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Abstract

We introduce the notion of consistent error bound functions which provides a unifying

framework for error bounds for multiple convex sets. This framework goes beyond the clas-

sical Lipschitzian and Hölderian error bounds and includes logarithmic and entropic error

bounds found in the exponential cone. It also includes the error bounds obtainable under

the theory of amenable cones. Our main result is that the convergence rate of several projec-

tion algorithms for feasibility problems can be expressed explicitly in terms of the underlying

consistent error bound function. Another feature is the usage of Karamata theory and func-

tions of regular variations which allows us to reason about convergence rates while bypassing

certain complicated expressions. Finally, applications to conic feasibility problems are given

and we show that a number of algorithms have convergence rates depending explicitly on the

singularity degree of the problem.

Key words: error bounds; consistent error bound; convergence rate; amenable cones; regular vari-

ation; Karamata theory.

1 Introduction

In this paper, we consider the following convex feasibility problem (CFP)

find x P C :“
m
č

i“1

Ci, (CFP)

where C1, ¨ ¨ ¨ , Cm are closed convex sets contained in a finite dimensional real vector space E
with C ‰ H. Convex feasibility problems have been extensively studied in connection to various

applications, see [2, 6, 15, 22, 26, 49]. Then, given some fixed algorithm for solving (CFP), the

following two questions are of natural interest.

p1q Does the algorithm converge to a point in C?

p2q If it indeed converges, how fast is the convergence?

For question (1), convexity ensures that many algorithms converge without further assumptions

on the Ci, see, for example, section 3 of [6] and [8]. On the other hand, the answer to question (2)

does not generally follow from convexity alone.

In order to pin down the convergence rate, in many cases it is necessary to assume that some

error bound is known. Informally, an error bound is some inequality that relates the individual
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distances to the sets Ci to the distance to their intersection C. For more information on error

bounds in general settings, see [51, 37].

We now present a simple example of error bound. Given x P E , let distpx, Ciq denote the

distance from x to Ci. Suppose that, for every bounded set B Ď E , there exists some θB ą 0 such

that

distpx, Cq ď θB max
1ďiďm

distpx, Ciq @ x P B. (1.1)

In this case, we say that a (local) Lipschitzian error bound holds for (CFP). The property given

in (1.1) is also called bounded linear regularity, see [7]. Under (1.1), many common projection

methods are known to converge linearly, see [6, 8].

If we replace the distpx,Ciq by distpx,Ciq
γ in (1.1) for some γ P p0, 1s, we obtain what is called

a Hölderian error bound. Hölderian error bounds typically hold under milder conditions than

Lipschitzian bounds, although it might be hard to estimate the exponent γ. A notable exception

is the Hölderian error bound by Sturm for semidefinite programs [56], where the exponent can be,

in principle, computed via a technique called facial reduction.

Hölderian bounds usually only lead to sublinear convergence rates, with the precise rate often

depending on the exponent, e.g., Corollary 4.6 in [15]. It might be fair to say that results such as

this are rarer in comparison to convergence rates obtained under (1.1). Beyond Hölderian bounds

there are even fewer results.

In this paper, we take a bird’s eye view and propose the notion of consistent error bound

functions (see Definition 3.1) which provides a unifying framework for error bounds. Informally, a

consistent error bound function is a two-parameter function Φ satisfying some reasonable properties

and the following error bound condition

distpx, Cq ď Φ

ˆ

max
1ďiďm

distpx, Ciq, }x}

˙

@ x P E . (1.2)

The first argument to Φ is “max1ďiďm distpx, Ciq” which means that the error bound must take

into account the individual distances to the sets Ci. The second argument is “}x}” which reflects

the fact that many error bounds correspond to inequalities that are only valid after a bounded

subset is specified. Since we will impose coordinate-wise monotonicity of Φ, under (1.2), we have

distpx, Cq ď Φ

ˆ

max
1ďiďm

distpx, Ciq, ρ

˙

@ x, }x} ď ρ,

if ρ ą 0 is some fixed constant. An important property is that consistent error bound functions

always exist whenever (CFP) is feasible (see Proposition 3.3).

One of the main results of this paper is that a number of methods have convergence rates

that can be written in terms of Φ, see Theorem 4.7. This will allow us to cover several previous

results and also prove new ones. For example, we will give a broad extension of the results of [26]

and connect the singularity degree of certain conic feasibility problems to the convergence rates

of several methods, see Section 6. Admittedly, for a general consistent error bound function, the

expressions governing the convergence rate can be complicated, so we show in Section 5 how to

use some tools from Karamata theory in order to reason about those rates while avoiding certain

complicated expressions.

1.1 Our contributions

Our contributions are as follows:

• We introduce a new notion of (strict) consistent error bound functions (Definition 3.1), which

provides a unifying framework for error bounds for multiple convex sets, and includes error
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bounds beyond classical Lipschitzian and Hölderian error bounds (Theorem 3.5). We also

show that a “best” consistent error bound function always exists for any finite family of

convex sets having non-empty intersection (Proposition 3.3).

• Under a strict consistent error bound, we prove convergence rates for a number of algorithms

fitting an abstract framework which includes many projection algorithms, see Theorems 4.7

and 4.13. In particular, under Hölderian error bounds, we will also derive precise sublinear

rates for those algorithms, see also Corollaries 4.9 and 4.12.

• We show how Karamata theory and functions of regular variation can be used to reason about

the convergence rates obtained in Theorem 4.7 without the need of evaluating the integrals

appearing therein, see Theorems 5.3, 5.7 and 5.12. This will be used to analyze logarithmic

and entropic error bounds appearing in some problems associated to the exponential cone,

see Section 6.2. In particular, we show that the convergence rate associated to the entropic

error bound has an “almost linear” behavior, see Proposition 6.9. We also provide a thorough

analysis of logarithmic error bounds and corresponding convergence rates, see Section 5.1.

• We also specialize our discussion to conic linear feasibility problems where the underlying

cone is amenable [43]. In this case, we prove that the convergence rates of several algorithms

depend on the singularity degree of the problem (see Section 6), which is a quantity related

to the facial reduction algorithm [16, 53, 57]. In particular, when the cone is symmetric,

we are able to extend a previous result of Drusvyatskiy, Li and Wolkowicz [26] along several

directions, see Theorem 6.7.

The rest of the paper is organized as follows. In Section 2, we introduce the notation appearing

in the paper. In Section 3, we introduce the notions of (strict) consistent error bounds and corre-

sponding (strict) consistent error bound functions, and discuss the relationship to Hölderian error

bounds. In Section 4, under a strict consistent error bound, we establish the convergence analysis

for projection algorithms for convex feasibility problems. Section 5 shows how to use Karamata

theory to analyze convergence rates. Finally, applications to conic feasibility problems are dis-

cussed in Section 6. In particular, Section 6.2 discusses non-Hölderian error bounds appearing in

the study of the exponential cone. Final remarks and future directions are presented in Section 7.

2 Notation

Let IR and IR` denote the set of real numbers and nonnegative numbers, respectively. Let E denote

a finite-dimensional real vector space equipped with norm }¨} induced by some inner product x¨, ¨y.

Given x P E and a closed convex set C Ď E , we define

distpx, Cq :“ min
yPC

}x´ y}

and let PCpxq denote the projection of x on the set C, i.e., PCpxq :“ arg minyPC }x ´ y}. We

will denote by riC,CK, spanC the relative interior, orthogonal complement and linear span of C,

respectively. If C is a cone, we will write C˚ for its dual.

3 Consistent error bound functions

Partly motivated by the error bound for amenable cones in [43], we propose the following notion.
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Definition 3.1 (Consistent error bound functions). Let C1, . . . , Cm Ď E be closed convex sets with

C :“
Şm
i“1 Ci ‰ H. A function Φ : r0,8q ˆ r0,8q Ñ r0,8q is said to be a consistent error bound

function for C1, . . . , Cm if:

piq the following error bound condition is satisfied:

distpx, Cq ď Φ

ˆ

max
1ďiďm

distpx,Ciq, }x}

˙

@ x P E ; (3.1)

piiq for any fixed b ě 0, the function Φp¨, bq is monotone nondecreasing on r0,8q, right-continuous

at 0 and satisfies Φp0, bq “ 0;

piiiq for any fixed a ě 0, the function Φpa, ¨q is monotone nondecreasing on r0,8q.

In addition, if for every b ą 0, Φp¨, bq is monotone increasing on r0,8q then Φ is said to be a

strict consistent error bound function. We say that (3.1) is the (strict, if Φ is strict) consistent

error bound associated to Φ.

Remark 3.2. Definition 3.1 admits a number of equivalent variations. For example, the individual

distances to the sets Ci are aggregated using the max function (i.e., 8-norm), however using the

sum (i.e., 1-norm) or the square root of the sums-of-squares (i.e., 2-norm) would also be reasonable

choices. Because of the equivalence of norms in real finite-dimensional spaces, these variations do

not seem to affect significantly the error bound from an asymptotic point of view.

Next we show that every C1, . . . , Cm with non-empty intersection admit a consistent error

bound function.

Proposition 3.3 (The best consistent error bound function). Let C1, . . . , Cm Ď E be closed convex

sets with C :“
Şm
i“1 Ci ‰ H. There exists a consistent error bound function Φ for C1, . . . , Cm with

the property that if Φ̂ is any other consistent error bound function for C1, . . . , Cm we have

Φpa, bq ď Φ̂pa, bq, @ a, b P r0,8q. (3.2)

In particular, Φ is unique.

Proof. Let a and b be in r0,8q and consider the problem below parametrized by a and b.

sup
y

distpy, Cq (Upa, bq)

subject to max
1ďiďm

distpy, Ciq ď a,

}y} ď b.

We define Φ as follows

Φpa, bq :“

#

optimal value of (Upa, bq) if (Upa, bq) is feasible

0 otherwise.

Because of the norm constraint in (Upa, bq), the feasible region of (Upa, bq) is compact although it

can be empty. Since distp¨, Cq is a continuous function, Φpa, bq is finite and nonnegative. Increasing

either a or b potentially enlarges the feasible region of (Upa, bq), so Φp¨, bq and Φpa, ¨q are monotone

nondecreasing. Furthermore, if a “ 0, then the only feasible solutions to (Upa, bq) (if any) must

be elements of C, so Φp0, bq “ 0 for every b.
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Next, let x P E , a “ max1ďiďm distpx, Ciq and b “ }x}. Then, y “ x is feasible for (Upa, bq)

and we have

distpx, Cq ď Φp max
1ďiďm

distpx, Ciq, }x}q.

Therefore, except for the continuity requirement, Φ satisfies items piq, piiq, piiiq. So let b P r0,8q

and we will check that Φp¨, bq is (right-)continuous at 0. In order to do that, it suffices to show

that for any sequence taku Ď r0,8q with ak Ñ 0, we have Φpak, bq Ñ 0. Let taku be any such

sequence. First, for the pak, bq such that Upak, bq is infeasible, we have Φpak, bq “ 0.

Next, we consider the pairs pak, bq such that Upak, bq is feasible. If there are only finitely many

such pak, bq, we must have Φpak, bq Ñ 0. So, suppose that there are infinitely many such pak, bq

and, for convenience, denote the sequence of the corresponding ak by tâku. We have âk Ñ 0, since

tâku is a subsequence of taku.

For each pair pâk, bq, the feasible region of Upâk, bq is compact, so there exists an optimal

solution yk satisfying

distpyk, Cq “ Φpâk, bq, max
1ďiďm

distpyk, Ciq ď âk, }yk} ď b. (3.3)

Consequently, to show Φpâk, bq Ñ 0, it suffices to prove distpyk, Cq Ñ 0. Suppose that distpyk, Cq Ñ

0 does not hold. Then there exist some δ ą 0 and a subsequence tykju such that distpykj , Cq ě δ

for all j. Since all the yk are contained in a ball of radius b, by passing to a further subsequence if

necessary, we may assume that ykj has a limit y. By (3.3) and the continuity of distp¨, Ciq we have

distpy, Ciq “ 0 for all i, which implies that y P C. Furthermore, because distp¨, Cq is continuous,

we have

distpykj , Cq Ñ distpy, Cq “ 0,

which contradicts the fact that distpykj , Cq ě δ ą 0, for every j. This proves Φpâk, bq Ñ 0 for the

pairs pâk, bq such that Upâk, bq is feasible. Accordingly, we must have Φpak, bq Ñ 0. The (right-)

continuity of Φp¨, bq at 0 then follows from the arbitrariness of taku.

Finally, in order to show that (3.2) holds, let Φ̂ be another consistent error bound function for

C1, . . . , Cm. For the sake of obtaining a contradiction, suppose that there exist a, b such that

Φpa, bq ą Φ̂pa, bq,

With that, the corresponding problem (Upa, bq) must be feasible, because otherwise we would have

Φpa, bq “ 0. Then, since Φpa, bq is the optimal value of (Upa, bq), there exists a feasible solution

y such that Φpa, bq ě distpy, Cq ą Φ̂pa, bq. However,

distpy, Cq ď Φ̂p max
1ďiďm

distpy, Ciq, }y}q ď Φ̂pa, bq,

where the second inequality follows because y is feasible for (Upa, bq) and Φ̂ satisfies items piiq and

piiiq of Definition 3.1. Together with distpy, Cq ą Φ̂pa, bq, we obtain a contradiction. This shows

Φ satisfies (3.2) and that Φ must be the unique consistent error bound function for which (3.2)

holds.

We call the function defined in Proposition 3.3 the best consistent error bound function for

C1, . . . , Cm and, in a sense, reflects the tightest possible error bound one can get for the Cis. We

remark that any consistent error bound function Φ can be made strict as follows. Let κ ą 0 be a

constant and let

Φ̂pa, bq :“ Φpa, bq ` κa, @ a, b P r0,8q.

Then, Φ̂ is a consistent error bound function for the same sets that is also strict. Therefore,

Proposition 3.3 also implies the existence of strict consistent error bound functions.
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3.1 Hölderian and Lipschitzian error bounds

It turns out that consistent error bounds include a large variety of existing error bounds. First, we

will show that Hölderian error bounds are covered. Other examples of error bounds will be seen

in Section 5.1, Section 6.1 and Section 6.2. We recall the following definition.

Definition 3.4 (Hölderian error bound). The sets C1, . . . , Cm Ď E with C :“
Şm
i“1 Ci ‰ H are

said to satisfy a Hölderian error bound if for every bounded set B Ď E there exist some θB ą 0

and an exponent γB P p0, 1s such that

distpx, Cq ď θB max
1ďiďm

distγB px, Ciq @ x P B.

If we can take the same exponent γB “ γ P p0, 1s for all B, then we say that the bound is uniform.

Furthermore, if the bound is uniform with γ “ 1, we call it a Lipschitzian error bound.

Theorem 3.5 (Characterization of Hölderian error bounds). Let C1, . . . , Cm Ď E be convex sets

with C :“
Şm
i“1 Ci ‰ H.

piq C1, . . . , Cm satisfy a Hölderian error bound if and only if there are monotone nonincreasing

γ : r0,8q Ñ p0, 1s and monotone nondecreasing ρ : r0,8q Ñ p0,8q such that the following

function is a strict consistent error bound function for C1, . . . , Cm:

Φpa, bq :“ ρpbqmaxpaγpbq, aq. (3.4)

piiq C1, . . . , Cm satisfy a uniform Hölderian error bound with exponent γ P p0, 1s if and only if

there exists a monotone nondecreasing ρ : r0,8q Ñ p0,8q such that the following function is

a strict consistent error bound function for C1, . . . , Cm:

Φpa, bq :“ ρpbqaγ . (3.5)

Proof. In what follows, we let d be the function such that

dpxq “ max
1ďiďm

distpx, Ciq.

