variant of the method — it is computationally too expensive for the the m,n and d values
considered here.
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FIGURE 9. Matrix completion normalized optimal MSE for Hyperbolic
Secant distributed singular vectors for one trial for am m x n rank
one matrix with Hyperbolic Secant distributed (unit norm) left and
right singular vectors. Note the accuracy of the theoretical predictions,
the improvement in performance relative to the SVD and underlying
predicted concentration that makes the asymptotic theory closely match
the result from a single trial.
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7. RELATED WORK

A first version of this paper appeared in the PhD manuscript of the second author, in
2019 ([25]).

7.1. Completion and sparsification. The problem of sparse completion consists in
observing a very sparse sample of elements of a general object (a matrix, a subspace)
carrying some structure (low-rank, delocalized), and trying to reconstruct it. The problem
of matriz completion has attracted a gigantic amount of attention from researchers in
applied mathematics since the last 15 years; the general philosophy can be grasped by
a handful of seminal papers from Candés and Tao [20] and Candes and Recht ([19]),
Keshavan Montanari and Oh [37] and Chatterjee ([22]). The survey [20] gives a global
view of the field.

The dual problem of completion is sparsification, where given a matrix P, one seeks a
procedure to keep only a handful of entries of P without altering too much its properties
([1, 27, 40, 48)).

Those papers, although different in their methods, show that completing a matrix from
the observation of nd of its entries can only be done if the underlying matrix P is not too
complicated (i.e. low-rank and sufficiently incoherent), and in that case P can efficiently
be recovered only if d is of order In(n) — the so-called information-theoretic threshold for
completion. In [37], there are results for d fixed, but they are not sharp at all and do not
allow any precise asymptotics on specific eigenvalues as we do. To our knowledge, the few
works on completion from d = O(n) entries (see for instance Gamarnik, Li and Zhang [32]
and references therein) is focused on e-approximating the whole hidden matrix P, and
never on exact estimation of a specific part of the matrix.

7.2. Random matrices and Erd6s-Rényi graphs. rom the random matrix point of
view, this is all about the spectrum of (sparse) random matrices, or on the eigenval-
ues of weighted (sparse) random graphs. Estimating the spectral properties of the sim-
plest of random graphs, such as Erdés-Rényi , is already quite difficult ([38]). The com-
plete description of the behavior of the greatest eigenvalues of Erdés-Rényi graphs have
been totally explained, in the d = o(n) sparse setting, only recently by different works:
Benaych-Georges, Bordenave, Knowles ([10, 9]) and Alt, Ducatez and Knowles ([2]). Re-
cently, Tikhomirov and Youssef gave similar results for eigenvalues of Erdés-Rényi graphs
with i.i.d. Gaussian weights on the edges ([55]); here, the underlying matrix P is thus
drawn from GOE, and does not meet the usual assumptions of matrix completion. We
finally mention a significant result on inhomogeneous Erdds-Rényi graphs by Chakrabarty,
Chakraborty and Hazra [21] complementing [10].

In those works, it turns out that the behaviour of the (suitably normalized) high eigen-
values of Erdés-Rényi graphs is governed by the high degrees of the graph when d < In(n),
and stick to the edge +2 of the limiting semi-circle law in then d — c0. The exact thresh-
old for the disappearance of outliers happens at d. = In(4/e) " *In(n) ([2, 55]). Those
results hold for undirected Erd6s-Rényi graphs, and we are not aware of any similar re-
sults for directed FErd6s-Rényi graphs, and even less in the really sparse regime where d is
fixed. Indeed, only the convergence of the global spectrum towards the circle law is now
proven (when d > In(n)?) by Basak and Rudelson ([7]). Many questions and intuitions
are given in the physicist survey [44]. Among them are listed (but not proved) our results
on eigenvalues of Erdds-Rényi graphs. Our results on eigenvectors completes the picture.

7.3. Phase transitions. Our main result is a phase transition for the top eigenvalues of
sparse non-Hermitian matrices: the whole bulk is confined in a circle of radius O(1/+/d),
and depending on the strength of the noise d, a few outliers appear and they are aligned
with the corresponding eigenvalues of the original matrix P, and their eigenvectors have
a nontrivial correlation with the original eigenvector.

This is of course similar to the celebrated BBP transition ([6]), and many similar
transitions are already available in the literature of PCA or low-rank matrix estimation
([11, 41] and references therein). Apart from [45], which has a very different setting
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than ours, there are no results for phase transitions in low-rank non-symmetric matrix
estimations, or in sparse settings.

7.4. ‘Asymmetry helps’. One of the key features of this paper is that it deals with
top eigenvalues of non-symmetric matrices. While the global behaviour of the spectrum
of random matrices is now well understood (see the survey [13] on the circular law, or
[33, 44] for physicist’s point of views), finer properties are less known.

Generally speaking, it is easier to deal with eigenvalues of Hermitian matrices, notably
thanks to the variational characterizations of the eigenvalues. However, in many prob-
lems from applied mathematics, it turns out that the spectrum of Hermitian matrices
can sometimes be less informative than the spectrum of other choices of non-Hermitian
matrices. A striking instance of this fact was the so-called ‘spectral redemption conjec-
ture’ in community detection ([39] and [14]), where the interesting properties were not
captured by the spectrum of the adjacency matrix, but of a non-Hermitian matrix, the
non-backtracking matrix.

In the setting of matrix perturbation, this insight was remarkably exposed in a recent
and inspiring paper by Chen, Cheng and Fan ([23]). Their setting is more or less the same
as ours: an underlying Hermitian matrix P, which is asymmetrically perturbed into an
observed non-Hermitian matrix A = P + H, the entries of H being all i.i.d. One might
favor a singular value decomposition because of the conventional wisdom that SVD is
more stable than eigendecomposition when it comes to non-Hermitian matrices; but this
in fact not true, as shown in their Figure 1, and indeed the eigenvalues are more accurate
than the singular values; verbatim,

“When it comes to spectral estimation for low-rank matrices, arranging the observed
matriz samples in an asymmetric manner and invoking eigen-decomposition properly (as
opposed to SVD) could sometimes be quite beneficial.” [23, page 2]

This is the philosophy we would like to convey here; however, their result hold only on
the not-so-sparse regime where d > In(n). We extend all their results to the fixed d regime,
with an explicit threshold for the detection of P and exact asymptotics for perturbation
of linear forms.

7.5. Eigenvalues of perturbed matrices. Many works on completion or sparsification
rely on a perturbation analysis of the eigenvalues/singular values of perturbed matrices.

For example, one of the key points in many papers is that the sparsification procedure
(from P to A) alters the spectral properties of P, but not too much; indeed the top sin-
gular values or eigenvalues do not differ too much, hence keeping only the ‘greater’ items
in the SVD or the eigendecomposition of A is sufficient to weakly recover P; that was
the idea of [37, 22, 27] (and many of their heirs). The proofs usually rely on estimates
on eigenvalues/singular values of the random matrix A, by combining concentration in-
equalities and eigenvalues inequalities (such as Weyl’s one). but no sharp asymptotics can
be obtained with those methods, a limitation already visible in the seminal paper from
Friedman, Kahn, Szemeredi ([30] and Feige and Ofek ([29]). This problem becomes unas-
sailable when d is really smaller than In(n) or fixed, due to the fact that the underlying
graphs are highly non-regular.

Our proof techniques globally rely on methods introduced by Massoulié and refined by
Bordenave, Lelarge and Massoulié ([43, 14]). This powerful and versatile trace method
has now been used in various problems for estimating high eigenvalues of sparse random
matrices, such as random regular graphs ([12]), biregular bipartite graphs ([18]), digraphs
with fixed degree sequence ([24]), bistochastic sparse matrices ([16]), multigraph stochastic
blockmodels ([49]). However, our construction, and especially the pseudo-eigenvectors we
chose, greatly simplifies the former analysis in [43, 14]. This considerable simplification
has been very recently been applied to the non-backtracking spectrum of inhomogeneous
graphs in Massoulié and Stephan in [53], it follow from our methods which was introduced
in a preliminary version of this work contained in [25].

7.6. Eigenvectors of perturbed matrices. Eigenvector perturbation has also attracted
a lot of attention, mainly around variants of the Davis-Kahan theorem ([60]). As men-
tioned in [28], many algebraic bounds (such as Weyl’s inequality or the Davis-Kahan
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theorems) are tight in the worst case, but wasteful in typical cases. Our proof method
does not rely on those general bounds, and naturally integrates the perturbation of eigen-
vectors in combination with the now classical Neumann trick (see [28, 23]).
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8. AN ALGEBRAIC PERTURBATION LEMMA

We present an eigenvalue-eigenvector perturbation theorem, which extends some the
results from [14, Section 4] by taking into account the lack of normality of the structures
at stake. We formulate this tool in a separate section because it can be of independent
interest.

Let us first give a simple description of the result: if u;,v; are vectors such that
{ui,vj) ~ & 4, then every matrix close to S = > 6;u;vF has eigenvalues close to the 6;,
provided the u;’s are sufficiently well-conditioned. Moreover, if the 6; are well-separated,
the corresponding right-eigenvectors of A are close to the w;. Theorem 8.2 quantifies this
for eigenvalues of generic matrices and Theorem 8.6 quantifies this for eigenvalues and
eigenvectors of matrix powers. The novelty here is that the vectors u; need not form an
orthonormal family for the result to hold, and the same for the v;’s.

We first recollect the Bauer-Fike theorem:

Theorem 8.1 (Bauer-Fike, [8], [54], chapter IV). Let S be a diagonalizable matriz, S =
PYLP~! with ¥ = diag(6s,...,0,) and let A = S+E be a matriz. Then, all the eigenvalues
of A lie inside the union of the balls B(6:,¢) where e = ||E|||P|||P~"|. Moreover, if J < [n]
is such that

(VjesB(05,€)) N (vjesB(0;,¢€)) = 2,
then the number of eigenvalues (with multiplicities) of A = S + E inside UjesB(0;,¢€) is
exactly |J|. In particular, for each i € [n], if m; is the number of distinct eigenvalues

of ¥ which are in the connected component of UjesB(0;,¢€) containing 0;, there exists an
ordering of the eigenvalues A1, ..., \n of A such that

|)\2 — 01| < (2mi — 1)6.
The last statement is usually stated with m; = n (as in Theorem [54, Theorem 3.3],

see Figure 10 for an illustration (and first paragraph p170 in [54] for further explanation).
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FIGURE 10. The eigenvalue A; need not be in B(6;,¢) because there
might be some overlap with the closest balls, such as for the green or
yellow ones in the drawing. However, if m; is the number of distinct
balls in the connected component B(6;,¢), the eigenvalue A; will always
be within distance (2m; — 1)e of some 6.(;) and m permutation in &,:
for instance in the picture above one could take 7 = (234).

In the first section, we prove our general eigenvalue perturbation lemma. In the second
section, we give a variant for powers of matrices, that incorporates a control over arguments
of complex eigenvalues, and which also contains the eigenvector perturbation result.
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8.1. Eigenvalue perturbation. Let ui,...,u,,v1,...,v, be two families of nonzero vec-
tors in R™. Let us note U = (u1,...,ur) and V = (v1,...,v,); those are real matrices
with n lines and r columns. Our ‘nearly diagonalizable’ matrix will be § = USV* with
¥ = diag(bs,...,0;), the §; being complex numbers. The center of our investigations will
be some real square matrix A € .#,(R), not necessarily diagonalizable, but close to S in
operator norm. We make the following assumptions.

(1) There is some 7 > 0 such that
|A—S| <n. (8.1)

(2) The matrices U and V are well-conditionned, in the following sense:
e For some N > 1 we have |U| < N and |V| < N.
e For some h > 0 we have

Amin(V*V) = h and Amin (UFU) = h, (8.2)

where Amin is the smallest eigenvalue.
e The matrices U and V are nearly pseudo-inverses: there is a § = 0 such that

|[U*V —1.|| < 6. (8.3)
Theorem 8.2. Set 0, =0 for all i € [n]\[r] and

N 4,/r6 N* max; |01|>

= 12N3
g <7] h

Under the preceding assumptions, we can apply the conclusion of Theorem 8.1 to A and ¢.

Proof. By homogeneity, we may assume that max; |6;| = [|X| < 1. Note also that |S| <
IUNZNV] < N? and |A| < |A—S|+]S| < n+N?. Hence the maximal distance between
any pair of eigenvalues of A and S is at most 2(n + N?). It follows that the statement is
trivial if the following inequality does not hold:

h

< ——.
ANZ24/r

We will thus assume that the above inequality hold. We begin by defining a matrix U
close to U, which is really a pseudo-inverse of V; this will be achieved thereafter in (8.6).
To do this, we define the vector spaces

H; = vect(vj : j #1).
Since Amin(V*V) = h > 0, V has full rank, hence H; has dimension r — 1. The orthogonal
projection on H; is given by

Pu,

i

(w) = Vi(Vi*Vi) " Vi w

where V; is V whose i-th column v; has been deleted. Note that V;*V; is a principal
submatrix of V*V, hence it is nonsingular itself; moreover, its eigenvalues interlace those
of V*V and in particular, its smallest eigenvalue is greater than h through (8.2); when
taking the inverse, we get |(Vi*V;)™'| < 1/h.

We now consider the vectors defined by @; := u; — Pa, (u;) and

o ui—Pa(w)

e (g, vip  {wi — P, (ui),vi) (84)

We set U = (4,...,4r); we want to prove that U is close to U and that U*V =
I,. Let e; denotes the j-th element of the canonical basis of R". By (8.3), we have
[V*u; —e;] = |V*Ue; — Lrei] < |[V*U - 1| = |[U*V — 1| < §, thus we also have
|Vi*u;|? = DI [<vj, uid|? < |[VFu; — e;|*> < 62, and finally

ON

ui — @il = P, ()] = [Vi(Vi* Vo) " Vi | < [VII(VFVE) 18 < T
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Moreover, {u;,v;y— 1 is the i-th diagonal entry of U*V —1I,. and thus its modulus is smaller
than |U*V — L.||, so we have |{u;,v;y — 1| < 6, and

[z, vip — 1] < [Quiy vi) — 1] + [Cugy vi) — g, vi))
S(1+ N*h7H)
26N2h7Y,

Y/

NCINN

where we have used that h < |[V||?>. When 0 < t < 1/2, we have |(1 + )™ — 1| < 3t/2,
thus, since § < h/(4N?), we have

1

(i, viy

1‘ < 36N%p7 L

‘We now write
U;
(i, vy

< |8 — ug] +

Uy — uq| = — U

ke

1
— 1
‘<ai7vi>
< ONR™' +36h ' N?||U|
< ONhH(1+3N?).

The last term is bounded by 46N3/h, so using the elementary inequalities | M| < [M]|r,
we get our estimation expressing how U and U are close:

3
0 - v < 2N (8.5)

Finally, from the definitions of H; and @;, we have (U*V);; = (&;,v;» = 0 if i # j, and
{ui,v;y = 1, a crucial fact which can also be written as

U*V =V*U =1,. (8.6)

Together, (8.5)-(8.6) achieve our preliminary and show that U is the suitable pseudo-
inverse of V' which is close to U. We now study the matrix 5.
We set ¥ = diag(6;) and S = UXV*; we have

IS =S| <|IVII=|T Ul
- 4TSNt

s n =1,
where we have used that |2 < 1. We now claim that S is diagonalizable with eigenvalues
61,...,0,. Indeed, @; is an eigenvector with eigenvalue 6; # 0, and every basis of im(V)*
is a family of eigenvectors associated with the eigenvalue zero. We note S = P~'%'P with
¥ = diag(61,...,0:,0,...,0) and P its diagonalization matrix.
The matrices A and S are close:

|A=S8|<[S—=S8[+[A-S]<n +n.

We may thus apply Bauer-Fike Theorem 8.1 to A and S with ¢ = (n 4+ #')||P|||P™"].
It thus remains to prove |P||P~!| < 12N3. In the remaining of the proof. We compute
P and |P|| P71,

Let K = span(vi,...,v,)" = im(V)* = ker(V*); the dimension of K is n — 7. Let us
choose any orthonormal basis (w1, ..., ws) of K and set up P = (U, W) where W is the
n x (n—r) matrix whose columns are the wy’s. Then, the family (@1, ..., Ur, Wrt1,--.,Wn)
is a diagonalization basis for the matrix S: more precisely, we have Su; = USV*a, = 0:u;,
and Sw; = 0. We now claim that the inverse of P is given by

Pl = Ve (8.7)
T\ —wEOVE +WwE ) '
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We can directly check this using the relations (8.6), the orthonormality relation W*W =
I,_, and V*W = 0, which stems from the choice of W as a basis for ker(V*). Indeed,

v 1% _
_ P = _ u w
—W*OV* + W* —W*OV* + W* ( )

B VU VEW
—W*UV*U + W*U —-W*UV*W + W*W

I 0
B (W*U + W*U W*W)

L.
= 0 =1,.
0 Infr

To compute the condition number of P we use the elementary Lemma 8.3, stated hereafter.
Clearly, |[W| = 1, hence by the lemma
|P| < v2max(L, |T]).
For P! we note that —W*UV* + W* = W*(1,, — UV*), hence | — W*UV* + W*| <
WL, = UV*|, and
P~ < V201 + [T IV]).-
We thus get
IPIIP~H < 2max(1, [T (L + [T V])-

From (8.5), |U|| < ||U|| + |U = U|| < N + 4y/r6N3/h < 2N from our assumption on 4.

Finally, we get
[P||P~"] < 4N(1 +2N?%) < 12N°.

It concludes the proof. O

As promised, here is a simple lemma used in the preceding proof.

