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Abstract

We introduce the notion of consistent error bound functions which provides a unifying
framework for error bounds for multiple convex sets. This framework goes beyond the clas-
sical Lipschitzian and Holderian error bounds and includes logarithmic and entropic error
bounds found in the exponential cone. It also includes the error bounds obtainable under
the theory of amenable cones. Our main result is that the convergence rate of several projec-
tion algorithms for feasibility problems can be expressed explicitly in terms of the underlying
consistent error bound function. Another feature is the usage of Karamata theory and func-
tions of regular variations which allows us to reason about convergence rates while bypassing
certain complicated expressions. Finally, applications to conic feasibility problems are given
and we show that a number of algorithms have convergence rates depending explicitly on the
singularity degree of the problem.

Key words: error bounds; consistent error bound; convergence rate; amenable cones; regular vari-
ation; Karamata theory.

1 Introduction

In this paper, we consider the following convex feasibility problem (CFP)

m
find v e C:= [ C, (CFP)
i=1
where C1,---,C,, are closed convex sets contained in a finite dimensional real vector space &

with C' # ¢gJ. Convex feasibility problems have been extensively studied in connection to various
applications, see [2, 6, 15, 22, 26, 49]. Then, given some fixed algorithm for solving (CFP), the
following two questions are of natural interest.

(1) Does the algorithm converge to a point in C'?
(2) If it indeed converges, how fast is the convergence?

For question (1), convexity ensures that many algorithms converge without further assumptions
on the C;, see, for example, section 3 of [6] and [8]. On the other hand, the answer to question (2)
does not generally follow from convexity alone.

In order to pin down the convergence rate, in many cases it is necessary to assume that some
error bound is known. Informally, an error bound is some inequality that relates the individual
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distances to the sets C; to the distance to their intersection C. For more information on error
bounds in general settings, see [51, 37].

We now present a simple example of error bound. Given x € &, let dist(z, C;) denote the
distance from x to C;. Suppose that, for every bounded set B < &£, there exists some 6 > 0 such
that

dist(z, C) < 0p max dist(x, C;) V x e B. (1.1)

1<i<m
In this case, we say that a (local) Lipschitzian error bound holds for (CFP). The property given
in (1.1) is also called bounded linear regularity, see [7]. Under (1.1), many common projection
methods are known to converge linearly, see [6, 8].

If we replace the dist(z, C;) by dist(x, C;)7 in (1.1) for some «y € (0, 1], we obtain what is called
a Holderian error bound. Holderian error bounds typically hold under milder conditions than
Lipschitzian bounds, although it might be hard to estimate the exponent . A notable exception
is the Holderian error bound by Sturm for semidefinite programs [56], where the exponent can be,
in principle, computed via a technique called facial reduction.

Hoélderian bounds usually only lead to sublinear convergence rates, with the precise rate often
depending on the exponent, e.g., Corollary 4.6 in [15]. It might be fair to say that results such as
this are rarer in comparison to convergence rates obtained under (1.1). Beyond Hélderian bounds
there are even fewer results.

In this paper, we take a bird’s eye view and propose the notion of consistent error bound
functions (see Definition 3.1) which provides a unifying framework for error bounds. Informally, a
consistent error bound function is a two-parameter function ® satisfying some reasonable properties
and the following error bound condition

1<is<m

dist(z, C) < @ ( max dist(z, C;), x) Vaekl. (1.2)

The first argument to ® is “maxi<i<m dist(z, C;)” which means that the error bound must take
into account the individual distances to the sets C;. The second argument is “||z|” which reflects
the fact that many error bounds correspond to inequalities that are only valid after a bounded
subset is specified. Since we will impose coordinate-wise monotonicity of ®, under (1.2), we have

dist(z, C) < ® ( max dist(x, C;), p) Vo, |z < p,
1<is<m

if p > 0 is some fixed constant. An important property is that consistent error bound functions

always exist whenever (CFP) is feasible (see Proposition 3.3).

One of the main results of this paper is that a number of methods have convergence rates
that can be written in terms of ®, see Theorem 4.7. This will allow us to cover several previous
results and also prove new ones. For example, we will give a broad extension of the results of [26]
and connect the singularity degree of certain conic feasibility problems to the convergence rates
of several methods, see Section 6. Admittedly, for a general consistent error bound function, the
expressions governing the convergence rate can be complicated, so we show in Section 5 how to
use some tools from Karamata theory in order to reason about those rates while avoiding certain
complicated expressions.

1.1 Owur contributions

Our contributions are as follows:

e We introduce a new notion of (strict) consistent error bound functions (Definition 3.1), which
provides a unifying framework for error bounds for multiple convex sets, and includes error



bounds beyond classical Lipschitzian and Hélderian error bounds (Theorem 3.5). We also
show that a “best” consistent error bound function always exists for any finite family of
convex sets having non-empty intersection (Proposition 3.3).

e Under a strict consistent error bound, we prove convergence rates for a number of algorithms
fitting an abstract framework which includes many projection algorithms, see Theorems 4.7
and 4.13. In particular, under Hélderian error bounds, we will also derive precise sublinear
rates for those algorithms, see also Corollaries 4.9 and 4.12.

o We show how Karamata theory and functions of regular variation can be used to reason about
the convergence rates obtained in Theorem 4.7 without the need of evaluating the integrals
appearing therein, see Theorems 5.3, 5.7 and 5.12. This will be used to analyze logarithmic
and entropic error bounds appearing in some problems associated to the exponential cone,
see Section 6.2. In particular, we show that the convergence rate associated to the entropic
error bound has an “almost linear” behavior, see Proposition 6.9. We also provide a thorough
analysis of logarithmic error bounds and corresponding convergence rates, see Section 5.1.

e We also specialize our discussion to conic linear feasibility problems where the underlying
cone is amenable [43]. In this case, we prove that the convergence rates of several algorithms
depend on the singularity degree of the problem (see Section 6), which is a quantity related
to the facial reduction algorithm [16, 53, 57]. In particular, when the cone is symmetric,
we are able to extend a previous result of Drusvyatskiy, Li and Wolkowicz [26] along several
directions, see Theorem 6.7.

The rest of the paper is organized as follows. In Section 2, we introduce the notation appearing
in the paper. In Section 3, we introduce the notions of (strict) consistent error bounds and corre-
sponding (strict) consistent error bound functions, and discuss the relationship to Holderian error
bounds. In Section 4, under a strict consistent error bound, we establish the convergence analysis
for projection algorithms for convex feasibility problems. Section 5 shows how to use Karamata
theory to analyze convergence rates. Finally, applications to conic feasibility problems are dis-
cussed in Section 6. In particular, Section 6.2 discusses non-Holderian error bounds appearing in
the study of the exponential cone. Final remarks and future directions are presented in Section 7.

2 Notation

Let R and IR denote the set of real numbers and nonnegative numbers, respectively. Let £ denote
a finite-dimensional real vector space equipped with norm || -|| induced by some inner product ¢, -).
Given x € £ and a closed convex set C < &, we define

dist(z, C) := min |z — y||
yeC
and let Pc(z) denote the projection of x on the set C, ie., Po(z) := argmin,o |z — y|. We

will denote by ri C, C,span C' the relative interior, orthogonal complement and linear span of C,
respectively. If C is a cone, we will write C* for its dual.

3 Consistent error bound functions

Partly motivated by the error bound for amenable cones in [43], we propose the following notion.



Definition 3.1 (Consistent error bound functions). Let C1,...,Cp, € & be closed convex sets with
C:=N",Ci# . A function ® : [0,00) x [0,00) — [0,00) is said to be a consistent error bound
function for Cy,...,C,, if:

(1) the following error bound condition is satisfied:

dist(z, C) < @ <1r<n‘a<x dist(z, C;), a:) Vae¢ (3.1)

(%) for any fized b = 0, the function ®(-, b) is monotone nondecreasing on [0, ), right-continuous
at 0 and satisfies ®(0, b) = 0;

(7it) for any fized a = 0, the function ®(a, -) is monotone nondecreasing on [0, 00).

In addition, if for every b > 0, ®(-, b) is monotone increasing on [0,00) then ® is said to be a
strict consistent error bound function. We say that (3.1) is the (strict, if ® is strict) consistent
error bound associated to ®.

Remark 3.2. Definition 3.1 admits a number of equivalent variations. For example, the individual
distances to the sets C; are aggregated using the max function (i.e., co-norm), however using the
sum (i.e., 1-norm) or the square root of the sums-of-squares (i.e., 2-norm) would also be reasonable
choices. Because of the equivalence of norms in real finite-dimensional spaces, these variations do
not seem to affect significantly the error bound from an asymptotic point of view.

Next we show that every C,...,C),, with non-empty intersection admit a consistent error
bound function.

Proposition 3.3 (The best consistent error bound function). Let Cy,...,C,, € & be closed convex
sets with C := ﬂ;’;l C; # . There exists a consistent error bound function ® for Cq,...,Cy, with
the property that if ® is any other consistent error bound function for C1,...,Cy, we have

®(a, b) < ®(a, b), Va,be[0,0). (3.2)
In particular, ® is unique.

Proof. Let a and b be in [0,00) and consider the problem below parametrized by a and b.

sup  dist(y, C) (U(a, b))
y
subject to  max. dist(y, C;) < a,
lyll < b.

We define ® as follows

®(a, b) optimal value of (U(a, b)) if (U(a, b)) is feasible
a, b) =

0 otherwise.
Because of the norm constraint in (U(a, b)), the feasible region of (U(a, b)) is compact although it
can be empty. Since dist(-, C') is a continuous function, ®(a, b) is finite and nonnegative. Increasing
either a or b potentially enlarges the feasible region of (U(a, b)), so ®(-, b) and ®(a, -) are monotone
nondecreasing. Furthermore, if @ = 0, then the only feasible solutions to (U(a, b)) (if any) must
be elements of C, so ®(0, b) = 0 for every b.



Next, let z € £, a = maxj<i<m dist(z, C;) and b = |z||. Then, y = z is feasible for (U(a, b))
and we have

dist(z, C) < q)(llgnii)?(ndlst(l‘, Ci), |z)-

Therefore, except for the continuity requirement, ® satisfies items (4), (i4), (¢#). So let b € [0, o)
and we will check that ®(-,b) is (right-)continuous at 0. In order to do that, it suffices to show
that for any sequence {ax} < [0,00) with ar — 0, we have ®(ag,b) — 0. Let {ax} be any such
sequence. First, for the (ak,b) such that U(ag, b) is infeasible, we have ®(ag, b) = 0.

Next, we consider the pairs (ay, b) such that U(ag, ) is feasible. If there are only finitely many
such (ag,b), we must have ®(ar,b) — 0. So, suppose that there are infinitely many such (ag,b)
and, for convenience, denote the sequence of the corresponding ay by {a;}. We have a; — 0, since
{ar} is a subsequence of {a}.

For each pair (ag,b), the feasible region of U(ay,b) is compact, so there exists an optimal
solution y* satisfying

dist(y*, C) = ®(ay, b), ‘max. dist(y*, C) < ag, |v*| <b. (3.3)
Consequently, to show ®(ag, b) — 0, it suffices to prove dist(y*, C') — 0. Suppose that dist(y*, C) —
0 does not hold. Then there exist some § > 0 and a subsequence {y"} such that dist(y*, C) > §
for all j. Since all the y* are contained in a ball of radius b, by passing to a further subsequence if
necessary, we may assume that y* has a limit 7. By (3.3) and the continuity of dist(-, C;) we have
dist(g, C;) = 0 for all 4, which implies that ¥ € C'. Furthermore, because dist(-,C) is continuous,
we have

dist(y*, C') — dist(7,C) = 0,

which contradicts the fact that dist(y*7,C) = § > 0, for every j. This proves ®(ay,b) — 0 for the
pairs (ag,b) such that U(ay, b) is feasible. Accordingly, we must have ®(ay,b) — 0. The (right-)
continuity of ®(-,b) at 0 then follows from the arbitrariness of {ay}.

Finally, in order to show that (3.2) holds, let d be another consistent error bound function for
C1,...,Cy,. For the sake of obtaining a contradiction, suppose that there exist a, b such that

®(a, b) > d(a, b),
With that, the corresponding problem (U(a, b)) must be feasible, because otherwise we would have

®(a, b) = 0. Then, since ®(a, b) is the optimal value of (U(a, b)), there exists a feasible solution
y such that ®(a, b) > dist(y, C) > ®(a, b). However,

dist(y, C) < &( max dist(y, C2), Jy]) < B(a, b),

where the second inequality follows because y is feasible for (U(a, b)) and & satisfies items (i7) and
(#17) of Definition 3.1. Together with dist(y, C') > ®(a, b), we obtain a contradiction. This shows
® satisfies (3.2) and that ® must be the unique consistent error bound function for which (3.2)
holds. O

We call the function defined in Proposition 3.3 the best consistent error bound function for
Ci,...,Cy, and, in a sense, reflects the tightest possible error bound one can get for the C;s. We
remark that any consistent error bound function ¢ can be made strict as follows. Let £ > 0 be a
constant and let

Ci)(a, b) = ®(a, b) + ka, VYa,be[0,0).

Then, d is a consistent error bound function for the same sets that is also strict. Therefore,
Proposition 3.3 also implies the existence of strict consistent error bound functions.



3.1 Holderian and Lipschitzian error bounds

It turns out that consistent error bounds include a large variety of existing error bounds. First, we
will show that Holderian error bounds are covered. Other examples of error bounds will be seen
in Section 5.1, Section 6.1 and Section 6.2. We recall the following definition.