First we prove item piq. Suppose that C1, . . . , Cm satisfy a Hölderian error bound. Let B be any

fixed bounded set. From Definition 3.4, there exist θB ą 0 and an exponent γB P p0, 1s such that

distpx, Cq ď θBdpxq
γB @ x P B. (3.6)

Equivalently, we have

distpx, Cq ď θB maxpdpxqγB , dpxqq @ x P B. (3.7)

The equivalence between (3.6) and (3.7) is as follows. If γB P p0, 1s is an exponent such that (3.6)

holds for some constant θB , then (3.7) holds. Conversely, suppose that (3.7) holds for some γB and

some constant θB . Then (3.6) holds with the same γB and constant θB maxp1, supxPB dpxq
1´γB q.

With that in mind, given a bounded set B, we say that γ is an admissible exponent for B if

there exists a constant θB such that (3.6) or (3.7) holds. Next, we verify the following property:

if γ is an admissible exponent for B, then any γ̂ P p0, γq is an admissible exponent for B. This is

because

maxpaγ , aq ď maxpaγ̂ , aq @a ě 0.

For r ą 0, we let γr denote the supremum of all admissible exponents for Ur – ty : }y} ď ru.

Then, γr has the following property:
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paq any 0 ă γ ă γr is an admissible exponent for Ur, although γr itself might not necessarily be

admissible.

We will now construct a sequence of admissible exponents γ̂k for the neighbourhoods Uk together

with constants θk, for all positive integer k. First, we let γ̂1 to be any admissible exponent for U1

such that γ̂1 ă γ1 together with a constant θ1 ě 1 such that (3.7) holds with γ “ γ̂1 and B “ U1.

For k ą 1 we proceed as follows. We let γ̂k be any admissible exponent for Uk satisfying

γ̂k ă mintγ̂k´1, γku,

which is possible in view of property paq.

Then, we select θk such that (3.7) holds for γ “ γ̂k, B “ Uk and such that

θk ě θk´1,

which is possible because if (3.7) is satisfied for some constant θB , it is still satisfied for any constant

larger than θB .

Now, we define functions γ : r0,8q Ñ p0, 1s and ρ : r0,8q Ñ p0,8q that interpolate the values

of γ̂k and θk. For that, given a nonnegative real a, we define ras to be smallest integer satisfying

a ď ras. Then, we define

γpaq–

#

γ̂ras if a ą 0

γ̂1 if a “ 0
, ρpbq–

#

θrbs if b ą 0

θ1 if b “ 0
.

By the construction of γ̂k and θk, both γ and ρ are, respectively, monotone nonincreasing and

monotone nondecreasing. Next, we let Φ be such that

Φpa, bq :“ ρpbqmaxpaγpbq, aq.

Let a, b P r0,8q be arbitrary. The monotonicity of γ and ρ, and γp¨q P p0, 1s imply that Φp¨, bq

and Φpa, ¨q are monotone increasing and monotone nondecreasing, respectively. For any fixed

b P r0, 8q, function Φp¨, bq is right-continuous at 0. We also have Φp0, bq “ 0. Furthermore, if

x P E arbitrary, then x P Ur}x}s, so

distpx, Cq ď ρp}x}qmaxpdpxqγp}x}q, dpxqq “ Φpdpxq, }x}q,

therefore, Φ is indeed a strict consistent error bound function.

For the converse, we suppose that (3.4) is satisfied and we need to show that C1, . . . , Cm satisfy

a Hölderian error bound. Let B a bounded set and let r be the supremum of the norm of the

elements of B. Then, B is contained in a ball of radius r. Therefore, for x P B we have

distpx, Cq ď Φpdpxq, }x}q

“ ρp}x}qmaxpdpxqγp}x}q, dpxqq

ď ρprqmaxpdpxqγp}x}q, dpxqq,

where the last inequality follows from the monotonicity of ρ. By the equivalence between (3.6) and

(3.7), we conclude that a Hölderian error bound holds. This concludes the proof of piq.

We move on to piiq. First, we suppose that a uniform Hölderian error bound with exponent γ

holds for C1, . . . , Cm. Let ρpbq be the solution of the following optimization problem:

ρpbq :“ arg min
αě1

α

s.t. distpy, Cq ď α

ˆ

max
1ďiďm

distpy, Ciq

˙γ

@ y satisfying }y} ď b.
(3.8)
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From the definition of Hölderian error bound (Definition 3.4) the feasible set of (3.8) is nonempty

for every b ě 0. Furthermore, the feasible set of (3.8) is closed and convex. Therefore, the solution

of (3.8) is unique. Consequently, ρpbq is well-defined and ρ is monotone nondecreasing. Finally,

we have

distpx, Cq ď ρp}x}q

ˆ

max
1ďiďm

distpx, Ciq

˙γ

, @ x P E .

By the monotonicity of ρp¨q, we conclude that Definition 3.1 is satisfied for Φpa, bq “ ρpbq aγ .

For the converse, suppose that (3.5) holds. Let B a bounded set and let r be the supremum of

the norm of the elements of B. Then, B is contained in a ball of radius r. Therefore, for x P B we

have

distpx, Cq ď φpdpxq, }x}q “ ρp}x}qdpxqγ ď ρprqdpxqγ ,

where the last inequality follows from the monotonicity of ρ.

Example 3.6. It is known that certain constraint qualifications imply Lipschitzian error bounds,

see [7, Corollary 3] or [8, Theorem 3.1]. For conditions ensuring the existence of Hölderian error

bounds see [56, Theorem 3.3] (linear matrix inequalities), [43, Theorem 37] (symmetric cones),

[15, Theorem 3.6] (basic semialgebraic convex sets). These references all include information on

how to estimate the exponent of the error bound, which can be quite nontrivial in more general

settings. For more on this difficulty, see the comments after Theorems 11 and 13 in [51].

4 Convergence analysis under consistent error bounds

In this section, we show how to connect consistent error bound functions to the convergence rate

of a number of algorithms for solving (CFP). Before proceeding, we introduce a key tool for our

analysis - inverse smoothing functions constructed from strict consistent error bound functions.

4.1 Inverse smoothing function from strict consistent error bound func-

tion

Let Φ be a strict consistent error bound function as in Definition 3.1. Then, for κ ą 0, we define

φκ,Φ as follows:

φκ,Φptq :“
´

Φp
?
t, κq

¯2

, t ě 0. (4.1)

The following lemma follows directly from the properties of Φ in Definition 3.1.

Lemma 4.1. Let φκ,Φ be defined as in (4.1). Then φκ,Φp0q “ 0, φκ,Φp¨q is monotone increasing

on r0,8q and right-continuous at 0. Moreover, we have φκ1,Φptq ď φκ2,Φptq for all t whenever

κ1 ď κ2.

Before proceeding, we define the generalized inverse function for any monotone increasing

function f : IR` Ñ IR` as:

f´psq :“ inf tt ě 0 : fptq ě su , 0 ď s ă sup f, (4.2)

see [27] for more details on generalized inverses. Any monotone increasing function has an inverse

f´1 in the usual sense, but f´ fixes a number of deficiencies that f´1 might have when f is

not continuous everywhere. However, if f is both continuous and monotone increasing, then

f´ “ f´1, see [27, Remark 1]. The proof of the following lemma about the properties of f´ is

given in Appendix A.
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Lemma 4.2 (Properties of the generalized inverse). Let f : IR` Ñ IR` be a monotone increasing

function with fp0q “ 0. Define f´ as in (4.2). Then, f´ is monotone nondecreasing, f´p0q “ 0

and the following statements hold:

piq if f is (right-)continuous at 0, then f´psq ą 0 for all s P p0, sup fq;

piiq for any s ě 0, t ě 0 such that s ď fptq holds, we have s ă sup f and f´psq ď t;

piiiq for any s ě 0, t ě 0 such that s ă sup f and fptq ă s holds, we have t ď f´psq;

pivq f´ is continuous on p0, sup fq.

Next, we will introduce the ace of our toolbox: the so-called inverse smoothing function asso-

ciated to Φ. For κ ą 0 and for φκ,Φ as in (4.1) we define Φ♠
κ as

Φ♠
κ ptq :“

ż t

δ

1

φ´κ,Φpsq
ds, t P p0, supφκ,Φq , (4.3)

where δ P p0, supφκ,Φq is some fixed number1. We note that Φ♠
κ is well-defined thanks to

Lemma 4.1 and Lemma 4.2 piq and pivq.

The properties of Φ♠
κ are as follows.

Proposition 4.3 (The properties of Φ♠
κ ). Let Φ♠

κ be defined as in (4.3) with φκ,Φ defined as in

(4.1). Then Φ♠
κ is concave, monotone increasing and continuously differentiable on p0, supφκ,Φq.

Proof. From Lemma 4.1 and Lemma 4.2 piq, pivq, we see that φ´κ,Φ is continuous on p0, supφκ,Φq

and positive. Therefore, Φ♠
κ is monotone increasing and continuously differentiable with pΦ♠

κ q
1ptq “

1
φ´κ,Φptq

for t P p0, supφκ,Φq. This together with the monotonicity of φ´κ,Φ from Lemma 4.2 implies

that pΦ♠
κ q
1 is monotone nonincreasing on p0, supφκ,Φq, which shows that Φ♠

κ is concave. For the

sake of self-containment, we show this last assertion. For any fixed x, y P p0, supφκ,Φq, we define

θptq :“ Φ♠
κ px ` tpy ´ xqq. With that, we have Φ♠

κ pyq ´ Φ♠
κ pxq “ θp1q ´ θp0q and, by integration,

we obtain

Φ♠
κ pyq ´ Φ♠

κ pxq

“

ż 1

0

pΦ♠
κ q
1 px` tpy ´ xqq py ´ xq dt

“

ż 1

0

“

pΦ♠
κ q
1 px` tpy ´ xqq ´ pΦ♠

κ q
1pxq

‰

py ´ xq dt`

ż 1

0

pΦ♠
κ q
1pxqpy ´ xq dt

ď pΦ♠
κ q
1pxqpy ´ xq,

where the last inequality follows from the monotonicity of pΦ♠
κ q
1. Therefore, Φ♠

κ is concave. This

completes the proof.

Next, we take a look at the behavior of Φ♠
κ ptq as tÑ 0.

Proposition 4.4 (Asymptotical properties of Φ♠
κ ). Let Φ♠

κ be defined as in (4.3) with φκ,Φ
defined as in (4.1). Suppose that C is not the whole space. Let x0 R C and suppose that

κ ě maxtdistp0, Cq, }x0}u. Then, Φ♠
κ ptq Ñ ´8 as tÑ 0.

1Any δ in p0, supφκ,Φq is fine, so we will not include δ in the notation for Φ♠
κ ptq. The only place where we make

a specific choice of δ is in the proof of Corollary 4.9. See also Remark 4.8.
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Proof. Let Bκ :“ tx P E | }x} ď κu and let d be the function such that

dpxq “ max
1ďiďm

distpx, Ciq.

From (3.1) and the fact that C Ď Ci for all i, we have

dpxq ď distpx, Cq ď Φ pdpxq, κq @ x P Bκ.

Then, from (4.1) we have

dpxq2 ď Φpdpxq, κq2 “ φκ,Φpdpxq
2q @ x P Bκ. (4.4)

Next, we examine the image of dp¨q2 restricted to Bκ. Since κ ě maxtdistp0, Cq, }x0}u, we have

x0 P Bκ and PCp0q P Bκ. Let µ :“ dpx0q2. Since dp¨q2 is a continuous function, by the intermediate

value theorem, the image of dp¨q2 restricted to Bκ contains the interval r0, µs. We also have µ ‰ 0,

because x0 R C. In view of (4.4), we have

s ď φκ,Φpsq, @ s P r0, µs.

Let τ “ minpµ, δq, where δ comes from the definition of Φ♠
κ in (4.3). From Lemma 4.2 piiq we

obtain

φ´κ,Φpsq ď s, s P p0, τq. (4.5)

Therefore, the following inequality holds for t P p0, τq

´Φ♠
κ ptq “

ż δ

t

1

φ´κ,Φpsq
ds ě

ż τ

t

1

φ´κ,Φpsq
ds ě

ż τ

t

1

s
ds “ ln τ ´ ln t.

This shows that Φ♠
κ ptq Ñ ´8 as tÑ 0 and completes the proof.

4.2 Convergence analysis of sequences

In this section, we make use of the inverse smoothing function discussed in Section 4.1 to analyze

the convergence properties of sequences satisfying the Assumption 4.5 below. Later, in Section 4.3,

we show that several algorithms generate sequences of iterates satisfying Assumption 4.5.

Assumption 4.5. Let txku Ď E be a sequence such that the following conditions hold.

piq Fejér monotonicity condition. For any fixed c P C, it holds that

}xk`1 ´ c} ď }xk ´ c} @ k. (4.6)

piiq Sufficient decrease condition. There exist some positive integer ` and nonnegative sequence

taku with
ř8

k“0 ak “ 8 such that

dist2
pxk, Cq ě dist2

pxk``, Cq ` ak max
1ďiďm

dist2
pxk, Ciq @ k. (4.7)

The Fejér monotonicity assumption appears frequently in the study of convex feasibility prob-

lems, see [6, Theorem 2.16]. The sufficient decrease condition is inspired by similar conditions

appearing in [46, 13]. However, we allow the possibility of having decrease after a fixed number of

iterations instead of forcing decrease after every iteration.

Proposition 4.6. Let Assumption 4.5 hold. Then txku converges to some point in C.
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Proof. Since
ř8

k“0 ak “ 8 holds, there exists some integer k0 P r0, `´ 1s such that

8
ÿ

i“0

ak0`i` “ 8. (4.8)

For any N ą 0, summing both sides of (4.7) for k “ k0 ` i` with i “ 0, . . . , N ´ 1, we obtain

dist2
pxk0 , Cq ě dist2

pxk0 , Cq ´ dist2
pxk0`N`, Cq

“

N´1
ÿ

i“0

dist2
pxk0`i`, Cq ´ dist2

pxk0`pi`1q`, Cq

ě

N´1
ÿ

i“0

ak0`i` max
1ďjďm

dist2
pxk0`i`, Cjq.

(4.9)

Letting N Ñ8 in (4.9), we then have
ř8

i“0 ak0`i` max1ďjďm dist2
pxk0`i`, Cjq ă 8. This, together

with (4.8), implies that there exists a subsequence txkiu such that

max
1ďjďm

distpxki , Cjq Ñ 0 when iÑ8.2

Therefore, distpxki , Cjq Ñ 0 for all j “ 1, . . . ,m. On the other hand, we know from the Fejér

monotonicity of txku in (4.6) that txku is bounded. Thus, there exists a subsequence of txkiu

which converges to some point x˚ P E . Without loss of generality, we still let txkiu denote this

subsequence so that limiÑ8 }x
ki ´ x˚} “ 0. Then, distpxki , Cjq Ñ 0 and the closedness of the Cj

imply that x˚ P
Şm
i“1 Cj “ C. Thus, using again the Fejér monotonicity of txku, we obtain

}xk`1 ´ x˚} ď }xk ´ x˚} @ k,

which together with limiÑ8 }x
ki ´ x˚} “ 0 gives xk Ñ x˚ P C.

Now we establish our convergence rate under a strict consistent error bound as in Definition 3.1.

Theorem 4.7. Suppose that Assumption 4.5 holds. Let Φ be a strict consistent error bound

function for C1, . . . , Cm as in Definition 3.1. Let Φ♠
pκ be defined as in (4.3) with pκ such that

pκ ě }x0} ` 2 distp0, Cq. Then, the convergence of txku is either finite or

distpxk, Cq ď

g

f

f

epΦ♠
pκ q
´1

´

Φ♠
pκ pdist2

px0, Cqq ´
bk´1
ÿ

i“0

ak0`i`

¯

@ k ě 2` (4.10)

holds for any integer k0 P r0, `´ 1s and bk :“ k´`´pk mod `q
` .

Proof. First, the convergence of sequence txku follows from Proposition 4.6. Note from (4.6) that

if there exists some sk such that distpx
sk, Cq “ 0, we have xk “ x

sk for all k ě sk. Consequently, in

this case, txku converges finitely and we are done.