Lemma 8.3. Let M1 € Mn,r(R) and Mz € Mpn—r(R) be two matrices; we set M
(M17M2) € «ﬁn,n(R) Then

| M < vV2max{|[M], | Mz]}.
Proof. For any x € R",y € R*™ " and 2z = (z*,y*)* we have
|Mz| = |Miz + May| < |M|z| + | Mz]|ly|
< max{| M, | M| }v2/]z[2 + [y]?
= max{|| M1, | Mz]}v2|z|
which is valid for any z € R". O
8.2. Eigenvector perturbation. Perturbation theory for invariant subspaces is a deli-
cate matter. For simplicity, we will restrict ourselves here to the case of invariant subspaces
of dimension 1, that is eigenvectors of simple eigenvalues.

We consider the matrix A = S + E with S = UXV™* as in Theorem 8.2. If ¥ =
diag(61,...,0,), we define the spectral ratio gap at 6; as

1<j#isn
where we have set §; = 0 for all ¢ € [n]\[r].

Theorem 8.4. Under the assumptions of Theorem 8.2, we consider the ordering of the
eigenvalues of A, A\i,..., A\, defined in Theorem 8.2. Set

4,/r6 N* max; |0, )
B a—

Then for any i € [r], if gifs > 2e, \; is a simple eigenvalue and any unit right-eigenvector
of A associated with )\;, denoted 1;, satisfies

2 2 2
Us 12 € N-<n
AN R ( : + ) , 8.9
o > g2h2 \minyery 1051 * 10— 20 (®.9)

e =12N? <17+
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and the same result holds for a unit left-eigenvector and v;/|v;|.

The proof is inspired by the so-called Neumann trick. We start with an elementary
statement.

Lemma 8.5. Let D = diag(ds,...,d,) with d; complex numbers such that min;.1 |d1 —
dij| =g >0. Ifw= (wi,...,w.) € C" is a unit vector then |w1|> = 1 — |diw — Dw|*/g>.

Proof. We have 1 — |wi|*> = |wa|®> + -+ + |w,|> < |(d1], — D)w|?/g>. O

Proof of Theorem 8.4. We fix some i € [r], and we note A = \;, 8 = 0; and g = g;. We
set B = A — S, so that, by assumptions, |E| < n. By scale invariance, we may assume
without loss of generality that (min; |6;])™" = |Z7'| = 1. Since gf > 2¢, from Theorem
8.2, it implies that |A — 6| < e (the ball of radius B(6,e) does not intersect any of the balls
of radius B(0j,¢) with j 5 ¢). In particular [A| > |#] —e = v — ¢ > & > 1 and hence A is
not an eigenvalue of E and det(E — Al,,) # 0. Then, using Sylvester’s identity,

0 =det(A — AL,,) = det(USV™* + E — \I,,)
= det(E — AL,) det(I,, + USV*(E — A,) ™)
= det(E — M, det(I, + SV¥(E — AL,)"'U)

which implies that det (I, +XV*(FE—\l,)"*U) = 0. Consequently, there is a vector w € C"
with |w| = 1 such that

0=w+XV¥(E -\, 'Uw. (8.10)

We set ¢ = A(E — A\)"'Uw. This vector cannot be zero (because w # 0 and TV * is
nonsingular), and it is actually an eigenvector of A associated with the eigenvalue A:

(A= A,)p = AUSV* + E — A, (E — A\L,) 'Uw
= ANUZV¥(E - \,) 'U +U)w
= \NU(SV*(E = \,) " 'U + L)w = 0.

Our goal is now to prove that w is close to the vector e; of the canonical basis. We
set C = AV*(E — M,)"'U + I.. In (8.10), we see that 0 = Aw — Yw + XCw, hence
[AZ"'w — w| < |C|| and we want to bound C. This is done as follows:

IC] = [AVHE = AL) " 'U + 1| = | = VU + 1. + V¥[A(E — AL,) ™" + L,]U||
<L = V*U| + [UNIVIIAE = AL,) ™" + L.

From the Neumann series expansion,

- - 1 |E|/A
IE=XN"" = (A < :
AL = [ E]/|A]
We thus obtain the bound:
cl <o+ 1 g
S =

and we obtain [AX"'w—w| < §'. We thus have | tw—w| < |0=A||Z 7|+ NS w—w| <
e+d.

We apply Lemma 8.5 to D = 07! and we get that |w;|> = 1 — (¢ + §')?/¢g>. We may
assume without loss of generality that w; is a non-negative real number. We deduce that
|w — ei|* = 2 — 2R(w;) < 2(e + &")?/g*. Then we find that

6 —wil < JME =)V = L] + Jw — e

< UIEL | v2Ee+d) .
Al =2l g

But keep in mind that ¢ might not be normalized. A unit-norm right eigenvector of
A associated with X is ¢/|¢|. However ||¢| — |ui|| < |¢ — wil, so that |¢/|¢] — ui/|ui]| <
2|u; — @|/|us|, and finally, using |u;| > h, we get

|9/1p| — wi/|us|| < 2¢/h.
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Simplifying the error term leads to the bound (8.14) (observe that ¢ < 1 and any unit
eigenvector 1 associated with A satisfies |1, wi/|u:|D|* = Ké/|@], wi/|ui|D]® = 1 — |¢/|p| —
O

wi/|uil|*/2).

8.3. Powers of matrices. We now use the preceding perturbation theorems, but for
powers of matrices. This will be necessary since the perturbations that we will encounter
are not small in norm unless we raise them at a high power. We need some variations
on the hypothesis which are tuned for our needs. We emphasize the fact that they are
certainly not optimal, but rather suited to our subsequent needs. Let U,U’, V, V' be four
n x r matrices and £, ¢ be two integers. We set § = USV* and 8" = U'SY (V')*, where
3 = diag(b1,...,0,) and the 0;’s are real numbers (unlike the previous paragraphs where
they were complex).
Let A € #,(C). We make the following assumptions.
(1) The integers ¢ and ¢’ are mutually prime.
(2) There are numbers 1,7’ > 0 such that

|A“ =S| <n and [|AY -S| <7 (8.11)

(3) The matrices U,U’,V,V’ are well-conditioned:
e The operator norms of U and V are smaller than V.
e The smallest eigenvalue of U*U, V*V are greater than h > 0.
e The operator norm of U*V — I, is smaller that §.
e The above properties hold for U’ and V' for some constants N', h', ¢’

The following perturbation theorem holds.

Theorem 8.6. Under the above assumptions, we set

4 1ot
e — 12N° (77"" 44/ré N* max; |0;| )
h
and &' is defined similarly with the parameters (¢',n', N', ', 8"). Assume that for alli € [r],
10,/ > 20're and  0:" > 20re’. (8.12)
Then, there is an ordering of the r largest eigenvalues of A in modulus, say Ai,...,\r
such that 4
re
i —0; —_—. 8.13
X =0 < g (8.13)
All the other n —r eigenvalues of A have modulus smaller than e'/*.
Moreover, for any i € [r], if gi = minjz; |1 — Hf/Qf\ > 260, then \; is a simple
eigenvalue and any unit right-eigenvector of A associated with \;, denoted v;, satisfies
2 2 2
Wi 12 I3 N-*n
i) =1— - + 8.14
Wi pay (mmje[r] 0,0t e - 25) (8.14)

and the same result holds for a unit left-eigenvector and v;/|v;].

Proof. We start with the statement on eigenvalues. We apply Theorem 8.2 to A and S and
to A” and S'. There are two permutations 7, 7’ € &, such that |/\5707€(i>| <eg=(2r—1)e
and |A! — G’fr,(i)| < g5 = (2r — 1)¢’. Indeed, by assumption (8.12), the ball of radius €
centered at 0 does not intersect any of the balls centered at 6;, i € [r]. We may assume
that 7 is the identity.

We fix some i € [r]. Our goal is to show that indeed, A; is close to 8;. We first control
the argument of A; by using that two mutually prime powers of \; are close to the real
axis (since the 6;’s are real). More precisely, we set x = 6; and y = 0,(;), so that

YA . €o
and ,
/ / €0
NSyt =1 < = =2
' |yl
The polar decomposition of A; is written \; = |/\i\ei“ with w real. The argument of

(\i/z)* is between —7 and T where 7 = arctan(u/2)/2, and we have |arctan(t)| < |t], so
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the argument of ()\;/x)° has smaller absolute value than /4, a similar fact holding for

()\i/y)el. As a consequence, there are two integers p,p’ and two numbers s € (—u/4,u/4)
and s’ € (—u'/4,u’/4) such that

bw=pr+s lw=pn+s

This implies
ol — pt = sl — st

The LHS is an integer and in the RHS, and the terms s'¢ and s’ have magnitude smaller
than u'¢/4 and uf' /4, which were supposed to be smaller than 1 in our hypothesis (8.12),
so the whole RHS can only be zero and p¢’ = p’f. However, as £ A £ = 1 we see that £
divides p and ¢ divides p’, so w = km + s/{ for some k € Z: the complex number X has
argument close to 0 or m. We can also see that if 0; is positive, then k is even and we can
indeed take w = s/¢. Otherwise, k is odd and we can take w = 7 + s//.

We may now come back to the relation |AY — 6| < o, which can also be written as

= 0/(1+ 2)
with |2| < £0/]6:|°. When taking the modulus, we get |\:| = [6;||1 + z|%7 and from the
inequality ||1 + z|% — 1] < |2]/¢, we finally find out that

€0

Ai| —10i]] € -
=164l < g

We may finally combining the bounds on arguments and modulus. If 8; is positive, we
saw that the argument of \; is s/¢. Writing 6; = Gie‘s/é +0; — Gie‘s/e, we find

X = 0:] < [Nl = 6:] + 163] [/ — 1]
< (0/16s]" + |s]16:]) /¢
< 2e0/(€10: 7).

This gives the claimed statement. On the other hand, if 6; is negative, then the argument

of \; is m + s/¢ and in this case, \; = —|)\i|eis/[ and the same argument holds.
The proof of the statement for the eigenvector is then a consequence of Theorem 8.4
applied to A°. O

9. PROOF OF THEOREM 2.3

9.1. Notation. We fix a matrix P as described above Theorem 2.3.

If ro = 1, we define ® = (¢1,...,¢r,) and X = diag(p1,..., ttry). The columns of ®
form an orthonormal family, hence ®*® = I,,,.

Recall the parameter ¢ defined in (2.8). The ‘candidate eigenvectors’ are u; = Achi/uf
and v; = (A%)%p;/uf, or to put it in matrix form they are the columns of

U=Adx"" and V= (A" ox"
We set
S =US'V*
We finally introduce the vector spaces
H =vect(vi,...,vy) =im(V) and H' = vect(u,...,ur) = im(U). (9.1)

Finally, if ro = 0, then S is simply set to be the zero matrix, and H, H' are the trivial
vector spaces.
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9.2. Comments on the assumptions. We note that the problem is homogeneous. From
now on, we will thus assume without loss of generality that
M1 = 1.

We observe also that the statement is trivial to check if £ = 0. In particular, we will
assume in the sequel without loss of generality that
log(n) = 8log(2d). (9.2)
We will also check easily in (10.2) that p > pf = 1. In particular
1 =
9> -— and T, <Vd
Vi ’

It follows that in the statement of Theorem 2.3, we have
T <d < v (9.3)
The assumption Cy < 7 2% implies that
Co = crrgb™ In(n)'® < n'/®. (9.4)

9.3. Algebraic structure of A, U,V with respect to H. The behaviour of the matrices
U,V is dictated by a theoretical covariance matriz I which is a good approximation of
the Gram matrices of the columns of U and V. It is defined as follows: let 4, j be in [ro]
and t be an integer. We will note ¢ for the Hadamard product between ¢; and ¢;:

o™ () = pi(e)p;(@).
Then, we define the matrix T'™ € ./, (R):

) _ Zt: a,Q¢™) 9.5)

The diagonal entries FEQ are exactly the ; appearing in Theorem 2.3. The next lemma
gathers useful properties of ("),

Lemma 9.1 (Properties of F(t)). For any t, the matrix r'® s q semi-definite positive

matrix with eigenvalues greater than 1, and with
1— 7_2(t+1)
1< F(t) < bS 0
T < rob* =37
This lemma will be proved in Section 10. The main tool for the subsequent analysis of
U and V is the following theorem, which could also be of independent interest.

Theorem 9.2 (Algebraic structure of U and V). There are a universal constant ¢ > 0
and an event with probability greater than 1 — cn™Y* such that the following holds:

[V*A'U — 5| < Cin~M473%9° (9.6)
|U*V =1, | < Cin~ 473" (9.7)
[®*U — L, | < Chn~ Y473 (9.8)
|U*U —=TW| < Cyn~ V473 (9.9)
VvV —TW| < Cin V473t 9.10
I 0

|AP ] < Cadf (9.11)
[P A < Cod, (9.12)

where Cy = crob® In(n)>? and Ca = cb®rIn(n)'2.

Remark 9.3. The same statements holds, with the same constants, if we replace £ by
¢ = ¢+ 1. Note that ¢ and ¢ are then mutually prime.

The proof of this theorem occupies the next sections of this paper. We now use this
theorem to prove all the results mentioned before.
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9.4. Proof of Theorem 2.3. We consider the intersection of the two events of Theorem
9.2 for ¢ and ¢’ = ¢+ 1 which has probability at least 1 — en %, Let us call &, this event.
Our goal is to apply Theorem 8.6 to A* and S and to AY and S’ on &,. Our main task
will be to check the three conditions of Theorem 8.6; we will focus on checking them for
U and V, the statements for U’, V' working obviously in the same way.
We will use that (9.4) implies that Cin~Y* goes to 0 as n goes to infinity, uniformly
in 7, b satisfying (9.4). In particular, for all n > no large enough
Cin Yt < 1)2. (9.13)
In the sequel, we always assume that €, holds and that n > no.
Condition 1 of Theorem 8.6. This is settled by Remark 9.3.
Condition 3 of Theorem 8.6. From (9.9) and Lemma 9.1, we have,
U = |U*U| < (£ + 1)rob® + Cin™* < 7ob® In(n) (9.14)
the last line coming from (9.13). The same inequality holds for |V|>. We find that

[U| v V] < N :=+/rob8In(n).

For the conditioning properties of U, V', we deduce from (9.13) and Lemma 9.1 that

[U*U|| A [VFV] = Amin (D) — C1n% = b= 1/2. (9.15)
Similarly, from (9.7), we have
|U*V =1L | < Cin~ 4738 = 6. (9.16)
This gives condition 3 for U, V. We note that (9.15) implies that:
[0 v (V)T < 2. (9.17)

Condition 2 of Theorem 8.6. This condition requires more work. We have
Py =V(V¥V)'V* and Py =UU*U)'U*.

We also note that P;1 = I, —Px the projection matrix on H. Since SP;1 = P18 = 0,
we have S = P,,1 SPy and

|A* = S| < |PaAPr — S| + | APy + |Pyrs A
< UIW*O) UF AV (VFV)T = DYV + AP g | + [Py AT, (9.18)

where at the second line, we have used that UD‘V* = S. To bound the above expression,
we will use that the fact that V*U —1,, is small implies that U is close to U := V(V*V)™*
and that V is close to V := U(U*U)™*. More precisely, we write

PrU =UV*U
=U+ Ey
where By := U(V*U —1,,,). From (9.14)-(9.16)-(9.17), we find that
|EL| < 20N.

We may thus decompose U as follows:

U=U+E +Py.U.
Similarly, we find :

V=V+E+Pyg.V
with E; = V(U*V —1,,,) and | E2|| < 26N. We get the following:
VAT — £ < [VFA'U = Z°) + VAN Er|l + AP o |U]

< [VFAU =S + [VI[AN Bl + [AP g [JU] + [UNA NEL] + IP e ANV
We use this last inequality in (9.18) and use (9.6). We obtain the bound:
JA® — S| < SNZ9° + AN>Cod’ + 46N*| AY).

From our choice of parameters (9.4), we have

40Nt < 1/2. (9.19)
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It follows that
JA® — S| < BN?Cod” + 46N*| A°. (9.20)

We may use (9.20) and S| < |U[|Z*||V] < N? to upper bound |A*|. Indeedn we
write A’ < ||S| + [A° — S| < N? + | A® — S|, we find from (9.20) and (9.19):

JAY| < 2N? + 10N3Cod". (9.21)
Putting this last expression back in (9.20) and using 46 N* < 1/2, we obtain the bound:
JA® = S| < n:=10N3Cyd* + 85N°®. (9.22)

The conclusion of Theorem 2.3 is then a consequence of Theorem 8.6. Let us now
estimate roughly the quantity ¢ in Theorem 8.6. We first note that 26N° is larger than
SN*\/Ty/h, since h = 1/2 and N/ro < N°. It follows that e in Theorem 8.6 is bounded
by 24nN3. We claim also that

NS < N3O, (9.23)

Indeed, n="* = n™% < (2d) 72" and, since p > ui = 1 (see forthcoming bound (10.2)), we
have 9 > 1/v/d. It follows that n~/* < 9°. To prove (9.23), we then need to check that
13*C1N? < (o, the latter is immediate using (2.9).

It follows that, for some universal constant c,c¢ > 0,

e < eNOCod < drrgb* In(n) P9,

We set Co = 4ergIn(n)/d¢. After crude rearrangement and simplifications, the state-
ment of Theorem 2.3 for eigenvalues follows easily from Theorem 8.6 applied to r = .

For eigenvectors, Theorem 8.6 allows us to describe the behaviour of the eigenvectors
of A. We may assume without loss of generality that

Cart <1,
(1 —7i0)?
since otherwise the statement is trivial (in particular ;0 < 1). In particular, for any
i € [ro], we have
(1= 7:.0)0f = (1 = 1.0)75 9" = Cod* > 4e.
We are thus in position to apply the eigenvector part in Theorem 8.6.

Note that |6;|° — 2e > |6:|¢/2 and thus N%5/|6;|° — 2e < 2N?n < ¢/(6N). We choose
the orientation of 1; to ensure that (4;, u;) is non-negative. We deduce from (8.14) that,

2

U 40e> 40C273¢
:2*2<wi7m>g 070
T

< .
(L =70,0)?|0ro >~ (1 = 7i0)?

‘We then write
Uj

i — — 1.