Definition 3.4 (Holderian error bound). The sets Cy,...,Cp, < € with C := (2, C; # & are
said to satisfy a Holderian error bound if for every bounded set B € & there exist some 0 > 0
and an exponent yp € (0,1] such that

dist(z, C) < 0p max dist"®(z, C;) VY z € B.
If we can take the same exponent yg = 7 € (0,1] for all B, then we say that the bound is uniform.
Furthermore, if the bound is uniform with v = 1, we call it a Lipschitzian error bound.

Theorem 3.5 (Characterization of Holderian error bounds). Let C1,...,Cp S & be convex sets
with C:= 1, C; # &.

(i) C4,...,Chn satisfy a Hélderian error bound if and only if there are monotone nonincreasing
v :[0,00) = (0,1] and monotone nondecreasing p : [0,00) — (0,00) such that the following
function is a strict consistent error bound function for Cy,...,Cp,:

®(a, b) == p(b) max(a”®, a). (3.4)

(16) Cy,...,Cu satisfy a uniform Hélderian error bound with exponent v € (0,1] if and only if
there exists a monotone nondecreasing p : [0,0) — (0,00) such that the following function is
a strict consistent error bound function for Cy,...,Cp:

O(a, b) = p(b)a”. (3.5)
Proof. In what follows, we let d be the function such that

d(z) =  max. dist(z, C;).
First we prove item (i). Suppose that Cy,...,C,, satisfy a Holderian error bound. Let B be any
fixed bounded set. From Definition 3.4, there exist 5 > 0 and an exponent vg € (0, 1] such that

dist(z, C) < 0pd(x)"® VY z e B. (3.6)

Equivalently, we have
dist(z, C) < pmax(d(x)’®, d(z)) V xe B. (3.7

The equivalence between (3.6) and (3.7) is as follows. If v € (0, 1] is an exponent such that (3.6)
holds for some constant 5, then (3.7) holds. Conversely, suppose that (3.7) holds for some g and
some constant #g. Then (3.6) holds with the same 5 and constant 5 max(1,sup,.p d(z)*~72).

With that in mind, given a bounded set B, we say that v is an admissible exponent for B if
there exists a constant 6p such that (3.6) or (3.7) holds. Next, we verify the following property:
if v is an admissible exponent for B, then any 4 € (0, ) is an admissible exponent for B. This is
because

max(a”, a) < max(a’, a) Va > 0.

For r > 0, we let 7, denote the supremum of all admissible exponents for U, = {y : |y| < r}.
Then, -, has the following property:



(a) any 0 < 7y < 7, is an admissible exponent for U,., although =, itself might not necessarily be
admissible.

We will now construct a sequence of admissible exponents 4, for the neighbourhoods Uy, together
with constants 6y, for all positive integer k. First, we let 47 to be any admissible exponent for Uy
such that 47 < 71 together with a constant ; > 1 such that (3.7) holds with v = 4; and B = Uj.

For k > 1 we proceed as follows. We let 45 be any admissible exponent for Uy satisfying

e < min{jx_1, &},

which is possible in view of property (a).
Then, we select ), such that (3.7) holds for v = 44, B = Uy and such that

O = Op—1,

which is possible because if (3.7) is satisfied for some constant 6, it is still satisfied for any constant
larger than 0p.

Now, we define functions 7 : [0,00) — (0,1] and p : [0,00) — (0,00) that interpolate the values
of 4% and 0. For that, given a nonnegative real a, we define [a] to be smallest integer satisfying
a < [a]. Then, we define

] ifa>0 Oy ifb>0
Hay= g T =g T
A1 ifa=0 01 ifb=0

By the construction of 4% and 6y, both v and p are, respectively, monotone nonincreasing and
monotone nondecreasing. Next, we let ® be such that

®(a, b) == p(b) max(a’®, a).

Let a,b € [0,00) be arbitrary. The monotonicity of v and p, and ~(-) € (0, 1] imply that ®(-, b)
and ®(a, -) are monotone increasing and monotone nondecreasing, respectively. For any fixed
b € [0, 00), function ®(:, b) is right-continuous at 0. We also have ®(0, b) = 0. Furthermore, if
x € & arbitrary, then z € Uy, so

dist(z, C) < p(|le]) max(d(z)"VD, d(x)) = (d(x), |«]),

therefore, ® is indeed a strict consistent error bound function.

For the converse, we suppose that (3.4) is satisfied and we need to show that C4,. .., C,, satisfy
a Holderian error bound. Let B a bounded set and let r be the supremum of the norm of the
elements of B. Then, B is contained in a ball of radius r. Therefore, for x € B we have

dist(z, C) < ®(d(z), ||z|)
= p(|z]) max(d(z)"I=D | d(z))
< p(r) max(d(z) =D d(x)),

where the last inequality follows from the monotonicity of p. By the equivalence between (3.6) and
(3.7), we conclude that a Holderian error bound holds. This concludes the proof of (i).
We move on to (iz). First, we suppose that a uniform Holderian error bound with exponent ~
holds for C1,...,Cy,. Let p(b) be the solution of the following optimization problem:
p(b) :=argmin «

a=1

(3.8)

1<is<m

¥
s.t. dist(y, C) < « < max dist(y, CZ)) Y y satisfying |y| < b.



From the definition of Hélderian error bound (Definition 3.4) the feasible set of (3.8) is nonempty
for every b = 0. Furthermore, the feasible set of (3.8) is closed and convex. Therefore, the solution
of (3.8) is unique. Consequently, p(b) is well-defined and p is monotone nondecreasing. Finally,
we have

.
dist(z, C) < p(||=]) (1r<n'aix dist(z, CZ)> , Yxzek.

By the monotonicity of p(-), we conclude that Definition 3.1 is satisfied for ®(a, b) = p(b) a”.

For the converse, suppose that (3.5) holds. Let B a bounded set and let r be the supremum of
the norm of the elements of B. Then, B is contained in a ball of radius r. Therefore, for x € B we
have

dist(z, C) < ¢(d(x), |z]) = p(|z])d(z)" < p(r)d(z)”,
where the last inequality follows from the monotonicity of p. O

Example 3.6. It is known that certain constraint qualifications imply Lipschitzian error bounds,
see [7, Corollary 3] or [8, Theorem 3.1]. For conditions ensuring the existence of Hélderian error
bounds see [56, Theorem 8.3] (linear matriz inequalities), [43, Theorem 37] (symmetric cones),
[15, Theorem 3.6] (basic semialgebraic convex sets). These references all include information on
how to estimate the exponent of the error bound, which can be quite nontrivial in more general
settings. For more on this difficulty, see the comments after Theorems 11 and 18 in [51].

4 Convergence analysis under consistent error bounds

In this section, we show how to connect consistent error bound functions to the convergence rate
of a number of algorithms for solving (CFP). Before proceeding, we introduce a key tool for our
analysis - inverse smoothing functions constructed from strict consistent error bound functions.

4.1 Inverse smoothing function from strict consistent error bound func-
tion

Let ® be a strict consistent error bound function as in Definition 3.1. Then, for k > 0, we define

¢w,a as follows:

2
b (t) = (@(\/E, m)) . t>0. (4.1)
The following lemma follows directly from the properties of ® in Definition 3.1.

Lemma 4.1. Let ¢ 0 be defined as in (4.1). Then ¢..0(0) = 0, ¢n.0(-) is monotone increasing
on [0,00) and right-continuous at 0. Moreover, we have ¢y, o(t) < ¢, a(t) for all t whenever
K1 < Ka.

Before proceeding, we define the generalized inverse function for any monotone increasing
function f: IRy — R, as:

f7(s):=inf{t=0:f(t) =s}, 0<s<supf, (4.2)

see [27] for more details on generalized inverses. Any monotone increasing function has an inverse
f~' in the usual sense, but f~ fixes a number of deficiencies that f~! might have when f is
not continuous everywhere. However, if f is both continuous and monotone increasing, then
f~ = f7!, see [27, Remark 1]. The proof of the following lemma about the properties of f~ is
given in Appendix A.



Lemma 4.2 (Properties of the generalized inverse). Let f : IRy — IRy be a monotone increasing
function with f(0) = 0. Define f~ as in (4.2). Then, f~ is monotone nondecreasing, f~(0) = 0
and the following statements hold:

(¢

) if f is (right-)continuous at 0, then f~(s) > 0 for all s € (0, sup f);

(i7) for any s = 0,t = 0 such that s < f(t) holds, we have s < sup f and f~(s) <t;
)
)

(#it) for any s = 0,t = 0 such that s <sup f and f(t) < s holds, we have t < f~(s);
(iv) f~ is continuous on (0, sup f).

Next, we will introduce the ace of our toolbox: the so-called inverse smoothing function asso-
ciated to ®. For k > 0 and for ¢, ¢ as in (4.1) we define ®* as

- o
(1) = Jé s 0o, (4.3)

where § € (0, sup ¢, o) is some fixed number!. We note that ®* is well-defined thanks to
Lemma 4.1 and Lemma 4.2 (¢) and (iv).
The properties of ®* are as follows.

Proposition 4.3 (The properties of ®®). Let ®* be defined as in (4.3) with ¢, o defined as in
(4.1). Then ®* is concave, monotone increasing and continuously differentiable on (0, Sup ¢ o).

Proof. From Lemma 4.1 and Lemma 4.2 (i), (iv), we see that ¢_ 4 is continuous on (0, sup ¢y, a)
and positive. Therefore, ®* is monotone increasing and continuously differentiable with (®%*)’(t) =
1

=5 for t € (0, sup ¢,0). This together with the monotonicity of ¢, 4 from Lemma 4.2 implies
K, P El

that (®*)’ is monotone nonincreasing on (0, sup ¢y ¢ ), which shows that ®* is concave. For the
sake of self-containment, we show this last assertion. For any fixed z,y € (0, sup ¢« o), we define
0(t) := ®*(x + t(y — x)). With that, we have ®*(y) — ®*(z) = 6(1) — 6(0) and, by integration,
we obtain

R (y) — 22 (2)
1

- f (@) (x + tly — ) (y — ) di

:f [(@8) (2 + t(y — 2)) — (@) ()] (v — 2) dt + f (B8 (2)(y — ) dt

0 0
< (22)'(2)(y - 2),

where the last inequality follows from the monotonicity of (®*)’. Therefore, ®* is concave. This
completes the proof. O

Next, we take a look at the behavior of ®*(t) as t — 0.

Proposition 4.4 (Asymptotical properties of ®*). Let ®* be defined as in (4.3) with ¢,.o
defined as in (4.1). Suppose that C is not the whole space. Let x° ¢ C and suppose that
x = max{dist(0,C), [2°|}. Then, ®*(t) - —c0 as t — 0.

LAny & in (0, sup ¢, ¢) is fine, so we will not include § in the notation for @ﬁ(t). The only place where we make
a specific choice of § is in the proof of Corollary 4.9. See also Remark 4.8.



Proof. Let B, == {z € £ | || < k} and let d be the function such that

d(z) = max dist(z, C;).

1<i<m

From (3.1) and the fact that C' < C; for all 4, we have
d(z) < dist(z, C) < @ (d(z), k) V x € By.
Then, from (4.1) we have
d(z)? < ®(d(z), K)* = ¢n,0(d(x)?) Vz€B,. (4.4)

Next, we examine the image of d(-)? restricted to B,. Since k > max{dist(0,C), |2°[}, we have
2% € B, and Pc(0) € B,. Let p := d(x°)2. Since d(+)? is a continuous function, by the intermediate
value theorem, the image of d(+)? restricted to B, contains the interval [0, u]. We also have p # 0,
because 2° ¢ C. In view of (4.4), we have

s < ¢ra(s), Vsel0,pu].

Let 7 = min(u,§), where § comes from the definition of ®* in (4.3). From Lemma 4.2 (ii) we
obtain

(;S;q,(s) <s, s€(0, 7). (4.5)

Therefore, the following inequality holds for ¢ € (0, 7)

| T 1
—<I>:(t)=f fdgf fdszf Zds=1InT —Int.
t (bm@(s) t ¢,§7<1>(3) t S

This shows that ®*(t) — —c0 as t — 0 and completes the proof. O

4.2 Convergence analysis of sequences

In this section, we make use of the inverse smoothing function discussed in Section 4.1 to analyze
the convergence properties of sequences satisfying the Assumption 4.5 below. Later, in Section 4.3,
we show that several algorithms generate sequences of iterates satisfying Assumption 4.5.

Assumption 4.5. Let {z*} S & be a sequence such that the following conditions hold.
(7) Fejér monotonicity condition. For any fixzed c € C, it holds that
|zt —¢| < |z —¢| VE. (4.6)
(#4) Sufficient decrease condition. There exist some positive integer £ and nonnegative sequence

{ar} with 3, ax = o0 such that

dist?(z", 0) = dist®(2*+¢, C) + ap max dist*(z*,C;) V k. (4.7

1<i<m

The Fejér monotonicity assumption appears frequently in the study of convex feasibility prob-
lems, see [6, Theorem 2.16]. The sufficient decrease condition is inspired by similar conditions
appearing in [46, 13]. However, we allow the possibility of having decrease after a fixed number of
iterations instead of forcing decrease after every iteration.

Proposition 4.6. Let Assumption 4.5 hold. Then {z*} converges to some point in C.

10



Proof. Since Y. aj = o holds, there exists some integer ko € [0,¢ — 1] such that

0
2 kg +ie = 0. (4.8)
i=0

For any N > 0, summing both sides of (4.7) for k = ko + if with ¢ =0,..., N — 1, we obtain
s ,0) 3 dis(a,€) s 407, C)

Z dlSt Ifo-Hl7 C) _ diStQ(xko-‘r(i-‘rl)Z’ C)

- (4.9)

N-1
> (o i¢ AX dist?(z*o e 0y).