Next, suppose that the convergence is not finite. Then, distpxk, Cq ą 0 holds for all k. Notice

that pκ ą 0; otherwise we have distpx0, Cq “ 0. Let c˚ :“ arg mincPC }c}. We then see from the

Fejér monotonicity of txku ((4.6) in Assumption 4.5) that

}xk ´ c˚} ď }x0 ´ c˚} @ k,

2The relevant fact is that if tuku, tvku are nonnegative sequences with
ř

uk “ 8 and
ř

ukvk ă 8, then

lim inf vk “ 0.
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which gives }xk} ď }c˚} ` }x0 ´ c˚} ď pκ for all k. This together with Definition 3.1 (i), the

definition of φκ,Φ in (4.1) and Lemma 4.1 implies that for all k,

dist2
pxk, Cq ď

´

Φ
`

max
1ďiďm

distpxk, Ciq, }x
k}
˘

¯2

“ φ}xk},Φp max
1ďiďm

dist2
pxk, Ciqq ď φ

pκ,Φp max
1ďiďm

dist2
pxk, Ciqq.

This combined with Lemma 4.1 and Lemma 4.2 piiq implies that dist2
pxk, Cq P p0, supφ

pκ,Φq and

φ´
pκ,Φ

`

dist2
pxk, Cq

˘

ď max
1ďiďm

dist2
pxk, Ciq @ k. (4.11)

Now we combine (4.3), (4.7) and (4.11), use the concavity and differentiability of Φ♠
pκ from Propo-

sition 4.3 and obtain

Φ♠
pκ

`

dist2
pxk, Cq

˘

´ Φ♠
pκ

`

dist2
pxk``, Cq

˘

ě pΦ♠
pκ q
1pdist2

pxk, Cqq
`

dist2
pxk, Cq ´ dist2

pxk``, Cq
˘

“
1

φ´
pκ,Φpdist2

pxk, Cqq

`

dist2
pxk, Cq ´ dist2

pxk``, Cq
˘

ě
1

max1ďiďm dist2
pxk, Ciq

`

dist2
pxk, Cq ´ dist2

pxk``, Cq
˘

ě ak.

(4.12)

Moreover, fixing any integer k0 P r0, ` ´ 1s, for any N ą 0, summing both sides of (4.12) for

k “ k0 ` i` with i “ 0, . . . , N ´ 1, we further obtain

Φ♠
pκ

`

dist2
pxk0 , Cq

˘

´ Φ♠
pκ

`

dist2
pxk0`N`, Cq

˘

“

N´1
ÿ

i“0

Φ♠
pκ

`

dist2
pxk0`i`, Cq

˘

´ Φ♠
pκ

´

dist2
pxk0`pi`1q`, Cq

¯

ě

N´1
ÿ

i“0

ak0`i`.

This together with the strict monotonicity and continuity on p0, supφ
pκ,Φq of Φ♠

pκ (thus invertible),

dist2
pxk, Cq P p0, supφ

pκ,Φq and the Fejér monotonicity of txku further gives

distpxk0`N`, Cq ď

g

f

f

epΦ♠
pκ q
´1

´

Φ♠
pκ pdist2

px0, Cqq ´
N´1
ÿ

i“0

ak0`i`

¯

. (4.13)

Now, we note that for any positive integer k we have pk mod `q ě 0 ě k0 ´ ` so that

k “ pk mod `q `
k ´ pk mod `q

`
¨ ` ě k0 `

k ´ `´ pk mod `q

`
¨ ` “ k0 ` bk ¨ `.

Using this, the Fejér monotonicity of txku and (4.13), we see that for any k ě 2` (so that bk ě 1),

distpxk, Cq ď distpxk0`bk¨`, Cq ď

g

f

f

epΦ♠
pκ q
´1

´

Φ♠
pκ pdist2

px0, Cqq ´
bk´1
ÿ

i“0

ak0`i`

¯

.

This completes the proof.

Next, we remark that the choice of δ in the definition of Φ♠
pκ has no impact in Theorem 4.7.
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Remark 4.8 (No dependency on δ in (4.10)). Let g : p0, aq Ñ p0, 8q be a positive continuous

function, where a ą 0 or a “ 8. Let δ P p0, aq and define fδpsq :“
şs

δ
gptqdt, for s P p0, aq. With

that, fδ is monotone increasing and continuous, thus invertible.

Let L “ f´1
δ pfδps0q ´ cq be well-defined with some s0 ą 0, c ě 0. We have

´c “ fδpLq ´ fδps0q “

ż L

s0

gptqdt “ fs0pLq,

so that L “ f´1
s0 p´cq. This shows that L is constant as a function of δ and only depends on c, g

and s0. Therefore the term inside the square root in (4.10) only depends on Φ, pκ, dist2
px0, Cq and

řbk´1
i“0 ak0`i` but not on δ.

Before we conclude this subsection, we show that sublinear rates can be derived from Theo-

rem 4.7 when Φ is as in Theorem 3.5.

Corollary 4.9. Suppose that Assumption 4.5 holds with infkak ą 0. Suppose that a Hölderian

error bound defined as in Definition 3.4 holds. Then the sequence txku converges to some point in

C at least with a sublinear rate Opk´pq for some p ą 0. In particular, if the Hölderian error bound

is uniform with exponent γ P p0, 1s, then there exist some M ą 0 and θ P p0, 1q such that for any

k ě 2`,

distpxk, Cq ď

#

M k
´ 1

2pγ´1´1q if γ P p0, 1q,

M θk if γ “ 1.
(4.14)

Proof. The convergence of txku follows from Assumption 4.5 and Proposition 4.6. If the sequence

txku has finite convergence, one can see that (4.14) holds for some M ą 0 and θ P p0, 1q. In the

following, we consider the case where txku does not have finite convergence.

First, assume that a non-uniform Hölderian error bound holds. From Theorem 3.5 (i) the

following function is a strict consistent error bound function for the sets C1, . . . , Cm:

Φpa, bq :“ ρpbqmaxtaγpbq, au,

where ρp¨q is monotone nondecreasing and γp¨q is monotone nonincreasing. Let Φ♠
pκ be defined as

in (4.3) with pκ :“ }x0} ` 2 distp0, Cq. Since infkak ą 0, there exists τ ą 0 such that ak ě τ for

every k. Then, from Theorem 4.7 (setting k0 “ 0) and the strict monotonicity of Φ♠
pκ we get that

for any k ě 2`,

distpxk, Cq ď

g

f

f

epΦ♠
pκ q
´1

´

Φ♠
pκ pdist2

px0, Cqq ´
bk´1
ÿ

i“0

ai`

¯

ď

c

pΦ♠
pκ q
´1

´

Φ♠
pκ pdist2

px0, Cqq ´ pk{`´ 2qτ
¯

.

(4.15)

Now we calculate the formula of Φ♠
pκ . First, we see from (4.1) that

φ
pκ,Φptq “

´

Φp
?
t, pκq

¯2

“ ρppκq2 maxttγppκq, tu. (4.16)

Next, we consider two cases depending on the value of γppκq.

Case 1. γppκq P p0, 1q. In this case, the computation of φ´
pκ,Φ is as follows.

φ´
pκ,Φpsq “

#

s
ρppκq2 if s ě ρppκq2,

1
ρppκq2{γppκq

s
1

γpκ̂q if 0 ă s ă ρppκq2.
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Next, we compute Φ♠
pκ and we let δ :“ ρppκq2 in (4.3) (0 ă δ ă supφ

pκ,Φ “ 8), so that

Φ♠
pκ ptq “

$

&

%

γppκq
1´γppκqρppκq

2
γppκq

ˆ

pρppκq2q1´γppκq
´1

´ t1´γppκq
´1

˙

if 0 ă t ă δ,

ρppκq2pln t´ 2 ln ρppκqq if t ě δ.

(4.17)

Letting c0 :“ γppκq
1´γppκqρppκq

2
γppκq , we have

pΦ♠
pκ q
´1psq “

$

&

%

´

pρppκq2q1´γppκq
´1

´ s
c0

¯
1

1´γppκq´1

if s ă 0,

ρppκq2es{ρppκq
2

if s ě 0.
(4.18)

For simplicity, let c1 :“ Φ♠
pκ pdist2

px0, Cqq ` 2τ . From (4.15), we have

distpxk, Cq ď

c

pΦ♠
pκ q
´1

´

c1 ´
kτ

`

¯

.

Therefore, if k ą `c1
τ and k ě 2`, we have

distpxk, Cq ď

ˆ

pρppκq2q1´γppκq
´1

´
c1
c0
`
kτ

`c0

˙´ 1

2pγppκq´1´1q

ďM k
´ 1

2pγppκq´1´1q ,

(4.19)

holds for some M ą 0. This proves the sublinear convergence rate of txku3.

Case 2. γppκq “ 1. For this case, it will be more convenient to use δ :“ 1 in (4.3). Then, from

(4.3) and (4.16) we have

Φ♠
pκ ptq “

ż t

1

1

φ´
pκ,Φpsq

ds “ ρppκq2
ż t

1

s´1ds “ ρppκq2 ln t. (4.20)

Let c2 :“ ρppκq2. Then, we have pΦ♠
pκ q
´1ptq “ et{c2 and

distpxk, Cq ď

c

pΦ♠
pκ q
´1

´

Φ♠
pκ pdist2

px0, Cqq ´ pk{`´ 2qτ
¯

“ eτ{c2distpx0, Cq ¨ e
´ τ

2`c2
k,

which proves the linear convergence rate of txku. This concludes the proof for the non-uniform

case.

If the Hölderian error bound is uniform with exponent γ P p0, 1s, the function Φ is as in (3.5),

so the max term in (4.16) becomes tγ and there is no need to divide the computation of Φ♠
pκ and

pΦ♠
pκ q
´1 in two cases. In particular, (4.17) and (4.18) become simpler since the second case in each

expression is discarded. Then, (4.14) follows from a similar line of arguments4 as above, replacing

γppκq by γ. This completes the proof.

4.3 Projection algorithms

In the following, we consider an algorithm scheme contained in the broader framework given in

Section 3 of [6]. Specifically, given x0 P E , relaxation parameter tαki u Ď r0, 2q and weight tλki u

satisfying
řm
i“1 λ

k
i “ 1 with λki ě 0 for all k, we consider the following algorithm scheme:

xk`1 “

m
ÿ

i“1

λki

”

p1´ αki qI ` α
k
i PCi

ı

pxkq, (4.21)

3We note that for the xk such that k ě 2` but k ď `c1
τ

, the rate for those iterates is governed by the second

expression in (4.18), so overall, we have a sublinear convergence rate for all k ě 2`.
4The only subtlety is that in the proof of Case 1 in the uniform case, (4.19) holds for all k ě 2` and there is no

need to impose k ą `c1{τ .
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where I denotes the identity operator and PCi is the orthogonal projection operator onto Ci.

Example 4.10. Here are a few examples of algorithms covered under the algorithm scheme (4.21).

paq Mean projection algorithm (MPA)([6, 8, 31]): αki “ 1 for all i and k, and the weights λki
(i “ 1, . . . ,m) are positive constants for all k. When λki “ νi ą 0 for every i and k with
řm
i“1 νi “ 1, the iterations are of the format

xk`1 “

m
ÿ

i“1

νiPCipx
kq.

pbq Projections onto convex sets algorithm (POCSA)([17, 21, 33, 59]): Let tpkq :“ pk mod mq`1.

For every k, set λki “ 1 and ε ď αki ď 2´ ε with ε P p0, 1q when i “ tpkq, and set λki “ 0 when

i ‰ tpkq (αki can be arbitrarily defined in this case). The iterations are of the format

xk`1 “

´

1´ αktpkq

¯

xk ` αktpkqPCtpkqpx
kq.

Especially, when αktpkq ” 1 for all k, it reduces to xk`1 “ PCtpkqpx
kq, which is the well-known

Cyclic projection algorithm (CPA), see [1, 6, 8, 15].

pcq Motzkin’s method (MM)([1, 42, 48]): Fix any ipkq P Arg max1ďiďm distpxk, Ciq. For every

k, let λki “ 1 and αki “ λ with λ P p0, 2q for i “ ipkq, and λki “ 0 for i ‰ ipkq (αki can be

arbitrarily defined in this case). The iterations are of the format

xk`1 “ p1´ λqxk ` λPCipkqpx
kq.

Especially, when λ “ 1, it reduces to xk`1 “ PCipkqpx
kq, which is known as Maximum distance

projection algorithm (MDPA), see [6, 8].

pdq The following adaptive weighted projection algorithm (AWPA): αki “ 1 for all i and k, and

the weights λki (i “ 1, . . . ,m) are adaptively chosen. Let f : r0,`8q Ñ r0,`8q be a monotone

increasing nonnegative function such that fp0q “ 0. Define dki :“ distpxk, Ciq and let λki “
fpdki q

fpdk1 q`¨¨¨`fpd
k
mq

. The iterations are of the format

xk`1 “

m
ÿ

i“1

fpdki q

fpdk1q ` ¨ ¨ ¨ ` fpd
k
mq
PCipx

kq,

if at least one of the dki is nonzero. This is related to a generalization of Ansorge’s method

discussed in Example 6.32 in [6]. A particular case is the following iteration

xk`1 “

m
ÿ

i“1

dki
dk1 ` ¨ ¨ ¨ ` d

k
m

PCipx
kq.

For analysis purposes and in order for the iteration to be well-defined for all k we consider

that if dki “ 0 for all i (i.e., xk P C), then AWPA falls back to the following MPA iteration:

xk`1 “
řm
i“1

1
mPCipx

kq.

Now we show that the sequence generated by scheme (4.21) satisfies Assumption 4.5 under

some conditions on the parameters. For that, we introduce the following notation:

Mpkq :“

"

i | i P Arg max
1ďiďm

distpxk, Ciq

*

,

Iσpkq :“
 

i | λki ě σ
(

.

(4.22)
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Lemma 4.11 (Checking Assumption 4.5). Let the sequence txku be generated by (4.21). Then

txku is Fejér monotone with respect to C, i.e., Assumption 4.5 piq holds. Let

µki :“ αki λ
k
i p2´

m
ÿ

j“1

αkjλ
k
j q, i “ 1, . . . ,m. (4.23)

Then it holds for all k that

dist2
pxk, Cq ě dist2

pxk`1, Cq `
m
ÿ

i“1

µki dist2
pxk, Ciq. (4.24)

Moreover, the following statements hold.

(i) If there exists mpkq PMpkq such that
ř8

k“0 µ
k
mpkq “ 8, then Assumption 4.5 piiq holds with

` “ 1 and ak “ µkmpkq in inequality (4.7).

(ii) If αki P rα1, α2s holds for all i and k with some 0 ă α1 ď α2 ă 2, and there exist some

σ P p0, 1s and integer s ě 1 such that for all k,

Iσpkq Y Iσpk ` 1q Y ¨ ¨ ¨ Y Iσpk ` s´ 1q “ t1, 2, . . . ,mu, (4.25)

then Assumption 4.5 piiq holds with ` “ s and ak “ min
´

σα1p2´α2q

s , α1p2´α2q

pα2q2s

¯

in inequality

(4.7).

Proof. The scheme (4.21) is a particular case of the the scheme described in Section 3 of [6] (with

T ki “ PCi). Consequently, the Fejér monotonicity of txku follows directly from [6, Lemma 3.2 (iv)].