<
|

‘@mwﬁ—<%ﬁwﬁ

Thanks to (9.8), we have (u;/|u;l|, ;) is close to d; ;/|u;| with error bounded by &/|us]|.
Finally, (9.9) implies that

[fwaf* =] = [Juil* = 11| < 6.

Recall also that by Lemma 9.1, FEZB > 1. We thus find

[|uil® = il
sl =yl = o <6
|luil + /7]
When gathering all those bounds, we get that [(3;, ;> — i ;/7:| is bounded by cCo7é /(1 —
T;,0 where c is a universal constant. Defining a new constant Cy equal to ¢Cp, we thus
obtain the bound displayed in (2.12). The same proof with (9.7) in place of (9.8) gives
the bound (2.16). It concludes the proof of Theorem 2.3.
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9.5. Proof of Corollary 2.6. On the event of Theorem 2.3, we have
Y ¢
M#’D* #/52.’], < 2CoTo0
i + i Vil + 4y 1—Tig
Moreover, since |t0; + 15|? = 2 4 2{ab;, 1}, we have
s + 9il* =2 —2/7| < 2¢

=: 2¢.

(

In particular, since v; > 1,

H¢1+¢z| - \/2+2/'Yz| 25/ |¢z+1/)1| +\/2+2/’72

If e < 1/2, then |4; + ;] = 1 and we find

< v/ 2e <
2+ 2/

1 1
[ + 9 24 2
We thus have checked that if ¢ < 1/2 then

Vit o V2o
'<|wz+w' R

Otherwise, € > 1/2 and this last inequality also holds since it is trivial in this case.

< 4e.

10. CONSEQUENCES OF ALGEBRAIC INCOHERENCE

Our goal in this section is to gather several useful estimates on Q and I'® linked with
the incoherence properties (2.2) and (2.3).

10.1. Incoherence of P and Q. The parameter L in (2.2) is not independent of the
parameter b(2.3).
We introduce the scale invariant analog of the parameter L for the matrix Q): we set

K = nmax Qay/p. (10.1)
z,y
We have
L = nmax |Pyy| =/ Kp.
@,y

Notice also that the scalar K is scale invariant. We note also that the following bound
holds:

Indeed, for the lower bound, we use that for any matrix T, |T|| < nmaxy y |Tey|. For the
upper bound, we use that K = L?/p? and

1,01
> QU S 2, — 1P > 2. (10.2)

z,yY

We note also that the parameter L may be bounded as follows:

Z tpr () ok (y)

n n
<lpaly | DS lee@)2, | D lon()I?
k=1 k=1

|Pryl =

b2
< |l
n
We deduce that L and K are bounded by:
<|uap®  and K <b' (10.3)
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10.2. Bounds on the entries of Q. We start by bounding the entries of powers of Q.
For any z, we find

DQuy <K

y

It follows that for any z,y,
K22
(Q)ay = Y QueQey < 2.

Let (1r) be an ON basis of eigenvectors of @ with eigenvalues (vk). Let t > 2, we write
for any z,v,

)ay *Zkak P QZV Ve ()] |[ve(y)] < ’\/ (@)azv/ (Q%)yy,

where the last step follows from Cauchy-Schwarz inequality. In particular, for any ¢t > 2
and z,y

, K2pt
(@) <
It follows from (10.1) that Equation (10.4) also holds for ¢ = 1. The following immediate
consequence will be crucial; the idea it conveys is that, for any vector v, w, (v, Q*w) is
essentially bounded by |v|1|w|1p"/n, a result in the flavour of Perron-Frobenius theory.

(10.4)

Lemma 10.1. For any integer t = 1 and any vectors v,w € R",

o] |w]1 Kp

n

(v, Q"w?) <

Proof. We simply write

©.Q'w) = L(@)er)uls) < 1

z,y

K2pt

[v(@)|[w(y)]

where we have used (10.4). The conclusion follows. O

10.3. Proof of Lemma 9.1: the incoherence hypothesis for the covariance ma-
trix. Let us end this section by the proof of Lemma 9.1. By Lemma 10.1, We start by
recalling the definition of the theoretical covariance '™ e My (R):

ZaQ“w,
= (pipsd)®
By Lemma 10.1, we find
1,Q'¢™) < |p" 1 K?p' < K?p' (10.5)
where we have use Cauchy-Schwarz inequality:

™ = ZM Nes (@) < lpil2leilz = 1.

Going back to the sum defining ' we get

1]’
1— (p/(papyd)) ™+ _ K*(1—73"*Y)

1—p/(pipid) 1—1§

t
e

and as a consequence,

roK2(1 — 75"ty

— 2
1—75

[T < ro max [P =
On the other hand, if we note
o) = 1,Q%%")
’ (ip;d)®
then it is not difficult to see that C®) is indeed a semi-definite positive (SDP) matrix;
more precisely, if we introduce 7s(x) = 4/Q%1(x) = 0 and I = diag(ws), then

C® =qd* . D O*I2OD " (10.6)
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which is clearly SDP. The matrix '™ is thus a sum of C® = I, and ¢t —1 SDP matrices,
hence it is itself an SDP matrix and its eigenvalues are greater than the eigenvalues of I,
hence the first statement.

For further needs, we notice that if ¢ € [r]\[ro], then |u;| < ¥ and we get from (10.5)
that

t 2q2s 2t
i < Z K7 o (10.7)

‘#1‘25 < (t+1) .|2t

[

11. COUPLING GRAPHS AND TREES

The basic ingredients for the proofs of Theorem 2.3 and related statements are directed
Galton-Watson trees and martingales defined on them. We start to introduce the notations
and vocabulary for this.

11.1. Marked Galton-Watson trees and Erdés-Rényi digraphs.

11.1.1. Graph-theoretic definitions. A marked graph with mark space N is a digraph
(V, E), with possible loops, endowed with a mark function ¢ : V' — N. We are going
to note ¥ the set of all rooted directed graphs on a common countable set V' and with
mark space N. Formally, the elements of ¥ are triples (G, 0,12), with o the root, but in
general we will drop the mark function ¢ and simply write (G, o).

Let (G,0,1) € % and g = (V,E). If W < V is a subset of V containing the root,
then the induced subgraph (G,o0,:)w is defined as follows: the underlying graph is
Gw = (V, Ew) where (i, ) € Ew if and only if (¢, j) € F and both i and j are in W, and
the mark function vw is given by ww (v) = ¢(v) for all ve W.

The elements in ¥ are digraphs, and therefore we need to make a distinction between
directed paths and undirected paths. Let g = (V, E) be a digraph,

o If (z,y) € E we note z — y,
e if x —» y or y — x or both, we note x ~ y.

Every directed graph G can be transformed into an undirected graph G= (v, E ) by simply
forgetting the direction of the edges: (x,y) € Eiff z ~yin g.

If u,v € V, a directed path or dipath from z to y is a sequence of vertices xop =
T,%1,...,%, = y such that for every s we have us — us+1. A path is the same except
that we only ask x5 ~ xsy1.

e The length of the shortest directed path between x and y is denoted by d* (z,y).

e The length of the shortest directed path between y and z is also denoted by
d (z,y) = d* (y,2).

e The length of the shortest path is denoted by d(z,y).

e When G is a digraph graph, Pg(z,t) is the set of paths in G starting from x and
having t steps.

The set of all y such that d* (z,y) < t is the forward ball B/,(z,t) and the set of all
y such that d(z,y) < t is the ball Bg(x,t). When no confusion can arise, we write B
or B instead of Bg, B;. If t is an integer and (G, x) € %, then (G,z), is the subgraph
of (G, z) induced by Bg(z,t), as defined above, and similarly (G,z); is the subgraph of
(G, ) induced by BT (x,t).

A cycle in the graph G is a sequence of distinct vertices (z1, ..., z) such that s ~ xs41
for every s < k and xx ~ x1. The number k is the length of the cycle.

A tangle-free subgraph of G is a subgraph of G that contains at most one cycle. The
graph G is t-tangle free if for every vertex z, the ball Bg(z,t) is tangle-free.

We will the following useful property of tangle freeness. If G is h-tangle free then there
is either zero or one cycle in (G, x): for t < h. Hence for any y at distance ¢ from x, there
is at most two paths of length ¢t from x to y. To put it another way, for any z € [n], we
have for t < h,

|Pa(z,t)] < 2|(G, ). (11.1)
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11.1.2. Definition of the graph G and the marked Galton Watson tree. We define that G
as the directed Erdés-Rényi graph (with loops) whose adjacency matrix is given by M:
the vertex set is [n] and each directed edge is present independently with probability d/n.
Let = be an arbitrary element of [n]. We root the graph G at x, and we mark every vertex
with itself: the mark of vertex x € [n] is simply the integer ¢(x) = z. The resulted marked
graph (G, z) is an element of %.

‘We now define the directed Galton-Watson tree T in the following way. Starting from its
root o, every vertex has a Poi(2d) number of children. Every edge (u,v) is independently
given a unique direction u — v or v — wu with probability 1/2. This yields a random
directed tree. Equivalently, each vertex has a Poi(d) number of ‘out-children’ and a Poi(d)
number of ‘in-children’.

Finally, every non-root vertex o’ is independently given a random mark 2(0o’) which is
uniform on [n]. The root is given a special mark (o) = O. The resulting element of %
should be noted (T, O) because it depends on n through the marks, but we will simply
note (T',0). We shall say that the tree (7', 0) is grown from the seed O.

11.2. Growth properties: trees. Let us first state several properties on the growth of
the tree T first, then on the graph G. They are directly drawn from [14], see Section 8
for the tree, and Sections 9.1-9.2 for the graph. Clearly, the underlying undirected tree
obtained from T by deleting the marks and orientations is simply a Poi(2d) Galton-Watson
tree, which allows u to use known results on the growth properties of GW trees. We recall
D = 2d v 1.01 was defined in Theorem 2.3.

Lemma 11.1 ([14, Lemma 23]). Let us note S; the number of vertices at distance t from
the root o of T. There are two universal constants co,c1 > 0 such that for all X > 0,

P(S, < AD' for all t) = 1 — coe” . (11.2)

Moreover, there is a universal constant ¢ such that for every p > 1,

B[nax () | <@ (1L.3)

Proof. The second claim is an immediate consequence of the first: we have

E I OOAp_lP St ) S ) ax < wv—l RRER)N
T\ 2a) P S\t ) 7 SP co€ ‘

The first statement of the lemma is [14, Lemma 23], it is however not explicitly written in
the proof of [14, Lemma 23] that the constants cg,c1 are universal. An inspection of the
proof shows this is indeed the case (we use here that D is bounded away from 1). O

As a consequence we may easily upper bound the size of (T,0);. Indeed, we use the
inequality

[(T,0) =1+S1+---+ 5

¢
k
max(D" *Sk) ZD
k=0
¢
2I]I€1>3,X( Sk)D",

where we have use that (D'T! —1)/(D — 1) < 2D" for all D > 2. Taking expectation , we
deduce from Lemma 11.1 that for any integers p > 1 and ¢ > 1,

(E[|(T, 0)[F])"/” < 2cpD". (11.4)

11.3. Growth properties: graphs. We now establish the same properties as before,
but for the directed graph G whose adjacency matrix is M. We start by proving that up
to a depth of order log,;n, the graph G has few cycles. We denote by G the graph G
in which the directions have been erased. Pick any vertices x,y. Then, from the union
bound

D

P({z,y} € E(G)) = P((z,y) € E(G) or (y,2) € E(G)) < P
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where as above we have set D = 2d. This shows that the edge distribution of G is
stochastically dominated by the edge distribution of an undirected (n, D/n) Erdds-Rényi
graph (note that, unlike the usual definition, here we allow loops in the random graph).
Events which are monotone for the deletion of edges (such has having a few number of
cycles) are thus of smaller probability in G than in ER(n, D/n). As a consequence some
results in [14] directly transfer to our setting.

Lemma 11.2 (Growth rate, [14, Lemma 29]). Let us denote by Si(z) the number of
vertices in G that are exzactly at (unoriented) distance t from vertex x. There are two
universal constants co,c1 > 0 such that for every positive X and every vertex x € [n], we
have

P(Si(z) < AD' for all t) =1 — cre >, (11.5)

Moreover, there is a universal constant c such that for every p > 1,

E[max(st(‘”))p]g(cpf and B max(st(m))p < (clnn)? + (cp)”.  (11.6)

t=1 Dt ze[n] Dt
t=>1

Proof. Only the LHS inequality (11.6) is not explicitly stated in [14]. It is proved as in
the proof of Lemma 11.1. O

Let us apply this result to |(G,z)¢| = 1 + S1(x) + --- + Si(z) with X := ¢5 ' In(cin?).
With probability greater than 1 — 1/n, for any ¢ and for any x € [n],

Si(z) < cln(n)Dt
where c is a universal constant. On this event, one also has
(G )| =14 Si(x) + - + Si(x)
<cln(n)14 D+ ---+ DY)
< 2cln(n)Dt. (1L.7)

Similarly, we use that

Sk
t
(G, x):| < 2D max

(as explained above (11.4)) and we deduce from (11.6) that for any p > 1,

E[|(G,x)["]7 <2epD". (11.8)
1

E [max (G, x)t|p] ’ < 2¢(In(n) + p) D", (11.9)

ze[n]

11.4. Distance between neighborhoods in the graph and the GW tree. In this
subsection, we fix some x = 0 and we consider an integer h such that

0 < h < klogp(n) (11.10)

where we have set D = 2d v 1.01 as above.

Our goal is to study fine geometric properties of (G, ), for k small enough. The above
comparison trick between G and undirected Erdds-Rényi with parameters (n, D/n) implies
that the following holds:

Lemma 11.3 (Tangle-free, [14, Lemma 30]). Let 0 < k < 0.49 and h an integer as in
(11.10). For some universal constant c, the graph G is h-tangle free. with probability at
least 1 — ecn®~'. Moreover, for any vertex x € [n], the graph (G, x)n has no cycle with
probability greater than 1 — en™ 1.

Proof. In [14, Lemma 30] there are no loops. The probability of having a loop at vertex x
is d/n. It is however immediate to check that the same proof extends also in our case. [
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We quantify the distance between neighborhoods of G and T" up to the depth h. Let us
recall some definitions. If P1,P> are two probability measures on the space (2, %), their
total variation distance is defined as

drv(P1,P2) = P(X: # X>)

min
(X1,X2)em(Py,P2)
where 7(P1,P2) denotes the set of couplings between P1 and P2: pairs of random variables
(X1, X2) such that X, is distributed as P; and X5 is distributed as P». It is a well-known
fact (see [42]) that the total variation distance is also given by

dTv(]P)l, ]P’z) = Iglea;d?’l (A) — ]P)Q(A)
We note £ (X) the probability distribution of a random variable X.

Proposition 11.4 (GW-tree approximation). Let 0 < k < 0.49 and h an integer as in
(11.10). There is a universal constant ¢ > 0 such that for every verter x,

drv (L (G, 2)n), Z((T,x)n))) < c(In n)’n*" 1. (11.11)

The proof of this fact is classical; one can adapt the arguments in [14] to our setting.
The difference is that our graphs are directed and now have [n] possible labels, but this
only brings shallow difficulties. We sketch the main ideas.

Let us recall the following very classical total variation distance:

A

drv (Bin(n, A/n), Poi())) < o (11.12)

Coupling between labelled graphs. As a consequence of Lemma 11.3 and (11.7), with a
probability greater than 1 — en®~!, the graph (G, x)p is a directed tree and contains no
more than k := cln(n)n” vertices. Let us note Ej, this event and perform a breadth-first
exploration starting from x. This explorations finishes at a time 7 < k. At each step, we
reveal a set of Poi(d) out-vertices and Poi(d) in-vertices. From (11.12), we make a total-
variation error smaller than d/(n—k)+d/(n—k) < 3d/n for n large enough. By repeatedly
conditioning, the total variation error made on E}, is not greater than 3d7/n < 3dk/n.
This gives a coupling between the unlabelled versions of (G, ), and (T, z), which fails
with probability at most (c + 3ed) In(n)n"~* < dedIn(n)n"*.

We now bring the labels in. With probability greater than 4cdIn(n)n" ', the coupling
between the unlabelled versions of (G, z), and (T, z)n succeeds and have size smaller than
k = cln(n)n®. We then put the labels in the Erdés-Rényi graph by drawing a uniform
ordered k-set from [n], while we put the labels on the Galton-Watson tree by simply
drawing k i.i.d. uniform samples from [n]. We claim that the total variation distance
between these two random multi-sets is smaller than k2/n, see below for the proof. Hence
the labels agree with an extra total variation cost of (cIn(n)n™)?/n.

In the end, the coupling created this way fails with probability at most 4cdIn(n)n~~! +
c? (In n)zn%f1 which is exactly what is needed, up to adjusting the constants (note that we
may assume that D < n” otherwise h = 0 and the statement is trivial). This concludes
the sketch of proof of Proposition 11.4 up to the claimed bound k?/n for the distance
between the random multisets which we now explain.

Sampling with and without replacement. Let m be an integer. We define two random
multisets in the following way. Put m identical balls with labels from 1 to m in a big urn.
Draw the first ball and set p1 and g1 to be its label. Put the ball back in the urn. Then,
suppose that one has constructed (p1,...,p:) and (q1,...,q:). Do the following :

e Draw a ball from the urn and set p:4+1 to be the label of this ball.

e If this label is not already one of the g¢s, set it onto ¢:+1. Else, put the ball back
in the urn and draw as many balls as needed to get a label which is not already
one of the ¢s. Define ¢:+1 to be this label.

It is clear that for every k < m, Q := (¢1,...,qx) is a uniform ordered k-set from [m],
while Py := (p1,...,px) is distributed as k i.i.d. uniform elements in [m]. The random
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variable (Px, Q) is thus a coupling between those two distributions. This coupling is
successful if and only if P, has exactly k distinct elements, which happens with probability

(m=1)..(m—k=1) (I_k)’“%_k{

mk m m

The coupling thus fails with probability smaller than k> /m, an upper bound for the total-
variation distance between Py and Q.