\\m
i=0 J

Letting N — o0 in (4.9), we then have 3177  ay, i max; < j<py, dist®(z#0+% C;) < oo. This, together
with (4.8), implies that there exists a subsequence {x*} such that

max dist(z",C;) — 0 when i — 0.2

1<j<m
Therefore, dist(z*,C;) — 0 for all j = 1,...,m. On the other hand, we know from the Fejér
monotonicity of {z*} in (4.6) that {z*} is bounded. Thus, there exists a subsequence of {z*i}
which converges to some point 2* € £. Without loss of generality, we still let {*'} denote this
subsequence so that lim;_,o, 2% — 2*| = 0. Then, dist(z*,C;) — 0 and the closedness of the C;
imply that 2* € (], C; = C. Thus, using again the Fejér monotonicity of {z*}, we obtain

Ja* =¥ < fa® —a*] Yk,

k

which together with lim;_,, |z% — 2*|| = 0 gives 2% — z* € C. O

Now we establish our convergence rate under a strict consistent error bound as in Definition 3.1.

Theorem 4.7. Suppose that Assumption 4.5 holds. Let ® be a strict consistent error bound
function for Ci,...,C,, as in Definition 3.1. Let <I>g be defined as in (4.3) with K such that
R = |2 + 2dist(0, C). Then, the convergence of {x*} is either finite or

br—1
dist(z¥, C) < , | (@%)~ (cb*(dlst (29, C)) Z ak0+w> Y k> 20 (4.10)

k—{¢—(k mod ¢)

holds for any integer ko € [0, £ — 1] and by := 7

Proof. First, the convergence of sequence {z*} follows from Proposition 4.6. Note from (4.6) that
if there exists some k such that dist(x’;, C) = 0, we have z* = z* for all k > k. Consequently, in
this case, {"} converges finitely and we are done.

Next, suppose that the convergence is not finite. Then, dist(z*, C') > 0 holds for all k. Notice
that & > 0; otherwise we have dist(2?, C') = 0. Let ¢* := argmin .. |c|. We then see from the
Fejér monotonicity of {z*} ((4.6) in Assumption 4.5) that

k

la* —e*| < e —c*| VY&,

2The relevant fact is that if {ug}, {vx} are nonnegative sequences with Y up = oo and Y ugvy < o0, then
liminfvg = 0.
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which gives || < [¢*| + |2 — ¢*| < & for all k. This together with Definition 3.1 (i), the
definition of ¢, ¢ in (4.1) and Lemma 4.1 implies that for all k,

2
s 200k ot (ko k
dist* (2", C) < <¢(123£< dist(z®, C;), |z H))

= ¢|‘mkuv<b(1r<n-ix dist?(z*, Cy)) < (i)ﬁq)( max dist?(z*, C;)).

This combined with Lemma 4.1 and Lemma 4.2 (i7) implies that dist®(z*, C) € (0, sup ¢z.¢) and

Pz (diStQ(xkv C)) < max dist’(z", C;) V k. (4.11)

1<is<m

Now we combine (4.3), (4.7) and (4.11), use the concavity and differentiability of @g from Propo-
sition 4.3 and obtain

* (dist* (2%, 0)) — 0* (dist?(2"*", 0)) = (o) (dist® (=¥, C)) (dist®(z*, O) — dist® (2", )
1

B ¢ o (dist® (zF, C))

> . (dist*(z", C) — dist*(z**, O))

max; <j<pm dist?(z*, C;)

(distQ(xk, C)— diSt2($k+€u C))

= ag.
(4.12)

Moreover, fixing any integer kg € [0, £ — 1], for any N > 0, summing both sides of (4.12) for
k=ko+ il withi=0,...,N — 1, we further obtain

2 (dist®(z*0, 0)) — 0 (dist?(a™ N, )
1

_ N-1
= 2 g dist?(zFo*i ,0)) — @g (dist2(xk0+(i+1)z, C)) = 2 Clog+it-
o i=0

This together with the strict monotonicity and continuity on (0, sup ¢z ) of <I>g (thus invertible),
dist?(z*, C) € (0, sup ¢z.¢) and the Fejér monotonicity of {z*} further gives

dist(zF N C) <\ | (9%)- (q)*(dlst (29, ©)) Z akoﬂg). (4.13)
Now, we note that for any positive integer k we have (k mod ¢) > 0 = ko — ¢ so that

k= (k mod ) + 0 =Fo+by- L.

k—(kgmodé) .€>k0+kz—£—(€kmod€)

Using this, the Fejér monotonicity of {x*} and (4.13), we see that for any k > 2/ (so that by > 1),

bk 1
dist(a*, €) < dist(a*o 4, 0) <, | (@%)- (@*(dlst (29, C)) Z akow)

This completes the proof. O

Next, we remark that the choice of § in the definition of @g‘ has no impact in Theorem 4.7.
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) be a positive continuous

Remark 4.8 (No dependency on ¢ in (4.10)). Let g : (0, ) (0,
= {3 g(t)dt, for s (0, a). With

function, where a > 0 or a = 0. Let ¢ € (0, a) and define f5(s
that, fs is monotone increasing and continuous, thus mvertzble
Let L = f5*(f5(s0) — c) be well-defined with some sy > 0,c > 0. We have

L

—e = B5(L) = folo) = | glt)dt = (D)
So
so that L = f;l(—c). This shows that L is constant as a function of 6 and only depends on c, g
and so. Therefore the term inside the square root in (4.10) only depends on ®, &, dist*(z°, C) and
Zgigl Ako+ie Dut not on 6.

Before we conclude this subsection, we show that sublinear rates can be derived from Theo-
rem 4.7 when ® is as in Theorem 3.5.

Corollary 4.9. Suppose that Assumption 4.5 holds with infyay > 0. Suppose that a Hélderian
error bound defined as in Definition 3.4 holds. Then the sequence {x*} converges to some point in
C at least with a sublinear rate O(k™P) for some p > 0. In particular, if the Héolderian error bound
is uniform with exponent v € (0,1], then there exist some M > 0 and 0 € (0,1) such that for any
k=2,

ME 70 if ye (0,1),

. . (4.14)
MO if v=1.

dist(z*, C) < {

Proof. The convergence of {x*} follows from Assumption 4.5 and Proposition 4.6. If the sequence
{2*} has finite convergence, one can see that (4.14) holds for some M > 0 and 6 € (0,1). In the
following, we consider the case where {x*} does not have finite convergence.

First, assume that a non-uniform Hoélderian error bound holds. From Theorem 3.5 (i) the
following function is a strict consistent error bound function for the sets C1,...,Cyy,:

®(a, b) == p(b) max{a’®, a},

where p(-) is monotone nondecreasing and ~y(-) is monotone nonincreasing. Let CIJg be defined as
in (4.3) with % := ||2°| + 2dist(0, C). Since infray > 0, there exists 7 > 0 such that a; > 7 for
every k. Then, from Theorem 4.7 (setting ko = 0) and the strict monotonicity of @g we get that
for any k > 2/,

be—1
dist(z*, C) < (@g)*l(ég(distQ(mo, -y aiz)
i=0 (4.15)

< \/(cpg)l (@g(distz(xO, C)) — (k0 — 2)7).

Now we calculate the formula of <I>g. First, we see from (4.1) that

bra(t) = (2(VER)) = p(R) max(n® . 1) (416)

Next, we consider two cases depending on the value of v(%).
Case 1. y(k) € (0,1). In this case, the computation of ¢~ , is as follows.

s if s > p(R)?,
Gty [T e

WS'Y(R) if O0<s< p(//ﬁ\l)2




Next, we compute <I>g and we let § :== p(%)? in (4.3) (0 < & < sup ¢z.¢ = ), so that

28500 (R @) o <<

[

oA(t) = {1 (4.17)
p(R)?(Int — 21n p(R)) ift = ¢.
/I% ~ 2«
Letting ¢q := %p(n) 7 | we have
1
AR s )T
@8)1(5) - { (RO =) if s <0, (4.18)
p(R)%es/P(F) if s = 0.
For simplicity, let ¢; = @g(dist2(x0, () + 27. From (4.15), we have
. k o\ kT
dist(z¥, C) < 1/ (2%) (cl - 7).
Therefore, if k > 5% and k > 2¢, we have
for \ ~ 3T
P GE-T-D
dist(zF, C) < ’/%21_7(")1—61-1-7-) ’
(@€)< (@ e o

< M/(zw(@l*l—l),
holds for some M > 0. This proves the sublinear convergence rate of {z*}3.
Case 2. v(k) = 1. For this case, it will be more convenient to use ¢ := 1 in (4.3). Then, from

(4.3) and (4.16) we have

o2(t) = J (bl()ds = p(@)2£ s tds = p(R)*Int. (4.20)
1 Pz 0\8

Let co := p(k)2. Then, we have (@g)_l(t) = e'/> and

dist(z*, O) < \/ (%) (q>g(dist2(x0, 0)) — (k/t — 2)7) — e/ dist(w, C) - e T ®,

which proves the linear convergence rate of {x*}. This concludes the proof for the non-uniform
case.

If the Holderian error bound is uniform with exponent « € (0, 1], the function @ is as in (3.5),
so the max term in (4.16) becomes t7 and there is no need to divide the computation of <I>g and
(@g)_l in two cases. In particular, (4.17) and (4.18) become simpler since the second case in each
expression is discarded. Then, (4.14) follows from a similar line of arguments?® as above, replacing
~v(R) by ~. This completes the proof. O

4.3 Projection algorithms

In the following, we consider an algorithm scheme contained in the broader framework given in
Section 3 of [6]. Specifically, given 2° € &, relavation parameter {a¥} < [0,2) and weight {\F}
satisfying 37", AF = 1 with A¥ > 0 for all k, we consider the following algorithm scheme:

R Z )\f [(1 — af)] + achi](xk), (4.21)
i=1

3We note that for the z such that k > 2¢ but k < é%, the rate for those iterates is governed by the second
expression in (4.18), so overall, we have a sublinear convergence rate for all k > 2.

4The only subtlety is that in the proof of Case 1 in the uniform case, (4.19) holds for all k¥ > 2¢ and there is no
need to impose k > fc1 /7.
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where I denotes the identity operator and Pg, is the orthogonal projection operator onto C;.
Example 4.10. Here are a few examples of algorithms covered under the algorithm scheme (4.21).

(a) Mean projection algorithm (MPA)([6, 8, 31]): af = 1 for all i and k, and the weights \¥
(i = 1,...,m) are positive constants for all k. When \¥ = v; > 0 for every i and k with
>ty vi =1, the iterations are of the format

m
ot = Z v Po, ().
i=1

(b) Projections onto convex sets algorithm (POCSA)([17, 21, 33, 59]): Let t(k) := (k mod m)+1.
For every k, set \¥ =1 and e < af <2 — € with e € (0, 1) when i = t(k), and set \¥ = 0 when
i #t(k) (a¥ can be arbitrarily defined in this case). The iterations are of the format

.Tk+1 — (1 — af(k)) (L’k =+ Ozf(k)PCt(m (xk)

Especially, when af(k) =1 for all k, it reduces to a1 = Pct(k)(xk), which is the well-known
Cyclic projection algorithm (CPA), see [1, 6, 8, 15].

(¢) Motzkin’s method (MM)([1, 42, 48]): Fix any i(k) € Argmax, <, dist(z*,C;). For every
k, let \f =1 and of = X\ with X\ € (0, 2) for i = i(k), and \¥ = 0 for i # i(k) (af can be
arbitrarily defined in this case). The iterations are of the format

2R = (1 = N)zb + APc, (zF).

Especially, when X = 1, it reduces to z¥*t1 = Fe, ., (z%), which is known as Maximum distance
projection algorithm (MDPA), see [6, 8].

(d) The following adaptive weighted projection algorithm (AWPA): o =1 for all i and k, and
the weights \¥ (i = 1,...,m) are adaptively chosen. Let f : [0,+o0) — [0, +0) be a monotone
increasing nonnegative function such that f(0) = 0. Define d¥ := dist(z*, C;) and let \F =

k
m. The iterations are of the format

oy & £ )
= LT e

if at least one of the d¥ is nonzero. This is related to a generalization of Ansorge’s method
discussed in Example 6.32 in [6]. A particular case is the following iteration

m dk
k+1 _ 7 k
ghtt = Zid’er...erfnPC"(z ).

i=1

For analysis purposes and in order for the iteration to be well-defined for all k we consider
that if d¥ = 0 for all i (i.e., 2% € C), then AWPA falls back to the following MPA iteration:
ot =" L po (2F).

i=1 m i

Now we show that the sequence generated by scheme (4.21) satisfies Assumption 4.5 under
some conditions on the parameters. For that, we introduce the following notation:

M(k) = {z | i € Arg max dist(z", Cz)} ,

1<ism

(4.22)
I(k)={i| \f =0},
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Lemma 4.11 (Checking Assumption 4.5). Let the sequence {x*} be generated by (4.21). Then
{z*} is Fejér monotone with respect to C, i.e., Assumption 4.5 (i) holds. Let

pk = al\kF(2 - Z ak)\k i=1,...,m. (4.23)
Then it holds for all k that

dist?(z*, C) = dist?* (2", C) + Z pk dist?(2*, Cy). (4.24)
i=1

Moreover, the following statements hold.
i) If there exists m(k) € M(k) such that 37, pu* . = o0, then Assumption 4.5 (ii) holds with
k=0 Fm (k)
{=1 and ar, = ,u’fn(k) in inequality (4.7).