Moreover, by [6, Lemma 3.2 piq], we have for any x P C that

›

›xk ´ x
›

›

2
´
›

›xk`1 ´ x
›

›

2
´

m
ÿ

i“1

αki λ
k
i

´

2´
m
ÿ

j“1

αkjλ
k
j

¯
›

›

›
xk ´ PCipx

kq

›

›

›

2

“
ÿ

iăj

αki α
k
jλ

k
i λ

k
j

›

›

›
PCipx

kq ´ PCj px
kq

›

›

›

2

` 2
m
ÿ

i“1

αki λ
k
i

@

xk ´ PCipx
kq, PCipx

kq ´ x
D

ě 0,

(4.26)

where the last inequality follows from the non-negativity of tαki u and tλki u and the convexity of

each Ci. We then have (4.24) by rearranging (4.26) and taking the infimum on both sides for

x P C. Furthermore, by the definition of Mpkq in (4.22), we have for all mpkq PMpkq that

dist2
pxk, Cq ě dist2

pxk`1, Cq `
m
ÿ

i“1

µki dist2
pxk, Ciq

ě dist2
pxk`1, Cq ` µkmpkq max

1ďiďm
dist2

pxk, Ciq.

The conclusion piq then follows from this and assumption
ř8

k“0 µ
k
mpkq “ 8 directly.

Now we prove piiq. Since αki P rα1, α2s for all i and k, we have µki ě α1p2´α2qλ
k
i . Consequently,

by (4.24), the convexity of } ¨ }2 and
řm
i“1 λ

k
i “ 1 with λki ě 0, we have for all k that

›

›xk ´ xk`1
›

›

2
“

›

›

›
xk ´

m
ÿ

i“1

λki
`

p1´ αki qx
k ` αki PCipx

kq
˘

›

›

›

2

“

›

›

›

m
ÿ

i“1

λki α
k
i

`

xk ´ PCipx
kq
˘

›

›

›

2

ď

m
ÿ

i“1

λki pα
k
i q

2
›

›xk ´ PCipx
kq
›

›

2

ď pα2q
2
m
ÿ

i“1

λki dist2
pxk, Ciq ď

pα2q
2

α1p2´ α2q

`

dist2
pxk, Cq ´ dist2

pxk`1, Cq
˘

.

(4.27)
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On the other hand, we fix any k and j P t1, 2, . . . ,mu, and then know from assumption (4.25) that

there exists kj P tk, k ` 1, . . . , k ` s´ 1u such that j P Iσpkjq, i.e., λ
kj
j ě σ (by definition of Iσpkq

in (4.22)). This together with (4.24) and µki ě α1p2´ α2qλ
k
i gives

dist2
pxkj , Cq ´ dist2

pxkj`1, Cq ě
m
ÿ

i“1

µ
kj
i dist2

pxkj , Ciq ě σα1p2´ α2qdist2
pxkj , Cjq. (4.28)

Furthermore, combining (4.27) and (4.28) yields

dist2
pxk, Cjq

ď }xk ´ PCj px
kj q}2

paq
ď

`

distpxkj , Cjq `
›

›xk ´ xkj
›

›

˘2

pbq
ď

´

distpxkj , Cjq `

kj´1
ÿ

p“k

›

›xp ´ xp`1
›

›

¯2

pcq
ď pkj ´ k ` 1q

´

dist2
pxkj , Cjq `

kj´1
ÿ

p“k

›

›xp ´ xp`1
›

›

2
¯

pdq
ď s

´ 1

σα1p2´ α2q

`

dist2
pxkj , Cq ´ dist2

pxkj`1, Cq
˘

`
pα2q

2

α1p2´ α2q

kj´1
ÿ

p“k

`

dist2
pxp, Cq ´ dist2

pxp`1, Cq
˘

¯

“ s
´ 1

σα1p2´ α2q

`

dist2
pxkj , Cq ´ dist2

pxkj`1, Cq
˘

`
pα2q

2

α1p2´ α2q

`

dist2
pxk, Cq ´ dist2

pxkj , Cq
˘

¯

ď s max
´ 1

σα1p2´ α2q
,

pα2q
2

α1p2´ α2q

¯

`

dist2
pxk, Cq ´ dist2

pxkj`1, Cq
˘

peq
ď s max

´ 1

σα1p2´ α2q
,

pα2q
2

α1p2´ α2q

¯

`

dist2
pxk, Cq ´ dist2

pxk`s, Cq
˘

,

(4.29)

where (a) and (b) follow from the triangle inequality, (c) follows from the Cauchy-Schwarz inequal-

ity, (d) holds because of (4.27), (4.28) and kj P tk, k ` 1, . . . , k ` s ´ 1u, finally, (e) follows from

the Fejér monotonicity of txku and the fact that k ď kj ď k ` s´ 1. By the arbitrariness of j, we

take the supreme on both sides of (4.29) for j P t1, 2, . . . ,mu and rearrange it to obtain

dist2
pxk, Cq ´ dist2

pxk`s, Cq ě min

ˆ

σα1p2´ α2q

s
,
α1p2´ α2q

pα2q
2s

˙

max
1ďjďm

dist2
pxk, Cjq.

Therefore, Assumption 4.5 piiq holds with ` “ s and ak “ min
´

σα1p2´α2q

s , α1p2´α2q

pα2q2s

¯

.

The gist of Lemma 4.11 is that any iteration generated by (4.21) is automatically Fejér mono-

tone, which is a known result, see [6, Lemma 3.2]. However, not all choices of parameters will lead

to sufficient decrease as required in Assumption 4.5 piiq (e.g., if αki “ 0 for all i and k). There

are many conditions one can impose on the choice of parameters to get sufficient decrease and

items piq and piiq of Lemma 4.11 are but two simple examples that are enough to cover a number

of algorithms, as we shall see. In particular, piiq in case of α1 “ α2 “ 1 is a simplified version of

the assumption underlying the so-called quasi-cyclic algorithms, see [14].

The next step is to apply Theorem 4.7 to the algorithms covered by Lemma 4.11. We conclude

that the convergence of txku is either finite or, if item piq of Lemma 4.11 holds, we have

distpxk, Cq ď

g

f

f

epΦ♠
pκ q
´1

´

Φ♠
pκ pdist2

px0, Cqq ´
k´2
ÿ

i“0

µimpiq

¯

@ k ě 2. (4.30)
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Alternatively, if item piiq of Lemma 4.11 holds, we have

distpxk, Cq ď

c

pΦ♠
pκ q
´1

´

Φ♠
pκ pdist2

px0, Cqq ´ cpk ´ s´ pk mod sqq{s
¯

@ k ě 2s, (4.31)

where c “ min
´

σα1p2´α2q

s , α1p2´α2q

pα2q2s

¯

.

Next, we will see that more specific choices of parameters will lead to sublinear convergence

rates under Hölderian error bounds as in Corollary 4.9.

Corollary 4.12 (Hölderian error bounds and sublinear rates for projection algorithms). Let txku

be generated by the algorithm scheme (4.21). Suppose that one of the following statements holds:

(i) there exist some τ ą 0 and mpkq P Mpkq such that µkmpkq ě τ for all k, where µki is defined

as in (4.23);

(ii) αki P rα1, α2s holds for all i and k with some 0 ă α1 ď α2 ă 2, and there exist some σ P p0, 1s

and integer s ě 1 such that (4.25) holds for all k.

If a Hölderian error bound holds for (CFP), then txku converges to some point in C at least with a

sublinear rate Opk´pq for some p ą 0. In particular, if the Hölderian error bound is uniform with

exponent γ P p0, 1s, then there exist some M ą 0 and θ P p0, 1q such that for any k ě 2s (k ě 2 if

(i) holds),

distpxk, Cq ď

#

M k
´ 1

2pγ´1´1q if γ P p0, 1q,

M θk if γ “ 1.

Proof. Item piq and piiq imply items piq and piiq of Lemma 4.11, respectively. In both cases, there

exists ν ą 0 such that the sufficient decrease inequality (4.7) holds with ak ě ν for every k.

Therefore, the conditions of Corollary 4.9 are met and the conclusion follows.

With the aid of the results so far, we can check that Assumption 4.5 holds for the algorithms

listed in Example 4.10 and compute their convergence rates.

Theorem 4.13 (Convergence of a few common methods). Let txku be a sequence generated by

one of the four algorithms MPA, POCSA (in particular, CPA), MM (in particular, MDPA) and

AWPA given in Example 4.10. The following items holds.

piq Assumption 4.5 is satisfied. In particular, if Φ is a strict consistent error bound function

for C1, . . . , Cm and Φ♠
pκ is as in (4.3) with κ̂ “ }x0} ` 2 distp0, Cq, the convergence rates of

MPA, MM (in particular, MDPA), AWPA are governed by (4.30). The convergence rate of

POCSA (in particular, CPA) is governed by (4.31).

piiq Suppose that a Hölderian error bound holds. Then txku converges to some point in C at least

with a sublinear rate Opk´pq for some p ą 0. In particular, if the Hölderian error bound is

uniform with exponent γ P p0, 1s, then there exist some M ą 0 and θ P p0, 1q such that for

any k ě 2m (k ě 2 for MPA, MDPA and AWPA),

distpxk, Cq ď

#

M k
´ 1

2pγ´1´1q if γ P p0, 1q,

M θk if γ “ 1.

Proof. First, we check item piq. By Lemma 4.11, it suffices to check Assumption 4.5 piiq for the

four algorithms. For i “ 1, . . . ,m, let

µki :“ αki λ
k
i p2´

m
ÿ

j“1

αkjλ
k
j q.
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Then there exists some mpkq PMpkq such that for MPA, MM (in particular, MDPA) and AWPA

we have

µkmpkq “ νmpkq ě min
1ďiďm

νi ą 0, µkmpkq “ λp2´ λq, µkmpkq ě
1

m
,

respectively. Consequently, we have
ř8

k“0 µ
k
mpkq “ 8. Therefore, from Lemma 4.11 (i) we see that

Assumption 4.5 piiq holds with ` “ 1 and ak “ µkmpkq ě τ for some τ ą 0 for MPA, MM and

AWPA.

For POCSA, the assumptions in Lemma 4.11 (ii) are satisfied with σ “ 1, s “ m, α1 “

ε and α2 “ 2 ´ ε. Thus, POCSA (in particular, CPA) satisfies (4.7) with ` “ m and ak “

min
`

ε2

m ,
ε2

p2´εq2m

˘

. With that, we have
ř8

k“0 ak “ 8. This completes the proof of item piq.

Next, we move on to item piiq. In all cases, the conditions in Corollary 4.12 are met. Therefore,

we can deduce the corresponding sublinear rates.

Remark 4.14. (Connection to existing convergence rates) Theorem 4.13 recovers several existing

convergence results. For example, it recovers the linear convergence result for MPA, POCSA

and MM under a Lipschitzian error bound established in [8, Theorem 2.2], [59, Theorem 3] and

[1, Section 4], respectively. In particular, it recovers the sublinear convergence result for CPA

under a Hölderian error bound established in [15, Proposition 4.2]. It also recovers the sublinear

convergence rate for MPA and MDPA under a Hölderian error bound, which could be obtained by

[14, Theorem 3.3] and [14, Corollary 3.8]. To the best of our knowledge, however, the sublinear

rate for AWPA is new since it is not clear if the operator associated to it satisfies the conditions

necessary to invoke the results in [14].

5 Regular variation and comparison of convergence rates

Given a strict consistent error bound function Φ and some algorithm as in Section 4, the conver-

gence rate is governed by a fairly complicated expression depending on the inverse of the function

Φ♠
κ defined in (4.3), see Theorem 4.7. In this section, we provide a number of results that help to

reason about Φ♠
κ and its inverse without actually having to compute them. The main tool we use

is the notion of regular variation [55, 10].

Regular variation will be helpful because it provides tools to analyze the asymptotic properties

of functions once the so-called index of regular variation is known, e.g., Potter’s bounds (see (5.16)).

Furthermore, it is well-understood how regular variation behaves under taking integrals, inverses,

applying powers and so on, which are exactly the transformations used to obtain pΦ♠
κ q
´1 from the

original consistent error bound function Φ. With that, it is possible to obtain bounds to pΦ♠
κ q
´1

without having to actually compute a closed-form expression for pΦ♠
κ q
´1. We will showcase this in

Theorems 5.3, 5.7 and also with a general analysis of logarithmic error bounds in Section 5.1 and

error bounds for the exponential cone in Section 6.2.

Let Φ be a function that satisfies items piiq and piiiq of Definition 3.1 but not necessarily item

piq. That is, Φ is not necessarily related to any collection of convex sets C1, . . . , Cm. In this case,

we shall drop the adjective “consistent” and merely say that Φ is an error bound function. If Φp¨, bq

is monotone increasing for every b ą 0, we say that Φ is a strict error bound function.

In spite of the fact that Φ might not be attached to any particular intersection of convex sets,

we can still define φκ,Φ and Φ♠
κ as in (4.1) and (4.3), respectively. Let Φ and pΦ be strict error

bound functions. First, we will show how to draw conclusions about the order relationship between

pΦ♠
κ q
´1 and ppΦ♠

κ q
´1 using the order relationship between Φ and pΦ. The motivation is that, given a

particular Φ we would like to know whether the convergence rate afforded by Φ is faster or slower

than, say, a linear or a sublinear rate without having to compute pΦ♠
κ q
´1.

19



We start with some basic aspects of the theory of regular variation in the sense of Karamata [55,

10].

Definition 5.1 (Regularly varying functions). A function f : ra, 8q Ñ p0, 8q pa ą 0q is said to

be regularly varying at infinity if it is measurable and there exists a real number ρ such that

lim
xÑ8

fpλxq

fpxq
“ λρ, @ λ ą 0. (5.1)

In this case, we write f P RV. Similarly, a measurable function f : p0, as Ñ p0, 8q is said to be

regularly varying at 0 if

lim
xÑ0`

fpλxq

fpxq
“ λρ, @ λ ą 0, (5.2)

in which case we write f P RV0. The ρ in (5.1) and (5.2) is called the index of regular variation.

If the limit on the left hand side of (5.1) is 0, 1 and `8 for λ in p0, 1q, t1u and p1,8q,

respectively, then f is said to be a function of rapid variation of index 8 and we write f P RV8.

If 1{f P RV8, we say that f is a function of rapid variation of index ´8 and write f P RV´8.

The a in Definition 5.1 only plays a minor role, since we are interested in what happens when f

approaches the opposite side the interval. By an abuse of notation, we sometimes write “f P RV”

meaning that f restricted to some interval ra,8q (with a ą 0) satisfies Definition 5.1. We will do

the same for RV0,RV´8 and RV8.

Next, we need to discuss the behavior of the index of regular variation under taking inverses.

For a monotone nondecreasing function f : ra, 8q Ñ p0, 8q, we define the following generalized

inverse fÐpxq :“ infty ě a | fpyq ą xu. In particular the following result holds

f P RV with index ρ ą 0 ñ fÐ P RV with index 1{ρ,

f P RV with index 0 and f is unbounded ñ fÐ P RV8,
(5.3)

see [10, Theorem 1.5.12] and [10, Proposition 2.4.4 item(iv) and Theorem 2.4.7], respectively.

Note that if f is continuous and monotone increasing, then fÐ “ f´1.

In this section, in order to avoid dealing with the differences between fÐ, f´1 and f´, we

assume that the functions are all monotone increasing and continuous so that all the three inverses

coincide at the points at which they are defined. This will be mentioned as needed.

Now, suppose that f P RV0 with index ρ ą 0 is continuous monotone increasing and define f̂

by f̂pxq “ 1{fp1{xq. For λ ą 0,

lim
xÑ8

f̂pλxq

f̂pxq
“ lim
xÑ8

fp1{xq

fp1{pλxqq
“ lim
tÑ0`

fpλtq

fptq
“ λρ. (5.4)

Therefore, f̂ P RV with index ρ and (5.3) implies that f̂´1 has index 1{ρ. Since f̂´1pxq “

1{f´1p1{xq, we conclude that

f P RV0 with index ρ ą 0 ñ f´1 P RV0 with index 1{ρ, (5.5)

when f is monotone increasing and continuous.