Mazimal coupling of trees and graphs. Proposition 11.4 tells us that for every fixed z,
there exists a random rooted marked tree (7%, z) defined on the same probabilistic space
as (G, ) and such that

P((Ty,x)n # (G, x)n) < c(lnn)®n® "

provided that h < klogyn with k < 0.49 and D = 2d. In the sequel, we will use this
family of coupled trees (1%, z) for z € [n].

12. GRAPH FUNCTIONALS

12.1. Functionals on trees: computations. We now introduce a family of functionals
on % that will be used several times in the sequel. Remember that when (g, 0) is a rooted
marked graph, we note P4(0,t) the number of paths in g starting from the root o and
having t steps, that is, (¢t + 1)-uples x = (zo, 71, ...,xt) with o = 0 and zs — Ts41.

In this section, 1, ¢ represent two vectors in R™ and ¢ is an integer. We define

fop,t(g,0) = (%)t¢>(l(0)) D1 Pioyaten)  Pawiyae X 0((@0). (12.1)

ng (o,t)

We clearly have

fou (G ) = d(x)(A")) (). (12.2)
We will also need another functional:
Fiu,6(9,0) = f1,6,6(9,0) — o~ f1,,641(9,0). (12.3)

We have
1
Fupi(Gox) = A'y(a) — ;At“w(m)-

Before moving to several computations on those observables, we state general regularity
facts. We say that a function is ¢-local if f(g,0) only depends on (g,0):. Recall that
9 = L/d.

Lemma 12.1. The function fs 4, is t-local and satisfies

[fo,4 (95 0)| < [l |0 [Py (0, )91 (12.4)
The function Fy 4 is (t + 1)-local and satisfies
|Fov.(9,0)] < [9loo|Pg 0,8 + 1|01 + 917/l (12.5)

Proof. The locality property is obvious from the definition, while for the bound it suffices
to write

n\? L\'
fovamol < (5) 1ok ¥ (%) ol
Pgy(o,t)
< 19t1|¢|oo|1/’|00|?9(0a t)l.
It is the same thing for Fy ;. O
The following crucial theorem gathers all the computations linked with expectations

or variances of those functionals when specialized on a tree (1%, x) with the distribution
described before.
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Theorem 12.2. Let ¢ be any vector in R™ and t be an integer. For any i,j € [r], the
following identities are true.

B ooy (T, 2)] = ()i () (126
Bl o 1,0) oo 7)) = ) 3, SE) (12.7
E[Fy p:.0(T,2)"] = % (12.8)

The proof consists in using the eigenvector equation to identify specific martingales
and take advantage of their properties to compute those expectations and variances. It is
postponed to Section 14.

12.2. Functionals on graphs: concentration. This section describes concentration of
sum functionals on the graph G, having the form Z f(G,0) where f: % — R is any
measurable function. The tools and spirit of this sectlon are identical to [14, Section 9],
but slightly adapted to our needs.

The first proposition deeply exploits the fact that G is in fact a function of independent
random variables ((My,o, My.«))y=2- A generalized Efron-Stein inequality will be very
useful here.

Proposition 12.3 (Moment inequality for graph functionals). Let f. f % — R be two
t-local functions such that |f(g,0)| < f(g,0) and f is non-decreasing by the addition of
edges. Then, for some universal constant ¢ > 0, for all p = 2,

P\ L/P

1/(2p)

B||Y 6o~ Y fGo) || <eimp (B[msica|)
o€[n] o€[n] @€ln]
and
P\ 1/P
E|| ) f(Go)—E > f(G,o) < cynp (p +In(n)) D Z f(G, )
oe[n] o€[n] | ze[n]

Proof. We define E, as the set of edges of the form (z,y) or (y,z) with z < y. From
our assumptions on M, the variables (E.)ge[n) are independent. Moreover, there is a
measurable function F' such that

> f(G0) = F(Er, ..., En).

o€[n]
Let us denote Y = F(Fh1,..., E,) this sum, and for any z let us note Y, the same sum
where F; has been emptied:

Yo =F(Er,...,Ez-1,9, Exy1,...,En).

Equivalently, if G, indicates the graph G where all the directed edges between x and a
larger or equal vertex have been deleted, we have

Y, = > f(Ga,0)
o€[n]
The moment inequality [17, Theorem 15.5] implies that there exists a universal constant
0 < ¢ < 6 such that for all p > 2,
P p/2

E||) f(Go)=E ) f(Go)| | <(cvDE|| D] (¥ = Y,)?

o€[n] o€[n] ze[n]

This is a generalization of Efron-Stein inequality (corresponding to p = 2).
Now, fix o0 and z in [n]. The function f is ¢-local, hence f(G,0) — f(Gz,o0) is always
zero, except possibly if z is in (G, 0)¢, or equivalently if o is in (G, z):. As a consequence,

1/(2p)
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we have

Y —Yi|< D f(G,0)+ f(Gar,0)

oe(G )¢

< 2‘(G7 x)t| m?)if(Gv O)
oE|n

where in the last line we used the fact that - is non-decreasing by the addition of edges.
Recall that Holder inequality implies that for all p > 2

(2 u?) <nP/?! <Z |uf|> .
i=1 i=1

p/2

E||) (Y-Y) < nPP1PE Z maxf(G 0)?|(G, x).|?

o€[n]

Therefore,

z€[n] ze[n]

<np/2\/E[l(Gw)t2p] [maXf(G 0)? ]

o€[n]

where we have used Cauchy-Schwarz inequality at the second line. Finally, we use (11.8)
and it concludes the proof of the first statement of the proposition.
For the second statement, we write instead:

DY -Y)P<4a ) > f(G,0)

2

z€[n] ze[n] \oe(G,z)¢

<4 ) (G Y, f(G0)?

ze[n] oE(G )t
=4 ), (G0 X (G}

o€[n] IEE(G o)t

<4
?éz[nd (G, z) 2 f(G,0)?

The rest of the proof follows exactly the same line. O

The next immediate lemma is a comparison principle between the expectation of a
graph functional on the random graph G and the same functional on the random tree.

Lemma 12.4. Let 0 < k < 0.49 and h an integer as in (11.10). Let f : % — R be a
h-local function. Then, some universal constant ¢ > 0, we have for all xz € [n],

|Ef(G,z) — Ef(T,z)| < cln(n)n" " Y2 /E[f 2] v E[|f(T, 2)|]. (12.9)

Proof. Let &(z) denote the event “the coupling between (G, z), and (1%, x); fails”; as our
functionals are h-local, we have f(G,z) = f(T%,x) on E(x). Proposition 11.4 implies that
P(&(x)) < ¢(Inn)?*n?*~'. Consequently, by the Cauchy-Schwarz inequality,

[Ef(G.2) = Bf(T.)| < E[|f(G,x) = f(Tr, )| Leo)]
< VPEW) (VEL(G,2)’] + VEI[(T,2)P])
< Vel(mn* ™ (VELf(G,2)°] + VE(T,)]2) ,

which is bounded by the RHS in the claim, upon adjusting the constant. O

Proposition 12.3 and Lemma 12.4 can be combined to derive general deviation inequal-
ities for graph functionals. For simplicity in the next theorem, we consider the specific
case of majorizing functions f(g,o0) that we will encounter in the sequel.
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Theorem 12.5. Let 0 < k < 0.49 and h an integer as in (11.10). Let f : 9% — R be
a h-local function such that |f(g,0)| < a|(g,0)n|? for some a,f > 0. Then, for some
universal constant ¢ > 0, for any s = 1, with probability greater than 1 —n™°, we have

Z f(G,z) — E Z (T, 2)| < ce®as®?TP In(n)*2HAps A +1/2,
z€[n]

z€[n]

Proof. We set f(g,0) = a|(g,0)r|?. By (11.8), we have for all p > 1 and z € [n], for some
universal constant ¢ > 0,

E[/(G, )] < o (cp)**" D*".

By the Chebyshev inequality and the second claim of Proposition 12.3, adjusting the
constant ¢ > 0, we have for all ¢ > 0,

> HG ) —E ) f(Gx)| = casp™ I,
z€[n

] z€[n]

with probability at most
p*(p v In(n)\"
; .
We take t = (esIn(n))*?"# with s > 1 and p = t"/®/*%) /e > In(n). We obtain a bound
with probability at least 1 — n~°. Then we use Lemma 12.4 and up to adjusting the
universal constant, we obtain the desired bound. O

13. NEAR EIGENVECTORS: PROOF OF THEOREM 9.2

In this Section we prove Theorem 9.2, using the tools introduced earlier. For some
0 < k < 1 which will be fixed at the end, we set

¢ = |5 logp(n)].

Here is the route taken: first, we prove different propositions related with precise bounds
for the entries of the matrices U,V or ®* A*®. Often, the error terms look like

co(blnn)tn 129t

or small variants. For a good choice of x, this gives the requested bounds in Theorem 9.2.
For functionals such as {;, A’@;>, the plan is simple: we justify why those function-
als can be well-approximated by the identities of Theorem 12.2 thanks to the deviation
inequality Theorem 12.5.
Bounding || A*P .|| is however much more difficult and will be done through a tangle-
free decomposition, in Subsection 13.3. Performing the expected high-trace method re-
quires some care and we postponed this part to Section 15.

13.1. Entry-wise bounds for Theorem 9.2.

Proposition 13.1. Assume 0 < k < 0.33. There is a universal constant ¢ > 0 such that,
with probability greater than 1 — cn® 1, for any i,j € [n] and t < 3¢, the following holds:

Kei, Ay — p36i 5| < cb? (Inn)>2n3 =129t (13.1)

Proof. Fixi,j € [n] and ¢t < 3¢. Using the notation already introduced in (12.1), we define
a function f by

f(ga 0) = 1(g,o)¢, is tangle free f@iv@j,t (97 0)'
This function is clearly t-local and from (12.4), (2.3), and (11.1),

1£(9,0) < @ilols|911Pg (0, 1) 1(g.0), is tangic free

20?
< 79§|(970)1|-
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Moreover, on the event that G is t-tangle free, from (12.2) we have
<§0i7At§0]'> = Z f(G7 33)
ze[n]

We now apply the concentration result in Theorem 12.5 to the function f with s = 4,
a = 2b*9%/n, B =1 and " = 3k/2. The error bound in Theorem 12.5 is thus, for some
new constant ¢ > 0,

cb?(Inn)®?n®< =129t
Moreover, as computed in Theorem 12.2 - Equation (12.6), we have
E D f(T,2) =E Y forp;i(Te,x) = pibi;.
z€[n] ze[n]
Combined with Lemma 11.3 to control the probability that the graph 3¢-tangle free and

¢ < In(n) for the union bound, this concludes the proof. O

Proposition 13.2. Assume 0 < k < 0.49. There is a universal constant ¢ > 0 such that,
with probability greater than 1 — cn® ™1, for any i,j € [n] and t < ¢, the following holds:

‘<At%7At%> _ ,uf,ujI‘it]) < cb? (In n)7/2n3"/2’1/28? (13.2)

(A" i, (A%)' ) = kST < b (mm) 2™/ 297 (13.3)

Proof. Since A* and A are identical in distribution, one only has to prove the first in-
equality. The proof is the same as for Proposition 13.1. Fix 4,5 € [n] and ¢ < £. The right
function here is f defined by

f(g7 0) = 1(g,0)t is tangle free fl,tpi,t(ga o)fl,(pj,t(gv 0)'
This function is clearly t-local and from (12.4), (2.3), and (11.1),

1£(9,0)| < @ileolps DT’ [Py (0, 1) *1(g,0), is ange tree

4b?
< 73%t|(970)t|2~

We observe that if the graph G is t-tangle free, we have
<At‘pi7 At@j> = Z f(G7 :C)
xe[n]

We now apply Theorem 12.5 with s = 4, a = 4b219ft/n, B =2 and k' = k/2. The error
bound in Theorem 12.5 is thus, for some new ¢ > 0,

cb? (In n)7/2n3.‘</2—1/28§t.

Moreover, as computed in Theorem 12.2 - Equation (12.7), we have

E| Y f(Ta)| =B Y fren(Te,n) frp;o(Te,x) | = piugT!).
z€[n]

z€[n]
Combined with Lemma 11.3, this concludes the proof. O
13.2. Control over the growth of a process. In this subsection, we establish the

following proposition. In words, it asserts that if ((A*)%p;, w) = 0 then ((A*)'w;, w) is
quite small for all ¢ < /.

Proposition 13.3. Assume 0 < k < 0.33. There exists a universal constant ¢ > 0 such
that, with probability greater than 1 — cn®~Y, one has for any t < ¢, for any w € H* with
|lw| =1 and for any i € [ro] the following bound:

[((A%) i, wh| < clb™D".
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Proof. We follow the usual strategy. First, we note that by the mere definition of H, when
w e HY we have ((A*)*p;, w) = 0. Consequently,

p (A% pi,wy = (A i, w) — iy ((A) pi, w)

and from a telescopic sum we get

-1
|1 A" piywpl = |3 7 (A% i, w) — i *(A®) i, w)
k=t
—1 1
| " [(A%)Fpi — = (A%)* g, (13.4)
k=t K
where in the last line we used the Cauchy-Schwarz inequality and |w| = 1. Let us fix

1<k</-1. We have

1wt |
——(AT)" i) =

A*k
(e

2 FH17¢17R(Ga 33)2

ze[n]

where F},, o, r was defined in (12.3). From Theorem 12.2 - Equation (12.8), we have for
any z € [n]
Qk i z( )
E[Fuiq%,k(Tv m)z] = gk
Therefore, summing over = gives
2 <1 QkSOZ Z>
Z Fl‘iv%"i»k(T7 .CL‘) dF

z€[n]
We are going to use the concentration bound from Theorem 12.5. We define the function
[ by
J(9:0) = L(g.0)4 41 is tangle free Fpus 05,k (95 0)%.
This function is (k + 1)-local and from (12.5), (2.3), and (11.1), we have

£(9,0) < @il %Py (0, k + DIPOF + 977 /|15)*L(g.001 41 s tangle ree (13.5)
8b
B%k“ga )k+1|27 (136)

where we have used \,ul\ > 91. Then, applying Lemma 11.3 and Theorem 12.5 (with s = 4,
a = 8v*97% /n and B = 2) yields, with probability at least 1 —cn? !, for all k < £ —1 and

1 E [7‘0],

1,Q%")

T < (hl n)7/2n3ﬁ/2—1/28§k

1 2
‘(A*)k%. - ;(A*)kﬂtpi

We now sum all k between ¢ and £ — 1 in (13.4). We find

£—1
%k

|/M_t<( 4,01,IU>| Z <1 Q QD ’l> +Cb(l n)7/4 3k/4—1/4 Z

|l

where we used v/u + v < \/u + v/v. Then, we use (10.5) which tells that (1, Q*p"*) <
K?p*. We thus get from (13.4) the inequality

=1 Gk

A" g )] < il (K + cbtnm) 7/ n™/4714) 2 |§ ;
k=t
< (0= t)(K + cb(Inn)/*p3/4= 1)t

where we used the fact that |u;| > 9. We finally use (10.3). O
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13.3. Norm of the matrix restricted to H*. Our goal in this section is to prove the
inequality (9.11) on |A®)||. We first describe the tangle-free decomposition introduced in
[43, 14]. The main technical estimate will be postponed to Section 15.

We notice that if the graph G is (-tangle free then A* = A where

14
= <%>Z Z HPIt—lthzﬁflz“
Fﬁ,y t=1

and the sum runs over the set F,f,y of all paths (zo,...,x¢) such that zo = z, z, = y and
the graph of the path is tangle-free — we recall that tangle-free means that there are no
more than one cycle, see the definitions in Subsection 11.1 on page 49. More generally,
F* denotes the set of all tangle-free paths of length ¢, whatever their endpoints. We also
define the matrices M and A® by A = A = I,,, and

d

n

4
A:(Ifz; - ( ) Z H Fo— 1“*% 12" (13.7)
L t=1

'Y

= M,

Mz,y - T,y T

We use the convention that the product over an emptyset is 1. Then we may write for

any a,be R’,
4 4
Hat=H -‘rZ (Hbt> ak—bk ( H at>. (138)
t=1 t=1 k=1 = t=k+1

We thus get
O _ 40 N (MY N TT
AI, Az,y Z (E) Z HPJCt 19%7:% 1zt< Th— 11k> H Poy oy Moy _yay-
k=1 Rt t=1 t=k+1

This can then be rewritten as the following identity in ., (R):

’ 0
A© — A(f) + Z A(k—l)PA(Z—k) _ Z R](f),

k=1 k=1
where
© o -1 k—1 ‘
(Rk Joy = (E) Z H Pﬂctflxtht,lz,,PJk—lwk H Poy yay Moy o,
(zo,m,zg)eT;i’f t=1 t=k+1
where the sum is over all ‘paths’ (zo, . .., z¢) such that (zo, ..., zk_1) € F’“fl7 (Thy...,xe) €
F*® but (xo,...,z,) is not in F*.

We now use the spectral decomposition P = p1919¥ + -+ + pn@npk. For any unit
vector w, we have

AP PAET Iy = A% Z nipies, AY"Pw).

Jj=1

Hence, from the orthogonality of the ¢;’s,

n
AR PAC Ry < AR 0o, AP W)

Jj=1

= AR Y iy, AP, (13.9)

j=1
From Proposition 13.3, with probability at least 1 —cn?*~!, the following holds for any
t <fandie [ro] and we H":
[{pi, Alw)| < b 09",

From Proposition 13.2, with probability at least 1 — cn®*~*, for all 4 € [n]\[ro] and
t < £, we have
(A%) il < u?trl(_’ti) + cb?(Inm) "/ 2nPe/2- 122t
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However, from Equations (10.7)-(10.3), we have ,u?thi) < B¥(t +1)9%. As a consequence,
for some universal constant ¢ > 0, for all 7 € [n]\[ro] and ¢t < ¥,

Kpi, A'w)] < Jwl][(A¥) @i] < eb'Ved".