(i) If af € [a1, az] holds for all i and k with some 0 < a1 < ag < 2, and there exist some
o € (0,1] and integer s = 1 such that for all k,

I(k)ul,(k+1)u---ul(k+s—1)={1,2,...,m}, (4.25)

then Assumption 4.5 (ii) holds with £ = s and a; = min (Uo‘l(?%), al(i;ff)) in inequality
(4.7).
Proof. The scheme (4.21) is a particular case of the the scheme described in Section 3 of [6] (with

= P¢,). Consequently, the Fejér monotonicity of {z*} follows directly from [6, Lemma 3.2 (iv)].
Moreover, by [6, Lemma 3.2 (i)], we have for any = € C that

Jo* — [+ ol Y abxE (2 - 2 o X5 ka P,
=t (4.26)
= Z akaf)\f)\?HP — Pc,(x H +2 Z o\ (a¥ — Po,(2), Pe,(a®) —2) =0

i<j

where the last inequality follows from the non-negativity of {af} and {\¥} and the convexity of
each C;. We then have (4.24) by rearranging (4.26) and taking the infimum on both sides for
x € C. Furthermore, by the definition of M (k) in (4.22), we have for all m(k) € M (k) that

dist?(z*, C) > dist?(z"*!, C) + Z pk dist? (2", C;)
i=1
> dist?(z**1, ©) +u’:n(k) max dist*(z*, C}).

<is<m
The conclusion (i) then follows from this and assumption >, uF (k) = 0 directly.
Now we prove (i4). Since af € [a1, ag] for all i and k, we have ¥ > a;(2—az)\¥. Consequently,
by (4.24), the convexity of |- |? and Y,/ | A¥ = 1 with A¥ > 0, we have for all k that
2
Ha: k““ Hx - Z AP (( )k + af P, (= k)) H

_H Ak i (@ = Po,(x H ZAk 52 |a* — P, («*)[* (4.27)

< 2 l‘c~2k‘<(a2) f b2 (ke _ Aiet2 (k] .
(a2) ;AzdlSt (z", Cy) (2= oa) (dist® (", C) — dist®(«**1, C))
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On the other hand, we fix any k and j € {1,2,...,m}, and then know from assumption (4.25) that
there exists k; € {k,k+1,...,k+s—1} such that jely(kj), ie., )\ o (by definition of I, (k)
n (4.22)). This together w1th (4.24) and p¥ = a1(2 — ag)\F gives

dist?(z"i, C) — dist® (2", €) Z ,uz’ dist®(z%, C;) = 0a;1 (2 — ag) dist? (2%, C}).  (4.28)

Furthermore, combining (4.27) and (4.28) yields
dist®(z*, C;)

< [a* = Po, ()|

A
N &

) (dlst( ,C) + ka — ki H )2

(b) o
< (dlst Z pr poH)
(© i
< (kj—k+1) (dlst Z P — poH )
(i) 1 di t2 k; C di t2 kj+1 C (OKQ)Q & di ‘t2 e di t2 p+1 C
\s(m(ls (z", C) — dist”(z , )>+a1(2—a2) ;)(15 (zP, C) — dist*(aP*", )))
_ 1 20 kS Ny i 2okl (a2)? 20k i 2k
=3 <0a1(2 " (dist®(z", C) — dist* (2™, C)) + (2= an) (dist* (2", C) — dist* (2", C)))
1 2 : : v
< § max (aa1(2 — )’ oz1((§2—) ag)) (dist® (2", €) — dist® (2", 0))
(o) 1 2 : : s
S & max (Ja1(2 — )’ Oél((;h) 042)) (dIStQ(xk’ ) - dlStQ(xk-H J C)) J

(4.29)
where (a) and (b) follow from the triangle inequality, (c) follows from the Cauchy-Schwarz inequal-
ity, (d) holds because of (4.27), (4.28) and k; € {k,k+ 1,...,k + s — 1}, finally, (e) follows from
the Fejér monotonicity of {#*} and the fact that k < k; < k+ s — 1. By the arbitrariness of j, we
take the supreme on both sides of (4.29) for j € {1,2,...,m} and rearrange it to obtain

ca(2—a2) a1(2— 042))

dist?(z*, C) — dist?(z"™*, C) = min < , max dist?(z*, C;).

s (a2)2s 1<j<m
Therefore, Assumption 4.5 (i7) holds with £ = s and a; = min <m1(i70‘2), al(i;f‘f)) O

The gist of Lemma 4.11 is that any iteration generated by (4.21) is automatically Fejér mono-
tone, which is a known result, see [6, Lemma 3.2]. However, not all choices of parameters will lead
to sufficient decrease as required in Assumption 4.5 (ii) (e.g., if ¥ = 0 for all i and k). There
are many conditions one can impose on the choice of parameters to get sufficient decrease and
items (¢) and (i7) of Lemma 4.11 are but two simple examples that are enough to cover a number
of algorithms, as we shall see. In particular, (i¢) in case of a3 = as = 1 is a simplified version of
the assumption underlying the so-called quasi-cyclic algorithms, see [14].

The next step is to apply Theorem 4.7 to the algorithms covered by Lemma 4.11. We conclude
that the convergence of {z*} is either finite or, if item (i) of Lemma 4.11 holds, we have

dist(z¥, C) < , | (@*)~ (@*(dlst (29, O)) Z“mm) > 2. (4.30)
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Alternatively, if item (i7) of Lemma 4.11 holds, we have

dist(z*, C) < \/((bg)l (q>g(dist2(z0, 0)) — c(k — s — (k mod s))/s) Yk > 2s, (4.31)

where ¢ = min (”“1(2—042) a1(2—a2))

s Y (a2)?s
Next, we will see that more specific choices of parameters will lead to sublinear convergence

rates under Holderian error bounds as in Corollary 4.9.

Corollary 4.12 (Hélderian error bounds and sublinear rates for projection algorithms). Let {z*}
be generated by the algorithm scheme (4.21). Suppose that one of the following statements holds:

(i) there exist some T > 0 and m(k) € M(k) such that p¥, m(ky = T for all k, where uk is defined
as in (4.23);

(i) oF € [a1, az] holds for alli and k with some 0 < oy < ag < 2, and there ezist some o € (0,1]
and integer s = 1 such that (4.25) holds for all k.

If a Hélderian error bound holds for (CFP), then {x*} converges to some point in C at least with a
sublinear rate O(k™P) for some p > 0. In particular, if the Holderian error bound is uniform with
exponent v € (0,1], then there exist some M > 0 and 0 € (0,1) such that for any k = 2s (k=2 4
(i) holds),

ME 70 if ye (0,1),

dist(z*, C) <
M 6 if v =1.

Proof. Item (i) and (i¢) imply items (z) and (i) of Lemma 4.11, respectively. In both cases, there
exists ¥ > 0 such that the sufficient decrease inequality (4.7) holds with ar > v for every k.
Therefore, the conditions of Corollary 4.9 are met and the conclusion follows. O O

With the aid of the results so far, we can check that Assumption 4.5 holds for the algorithms
listed in Example 4.10 and compute their convergence rates.

Theorem 4.13 (Convergence of a few common methods). Let {z*} be a sequence generated by
one of the four algorithms MPA, POCSA (in particular, CPA), MM (in particular, MDPA) and
AWPA given in Example 4.10. The following items holds.

(1) Assumption 4.5 is satisﬁed In particular, if ® is a strict consistent error bound function
for Ci,...,Cyp and O* is as in (4.3) with & = |2°] + 2dist(0, C), the convergence rates of
MPA, MM (in partzcular, MDPA), AWPA are governed by (4.30). The convergence rate of
POCSA (in particular, CPA) is governed by (4.31).

(i) Suppose that a Hélderian error bound holds. Then {x*} converges to some point in C at least
with a sublinear rate O(k™P) for some p > 0. In particular, if the Hélderian error bound is
uniform with exponent v € (0,1], then there exist some M > 0 and 0 € (0,1) such that for
any k = 2m (k > 2 for MPA, MDPA and AWPA),

ME D if v € (0,1),

dist(z*, ) <
M ¢¥ if = 1.

Proof. First, we check item (i). By Lemma 4.11, it suffices to check Assumption 4.5 (ii) for the
four algorithms. For ¢ = 1,...,m, let

pk = akak(2 - Z ak)\k
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Then there exists some m(k) € M (k) such that for MPA, MM (in particular, MDPA) and AWPA

we have
1

Mﬁl(k) = Vm(k) = 1gi<nm vi >0, :ufn(k) =A2-2), M’:ﬁ(k) = oot

respectively. Consequently, we have ZZO:O u’;@ (k) = ©- Therefore, from Lemma 4.11 (i) we see that
Assumption 4.5 (i) holds with £ = 1 and a; = ufn(k) > 7 for some 7 > 0 for MPA, MM and
AWPA.

For POCSA, the assumptions in Lemma 4.11 (ii) are satisfied with ¢ = 1, s = m, a1 =
e and ag = 2 —e. Thus, POCSA (in particular, CPA) satisfies (4.7) with £ = m and a; =

%j, ﬁ) With that, we have ZZOZO aj = o0. This completes the proof of item (7).

Next, we move on to item (i¢). In all cases, the conditions in Corollary 4.12 are met. Therefore,

we can deduce the corresponding sublinear rates. O

min (

Remark 4.14. (Connection to existing convergence rates) Theorem 4.13 recovers several existing
convergence results. For example, it recovers the linear convergence result for MPA, POCSA
and MM under a Lipschitzian error bound established in [8, Theorem 2.2], [59, Theorem 3] and
[1, Section 4], respectively. In particular, it recovers the sublinear convergence result for CPA
under a Holderian error bound established in [15, Proposition 4.2]. It also recovers the sublinear
convergence rate for MPA and MDPA under a Holderian error bound, which could be obtained by
[14, Theorem 3.3] and [14, Corollary 3.8]. To the best of our knowledge, however, the sublinear
rate for AWPA is new since it is not clear if the operator associated to it satisfies the conditions
necessary to invoke the results in [14].

5 Regular variation and comparison of convergence rates

Given a strict consistent error bound function ® and some algorithm as in Section 4, the conver-
gence rate is governed by a fairly complicated expression depending on the inverse of the function
@g defined in (4.3), see Theorem 4.7. In this section, we provide a number of results that help to
reason about ®* and its inverse without actually having to compute them. The main tool we use
is the notion of regular variation [55, 10].

Regular variation will be helpful because it provides tools to analyze the asymptotic properties
of functions once the so-called index of regular variation is known, e.g., Potter’s bounds (see (5.16)).
Furthermore, it is well-understood how regular variation behaves under taking integrals, inverses,
applying powers and so on, which are exactly the transformations used to obtain (@2)’1 from the
original consistent error bound function ®. With that, it is possible to obtain bounds to (®%*)~!
without having to actually compute a closed-form expression for (®*)~!. We will showcase this in
Theorems 5.3, 5.7 and also with a general analysis of logarithmic error bounds in Section 5.1 and
error bounds for the exponential cone in Section 6.2.

Let ® be a function that satisfies items (i¢) and (ii3) of Definition 3.1 but not necessarily item
(7). That is, ® is not necessarily related to any collection of convex sets Cy,...,C,,. In this case,
we shall drop the adjective “consistent” and merely say that ® is an error bound function. If ®(-,b)
is monotone increasing for every b > 0, we say that ® is a strict error bound function.

In spite of the fact that ® might not be attached to any particular intersection of convex sets,
we can still define ¢, ¢ and ®* as in (4.1) and (4.3), respectively. Let ® and ® be strict error
bound functions. First, we will show how to draw conclusions about the order relationship between
(®*)~! and (&)g)_l using the order relationship between ® and ®. The motivation is that, given a
particular ® we would like to know whether the convergence rate afforded by @ is faster or slower
than, say, a linear or a sublinear rate without having to compute (®*)~1.
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We start with some basic aspects of the theory of regular variation in the sense of Karamata [55,
10].

Definition 5.1 (Regularly varying functions). A function f : [a, ©) — (0, ©) (a > 0) is said to
be regularly varying at infinity if it is measurable and there exists a real number p such that

lim f(Az)
2 T @)

In this case, we write f € RV. Similarly, a measurable function f : (0,a] — (0, ) is said to be
reqularly varying at 0 if

=N, ¥ A>0. (5.1)

i 1 A%)

28, F @)

in which case we write f € RV®. The p in (5.1) and (5.2) is called the index of regular variation.

If the limit on the left hand side of (5.1) is 0, 1 and +o0 for X in (0,1), {1} and (1,00),

respectively, then f is said to be a function of rapid variation of index o0 and we write f € RV,.
If1/f € RV, we say that f is a function of rapid variation of index —oo and write f € RV_q,.

— N, ¥A>0, (5.2)

The a in Definition 5.1 only plays a minor role, since we are interested in what happens when f
approaches the opposite side the interval. By an abuse of notation, we sometimes write “f € RV”
meaning that f restricted to some interval [a, 00) (with a > 0) satisfies Definition 5.1. We will do
the same for RV?, RV_,, and RV,.

Next, we need to discuss the behavior of the index of regular variation under taking inverses.
For a monotone nondecreasing function f : [a, ) — (0, o), we define the following generalized
inverse f< (z) == inf{y = a | f(y) > «}. In particular the following result holds

f € RV with index p > 0 = f~ € RV with index 1/p,

5.3
f € RV with index 0 and f is unbounded = < € RV, (5:3)

see [10, Theorem 1.5.12] and [10, Proposition 2.4.4 item(iv) and Theorem 2.4.7], respectively.
Note that if f is continuous and monotone increasing, then f— = 1.