We start with the following lemma, which is a particular case of [24, Theorem 1]. In what

follows, if f and g are functions such that limtÑc fptq{gptq “ 0 we will write that “fptq “ opgptqq

as t Ñ c”. We will consider three cases: c P t´8, `8u or that t approaches 0 from the right,

which we will denote by writing c “ 0`.
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Lemma 5.2. Assume that f, g : ra, 8q Ñ p0, 8q pa ą 0q are continuous monotone increasing

unbounded functions, and f P RV or g P RV. If fpxq “ opgpxqq as xÑ8, then g´1pxq “ opf´1pxqq

as xÑ8.

Proof. Theorem 1 of [24] states that if f, g : ra, 8q Ñ p0, 8q pa ą 0q are monotone increasing

unbounded functions such that fpxq “ opgpxqq as x Ñ 8 and at least one among f, g belongs to

RV then

gÐpxq “ opfÐpxqq.

Under the hypothesis that f, g are continuous and monotone increasing we have fÐ “ f´1 and

gÐ “ g´1, so the result follows.

Using Lemma 5.2, we establish the following comparison theorem.

Theorem 5.3. Let κ ą 0 and Φ and pΦ be two strict error bound functions satisfying:

piq Φp¨, κq and pΦp¨, κq are continuous,

piiq Φ♠
κ ptq Ñ ´8 and pΦ♠

κ ptq Ñ ´8 as tÑ 0`.

Then, the following statements hold.

paq If Φp¨, κq belongs to RV0 with index ρ ą 0, then Ψ such that Ψptq :“ ´Φ♠
κ p1{tq belongs to RV

with index p1{ρq ´ 1.

pbq If at least one among Φp¨, κq, pΦp¨, κq belongs to RV0 with index ρ ą 0 and Φpa, κq “ oppΦpa, κqq

as aÑ 0`, then

pΦ♠
κ q
´1psq “ o

´

ppΦ♠
κ q
´1psq

¯

as sÑ ´8.

Proof. First we prove items (a) and (b) simultaneously by considering the case where Φp¨, κq P RV0

with index ρ ą 0. By assumption Φp¨, κq is monotone increasing and continuous, so (5.5) implies

that Φp¨, κq´1 P RV0 has index 1{ρ. From the definition of φκ,Φ in (4.1), we have for any λ ą 0,

lim
tÑ0`

φκ,Φpλtq

φκ,Φptq
“ lim
tÑ0`

rΦp
?
λt, κqs2

rΦp
?
t, κqs2

“ lim
tÑ0`

´Φp
?
λt, κq

Φpt, κq

¯2

“ λρ. (5.6)

Because Φp¨, κq is monotone increasing and continuous, the same is true of φκ,Φ and φ´κ,Φ coincides

with the usual inverse φ´1
κ,Φ. Therefore, we have from (5.5) and (5.6) that φ´1

κ,Φ P RV0 with index

1{ρ, namely,

lim
tÑ0`

φ´1
κ,Φpλtq

φ´1
κ,Φptq

“ λ1{ρ. (5.7)

Moreover, we see from assumptions in (b) that

lim
sÑ0`

φκ,Φpsq

φκ,pΦpsq
“ lim
sÑ0`

rΦp
?
s, κqs2

rpΦp
?
s, κqs2

“ lim
sÑ0`

˜

Φps, κq

pΦps, κq

¸2

“ 0. (5.8)

Therefore, φκ,Φ and φκ,Φ̂ are monotone increasing continuous functions with

φκ,Φ, φ
´1
κ,Φ P RV0 and φκ,Φpsq “ o

`

φκ,pΦpsq
˘

as sÑ 0`. (5.9)

Next, we define

wpxq :“
1

φκ,Φp1{xq
, pwpxq :“

1

φκ,pΦp1{xq
, x ą 0.
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With that, w and pw are unbounded continuous monotone increasing functions. Analogous to the

computations in (5.4), we have w P RV with index ρ. Furthermore, from (5.8) we obtain

0 “ lim
sÑ0`

φκ,Φpsq

φκ,pΦpsq
“ lim
xÑ8

1
φκ, pΦp1{xq

1
φκ,Φp1{xq

“ lim
xÑ8

pwpxq

wpxq
, (5.10)

i.e., pwpxq “ opwpxqq as xÑ8. In view of (5.10), we can invoke Lemma 5.2 (by restricting w and

pw to some interval ra, 8q), which leads to

0 “ lim
xÑ8

w´1pxq

pw´1pxq
“ lim
xÑ8

1
φ´1
κ,Φp1{xq

1
φ´1

κ, pΦ
p1{xq

“ lim
tÑ0`

φ´1

κ,pΦ
ptq

φ´1
κ,Φptq

. (5.11)

From Proposition 4.3 we have that Φ♠
κ and pΦ♠

κ are monotone increasing continuously differentiable

functions. Using L’Hospital’s rule in combination with assumption (ii), we have from (5.11) that

lim
tÑ0`

Φ♠
κ ptq

pΦ♠
κ ptq

“ lim
tÑ0`

`

Φ♠
κ

˘1
ptq

´

pΦ♠
κ

¯1

ptq
“ lim
tÑ0`

1
φ´1
κ,Φptq

1
φ´1

κ, pΦ
ptq

“ lim
tÑ0`

φ´1

κ,pΦ
ptq

φ´1
κ,Φptq

“ 0. (5.12)

Now, we define

Ψptq :“ ´Φ♠
κ p1{tq,

pΨptq :“ ´pΦ♠
κ p1{tq, t ą 0.

Since Φ♠
κ ptq,

pΦ♠
κ ptq both go to ´8 as t Ñ 0` and are monotone increasing (Proposition 4.3), we

have that Ψ and pΨ are monotone increasing and go to `8 as tÑ8. Moreover, we have

lim
xÑ8

Ψpλxq

Ψpxq
“ lim
tÑ0`

Φ♠
κ ptq

Φ♠
κ pλtq

paq
“ lim

tÑ0`

`

Φ♠
κ

˘1
ptq

λ
´

Φ♠
κ

¯1

pλtq
“ lim
tÑ0`

φ´1
κ,Φpλtq

λφ´1
κ,Φptq

pbq
“ λp1{ρq´1, (5.13)

where (a) follows from L’Hospital’s rule and (b) follows from (5.7). That is, Ψ P RV with index

p1{ρq ´ 1, which proves that item (a) holds. On the other hand, we see from (5.12) that

0 “ lim
tÑ0`

Φ♠
κ ptq

pΦ♠
κ ptq

“ lim
xÑ8

´Φ♠
κ p1{xq

´pΦ♠
κ p1{xq

“ lim
xÑ8

Ψpxq

pΨpxq
. (5.14)

Combining (5.13) and (5.14), we may use Lemma 5.2 again (by restricting Ψ and pΨ to some interval

ra, 8q) to obtain

0 “ lim
xÑ8

pΨ´1pxq

Ψ´1pxq
“ lim
xÑ8

1

ppΦ♠
κ q
´1
p´xq

1

pΦ♠
κ q
´1
p´xq

“ lim
sÑ´8

pΦ♠
κ q
´1psq

ppΦ♠
κ q´1psq

. (5.15)

This completes the proof of item (b) when Φp¨, κq P RV0 has index ρ ą 0.

If pΦp¨, κq P RV0 has index ρ ą 0, the proof is of item (b) is analogous since Lemma 5.2 only

requires a regular variation assumption for one of the functions. The difference is that at (5.6), (5.7),

(5.9), (5.13) we would draw conclusions about functions derived from pΦ but all the other equations

would remain the same. For example, in (5.13) we would conclude that limxÑ8
pΨpλxq
pΨpxq

“ λp1{ρq´1,

which would lead to the exact same (5.15).

Remark 5.4 (On assumption (ii) of Theorem 5.3). Because of Proposition 4.4, in many cases it

is not necessary to check assumption (ii) of Theorem 5.3 explicitly.
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Following Theorem 5.3, we will prove bounds for the pΦ♠
κ q
´1 function. This will require the

so-called Potter bounds.

Lemma 5.5 (Potter bounds). If f P RV with index ρ, then for every A ą 1, δ ą 0, there exists

M ą 0 such that x ěM,y ěM implies

fpxq

fpyq
ď Amax

#

ˆ

x

y

˙ρ´δ

,

ˆ

x

y

˙ρ`δ
+

. (5.16)

If f P RV0 with index ρ, then for any A ą 1, δ ą 0, there exists M ą 0 such that t ď M, s ď M

implies

fptq

fpsq
ď Amax

#

ˆ

t

s

˙ρ´δ

,

ˆ

t

s

˙ρ`δ
+

. (5.17)

The first half of Lemma 5.5 is proved in [10, Theorem 1.5.6], while the latter half follows from

applying the first half to f̂ such that f̂pxq “ 1{fp1{xq.

Finally, we also need a similar bound for rapidly varying functions. The following lemma is a

consequence of [9, Lemma 2.2].

Lemma 5.6. If f P RV´8, then for every r ą 0 there exists a constant M such that t ěM implies

fptq ď t´r. (5.18)

In particular, for every r ą 0 we have

fptq “ opt´rq as tÑ `8. (5.19)

Theorem 5.7 (Bounds on pΦ♠
κ q
´1). Let Φ be a strict consistent error bound function associated

to C1, . . . , Cm and let C :“ Xmi“1Ci. Suppose that C is not the whole space and suppose that

κ ě maxtdistp0, Cq, }x0}u holds for some x0 R C.

Suppose also that Φp¨, κq is continuous and belongs to RV0 with index ρ. Let Ψ be given by

Ψptq :“ ´Φ♠
κ p1{tq. Then, the following items hold.

piq ρ P r0, 1s.

piiq If ρ P p0, 1q, then Ψ belongs to RV with index p1{ρq ´ 1. In particular, Ψ´1 P RV, has index
ρ

1´ρ and for every δ ą 0 such that γ :“ ρ{p1´ ρq ´ δ is positive, there are constants M and

A such that
b

pΦ♠
κ q´1p´sq ď A

ˆ

1

s

˙γ{2

, @s ěM.

piiiq If ρ “ 1, then the function Ψ belongs to RV with index 0. In particular, Ψ´1 belongs to RV8
and for every r ą 0, we have

b

pΦ♠
κ q´1p´sq “ ops´rq as sÑ `8.

pivq If ρ “ 0, then Ψ belongs to RV8. In particular, Ψ´1 belongs to RV with index 0 and for any

r ą 0 we have s´r “ o
`

pΦ♠
κ q
´1p´sq

˘

as sÑ8.

Proof. First, we prove item piq. For λ ą 1, because Φp¨, κq is monotone, we have Φpλt, κq ě Φpt, κq.

Therefore, λρ “ limtÑ0` Φpλt, κq{Φpt, κq ě 1, which shows that ρ ě 0.

Next, let dpxq :“ max1ďiďm distpx,Ciq. Since C Ď Ci for all i, we have

dpxq ď distpx,Cq ď Φpdpxq, κq, (5.20)
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whenever }x} ď κ. By assumption, dpx0q ą 0 and the projection PCp0q of 0 onto to C satisfies

}PCp0q} ď κ. By continuity, dp¨q, assumes every value between 0 and dpx0q over the ball tx | }x} ď

κu. In view of (5.20), we conclude that for sufficiently small t we have

t ď Φpt, κq. (5.21)

For the sake of obtaining a contradiction, suppose that ρ ą 1 and let δ ą 0 be such that ρ´ δ ą 1.

By using Potter bound (5.17) for A “ 2, we conclude that for sufficiently small t, s, we have

Φpt, κq ď 2Φps, κqmax

#

ˆ

t

s

˙ρ´δ

,

ˆ

t

s

˙ρ`δ
+

.

Combining with (5.21), we obtain

1 ď
Φpt, κq

t
ď 2Φps, κqmaxttρ´δ´1p1{sq

ρ´δ
, tρ`δ´1p1{sq

ρ`δ
u.

If we fix s and let t go to 0, the right-hand side converges to 0 (because ρ´ δ´ 1 ą 0), which leads

to a contradiction. So, indeed it must be the case that ρ P r0, 1s.

Next, we move on to item piiq. From item (a) of Theorem 5.3, Ψ belongs to RV with index

p1{ρq ´ 1. By (5.3), Ψ´1 has index ρ{p1 ´ ρq. We also have Ψ´1psq “ 1{pΦ♠
κ q
´1p´sq. Then, we

apply Potter bound (5.16) to Ψ´1 with x, y replaced by t and s, respectively. Fixing t, taking

square roots and recalling that pt{sqb ď pt{sqa if 0 ď a ď b and s ě t, leads to the final conclusion

of item piiq.

Now, we check item piiiq. Again, from item (a) of Theorem 5.3, Ψ belongs to RV with index

0. By Proposition 4.4, Ψptq Ñ `8 as t Ñ 8. Under these conditions, it is known that Ψ´1

belongs to RV8, see (5.3). Therefore, 1{Ψ´1psq “ pΦ♠
κ q
´1p´sq belongs to RV´8. Applying (5.19)

to pΦ♠
κ q
´1p´sq and taking square roots leads to the final conclusion of item piiiq.

Finally, we prove item pivq. First, we see from ρ “ 0 that for any λ ą 0,

lim
xÑ0`

φκ,Φpλxq

φκ,Φpxq
“ lim
xÑ0`

´Φp
?
λx, κq

Φp
?
x, κq

¯2

“ lim
xÑ0`

´Φp
?
λx, κq

Φpx, κq

¯2

“ 1.

Let wpxq :“ 1
φκ,Φp1{xq

. We then have

lim
xÑ8

wpλxq

wpxq
“ lim
xÑ8

1{φκ,Φp1{pλxqq

1{φκ,Φp1{xq
“ lim
sÑ0`

φκ,Φpλsq

φκ,Φpsq
“ 1,

which implies that w P RV with index 0. Since wpxq Ñ `8 as xÑ `8, again by (5.3), we see that

w´1pxq “ 1
φ´1
κ,Φp1{xq

P RV8. Note that Ψptq :“ ´Φ♠
κ p1{tq. We use L’Hospital’s rule and further

have

lim
tÑ8

Ψpλtq

Ψptq
“ lim
tÑ8

Φ♠
κ p1{pλtqq

Φ♠
κ p1{tq

“ lim
sÑ0`

Φ♠
κ ps{λq

Φ♠
κ psq

“ lim
sÑ0`

1
λ{φ

´1
κ,Φps{λq

1{φ´1
κ,Φpsq

“ lim
sÑ0`

φ´1
κ,Φpλsq

λφ´1
κ,Φpsq

“ lim
xÑ8

1{w´1px{λq

λ{w´1pxq
“ lim
xÑ8

w´1pλxq

λw´1pxq
,

which implies that Ψ P RV8 and thus 1{Ψptq “ ´1{Φ♠
κ p1{tq P RV´8. Now, from (5.18), it follows

that 1{Ψptq goes to 0 as tÑ8. From (5.19), 1{Ψptq “ opt´rq as tÑ `8. Therefore, tr “ opΨptqq

as tÑ8. Finally, since gptq :“ tr P RV, from Lemma 5.2 we obtain

s´1{r

pΦ♠
κ q´1p´sq

“
1{pΦ♠

κ q
´1p´sq

s1{r
Ñ 0 as sÑ8.

This completes the proof.
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Theorem 5.7 has the following informal consequence: any consistent error bound function that

corresponds to an RV0 function of index ρ P p0, 1s behaves almost the same as a Hölderian error

bound with exponent ρ. In particular, in view of our convergence results (see, for example, (4.30)),

items piiq and piiiq imply that the corresponding convergence rate would be at least as fast as the

convergence rate afforded by any Hölderian error bound with exponent ρ1 ă ρ.

5.1 Logarithmic error bounds

In Theorem 5.7, if ρ “ 0, only a lower bound to pΦ♠
κ q
´1 is obtained. Because pΦ♠

κ q
´1 can be

used to upper bound the convergence rate (see Theorem 4.7), a lower bound to pΦ♠
κ q
´1 can not

be used in general to draw conclusions about the convergence rates of the algorithms discussed in

Section 4. In view of this limitation, it would be useful to get reasonable upper bounds to pΦ♠
κ q
´1

as well when ρ “ 0.