On the union of the two events events and G {¢-tangle free, the whole square root in
(13.9) is bounded by, for all w e H:

b AP < a0l

Jj=1

Z W = b ordtF,
j=1

where we used that p1 = 1. We get the following lemma.

Lemma 13.4. With probability at least 1 — cn® ™1, one has

£ ¢
APy ] < A€+ ber 3 1A%V [0 + 3 IR,
k=1 k=1

We now need bounds on |A®*~Y | and HR,(f) [

Proposition 13.5. There exists a universal constant ¢ > 0 such that if n > cK*?, with
probability at least 1 — 1/y/n, the following holds for any k € [£]:

JA® | < eln(n) " K*9". (13.10)
1RO < % In(n)?* L. (13.11)

The proof of this proposition relies on a high-trace method. It is postponed to Section
15. As a corollary, we obtain the following proposition.

Proposition 13.6. Assume 0 < k < 1/4. There exists a universal constant ¢ > 0 such
that, with probability greater than 1 — ¢/+/n, one has

|AP | < eb®rIn(n)'?9".

Proof. By Lemma 13.4 and Proposition 13.5, with probability at least 1 — ¢/4/n, we have

¢ ¢

| AP < JAD |+ cber Y JA® V00 + IR
k=1 k=1

¢ 24

< Cy ln(n)lo Z o+ MLIZ

k=0 n

14
< Coln(n)'0d" + cde 1n(n)24s‘1%
< Cln(n)'?d"

with Cp := ¢/b*°4r, for some universal constant ¢/, in the second line (recall that K < b*
from (10.3) and that b is bounded by (9.4)). To get the last line, we have observed
t d/n < 95n"2t1/81 where we have used d < n'/® from (9.2) and k < 1/4. The
constant C in this last line is taken to be C' = ¢b**r with ¢ some absolute constant. O

13.4. Proof of Theorem 9.2. We gather the events and bounds from the last propo-
sitions, working out the error terms and presenting them in a way which keeps track of
dependencies with the parameters.

As in (9.1), we define the vector space H' = vect(ui,...,ur,) = im(U). Since A and
A* have the same distribution, Proposition 13.6 holds for (A*)*P . in place of AP ..
Then, we set k = 1/4 so that £ = |(k/2)logy,(n)] is as in Theorem 9.2. We apply
Propositions 13.1-13.2. We also consider the event of Proposition 13.1 for k equal to /3.
Then, the intersection of the events in Propositions 13.1-13.2 and Proposition 13.6 for
A*Py1 and (A*)*P, 1 has probability greater than 1 — en®*™! =1 —cn™".

On this good event, we should check that the error terms (9.6)-(9.11) are as claimed in
the statement of Theorem 9.2. The claims (9.11)-(9.12) are contained in Proposition 13.6.
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The proofs of (9.6)-(9.10) are essentially the same. They all rely on the basic inequality
for T € My, (R)

I7) < romax|T, |

and the use of the events in Propositions 13.1-13.2 to control the individual entries of the
matrices.

The (i, j)-entry of the matrix V* AU = D™@* A3 ®D~* is precisely (uij;) i, A% @;).
Hence on the event of Proposition 13.1, we find

83[
ID~*®*A* @D ™" — 5| < erob® In(n)**n* 2 .
L | 251

Our choice of kK = 1/10 implies that 3k —1/2 = —x. We use that 9 < 7o|u:| for all ¢ € [ro].

Adjusting the constant ¢ > 0, this gives the requested bound in (9.6).
We now prove (9.7). The (4,5) entry of U*V is equal to

(mips) (A i, (A%) 05> = (i)~ (A% i, ).
Hence, on the event of Proposition 13.1, we find
UV = Toy | < erot? Inn)* 2™~ 27",

This implies (9.7). The bound (9.8) is proven similarly using the event of Proposition 13.1
for k equal to k/3. It gives

[®*V — L | < erob® In(n)®?n" =275,

It remains to use (9.3) and our choice of k.
We now prove (9.9)-(9.10). The (4, 5) entry of U*U is equal to

(ipg) ™ (A @i, A')).
On the event of Proposition 13.2, we find
|U*U = O < erob® In(n)*n®* 275"
follows This implies (9.9)-(9.10) and concludes the proof of Theorem 9.2.

14. EIGENWAVES ON GALTON-WATSON TREES: PROOF OF THEOREM 12.2

This section carries out the details of the expectation and variance computation in
Theorem 12.2. Let us recall the notation, and especially the definition (12.1) of the
functionals: if ¥, ¢ are two vectors in R™ and ¢ is an integer, then

fd’ﬂ/)wt(ga 0) = ( ) Z Pz(o ),2(z1) * 'Pz(zt_l),z(zt) X ¢(Z($t))

Pg(o,t)

14.1. An elementary computation on Poisson sums. Let N be a Poi(d) random
variable, and let (X;), (Y;) two i.i.d. sequences of random variables, both being indepen-
dent from NN ; we suppose that X; is independent of Y; for ¢ # j, but there might be a
nontrivial dependence between X; and Y;. Let us note

N N
A=;X,- B=;m.

The following (classical) identity will be crucial in the next sections. For convenience, we
provide a proof.

Cov(A, B) = dE[XY]. (14.1)

Proof of (14.1). Primary computations shows that E[A] = dE[X] and E[B] = dE[Y],
hence Cov(A, B) = E[AB] — E[A]E[B] = E[AB] — d*E[X]E[Y]. The first term E[AB]
is thus equal to



62 CHARLES BORDENAVE, SIMON COSTE, RAJ RAO NADAKUDITI

We have E[N(N — 1)] = d?, hence (14.1) holds true. O

Identity (14.1) will be used many times in the following context. Fix one vertex z € [n]
and suppose that X = P, ypi(U) and Y = Py y;(U) with U ~ Unif[n]. By the eigen-
vector equation Pyy = prer, we have E[X] = (uidpi(x))/n and E[Y] = (u;de;(z))/n,
hence in this case

E[XV] = 3 P2pily)eily) = 5 (Qe (). (14.2)
]

ye[n

These identities will be used later in variance computations.

14.2. Proof of a martingale property. Let = be a fixed element in [n] and let (T, z)
be the random rooted marked tree described in Section (11.1) and let .% be the sigma-
algebra generated by (T, z):; from now on we will use the filtration .# = (% )i=0. The
key observation for this whole section is that the process t — ;" fo 0.t (T, 2) is indeed
an .%-martingale.

Lemma 14.1. Let ¢ be any vector and let p; be an eigenvector of P associated with the
nonzero eigenvalue p;. Then, the discrete-time stochastic process

1
Zy = jf@sw,t(Tv .’E)
M

is an F -martingale.

From now on, the conditional expectation with respect to the sigma-algebra .%#; will be
noted E; instead of E[-|.%].

Proof. It is clear that fy ., t(T,x) = ¢(x)f1,0;,¢(T,x), hence it is sufficient to prove the
martingale property for Z; = p; * f1,5,,+(T, z).
Let us fix an integer t. Then, upon factorizing up to depth ¢ we have

Zyp1 — 4y =

t+1 t
n d
(dui) 2 Penaen ( 2 P i((y)) -

1%
- sm(z(xt))).
dt(o,x)=t s=1 Tty

Let us note Ay = Z;41 — Z; the martingale increment. Then,

Et [At] =

t4+1 t
n dp
(dm) 2, HPz@H),umEt[Z Py atn@i((y) - jjsm(z(xt))].

dt(o,z)=t s=1 Tty

Let X1, X2,... be ii.d. random variables with the following distribution (conditionally
on Fy):

Pi(X = Py,),-0i(2) = % for each z € [n].

In other words, conditionally on .%;, the rv’s X, are i.i.d. samples with distribution
P,(o,),upi(U) with U ~ Unif[n], just as in the end of the preceding paragraph.
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It is clear that for every children y of z¢, the random variable P,(z,),.(y)®:(¢(y)) has
this distribution, and as already noted,

BIX] = 2 3 Paenepil2) = = (Po) olan) = Zpi(o(w0)).

ze[n]

The number N of children of z; has a Poi(d) distribution, and is independent of .%;, hence

ZX]—@(( +))

= dB[X] ~ % g (o(2)
= 0.

d
> Pz(m,z(y)%(Z(y))—isoz( ] E,

Tt—Y

We have E:[A;] = 0 and the martingale property for Z; is true.
O

14.3. Proof of (12.6). The proof of these two identities is straightforward. Indeed, the
martingale property for Z; = p; ‘ fy,»,.¢(T, ) shows that

Ellvec O] _ pz,) = i) = via)ei(o
which is exactly (12.6).

14.4. Proof of (12.7)-(12.8). We fix 4,7 in [r] and « in [n] for the rest of the proof.
Clearly, it is enough to do the computations with ) = 1. We set

Zti _ flyw,,tha )
i
and
Ay = Et[(ZZ-%—l - ZZ)(thJrl - Z,f)]
The Z° are martingales, hence
E[Z;Z]] = E[Ao + - + Aa]. = E[Ao] + -+ + E[Ar4].

Our goal is to compute those A;. First, we have

2 t+1 t—1
n
A= (m) Z H P’L(Es)ﬂ(%Jrl)Pz(ac;),z(ac’erl) X E(IEM-T;) (14'3)
Ha dt (o,z)=t s=0
dt (o,2")=t

where the sum runs over all the couples of paths of length ¢ started at the root: o = 9 —
x1 — -z and zh = 0 — o) — -+ — 1z}, and where E(x,z}) is given by

( Z Pl(xt),z(y)ﬂoj(l(y)) — d,LLJQOJ(’L(l't))> y

n

(Z] m>ymm@w—ﬁfmum»ﬂ.

zt/—y’

Tt—Y

We have already computed those expectations in (14.1). More precisely, when z; # z7, the
content of the two parentheses inside the expectation are totally independent and centered,
hence the only contributions to (14.3) correspond to the summands where z; = z}. In
this case, (14.1) and (14.2) yields

E(xy,x4) = EQSO 7 (1))
We thus have

d ng t+1 t—1 o
8= () Y [P0, 4d)

T P
Ml'ujd dt(o,x)=t s=0
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Since our goal is to compute E[A;] for any s, we now apply repeated conditioning:
E[A;] = E[Eo[Ei[...Es[As]...]. By the computations done earlier, it is easy to see

that . "
AN w ) . Q" (1(a))
E[A] = = L Q%" (1(z)) = =220,
1] (HQ) (mujdz PO =
This directly gives identity (12.8). Identity (12.7) also readily follows:
E(fo.006(T:2) fo.i0,.4(T, 2)] = u§u§¢(m)2E[ZZZj]

o Q%™ (u(x))
pars¢ ;0 (mipgd)s -

As requested.

15. PROOF OF PROPOSITION 13.5

In this section, we prove Proposition 13.5. The proof relies on the expected high trace
method introduced in random matrix theory by Fiiredi and Komlos [31] and on techniques
developed in [14] for sparse random matrices.

15.1. Norm of A®™. In this subsection, we prove the following lemma.

Lemma 15.1. There exists a universal constant ¢ = 3 such that for all integers 1 < k <
In(n) and n = cK*?,

(B{1A® ) < (k0"
where m = In(n/K°%)/(121n(In(n))).

From Markov inequality, Lemma 15.1 implies Equation (13.10). We start the proof of
Lemma 15.1 by the norm identities

[AB)P = 4B ABT|m = | (a®a®*)"]

From the trace formula, we get

AP P < wf(a®A®*)")

= Z H(A(k))w2t—1x2t (A(k))x2t+1w2t7

(T1,5eensm2m ) t=1

2m and we have set Zam41 = z1. From

where the product if over all (z1,...,Z2m) in [n]
the definition of A® in (13.7), taking expectation, we get

2m k

km
EHA(k)HQm < ( )2 ZEHHP,Y” s

i=1t=1

(15.1)

'ht 1%t

where the sum is over all v = (y1,...,%2m) with v; = (Vi,0,...,7%,k) € F* and the
boundary conditions: for all i € [m],

V2i,0 = Y2i+1,0 and Y21,k = Y26,k
Wlth Y2m+1 = V1.

We associate to an element - as above, a directed graph G, = (V5, E,) with vertices
Vy={7i::1<i<2m,0 <t <k} and edge set E, = {(75,t—1,7i,t) : 1 <i<2m,1 <t <
k}. This graph may have loops (edges of E. of the form (x,z)) and inverse edges (pair
of edges (z,y) and (y,z) in E,). From the above boundary conditions, the graph G is
simply connected. In particular, the genus of G is non-negative:

|Ey| = V4] +120. (15.2)
Each oriented edge e € E, has a multiplicity m. defined as the number of times it is
visited by ~:

Me = Z 1("/1’,t7"/i,t+1):e'
(i t)e[2m] x [k—1]
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By construction,
> me = 2km. (15.3)
eeE,,
We may now estimate the expectation on the right-hand side of (15.1). Recall that
the random variables M, = (Mg, — d/n), x,y, are iid, centered, bounded by 1 and with
variance (d/n) — (d/n)?. It follows that for any p > 1, [E[M? ]| < d/n. We deduce that

2m k [E~|
d Yy
BT P inids o, = [ PR < (4) T 20

i=1t=1 e€ B, e€E,

Moreover, the above expectation is zero unless all edges have multiplicity at least 2. From
(15.1), we thus obtain that

EHA(k)HQm < Z (g)ka—\E'ﬂ H ‘Pe‘m", (154)

YEWK,m e€E

where Wi ,, is the set of paths « as above such that each edge of E, is visited at least
twice.

We now organize the sum (15.4) in terms of the topological properties of the paths.
We introduce the equivalence class in Wy ,, we write v ~ " if there exists a permutation
o € S, such that v/ = o o «y, where o acts on v by mapping v+ to o(7i ). We denote
by Wg,m the set of equivalence classes. Obviously, |V,| and |E,| are invariant in each
equivalence class. For a, s integers, we denote by Wy, (s, a) the equivalence classes such
that |V,| = s and |E4| = a. From (15.2), W, m(s,a) is empty unless a — s + 1 > 0. Our
first lemma is a rough estimate on Wy (s, a).

Lemma 15.2. Let a,s = 1 be integers such that a —s+ 1 > 0. We have

|Wk,m(57 a)| < (ka)(i’m(afs+1>+2m.

Proof. This lemma is contained in the proof of [14, Lemma 17]. We reproduce the proof
for the reader convenience. Let v = (1, ,V2m) € Wi,m. We order the set T' = {(i,t) :
1 <i<2m,0 <t <k-— 1} with the lexicographic order. We think of T as time. For
0<t<k-—1andiodd, we define e;+ = (Vi,t,Vi,t+1), Yi,t = Yi,t+1, while for ¢ even, we
set €i,t = (Yik—t—1,7Yi,k—t)s Yi,t = Vi,k—t—1 (in words: we reverse 7; for even 7). A vertex
x € V,\{y1,1} is visited for the first time at 7 € T if y, = = and for all smaller o € T,
Yo # T.

We pick a distinguished path in each equivalence class by saying that v € Wy ., is

canonical if Vo = {1,...,|V4]|}, 71,1 = 1 and vertices are first visited in order. There
exactly one canonical path in each equivalence class. We thus aim for an upper bound
on the number of canonical paths in Wy, with |V,| = s and |E,| = a by designing an

injective map (or encoding) on such canonical paths.

Our goal is to retrieve unambiguously the values of y-, 7 € T, from minimal information.
For 7 € T, we say that 7 is a first time, if y, has not been seen before. If 7 is a first time
the edge e, is called a tree edge. By construction, the set of tree edges is a sub-graph of
G~ with no weak cycle (without orientation) and vertex set V,. We call the other edges
of G, the excess edges. Any vertex different from 1 has its associated tree edge. It follows
that the number of excess edges is

g=a—s+1.

If e, is an excess edge, we say that 7 is an important time. Other times are tree times
(visit of a tree edge which has been seen before).

The set T; = {(,t) : 0 <t < k — 1} is composed by the successive repetitions of (i) a
sequence of the tree times (possibly empty), (i) a sequence of first times (possibly empty),
(#47) an important time.

We build a first encoding of canonical paths. We mark the important times (,t) by
the vector (yi,t,yr—1), where 7 € T; U {(i, k)} is the next time that e, will not be a tree
edge (by convention 7 = (i, k) if v; remains on the tree after (i,¢)). We can reconstruct
a canonical path v € Wy p,, from the positions of the important times and their marks.
Indeed, this follows from two observations (1) there is at most one path between two
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vertices in an oriented tree, and (2) if v vertices has been seen so far and 7 is a first time
then y, = v + 1. It is our first encoding.

We refine this encoding by using the assumption that for each i, 7; is tangle-free. We
partition important times into three categories, short cycling, long cycling and superfluous
times as follows. Assume that -; contains a cycle. Consider the smallest time (4, ¢1) such
that yi+, € {yi,—1,...,Yi,t,—1}, where y; —1 = ;0 for odd ¢ and y;,—1 = ;% for even .
Let —1 < to < t1 be such that yi ¢, = ¥it,. By the assumption of v; being tangle-free,
C = (Yi,tgs " »Yi,t,) is the only directed cycle visited by «;. The last important time, say
(i,t:), before (i,t1) is called the short cycling time. We denote by t2 the next time after
(,t1) that is not an edge of C (v; circles around C between times (i,t0) and (i,t2)). We
modify the mark of the short cycling time as (ys,¢;, yr—1,t3) where 7 = (¢,t3) € T; U {(¢, k)}
is the next time after (i,t2) that e- will not be a tree edge (by convention 7 = (i, k) if
i remains on the tree). Note that that this (¢,¢;) is the last important time, all steps
to close the cycle are on tree edges. It follows that the pair (yiyti,yT_l) determines y; ¢ -
Important times (i,¢) with 0 <t < t; or t2 <t < k — 1 are called long cycling times. The
other important times are superfluous. The key observation is that for each 1 < i < 2m,
the number of long cycling times (i,t) is bounded by g — 1 (since there is at most one
cycle, no edge of v; can be seen twice outside those of C', —1 coming from the fact that
the short cycling time is an important time). Now consider the case where the i-th path
does not contain a cycle, then all important times are called long cycling times and their
number is bounded by g.