In this section, in order to avoid dealing with the differences between f<, f~! and f~, we
assume that the functions are all monotone increasing and continuous so that all the three inverses
coincide at the points at which they are defined. This will be mentioned as needed.

Now, suppose that f € RV® with index p > 0 is continuous monotone increasing and define f
by f(z) =1/f(1/z). For A > 0,

fO0) _ gy SO0 FOD (54)

@) e FA0w) 7

Therefore, f € RV with index p and (5.3) implies that f~! has index 1/p. Since f~1(z) =
1/f~1(1/x), we conclude that

f € RV? with index p > 0 = f~! e RV® with index 1/p, (5.5)

when f is monotone increasing and continuous.

We start with the following lemma, which is a particular case of [24, Theorem 1]. In what
follows, if f and g are functions such that lim,_,. f(¢)/g(t) = 0 we will write that “f(¢) = o(g(¢))
as t — ¢”. We will consider three cases: ¢ € {—o0, +00} or that ¢ approaches 0 from the right,
which we will denote by writing ¢ = 0.
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Lemma 5.2. Assume that f, g : [a, ©) — (0, 00) (a > 0) are continuous monotone increasing
unbounded functions, and f € RV or g € RV. If f(z) = o(g(x)) as x — 0, then g~ 1(x) = o(f~1(x))
as T — .

Proof. Theorem 1 of [24] states that if f,g : [a, ©0) — (0, ©) (a > 0) are monotone increasing
unbounded functions such that f(z) = o(g(x)) as x — o0 and at least one among f, g belongs to
RV then

9~ (@) = o(f~ (x)).
Under the hypothesis that f,g are continuous and monotone increasing we have f~ = f~! and
g~ = g~ !, so the result follows. O
Using Lemma 5.2, we establish the following comparison theorem.

Theorem 5.3. Let k> 0 and ® and ® be two strict error bound functions satisfying:

(i) ®(-, k) and ®(-, k) are continuous,

(ii) ®®(t) > —o0 and OH(t) —» —o0 as t — 0.
Then, the following statements hold.

(a) If ®(-, k) belongs to RV® with index p > 0, then U such that U(t) = —®*(1/t) belongs to RV
with index (1/p) — 1.

(b) If at least one among ®(-, k), :IS(, x) belongs to RV® with index p > 0 and ®(a, k) = 0(</Is(a, K))
as a — 04, then
(@)1 (s) =0 (B8)7()) as 5 — —o0.
Proof. First we prove items (a) and (b) simultaneously by considering the case where ®(-, ) € RV°
with index p > 0. By assumption ®(-, k) is monotone increasing and continuous, so (5.5) implies
that ®(-, )~* € RV has index 1/p. From the definition of ¢, ¢ in (4.1), we have for any A > 0,

lim ——————~ = lim ———— = lim (b(t’ ,‘@)

BB Gea) B [R(VE mE e >0

0x0) _y O OR (VLR

Because ®(-, k) is monotone increasing and continuous, the same is true of ¢, ¢ and ¢, 4 coincides
with the usual inverse ¢ 5. Therefore, we have from (5.5) and (5.6) that ¢4 € RV® with index
1/p, namely,
-1
¢m,¢()‘t)
m
=0+ ¢H,q>(t)

Moreover, we see from assumptions in (b) that

= \Vr, (5.7)

CGeals) o [E AP (s n))
lim ———= = lim ————*— = lim | =——— =0. 5.8
s—04 ¢m,&>(5) 5204 [D(y/s, k)2 570+ <¢)(S7 m)) (5.8)

Therefore, ¢, s and ¢, & are monotone increasing continuous functions with

Gr, @, qﬁ;ﬁb eRVY and ¢, a(s) = o(qﬁm‘i(s)) as s — 04. (5.9)
Next, we define
w(z) = ——— B@) = —— 20
- dee(l/z) 0, 5(1/x) '

21



With that, w and @ are unbounded continuous monotone increasing functions. Analogous to the
computations in (5.4), we have w € RV with index p. Furthermore, from (5.8) we obtain

1
.51/7) w(z)

0= lim On.0(5) = lim = lim ,
2 w(a)

1
s—04 gf)m&)(s) r—00 7¢m¢(1/z)

(5.10)

ie., w(x) = o(w(x)) as x — 0. In view of (5.10), we can invoke Lemma 5.2 (by restricting w and
W to some interval [a, 00)), which leads to

1 -1
. e 6L 0
0= lim 12_129”; = Jim = g 2P o (5.11)
w €T 47:1(13(1/:”) + ¢m<1>( )

From Proposition 4.3 we have that ®* and &)3 are monotone increasing continuously differentiable
functions. Using L’Hospital’s rule in combination with assumption (i7), we have from (5.11) that

1 —1
N % ! t =1 ® A(t)
i 220 OO P gy w2 (5.12)
t—04 (I)?(t) t—0 ((’I‘)g) (t) t—04 ¢,1&(t) t—04 ¢,€,q>(t)

Now, we define
U(t) = —d*(1/t),  U(t):=—0*1/t), t>0.

Since ®*(t), &)g(t) both go to —o0 as t — 04 and are monotone increasing (Proposition 4.3), we
have that ¥ and ¥ are monotone increasing and go to +00 as ¢ — c0. Moreover, we have

/ —1

oy YO2) R @ (AR e )1
= P 7 - —1 ’

W) e )0y (o) () 0 M)

(5.13)

where (a) follows from L’Hospital’s rule and (b) follows from (5.7). That is, ¥ € RV with index
(1/p) — 1, which proves that item (a) holds. On the other hand, we see from (5.12) that

0= pim 280 _ oy, 20200 V@) (5.14)

T 0. 38 o _oM(1/z) oo U(a)

Combining (5.13) and (5.14), we may use Lemma 5.2 again (by restricting ¥ and ¥ to some interval
[a, o0)) to obtain

)
0=l $=im — I (5.15)
This completes the proof of item (b) when ®(-, ) € RV® has index p > 0.

If ®(-, k) € RV? has index p > 0, the proof is of item (b) is analogous since Lemma 5.2 only
requires a regular variation assumption for one of the functions. The difference is that at (5.6), (5.7),
(5.9), (5.13) we would draw conclusions about functions derived from ® but all the other equations

would remain the same. For example, in (5.13) we would conclude that lim,_,q % = \1/p)=1

which would lead to the exact same (5.15). O O

Remark 5.4 (On assumption (ii) of Theorem 5.3). Because of Proposition 4.4, in many cases it
is not necessary to check assumption (ii) of Theorem 5.5 explicitly.
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Following Theorem 5.3, we will prove bounds for the (®*)~! function. This will require the

so-called Potter bounds.

Lemma 5.5 (Potter bounds). If f € RV with index p, then for every A > 1,8 > 0, there exists
M > 0 such that x = M,y = M implies

o= (56 o

If f € RVY with index p, then for any A > 1,8 > 0, there exists M > 0 such that t < M,s < M

implies
’ f((z; < Amax { <Z>p6 , C)M} . (5.17)

The first half of Lemma 5.5 is proved in [10, Theorem 1.5.6], while the latter half follows from
applying the first half to f such that f(z) = 1/f(1/x).

Finally, we also need a similar bound for rapidly varying functions. The following lemma is a
consequence of [9, Lemma 2.2].

Lemma 5.6. If f € RV_,, then for every r > 0 there exists a constant M such thatt = M implies
HOES S (5.18)

In particular, for every r > 0 we have
f@) =o0(t™) as t— +oo. (5.19)

Theorem 5.7 (Bounds on (®%*)~1). Let ® be a strict consistent error bound function associated
to Ci,...,Cy, and let C = N2 C;. Suppose that C' is not the whole space and suppose that
x = max{dist(0, C), |z°||} holds for some 2° ¢ C.

Suppose also that ®(-, k) is continuous and belongs to RV with index p. Let U be given by
U(t) := —D*(1/t). Then, the following items hold.

(1) pel0,1].

11 € then elongs to with index — 1. In particular, V™" € as index
(")pr (0,1),h U belong RV with ind (1/p) 1. In parti l,\I/1 RV, h d

ﬁ and for every 6 > 0 such that v := p/(1 — p) — 0 is positive, there are constants M and

A such that

v/2
(®*)-1(—s) < A <1) ., VYs=M.

S

(iii) If p = 1, then the function ¥ belongs to RV with index 0. In particular, ¥~ belongs to RV 4
and for every r > 0, we have

(™) -1(=s)=o(s™") as s— +o0.

(iv) If p =0, then ¥ belongs to RV . In particular, ¥~ belongs to RV with index 0 and for any
r >0 we have s~ = o ((@*)71(—s)) as s — 0.

Proof. First, we prove item (7). For A > 1, because ®(+, k) is monotone, we have ®(At, k) = ®(¢t, k).
Therefore, \? = lim;_,o, ®(\t, k)/®(t, k) = 1, which shows that p > 0.
Next, let d(z) := maxj<i<m dist(z, C;). Since C < C; for all i, we have

d(z) < dist(z, C) < ®(d(x), k), (5.20)
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whenever |z| < k. By assumption, d(z°) > 0 and the projection Pc(0) of 0 onto to C satisfies
|Pc(0)| < k. By continuity, d(-), assumes every value between 0 and d(z°) over the ball {z | 2| <
k}. In view of (5.20), we conclude that for sufficiently small ¢ we have

t < Ot k). (5.21)

For the sake of obtaining a contradiction, suppose that p > 1 and let § > 0 be such that p—¢ > 1.
By using Potter bound (5.17) for A = 2, we conclude that for sufficiently small ¢, s, we have

B(t, k) < 20(s, ) max { (E)H , (i) M} .

Combining with (5.21), we obtain

D(t _
1< % < 2®(s, k) max{tP 1 (1/s)77°, tPHI1(1/5)P Y.

If we fix s and let ¢ go to 0, the right-hand side converges to 0 (because p—§ — 1 > 0), which leads
to a contradiction. So, indeed it must be the case that p € [0, 1].

Next, we move on to item (i¢). From item (a) of Theorem 5.3, ¥ belongs to RV with index
(1/p) — 1. By (5.3), ¥~! has index p/(1 — p). We also have U~(s) = 1/(®*)~!(—s). Then, we
apply Potter bound (5.16) to ¥~! with z, y replaced by ¢ and s, respectively. Fixing ¢, taking
square roots and recalling that (¢/s)® < (t/s)% if 0 < a < b and s > t, leads to the final conclusion
of item (7).

Now, we check item (i4i). Again, from item (a) of Theorem 5.3, ¥ belongs to RV with index
0. By Proposition 4.4, ¥(t) — +o as t — 0. Under these conditions, it is known that ¥—!
belongs to RV, see (5.3). Therefore, 1/U~!(s) = (®*)~!(—s) belongs to RV_g,. Applying (5.19)
to (&*)~1(—s) and taking square roots leads to the final conclusion of item ().

Finally, we prove item (iv). First, we see from p = 0 that for any A > 0,

. K T . ﬁ, K . \Fz, K
Jim 2erC8) i () (Tpt)

Let w(x) := m We then have
fim PO gy Vee/OD)) oy dme(As)
w=0 w(z)  w—o 1/¢ee(l/z) 5200 dua(s)

which implies that w € RV with index 0. Since w(xz) — +00 as x — +00, again by (5.3), we see that
wl(z) = € RVy. Note that U(t) := —®*(1/t). We use L'Hospital’s rule and further

have

1
¢, p(1/x)

YO _ L 0R/OD) RN 3/ b (5/))

AR UE) T af(1j) ot aR(s) et /oo (s)
Seo(Xs)  Vwl@/A) L wTl(Aa)

=0 NG p(s)  woe MwTl(z)  eme dwi(z)]

which implies that ¥ € RV, and thus 1/¥(t) = —1/®*(1/t) e RV_. Now, from (5.18), it follows
that 1/U(t) goes to 0 as t — oo. From (5.19), 1/U(t) = o(t™") as t — +00. Therefore, t" = o(¥(t))
as t — co. Finally, since g(t) := ¢" € RV, from Lemma 5.2 we obtain
SV /(@8 (=)
@8 1) T

This completes the proof. O O

—(0 as s — oo.
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Theorem 5.7 has the following informal consequence: any consistent error bound function that
corresponds to an RV function of index p € (0,1] behaves almost the same as a Hélderian error
bound with exponent p. In particular, in view of our convergence results (see, for example, (4.30)),
items (44) and (4i7) imply that the corresponding convergence rate would be at least as fast as the
convergence rate afforded by any Holderian error bound with exponent p’ < p.

5.1 Logarithmic error bounds

In Theorem 5.7, if p = 0, only a lower bound to (®*)~! is obtained. Because (®*)~! can be
used to upper bound the convergence rate (see Theorem 4.7), a lower bound to (®%*)~! can not
be used in general to draw conclusions about the convergence rates of the algorithms discussed in
Section 4. In view of this limitation, it would be useful to get reasonable upper bounds to (@:)_1
as well when p = 0.

A challenge in this task is that the class of RV functions with index p = 0 contains functions
with very slow growth. Indeed, these are called slowly varying functions in the regular variation
literature. For example, (In(z))* (for any nonzero «) and arbitrary compositions of logarithms
In(In(- - -In(z))) belong to RV with index 0 (see [10, Section 1.3.3]). Because of that, asymptotic
upper bounds that are valid for any slowly varying function are doomed to not be very informative.