A challenge in this task is that the class of RV functions with index ρ “ 0 contains functions

with very slow growth. Indeed, these are called slowly varying functions in the regular variation

literature. For example, plnpxqqα (for any nonzero α) and arbitrary compositions of logarithms

lnplnp¨ ¨ ¨ lnpxqqq belong to RV with index 0 (see [10, Section 1.3.3]). Because of that, asymptotic

upper bounds that are valid for any slowly varying function are doomed to not be very informative.

In order to get meaningful bounds in the case ρ “ 0 we need to further restrict the class of

functions under consideration as follows.

Definition 5.8 (Logarithmic error bound). An error bound function Φ is said to be logarithmic

with exponent γ if for every b ą 0, there exist κb ą 0 and ab ą 0 such that Φpa, bq “ κb

´

´ 1
lnpaq

¯γ

holds for a P p0, abq.

Next, we show an example of logarithmic error bound. Another instance will be discussed in

Section 6.2 in the context of the analysis of the exponential cone.

Example 5.9 (Example of logarithmic error bound in arbitrary dimension). We start with the

analysis of some functions that will be helpful to build our example. For every γ ě 2, we define

f̃γ : IR Ñ IR` such that f̃γp0q “ 0 and

f̃γptq :“ e´
1
|t|γ , @t ‰ 0.

The case γ “ 2 corresponds to a function described in, e.g., [3, page 453]. We note that f̃2γ is

nonnegative in a neighbourhood of 0. Then, because a convex function is locally Lipschitz on the

relative interior of its domain, we can select tγ ą 0 such that f̃γ restricted to r´tγ , tγs is convex

and Lipschitz continuous with constant Lγ . Finally, let fγ be the infimal convolution between f̃γ
restricted to r´tγ , tγs and Lγ | ¨ |:

fγptq :“ infuPr´tγ ,tγ sf̃γpuq ` Lγ |t´ u|. (5.22)

With that fγ is a convex function which is finite over IR and satisfies fγptq “ f̃γptq for t P r´tγ , tγs.

Since fγ has an unique minimum at t “ 0 and is convex, fγ is monotone increasing when restricted

to r0,8q. Taking u “ 0 in (5.22) we obtain

fγptq ď Lγ |t|, @t P IR. (5.23)

Let ϕγ be the inverse of the restriction of fγ to r0,8q. Since fγptq Ñ 8 as t Ñ 8, ϕγ is

well-defined over r0,8q. Because fγptq “ fγp´tq, we also have

ϕγpfγptqq “ |t|, @t P IR. (5.24)
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Furthermore, ϕγ is monotone increasing and for t P p0, fγptγqs, ϕγ coincides with the inverse of

f̃γ , so we have

ϕγptq “

ˆ

´
1

lnptq

˙1{γ

. (5.25)

Also, (5.23) implies that fγpt{Lγq ď t for t ě 0, therefore,

t ď Lγϕγptq, @t ě 0. (5.26)

Because fγ is convex and ϕγ is monotone increasing, ϕγ must be concave. Combined with the fact

that ϕγp0q “ 0, we have that

ϕγpp1` λqtq ď p1` λqϕγptq, @λ, t ě 0. (5.27)

Next, we define

C1 :“ tpx, µq P IRn
ˆ IR | µ ě fγp}x}qu, C2 :“ tpx, 0q P IRn

ˆ IRu.

We have C – C1 X C2 “ tp0, 0qu and we shall check several things about this example. For the

sake of obtaining a contradiction, suppose that a Hölderian error bound holds in a neighbourhood

of p0, 0q. Then, by considering points of the form pxt, 0q :“ pt, 0, . . . , 0q with t P IR``, there exist

k ą 0 and an exponent α P p0, 1s such that

t “ distppxt, 0q, Cq ď kdistppxt, 0q, C1q
α ď k}pt, 0, ¨ ¨ ¨ , 0q ´ pt, 0, ¨ ¨ ¨ , fγptqq}

α “ kfγptq
α

holds for all sufficiently small t. However, this is impossible because t{fγptq
α goes to 8 as tÑ 0`.

The conclusion is that no Hölderian error bound holds.

Next, we check that C1 and C2 admit a logarithmic error bound with exponent 1{γ. We recall

the following properties of orthogonal projections: if U, V Ď IRn are closed convex sets and z P IRn,

then

distpz, Uq ď distpz, V q ` distpPV pzq, Uq, (5.28)

distpPV pzq, Uq ď distpz, V q ` distpz, Uq. (5.29)

Let b ą 0 and let px, µq be such that }px, µq} ď b. From (5.28) we have:

}px, µq} “ distppx, µq, C1 X C2q ď distppx, µq, C2q ` distppx, 0q, C1 X C2q. (5.30)

Let px̄, fγp}x̄}qq be the orthogonal projection of px, 0q to C1. Since fγ is convex and finite every-

where, its restriction to any bounded interval of IR is Lipschitz continuous, e.g., [54, Theorem 10.4].

Let L be the Lipschitz constant of fγ restricted to the inverval r´b, bs. As projections are nonex-

pansive and p0, 0q P C1, we have }px̄, fγpx̄qq} ď }x} which implies that }x̄} ď }x} ď b. Then

fγp}x}q ´ fγp}x̄}q ď |fγp}x}q ´ fγp}x̄}q| ď L|}x} ´ }x̄}| ď L}x´ x̄}. (5.31)

Letting L̂ :“ maxtL, 1u, from (5.31) we obtain

fγp}x}q ď L̂ p}x´ x̄} ` fγp}x̄}qq ď L̂
?

2
b

fγp}x̄}q2 ` }x´ x̄}2. (5.32)

Since distppx, 0q, C1q “
a

fγp}x̄}q2 ` }x´ x̄}2, from (5.32) we see that there exists a constant L̃ ą 0

such that

fγp}x}q ď L̃distppx, 0q, C1q. (5.33)

26



Because ϕγ is monotone increasing, we can apply ϕγ at both sides of (5.33) and, recalling (5.24),

we obtain }x} ď ϕγpL̃distppx, 0q, C1qq. Since }x} “ distppx, 0q, C1 X C2q, from (5.30) we obtain

distppx, µq, C1 X C2q ď distppx, µq, C2q ` ϕγpL̃distppx, 0q, C1qq. (5.34)

Now, let dpx, µq be the maximum between distppx, µq, C2q and distppx, µq, C1q. From (5.29), we

obtain distppx, 0q, C1q ď distppx, µq, C1q ` distppx, µq, C2q. We can use this together with (5.26)

and (5.27) to obtain an upper bound to the right-hand-side of (5.34) thus concluding that there

exists ρpbq ą 0 such that

distppx, µq, C1 X C2q ď ρpbqϕγpdpx, µqq (5.35)

holds for all px, µq with }px, µq} ď b. Since increasing ρpbq still leads to a valid upper bound in

(5.35) we may select ρpbq in such a way that ρp¨q is a monotone nondecreasing function of b. So,

Φ given by Φpa, bq :“ ρpbqϕγpaq is a strict consistent error bound function. It is also logarithmic

with exponent 1{γ because of (5.25).

If Φ is as in Definition 5.8, then Φp¨, bq is an RV0 function of index 0 for every b ą 0. Then, the

function Ψ in Theorem 5.7 is rapidly varying and pΦ♠
κ q
´1 is again an RV0 function of index 0. The

fact that the index is 0 precludes the usage of Potter bounds to obtain an asymptotic upper bound

to pΦ♠
κ q
´1. In addition, neither Ψ nor pΦ♠

κ q
´1 seem to have simple closed form expressions, so

evaluating them directly is non-trivial. However, we can show that applying a logarithm is enough

to “de-accelerate” Ψ down to a regular varying function with positive index ρ. Better still, we will

argue that ln Ψ is asymptotically equivalent to a function for which we can directly compute the

inverse. Here, we say that f and g are asymptotically equivalent at 8 if

lim
tÑ8

fptq

gptq
“ 1.

In this case, we write fptq „ gptq, as t Ñ 8. The following lemma is the first step towards

implementing the strategy just outlined.

Lemma 5.10. Let f : ra, 8q Ñ p0, 8q P RV (a ą 0) with index ρ ą 0. Then we have

gptq :“ ln

ż t

a

efpxqdx „ fptq, as tÑ8.

Proof. This result is a direct consequence of one of the many Abelian theorems discussed in [10,

Chapter 4]. In this context, an Abelian theorem is a result that relates the asympotic properties

of a function f to some transform of f .

First, we extend the domain of f to r0, 8q by setting fpxq “ fpaq for all x P r0, aq. Invoking

[10, Theorem 4.12.10 (ii)], we then have

hptq :“ ln

ż t

0

efpxqd x „ fptq as tÑ8. (5.36)

The proof is now essentially complete because changing the starting point of the integral in (5.36)

does not influence the asymptotic equivalence. Nevertheless, we will provide a formal justification

for this.

To simplify the notation, we let F ptq :“
şt

0
efpxqd x and b :“

şa

0
efpxqd x. Therefore, we can

rewrite g as

gptq “ ln

ż t

a

efpxqd x “ ln

ˆ
ż t

0

efpxqd x´

ż a

0

efpxqd x

˙

“ ln pF ptq ´ bq . (5.37)
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Because f has positive index of regular variation, fptq Ñ 8 as t Ñ 8, which is a consequence

of Potter bounds by selecting δ “ ρ{2, fixing x and letting y go to infinity in (5.16), see also [10,

Proposition 1.5.1]. This implies that F ptq Ñ 8 as t Ñ 8 as well. Using this, (5.36) and (5.37),

we obtain

lim
tÑ8

gptq

fptq
“ lim
tÑ8

gptq

hptq

hptq

fptq
“ lim
tÑ8

ln pF ptq ´ bq

lnpF ptqq

fptq ` opfptqq

fptq

“ 1` lim
tÑ8

ln pF ptq ´ bq ´ lnpF ptqq

ln pF ptqq
“ 1` lim

tÑ8

ln p1´ b{F ptqq

ln pF ptqq
“ 1.

This completes the proof.

Next, we need a counterpart of Lemma 5.2 for asymptotic equivalence.

Lemma 5.11. Assume that f, g : ra, 8q Ñ p0, 8q pa ą 0q are continuous monotone increasing

unbounded functions, and f P RV or g P RV with positive index. If fpxq „ gpxq as x Ñ 8, then

f´1pxq „ g´1pxq as xÑ8.

Proof. Under the hypothesis that f and g are continuous and monotone increasing, we have fÐ “

f´1 and gÐ “ g´1. So the lemma follows from [10, p190, Exercise 14, items piiq and piiiq], see

also [24, Theorem A] and the surrounding discussion.

We are ready to present our main result in this subsection. In the following theorem, we

provide a tight estimate for the pΦ♠
κ q
´1 function in the case of a logarithmic error bound. In view

of Theorem 4.7 this gives a worst-case convergence rate for several algorithms when the underlying

error bound is logarithmic.

Theorem 5.12 (Tight bounds to pΦ♠
κ q
´1). Let κ ą 0 and error bound function Φ be logarithmic

with exponent γ ą 0 as in Definition 5.8. Then, there exists a constant η ą 0 such that

b

pΦ♠
κ q´1p´sq „ η

ˆ

1

lnpsq

˙γ

, as sÑ8. (5.38)

In particular, there are constants η1 ą 0, η2 ą 0 and N ą 0 such that

η1

ˆ

1

lnpsq

˙γ

ď

b

pΦ♠
κ q´1p´sq ď η2

ˆ

1

lnpsq

˙γ

, @ s ě N. (5.39)

Proof. By assumption, there exist c ą 0 and 0 ă ε ă 1 such that for a P p0, εs,

Φpa, κq “ c

ˆ

´
1

lnpaq

˙γ

.

By the definition of φκ,Φ, we have

φκ,Φptq “ Φ2p
?
t, κq “ c222γ 1

plnptqq2γ
, t P p0, ε2s.

Let c1 :“ 2c1{γ and c2 :“ c2γ1 {p2 lnpεqq2γ . We then obtain

φ´1
κ,Φpsq “ e

´
c1

s1{p2γq , s P p0, c2s.

Now, we fix δ “ c2 in the definition of Φ♠
κ , see (4.3). Let Ψptq :“ ´Φ♠

κ p1{tq. Next, we consider the

behavior of Ψ on r1{c2, 8q. For t ě 1{c2, we compute

Ψptq “ ´

ż 1{t

δ

1

φ´1
κ,Φpsq

d s “

ż t

1{δ

ec1x
1{p2γq

x2
d x “

ż t

1{c2

ec1x
1{p2γq

´2 lnpxqd x.
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Let fpxq :“ c1x
1{p2γq ´ 2 lnpxq. Then, a direct limit computation shows that f |r1{c2,8q P RV with

index 1{p2γq. By Lemma 5.10, we have

ln Ψptq “ ln

ż t

1{c2

efpxq „ fptq „ c1t
1{p2γq,

as t Ñ 8. Let gptq :“ c1t
1{p2γq. Since g belongs to RV with positive index 1{p2γq and both ln Ψ

and g are continuous monotone increasing unbounded functions we can invoke Lemma 5.11 which

tells us that

Ψ´1petq “ pln Ψq´1ptq „ g´1ptq as tÑ8.

We note that if f1ptq „ f2ptq as tÑ8 holds then 1{f1ptq „ 1{f2ptq as tÑ8 holds as well. With

that in mind, we let s “ et and recalling that Ψpsq “ ´Φ♠
κ p1{sq, we obtain

b

pΦ♠
κ q´1p´sq “

1
a

Ψ´1psq
„

1
a

g´1pln sq
“ cγ1

ˆ

1

lnpsq

˙γ

, (5.40)

as s Ñ 8, which proves (5.38). Finally, (5.39) is a consequence of (5.40) and the definition of

asymptotic equivalence which implies that for sufficiently large s we have
b

pΦ♠
κ q´1p´sq

cγ1 lnpsq´γ
P r0.5, 2s.

This completes the proof.

6 Convergence rate results for conic feasibility problems

In this section, we analyze the following problem.

find x P K X V, (Cone)

where K is a closed convex cone, V is an affine space satisfying KXV ‰ H. First, we present some

motivation for (Cone). A conic linear program (CLP) is the problem of minimizing/maximizing a

linear function subject to a constraint of the form x P KXV. In this context, the methods discussed

in Sections 4 can be useful to find feasible solutions to a CLP or to refine slightly infeasible solutions.

See, for example, [32].

As discussed in Section 4, the convergence rate of the methods is governed by the type of error

bound that exists between K and V. Here we take a closer look at the error bound proved in [43]

for the case where K is a so-called amenable cone. K is said to be amenable if for every face F
of K there exists a constant κ such that distpx,Fq ď κdistpx,Kq holds for every x P spanF . The

error bound for amenable cones described in [43] requires the following notion.

Definition 6.1 (Facial residual functions). Let F be a face of K and z P F˚. We say that

ψF,z : IR` ˆ IR` Ñ IR` is a facial residual function for z and F if the following properties are

satisfied:

piq ψF,z is nonnegative, monotone nondecreasing in each argument and ψp0, αq “ 0 for every

α P IR`.

piiq whenever x P spanK satisfies the inequalities

distpx, Kq ď ε, xx, zy ď ε, distpx, spanFq ď ε

we have:

distpx, F X tzuKq ď ψF,zpε, }x}q.
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We say that a function ψ̃F,z is a positive rescaling of ψF,z if there are positive constants

M1,M2,M3 such that ψ̃F,zpε, }x}q “ M3ψF,zpM1ε, M2}x}q. We will also need to compose facial

residual functions in a special way. We define ψ2♦ψ1 to be the function satisfying

pψ2♦ψ1qpa, bq “ ψ2pa` ψ1pa, bq, bq, @ a, b P IR. (6.1)

In order to give the precise statement of the error bound in [43], the final component we need is

facial reduction [16, 57, 53]. The basic facial reduction algorithm as described in [57, 53] shows

that it is always possible to obtain a chain of faces of K

F` Ĺ ¨ ¨ ¨ Ĺ F1 “ K, (6.2)

where the following properties are satisfied.

piq For 1 ď i ă `, there exists zi P F˚i X VK such that Fi`1 “ Fi X tziuK.

piiq F` X V satisfies some desirable constraint qualification.