We can reconstruct a canonical path v € Wy, »,,, from the sole positions of the short and
long cycling times and their marks. This our second encoding. For each i, there are at
most (k + 1) ways to position the short and long cycling times of Tj, s? possibilities for
the mark of a long cycling time and s?k possibilities for the mark of a short cycling time.
We deduce that

Wian (5, 0)| < (k + 1)7™9(s%) ™D (k).

Since s < 2km, the conclusion follows. O

Our second lemma bounds the contributions of paths in each equivalence class. This
lemma is the new main technical difference of this section with [14].

Lemma 15.3. Let v € Wy, such that |V,| = s and |E,| = a. We have
Z H |P€|me < n—2km+sKkm—aKG(a—s)+8mpkm.

vy ~yeeE
Proof. We first express the product of entries of P in terms of the matrix Q:
2km—2a
_ K
[ 1rim = T] iegee < (V) T 2
n n
eeE,, ecE, eeE,,

where we have used (15.3), me > 2 and max |Pyy| = v/pK/n.
The statement of the lemma immediately follows from the claim:

Z H Qe <pans—af(fi(a—s)-%—Bm (155)

1ot
vy weeE,Y/

Indeed, let us check (15.5). Let us define the degree of a vertex x in V5 as the sum of
in-degrees and out-degrees: 3, (1, , 1=z + 1y, ,—z). Let sk and s>y be the set of vertices
of degree k and at least k. We have

s1+82+8>3=s5 and 1+ 282+ 3s>3 <stk = 2a.
k

Subtracting the right-hand side to twice the left-hand side, we find
s»3 < 2(a—8)+ 81 <2(a—s)+2m.

The bound s1 < 2m comes from the fact that only the vertices ~;,0 and 7; x, with i € [2m],
can be of degree 1. Indeed, other vertices are of degree at least 2: for 1 < ¢ < k, 7;+ has
in-degree at least 1 and out-degree at least 1.
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Consider the subset of vertices V.,  V, which are of degree at least 3 or are among the
extremes vertices i 0, Vi,k, ¢ € [2m]. In particular, V,\V, contains only vertices of degree
2. From what precedes

8=V, <2(a—s)+4m. (15.6)
We may partition the edges of E, into a sequences of edges of the form, for 1 < j < a,
& = (ej1,-..,€j5,q;), With ej¢ = (zj1-1,25:) € Ey, Tj0,%jq in V, and z;, ¢ V for

1 <t < ¢q; — 1. By construction

Z q; = a. (15.7)
j=1

We consider the directed graph CAJW on the vertex set Vﬂ, whose @ edges are, for 1 < j < a,
(w5,0,%j,q;) (this is a multi-graph: if two sequences é; and é;, i # j, have the same extreme
vertices, it creates two edges). It is straightforward to check that this operation preserves
the genus:
a—s=a—38. (15.8)
For ease of notation, let y1,--- ,ys be the elements of VW. Let a; and b; the indices
such that z;0 = yo; and x4, = ys;. Summing over all possible vertices, we get

Lo Iles< X [T,

v~y e€ By (1, ys5)€[n]® 7=1
where we have used that
aj
Q - Q¥
Tjt—1%j,6 T WT[,0,%],q;
(@j,1,3@j,q5-1) t=1

We apply (10.4) and find

> Mes ¥ (1)

Yy ~y e€E (y1,+,y3)€[n]s i=1

Using (15.6)-(15.8), we have a < 3(a — s) + 4m and, from (15.7), Equation (15.5) follows.
(]

We are ready for the proof of Lemma 15.1.

Proof of Lemma 15.1. Note that Wi ., (s,a) is empty unless 0 < s — 1 < a < km (since
each edge has multiplicity at least 2, we have 2|E,| < 2km from (15.3)) From (15.4), we
get

km a+1

BAYE < 3N () Wl _max S T IR

w
a=1s=1 7€ k’m(s’a) ! NAVeEE/

Using Lemma 15.2 and Lemma 15.3, we arrive at

km o
E”A(k)”2m < n Z Z da72km(ka)6m9+2mnngkmfaK6g+8m76pk'm
a=1g=0
km—a o 6 6m\ 9
— 2R (2km) 2 KT GZ (K) Z (K (2km) ) ’
a=1 g=0 n
where we have performed the change of s > g = a — s+ 1 and used 92 = /p/d.

Recall k& < In(n). We take m = [In(n/K°®)/(12In(In(n)))]. If n > cK® for some
universal constant ¢, we find that
6 6m
K®(2km) <
n

N[ =

We deduce that

km
E|A®*™ < nd3tm (1 v %) (2km)*™ K™ (2km).
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For our choice of m, 2km < In(n)?/In(In(n)) and, if n > K*?, then n*/®™ < In(n)".
Since 024/ K /d = 91, the conclusion follows easily. O

15.2. Norm of Rff). In this subsection, we prove (13.11).

Lemma 15.4. There exists a universal constant ¢ = 3 such that for all integers 1 < k <
¢<In(n) and n = c,

(B{AO 1)) < D1,
where m = In(n)/(241n(In(n))).

The proof follows from the same line than the proof of Lemma 15.1. It is also essentially
contained in [14]. To avoid repetitions, we only focus on the main differences with the
proof of Lemma 15.1. The computation leading to (15.1) gives

2m £
EHRI(f) H2m < (g)z(z o Z EH HP'Yi,t—l’Yi,t (1t<kM’Yi,t—l'Yi,t + L—i + 1t>kM'Yi,t—1'Y'i,t)7
NeWy , i=1t=1
(15.9)
where Wl/,m is the set Of’y = (’YI, e ,’YQm) with Yi = (’}/1’70, . 77i,£) ¢ Fe, ('Yi,07 . ,’yi,kfl) €
F*=Y (Yiks1s- .., vie) € FF and the boundary conditions: for all i € [m],

Y2i,0 = V2i+1,0 and  Y2i—1,6 = Y2i,e

with Yam+1 = 71.

We associate to an element v € Wy, the directed graph G, = (V;, E) with vertices
V) ={v::1<i<2m,0<t<¢}and edge set Bl = {(yi,6-1,7%,) : 1 <1< 2m,1 <t <
¢,t # k}. The graph G, is not necessarily weakly connected (since EZ, does not contain
the edges (vi,k—1,7i,k)). However, we have the following observation.

Lemma 15.5. If v is as above then each connected component of of G, contains a cycle.
In particular, |E.| = |V;].

Proof. By recursion, it is then enough to check that each connected component of G7,
contains a cycle. By assumption, vi = (Vi.o,...,7i¢) ¢ F* contains two distinct cycles.
Up to recomposing a new cycle, we may assume without loss of generality that the edge
(Yi,k—1, Vi) is in zero or one of the two cycles. If it is in one of them, then the graph G,
is weakly connected and it contains the other cycle. Assume now that (v;k—1,7:,k) is in
none of the two cycles. If G/, is weakly connected, there is nothing to prove. If G, is not

weakly connected, then the two connected components are the vertices of (Vi 0, ..., Vi,k—1)
and (Vi k,-.-,7,¢). Since these two paths are tangle-free, each must contain exactly one
of the two cycles and the statement follows. O

Using the independence of the entries of M and |Pyy| < L/n,

m L d |Efy| L 24m
E H H P’Yi,t—l’Yi,t (]t<kM'yi=t,1fyi,t + Li—p + 1t>kM’Yi,t—1’Yi,t) < (7) (*) .

1t=1 n n

[~

‘We thus obtain that

o d 2m L 20m d |Efy\
B < (4) (%) X (47 (15.10)
VEW

‘We introduce the equivalence class in Wé,m? we write v ~ 7/ if there exists a permuta-
tion o € S,, such that 4 = o o+, where o acts on v by mapping v;,+ to o(7,t). We denote
by Wi, (s, a) the set of equivalence classes such that |V;| = s and |E| = a. From Lemma
15.5, Wk,m(s, a) is empty unless a = s. We have the following estimate on Wy, (s, a).

Lemma 15.6. Let a > s > 1 be integers. We have

[Wh,im (s, @)] < (26m)*2m(e=2ezerm,
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Proof. A proof is contained in [14, Lemma 18]. We give a proof for the reader convenience.
We order the sets T" = {(i,t) : 1 <i<2m,1 <t <Ll—1L,t#k}and T = {(5,t) : 1 <i <
2m,1 <t < £— 1} with the lexicographic order. We think of 7" and T" as times. If 7 € T”,
we denote 7~ the largest element in 7" smaller than 7. By convention (1,0)” = (1, —1).
For 7 € T, we define e, and y, as in Lemma 15.2 and we say v € W, is canonical if
Vo ={1,...,|V5]}, 11,1 = 1 and vertices are first visited in order. We aim for an upper
bound on the number of canonical paths in Wy ,,, with |V;| = s and |E;| = a by designing
an injective map.

We define a sequence of growing sub-forests (Fr) e of G, as follows. We start with
F(1,-1), the trivial graph with no edge and a 71,1 = 1 as unique vertex. For 7 € T", we say
that 7 is a first time, if adding e- to F,— does not create a weak cycle. If 7 is a first time
the edge e- is called a tree edge and we define F; as the union of e, and F,-. Otherwise,
F, = F,-. We set F' = Fan . By construction, the set of tree edges is a sub-graph of G/,
with no weak cycle and vertex set V. Moreover, the weak connected components of ny
and F are equal. We call the other edges of G, the ezcess edges. In each weak connected
component of G/, there are at most g = a — s + 1 excess edges. Indeed, if a’, s’ are the
numbers of directed edges and vertices of a connected component, then there are a’ — s’ +1
excess edges in this connected component. However by Lemma 15.5, @’ — s’ < a —s. If
er is an excess edge, we say that 7 € T’ is an important time. Other times in T’ are tree
times (visit of a tree edge which has been seen before).

Let k; = k for odd i and k; = k — £ + 1 for even i. We define the sets 7' = {(i,t) : 0 <
t < k;—1} and T? = {(i,t) : k; <t < £}. For each 4, there could be a special first time
(i,t) € T?, called the merging time, such that a connected component of F; 1)~ merges
into a connected component of F; ;,—1 by the addition of e; .

The sets T; are composed by the successive repetitions of (i) a sequence of the tree
times (possibly empty), (i) a sequence of first times (possibly empty), (i7¢) an important
time or the merging time. We mark the important and merging times (for ¢ = 2) (i,t) € Ty
by the vector (yi,,yr—1), where 7 € T; U {(¢, ki)} is the next time that e, will not be a
tree edge (by convention 7 = (i, k;) if Tf only contains tree times after (i,t)). We can
reconstruct a canonical path v e Wéﬂm from the positions of the merging and important
times and their marks.

We refine this encoding by partitioning important times into three categories, short
cycling, long cycling and superfluous times exactly as done in Lemma 15.2, except that
there are short and long cycling times for each 7 and € € {1,2} in the sequence T;. There
are either 0 short cycling times and at most g long cycling times, or 1 short cycling time
and at most g — 1 long cycling time (because in each connected component of G, there
are at most g excess edges).

We can reconstruct a canonical path v € Wy, from the positions of the merging,
short and long cycling times and their marks. There are at most ¢*™ ways to position
the merging times. For each i, e, there are at most £ ways to position the short and long
cycling times of T§, s? possibilities for the marks of a merging or long cycling time and
52k possibilities for the marks of a short cycling time. We deduce that

|W/g’m(8, a)| < E4mg+2m(82)4m(g71)+2m(82k)4m.

Since s < 2¢m, the conclusion follows. O
We are ready for the proof of Lemma 15.4.

Proof of Lemma 15.4. There are n(n—1)--- (n—s+1) elements of Wy, in an equivalence
class in Wy (s, a). From (15.10) and Lemma 15.6 we get

d 2m L 2/m 2fm a d a
E[R7*" < <n> (3) ZEns(zem)”m“"S”””(E),

a=1s=1

We perform the change of variable s > p =a — s:

. d 2m L 24m m22m Y 0 2m, 12m\ P
E|RY " < <n> (3) (20m)>™ Y d Z<7( n) )

a=1 p=0
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Recall £ < In(n) and d = 1. We take m = [In(n)/(241n(In(n)))]. If n = ¢1 for some
universal constant ci, we find that
12m
(2km) < 1
n 2
We deduce that )

For our choice of m, 2¢m < In(n)?. The conclusion follows easily. O

16. PROOF OF THEOREM 3.4 AND COROLLARY 3.5

The proofs of Theorem 3.4 follows the same line than the proof of Theorem 3.4. In this
section we explain the differences.

16.1. Main technical result. We will assume without loss of generality that pu1 = 1.
For ease of notation, we set in this section d =d, 9 =9, M = M and D = d v 1.01. Note
that since d > 1, we have D < 2d.
We will assume in the sequel without loss of generality that
log(n) > 8log(d). (16.1)

Also, from (10.2) p = p? = 1. In particular ® > 1/+/d and 7, ' < +/d. Tt follows that in
the statement of Theorem 3.4, we have

o < d < n/B (16.2)

We set E, = [n]* = {(z,y) : =,y € [n]}. With a slight abuse of notation, we can
identify the non-backtracking matrix with its natural extension on FE,, defined as follows:
for all e = (z,y) € En, f = (a,b) € Ey,

By = SMcMoA(y = a)l(b # @) Py
The advantage of this new equivalent definition of B is that it is defined on the determin-
istic set E, rather than on the random set E. Similarly, if ¢ is a vector in R, we set for
all e = (z,y) € En,

S0 = ELow) and () = () (16.3)
If ro > 1, we define ®* = (pf,..., i) and & = diag(u1, .. -, tir, ). The candidate left
and right eigenvectors (u1,...,ury) and (vi,...,vr,) are the columns of the matrices:
U=Baox™* and V = (B¥ Aae
where A € 4k, (R) is the diagonal matrix defined for all e € E, by
Ac e =nP..

We set S = US‘V* and introduce the vector spaces H = vect(vi,..., v, ) and H =
vect(Ut, ..., Urg)-

Finally, if ro = 0, then S is simply set to be the zero matrix, and H, H’' are the trivial
vector spaces.

Then, we define the matrix I'® = d(T¢+Y — 1, ) € ., (R): that is,

t+1 i
. 1, Q%"
0 =d) A.Q%) 16.4

7 (ipjd)® (16.4)

s=1
The proof of Lemma 9.1 implies the following.

Lemma 16.1 (Properties of f‘(t)). For any t, the matrix I'® 45 q semi-definite positive
matriz with eigenvalues greater than o, and with

R 2 _2(t+2)
o < [P < drob® "0
1—175

The following result is the analog of Theorem 9.2 for the non-backtracking operator B.
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Theorem 16.2 (Algebraic structure of U and V). There are a universal constant ¢ > 0
and an event with probability greater than 1 — cn™ Y% such that the following holds:

IV*B'U - 5| < Cin V434" (16.5)
|U*V = L, | < Cion~ VA5 (16.6)
[(@5)*U =Ly | < Cin~ M7 (16.7)
[(@)*V =L | < Cun~ V73" (16.8)
- < Cin T .

JU*U —TO) < Cin~ Vit (16.9)
)

)

)

VvV —TO| < oin V173 16.10
I 0
|BP | < Caod' (16.11
|P s BY| < Co9", (16.12

where Cy = crob®In(n)”/? and Cy = cdb*®7In(n)*°.

The same statements holds, with the same constants, if we replace £ by ¢ = ¢ +
1. Repeating the proof of Theorem 2.3 in Subsection 9.4 and Corollary 2.6, we obtain
Theorem 3.4.

We now check that Corollary 3.5 holds. We start by a comment. We first observe the
matrix identity

B*AJ =AJB

where J is the matrix such that for all (z,y) € E, we have Jd(4,) = 0(y,2)- In particular,
we find that AJvy; and 1, are proportional vectors: there exists ¢ > 0 such that for all
(z,y) € E, cj(z,y) = nPy yi(y, x). if deg(i) = 1, we have that 'Lﬁl(y) = 0. If deg(y) = 2,
using the eigenvalue equation, we deduce that

~ 1 1 -
Aithi(y) = d(degy) = 1) z:(;y)EE Aii((2y)) = 5 I:(IZME nPyoi((y, ) = cii(y).
The estimators ¢; and @; are thus very close (note however that if deg(:) = 1, we have
that ¢;(y) = 0 but ¥.(y) could be different from 0).

Let us now check that the conclusion of Corollary 3.5 holds. Arguing as in the proof of
Corollary 2.6, it suffices to check the conclusion with our approximate eigenvectors u; and
v; in place of the actual eigenvectors 1; and ;. It then follows from a slight modification
of Theorem 16.2 that, with probability at least 1—en ™%, |(i, ﬁj>—6i,jfgf}| < Cin~ V473t
and |(iis, ;) — 8; ;| < Cin~Y*7g%. The same holds with the vectors ©;. The conclusion
follows.

16.2. Near eigenvectors: claims (16.5)-(16.10). We denote by G = ([n], E)) the undi-
rected random graph whose adjacency matrix is M: this is an Erdés-Rényi random graph
with parameter d/n (with loops).

The first step is to extend the notion of graph neighborhood (G, z); to directed edge
neighborhood. If e = (y,z) € E,, we define (G, e); has the rooted graph (G°, z); where G*
is the graph obtained from G by removing the edge {z,y} if it is in E otherwise G* = G.
As explained in [14], Lemma 11.3 and Proposition 11.4 also hold for (G,e) in place of
(G,z) and (T, z) = (T, e) is now the marked Poisson Galton-Watson tree with parameter
d with root mark z if e = (y, ).