In order to get meaningful bounds in the case p = 0 we need to further restrict the class of
functions under consideration as follows.

Definition 5.8 (Logarithmic error bound). An error bound function ® is said to be logarithmic

¥
with exponent « if for every b > 0, there exist Ky > 0 and ap > 0 such that ®(a,b) = Ky <*ﬁ)
holds for a € (0,ap).

Next, we show an example of logarithmic error bound. Another instance will be discussed in
Section 6.2 in the context of the analysis of the exponential cone.

Example 5.9 (Example of logarithmic error bound in arbitrary dimension). We start with the
analysis of some functions that will be helpful to build our example. For every v = 2, we define
fv : IR — R4 such that f1(0) =0 and

1

fﬂ,(t) =e T, vt # 0.

The case v = 2 corresponds to a function described in, e.g., [3, page 453]. We note that ff/’ 18
nonnegative in a neighbourhood of 0. Then, because a convex function is locally Lipschitz on the
relative interior of its domain, we can select t, > 0 such that f,y restricted to [—ty,ty] is convex
and Lipschitz continuous with constant L. Finally, let f. be the infimal convolution between fv
restricted to [—ty,t,] and L.| - |:

fy(@) = infyuey o 1 fy(u) + Lyt — ul. (5.22)

With that f. is a convex function which is finite over R and satisfies f.(t) = fv(t) forte[—ty,ty].
Since fy has an unique minimum att = 0 and is convez, f- is monotone increasing when restricted
to [0,00). Taking u =0 in (5.22) we obtain

() <L)Jt), VtelR. (5.23)

Let ¢ be the inverse of the restriction of fy to [0,00). Since fy(t) — 0 ast — 00, @, is
well-defined over [0,00). Because f,(t) = f,(—t), we also have

oy ([ (1) =1Tt],  VteR. (5.24)
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Furthermore, ., is monotone increasing and for t € (0, fy(ty)], @~ coincides with the inverse of
Iy, s0 we have

1 1/~
e0-(m) - (5.25)
Also, (5.23) implies that f(t/L,) <t fort =0, therefore,

t< Lypy(t),  Vt=0. (5.26)

Because f is convex and ¢~ is monotone increasing, o, must be concave. Combined with the fact
that v~(0) = 0, we have that

O (1T + A1) < (14 Aoy (1), VAt = 0. (5.27)
Next, we define
o= {(@) e R x R[> (o))}, Coi= {(2.0) e R x R},

We have C == Cy n Cy = {(0,0)} and we shall check several things about this example. For the
sake of obtaining a contradiction, suppose that a Hélderian error bound holds in a neighbourhood
of (0,0). Then, by considering points of the form (x:,0) = (¢,0,...,0) with t € R4, there exist
k>0 and an exponent o € (0,1] such that

t = dist((x¢,0), C) < kdist((x,0), C1)* < k|(£,0,--,0) = (£,0,- -, £,(0)|* = kfy(t)*

holds for all sufficiently small t. However, this is impossible because t/f.(t)* goes to w0 ast — 0.
The conclusion is that no Holderian error bound holds.

Next, we check that Cy and Co admit a logarithmic error bound with exponent 1/~v. We recall
the following properties of orthogonal projections: if U,V < IR"™ are closed conver sets and z € IR",
then

dist(z,U)

dist(z, V) + dist(Py (2),U), (5.28)
dist(Py (z),U) < d

ist(z, V) + dist(z, U). (5.29)

NN

Let b > 0 and let (x, ) be such that ||(z, p)

| <b. From (5.28) we have:
|(, p)| = dist((x, ), Cr " C2) < dist((x, p), C2) + dist((,0), C1 n Ca). (5.30)

Let (z, fy(|z|])) be the orthogonal projection of (x,0) to Cy. Since f, is convex and finite every-
where, its restriction to any bounded interval of R is Lipschitz continuous, e.g., [54, Theorem 10.4].
Let L be the Lipschitz constant of f., restricted to the inverval [—b,b]. As projections are nonez-
pansive and (0,0) € Cy, we have |(Z, f1(Z))| < |z| which implies that |Z| < |z|| < b. Then

Hzl) = £zl < [ A2l) = £ 0201 < L] = 2] < L]z - z]. (5.31)

Letting L == max{L, 1}, from (5.31) we obtain

Fllel) < L(le = 2] + £, (12])) < ﬁ\@\/fw(\\f\\)Q + o -z (5.32)

Since dist((z,0), C1) = /f(|Z])? + [z — Z|?, from (5.32) we see that there exists a constant L>0
such that
Sy(lz]) < Ldist((z, 0), C1). (5.33)
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Because ¢~ is monotone increasing, we can apply -, at both sides of (5.33) and, recalling (5.24),
we obtain ||z| < ¢ (Ldist((z,0),Ch)). Since |z|| = dist((z,0),C1 n Cy), from (5.30) we obtain

dist((z, i), C1 N C) < dist((x, p), Ca) + ., (Ldist((x,0), C1)). (5.34)

Now, let d(x,p) be the mazimum between dist((x, u),Cs) and dist((z, ), C1). From (5.29), we
obtain dist((z,0),C) < dist((z, p), Cy) + dist((z, u), C2). We can use this together with (5.26)
and (5.27) to obtain an upper bound to the right-hand-side of (5.34) thus concluding that there
exists p(b) > 0 such that

dist((x, 1), C1 0 C2) < p(b)~ (d(, 1)) (5.35)

holds for all (x,p) with ||(z, p)|| < b. Since increasing p(b) still leads to a valid upper bound in
(5.35) we may select p(b) in such a way that p(-) is a monotone nondecreasing function of b. So,
® given by ®(a,b) == p(b)py(a) is a strict consistent error bound function. It is also logarithmic
with exponent 1/ because of (5.25).

If ® is as in Definition 5.8, then ®(-,b) is an RV function of index 0 for every b > 0. Then, the
function ¥ in Theorem 5.7 is rapidly varying and (®%*)~! is again an RV function of index 0. The
fact that the index is 0 precludes the usage of Potter bounds to obtain an asymptotic upper bound
to (®*)~!. In addition, neither ¥ nor (®%*)~! seem to have simple closed form expressions, so
evaluating them directly is non-trivial. However, we can show that applying a logarithm is enough
to “de-accelerate” W down to a regular varying function with positive index p. Better still, we will
argue that In W is asymptotically equivalent to a function for which we can directly compute the
inverse. Here, we say that f and g are asymptotically equivalent at oo if

mwzl.

tioo g(t)
In this case, we write f(t) ~ g(t), as t — 0. The following lemma is the first step towards
implementing the strategy just outlined.

Lemma 5.10. Let f : [a, ©) — (0, ©) € RV (a > 0) with index p > 0. Then we have

t
g(t) := lnf f@dr  ~ (), as t— 0.
a

Proof. This result is a direct consequence of one of the many Abelian theorems discussed in [10,
Chapter 4]. In this context, an Abelian theorem is a result that relates the asympotic properties
of a function f to some transform of f.

First, we extend the domain of f to [0, 00) by setting f(z) = f(a) for all z € [0, a). Invoking
[10, Theorem 4.12.10 (ii)], we then have

¢
h(t) := an- eF@dx ~ f(t) as t — . (5.36)
0
The proof is now essentially complete because changing the starting point of the integral in (5.36)
does not influence the asymptotic equivalence. Nevertheless, we will provide a formal justification
for this.

To simplify the notation, we let F(t) := Sé ef@dy and b = Sg ef@dx. Therefore, we can
rewrite g as

t t a
g(t) = 1nJ ef@dz =1n (J eF@ g — J ef(z)dx) =In(F(t)—0). (5.37)
C (

a ) )
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Because f has positive index of regular variation, f(t) — o0 as t — o0, which is a consequence
of Potter bounds by selecting § = p/2, fixing = and letting y go to infinity in (5.16), see also [10,
Proposition 1.5.1]. This implies that F(¢t) — oo as t — o0 as well. Using this, (5.36) and (5.37),
we obtain

o) _ g A() _ W(F() —b) f(t) +o(f (1))

5% F(8) i A(t) () o In(F(D) 7t
_ . In(F(t) —b) —In(F(t)) . In(1-b/F(t)
=1+ fim I (F (D)) =it = Fey b
This completes the proof. O O

Next, we need a counterpart of Lemma 5.2 for asymptotic equivalence.

Lemma 5.11. Assume that f, g : [a, ) — (0, ®0) (a > 0) are continuous monotone increasing
unbounded functions, and f € RV or g € RV with positive index. If f(x) ~ g(x) as x — o0, then
f(x) ~g 1 (x) as z — .

Proof. Under the hypothesis that f and g are continuous and monotone increasing, we have f< =
f~1and g~ = g7!. So the lemma follows from [10, p190, Exercise 14, items (ii) and (ii4)], see
also [24, Theorem A] and the surrounding discussion. O O

We are ready to present our main result in this subsection. In the following theorem, we
provide a tight estimate for the (®*)~! function in the case of a logarithmic error bound. In view
of Theorem 4.7 this gives a worst-case convergence rate for several algorithms when the underlying
error bound is logarithmic.

Theorem 5.12 (Tight bounds to (®*)~1). Let k > 0 and error bound function ® be logarithmic
with exponent v > 0 as in Definition 5.8. Then, there exists a constant n > 0 such that

(O™ -1(—s) ~ ”(m}s))W’ as s — o0. (5.38)

In particular, there are constants 7y > 0, 12 > 0 and N > 0 such that

( In(s)

Proof. By assumption, there exist ¢ > 0 and 0 < € < 1 such that for a € (0, €],

D(a, k) = c <1n;>>7

¢K,<I>(t) = (1)2(\/%, /4;) = 6222’7

m (mls)y <A/ (™) 1(=s) < ;o (1>7, Vs>N. (5.39)

By the definition of ¢, &, we have

Vs 62.
IOV

Let ¢1 := 2¢Y/7 and ¢ := ¢]7/(21n(€))?”. We then obtain
boh(s) = T s e (0, eal.

Now, we fix § = ¢y in the definition of ®*, see (4.3). Let ¥(t) := —®*(1/t). Next, we consider the
behavior of ¥ on [1/¢a, ). For t = 1/ce, we compute

1/(27) +

oy t e o
V(t) = *J T ds = J — —dz = f g1z =2In(@) g o0
5 bral(s) 15 1/es
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Let f(x) := c12¥/®") — 21In(z). Then, a direct limit computation shows that fli1/es, 0) € RV with
index 1/(27). By Lemma 5.10, we have
¢
InW(t) = lnf @~ )~ et
1/C2
as t — 0. Let g(t) :== ¢;t"/(*7). Since g belongs to RV with positive index 1/(2v) and both In ¥
and g are continuous monotone increasing unbounded functions we can invoke Lemma 5.11 which
tells us that
Tl =) (t) ~ g7l (t) as t— oo
We note that if f1(t) ~ f2(t) as ¢ — oo holds then 1/f1(¢) ~ 1/f2(t) as t — oo holds as well. With
that in mind, we let s = e’ and recalling that ¥(s) = —®*(1/s), we obtain

1 1 1 K
- o~ = (=), 5.40
VE(s) Vo lns) <1n(8)> (5:40)
as s — oo, which proves (5.38). Finally, (5.39) is a consequence of (5.40) and the definition of
asymptotic equivalence which implies that for sufficiently large s we have

(@%)1(~s)

(@#)~1(~s)
— 0.5,2].
] In(s)= ¢ [0:5.2]
This completes the proof. O
O
6 Convergence rate results for conic feasibility problems
In this section, we analyze the following problem.
findxe LNV, (Cone)

where K is a closed convex cone, V is an affine space satisfying NV # (. First, we present some
motivation for (Cone). A conic linear program (CLP) is the problem of minimizing/maximizing a
linear function subject to a constraint of the form x € LN V. In this context, the methods discussed
in Sections 4 can be useful to find feasible solutions to a CLP or to refine slightly infeasible solutions.
See, for example, [32].

As discussed in Section 4, the convergence rate of the methods is governed by the type of error
bound that exists between I and V. Here we take a closer look at the error bound proved in [43]
for the case where K is a so-called amenable cone. K is said to be amenable if for every face F
of K there exists a constant x such that dist(z, F) < wdist(z, K) holds for every z € span F. The
error bound for amenable cones described in [43] requires the following notion.

Definition 6.1 (Facial residual functions). Let F be a face of K and z € F*. We say that
Yr. Ry x Ry — Ry is a facial residual function for z and F if the following properties are
satisfied:

(1) Yr.. is nonnegative, monotone nondecreasing in each argument and (0, o) = 0 for every
[eAS ]R,+ .

(i4) whenever x € span K satisfies the inequalities
dist(z, K) <€, {(x, 2) <e, dist(x, spanF) < e
we have:

diSt(SL’7 Fn {Z}L) < w}',z(ea Hxﬂ)
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We say that a function 1[;}-’2 is a positive rescaling of ¢ r . if there are positive constants
M, Ms, M3 such that ¥r (e, |z]]) = Msr (M€, Ma|x|). We will also need to compose facial
residual functions in a special way. We define 1911 to be the function satisfying

(w2<>¢1)(a, b) = 1/)2(& + ¢1(a, b), b), Va,belR. (61)

In order to give the precise statement of the error bound in [43], the final component we need is
facial reduction [16, 57, 53]. The basic facial reduction algorithm as described in [57, 53] shows
that it is always possible to obtain a chain of faces of K

Fec--SF =K, (6.2)
where the following properties are satisfied.
(i) For 1 <i < ¢, there exists z; € F n V* such that Fi 1 = F; n {z}*.
(14) Fy¢ n'V satisfies some desirable constraint qualification.