Here, ` is called the length of the chain. Classical facial reduction approaches usually find chain of

faces such that F` X V satisfies Slater’s condition, i.e., priF`q X V ‰ H. However, the FRA-Poly

algorithm [44] finds a face F` satisfying a weaker constraint qualification called partial polyhedral

Slater’s condition (PPS condition), which we will now describe. Suppose that F` can be written

as a direct product P ˆ F̃`, where P is a polyhedral cone and F̃` is an arbitrary cone. If

pP ˆ pri F̃`qq X V ‰ H,

then we say that the PPS condition holds, see Definition 1 in [44]. P is allowed to be trivial, so if

Slater’s condition is satisfied the PPS condition is also satisfied. With that in mind, we define two

key quantities.

• The singularity degree dSpK, Vq of the pair K, V is the length of the smallest chain of faces

(as in (6.2)) where F` and V satisfy Slater’s condition.

• The distance to the partial Polyhedral Slater’s condition dPPSpK, Vq is the length minus one

of the smallest chain of faces (as in (6.2)) where F` and V satisfy the PPS condition. Since

Slater’s condition is a stronger requirement than the PPS condition, we have dPPSpK, Vq ď
dSpK, Vq.

We are now positioned to state the error bound in [43].

Theorem 6.2 (Error bound for amenable cones, Theorem 23 in [43]). Let K be a closed convex

pointed amenable cone, V be an affine space such that K X V ‰ H. Let F` Ĺ ¨ ¨ ¨ Ĺ F1 “ K be a

chain of faces of K as in (6.2) together with zi P F˚i X VK as in item piq. Furthermore, assume

that F`,V satisfy the PPS condition. For i “ 1, . . . , ` ´ 1, let ψi be a facial residual function for

Fi, zi. Then, after positive rescaling the ψi, there is a positive constant κ such that if x P spanK
satisfies the inequalities

distpx, Kq ď ε, distpx, Vq ď ε,

we have

dist px, K X Vq ď pκ}x} ` κqpε` ϕpε, }x}qq,

where ϕ “ ψ`´1♦ ¨ ¨ ¨♦ψ1, if ` ě 2. If ` “ 1, we let ϕ be the function satisfying ϕpε, }x}q “ ε.

Next, we will show that, under a mild condition, the error bound for amenable cones in Theo-

rem 6.2 naturally leads to a strict consistent error bound function.
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Proposition 6.3. Suppose that K is a full-dimensional amenable cone, V is an affine space such

that K X V ‰ H. Let ϕ be defined as in Theorem 6.2. If ϕp¨, bq is right-continuous at 0 for every

b ě 0 then

Φpa, bq– pκb` κqpa` ϕpa, bqq.

is a strict consistent error bound function for K and V.

Proof. The function ϕ in Theorem 6.2 is constructed from facial residual functions using the

diamond composition defined in (6.1). Since facial residual functions are, by definition, increasing

in each coordinate, the same is true of ϕ. When we fix b, the function Φp¨, bq is monotone increasing

because all its terms are monotone nondecreasing and the term κa is monotone increasing. Now

it remains to prove

dist px, K X Vq ď Φ pmaxpdistpx, Kq, distpx, Vqq, }x}q @x P E . (6.3)

The error bound in Theorem 6.2 holds for x P spanK. However, K is full-dimensional, so spanK “
E . Therefore, for x P E if we let ε “ maxpdistpx, Kq, distpx, Vqq in Theorem 6.2, we obtain (6.3).

Since ϕp¨, bq is right-continuous at 0 for every b, Φ is indeed a consistent error bound function for

K and V.

The only gap between Proposition 6.3 and Theorem 6.2 is that the function ϕ in the latter

might not satisfy right-continuity at 0. We address this issue next.

Proposition 6.4 (Existence of facial residual functions satisfying right-continuity at 0). Let K be

a closed convex cone, F Ď K be a face and z P F˚. There exists a facial residual function ψF,z
for z and F such that ψF,zp¨, bq is right-continuous at 0 for every b ě 0. In particular, under the

setting of Theorem 6.2, there exists ϕ : IR` ˆ IR` Ñ IR` such that ϕp¨, bq satisfies right-continuity

at 0 for every b ě 0.

Proof. Because we have F “ K X spanF whenever F Ď K is a face, the following equality holds:

F X tzuK “ K X spanF X tzuK.

To construct a facial residual function, we follow an approach similar to the proof of Proposition 3.3

and Section 3.2 in [43]. Let ψF,zpε, }x}q be the optimal value of the following problem.

sup
vPspanK

distpv,F X tzuKq (P)

subject to distpv,Kq ď ε

distpv, spanFq ď ε

xv, zy ď ε

}v} ď }x}

Because 0 P FXtzuK, (P) is always feasible and the last constraint ensures compactness. With that,

ψF,z satisfy all the requirements in Definition 6.1. For every b ě 0, it can be shown that ψF,zp¨, bq

is right-continuous at 0 by following the same argument used for showing the right-continuity of

the best error bound function in the proof of Proposition 3.3.

Next, we observe that if ψ1 and ψ2 are two facial residual functions satisfying right-continuity

at 0, than their diamond composition (6.1) is also right-continuous at 0, whenever the second

argument is fixed. Therefore, under the setting of Theorem 6.2, the functions ψi appearing therein

can all be selected in such a way that they satisfy right-continuity at 0. So the same is true for the

function ϕ which is a diamond composition of facial residual functions.
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In view of Propositions 6.3 and 6.4, when applying the methods of Section 4.3 to (Cone), the

convergence rate is governed by Φ. Although it might not be clear at first, their convergence rates

depend on the singularity degree of the problem. This is because the singularity degree influences

Φ, which controls the error bound between K and V. In the next subsection, we take a look at the

special case of symmetric cones, where the error bounds and the rates are more concrete.

6.1 The case of symmetric cones

A convex cone K Ď E is symmetric if K “ K˚ and for every x, y P riK there exists a bijective

linear map A satisfying Ax “ y, AK “ K. Symmetric cones are intrinsically connected to the

theory of Euclidean Jordan Algebras, see [36, 28, 29]. We now recall some basic facts about them.

Examples of symmetric cones include the second-order cone, the symmetric positive semidefinite

matrices over the reals, the nonnegative orthant and direct products of those cones. There is a

notion of rank for symmetric cones and the longest chain of faces of a symmetric cone is given by

`K “ rankK ` 1, see [34, Theorem 14]. Finally, symmetric cones are amenable and their facial

residual functions were computed in [43, Theorem 35]. With that, the following error bound holds.

Theorem 6.5 (Theorem 37 and Remark 39 of [43]). Let K Ď E be a symmetric cone, V Ď E an

affine subspace such that K X V ‰ H. Then, there is a positive constant κ such that whenever x

and ε satisfy the inequalities

distpx, Kq ď ε, distpx, Vq ď ε,

we have

dist px, K X Vq ď pκ}x} ` κq

¨

˝

dPPSpK,Vq
ÿ

j“0

εp2
´j
q}x}1´2´j

˛

‚.

If K “ K1 ˆ ¨ ¨ ¨ ˆKs is the direct product of s symmetric cones, we have

dPPSpK, Vq ď min

#

dimpVKq,
s
ÿ

i“1

prankKi ´ 1q, dSpK,Vq

+

.

Next, we verify that the error bound in Theorem 6.2 is a bona fide Hölderian error bound.

Proposition 6.6. Let K and V be as in Theorem 6.5. Then, K and V satisfy a uniform Hölderian

error bound (Definition 3.4) with exponent 2´dPPSpK,Vq.

Proof. Let C1 “ K and C2 “ V. By Theorem 6.5, we have

distpx, K X Vq ď pκ}x} ` κq

¨

˝

dPPSpK,Vq
ÿ

j“0

ˆ

max
1ďiď2

distpx, Ciq

˙2´j

}x}1´2´j

˛

‚ @x P E . (6.4)

Let B Ď E be an arbitrary bounded set. For simplicity of notation, let d “ dPPSpK, Vq and ψ be

the function such that

ψpxq “ max
1ďiď2

distpx, Ciq @x P E .

From the continuity of ψ, we see that for every j P t0, . . . , du there exists a positive constant κj
such that

ψpxq2
´j

“ ψpxq2
´j
´2´dψpxq2

´d

ď κjψpxq
2´d @x P B,

where κj can be taken, for example, to be the supremum of ψp¨q2
´j
´2´d over B. Similarly, there

are positive constants κ̃j and κb such that

}x} ď κb, }x}1´2´j ď κ̃j @x P B.
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Let κB :“ κpκb ` 1qpd` 1q supj κj κ̃j . It follows that whenever x belongs to B the right-hand side

of (6.4) is upper bounded by κB pmax1ďiď2 distpx, Ciqq
2´d

.

We now present convergence results for symmetric cones taking into account all we have dis-

cussed so far.

Theorem 6.7 (Convergence rate results for symmetric cones). Let K Ď E be a symmetric cone

and V Ď E be an affine space such that K X V ‰ H.

Let txku be such that Assumption 4.5 is satisfied with infkak ě 0. Then, there exist M ą 0 and

θ P p0, 1q such that for any k ě 2`,

distpxk, K X Vq ď

$

&

%

M k
´ 1

2p2dPPSpK,Vq´1q if the PPS condition is not satisfied,

M θk otherwise,
(6.5)

In particular, the following holds.

piq The rate (6.5) holds for any algorithm satisfying the assumptions of Corollary 4.12.

piiq The rate (6.5) holds MPA, POCSA (in particular, CPA) , MM (in particular, MDPA) and

AWPA (see Example 4.10).

piiiq If K “ K1 ˆ ¨ ¨ ¨ ˆ Ks is the direct product of s symmetric cones, we have dPPSpK, Vq ď
min

 

dimpVKq,
řs
i“1prankKi ´ 1q, dSpK,Vq

(

.

Proof. By Proposition 6.6 a uniform Hölderian error bound holds between K and V, with exponent

2´dPPSpK,Vq. If either Slater’s condition or the Partial Polyhedral Slater’s condition is satisfied,

then the error bound in Proposition 6.6 becomes a Lipschitz error bound. Applying Corollary 4.9,

we obtain (6.5). Item piq and piiq are consequences of Corollary 4.12. Item piiiq follows from

Theorem 6.5.

Remark 6.8. Theorem 6.7 extends the main result of Drusvyatskiy, Li and Wolkowicz [26] in

several directions: from semidefinite cones to symmetric cones and from the alternating projection

algorithm to any algorithm covered by Corollary 4.9.

6.2 The exponential cone and non-Hölderian error bounds

In this subsection, we analyze two error bounds associated to the exponential cone [19, 18, 47],

which is defined as follows

Kexp :“
!

px, y, zq P IR3
| y ą 0, z ě yex{y

)

Y tpx, y, zq | x ď 0, z ě 0, y “ 0u ,

see Remark 6.10 for a discussion on applications.

Unfortunately, Theorem 6.2 does not apply to the exponential cone, because Kexp is not

amenable, see [40]. However, in [40], the authors proved a generalization of the results of [43]

and proved tight error bounds for the exponential cone, which we will discuss using our tools. In

what follows, let

V1 :“ tpx, 0, zq | x, z P IRu and V2 :“ tpx, y, 0q | x, y P IRu.

We now consider the error bounds associated to the following feasibility problems

find p P Kexp X V1, (6.6)

find p P Kexp X V2. (6.7)
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For p P IR3, we define dippq :“ maxtdistpp,Kexpq,distpp,Viqu, for i “ 1, 2. We also need the

following functions.

g´8ptq :“

$

’

’

&

’

’

%

0 if t “ 0,

´t lnptq if t P
`

0, 1{e2
‰

,

t` 1
e2 if t ą 1{e2.

g8ptq :“

$

’

’

&

’

’

%

0 if t “ 0,

´ 1
lnptq if 0 ă t ď 1

e2 ,
1
4 `

1
4e

2t if t ą 1
e2 .

These functions arise in the computation of the facial residual functions for the exponential cone.

From [40, Theorem 4.13] and items (a) and (c) of [40, Remark 4.14], we have that for every ball

Bb :“ tp P IR3
| }p} ď bu with b ą 0, there are constants ρ1pbq and ρ2pbq such that

distpp,Kexp X V1q ď ρ1pbqg´8pd1ppqq, @p P Bb (6.8)

and

distpp,Kexp X V2q ď ρ2pbqg8pd2ppqq, @p P Bb. (6.9)

Naturally, ρ1 and ρ2 can be chosen so that they are monotone nondecreasing functions of b. Because

g´8 and g8 are continuous monotone increasing functions, we have the following strict consistent

error bound functions for the problems in (6.6) and (6.7), respectively:

Φetpa, bq :“ ρ1pbqg´8paq, Φlnpa, bq :“ ρ2pbqg8paq. (6.10)

These are examples of entropic and logarithmic error bounds, respectively. We note that it was

proved in [40, Example 4.20] that no Hölderian error bound holds for the problem (6.7). Further-

more, the bounds in (6.8) and (6.9) are tight up to a constant, see [40, Remark 4.14].

Using Φet and Φln in (6.10) we can analyse the convergence rate of algorithms for (6.6) and

(6.7). An initial hurdle to our enterprise is that it is challenging to obtain closed-form expressions

for pΦetq
♠
κ , pΦlnq

♠
κ and their inverses. On the other hand, checking that Φet and Φln are regularly

varying functions is straightforward and we will use the the machinery developed in Section 5.

Proposition 6.9. The following items hold for any κ ą 0.

piq Φetp¨, κq belongs to RV0 with index 1 and Φlnp¨, κq belongs to RV0 with index 0.

piiq pΦetq
♠
κ ptq Ñ ´8 and pΦlnq

♠
κ ptq Ñ ´8 as tÑ 0`.

piiiq The convergence rate afforded by Φet is almost linear in the following sense: for any r ą 0,

the following relations hold as sÑ `8

b

ppΦetq
♠
κ q
´1p´sq “ ops´rq, e´rs “ o

ˆ

b

ppΦetq
♠
κ q
´1p´sq

˙

.

pivq The convergence rate afforded by Φln is logarithmic in the following sense: there exists

η1 ą 0, η2 ą 0 and N such that for s ě N , we have

η1

ˆ

1

lnpsq

˙

ď

b

ppΦlnq
♠
κ q
´1p´sq ď η2

ˆ

1

lnpsq

˙

.

Proof. That item piq holds can be readily checked by computing the limit in (5.2). Next, we will

use Proposition 4.4 to verify item piiq. We note that the feasible sets of (6.6) and (6.7) both contain

the origin, so distp0,Kexp X V1q “ distp0,Kexp X V2q “ 0. Furthermore, both feasible regions are

contained in two-dimensional sets, so KexpXV1 and KexpXV2 have empty interior. In particular,

there are points p1, p2 with }p1} ď κ, }p2} ď κ such that p1 R Kexp X V1 and p2 R Kexp X V2.
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(a) Log-log plot of distppk,Kexp X V1q. Dashed

and dotted lines correspond to k´r for a few

values of r.

(b) Plot of distppk,Kexp X V1q, where only the

y-axis is in log scale. Functions of the form c´k

appear as straight lines.

Figure 1: Behavior of CPA applied to (6.6). Starting point is p1, 1, 1q.

This shows that κ satisfies the inequality in the statement of Proposition 4.4 for both Φet and Φln,

which proves the desired limits.