If (g,0) € %4, we write o ~ u if u and o share an edge and (g, (0, u)) is defined as above
as the rooted graph rooted at u where the edge with o has been removed. The version of
Theorem 12.5 that we will need is the following;:

Theorem 16.3. Let 0 < £ < 0.49 and h an integer as in (11.10). Let f : % — R be a
(h +1)-local function such that |f(g,0)| < a3, . |(g,(0,u))n|? for some a, 8 > 0. Then,
for some universal constant ¢ > 0, for any s = 1, with probability greater than 1 —n~?,

we have

Z f(G,z) —E Z F(T,z)| < ce®as®? P In(n)®/2+F ppr+A+1/2,
J

z€[n ze[n]
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The proof is the same than the proof of Theorem 12.5. The only difference is at the first
lines: we set f(g,0) = a, . |(g,(0,u))n|?/d. Note that if an integer random variable N
is independent of (Z) i.i.d. non-negative, then for any ¢ > 1,

N q
k=1
Hence, by (11.8) (applied to t = h and t = 1), we have for all p = 1 and z € [n], for some

universal constant ¢ > 0,

E[f(G7 CC)QP] < a?p (cp)Qp(ﬂ+1) D2p(,8h+l).

E = E[N|E[Z]].

N
-1
<E [Nq >z
k=1

The rest is identical.
Theorem 16.3 and Theorem 12.2 are used to prove claims (16.5)-(16.10). As an illus-
tration, we first check that (16.9) holds. The entry (i,5) of U*U is equal to

(Uiﬂj)_£<B£S@:rvBe<P;> = Z (:U“inu‘j)_él{z,y}EE(Be(pz—)(?ﬁx)(Be(p;—)(?ﬁx)'
z,y€[n]

On the event that G is {-tangle free, we have

(B o)y, 2)(B ¢} )(y,2) = f(G, (y,x))/d,
where
f(g7 0) = l(g,o)g is tangle free fl,api,é(gyo)fl,apj,l(g7 O)~
We thus have on the event that G is /-tangle free,
(mips) "Bl B'oly = > f(G, ),
ze[n]
with

F9,0) = (us) ™" 5 3 19, (0,w),

u~o0o

and the sum is over all neighbors of o (end vertex of an edge attached to 0). The function

f(g,0) is (£ + 1)-local and, from Lemma 12.1, it is bounded by

22 _
m\ﬂiﬂﬂ % Z (g, (Oau))ﬂ?'

u~o

Then claim (16.9) follows by applying Theorem 16.3 and Theorem 12.2 - Equation (12.7).
We now check that (16.10) holds. The entry (i, ) of V*V is equal to (piu;) *~* times

(B") Ap; (B Ap;y = X Nayen((B¥) Apy ) (2, ) ((B¥) Ap; ) (,y).
z,y€[n]

Using the symmetry of ¥ and P, we find that on the event that G is f-tangle free,
(B*) Api ) (@, y)(B*) Ay )(x,y) = n* P2, (G, (y,2))/d = (n/d)Qus, f (G, (y,2)),

where as above

f(g7 O) = l(g,o)é is tangle free fl,gpi,l(gy O)fl,apj,f(g’ O)'
We thus have on the event that G is /-tangle free,
(maipg) " H(B*) Ay, (B Mgy ) = > f(G,2),
ze[n]
with

F(g:0) = (i)™ 5 Y Quiorat f 9, (0, 0)),

uU~o0

and ¢ is the mark function. The function f is (£ + 1)-local and it is bounded by

2b° 020 2
2 s 0% N o)

u~o
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where we have used that p1 = 1 and K = max,,, nQ.,, < b*. Moreover, by Theorem 12.2
- Equation (12.7), we have

Quy v Q° CREC
=2 Z - Z

il = HN] =1 (ipsd

It follows that claim (16.9) follows by applying Theorem 12.5.
We now check that (16.6) holds. The entry (i,5) of U*V is equal to u;z,u;éfl times

(B! (B¥)'Ag;y = D) 1 yen(B o) (v, 2)(Ap) ) (v, 2).

z,y€[n]

On the event that G is ¢-tangle free, we have
(B0 (y,2)(Ap; )y, ) = (n/d) Payyp; (v) (G, (y, ),

where
f(g7 O) = l(g,o)g is tangle free fl,«pi,2l(gv O)-
We thus have on the event that G is /-tangle free,
pi g THB! (B Ay = Y f(Gaa),
z€e[n]

with

7 —0 ——1 T

F(9,0) = i “u; 15 D) Putarucor 3 (0)) £ (95 (0, w),
and ¢ is the mark function. The function f(g,0) is (¢ + 1)-local and, from Lemma 12.1,

it is bounded by (2b*)/(nd)|uip;|~9* Y, .. (g, (0,u))e|. Moreover by Theorem 12.2 -
Equation (12.6), we have

Ef(T,x) = pip; ™" Y PapsW)ei(@) = pip; o;(x)pi(x).
Y
where at the second step, we use that ¢; is a left eigenvector of P. Then claim (16.9)
follows by applying Theorem 16.3 and using the orthogonality relation {yi, p;> = d; ;.
We leave the remaining inequalities (16.5), (16.7) and (16.8) to the reader.

16.3. Norm of the restricted matrix: claims (16.11)-(16.12). We may perform es-
sentially the same tangle-free decomposition as performed for the matrix A. We follow
[14] where a tangle-free decomposition for non-backtracking matrices was previously per-
formed. The following argument introduces a new simplification.

We define non-backtracking path of length k as a sequence (o, ..., zx) in [n] such that
Zi—1 # xyy1 for all ¢ € [k — 1]. For example, if z # y, (z,z,y,y) is a non-backtracking
path of length 3. For e, f € E, = [n]?, the Ff}l is the set of all non-backtracking paths
(zo,- - ,xes1) such that (zo,z1) = e, (x¢,ze+1) = f and the graph of the path is tangle-
free (see definition in Subsection 11.1 on page 49). More generally, F* denotes the set of
all tangle-free non-backtracking paths of length ¢, whatever their endpoints.

If the graph G is (¢ + 1)-tangle free then B® = B® where, for e = (z,y) and f = (a,b)

in E, = [n]?,
14
14
Bi} ( ) Z H TtTe41 It11+1

Ffil»fl
We also define the matrices M and Q(Z , B(Z) by Bic}) B«}) = le—fer, and
d
szy = T,y E
¢
Ei,} = ( ) Z M. <H wtwt+1Mxtxt+1> Py My
F@+1
=€)
BY, = (d) 3 M. (]_[ Pevopn M, | PrM,. (16.13)
FE+1

e, f
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Note that the difference between B and B(Z) lies at the weight attached to the last edge.
We use the convention that the product over an emptyset is 1. For each (zo, ..., T¢+1),
we write the telescopic sum (13.8) for the indices t € [£ — 1], we get

£—1
£ £
Bé,) Ec(z)f Z( ) Z M. HPwtCCtJrlfztthrl( 901&%4—1) H TtTe41 ﬂctwt+1
k

=1 F/z+1 t=k+1

(16.14)
We introduce the matrix in .#g, (R): for e = (z,y), f = (a,b),

Hej=1y—azzs

The matrix H is the unweighted non-backtracking matrix on [n]?.
The above identity (16.14) can then be rewritten as the following identity in .#g, (R):

_ -1
0 _ peo, 1 & (k—1) (0—k—1) ©
BY - B ﬂTd;E (HA)’B ZRk, (16.15)
where
- ¢
¢
(Rl(c))ﬁyf - ( ) Z 1_[ Itzt+1fztzt+1(PTka+1> 1_[ Pztzt+1MItIt+1
=1 t=k+1
where the sum is over all sequences (zo,...,z¢+1) such that (zo,z1) = e, (x¢,Te41) = f,
(zo,...,Tk) € F*, (Tha1y---,Tet1) € F** but (zo,...,Te41) is not in Fere
We define two new lifts in R”» of a vector ¢ € R™:
o) = 2W and g = 2@ (16.16)

Vd
The only difference with (16.3) is that we do not require that e € E. Now, as in [14], we
write that for e = (z,y), f = (a,b)

1
E(HAH)EJ ]a;éz,y;ébpya

Pya — Ya—zyoty=ty Pya

a3 1w5%5 %5 (1) = dS..s,

where we have used the spectral decomposition P = 10195 +- - -+ pinon @, used notation
(16.3) and defined S € .#g, (R) as
P,
Sers = a=aoty=v) 7
For any unit vector w, we thus have

(k—1)

1 B(kfl)(HA)zB(z—k—l)w: ZH]‘B(k <’J_,AB“ By B SABEF1Dy,

nd
We observe that on the image of B, ¢~ and ¢~ coincide.Hence, in the above expression,

we may replace Agbj_ by Agoj_. From the triangle inequality,

%B"“)(HA)QB“*’H%\ < Zm]nB(k Ve lIagy B V)

+ |B* VsaBtrE). (16.17)

From the direct analog of Proposition 13.3 for ((B*)"A¢; , w), with probability at least
1 — en®*71) the following holds for any t < £ and i € [ro] and w € H*:

[(Ag; , B'w)| < A

From the direct analog of Proposition 13.2 for (B*)*A¢; , with probability at least
1—cn®! for all i € [n]\[ro] and ¢ < £, we have

|(B*)tA<Pi_|2 < u?tfﬁ’? n Cb6(lnn)9/2n3m/2—1/2192t.
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However, from Equations (10.7)-(10.3), we have ,uftf‘gtl) < B¥(t +1)9%. As a consequence,
for some universal constant ¢ > 0, for all 7 € [n]\[ro] and ¢t < ¥,
(Ag;, B'wy| < [ull(B*) Mgy | < bV,

On the union of the two events events, in (16.17) we find, for all w e H*:

SRk ~ ke N k1) g(k=1) 5
DB Vgl 1KAgy, B Vwy < ebe Y [pg 1975 BE Vg
j=1

Jj=1

Hence, we find from (16.15)-(16.17) that, for some ¢ > 0, with probability at least
1— CnZH—l

—1 n
|BP s <IBY |+ eb*e D2 D7 s 97 1BV |

k=1j=1
£—1 ~ (k—1) £—1
+ BT SABU Y4+ Y IRV (16.18)

k=1 k=1

The next proposition gathers the necessary norm bounds.

Proposition 16.4. There exists a universal constant ¢ > 0 such that if n > cK*?, with
probability at least 1 — 1/+/n, the following holds for any k € [£] and j € [n]:

IB® | < eVdIn(n) K9, (16.19)
d3/2
IRO) < o Imm)* L, (16.20)
1BM 3t < cbIn(n)> K 9", (16.21)
1
1BV SABEF Y| < cln(n) K4t (16.22)

Jn
Before checking this proposition in the next subsection, let us check that it implies
Claim (16.11). It suffices to use Proposition 16.4 in (16.18). We recall that L = d9; < d9,
6 = 1/+/d and d* < n'/® from (16.2) and we arrive at Claim (16.11).
The proof of Claim (16.12) follows from the same argument by considering the transpose
of (16.15). We omit the proof.

16.4. Proof of Proposition 16.4. In this section, we prove Proposition 16.4. It relies
on similar ideas than the proof of Proposition 13.5.

Claim (16.19). From Markov inequality, the following lemma implies (16.19).

Lemma 16.5. There exists a universal constant ¢ = 3 such that for all integers 1 < k <
In(n) and n = cK*?,

(E{||§(k)“2m}> B < ln(n)Q\/&K‘l\‘)k,
where m = In(n/K%)/(121In(In(n))).

The proof of this lemma is almost the same than the proof of Lemma 15.1. The
computation leading to (15.1) gives

2m k—1
E) 12m n\ 2km
BBV < (2)T Y E[] My (H PM)PMW%?;)
v i=1 t=1

where the sum is over all v = (70, ...,Y2m) With 7 = (Yi.0,.-.,%ik+1) € FF¥T! and the
boundary conditions: for all i € [m],

(72i,0,72i,1) = (V2i+1,0, V2i+1,1) and (Y2i—1,k, Y2i-1,k+1) = (V2i,k, V2i,k+1)

with Y2m+1 = V1.

We associate to an element -y as above, an undirected graph G, = (V,, E,) with vertices
Vy={v:t:1<i<2m,0<t<k+1}and edge set E, = {{Vs,t,YVs,t+1} : 1 <7 <2m,0 <
t < k}. From the above boundary conditions, the graph G is simply connected. In
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particular, |Ey| — [V4| + 1 = 0. Each edge e € E, has a multiplicity m. defined as the
number of times it is visited by . By construction,

D me =2(k+ 1)m. (16.24)
eeE,
We also define me < me as the number of visits of e € E for some {v; ¢, vi¢++1} with ¢ € [k]
(we exclude ¢t = 0).

We may now estimate the expectation on the right-hand side of (16.23). Recall that
the random variables M, = (Myy —d/n), x,y, are i.i.d., centered, bounded by 1 and with
variance (d/n) — (d/n)?. It follows that for any p > 1, |[E[M? ]| < d/n. Note also that for
all p> 1, EMZ, = d/n. We deduce that

2m k—1 d\ B }
m
B Mrnis (1 PrcriossdLos | Mo < () TT 1P

i=1 t=1 e€E,

Moreover, the above expectation is zero unless all edges have multiplicity at least 2 (note
that Mg, is not centered but from the boundary condition, the edges {vio0,7:,1} and
{Vi,k>Vi,k+1} have multiplicity at least 2). From (15.1), we thus obtain that

2km—|E -

BBYE < Y (O e (16.25)
YEWk+1,m ecE.,

where Wi 1.m is the set of paths v as above such that each edge of E. is visited at least

twice.

The right-hand side of Equation (16.25) is very close to the right-hand side of Equation
(15.4) for k¥’ = k + 1. Tt can be analyzed with the same method. We define Wy ., (s, a) as
the set of equivalence classes of paths in Wy ,,, with |V,| = s and |E,| = a. We have that
Wi.m(s,a) is empty unless a — s + 1 > 0. The conclusion of Lemma 15.2 also holds for
Wk,m(s, a).

Lemma 16.6. Let a,s > 1 be integers such that a —s+ 1> 0. We have
(Wi (s, @) < (2km)®m(@—s+D+2m

Proof. We may repeat the proof Lemma 16.6. The new property that we use that there
exists a unique non-backtracking path between two vertices in an (undirected) tree. O

Our second lemma bounds the contributions of paths in each equivalence class. Due
to the presence of the multiplicities . instead of standard multiplicities m., there is an
extra factor in the analog of lemma 15.3.

Lemma 16.7. Let v € Wiy1,m such that |V,| = s and |E,| = a. We have
Z H |Pg|ﬁl€ < n72km+5Kk:'mfaKG(a75)+8mpkm.

v~y e€E

Proof. We let 4 = (31,...,%2m) be obtained from v by setting 7; = (5,1, - -,7i,k+1) (We
remove the first step for each 7). Due to the boundary condition, the associated graph G5
is connected and

s}

—5<a-—s, (16.26)
with @ = |E5| and § = |V5|. Note also m. is the number of visits of e in 4. We have that
D1 e = > e = 2km.

ecE., eEES
Let H c E./ be the subset of edges e € E, such that m. = 1. We set |H| = h. We have
2km—2a 2h
[ 1Pf™ = ] [P|™2P2 < (—” pK> (—V pK) 1 %, e
n n n
eeE5\H

where we have used . ., e = 2km — h and max |Pyy| = /pK/n.

As in the proof of Lemma 15.3, we consider the graph CJ:, obtained from G5 by gluing
vertices of degree 2 while keeping the extreme vertices i1, Vi,k+1, ¢ € [2m]. Note that

ecE eeE5
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due the boundary conditions, the edges in H are not modified by this operation: they
remain edges in G The proof of (15.5) applied to the graph G5 gives

Z H Q a h ns~ a+hK6(a s)+8m
¥y ~y ee Ex\H
Therefore, we get from (16.27) and (16.26) that
Z H |Pe|ﬁ7,E < n—2km+szm—aKG(a—s)+8mpkmKh.
'y~ e€EE5
Since K > 1, this concludes the proof. O
We are ready for the proof of Lemma 16.5.

roof of Lemma 16.5. Note that _k+1m s,a) is empty unless 0 < s —1 < a < +1)m
P L 16.5. N hat Wy, less 0 1 k+1
(since each edge has multiplicity at least 2). From (16.25), we get

(k+1)ma+1

BB < Y 3 (5 Waian(s,0) PHBIRLS
a=1 s=1

’YEWA+1 771(5 a) V~ ecE. ;

We use Lemma 16.6-Lemma 16.7 and follow the computation of Lemma 15.1. We find

(k+1)m km—a 0 6 6m N\ 9
E||§(k)“2m gn(2km)2mK8m76ﬁgkm Z (E) (M) .

a=1 d g=1— n

The conclusion follows easily.The conclusion follows easily. O

Claim (16.20). Claim (16.20) follows from this lemma.

Lemma 16.8. There exists a universal constant ¢ = 3 such that for all integers 1 < k <
¢ <In(n) and n = c,

(B{ROP )™ < T,
where m = In(n)/(241n(In(n))).

The proof is exactly the same than the proof of Lemma 15.4. The extra factor v/d
comes from the same reason than in the proof of Lemma 16.5 (the scaling by (n/d)* while
the paths are of length ¢ + 1). We omit the proof.

Claim (16.21). We have [¢] |0 = |$5]00/Vd < b/v/nd. Claim (16.21) follows from this
lemma and the union bound.

Lemma 16.9. There exists a universal constant ¢ = 3 such that for all integers 1 < k <
In(n), n > cK*? and vectors ¢ € RF»,

1

(B{IB®wP™})™ < Vadjule In(n) k9",
where m = In(n)/(121n(In(n))).

Note the lemma improves on Proposition 16.4 and the bound [B® | < |[B® ||| <
n|B®|[|4h|s by a crucial factor y/n (up to logarithmic factors).