Here, ¢ is called the length of the chain. Classical facial reduction approaches usually find chain of
faces such that Fy NV satisfies Slater’s condition, i.e., (riF;) NV # &. However, the FRA-Poly
algorithm [44] finds a face Fy satisfying a weaker constraint qualification called partial polyhedral
Slater’s condition (PPS condition), which we will now describe. Suppose that Fy can be written
as a direct product P x Fy, where P is a polyhedral cone and F; is an arbitrary cone. If

(Px (riF))nV # &,

then we say that the PPS condition holds, see Definition 1 in [44]. P is allowed to be trivial, so if
Slater’s condition is satisfied the PPS condition is also satisfied. With that in mind, we define two
key quantities.

e The singularity degree ds(IC, V) of the pair I, V is the length of the smallest chain of faces
(as in (6.2)) where Fy and V satisfy Slater’s condition.

e The distance to the partial Polyhedral Slater’s condition dpps(K, V) is the length minus one
of the smallest chain of faces (as in (6.2)) where F; and V satisfy the PPS condition. Since
Slater’s condition is a stronger requirement than the PPS condition, we have dpps(K, V) <
ds(K, V).

We are now positioned to state the error bound in [43].

Theorem 6.2 (Error bound for amenable cones, Theorem 23 in [43]). Let K be a closed convex
pointed amenable cone, V be an affine space such that KNV # &. Let Fp < --- < F1 = K be a
chain of faces of K as in (6.2) together with z; € Ff n V1 as in item (i). Furthermore, assume
that F¢,V satisfy the PPS condition. Fori =1,...,0 — 1, let ¢; be a facial residual function for
Fi, zi- Then, after positive rescaling the v;, there is a positive constant k such that if x € span KC
satisfies the inequalities

dist(z, K) <e, dist(z, V) <e,

we have
dist (z, K nV) < (k]z] + £)(e + o(e, [z])),

where @ = 1Oy, if £ = 2. If £ =1, we let ¢ be the function satisfying ¢(e, |z|) = €.
Next, we will show that, under a mild condition, the error bound for amenable cones in Theo-

rem 6.2 naturally leads to a strict consistent error bound function.
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Proposition 6.3. Suppose that K is a full-dimensional amenable cone, V is an affine space such
that K "'V # . Let ¢ be defined as in Theorem 6.2. If ¢(-,b) is right-continuous at O for every
b= 0 then

®(a, b) = (kb + k)(a + ¢(a, b)).

is a strict consistent error bound function for K and V.

Proof. The function ¢ in Theorem 6.2 is constructed from facial residual functions using the
diamond composition defined in (6.1). Since facial residual functions are, by definition, increasing
in each coordinate, the same is true of . When we fix b, the function ®(-,b) is monotone increasing
because all its terms are monotone nondecreasing and the term ka is monotone increasing. Now
it remains to prove

dist (z, £ n V) < & (max(dist(x, K), dist(z, V)),||z|) Vzek&. (6.3)

The error bound in Theorem 6.2 holds for = € span K. However, K is full-dimensional, so span K =
E. Therefore, for = € £ if we let € = max(dist(z, K), dist(z, V)) in Theorem 6.2, we obtain (6.3).
Since ¢(-, b) is right-continuous at 0 for every b, ® is indeed a consistent error bound function for
K and V. O O

The only gap between Proposition 6.3 and Theorem 6.2 is that the function ¢ in the latter
might not satisfy right-continuity at 0. We address this issue next.

Proposition 6.4 (Existence of facial residual functions satisfying right-continuity at 0). Let K be
a closed convex cone, F < K be a face and z € F*. There exists a facial residual function ¢r ,
for z and F such that YF (-, b) is right-continuous at 0 for every b = 0. In particular, under the
setting of Theorem 6.2, there exists ¢ : Ry x Ry — Ry such that ¢(-,b) satisfies right-continuity
at 0 for every b= 0.

Proof. Because we have F = K n span F whenever F < K is a face, the following equality holds:
Fr{z}t =K nspan F n {2}t

To construct a facial residual function, we follow an approach similar to the proof of Proposition 3.3
and Section 3.2 in [43]. Let ¥ £ . (e, |z|) be the optimal value of the following problem.

sup  dist(v, F n {z}}) (P)
vespan K
subject to dist(v,K) < e
dist(v, span F) < €
(v, zy < e

loll < Jl=|

Because 0 € Fn{z}*, (P) is always feasible and the last constraint ensures compactness. With that,
Y . satisfy all the requirements in Definition 6.1. For every b > 0, it can be shown that ¢ . (-, b)
is right-continuous at 0 by following the same argument used for showing the right-continuity of
the best error bound function in the proof of Proposition 3.3.

Next, we observe that if ¢ and - are two facial residual functions satisfying right-continuity
at 0, than their diamond composition (6.1) is also right-continuous at 0, whenever the second
argument is fixed. Therefore, under the setting of Theorem 6.2, the functions ; appearing therein
can all be selected in such a way that they satisfy right-continuity at 0. So the same is true for the
function ¢ which is a diamond composition of facial residual functions. O
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In view of Propositions 6.3 and 6.4, when applying the methods of Section 4.3 to (Cone), the
convergence rate is governed by ®. Although it might not be clear at first, their convergence rates
depend on the singularity degree of the problem. This is because the singularity degree influences
®, which controls the error bound between I and V. In the next subsection, we take a look at the
special case of symmetric cones, where the error bounds and the rates are more concrete.

6.1 The case of symmetric cones

A convex cone K < &£ is symmetric if K = K* and for every z,y € ri K there exists a bijective
linear map A satisfying Az = y, AKX = K. Symmetric cones are intrinsically connected to the
theory of Euclidean Jordan Algebras, see [36, 28, 29]. We now recall some basic facts about them.
Examples of symmetric cones include the second-order cone, the symmetric positive semidefinite
matrices over the reals, the nonnegative orthant and direct products of those cones. There is a
notion of rank for symmetric cones and the longest chain of faces of a symmetric cone is given by
U = rank K + 1, see [34, Theorem 14]. Finally, symmetric cones are amenable and their facial
residual functions were computed in [43, Theorem 35]. With that, the following error bound holds.

Theorem 6.5 (Theorem 37 and Remark 39 of [43]). Let K < & be a symmetric cone, V < & an
affine subspace such that I n'V # . Then, there is a positive constant k such that whenever x
and € satisfy the inequalities

dist(z, K) <e, dist(z, V) <,

we have
deps(K,V) B
dist (2, K V) < (sl + ) | D) €@ )
j=0
If K =K' x --- x K* is the direct product of s symmetric cones, we have

dpps(K, V) < min {dim(vi), Z (rank K¢ — 1), dg(K, V)} .

i=1
Next, we verify that the error bound in Theorem 6.2 is a bona fide Holderian error bound.

Proposition 6.6. Let IC and V be as in Theorem 6.5. Then, IC and V satisfy a uniform Hélderian

error bound (Definition 3.4) with exponent 2~4rrsUC. V)

Proof. Let C; = K and Cy = V. By Theorem 6.5, we have

dpps(K,V) 277 i
dist(z, K nV) < (kx| + ) Z (1r£1a<x2 dist(z, CZ)> ||t~ Vzel. (6.4)
i=0 =

Let B < £ be an arbitrary bounded set. For simplicity of notation, let d = dpps(KC, V) and ¢ be
the function such that
P(z) = max dist(z, C;) Vxel.

1<i<2
From the continuity of 1, we see that for every j € {0,...,d} there exists a positive constant &;
such that
—j —i_o—d —d —d
P(@)® " = @) @) < myp(e)® T Vee B,
where k; can be taken, for example, to be the supremum of w(-)rj =27 over B. Similarly, there
are positive constants &; and &y such that

le| < ko, 2|27 <R VeeB.
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Let rp 1= r(kp + 1)(d + 1) sup; ;k;. It follows that whenever  belongs to B the right-hand side
of (6.4) is upper bounded by kp (max;¢;<2 dist(z, Ci))rd . O

We now present convergence results for symmetric cones taking into account all we have dis-
cussed so far.

Theorem 6.7 (Convergence rate results for symmetric cones). Let K < & be a symmetric cone
and V < & be an affine space such that K n'V # .

Let {x*} be such that Assumption 4.5 is satisfied with infyas, = 0. Then, there exist M > 0 and
0 € (0,1) such that for any k = 2¢,

M k_2( if the PPS condition is not satisfied,

dist(z", K n V) <
M 0% otherwise,

(6.5)

In particular, the following holds.
(i) The rate (6.5) holds for any algorithm satisfying the assumptions of Corollary 4.12.

(1) The rate (6.5) holds MPA, POCSA (in particular, CPA) , MM (in particular, MDPA) and
AWPA (see Example 4.10).

(iii) If K = K! x -+ x K% is the direct product of s symmetric cones, we have dpps(kC, V) <
min {dim(V*), 37, (rank K — 1), dg(K,V)} .

Proof. By Proposition 6.6 a uniform Hoélderian error bound holds between IC and V, with exponent
2~deps(K, V) If either Slater’s condition or the Partial Polyhedral Slater’s condition is satisfied,
then the error bound in Proposition 6.6 becomes a Lipschitz error bound. Applying Corollary 4.9,
we obtain (6.5). Item (¢) and (i7) are consequences of Corollary 4.12. Item (ii3) follows from
Theorem 6.5. O O

Remark 6.8. Theorem 6.7 extends the main result of Drusvyatskiy, Li and Wolkowicz [26] in
several directions: from semidefinite cones to symmetric cones and from the alternating projection
algorithm to any algorithm covered by Corollary 4.9.

6.2 The exponential cone and non-Holderian error bounds

In this subsection, we analyze two error bounds associated to the exponential cone [19, 18, 47],
which is defined as follows

Kexp 3={(17,y72)€11°~3 | y>0,z>ye“"/y}u{($,yw) |2 <0,2>0,y =0},

see Remark 6.10 for a discussion on applications.

Unfortunately, Theorem 6.2 does not apply to the exponential cone, because Keyxp is not
amenable, see [40]. However, in [40], the authors proved a generalization of the results of [43]
and proved tight error bounds for the exponential cone, which we will discuss using our tools. In
what follows, let

Vi:={(2,0,2) |z,2e R} and V;:={(z,9,0)|z,yecR}.
We now consider the error bounds associated to the following feasibility problems
find p € Kexp N Vi1, (6.6)

find p € Kexp N Vo.
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For p € R?, we define d;(p) = max{dist(p, Kexp),dist(p, V;)}, for i = 1,2. We also need the
following functions.

0 if t=0, 0 ift =0,
g-oo(t) := 4 —tIn(t) if te (0,1/e?], G(t) = —ﬁ if0<t< %,
t+ % if t>1/e% T4t ift> 4.

These functions arise in the computation of the facial residual functions for the exponential cone.
From [40, Theorem 4.13] and items (a) and (c) of [40, Remark 4.14], we have that for every ball
By = {peR* | |p| < b} with b > 0, there are constants p;(b) and py(b) such that

dist(p, Kexp N V1) < p1(b)g—oo(d1(p)), Vpe€ By (6.8)

and
dist(p, Kexp N V2) < p2(b)geo(da(p)), Vp € By. (6.9)

Naturally, p; and py can be chosen so that they are monotone nondecreasing functions of b. Because
g_o and g are continuous monotone increasing functions, we have the following strict consistent
error bound functions for the problems in (6.6) and (6.7), respectively:

Dei(a,0) = p1(b)g-co(a),  Pm(a,b) = p2(b)gu(a). (6.10)

These are examples of entropic and logarithmic error bounds, respectively. We note that it was
proved in [40, Example 4.20] that no Holderian error bound holds for the problem (6.7). Further-
more, the bounds in (6.8) and (6.9) are tight up to a constant, see [40, Remark 4.14].

Using @y and @y, in (6.10) we can analyse the convergence rate of algorithms for (6.6) and
(6.7). An initial hurdle to our enterprise is that it is challenging to obtain closed-form expressions
for (<I>Ct):7 (éln): and their inverses. On the other hand, checking that @ and &y, are regularly
varying functions is straightforward and we will use the the machinery developed in Section 5.

Proposition 6.9. The following items hold for any k > 0.
(i) ®ei(-, 1) belongs to RV® with index 1 and ®1,(-, k) belongs to RV® with index 0.
(ii) (Per)®(t) = —0 and (P1,)*(t) — —c0 ast — 0.

(#i1) The convergence rate afforded by Py is almost linear in the following sense: for anyr > 0,
the following relations hold as s — +0

(iv) The convergence rate afforded by ®, is logarithmic in the following sense: there exists
m >0, 2 >0 and N such that for s = N, we have

n (i) < V@A < (1)

Proof. That item (¢) holds can be readily checked by computing the limit in (5.2). Next, we will
use Proposition 4.4 to verify item (i7). We note that the feasible sets of (6.6) and (6.7) both contain
the origin, so dist(0, Kexp N V1) = dist(0, Kexp N V2) = 0. Furthermore, both feasible regions are
contained in two-dimensional sets, so Kexp N Vi and Keyxp N Vo have empty interior. In particular,
there are points pi,ps with [p1]| < &, |[p2| < & such that p1 ¢ Kexp 0 Vi and ps ¢ Kexp 0 Va.
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(a) Log-log plot of dist(p*, Kexp n V1). Dashed (b) Plot of dist(p*, Kexp N V1), where only the
and dotted lines correspond to k=" for a few y-axis is in log scale. Functions of the form ¢~*

values of 7. appear as straight lines.