We move on to item piiiq and let r ą 0 be arbitrary. From item piiiq of Theorem 5.7, we have
b

ppΦetq
♠
κ q
´1p´sq “ ops´rq as sÑ `8. Next, let Φ1pt, κq :“ rt, so that Φ1 is a strict error bound

function. Following the computations after (4.20), we have

b

ppΦ1q
♠
κ q
´1psq “ es{p2r

2
q. We have

rt “ opΦetpt, κqq as tÑ 0`. By Theorem 5.3, we have

es{p2r
2
q “ o

ˆ

b

ppΦetq
♠
κ q
´1psq

˙

,

as sÑ ´8. Since r is arbitrary, this completes item piiiq.

Finally, item pivq follows from Theorem 5.12 because Φln corresponds to a logarithmic error

bound with exponent 1.

As an example, suppose that we are interested in the behaviour of the cyclic projection algo-

rithm (CPA) when applied to (6.6) and (6.7). We will denote the iterates generated by CPA by pk

and the initial iterate by p0. In the numerical experiments that follow, we use the code developed

by Friberg in order to compute the projection onto the exponential cone, see [30].

First, we consider (6.6). From item piq of Theorem 4.13 and item piiiq of Proposition 6.9,

distppk,KexpXV1q goes to 0 “almost linearly” in the sense that the rate is faster than k´r for any

r ą 0. To check this empirically, we let p0 “ p1, 1, 1q and plot in Figure 1a the iteration number k

against distppk,KexpXV1q (which can be computed exactly in this example). Both axes are in log

scale, so that k´r appears as a straight line for any r. Figure 1a shows that, as predicted by theory,

distppk,KexpXV1q goes to 0 faster than any sublinear rate. Item piiiq of Proposition 6.9 also gives

a lower bound to

b

ppΦetq
♠
κ q
´1p´sq and tells us that this function goes to 0 slower than e´rs for

any r. Now, a lower bound to

b

ppΦetq
♠
κ q
´1p´sq does not necessarily lead to a lower bound to

distppk,Kexp X V1q, so we cannot immediately refute the possibility that distppk,Kexp X V1q goes

to 0 linearly. However using a plot where only y-axis is in log-scale, we see indication that the

convergence rate of distppk,KexpXV1q is indeed not linear, see Figure 1b. In this example, it seems

that

b

ppΦetq
♠
κ q
´1p´sq closely reflects the true convergence rate.

Next, we move on to (6.7). By item pivq of Proposition 6.9, we have that the convergence rate

is at least logarithmic. In principle, this does not exclude the possibility that the true convergence
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Figure 2: Log-log plot of distppk,Kexp X V2q for the iterates generated by CPA. Starting point is

p1, 1, 1q. Dashed and dotted lines correspond to k´r for a few values of r.

rate of distppk,Kexp X V2q is faster. However, Figure 2 suggests that distppk,Kexp X V2q goes to 0

slower than k´r for any r ą 0, which again suggests that ppΦlnq
♠
κ q
´1p´sq is reflective of the true

convergence rate.

Remark 6.10 (On the exponential cone and beyond). The exponential cone is a building block

for modelling many important problems related to entropy optimization, geometric programming

and others, see [19, 18, 47]. For example, the Kullback-Leibler divergence between two nonnegative

vectors x, y P IRn is defined as Dpx, yq :“
ř

i xi lnpxi{yiq and its epigraph is often modelled using

n exponential cones as follows:

t ě t1 ` ¨ ¨ ¨ ` tn, p´ti, xi, yiq P Kexp, i P 1, . . . , n,

as indicated, for example, in [18, Section 1.1] and [47, Chapter 5]. In particular, the problem of

minimizing the Kullback-Leibler divergence subject to linear constraints on x and y can be expressed

as a conic linear program (CLP) over a product of exponential cones. Notably, in [45], the authors

found that nearly one third of a library of more than 300 instances of mixed integer continuous

optimization problems can be modelled using mixed integer conic formulations with exponential

cone constraints, see Table 1 therein. Certain relaxations of these problems naturally lead to CLPs

over a direct product of exponential cones. Although we have discussed only the case of a single

exponential cone, our results are representative of what can happen in more general settings.

There is now a larger movement towards algorithms, software and theory for non-symmetric

cones with quite a few solvers supporting exponential cones, e.g., [35, 52, 20, 47]. These references

also discuss other convex sets involving logarithms and exponentials, such as the the log-determinant

cone in [20]. On a more speculative note, it seems likely that some intersections involving those

sets will have non-Hölderian error bounds due to the presence of exponentials and logarithms.

Therefore, the techniques discussed in this section and in Section 5 will likely be applicable as well.

7 Concluding remarks

In this paper we proposed the notion of (strict) consistent error bounds. Under a strict consistent

error bound, we established convergence rates for a family of algorithms for the convex feasibility

problem (CFP). The key idea is to construct an inverse smoothing function based on the corre-

sponding consistent error bound function. Our analysis recovers several old results and also gives

several new ones. We also apply the convergence results to conic feasibility problems in order
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furnish further links between the singularity degree of the underlying problem and the conver-

gence rate of several algorithms. Another novel aspect is the usage of regularly varying functions,

which allows to draw conclusions about convergence rates while avoiding certain complicated com-

putations. To conclude this paper, we first make some comparisons to approaches based on the

KL-property.

7.1 On the Kurdyka- Lojasiewicz (KL) property and related concepts

The Kurdyka- Lojasiewicz (KL) property is an important and remarkable tool for convergence

analysis used successfully in several works [3, 4, 39], so in this subsection we make a few comparisons

in order to explain what could or what could (probably) not be done under the KL framework.

First, there is a close relation between error bounds and the KL property in the presence of

convexity. As shown in [12, Theorem 30] and [13, Theorem 5], under certain conditions on ϕ, an

error bound of the form “distpx, arg min fq ď ϕpfpxqq” implies that f satisfies the KL property

with a desingularization function involving ϕ. Under our setting, there are several candidates for f

but they will, in all likelihood, be functions involving terms of the form maxi distpx, Ciq or positive

combinations of the distpx,Ciq
2, for example.

The choice of f must be typically tailored to the target algorithm. Our understanding is that

most of the algorithms in Section 4.3 would require different choices of f in order for the analysis to

be carried out under the KL framework. Finding the appropriate f can be nontrivial, as illustrated

by the merit function for the Douglas-Rachdford algorithm in [38]. It might also be impossible in

some cases. For example, based on a result by Baillon, Combettes and Cominetti [5], it is claimed

in a footnote in [13] that there is no potential function corresponding to the cyclic projection

algorithm (CPA, see Example 4.10) for more than two sets.

Once the appropriate potential function is identified, it is necessary to show that certain con-

ditions hold for the potential function along the sequence, e.g., the sufficient decrease condition

and the relative error condition, see [3, 4, 50]. These properties and Assumption 4.5 have a sim-

ilar motivation: ensuring that the sequence generated by the underlying algorithm satisfies some

desirable properties.

If a convergence rate is desired, one usually has to show that the potential function satisfies

the KL property with some KL exponent. The general KL property holds under relatively mild

conditions, but identifying the exponent (if one exists) is a more challenging task, see [39]. Due

to [13, Theorem 5], existence of a KL exponent is equivalent to the validity of a Hölderian error

bound, so establishing the former or the latter are tasks of comparable difficulty. We note that

the logarithmic error bound example in (6.7) can be used to construct a function which does not

have a KL exponent, see [40, Example 4.22]. Similarly, fγ in Example 5.9 has no KL exponent.

In particular, the convergence rate results based on the existence of a KL exponent do not seem

applicable to (6.7) nor to Example 5.9.

That said, it is possible to analyze convergence rates without assuming that a KL exponent

holds, see [12, Theorem 24] and [13, Theorem 14] for results which only rely on the desingular-

izing function ϕ without assumptions on the format of ϕ. And, interestingly, the existence of ϕ

can, sometimes, be characterized via certain integrals involving subgradient curves, see [12, Theo-

rem 18]. However, we do not immediately see a connection between the integrals appearing in [12,

Theorem 18] and in (4.3). We do note, however, that a certain optimal desingularizing function can

be characterized via an integral, see [58, Section 3.2]. Similarly, if the best consistent error bound

function in Proposition 3.3 is strict, it can be used to construct the inverse smoothing function

Φ♠
κ as in (4.3). So both integrals seem to be able to capture optimal phenomena, under certain

conditions.
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Another point is that the upper bounds in [12, Theorem 24] and [13, Theorem 14] include

expressions of the format ϕpfpxkq ´ κq (for some constant κ), so they are still dependent on the

iterate xk and it might be fair to say they require some work in order to get an explicit convergence

rate in terms of k. In contrast, our upper bound on the convergence rate in (4.10) does not rely on

the iterate xk and only uses the iteration number k itself, which gives a more explicit expression.

The drawback is that one must deal with the pΦ♠
pκ q
´1 term that appears in (4.10), which is indeed

nontrival. Nevertheless, as shown in Section 5 and illustrated in Section 6.2, there are ways of

bypassing this difficulty if the consistent error bound function is a function of regular variation.

Finally, we remark that the KL inequality is, of course, heavily connected to semialgebraic

geometry [11], so one might wonder the extent to which our results could also be obtained by

imposing semialgebraic assumptions on Φ or on the sets Ci. Our assessment is that this seems

unlikely, because the results in Section 5 are also applicable to sets and functions involving ex-

ponentials and logarithms (as in Example 5.9 and Section 6.2), which are not semialgebraic in

general.

7.2 Future directions

At last, we mention some possible future directions. In the concluding remarks of [14], the authors

mention the characterization of convergence rates in the absence of Hölderian regularity as an area

of future research. We believe that the tools developed in this paper are a step forward towards

this research goal, since Theorem 4.7 is quite general. And, indeed, we were able to reason about

convergence rates in non-Hölderian settings as described in Sections 5.1 and 6.2.

In addition, it might be fair to say that regular variation has been rarely explored in the

context of optimization algorithms and we believe there is significant room for further exploration.

For example, we showed that consistent error bound functions always exist (Proposition 3.3). It

could be interesting to try to prove whether a regularly varying consistent error bound function

always exists as well. Since regular variation is connected to upper bounds for the convergence rate

(Theorem 5.7), exploring this kind of question might lead to some insights on whether arbitrary

slow convergence is possible in finite dimensions, which is another open problem mentioned in the

conclusion of [14].

Finally, we believe it would be interesting to analyse convergence rates of other algorithms

beyond projection methods. A natural candidate would be the Douglas-Rachford (DR) algorithm

[25, 41], which was also extensively analyzed in [14]. However, the convergence rate results obtained

in [14, Proposition 4.2] require not only an error bound condition on the underlying sets, but also

a semialgebraic assumption. This suggests that it might be hard to obtain convergence rates for

the DR algorithm purely based on consistent error bounds. On the other hand, damped versions

of the DR algorithm (see [14, Section 5] or [23, Equation (25)]) might be more amenable to our

techniques. In fact, sublinear rates were proved in [14, Theorem 5.2] when the underlying error

bound is Hölderian without the need of imposing extra assumptions, see also [14, Remark 5.3]. In

view of this, we believe it is likely that a result analogous to Theorem 4.7 and suitable for damped

DR algorithms holds.
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A Proof of Lemma 4.2

Proof. The fact that f´p0q “ 0 follows from fp0q “ 0 and the definition (4.2). We also note that in

(4.2), if we increase s, the set after the ‘inf’ potentially shrinks, so f´ is monotone nondecreasing.

Next, we prove each item.

piq Fix any s P p0, sup fq. Suppose that f´psq “ 0. By the definition (4.2), given any εk ą 0,

there exists tk P r0, εks such that fptkq ě s. Consequently, there exists a sequence tk Ñ 0`
with fptkq ě s ą 0. This together with fp0q “ 0 contradicts the (right)-continuity of f at 0,

and thus proves piq.

piiq Let s ě 0, t ě 0 be such that s ď fptq. Since f is monotone increasing, sup f is never

attained, which implies 0 ď s ď fptq ă sup f . Furthermore, by the definition (4.2), we have

f´psq ď t.

piiiq Let s ě 0, t ě 0 be such that s ă sup f and fptq ă s. By definition, f´pfptqq :“

inf tu ě 0 : fpuq ě fptqu, therefore f´pfptqq ď t. On the other hand, the strict monotonicity

of f implies that there is no u ă t with fpuq ě fptq. This implies f´pfptqq ě t and thus

f´pfptqq “ t. Together with the monotonicity of f´, we obtain t “ f´pfptqq ď f´psq.

pivq Suppose that there exists some ss P p0, sup fq such that f´ is not continuous at ss. Since

f´ is monotone, both the left-sided limit f´pss´q and the right-sided limit f´pss`q exist and

f´pss´q ă f´pss`q. Fix any t P pf´pss´q, f´pss`qq. From the monotonicity of f´, there

exists ε ą 0 such that whenever s1, s2 satisfy 0 ă s1 ă ss ă s2 ă sup f we have

f´ps1q ă t´ ε ă t` ε ă f´ps2q.

We now show that fptq “ ss. Suppose that fptq ‰ ss. Then either fptq ă ss or fptq ą ss. If

fptq ă ss, let s1 “ pfptq ` ssq{2 P pfptq, ssq. Thus, we know from item piiiq that f´ps1q ě t,

which contradicts f´ps1q ă t´ ε.

If fptq ą ss, let s2 “ pfptq` ssq{2 P pss, fptqq. Then, from item piiq, we have f´ps2q ď t, which

contradicts t` ε ă f´ps2q. This proves fptq “ ss. The arbitrariness of t P pf´pss´q, f´pss`qq

contradicts the strict monotonicity of f . Consequently, f´ is continuous on p0, sup fq.
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cations de l’Institut Mathématique. Nouvelle Série, 80:47–57, 2006.

[10] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular Variation. Encyclopedia of Mathe-

matics and its Applications. Cambridge University Press, 1987.

[11] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer Science, 1998.

[12] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet. Characterizations of  Lojasiewicz inequalities:

subgradient flows, talweg, convexity. Transactions of the American Mathematical Society,

362(6):3319–3363, 2010.

[13] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. From error bounds to the complexity

of first-order descent methods for convex functions. Mathematical Programming, 165(2):471–

507, 2017.

[14] J. M. Borwein, G. Li, and M. K. Tam. Convergence rate analysis for averaged fixed point

iterations in common fixed point problems. SIAM Journal on Optimization, 27(1):1–33, 2017.

[15] J. M. Borwein, G. Li, and L. Yao. Analysis of the convergence rate for the cyclic projec-

tion algorithm applied to basic semialgebraic convex sets. SIAM Journal on Optimization,

24(1):498–527, 2014.

[16] J. M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. Journal of

Mathematical Analysis and Applications, 83(2):495 – 530, 1981.

[17] Y. Censor. Row-action methods for huge and sparse systems and their applications. SIAM

Review, 23(4):444–466, 1981.

[18] V. Chandrasekaran and P. Shah. Relative entropy optimization and its applications. Mathe-

matical Programming, 161(1):1–32, 2017.

[19] R. Chares. Cones and interior-point algorithms for structured convex optimization involving

powers and exponentials. Phd thesis, Université catholique de Louvain, 2009.

[20] C. Coey, L. Kapelevich, and J. P. Vielma. Solving natural conic formulations with Hypatia.jl.

ArXiv e-prints, 2021. arXiv:2005.01136.

[21] P. L. Combettes. The convex feasibility problem in image recovery, volume 95, pages 155–270.

Elsevier, 1996.

40

http://arxiv.org/abs/2005.01136


[22] P. L. Combettes. Hilbertian convex feasibility problem: Convergence of projection methods.

Applied Mathematics and Optimization, 35(3):311–330, 1997.

[23] D. Davis and W. Yin. Faster convergence rates of relaxed Peaceman-Rachford and ADMM

under regularity assumptions. Mathematics of Operations Research, 42(3):783–805, 2017.
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