The proof is again a variation around the proofs of Lemma 15.1 and Lemma 15.4. We
write

BEy|? = Y (B )(e)* = 3 (BY)est(5)(B)epib (1)
e e, f.f
We raise the above expression to a power m. The computation leading to (16.23) gives

2m k
b n\ 2km
ElB( )¢|2m < (E) ZEl |M"/i,0"/i,1 | |P’n,t%,tﬂfM%‘”i,Hl7/)(’Yi,k+1m6~28)
v =1 t=1

where the sum is over all ¥ = (Y0, ...,%2m) With v = (Yi.0,.-.,%ik+1) € FF¥T! and the
boundary conditions: for all i € [m],

(722‘—1,07 ’721'71,1) = (721,05 ’Y2i,1)-
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We repeat the definitions in the proof of Lemma 16.5. We associate to an element ~
as above, an undirected graph G = (V,, E,) with vertices V, = {7+ : 1 < i < 2m,0 <
t < k+ 1} and edge set Ey = {{7i,¢,Vi+1} : 1 <1< 2m,0 <t < k}. From the above
boundary conditions, the graph G- has at most m connected component. In particular,

|Ey| = [V +m = 0. (16.29)

Each edge e € E, has a multiplicity m. defined as the number of times it is visited by .
By construction, (16.24) holds. We again define m. < m. as the number of visits of e € E
for some {7i,Vi,e+1} with ¢ € [k].

The computation leading to (16.25) gives

BEOu < (T e, aes0)
YEWk41,m e€ly
where Wkﬂm is the set of paths v as above such that each edge of E, is visited at least
twice.
We define W11, (s, a) as the set of equivalence classes of paths in W1, with [V, | =
s and |E,| = a.

Lemma 16.10. Let a,s > 1 be integers such that a — s +m = 0. We have

|Wk,m(s, CL)| < (ka)ﬁm(afs+m)+5m.

Proof. The proof is a variant of the proof of Lemma 15.6. Let T' = {(i,t) : 1 <i < 2m,0 <
t < k—1} ordered with the lexicographic order. For 7 = (i,t) € T, we set er = {7Vi,¢, Vi,t+1}
and yr = ;,t4+1. We build the same growing subforest (F»)-er which is a spanning forest
of the graph spanned by edges (es)s<- seen so far.

For each i € [2m], we use the same long and short cycling important times. Finally,
there are merging times such that two connected components of the graph seen so far
merge. Since there are most m connected components, there are at most m — 1 merging
times. Also, there are most g = a — s + m excess edges in any connected component of
G,,. It follows that, for each ¢, there are either at most g — 1 long cycling time and 1 short
cycling time, or g long cycling times and 0 short cycling time.

There are at most 2km ways to position those important and merging times. There
are s possibilities for the mark of a long cycling time or merging time and at most s%k
for a short cycling time. We deduce that

|Wk,m(57 a)| < (ka)2m9+m71 (82)2m(g71)+m71 (82k)2m.

We finally use s < 2km. O

The proof of lemma 16.7 applies verbatim to this case as well.
Lemma 16.11. Let v € Wiy 1,m such that |V,| = s and |E,| = a. We have
Z H |P|te  p2bmts grkm—a pe6(a—s)+8m jm
Vi~ €€ B
We are ready for the proof of Lemma 16.9.
Proof of Lemma 16.9. Note that Wi 1, (s, a) is empty unless 0 < s —m < a < (k+1)m
(since each edge has multiplicity at least 2 and since (16.29) holds). From (16.30), we get

(k+1)m a+m

E[BHy[™ < Z Z (%)ka_a|wk+1,m(sva)| max Z H [Pl
a=1 s=1

VEWK41,m (5,a) Ay~ e€E

We use Lemma 16.10-Lemma 16.11 and follow the computation of Lemma 15.1. Replacing
the summation over s as a summation over g = a — s + m, we find

(k+1)m km—a o0 6 6m\ 9
n

a=1 g=0

The conclusion follows easily. O
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Claim (16.22). The proof of Claim (16.22) follows again from the same arguments.
We first define a new matrix S € .#g, (R) defined for e = (z,y) and f = (a,b), by

- P,.
Sep = SefMy = l{a:m}u{y:b}%Malr
Since M2 = M., we find
B(’C*DSAB(szﬂ) _ B(kfl)SAB(éka).

We then write

k—1)

1B* Y saB 0 < | B*V)15)1aBERY). (16.31)

We may estimate the operators norms on right-hand side of (16.31) separately.

The statement of Lemma 16.5 applies unchanged to B(kfl). We thus find

(B{1B"Pm}) T < In(n) VK, (16.32)

where m = In(n/K®)/(121n(In(n))).
The computation leading to (16.25) applied to B®) gives

Blas®pPr < @ S (T e ges)

YEWK+1,m e€Fk
where W,@Lm is the set of paths v as below (16.23). The only difference between V_V,;Hm
and Wiy1,.m C W,;H,m is that there is no constraint on edge multiplicities. We note that
Lemma 16.6 holds also for the equivalence classes of Wj +1,m since the proof does not use
the edge multiplicities. Due to the boundary conditions, there at most 2km edges visited
by a path v € Wi, ,,,. We also use the rough bound |P.| < L/n. We deduce from (16.33)
that

2kmatl 2(k+1)m—a 2(k+1)m
BlABY P <am YY) (5) e O
a=1 s=1 n
We deduce that
1
(E{”AB(M”M}) < In(n)’ L, (16.34)

where m = In(n)/(12In(In(n))).
Finally, we have for any e = (z,y) € E,,
s L? 412
2 185 esl < D) ISeqSpglMy < —5(2deg(w) + 2deg(y)) < — maxdeg(o),

=2 = = nd? oeln]

where deg(z) = 3, May is the degree of vertex z € [n] in the random graph G. We deduce
from (11.7) that with probability 1 —1/n, for some some universal constant ¢ > 0, we have
for all e e E,,

® cL?
[(55%] < max 37 [(85%)es] < =77 In(n)
feEn
This implies that
L2
] < /=% n(n).

We thus obtain from this last bound and (16.32)-(16.33)-(16.34) that for all k € [¢ — 1]
with probability at least 1 — 3/n, we have, for some ¢ > 0,

= (k—1)

Vn|B

where we have used that L = 9;d. We obtain claim (16.22).

SARBE—E-1) | < eln(n) Y K*8F T LF < cln(n) O K49 d .
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17. PROOFS FOR THE RECTANGULAR CASE

17.1. Proof for Lemma 4.1.

Proof. We recall that two Bernoulli random variables Bi, B2 are independent with pa-
rameters b1, by if and only if P(By =1, By = 1) = b1ba.

For the proof we note § = d/n and p = (1—¢)/2. Clearly, entries above the diagonal and
on the diagonal of M are independent and their distribution is Bernoulli with parameter
dp+ g =q/(p+q) =2q/(1 + q), where we used (4.5).

‘We must check that the entries sz and Myyz are themselves independent when z # y.
We have P(M,, = 1, M, , = 1) = 6q. Consequently, the entries of M are independent if
and only if 8¢ = (Jp + 6¢)?, or equivalently if ¢ satisfies (4.5). O

17.2. Link between a matrix and its hermitization. The link between a matrix P
and its so-called ‘Girko hermitization’

0o P

P* 0

is well-known in the litterature on random matrices. We let the proofs to the reader —
they are mainly verifications.

Lemma 17.1 (structure of 15) Let us write the singular value decomposition of P in the
following way:

rank(P)
P= > ol
i=1
where
® 01 =+ = Orank(p) > 0 are the singular values,

e (; € C™ is an orthonormal family of left singular vectors,
o & € C" is an orthonormal family of right singular vectors.

Then a spectral decomposition of the Hermitian matriz Pis

rank(P) rank(P)

P = Zl oipi (7 )* — Zl oip; (i)* (17.1)

where the goii € C™*™ are the orthonormal vectors defined by

+_ L Gi - _ 1 —Gi
Yy = \/5 (51) s @ \/i < & > . (17.2)

17.3. Proof of Theorem 4.8. We keep the notations and setting of the theorem and we
place ourselves on the event of Theorem 4.5. Let us decompose the unit right-eigenvectors
; associated with the eigenvalue +); into their first m components and their last n ones:

for i € [Fo]:
Y
o = (wiﬂ) (17.3)

where ;1 € C™ and ;2 € C" and |¢;1|> + [¥i2)® = |¥i]*> = 1. We saw in Lemma 4.7
that the eigenvectors ¢; are linked with these ones by

_ —i
T = B 7.4
v < Vi 2 ) (1 )

In the course of the proof, we are going to need an important proposition.
Proposition 17.2. On the event of Theorem 4.5, we have

Co7e

< —.
1—"7i0

Y4
2 7Y

2’)11‘

A ~
")/.
wi,1|2_ 2 < — (175)

[1)i,2
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Proof of Proposition 17.2. The eigenvectors 1} have unit norms, hence (¥, ,¢;") = 1,
and thanks to Theorem 4.5 we also have (7,1, ) ~ F+’ /7vi- Both equations can be
written

-
i |* + [hiaf” =1 — [ + i & —*
Adding/subtracting both equations yields
pialt e B 0 et a BT 0 g
l’ 2’}/1‘ 2’}/1' o 2’)/1' 2"}9 ’ ’
O

We can now turn to the proof of the theorem.
Proof of Theorem 4.8. Let us fix i,j € [fo]. By (4.22), we have (;" S5 N x 64/ 1/7,
and (P}, 07 ) ~ 0, which translates into
2
Wi, Gy + i2, &) = Gijg | - — Wi, G + Wiz, &) ~ 0. (17.7)

Adding or subtracting both approximations yields

1 1
@i, Gy ~ 52‘,1\/27, (i, &iy ~ 51',]'\/27; (17.8)

Similarly, by (4.23), we have (1" ’l/)+> A F+ +/1 yiy; and () ~ rt 7 /Y5, which
translates into

rht + -
Wi, Vi) + (Wi2, Y0y ~ —22— —hi1, i) + (i, hye) & —2L—. 17.9
Wi o) + Wnanthia) > 2 = Wi i) + Gty e (179)
Here again, we can subtract or add both identities and we obtain

R o rs

(i, i) ~ = e — 17.10

57 2% 2/7i7; ( )
+- +,+ v
+ I Vs

iz, hy2) ~ —2 e (17.11)

275 2/
Similarly, by (4.24), we have (i}, w;lefQ ~ §;,;/v: and <1/’i+ij_,19ft> ~ 0, which translates
into

1)
ity Wi tete) + Wij2, 52,1680 ~ ;’J

— i1, 5,1 166 + (Wiy2, 5,210 & 0.

Adding/subtracting yields

0i,;j di,;j
0,15 Yj,1left) X S 0,2, Vj2,left) X — 17.12
i1y iy et o (i,25 5,2, 10t 2 ( )
Thanks to Lemma 4.7 and (17.5), we know that up to some sign,
i 2% Yi.2 27i
Xi = — A Y T = — &P .
[1i1] ’yi s 2| v
Combining this with (17.8)-(17.10)-(17.11)-(17.12) closes the proof of all the claims con-
tained in Theorem 4.8. O

17.4. Proof of Theorem 4.10. The first two identities directly follow from (4.32). For

the third identity we have
A A
s Gy + <XZ,CJ \/UT \/I/T
L+ x3))
2(1+< ) <1 B 2)

G, Gy =

2
N |
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and the proof for éf Y8 is the same. We now turn to the correlations between these esti-
mators. Clearly,
N

GG = G =
157 » AJ A A
Yi Y

For the averaged estimators, we have

<<A-f1vg é-gvg> _ <Xi,Xj> + <Xi7 X;> + <X;7 Xj> + <X;>X;>
S VA + G X)L+ O x))

AN
Tii 4 9diy
Norers A

AR+ 1)

When i = j this is obviously equal to 1, and when ¢ # j it is equal to

~

ra.

i N \/1
Via+iad 10 Ve D6+

17.5. Proof of Proposition 6.3. We recall the setting: here, P has rank one and can
be written P = (£* where (, £ are unit vectors. We recall that

i 0 (CE") O (¢e™)
Q=nt )<[(C£*)®(C§*)]* 0 )

The SVD of (¢£%) ® (¢6*) will be written x(€* where k := |¢|3]€]2 and (, € are the unit
singular vectors:

¢ ¢
IC 1€

where we used ¢ 2 for the entry-wise product ¢ ® ¢, same thing for £€2. The operator norm
p = Q)] is equal to

¢= €=

5= (n+m)x = n(l+)|ClAlel. (17.13)

The spectral decomposition of Q is
Q=75 (6")" — o (¢7)%, (17.14)

where ¢& are the unit eigenvectors of Q which are given by

ot = 1 +C
V2 \ €
In particular, the powers of Q are given by Q° = p*¢T (¢1)* + (=1)°5°¢ " (¢7)*. Our
detection threshold is

ma(01,82) = 91 =7 = \/2n1+a el _ , [2niCe

which is defined in (4.29) by

N
We now compute v;~ =TI Z,

£ s
A (Q°1,GAG)
== =7 17.15
i ;) A (17.15)
To do the computation in (17.15) we are going to need a few steps. First, we have

2 2
G2 £ 163 _

+
1y = STy
L= repic = T
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Second, we have

(5, ¢A0) = <+<< )

i\(l4
2

g

(1]
H

Third, using the spectral decomposition of Q, we have

(Q°1,CA) = p(¢T, CACD T, 1) + (—1)°5°(p ™, CACK D™, 1)
= ﬁSE+T+ + (71) ~SH T7

When we sum over s in (17.15) and we gather the preceding identities, we obtain

0 s £ s~s
— = p :‘
R
¢ ¢
==, 2 +E_ Z 1)°93°
32(¢+1) _(_1\£+132(£+1)
=E+T+1 o] E,T,l (-1) ~191
192 1+ 9%

When computing the asymptotic value of 74 as n is large, we can neglect 93¢, Moreover,
simple manipulations show that

I3 + €13 I |C|4.

i T
o 202 2[¢13

We find

1 [cli+led 1 Jeli—Icli
2(1-93) [€3 201 +92) €3

_ 1 <C|i+£|i . |§|2—|<|2)

21€13 \ 1 = 2n|<§1\§|i 2n|¢I31€13

1+ d
as requested in (6.9). The other identity (6.10) is proved in the same way.

17.6. Proof of Proposition 5.1 on mean square errors.

Proof. For the sake of this proof only, we will note Fp = U AV* and P = UAV, where
the columns of U (resp U) are ¢; (resp (), where A = diag(0;) and A = diag(w?). We
have

MSE. = |P, — P|%

= tr[(UAV* — UAV*)(VAU* — VAU*)]

— tr[UAV*VAU* —UAV*VAU* — UAV*VAU* + UAV*VAU*].
By unitary invariance, the first of these four terms is equal to tr(A?) = Ylo?. For the
other terms, we will use the approximations of Theorem 4.10. We will abuse the symbol ~
to get rid of the error terms (they can rigorously be neglected). Thanks to Theorem 4.10,
we know that V*V ~ V and U*U ~ V’ where V, V' are the diagonal matrices whose i-th
entry is equal to cf’fi or c?z

Consequently, the second and third terms in the trace above are close to —tr(AVAV'),
which is itself equal to

I

o TE A H L HFH N2
- Z OiW; Cy ;€ = — (Ulcl,icz,i) .

i=1
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Moreover, from the second part of Theorem 4.10 we have
V¥V a~ef and U*U ~ 7,
consequently tr(UAV*VAU*) ~ tr(A€,A¢,). This can be written as
Yioiojel il (€1)i;(€2)i;.

,J

As requested. O

18. SOME POSSIBLE IMPROVEMENT OF THE QUANTITATIVE BOUNDS

18.1. On the threshold ¥:. We have already discussed that the threshold d2 is an
intrinsic limitation of the problem as it is the Kesten-Stigum bound. The threshold %,
however is more artificial and, in most cases, it can be reduced to a smaller value 9] = L'/d
with L' < L at the cost of more technicalities. In this subsection, we discuss a few ways
to improve on this new parameter L’ by some recipes. The way to formalize them would
depend on the structure of the matrix P. We discuss the case of the square matrix A but
the same comments extend to the non-backtracking matrix B.

A first possibility is the following: we consider the deterministic set S < [n]? of the
o(n/d) largest entries of the matrix P in modulus. Then with high probability, the revealed
entries (non-zeros entries of M) will not intersect S. In particular, on this good event, the
conclusions of Theorem 2.3 remain valid if we replace L by L' = max(y y)¢s 1| Pe.y

In the proofs, we have many times bounded P, , by L/n and Qu,y by K/(np). A finer
probabilistic and combinatorial analysis could be performed by partitioning the entries of
P into two or more sets depending on the value of n|P.y|. An analysis of this kind was
done in [15] (see the parameter § there).

Another possibility is to define, for a given L’ < L, the matrix P’ obtained from P by
putting to 0 all entries of P larger than nL’. We could then apply Theorem 2.3 directly
to P’ and then use spectral perturbation theory (such as Hoffman-Wielandt inequality)
to guarantee that the spectra of P and P’ are close provided that L — L’ is not too large.

18.2. On the parameter Cy. The conclusions of Theorem 2.3 and Theorem 3.4 are
controlled by a parameter Cy and Cy. Again, depending on the structure of P there are
ways reduce the value of this constant at the cost of some extra technicalities.

First of all, in the proof, we have always bounded L = max, y n|Pry| by b%u1 and
K = maxg,, nQuy/p by b*. This can be a very rough bound, for example, if nP is the
adjacency matrix of a graph then L = 1. In the proof of Theorem 2.3 in Subsection 9.4,
there is a factor N°Cs in Co which contains a factor K*° (bounded by 5%% in the proof).

Also, the same remarks than in Subsection 18.1 applies. Every time that we have
bounded nP,y, by L or nQ.y by Kp, there is room for improvement.

Finally, the incoherence parameter b is important for the eigenvectors i € [ro]. Since we
are interested in an average quantity such as the scalar product (1;, p;), it is possible to
relax the notion of incoherence by partitioning the entries = € [n] depending on the value
of v/n|ei(z)|. This makes the application of the general concentration bound Theorem
12.5 more tedious. For the other eigenvectors, i € [n]\[ro], their importance is weighted
by their corresponding eigenvalue and there is also room for improvement here.
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