Figure 1: Behavior of CPA applied to (6.6). Starting point is (1,1,1).

This shows that x satisfies the inequality in the statement of Proposition 4.4 for both &, and ®y,,
which proves the desired limits.
We move on to item (iii) and let » > 0 be arbitrary. From item (i¢) of Theorem 5.7, we have

((Ber)®)~1(—5) = 0o(s7") as s — +00. Next, let @y (¢, x) := rt, so that ®; is a strict error bound

K

function. Following the computations after (4.20), we have ((@1):)*1(5) = ¢%/(2)  We have
rt = o(Pet(t, k)) as t — 0,. By Theorem 5.3, we have

) o (Vi@ 1))

as s — —oo. Since r is arbitrary, this completes item (7).
Finally, item (iv) follows from Theorem 5.12 because @y, corresponds to a logarithmic error
bound with exponent 1. O O

As an example, suppose that we are interested in the behaviour of the cyclic projection algo-
rithm (CPA) when applied to (6.6) and (6.7). We will denote the iterates generated by CPA by p*
and the initial iterate by p®. In the numerical experiments that follow, we use the code developed
by Friberg in order to compute the projection onto the exponential cone, see [30].

First, we consider (6.6). From item (i) of Theorem 4.13 and item (iii) of Proposition 6.9,
dist(p*, Kexp N V1) goes to 0 “almost linearly” in the sense that the rate is faster than k=" for any
r > 0. To check this empirically, we let p® = (1,1,1) and plot in Figure la the iteration number k
against dist(p”, Kexp N V1) (which can be computed exactly in this example). Both axes are in log
scale, so that k=" appears as a straight line for any r. Figure 1a shows that, as predicted by theory,
dist(p*, Kexp N V1) goes to 0 faster than any sublinear rate. Item (iii) of Proposition 6.9 also gives

a lower bound to (((I)et):)*l(fs) and tells us that this function goes to 0 slower than e™"* for
L)

any 7. Now, a lower bound to 4/ ((®et)y;

)~1(—s) does not necessarily lead to a lower bound to
dist(p*, Kexp N V1), so we cannot immediately refute the possibility that dist(p”, Kexp N V1) goes
to 0 linearly. However using a plot where only y-axis is in log-scale, we see indication that the

convergence rate of dist(p¥, Kexp n V1) is indeed not linear, see Figure 1b. In this example, it seems

that ((@et):)—l(—s) closely reflects the true convergence rate.
Next, we move on to (6.7). By item (iv) of Proposition 6.9, we have that the convergence rate
is at least logarithmic. In principle, this does not exclude the possibility that the true convergence
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Figure 2: Log-log plot of dist(p*, Keyxp N V2) for the iterates generated by CPA. Starting point is
(1,1,1). Dashed and dotted lines correspond to k=" for a few values of r.

rate of dist(pk, Kexp N Vs) is faster. However, Figure 2 suggests that dist(pk, Kexp N V2) goes to 0
slower than k=" for any r > 0, which again suggests that ((an):)_l(—s) is reflective of the true
convergence rate.

Remark 6.10 (On the exponential cone and beyond). The exponential cone is a building block
for modelling many important problems related to entropy optimization, geometric programming
and others, see [19, 18, 47]. For example, the Kullback-Leibler divergence between two nonnegative
vectors x,y € R" is defined as D(x,y) = Y, x;In(x;/y;) and its epigraph is often modelled using
n exponential cones as follows:

t=2t+- -+ tn, (_tiaxiayi)EKEXpaie17"'an7

as indicated, for example, in [18, Section 1.1] and [47, Chapter 5]. In particular, the problem of
minimizing the Kullback-Leibler divergence subject to linear constraints on x and y can be expressed
as a conic linear program (CLP) over a product of exponential cones. Notably, in [45], the authors
found that nearly one third of a library of more than 300 instances of mixed integer continuous
optimization problems can be modelled using mized integer conic formulations with exponential
cone constraints, see Table 1 therein. Certain relazations of these problems naturally lead to CLPs
over a direct product of exponential cones. Although we have discussed only the case of a single
exponential cone, our results are representative of what can happen in more general settings.
There is now a larger movement towards algorithms, software and theory for non-symmetric
cones with quite a few solvers supporting exponential cones, e.g., [35, 52, 20, 47]. These references
also discuss other convex sets involving logarithms and exponentials, such as the the log-determinant
cone in [20]. On a more speculative note, it seems likely that some intersections involving those
sets will have non-Holderian error bounds due to the presence of exponentials and logarithms.
Therefore, the techniques discussed in this section and in Section 5 will likely be applicable as well.

7 Concluding remarks

In this paper we proposed the notion of (strict) consistent error bounds. Under a strict consistent
error bound, we established convergence rates for a family of algorithms for the convex feasibility
problem (CFP). The key idea is to construct an inverse smoothing function based on the corre-
sponding consistent error bound function. Our analysis recovers several old results and also gives
several new ones. We also apply the convergence results to conic feasibility problems in order
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furnish further links between the singularity degree of the underlying problem and the conver-
gence rate of several algorithms. Another novel aspect is the usage of regularly varying functions,
which allows to draw conclusions about convergence rates while avoiding certain complicated com-
putations. To conclude this paper, we first make some comparisons to approaches based on the
KL-property.

7.1 On the Kurdyka-Lojasiewicz (KL) property and related concepts

The Kurdyka-Lojasiewicz (KL) property is an important and remarkable tool for convergence
analysis used successfully in several works [3, 4, 39], so in this subsection we make a few comparisons
in order to explain what could or what could (probably) not be done under the KL framework.

First, there is a close relation between error bounds and the KL property in the presence of
convexity. As shown in [12, Theorem 30] and [13, Theorem 5], under certain conditions on ¢, an
error bound of the form “dist(z, argmin f) < ¢(f(x))” implies that f satisfies the KL property
with a desingularization function involving ¢. Under our setting, there are several candidates for f
but they will, in all likelihood, be functions involving terms of the form max; dist(z, C;) or positive
combinations of the dist(x, C;)?, for example.

The choice of f must be typically tailored to the target algorithm. Our understanding is that
most of the algorithms in Section 4.3 would require different choices of f in order for the analysis to
be carried out under the KL framework. Finding the appropriate f can be nontrivial, as illustrated
by the merit function for the Douglas-Rachdford algorithm in [38]. It might also be impossible in
some cases. For example, based on a result by Baillon, Combettes and Cominetti [5], it is claimed
in a footnote in [13] that there is no potential function corresponding to the cyclic projection
algorithm (CPA, see Example 4.10) for more than two sets.

Once the appropriate potential function is identified, it is necessary to show that certain con-
ditions hold for the potential function along the sequence, e.g., the sufficient decrease condition
and the relative error condition, see [3, 4, 50]. These properties and Assumption 4.5 have a sim-
ilar motivation: ensuring that the sequence generated by the underlying algorithm satisfies some
desirable properties.

If a convergence rate is desired, one usually has to show that the potential function satisfies
the KL property with some KL exponent. The general KL property holds under relatively mild
conditions, but identifying the exponent (if one exists) is a more challenging task, see [39]. Due
to [13, Theorem 5], existence of a KL exponent is equivalent to the validity of a Holderian error
bound, so establishing the former or the latter are tasks of comparable difficulty. We note that
the logarithmic error bound example in (6.7) can be used to construct a function which does not
have a KL exponent, see [40, Example 4.22]. Similarly, f, in Example 5.9 has no KL exponent.
In particular, the convergence rate results based on the existence of a KL exponent do not seem
applicable to (6.7) nor to Example 5.9.

That said, it is possible to analyze convergence rates without assuming that a KL exponent
holds, see [12, Theorem 24] and [13, Theorem 14] for results which only rely on the desingular-
izing function ¢ without assumptions on the format of . And, interestingly, the existence of ¢
can, sometimes, be characterized via certain integrals involving subgradient curves, see [12, Theo-
rem 18]. However, we do not immediately see a connection between the integrals appearing in [12,
Theorem 18] and in (4.3). We do note, however, that a certain optimal desingularizing function can
be characterized via an integral, see [58, Section 3.2]. Similarly, if the best consistent error bound
function in Proposition 3.3 is strict, it can be used to construct the inverse smoothing function
®* as in (4.3). So both integrals seem to be able to capture optimal phenomena, under certain
conditions.
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Another point is that the upper bounds in [12, Theorem 24] and [13, Theorem 14] include
expressions of the format ¢(f(z¥) — &) (for some constant «), so they are still dependent on the
iterate ¥ and it might be fair to say they require some work in order to get an explicit convergence
rate in terms of k. In contrast, our upper bound on the convergence rate in (4.10) does not rely on
the iterate 2* and only uses the iteration number k itself, which gives a more explicit expression.
The drawback is that one must deal with the (@g)*l term that appears in (4.10), which is indeed
nontrival. Nevertheless, as shown in Section 5 and illustrated in Section 6.2, there are ways of
bypassing this difficulty if the consistent error bound function is a function of regular variation.

Finally, we remark that the KL inequality is, of course, heavily connected to semialgebraic
geometry [11], so one might wonder the extent to which our results could also be obtained by
imposing semialgebraic assumptions on ® or on the sets C;. Our assessment is that this seems
unlikely, because the results in Section 5 are also applicable to sets and functions involving ex-
ponentials and logarithms (as in Example 5.9 and Section 6.2), which are not semialgebraic in
general.

7.2 Future directions

At last, we mention some possible future directions. In the concluding remarks of [14], the authors
mention the characterization of convergence rates in the absence of Holderian regularity as an area
of future research. We believe that the tools developed in this paper are a step forward towards
this research goal, since Theorem 4.7 is quite general. And, indeed, we were able to reason about
convergence rates in non-Holderian settings as described in Sections 5.1 and 6.2.

In addition, it might be fair to say that regular variation has been rarely explored in the
context of optimization algorithms and we believe there is significant room for further exploration.
For example, we showed that consistent error bound functions always exist (Proposition 3.3). It
could be interesting to try to prove whether a regularly varying consistent error bound function
always exists as well. Since regular variation is connected to upper bounds for the convergence rate
(Theorem 5.7), exploring this kind of question might lead to some insights on whether arbitrary
slow convergence is possible in finite dimensions, which is another open problem mentioned in the
conclusion of [14].

Finally, we believe it would be interesting to analyse convergence rates of other algorithms
beyond projection methods. A natural candidate would be the Douglas-Rachford (DR) algorithm
[25, 41], which was also extensively analyzed in [14]. However, the convergence rate results obtained
in [14, Proposition 4.2] require not only an error bound condition on the underlying sets, but also
a semialgebraic assumption. This suggests that it might be hard to obtain convergence rates for
the DR algorithm purely based on consistent error bounds. On the other hand, damped versions
of the DR algorithm (see [14, Section 5] or [23, Equation (25)]) might be more amenable to our
techniques. In fact, sublinear rates were proved in [14, Theorem 5.2] when the underlying error
bound is Holderian without the need of imposing extra assumptions, see also [14, Remark 5.3]. In
view of this, we believe it is likely that a result analogous to Theorem 4.7 and suitable for damped
DR algorithms holds.
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A

Proof of Lemma 4.2

Proof. The fact that f~(0) = 0 follows from f(0) = 0 and the definition (4.2). We also note that in
(4.2), if we increase s, the set after the ‘inf’ potentially shrinks, so f~ is monotone nondecreasing.
Next, we prove each item.

(4)

(iv)

Fix any s € (0, sup f). Suppose that f~(s) = 0. By the definition (4.2), given any €, > 0,
there exists t; € [0, €x] such that f(¢;) > s. Consequently, there exists a sequence t;, — 0
with f(tx) = s > 0. This together with f(0) = 0 contradicts the (right)-continuity of f at 0,
and thus proves (7).

Let s = 0,t = 0 be such that s < f(¢). Since f is monotone increasing, sup f is never
attained, which implies 0 < s < f(¢) < sup f. Furthermore, by the definition (4.2), we have
f(s) <t

Let s = 0,t = 0 be such that s < supf and f(¢) < s. By definition, f~(f(t)) :=
inf{u>=0: f(u) = f(t)}, therefore f~(f(¢)) <t. On the other hand, the strict monotonicity
of f implies that there is no w < t with f(u) > f(¢). This implies f~(f(¢)) = ¢ and thus
F=(f(t)) = t. Together with the monotonicity of f~, we obtain ¢t = f~(f(t)) < f~(s).

Suppose that there exists some 5 € (0, sup f) such that f~ is not continuous at s. Since
f~ is monotone, both the left-sided limit f~(5—) and the right-sided limit f~(s4) exist and
f7(5—) < f~(5+). Fix any t € (f~(5—), f~(5+)). From the monotonicity of f—, there
exists € > 0 such that whenever sq, so satisfy 0 < s1 < 5 < s9 < sup f we have

f(s1)<t—e<t4+e< f(s2).

We now show that f(¢) = 5. Suppose that f(t) # 5. Then either f(t) < 5 or f(t) > s If
ft) < s, let s = (f(t)+5)/2 € (f(t), s). Thus, we know from item (ii7) that f~(s1) = ¢,
which contradicts f~(s1) <t —e.

If f(t) > s, let so = (f(t)+3)/2€ (S, f(t)). Then, from item (i7), we have f~(s2) < ¢, which
contradicts ¢ + € < f~(s2). This proves f(t) = 5. The arbitrariness of ¢ € (f~(5—), f~(5+))
contradicts the strict monotonicity of f. Consequently, f~ is continuous on (0, sup f).

O O
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